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ABSTRACT

Bandwidth Selection for Kernel Estimators

of the Intensity and Pair Correlation

Functions of Spatial Point Processes

Yangha Chung

The Department of Statistics

The Graduate School

Seoul National University

In this thesis, we present an optimal bandwidth selection method

for kernel estimator of the intensity function of the spatial point

process and the LISA function of the pair correlation function.

Particularly in estimating intensity function, we suggest a method

to control smoothness with a small data size by using Bayesian

bootstrap. We propose a bandwidth selection method that min-

imizes the mean integrated square error in the kernel estimation

in the LISA function. We numerically compare our method with

other existing methods and show that our method outperforms

other methods in most cases. We also apply our method to two

case studies.
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Chapter 1

Introduction

In this thesis, we study bandwidth selection for estimating inten-

sity and local pair correlation functions of spatial data through

kernel smoothing methods. Spatial data is quite similar with nor-

mal attribute data but has a large difference in that it has a fixed

location. Geographic data is a typical example of spatial data and

it includes geometric, topological or geographic properties and the

dimension of spatial data is mainly two while three-dimensional

properties can be used when exploring the data such as astronomi-

cal data. Since it has geographical characteristic itself, it has to be

treated differently and analysing spatial data could make progress

in its own field.

There are three typical spatial data types which are vector,

raster and time-series data. We are interested in vector data, es-

pecially point data in this thesis. Vector data consists of discrete

features on the surface of the earth as points, lines, and polygons

and discrete objects like roads or locations of wildfires in a specific

region are frequently represented as vector data. The point data
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is most common and basic above all and the information for sites

of events are mostly considerd as point data.

The behavior or realization of points is called a point pattern,

and the word “point process” refers to the collection of points in

such point pattern in spatial statistics. A point process is a type of

stochastic process that is characterized by a set of points in space

or time and there are many different types of point processes, and

the specific type used can depend on applications and the nature

of data. Some common types of point processes include homoge-

neous Poisson processes, inhomogeneous Poisson processes, Cox

processes, and Gibbs point processes. Homogeneous Poisson pro-

cess can be treated as a collection of completely random locations

in a region and the expected number of location is constnatn. In-

homogeneous Poisson point process is a point process which the

probability of finding a point in a given region depends on the lo-

cation within the region. Clustered or thinned processes are orig-

inated from inhomogeneous Poisson point process and there is a

generalization of inhomogeneous Poisson point process which is

considered as doubly stochastic.

Furthermore, the asymptotic theory must be developed un-

der the Poisson assumption in order to ensure the consistency of

the kernel estimator of the density of event sites. However, the

process in this study can also be used with non-Poisson point

processes that we executed the simulation studies for both Pois-

son and non-Poisson point processes. Diggle (2003) stated that we

cannot determine the difference between hetereogeneity and inter-

action in an observable point pattern without extra information,
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such as variables or a parametric model. In order to test the Pois-

son assumption, it is usual practice in the study of spatial point

patterns to first estimate the first-order intensity before predicting

the second-order attributes. Therefore, the Poisson assumption is

not very restrictive.

Normally, the first step to exploring the point process is to in-

vestigate the first order properties which describe an overall pat-

tern and variability of the process and the accurate estimation of

the first order intensity is quite essential. First-order properties

are important because they provide information about the general

characteristics of a spatial process, such as its average value and

how much it varies across space. The second-order properties, also

known as the spatial correlation or spatial dependence, describe

the relationship between the values of the process at different lo-

cations. Second-order properties are important because they de-

scribe the spatial dependence of the process, which can have a

significant impact on the analysis and modeling of the data. For

example, if a spatial process has strong spatial dependence, this

may indicate that the values of the process at nearby locations are

highly correlated, and this could affect the accuracy of statistical

estimates and predictions. On the other hand, if a spatial process

has weak spatial dependence, this may indicate that the values of

the process at different locations are less correlated and can be

treated as independent observations. Understanding the first and

second-order properties of a spatial process play an important role

in accurately analyzing and modeling spatial data. When studying

two properties, we usually deal with processes with some parame-

3



ters but nonparametric estimation is indispensable while studying

the real data. So we chose kernel smoothing method and since our

major concern of data is in two dimensional space, we considered

bivariate kernel density estimation first and convert into spatial

version.

A popular estimator for a probability density function in two

dimensions is a bivariate kernel density estimator. LetX1, X2, · · · , XN

be the points in R2, then the bivariate kernel density estimator is

f̂H(x) =
1

N

N∑
i=1

KH(x−Xi) =
1

N |H|−1/2

N∑
i=1

K
(
H−1/2(x−Xi)

)
where H is a 2 × 2 symmetric and positive definite bandwidth

matrix and K is an arbitrary bivariate kernel function. We can

consider two types of the bandwidth matrices – diagonal and full.

The class of symmetric and positive definite matrices is denoted

by F and D a subset of F which is a set of diagonal matrices .

Bandwidth matrices in each type can be expressed as below.

• H =

h2
1 0

0 h2
2

 if H ∈ D

• H =

h11 h21

h21 h22

 if H ∈ F

The rest of this thesis is organized as follows. Chapter 2 intro-

duces an intensity version of kernel estimation and the bandwidth

selection procedures with several numerical studies. LISA function

of pair correlation function is a main theme in Chapter 3. We wrap

up the thesis in Chapter 4 with concluding remarks and the proofs

of the theorems and lemmas are in Appendix.
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Chapter 2

Kernel Intensity

Estimation

2.1 Overview

We introduce an motivating example of spatial data and how we

utilize it.

Figure 2.1 is from Diggle (1990) and it shows the locations

of lung and larynx cancer cases in Chorley, England. With this

information, we would like to compare the population distribution

of lung with that of larynx cancer cases. In spatial statistics, the

distribution of locations or events – which involves absolute values

rather than relative ones – is what we are most interested in.

When analyzing spatial data, there is a concept of mean called

intensity that is the average number of events per unit area. To be

precise, “first-order intensity” is more precise expression, but the

abbreviated term is in common use.

5



Figure 2.1: Locations of lung and larynx cancer cases and disused

incinerator

Definition 1. (Intensity)

Let W ⊂ R2 and X be a spatial point process defined in W .

(X1, · · · , XN ) is a realization of X which is observed on a bounded

region . If dx is an infinitesimal region with point x ∈ R2 as its

center, the first-order intensity function of X (Diggle, 2003) is

defined as

λ(x) = lim
|dx|→0

E[N(dx)]

|dx|

where |dx| and N(dx) denote the area and the number of events

of X in dx, respectively.

The intensity is comparable to the probability density function,

but there are some distinctions between them. The intensity func-

tion is not a normalized property. As we can see from the definition

of intensity, the value of intensity is related to “how many” events

we expect to occur at a particular location. Another difference is

6



that the randomness of number of points. Recall we can count how

many points in a point process. In general, the number of points in

a bounded region acts as a random variable and it follows a Pois-

son distribution. Furthermore, when we consider choosing points

from a density, they are chosen based on the likelihood so the lo-

cations themselves are independent. However, in spatial statistics,

the locations of events are not necessarily independent.

Although intensity is somewhat different with density, the ba-

sic approach to analysis is quite similar, which is the kernel smooth-

ing method. Kernel smoothing is a popular nonparametric method

and it is mainly used in density estimation. Kernel density es-

timation and kernel intensity estimation are two closely related

techniques used in statistics to estimate the underlying probabil-

ity density function or intensity function of a random variable

from a sample of observations. Both techniques involve using a

kernel function to smooth the data and obtain an estimator of the

probability density function or intensity function. The primary

distinction between kernel density estimation and kernel intensity

estimation is that the former is used to compute the probability

distribution function of a continuous random variable, whereas the

latter calculates the intensity function of a point process, a par-

ticular kind of random process that is defined by a collection of

points in space or time. Diggle (1985) suggested the kernel inten-

sity estimator of one-dimensional point process as follows

7



λ̂h(x) =
1

ph(x)

N∑
i=1

Kh(x−Xi)

=
1

ph(x)h2

N∑
i=1

K

(
x−Xi

h

)
whereK(·) is a kernel function and h > 0 is the smoothing parame-

ter,Kh denotes the smoothed kernel and ph(x) =
∫
W

1
h2
K
(
x−Xi
h

)
dy

is the edge-correction term. There are many other kinds of edge-

correction terms but the mentioned one is the most popular. A

kernel function K should be real-valued, non-negative, integrable

and it is preferable to define the function to meet two extra require-

ments for the majority of applications which are normalization –∫∞
−∞K(u)du = 1 – and symmetry – K(−u) = K(u) for all u.

All functions which satisfies the conditions can be used as a

kernel function. There are several types of kernel function which

are used popularly: Gaussian, Epanechnikov, uniform, triweight

and so on.

Although it has acquired less attention, bandwidth selection

in kernel estimation of spatial point processes is a crucial com-

ponent of kernel estimation. The bandwidth selection for density

estimation providing least-squares cross-validation (LSCV) (Sil-

verman, 1986) is the same as that provided by the kernel inten-

sity estimator, as demonstrated by Diggle and Marron (1988) for

stationary Cox processes in R, and Berman and Diggle (1989)

introduced a data-driven method to choose this bandwidth. For

inhomogeneous point processes, this equivalence has not yet been

established. Brooks and Marron (1991) showed that the LSCV

8



bandwidth is asymptotically optimal in case of inhomogeneous

point processes in R. According to Taylor (1989), Cao (1993), and

Cao et al. (1994), the approach to employ smooth bootstrap pro-

cedures can outperform cross-validation to determine the optimal

bandwidth for the kernel estimators for density and hazard rate. In

R, Cowling et al. (1996) suggested a resampling procedure called

smooth bootstrap to obtain the confidence region for kernel in-

tensity estimator of inhomogeneous point processes and Loh and

Jang (2010) used nonparametric bootstrap to determine the opti-

mal bandwidth for estimating the two-point correlation function

in the point process framework.

To discuss the estimator, the asymptotic framework is indis-

pensable. The specific situation which needs the asymptotic frame-

work will be introduced in Chapter 2. There are two types of

asymptotic framework: increasing domain asymptotics and infill

asymptotics. Increasing domain asymptotics is used when dealing

with stochastic processes at an increasing number of sites such

that any two sites are at least a fixed distance apart. Also, the

observation region eventually becomes unbounded as n→∞ so it

can be useful in epidemiology. The process over a regular lattice

is another example for using increasing domain asymptotics. On

the other hand, infill asymptotics – which is our concern in this

thesis – is used when an observation region is necessarily bounded

and more and more samples are taken from the given region. The

minimum distance between the data-sites tends to 0 as n→∞, in-

fill asymptotics often entails examining the behavior of estimators

in the limit as the sample size approaches infinity. This frame-

9



work is suitable for geostatistical applications. The infill asymp-

totic framework, used by Diggle and Marron (1988), states that

the expected number of events approaches to infinity within R2

or a bounded observation domain W , that is,
∫
R2 λ(x)dx→∞ or∫

W λ(x)dx→∞.

For kernel intensity estimation, we can take into considera-

tion bandwidth matrices and define the kernel intensity estimator

(Wand, 1992; Wand and Jones, 1994); Duong and Hazelton, 2003)

as

λ̂H(x) =
1

pH(x)

N∑
i=1

KH(x−Xi)

=
1

pH(x)|H|−1/2

N∑
i=1

K
(
H−1/2(x−Xi)

)
where H denotes the bandwidth matrix which should be symmet-

ric and positive-definite and |H| is the determinant of H. This

kernel intensity estimator is asymptotically unbiased but not con-

sistent, it acts as a major demerit for using as an estimator.

This problem can be addressed by considering the relation-

ship between first-order intensity of a spatial point process and

bivariate density . As abovementioned, we are dealing with Pois-

son point processes and N is the given number of events which fol-

lows Poisson(
∫
W λ(x)dx) = Poisson(m). Cucala (2006) introduced

a concept of “density of event locations” as below.

f(x) =
λ(x)∫

W λ(x)dx
=
λ(x)

m
= λ0(x)

10



Then, the kernel estimator of λ0(x) can be represented as

λ̂0,H(x) =
λ̂H(x)

N
I(N 6= 0)

=
1

N · pH(x)|H|−1/2

N∑
i=1

K
(
H−1/2(x−Xi)

)
I(N 6= 0)

(2.1)

where I(·) stands for an indicator function. This indicator term is

due to the randomness of the number of events in Poisson point

processes.

The performance of the kernel estimator must then be mea-

sured, with the mean integrated squared error(MISE) being the

most commonly used metric. It can be expressed as the sum of

integrated squared bias term and integrated variance term as fol-

lows.

MISE(H) = E

(∫
W

(
λ̂0,H(x)− λ0(x)

)2
dx

)
=

∫
W
B(x,H)2dx+

∫
W

Var(x,H)dx

E represents the expectation over randomness in both location and

number of events, and B(x,H) and Var(x,H) denote the bias and

variance of λ̂0,H(x), respectively. Here we need infill asymptotic

framework to achieve the asymptotic version of MISE(H) which is

denoted as AMISE(H). We find an optimal bandwidth matrix H

by minimizing MISE(H) or AMISE(H). The relationship between

MISE(H) and AMISE(H) is as below.

MISE(H) = AMISE(H) + o
(
A(m)|H|−1/2 + tr(H)

)

11



Here

AMISE(H) =
1

4
µ2(K)2

∫
R2

tr2(HD2λ0(x))dx+A(m)|H|−1/2R(K)

=
1

4
µ2(K)2(vechtH)Ψ4(vechtH) +A(m)|H|−1/2R(K)

(2.2)

where R(K) =
∫
K2(x)dx,

∫
R2 uu

TK(u)du = µ2(K)I2 ,D2λ0(x)

is a Hessian matrix of λ0, vech is a half-vectorization of matrix

and A(m) = E
(

1
N I(N 6= 0)

)
. Note that A(m) = e−m

∑∞
k=1

mk

kk! <

e−m
∑∞

k=0
2mk

(k+1)! = 2
m → 0 as m→∞. Ψ4 is the 3×3 matrix whose

entities are the integrated density derivative functional. (See de-

tails in Appendix 1.) It is known that there is no such closed form

for MISE(H) in general so we can use AMISE(H) in that case. In

addition, we can only achieve the minimization of AMISE(H) by a

numerical way. We must acquire an estimator of AMISE(H) to use

the MISE as an error criterion to choose the proper bandwidth.

To attain fine results through this kernel estimating process,

we have to set three assumptions on H, λ,K.

1. H should be symmetric and positive-definite and all entries

of H→ 0 and m−1|H|−1/2 → 0, as m→∞.

2. The partial derivatives of λ are up to order four and the 2nd

and 4th partial derivatives are all bounded, square integrable

and continuous.

3. The kernel function is a symmetric, square integrable, con-

tinuous density function such that
∫
R2 uu

TK(u)du = µ2(K)I2

with µ2(K) <∞

These are called as regularity conditions and it can be understood

that these are an intensity version of regularity conditions for ker-
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nel density estimation. We assume that the functions in this thesis

satisfy the regularity conditions and note that the types of boot-

strap kernel estimators in this thesis are all used for minimizing

MISE and the optimal bandwidths from them is substituted into

the equation 2.1 . Now we introduce an estimator of MISE which

uses bootstrap procedure.

2.2 Smoothed bootstrap and Bayesian boot-

strap

In general, “bootstrapping” means a nonparametric bootstrap with

equal size. Nonparametric bootstrap techniques produce copies of

a dataset and they enable inference and the creation of goodness-

of-fit tests in a variety of statistical applications. there are many

other types of bootstrapping such as smoothed bootstrap, Bayesian

bootstrap, parametric bootstrap, block bootstrap and so on. The

application of bootstrap techniques to spatial or temporal data in-

cluding dependent observations has been quite successful when ap-

plied to independent data. For instance, Guan and Loh (2007) used

bootstrap to fit models to stationary point patterns, and Lahiri et

al. (1999) used it to derive inferences about the spatial cumula-

tive distribution function. Marked-points bootstrap was employed

by Loh and Stein (2004), Loh (2010), and Loh and Jang (2010)

and they determined the bandwidth for the nonparametric estima-

tor of the two-point correlation function. These studies introduced

goodness-of-fit test for the K-function of homogeneous and inho-

mogeneous point patterns. K-function is related to second order

13



property of point processes and will be treated in Chapter 3. In

this section, we introduce smoothed bootstrap and Bayesian boot-

strap.

2.2.1 Smoothed bootstrap

In order to extend the smooth bootstrap approach for inhomo-

geneous Poisson point processes in R by Cowling et al. (1996),

Fuentes-Santos et al. (2016) brought the smooth bootstrap pro-

cedure to R2 which estimates the MISE of the kernel estimator

of the “density of event locations”. Both two methods below ex-

plain the smoothed bootstrap sampling procedure equivalently.

(Devroye and Györfi, 1985)

Method 1

1. Conditional on (X1, · · · , XN ), letN∗ ∼ Poisson
(∫

W λ̂G(x)dx
)

2. Choose (X∗1 , · · · , X∗N∗) by random sampling with replace-

mentN∗ times from the distribution with density λ̂G(x)/
∫
W λ̂G(x)dx.

Method 2

1. Conditional on (X1, · · · , XN ), letN∗ ∼ Poisson
(∫

W λ̂G(x)dx
)

2. The point pattern resampling is defined as follows:

X∗i = Y ∗i + Z∗i , i = 1, · · · , N∗ where Y ∗i is chosen by

random sampling with replacement from (X1, · · · , XN )

and Z∗i s are independent and identically distributed

with a bivariate density functionK(·) with a pilot smooth-

ing matrix G

14



Refer to Cowling et al. (1996), the kernel function and band-

width matrix used in the step of smoothing can be different with

those used to estimate λ(x). For the convenience of computation

Gaussian kernel function is commonly used, that is, Z∗ ∼ N(0,G).

Fuentes-Santos et al. (2016) suggested a consistent bootstrap

kernel intensity estimator defined as follows. Let (X∗1 , X
∗
2 , · · · , X∗N∗)

be a bootstrap sample from the realization (Xi)
N
i=1 on W ⊂ R2.

Then, Equation 2.1 with bootstrap would be expressed as

λ̂∗0,H(x) =
λ̂∗H(x)

N∗
I(N∗ 6= 0)

=
1

N∗ · pH(x)|H|−1/2

N∗∑
i=1

K
(
H−1/2(x−X∗i )

)
I(N∗ 6= 0)

and when we let λ̂0,G(x) be the kernel estimator which is used to

generate the bootstrap pattern, then

MISE∗(H) = E∗
(∫

W

(
λ̂∗0,H(x)− λ̂0,G(x)

)2
dx

)
=

∫
W
B∗(x,H)2dx+

∫
W

Var∗(x,H)dx

would be an expression of bootstrap MISE and we substitute

arg minH MISE∗(H) to λ̂0,H(x). Some might be confused as to

why we use λ̂0,H(x) rather than λ̂∗0,H(x) itself. We want to find an

approximation for the true “density of event locations” function

λ0(x) which we can never know. So we assume the hypothetical

function λ̂0,G(x) by using an auxiliary bandwidth matrix G to act

as a true function. If H makes a good approximation λ̂∗0,H(x) for

the hypothetical function λ̂0,G(x) and also λ̂0,G(x) is assumed to

be quite similar with λ0(x), then H would generate a nice approx-

imation λ̂0,H(x) for λ0(x).
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Fuentes-Santos et al. (2016) also proved consistency of boot-

strap estimator and also suggested an `-stage plug-in bandwidth

algorithm. Bandwidth selector will be described in detail in Chap-

ter 2.3.

2.2.2 Bayesian bootstrap

Bayesian bootstrap was first introduced by Rubin (1981). To state

briefly, Bayesian bootstrap uses continuous weight instead of dis-

crete weight as in nonparametric bootstrap. The Bayesian boot-

strap is based on Bayesian statistics, which is a framework for

modeling statistical uncertainty that allows for the incorporation

of prior knowledge and the incorporation of uncertainty in statis-

tical estimates.

To use the Bayesian bootstrap, one first needs to specify a prior

distribution for the statistic or model parameter of interest. The

prior distribution represents the researcher’s initial beliefs about

the value of the statistic or parameter. The weight vector follows

Dirichlet distribution with hyperparameter α, and strong belief

of given data makes α larger. The researcher can then use the

Bayesian bootstrap to construct a set of simulated values for the

statistic or parameter by sampling from the dataset and from the

prior distribution. These simulated values can then be used to cal-

culate the posterior distribution, which indicates the researcher’s

revised opinions about the value of the statistic or parameter after

considering the data.

The Bayesian bootstrap has the advantage of being able to

assess the uncertainty of a statistic or model in the situation of
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small sample size or unknown fundamental distribution. When the

assumptions of classic statistical approaches are not met, it can

also be used to quantify the uncertainty of a statistic or model.

We propose a method which uses both the smoothed bootstrap

and Bayesian bootstrap.

2.2.3 Proposed method

Let (Xi)
N
i=1 be the realization of the inhomogeneous spatial Pois-

son point process X with intensity λ(x) on a region W ⊂ R2 and

(X∗1 , X
∗
2 , · · · , X∗N∗) be a bootstrap sample based on a smoothing

matrix G. Then, the smoothed and Bayesian bootstrap estimator

of “density of event locations” is represented as

λ̂B0,H(x) =
1

pH(x)

N∗∑
i=1

WiKH(x−X∗i )I(N∗ 6= 0)

where H is the symmetric and positive definite bandwidth ma-

trix and WB = (Wi)
N∗

i=1 ∼ Dir(α · 1N∗) is the weight with 1N∗ is

an N∗-vector of ones which is independent of the data. pH(x) =∫
W KH(x − y)dy is an edge-correction term. As we mentioned

above, the weight vector shows the belief and unless we do not

have different belief within the given data points, we give same

weight for each points in smoothed bootstrap pattern. Hereafter

in this thesis, for brief expression, we let W is large enough in

order to make pH(x) ≈ 1 and leave the term out.

By the law of total expectation and from E(Wi) = 1
N and
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N ∼ Poi(
∫
W λ(x)dx) = Poi(m),

E(W 2
i ) =

2

N(N + 1)

E(WiWj) = Cov(Wi,Wj) + E(Wi)E(Wj)

= − 1

N2(N + 1)
+

1

N2

=
1

N(N + 1)

for i 6= j.

Proposition 2.2.1. (Expectation)

E λ̂B0,H(x) = (1− e−m)(KH ∗ λ̂0,G)(x)

Proposition 2.2.2. (Variance)

Var
(
λ̂B0,H(x)

)
= 2Cα(m̂)(K2

H ∗ λ̂0,G)(x)

− (2Cα(m̂)− e−m̂ + e−2m̂)(KH ∗ λ̂0,G)2(x)

Then,

MISEB(H;α) = E

(∫
W

(
λ̂0,H(x)− λ̂0,G(x)

)2
dx

)
=

∫
W
BB(x,H)2dx+

∫
W

VarB(x,H)dx

= AMISE(H;α) + oP

(
Cα(m̂)|H|−1/2 + tr2(H)

)
where

AMISE(H) =
1

4
µ2(K)2(vechH)tΨ̂4,G(vechH)+Cα(m̂)|H|−1/2R(K)

Note that Cα(m) can be estimated by Cα(m̂) = 1
αN+1
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Theorem 2.2.3. Let X be an inhomogeneous spatial Poisson

point process and λ̂B0,H(x) be the smoothed and Bayesian bootstrap

MISE minimizer of the “density of event locations”. Assuming the

regularity conditions,

MISEB(H;α) = AMISEB(H;α) + op
(
Cα(m̂)|H|−1/2 + tr2(H)

)
where

AMISEB(H;α) =
1

4
µ2(K)2(vechH)tΨ̂4,G(vechH)+Cα(m̂)|H|−1/2R(K)

→ 0 when m→∞.

Therefore, λ̂B0,H(x) is a consistent MISE estimator of λ̂0,G(x).

Moreover, AMISEB(H;α) is a consistent estimator of AMISE(H)

if Ψ4,G is a consistent estimator of Ψ4.

Proof. The proof is in Appendix A.3.

We then introduce how to achieve the optimal bandwidth ma-

trix specifically.

2.3 Bandwidth selector

Refer to Silverman (1986), the most important part in kernel esti-

mating process is selecting an appropriate bandwidth rather than

selecting a nice kernel function. For this reason, Epanechnikov ker-

nel, which is known to be optimal among the kernel functions, is

not the most common kernel function. Gaussian kernel function is

the most common since it makes various computations easier and

we also use Gaussian kernel function in this thesis.
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In the previous section, we introduced MISE which we have to

minimize to obtain an optimal bandwidth. Recall equation 2.2 and

we can notice that this equation needs a property about the true

intensity function which is unknown. So we need to discover an

equation that can replace MISE and compute in real. The types

of bandwidth selectors are categorized by what objective equation

we use or what constraints the bandwidth might have.

One of the simplest bandwidth is normal scale bandwidth or

‘rule of thumb’ selector which is

ĤNS =

(
4

d+ 2

)2/(d+4)

n−2/(d+4)S

where d is the dimension of data and S is the sample variance.Since

the normal density is one of the smoothest densities accessible,

the normal scale selector produces bandwidths that result in over-

smoothing for non-normal data (Chacón (2018)).

There are numerous additional selectors, but the two most

commonly used are plug-in bandwidth selector and cross-validation

bandwidth selector which we are interested in this thesis.

2.3.1 Plug-in bandwidth selector

Wand and Jones (1994), who extended univariate methods of Sheather

and Jones (1991), were the first to provide plug-in bandwidth se-

lectors for multivariate data for constrained matrices. The present

method for unconstrained bandwidth matrices was developed by

Duong and Hazelton (2003) and modified by Chacón and Duong

(2010).

The plug-in bandwidth selector achieves optimal bandwidth

matrix H by minimizing AMISE. We can only minimize AMISE
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in a numerical way so in R program, we use optim function to find

optimal bandwidth H. Hpi may be utilized, and we can see that

the function ultimately used optim by looking inside the code.

Recall AMISE

AMISE(H) =
1

4
µ2(K)2(vechH)tΨ̂4,G(vechH) + Cα(m̂)|H|−1/2R(K)

(2.3)

and we can notice that we require an auxiliary bandwidth ma-

trix G which is involved in computing density derivative functional

matrix. We refer to G as a pilot bandwidth matrix.

Pilot bandwidth matrix

Many data-driven strategies for selecting a kernel density estima-

tor’s bandwidth rely on unknown constants related to auxiliary

bandwidths that while estimating the functionals. Typically, these

constants are either replaced by the equivalent constants for some

reference distribution or estimated. (Park and Marron, 1992)

In order to substitute Ψ̂4,G, we should take into account ψ̂r,G =

Eλ
(r)
0,G(x). Since the normal G is quite complicated, we suggest a

scalar pilot bandwidth g. We let G = g2I2 and then now we need

to know how to obtain an optimal g. The common method is to

minimize SAMSE, the sum of the asymptotic mean squared errors,

of ˆΨ4,g and we call this g an SAMSE-optimal bandwidth.

AMSE
(

ˆψr,g

)
= 2n−2g−2|r| − 2ψ0R(K(r))

+

n−1g−|r|−2K(r)(0) +
g2

2
µ2(K)

2∑
j=1

ψr+2ei

2
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Obtain SAMSE-optimal bandwidth by minimizing SAMSE(Ψ̂4,G)

is

gSAMSE =

(
24A2

(−4A3 +
√

16A2
3 + 48A2A4)n

)1/8

.

Details are in Appendix A.4.

Back to the plug-in bandwidth selector, we introduce two-stage

plug-in bandwidth selector algorithm. Aldershof (1991), Park and

Marron (1992), Wand and Jones (1994), and Tenreiro (2003) all

advocate the optimal stages of kernel functional estimation is two,

theoretically and empirically.
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Algorithm 1 Two-stage plug-in bandwidth selector (Chacón

(2018)

Input: {X1, · · · , XN} Output: ĤPI

1: Compute sixth order SAMSE-optimal pilot bandwidth

Ĝ6 := g2
6,SAMSEI2

2: Compute sixth order kernel functional estimate Ψ̂6(Ĝ6)

( /* Stage 1 */)

3: Plug Ψ̂6(Ĝ6) into formula for pilot bandwidth Ĝ4

Ĝ4 := g2
4,SAMSEI2

4: Compute fourth order kernel functional estimate Ψ̂4(Ĝ4)

( /* Stage 2 */)

5: ĤPI := minimizer of AMISEB(H; Ĝ4)

We can apply this algorithm to equation 2.3 to obtain opti-

mal bandwidth. Meanwhile, if we consider only about the diago-

nal bandwidth matrix we can obtain it as a closed form. Rewrite

AMISE as below.

AMISEB(H;α) =
1

4
µ2(K)2

(
h4

1ψ40 + 2h2
1h

2
2ψ22 + h4

2ψ04

)
+
Cα(m̂)

h1h2
R(K)

Let

Ĥ
B

(α) := arg min
H∈D

AMISEB(H;α) =

h1,AMISE 0

0 h2,AMISE

 ,

then we can achieve optimal bandwidth matrix as a closed form

for diagonal bandwidth matrix with plug-in procedure.
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Proposition 2.3.1. h1,AMISE and h2,AMISE can be expressed as

h1,AMISE =

[
ψ

3/4
04 Cα(m)R(K)

µ2(K)2ψ
3/4
40 (ψ

1/2
40 ψ

1/2
04 + ψ22)

]1/6

h2,AMISE =

[
ψ

3/4
40 Cα(m)R(K)

µ2(K)2ψ
3/4
04 (ψ

1/2
40 ψ

1/2
04 + ψ22)

]1/6

and h’s decrease as α increases.

The proof is in Appendix A.5.

2.3.2 Smoothed cross-validation bandwidth selector

Contrary to plug-in bandwidth selector, there exists another class

to achieve bandwidth matrix H by pre-smoothing integrated squared

bias part. The class of these method is called ’cross-validation’

class. We can minimize both MISE and AMISE in this class. Un-

biased cross-validation(UCV) method is what we minimize MISE

and biased cross-validation(BCV) method is what we minimize

AMISE. Smoothed cross-validation bandwidth is somewhat a hy-

brid of UCV and BCV. Though no estimator of the integrated den-

sity functional Ψ4 is required in cross, the computation of double

sums is substantially complicated.

The goal of this criterion is to estimate the accurate integrated

squared bias(ISB) by replacing the true intensity λ0 by a pilot

kernel intensity estimator λ̃0,G(z) = 1
n

∑n
i=1 LG(z−Zi) and adding

the dominant term of the integrated variance(IV) gives in

SCV(H; G) =
1

n2

n∑
i=1

n∑
j=1

(KH ∗KH − 2KH +K0) ∗ LG ∗ LG(Zi − Zj)

+
1

n
|H|−1/2R(K)
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as the SCV estimator of (A)MISE and ĤSCV = arg min SCV(H; G).

L can be different with K, but to ease the computation, we let

K = L = Φ. Then,

SCV(H; G) =
1

N2

N∑
i=1

N∑
j=1

(Φ2H+2G − 2ΦH+2G + Φ2G)(Xi −Xj)

+
1

N
(4π)−1|H|−1/2

Applying our proposed methods to the upper equation brings

SCVB(H; G, α) =
1

N∗2

N∗∑
i=1

N∗∑
j=1

(Φ2H+2G − 2ΦH+2G + Φ2G)(X∗i −X∗j )

+
1

αN + 1
(4π)−1|H|−1/2

and we have to achieve optimal bandwidth by minimizing SCVB(H; G, α).

We wrap up this subsection with introducing the two-stage SCV

bandwidth selector algorithm

Algorithm 2 Two-stage SCV bandwidth selector (Chacón

(2018))

Input: {X1, · · · , XN} Output: ĤSCV

1: Compute sixth order SAMSE-optimal pilot bandwidth

Ĝ6 := g2
6,SAMSEI2

2: Compute sixth order kernel functional estimate Ψ̂6(Ĝ6)

( /* Stage 1 */)

3: Plug Ψ̂6(Ĝ6) into formula for pilot bandwidth Ĝ4

Ĝ4 := g2
4,SAMSEI2

4: ĤPI := minimizer of SCVB(H; Ĝ4) ( /* Stage 2 */)

We developed Hpi, Hpi.diag, Hscv and Hscv.diag functions
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in R package ks to Hpi.dir, Hpi.diag.dir, Hscv.dir and Hscv.diag.dir

based on our proposed method.

2.4 Numerical studies

2.4.1 Simulation study

We set our intensity functions from Fuentes-Santos et al. (2016)

to compare the result directly.

The first intensity function is

λ1(x) = 3300 · exp(−3x1)

and the second and third intensity functions are

λ(x) = 1000 φ(0.3− 0.2x2, σ)(x1) + 25

where φ(µ, σ) is the univariate normal density with mean µ and

standard deviation σ. σ’s are 0.1 and 0.02 for λ2(x) and λ3(x), re-

spectively. λ3 was used to evaluate the performance of the Voronoi

estimator for the first order intensity (Barr and Schoenberg, 2010).

The fourth is a (log-Gaussian) Cox process with the intensity func-

tion of

λ4(x) = 2 · exp(6 + 4 Y (x)).

where Y is a realization of a GRF(Gaussian Random Field) with

mean zero and exponential model with covariance function C(t) =

σ2 exp(−t/ρ), t > 0, σ = ρ = 0.1. Cox point process is a general-

ization of Poisson point process and known as a doubly stochastic

Poisson point process. The intensity function of Cox point pro-

cess varies across the underlying mathematical space is itself a
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stochastic process. The fifth and sixth intensity functions are

λ5(x) = 600

(
φ(x2,0.1)(x1) + φ(1−x2,0.1)(x1)− 1

5
φ2,(µ,Σ)(x)

)
+ 30

λ6(x) = 600

(
φ(x2,0.1)(x1) + φ(1−x2,0.2)(x1)− 1

20
φ2,(µ,Σ)(x)

)
+ 50

where φ2,(µ,Σ)(x) is the bivariate normal density with mean µ =

(0.5, 0.5) and variance Σ = 0.01I2.

We compared the outcomes for each intensity function to those

obtained using other methods that were already in use. As we for-

merly mentioned, the performance of the bandwidth selectors can

be compared by MISE of the kernel estimator of λ̂0,G(x) obtained

with the respective optimal bandwidths:∫
W

(
λ̂0,H(x)− λ̂0,G(x)

)2
dx

For the scalar bandwidth selector, we compared with Diggle’s cri-

terion (Diggle and Marron (1988)) and pseudo-likelihood cross-

validation (PLCV) (Loader (1999), Baddeley and Turner (2005)).

For the diagonal bandwidth selector, we compared with Scott’s

rule of thumbs (Scott (1992)), LSCV (Brooks and Marron (1991)),

and full-matrix least-squares cross-validation were contrasted with

full-matrix plug-in (Flscv). Although we lack prior knowledge on

the efficiency of the bivariate kernel density estimator for intensity

estimation in spatial point processes, full matrix cross-validation

was carried out in accordance with a proposal in Duong and Hazel-

ton (2005). Edge-correction is not taken into account by full matrix

cross-validation or Scott’s rule of thumb. Also, we compared two

other bandwidths; one is computed in empirical way and the other

is an oracle bandwidth. We can notice that the boxplots of ISEs
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for oracle bandwidths are located quite below other boxplots for

all cases which means that the results were properly computed.

The simulation study was run with the spatstat (Baddeley

& Turner, 2005) and ks (Duong, 2013) packages of R. We set

the range of α as {1, 2, 3, 4, 5} after some trials. Note that there

occurs errors when α gets larger or the true intensity function

behaves almost linear. It is because the leading minor of order 1 is

not positive definite during the Cholesky decomposition step. In

practice, in case of λ3(x), there were several times of error even if

α was not that big such as 1 or 2. Despite the fact that the errors

did not occur in the other cases shown, if we change α as 10, 50,

100, there occurred errors from time to time even in the case of

λ1(x) and λ2(x).

The images for intensity functions are introduced in Figure

2.2. We used 100 bootstrap samples and introduce ISE boxplots

for each method below. The mean of optimal bandwidths and ISEs

are in Appendix B.1.
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Figure 2.2: Images of intensity functions for simulations
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2.4.2 Case study

Chorley-Ribble cancer data were first presented by Diggle in 1990

and the data provide the precise address of cases of larynx can-

cer and lung cancer. They were recorded between 1974 and 1983

in the region of Chorley and South Ribble Health Authority of

Lancashire, England. The locations are presented in Figure 2.12.

Additionally, the location of an abandoned industrial incinerator

location is also revealed with blue mark in Diggle (1990) presented

and examined the data initially and they were further examined

by Diggle and Rowlingson (1994) and Baddeley et al. (2005). The

objective is to determine whether there is any proof that the area

around the now-defunct industrial incinerator has a higher inci-

dence of laryngeal cancer. The spatially variable density of the

sensitive population is proxied by the lung cancer cases. The in-

formation is shown as a marked point pattern, with the marks

indicating whether each point is a case of lung cancer or laryn-

geal cancer and the points showing the precise location of each

person’s home address. The resolution is 0.1 kilometers, and the

coordinates are given in kilometers.

We want to demonstrate the density of locations of each cases

but the number of two cases are quite different. However, since

the number of cases for larynx(58 cases) is far smaller compared

to that for lung(978 cases), it is hard to compare two densities

at the same level and we can adjust the level of smoothness by

using α instead of collecting a high amount of data to get a more

detailed density.

As we can see in Figure 2.13, kernel estimation results of two
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(a) Chorley-Ribble cancer data

(b) Locations of each cancer cases

Figure 2.12: Chorley-Ribble cancer data
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cases show the difference of smoothness. Here we use hyperpa-

rameter α and we can notice that varying α affects larger in lar-

ynx cancer cases than lung cancer cases. In fact, there is no big

difference among the lung cancer cases’ result in the rough. We

recommend α = 3 in this case which seperates upper and lower

subregions but quite smooth.
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(a) Larynx cancer

(b) Lung cancer

Figure 2.13: Kernel intensity estimation for Chorley-Ribble cancer data,

original method
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(a) Larynx cancer

(b) Lung cancer

Figure 2.14: Kernel intensity estimation for Chorley-Ribble cancer data,

α = 1
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(a) Larynx cancer

(b) Lung cancer

Figure 2.15: Kernel intensity estimation for Chorley-Ribble cancer data,

α = 2
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(a) Larynx cancer

(b) Lung cancer

Figure 2.16: Kernel intensity estimation for Chorley-Ribble cancer data,

α = 3
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(a) Larynx cancer

(b) Lung cancer

Figure 2.17: Kernel intensity estimation for Chorley-Ribble cancer data,

α = 10
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(a) Larynx cancer

(b) Lung cancer

Figure 2.18: Kernel intensity estimation for Chorley-Ribble cancer data,

α = 100
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Chapter 3

Kernel Estimation of

Pair Correlation LISA

Function

3.1 Overview

In the analysis of spatial association, it is quite unrealistic to as-

sume stationarity or structural stability over with a large number

of spatial observations. Random points in a bounded region fre-

quently appear as data in a variety of scientific situations. Often we

want to find clusters based on their second order properties within

random spatial point patterns. In this chapter, we use a statisti-

cal approach to characterize the spatial distribution of points and

provide a sound basis for constructing a stochastic model of their

locations.

Ripley (1977) as follows
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Definition 2. (Ripley’s K function)

K(t) = λ−2µ2[{(x, y) : x ∈ I, 0 < d(x, y) < t}]

= λ−1µ(b(0, t) 0), t > 0

where λ is an intensity, b(0, t) is a ball of radius t centered at

zero, d(x, y) is a distance between x and y.

proposed a second-order property function K-function is a cu-

mulative function and we can investigate the differential of func-

tion that is another interpretable function. It is called the product

density function.

Definition 3. (Product density function)

ρ(t) =
λ2K ′(t)

2πt
, t > 0

When seeking to describe relationships in point patterns, it is

necessary to consider the relevant features, referred to as second-

order measures. Let du and dv has the same definition with in

Chapter 2 and the areas are |du| and |dv|, respectively. λ(2)(u, v)dudv

can be regarded as the joint probability that both infinitesimal re-

gions contain random points of X. In case of complete spatial

randomness, λ(2)(u, v) = λ(u)λ(v) for u, v ∈ R2. Define the pair

correlation function as the normalized product density, as follows:

g(u, v) =
λ(2)(u, v)

λ(u)λ(v)
, u, v ∈ R2,

where a/0 = 0 for a ≥ 0. The relationship between intensity

and the normalized product density is utilized to assess the de-

gree of repulsion or aggregation in a point pattern: λ(2) > 1 for

aggregation and λ(2) < 1 for repulsion.
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The pair correlation function can be used to distinguish be-

tween many spatial point structures, such as a Poisson point pro-

cess with g(r) = 1. Higher pair correlation function values for small

distances indicate an abundance of short inter-event distances. If

small inter-event distances are uncommon, this suggests the pres-

ence of an inhibitory structure, and places tend to disperse from

one another.

Dasgupta and Raftery (1998) explored the application of model-

based clustering and various distributions to identify linear mine-

fields, which is treated as features, amidst clutter. Byers and Raftery

(1998) proposed using k-th nearest neighbor distances to identify

features from noise. Mateu et al. (2007, 2010) considered this dis-

tinguishment using product density LISA functions. To tackle the

classification problem, they create a mixture modeling strategy.

As we mentioned at the beginning of this chapter, the station-

arity assumption can be too strong and unrealistic for real data.

That is why we would like to assume the Second Order Intensity

Reweighted Stationarity throughout this chapter.

Definition 4. (Second-Order Intensity Reweighted Stationary,

SOIRS)

The point process Y is “second-order intensity-reweighted sta-

tionary” if the random measure is second-order stationary. Equiv-

alently M(A,B) = M(A + x,B + x) for all x ∈ R2 where A + x

denotes the translation of A by the vector x.

It was first introduced by Baddeley(2000) andThis assumption

asserts that the pair correlation g(·, ·) is solely dependent on r =

||u−v||, where the Euclidean norm ||·|| is indicated. We can simply
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notice that second order stationary point process is also a second

order intensity reweighted stationary.

3.2 Pair correlation LISA function and clus-

tering

Anselin (1995) proposed evaluating the local contributions of a

global estimator of second-order properties and applied it to a clus-

tering issue. These components are referred to as local indicators

of spatial association (LISA). It was first developed in geostatistics

and played a role as local Moran’s I. Moran’s I is a measure of

spatial autocorrelation characterized by correlations between sig-

nals in close proximity in space and widely used in areas such as

health care or housing values. By analyzing how each individual

point behaves in relation to its neighbors, LISA functions were

mainly used to look at the local structure of a point pattern.

An edge-corrected estimator of pair correlation function is

ĝh(r) =
1

2πr|W |

n∑
i=1

∑
j 6=i

Kh(||ui − uj || − r)
λ(ui)λ(uj)

· |∂b(ui, ||ui − uj ||)|
|∂b(ui, ||ui − uj ||) ∩W |

, r > h > 0

The |∂b(ui, ||ui − uj ||)| / |∂b(ui, ||ui − uj ||) ∩W | is an edge-

corrected term which makes a correction for the intensity near the

edge of the bounded region. It carries out an equivalent role with

the boundary-correction term in the density estimation.

Definition 5. (Pair correlation Local Indicator of Spatial Association

51



- LISA function)

ĝ
(i)
h (r) =

n− 1

r|W |
∑
j 6=i

Kh(||ui − uj || − r)
λ(ui)λ(uj)

||ui − uj ||)
|∂b(ui, ||ui − uj ||) ∩W |

for r > h > 0

The global estimator is proportional to the sum of the individ-

ual pair correlation LISA function. This can be easily shown as

below.

1

n− 1

n∑
i=1

ĝ
(i)
h (r) =

1

n− 1

n∑
i=1

n− 1

r|W |
∑
j 6=i

Kh(||ui − uj || − r)
λ(ui)λ(uj)

||ui − uj ||)
|∂b(ui, ||ui − uj ||) ∩W |


=

1

2πr|W |

n∑
i=1

∑
j 6=i

Kh(||ui − uj || − r)
λ(ui)λ(uj)

|∂b(ui, ||ui − uj ||)|
|∂b(ui, ||ui − uj ||) ∩W |

= ĝh(r)

To acquire various aspects of the above estimator, we employ

Palm distributions, which are crucial in studying the conditional

probability in the presence of a fixed event (Chiu et al. 2013).

The Palm expectation is typically expressed by E!(·) and can be

thought as the expectation conditional on a specific event. Refer

to González (2021), the expected value and variance with respect

to reduced Palm process are expressed as

E!

(
ĝ

(i)
h (r)

)
=

Λ(W ) + 1

λ(ui)|W |

Var!
(
ĝ
(i)
h (r)

)
=

Λ(W ) + Λ−1(W ) + 3

(λ(ui)|W |)22πr2

∫
W

2π(||ui − s||2K2
h(||ui − s|| − r)

λ(s)|∂b(ui, ||ui − s||) ∩W |
ds

+
3Λ(W ) + 3

(λ(ui)|W |)2

where Λ(W ) =
∫
W λ(u)du.
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3.2.1 Bandwidth selection

As we estimate the LISA function via kernel function, selection

of optimal bandwidth is crucial. One option for determining the

bandwidth for the pair correlation function kernel estimation is to

use cross-validation, which involves selecting a smoothing band-

width through composite likelihood (Guan, 2007). We suggest an

empirical method to minimize. The algorithm is as below.

1. For a given h, obtain the non-parametric estimate ĝ
(i)
h (r).

2. Use block bootstrapping to resample the point data and ob-

tain the bootstrap estimates ĝ
(i),∗
h (r). 100 bootstrap samples

were used in this thesis.

3. ComputeM(h) =
∑n

j=1

{(
g

(i)
h (rj)− ĝ(i),∗

h (rj)
)2

+V ar∗(ĝ
(i)
h (rj))

}
for MISE where rj ’s are in interest

Since we use Epanechnikov kernel function, it is critical to es-

tablish an acceptable range to prevent the kernel values from being

0. To rewrite,LISA functions are comprised of a set of real-valued

functions {g(i)
h }

n
i=1 defined on a compact interval T = [ε, rmax],

where the maximum value rmax must be specified beforehand as

less than a quarter of min(width, height) by Diggle’s rule.

The properties of these functions can be understood from a

functional perspective as compositional functional observations.

For any r, we define the following transformation

g∗i (r) = ĝ
(i)
h (r) + const

where the constant value is arbitrary but it is known that the value

around 1 tends to make a better classification performance. Indi-
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vidual curves can be interpreted as long as they are not isolated

from the rest. The points with the most congested neighborhoods

are related with the higher transformed LISA functions. We can

make that related information easier to understand by standard-

izing it.

%i(r) =
g∗i (r)∑
i g
∗
i (r)

, i = 1, · · · , n and r ∈ T

Using the logarithm of the right hand side does not matter since

it only changes the y-axis value not the shape of lines. In this

example, each component %i(r) represents a relative weight that

has been transformed linearly from the pair correlation. These

components are non-negative functions defined on a compact do-

main T and have logarithms that are square-integrable. We use the

Euclidean metric in L2. Let %i and %j be the transformed LISA

functions and we used the distance below:

d2(%i, %j) =

∫
T

(%i(r)− %j(r))2 dr

With this distance, all of the typical multivariate statistics meth-

ods that rely on dissimilarity measures such as multidimensional

scaling can be used. Now we consider the clustering method.

3.2.2 Clustering method

In the context of identifying clusters of LISA functions, we explore

functional classification methods. Most of these methods employ

one of three strategies:

- Dimension reduction prior to clustering
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- Nonparametric methods utilizing specific metrics between

curves

- Model-based techniques

Jacques and Preda (2014) offer a comprehensive and instructive

analysis of various tactics. Here, we compare and contrast super-

vised and unsupervised learning systems as solutions to the clas-

sification problem.

One of popular clustering methods is a multidimensional scal-

ing (MDS) method (Leeuw and Mair, 2009). The inputs are pair-

wise distances between functions and the outputs correspond to

a coordinate configuration in R2. It is important to note that the

points in the new space are the same as the original points in the

point pattern, but they are viewed in an MDS configuration space

based on the proximity of the LISA functions. We also incorpo-

rate Kruskal’s standardised stress as part of the approach to assess

the fit quality, with lower values being desirable (Kruskal, 1964).

To further process the data, we suggest utilizing a support vec-

tor machine (SVM, Steinwart and Christmann, 2008). The data

is transformed into a higher-dimensional space through a kernel,

which allows for the determination of the hyperplane with the

greatest margin that can separate the data linearly.

We utilize a bagged clustering algorithm(BCA) as an alter-

nate unsupervised technique. A hierarchical clustering algorithm

is used to merge the resulting cluster centers in order to find clus-

ters. The algorithm begins with as a number of groups as there

are dissimilarities in the data and progresses to a single cluster.

A cluster is able to combined with another in each phase. BCA
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is nice method to preserve stability. Stability refers to the abil-

ity to maintain meaningful clusters when the dataset is altered

in a trivial manner. It is widely acknowledged that stability is

heavily influenced by the data. (Hennig, 2007). To assess stability,

resampling techniques such as bagging can be employed. In this

case, new training sets are created through bootstrap sampling

and incorporated into the cluster analysis framework (Dudoit and

Fridlyand, 2003).

3.3 Numerical studies

3.3.1 Simulation study

We simulated a rectangular feature which is superimposed with

clutter outside. We set various intensities of the features (λF ) and

the clutter (λC). For each case, we computed the average of mis-

classification rates of 100 simulations.

Both MDS + SVM and BCA approaches perform well and are

comparable in terms of mean values. In general, the mean values

for MDS + SVM are lower, suggesting better performance. This

outcome is predicted, however, because BCA requires only the

distance matrix, when MDS + SVM requires both training sets

and the distance matrix. Figure 3.1 and 3.2 are the point patterns

and the plots for transformed LISA functions, respectively. We

also introduce the results for average and standard errors of 100

simulations.

56



(a) λF = λC = 50

(b) λF = λC = 100

(c) λF = 200, λC = 150

Figure 3.1: Point patterns with rectangular figure, various inten-

sities
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(a) λF = λC = 50

(b) λF = λC = 100

(c) λF = 200, λC = 150

Figure 3.2: Transformed LISA functions of point patterns with

rectangular figure, various intensities
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MDS+SVM BCA

λF λC LCV Empirical LCV Empirical

50 50 0.078(0.0028) 0.067(0.0022) 0.094(0.0076) 0.091(0.0089)

100 100 0.041(0.0016) 0.028(0.0032) 0.049(0.0039) 0.043(0.0028)

200 150 0.021(0.0009) 0.019(0.0011) 0.037(0.0011) 0.029(0.0012)

3.3.2 Case study

We chose an earthquake data called Bucaramanga nest where

Bucaramanga is the capital and largest city of the department

of Santander, Colombia. Refer to Prieto et al.(2012), they intro-

duced three major intermediate-depth earthquake nests which are

Vrancea, Hindu Kush and Bucaramanga. The detailed epicenter

locations are in Figure 3.3.

The analysis of earthquakes on a macro-scale is useful in deter-

mining earthquake clusters and gaining insights into the geologi-

cal dynamics of regions that may be prone to earthquakes. In this

study, we use a dataset based on the epicenters of earthquakes in

the Santander region of Colombia. Santander is well-known for

having the world’s densest concentration of intermediate-depth

earthquakes at a location known as The Bucaramanga Nest (Prieto

et al. 2012). Because of the zone’s complicated tectonic topogra-

phy, this area is characterized by a high seismic hazard. Zarifi et

al. (2007) suggested the definition of a seismic nest as a region ex-

hibiting an unusual concentration of seismic activity compared to

its surroundings.Although this region is called as a term of ‘nest’,

the spatial delimitation is not clear. For this reason, we would

like to give our suggestion for the delimitation of Bucaramanga
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Figure 3.3: Santander earthquake epicenters
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Figure 3.4: Santander earthquake epicenters with cluster
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nest. We analyzed earthquake events in Santander-Colombia that

took place between January 1, 2012 and October 31, 2022 and had

magnitudes greater than 4.0 on the Richter local magnitude scale

(ML).
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Chapter 4

Conclusions

In this thesis, we proposed the bandwidth selection procedure for

estimating intensity estimation and LISA function. We used dou-

ble bootstrap – smooth bootstrap and Bayesian bootstrap – for

estimating intensity and empirical (spatial) bootstrap for estimat-

ing LISA function.

When applying smoothed bootstrap, we have to generate boot-

strap sample from λ̂0,G(x) where G denotes a pilot smoothing

matrix which determines the random noise applied to the events.

There is a limitation for selecting optimal bandwidth of kernel

estimator of pair correlation LISA function. Just as in the case

study, if the points are extremely clustered, guessing range of r

might be intractable. Moreover, to apply an empirical method, we

have to set the range discretely. As a result, it may be possible to

omit potential optimal bandwidth.

To apply Bayesian bootstrap, we use a hyperparameter α. Hy-

perparameter optimization is not clearly solved normally and we

used grid search to find α. Through our research, α ≤ 5 is an ap-
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propriate range to apply grid search. Since the values of entries in

bandwidth matrix is getting smaller as α gets larger, quite large α

might cause undersmoothing problem. We leave a better optimal

choice of α for future work.
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Appendix A

Proofs

A.1 Proof of Proposition 2.2.1

Proof. By the law of total expectation,

E λ̂0,H(x) = E

(
1

pH(x)

N∑
i=1

WiKH(x−Xi)I(N 6= 0)

)

=
1

pH(x)
E

(
E

(
N∑
i=1

WiKH(x−Xi)

∣∣∣∣∣ N > 0

))

=
1

pH(x)

∞∑
k=1

E

(
N∑
i=1

WiKH(x−Xi)

∣∣∣∣∣ N = k

)
P(N = k)

=
1

pH(x)

∞∑
k=1

k∑
i=1

E(Wi)E(KH(x−X)) P(N = k)

=
∞∑
k=1

(KH ∗ λ0)(x) P(N = k)

= (1− e−m)(KH ∗ λ0)(x)
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A.2 Proof of Proposition 2.2.2

Proof.

E

((
λ̂0,H(x)

)2
)

= E

( N∑
i=1

WiKH(x−Xi)I(N 6= 0)

)2


=

(
E

(
N∑
i=1

W 2
i K

2
H(x−Xi)

∣∣∣∣∣ N > 0

)

+ E

 N∑
i 6=j

WiWjKH(x−Xi)KH(x−Xj)

∣∣∣∣∣∣ N > 0


=

( ∞∑
k=1

(
k∑
i=1

E(W 2
i )E(K2

H(x−Xi))

)
P(N = k)

+
∞∑
k=1

 k∑
i 6=j

E(WiWj)E(KH(x−Xi))E(KH(x−Xj))

P(N = k)


=
∞∑
k=1

e−m̂m̂k

k!

(
k∑
i=1

2

k(k + 1)
E(K2

H(x−Xi))

+
k∑
i 6=j

1

k(k + 1)
E(KH(x−Xi))E(KH(x−Xj))


=

∞∑
k=1

e−m̂m̂k

k!

(
2

k + 1
(K2

H ∗ λ0)(x) +
k − 1

k + 1
(KH ∗ λ0)2(x)

)
= 2(K2

H ∗ λ0)(x) E

(
1

N + 1
I(N 6= 0)

)
+ (KH ∗ λ0)2(x) E

(
N − 1

N + 1
I(N 6= 0)

)
=
(
2Cα(m̂)(K2

H ∗ λ0)(x) + (1− e−m − 2Cα(m̂))(KH ∗ λ0)2(x)
)

where Cα(m̂) := E
(

1
αN+1I(N 6= 0)

)
→ 0 as m̂→∞. Thus,
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Var
(
λ̂0,H(x)

)
= E

((
λ̂0,H(x)

)2
)
−
(
E λ̂0,H(x)

)2

=
(

2Cα(m̂)(K2
H ∗ λ0)(x)− (2Cα(m̂)− e−m̂ + e−2m̂)(KH ∗ λ0)2(x)

)

A.3 Proof of Theorem 2.2.3

Proof. Let λ̂0,G(x) be the kernel estimator of λ0(x) and λ̂B0,H(x)

its smoothed + Bayesian bootstrap counterpart. As N∗ follows

Poisson(
∫
W λ̂G(x)dx) = Poisson(m̂), then we obtain

pH(x)EB
(
λ̂B0,H(x)

)
= (1− e−m̂)|H|−1/2

∫
W
K(H−1/2(x− y))λ̂0,G(y)dy

= (1− e−m̂)

∫
Bx,H

K(H−1/2(x− y))λ̂0,G(y)dy

where Bx,H = {H−1(x − y); y ∈ W} and pH(x) =
∫
W KH(x −

y)dy =
∫
Bx,H

K(u)du.

A second order Taylor expansion yields the following expres-

sion for the bias of λ̂B0,H(x)

BB(x,H) = e−m̂λ̂0,G(x)− 1− e−m̂

pH(x)

∫
Bx,H

utH1/2Dλ̂0,G(x)K(u)du

+
1− e−m̂

pH(x)

(
1

2

∫
Bx,H

utH1/2Dλ̂0,G(x)K(u)du+ o(tr(H))

)

λ̂B0,H(x) is asymptotically unbiased provided that, by regularity

conditions, K is symmetric and
∫
R2 uu

tK(u)du = µ2(K)I2, with
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µ2(K) <∞, thus

BB(x,H) = EB
(
λ̂B0,H(x)

)
− λ̂0,G(x)

=
1− e−m̂

2
µ2(K)2tr(HD2λ̂0,G(x)) + op((1− e−m̂)tr(H))

has order Op(tr(H)). The variance of λ̂B0,H(x) is given by

Var
(
λ̂0,H(x)

)
= 2Cα(m̂)

∫
W
K2

H(x− y)λ̂0,G(y)dy

− (2Cα(m̂)− e−m̂ + e−2m̂)

(∫
W
KH(x− y)λ̂0,G(y)dy

)2

By Taylor expansion, the first term in the right hand side of the

previous expression is given by∫
W
K2

H(x− y)λ̂0,G(y)dy = |H|−1/2

∫
Bx,H

K(u)2λ̂0,G(x− utH1/2)du

= |H|−1/2λ̂0,G(x)

∫
Bx,H

K(u)2du+ op(|H|−1/2)

Given that λ̂0,G(x), as a consistent estimator of λ0(x), is bounded

and K is a bivariate density function, the integral in the second

term in the right hand side of VarB(x,H) has order 1 and

VarB(x,H) =
Cα(m̂)|H|−1/2

pH(x)
λ̂0,G(x)

∫
Bx,H

K(u)2du

+ op(Cα(m̂)|H|−1/2)

tends to 0 as, by m−1|H|−1/2 → 0 when m→∞. When W = R2,

the variance is

VarB(x,H) = Cα(m̂)|H|−1/2λ̂0,G(x)R(K) + op(Cα(m̂)|H|−1/2)

Therefore, if we replace BB(x,H) and VarB(x,H) in the equation

for computing MISE and let m̂→∞, we obtain expression

AMISEB(H;α) =
1

4
µ2(K)2(vechH)tΨ̂4,G(vechH)+Cα(m̂)|H|−1/2R(K).
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A.4 Proof of Proposition 2.3.1

Proof. Assume that H ∈ D and let H = diag(h2
1, h

2
2), then AMISE

is

AMISE(H;α) =
1

4
µ2(K)2(h4

1ψ40 + 2h2
1h

2
2ψ22 + h4

2ψ04)

+
Cα(m)

h1h2
R(K)

Denote HAMISE = arg minH∈D AMISE(H;α) = diag(h2
1,AMISE, h

2
2,AMISE),

then the gradient of AMISE would be zero to minimize AMISE:

µ2(K)2(h3
1ψ40 + h1h

2
2ψ22)− Cα(m)

h2
1h2

= 0

µ2(K)2(h2
1h2ψ22 + h3

2ψ04)− Cα(m)

h1h2
2

= 0

We can obtain h2,AMISE = h1,AMISE(ψ40/ψ04)1/4 and

µ2(K)2

(
h6

1

ψ
5/4
40 ψ

1/2
04

ψ
3/4
04

+ h6
1

ψ
3/4
40

ψ
3/4
04

ψ22

)
− Cα(m)R(K)

h1h2
2

= 0

solving the equation and yields

h1,AMISE =

[
ψ

3/4
04 Cα(m)R(K)

µ2(K)2ψ
3/4
40 (ψ

1/2
40 ψ

1/2
04 + ψ22)

]1/6

h2,AMISE =

[
ψ

3/4
40 Cα(m)R(K)

µ2(K)2ψ
3/4
04 (ψ

1/2
40 ψ

1/2
04 + ψ22)

]1/6

Since Cα(m) can be estimated by 1
αn+1 , we can notice that h1,AMISE

and h2,AMISE gets smaller as α gets larger.

69



Appendix B

Supplementary

information

B.1 Mean of optimal bandwidths and ISEs

in the simulation study

The tables below are the results of mean of optimal bandwidths

and MISEs for each intensity functions. The least MISE is ex-

pressed in bold.
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h MISE

Diggle 4.519E-02 5.476E-02

PLCV 9.668E-02 2.764E-02

h2
1 - h2

2 MISE

Scott 7.420E-02 - 9.074E-02 2.301E-02

LSCV(Diag) 1.270E-04 - 1.535E-02 6.185E-02

Original
Plug-in 2.215E-03 - 4.903E-03 3.161E-02

SCV 2.527E-03 - 6.731E-03 2.676E-02

Smoothed bootstrap
Plug-in 4.547E-03 - 8.017E-03 2.314E-02

SCV 5.008E-03 - 9.978E-03 2.175E-02

Proposed method, α = 1
Plug-in 4.544E-03 - 8.015E-03 2.314E-02

SCV 5.006E-03 - 9.972E-03 2.176E-02

Proposed method, α = 2
Plug-in 3.607E-03 - 6.362E-03 2.543E-02

SCV 3.861E-03 - 7.467E-03 2.385E-02

Proposed method, α = 3
Plug-in 3.151E-03 - 5.558E-03 2.738E-02

SCV 3.320E-03 - 6.374E-03 2.575E-02

Proposed method, α = 4
Plug-in 2.863E-03 - 5.050E-03 2.904E-02

SCV 2.986E-03 - 5.685E-03 2.748E-02

Proposed method, α = 5
Plug-in 2.658E-03 - 4.688E-03 3.050E-02

SCV 2.750E-03 - 5.216E-03 2.898E-02

h11 h21 h22 MISE

LSCV(Full) 7.016E-04 -3.989E-05 4.882E-03 2.995E-01

Original
Plug-in 2.218E-03 -1.506E-05 4.910E-03 2.676E-02

SCV 2.540E-03 -1.711E-05 6.695E-03 2.684E-02

Smoothed bootstrap
Plug-in 4.556E-03 -5.493E-05 8.039E-03 2.315E-02

SCV 5.048E-03 -6.396E-05 9.858E-03 2.188E-02

Proposed method, α = 1
Plug-in 4.554E-03 -5.490E-05 8.036E-03 2.315E-02

SCV 5.045E-03 -6.341E-05 9.855E-03 2.188E-02

Proposed method, α = 2
Plug-in 3.615E-03 -4.371E-05 6.380E-03 2.543E-02

SCV 3.876E-03 -4.703E-05 7.427E-03 2.391E-02

Proposed method, α = 3
Plug-in 3.158E-03 -3.810E-05 5.574E-03 2.737E-02

SCV 3.324E-03 -4.821E-05 6.433E-03 2.567E-02

Proposed method, α = 4
Plug-in 2.870E-03 -3.461E-05 5.064E-03 2.903E-02

SCV 2.970E-03 -3.424E-05 5.803E-03 2.735E-02

Proposed method, α = 5
Plug-in 2.664E-03 -3.204E-05 4.701E-03 3.048E-02

SCV 2.738E-03 -2.455E-05 5.230E-03 2.889E-02

Table B1: Results for various bandwidth selectors from 100 simulations,

inhomogeneous Poisson point processes with intensity λ1(x)
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h MISE

Diggle 4.854E-02 1.019E-01

PLCV 9.047E-02 7.086E-02

h2
1 - h2

2 MISE

Scott 7.486E-02 - 9.124E-02 6.560E-02

LSCV(Diag) 2.731E-04 - 1.430E-02 1.085E-01

Original
Plug-in 2.261E-03 - 4.868E-03 7.935E-02

SCV 2.581E-03 - 6.565E-03 7.320E-02

Smoothed bootstrap
Plug-in 4.677E-03 - 7.973E-03 6.711E-02

SCV 5.158E-03 - 9.763E-03 6.454E-02

Proposed method, α = 1
Plug-in 4.676E-03 - 7.970E-03 6.711E-02

SCV 5.155E-03 - 9.764E-03 6.454E-02

Proposed method, α = 2
Plug-in 3.712E-03 - 6.327E-03 7.103E-02

SCV 3.972E-03 - 7.356E-03 6.868E-02

Proposed method, α = 3
Plug-in 3.243E-03 - 5.527E-03 7.385E-02

SCV 3.412E-03 - 6.260E-03 7.170E-02

Proposed method, α = 4
Plug-in 2.946E-03 - 5.022E-03 7.610E-02

SCV 3.069E-03 - 5.583E-03 7.419E-02

Proposed method, α = 5
Plug-in 2.735E-03 - 4.662E-03 7.799E-02

SCV 2.826E-03 - 5.109E-03 7.626E-02

h11 h21 h22 MISE

LSCV(Full) 7.372E-04 -1.371E-06 5.064E-03 2.681E-01

Original
Plug-in 2.269E-03 -1.600E-05 4.884E-03 7.937E-02

SCV 2.594E-03 -9.237E-06 6.555E-03 7.333E-02

Smoothed bootstrap
Plug-in 4.698E-03 -1.014E-05 8.012E-03 6.712E-02

SCV 5.208E-03 1.463E-05 9.723E-03 6.472E-02

Proposed method, α = 1
Plug-in 4.696E-03 -1.014E-05 8.009E-03 6.713E-02

SCV 5.203E-03 1.384E-05 9.723E-03 6.472E-02

Proposed method, α = 2
Plug-in 3.728E-03 -8.144E-06 6.358E-03 7.102E-02

SCV 3.994E-03 1.657E-06 7.357E-03 6.877E-02

Proposed method, α = 3
Plug-in 3.257E-03 -7.044E-06 5.555E-03 7.383E-02

SCV 3.417E-03 2.860E-06 6.326E-03 7.166E-02

Proposed method, α = 4
Plug-in 2.959E-03 -6.390E-06 5.047E-03 7.607E-02

SCV 3.073E-03 -2.039E-06 5.722E-03 7.396E-02

Proposed method, α = 5
Plug-in 2.747E-03 -5.881E-06 4.686E-03 7.795E-02

SCV 2.810E-03 -1.000E-05 5.292E-03 7.587E-02

Table B2: Results for various bandwidth selectors from 100 simulations,

Thomas cluster point processes with intensity λ1(x)
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h MISE

Diggle 5.068E-02 8.076E-02

PLCV 5.755E-02 8.748E-02

h2
1 - h2

2 MISE

Scott 3.870E-02 - 9.060E-02 4.668E-02

LSCV(Diag) 1.452E-03 - 2.847E-03 7.395E-02

Original
Plug-in 1.105E-03 - 4.741E-03 5.127E-02

SCV 1.228E-03 - 5.408E-03 4.929E-02

Smoothed bootstrap
Plug-in 1.567E-03 - 6.093E-03 4.971E-02

SCV 1.730E-03 - 6.972E-03 5.032E-02

Proposed method, α = 1
Plug-in 1.567E-03 - 6.091E-03 4.971E-02

SCV 1.730E-03 - 6.969E-03 5.032E-02

Proposed method, α = 2
Plug-in 1.244E-03 - 4.835E-03 5.071E-02

SCV 1.336E-03 - 5.231E-03 4.999E-02

Proposed method, α = 3
Plug-in 1.087E-03 - 4.224E-03 5.306E-02

SCV 1.152E-03 - 4.445E-03 5.210E-02

Proposed method, α = 4
Plug-in 9.874E-04 - 3.838E-03 5.549E-02

SCV 1.035E-03 - 3.984E-03 5.449E-02

Proposed method, α = 5
Plug-in 9.166E-04 - 3.563E-03 5.780E-02

SCV 9.536E-04 - 3.636E-03 5.699E-02

h11 h21 h22 MISE

LSCV(Full) 1.533E-03 -3.368E-04 1.993E-03 8.460E-02

Original
Plug-in 1.292E-03 -1.022E-03 5.824E-03 4.535E-02

SCV 1.384E-03 -1.136E-03 6.404E-03 4.371E-02

Smoothed bootstrap
Plug-in 1.770E-03 -1.141E-03 7.067E-03 4.394E-02

SCV 1.908E-03 -1.294E-03 7.868E-03 4.363E-02

Proposed method, α = 1
Plug-in 1.770E-03 -1.140E-03 7.065E-03 4.394E-02

SCV 1.905E-03 -1.290E-03 7.863E-03 4.363E-02

Proposed method, α = 2
Plug-in 1.405E-03 -9.052E-04 5.608E-03 4.563E-02

SCV 1.461E-03 -9.621E-04 5.905E-03 4.497E-02

Proposed method, α = 3
Plug-in 1.227E-03 -7.908E-04 4.899E-03 4.816E-02

SCV 1.259E-03 -8.151E-04 5.025E-03 4.775E-02

Proposed method, α = 4
Plug-in 1.115E-03 -7.185E-04 4.451E-03 5.062E-02

SCV 1.129E-03 -7.301E-04 4.495E-03 5.044E-02

Proposed method, α = 5
Plug-in 1.035E-03 -6.670E-04 4.132E-03 5.292E-02

SCV 1.044E-03 -6.664E-04 4.127E-03 5.294E-02

Table B3: Results for various bandwidth selectors from 100 simulations,

inhomogeneous Poisson point processes with intensity λ2(x)
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h MISE

Diggle 4.820E-02 1.716E-01

PLCV 5.687E-02 1.774E-01

h2
1 - h2

2 MISE

Scott 3.948E-02 - 9.063E-02 1.331E-01

LSCV(Diag) 1.375E-03 - 2.054E-03 1.908E-01

Original
Plug-in 1.104E-03 - 4.508E-03 1.482E-01

SCV 1.220E-03 - 5.081E-03 1.442E-01

Smoothed bootstrap
Plug-in 1.582E-03 - 5.918E-03 1.407E-01

SCV 1.741E-03 - 6.767E-03 1.387E-01

Proposed method, α = 1
Plug-in 1.581E-03 - 5.916E-03 1.407E-01

SCV 1.741E-03 - 6.764E-03 1.387E-01

Proposed method, α = 2
Plug-in 1.255E-03 - 4.697E-03 1.463E-01

SCV 1.348E-03 - 5.090E-03 1.440E-01

Proposed method, α = 3
Plug-in 1.097E-03 - 4.103E-03 1.511E-01

SCV 1.157E-03 - 4.344E-03 1.490E-01

Proposed method, α = 4
Plug-in 9.965E-04 - 3.728E-03 1.552E-01

SCV 1.040E-03 - 3.877E-03 1.534E-01

Proposed method, α = 5
Plug-in 9.250E-04 - 3.461E-03 1.588E-01

SCV 9.591E-04 - 3.554E-03 1.573E-01

h11 h21 h22 MISE

LSCV(Full) 1.500E-03 -2.695E-04 2.055E-03 2.210E-01

Original
Plug-in 1.275E-03 -9.178E-04 5.461E-03 1.398E-01

SCV 1.359E-03 -1.003E-03 5.916E-03 1.372E-01

Smoothed boostrap
Plug-in 1.776E-03 -1.082E-03 6.799E-03 1.332E-01

SCV 1.904E-03 -1.208E-03 7.533E-03 1.311E-01

Proposed method, α = 1
Plug-in 1.776E-03 -1.082E-03 6.797E-03 1.332E-01

SCV 1.901E-03 -1.207E-03 7.534E-03 1.311E-01

Proposed method, α = 2
Plug-in 1.410E-03 -8.587E-04 5.396E-03 1.395E-01

SCV 1.461E-03 -9.050E-04 5.683E-03 1.380E-01

Proposed method, α = 3
Plug-in 1.231E-03 -7.502E-04 4.714E-03 1.445E-01

SCV 1.260E-03 -7.707E-04 4.825E-03 1.437E-01

Proposed method, α = 4
Plug-in 1.119E-03 -6.816E-04 4.283E-03 1.487E-01

SCV 1.137E-03 -6.868E-04 4.329E-03 1.482E-01

Proposed method, α = 5
Plug-in 1.039E-03 -6.327E-04 3.976E-03 1.523E-01

SCV 1.049E-03 -6.347E-04 3.968E-03 1.523E-01

Table B4: Results for various bandwidth selectors from 100 simulations,

Thomas cluster point processes with intensity λ2(x)
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h MISE

Diggle 1.458E-02 8.143E-01

PLCV 2.946E-02 2.042E+00

h2
1 - h2

2 MISE

Scott 3.135E-02 - 1.027E-01 2.959E+00

LSCV(Diag) 4.623E-14 - 1.308E-01 2.078E+00

Original
Plug-in 1.133E-04 - 1.741E-03 4.850E-01

SCV 1.478E-04 - 2.568E-03 5.990E-01

Smoothed bootstrap
Plug-in 2.472E-04 - 2.778E-03 8.535E-01

SCV 2.871E-04 - 3.714E-03 1.051E+00

Proposed method, α = 1
Plug-in 2.199E-04 - 2.462E-03 8.532E-01

SCV 2.555E-04 - 3.296E-03 1.051E+00

Proposed method, α = 2
Plug-in 1.745E-04 - 1.954E-03 6.781E-01

SCV 1.982E-04 - 2.502E-03 7.967E-01

Proposed method, α = 3
Plug-in 1.525E-04 - 1.707E-03 6.023E-01

SCV 1.713E-04 - 2.138E-03 6.872E-01

Proposed method, α = 4
Plug-in 1.385E-04 - 1.551E-03 5.595E-01

SCV 1.544E-04 - 1.917E-03 6.244E-01

Proposed method, α = 5
Plug-in 1.286E-04 - 1.440E-03 5.323E-01

SCV 1.428E-04 - 1.760E-03 5.842E-01

h11 h21 h22 MISE

LSCV(Full) 2.259E-04 -6.502E-04 3.292E-03 1.619E+00

Original
Plug-in 2.413E-04 -7.262E-04 3.643E-03 2.535E-01

SCV 3.368E-04 -1.174E-03 5.898E-03 2.283E-01

Smoothed bootstrap
Plug-in 4.153E-04 -9.487E-04 4.920E-03 4.834E-01

SCV 4.891E-04 -1.269E-03 6.553E-03 4.984E-02

Proposed method, α = 1
Plug-in 3.673E-04 -8.333E-04 4.329E-03 4.832E-01

SCV 4.334E-04 -1.120E-03 5.788E-03 4.984E-01

Proposed method, α = 2
Plug-in 2.915E-04 -6.615E-04 3.436E-03 3.873E-01

SCV 3.324E-04 -8.456E-04 4.389E-03 3.880E-01

Proposed method, α = 3
Plug-in 2.547E-04 -5.779E-04 3.002E-03 3.497E-01

SCV 2.832E-04 -7.098E-04 3.687E-03 3.448E-01

Proposed method, α = 4
Plug-in 2.314E-04 -5.251E-04 2.728E-03 3.302E-01

SCV 2.547E-04 -6.317E-04 3.280E-03 3.242E-01

Proposed method, α = 5
Plug-in 2.148E-04 -4.874E-04 2.532E-03 3.190E-01

SCV 2.359E-04 -5.906E-04 3.075E-03 3.095E-01

Table B5: Results for various bandwidth selectors from 100 simulations,

inhomogeneous Poisson point processes with intensity λ3(x)
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h MISE

Diggle 5.303E-02 1.058E-01

PLCV 9.508E-02 1.027E-01

h2
1 - h2

2 MISE

Scott 9.501E-02 - 9.560E-02 1.017E-01

LSCV(Diag) 2.932E-03 - 2.509E-03 1.080E-01

Original
Plug-in 5.978E-03 - 5.643E-03 9.902E-02

SCV 7.223E-03 - 6.594E-03 9.977E-02

Smoothed bootstrap
Plug-in 1.087E-02 - 1.069E-02 1.029E-01

SCV 1.261E-02 - 1.249E-02 1.041E-01

Proposed method, α = 1
Plug-in 1.087E-02 - 1.069E-02 1.029E-01

SCV 1.260E-02 - 1.250E-02 1.041E-01

Proposed method, α = 2
Plug-in 8.627E-03 - 8.484E-03 1.012E-01

SCV 9.561E-03 - 9.405E-03 1.020E-01

Proposed method, α = 3
Plug-in 7.537E-03 - 7.412E-03 1.003E-01

SCV 8.138E-03 - 8.018E-03 1.009E-01

Proposed method, α = 4
Plug-in 6.848E-03 - 6.734E-03 9.980E-02

SCV 7.285E-03 - 7.168E-03 1.002E-01

Proposed method, α = 5
Plug-in 6.357E-03 - 6.252E-03 9.941E-02

SCV 6.703E-03 - 6.561E-03 9.967E-02

h11 h21 h22 MISE

LSCV(Full) 3.049E-03 8.535E-05 2.448E-03 1.176E-01

Original
Plug-in 6.004E-03 -1.613E-04 5.671E-03 9.904E-02

SCV 7.186E-03 -1.484E-04 6.631E-03 9.978E-02

Smoothed bootstrap
Plug-in 1.094E-02 -3.217E-04 1.077E-02 1.029E-01

SCV 1.261E-02 -3.854E-04 1.253E-02 1.041E-01

Proposed method, α = 1
Plug-in 1.094E-02 -3.216E-04 1.076E-02 1.029E-01

SCV 1.260E-02 -3.878E-04 1.253E-02 1.041E-01

Proposed method, α = 2
Plug-in 8.685E-03 -2.556E-04 8.546E-03 1.012E-01

SCV 9.539E-03 -2.822E-04 9.440E-03 1.019E-01

Proposed method, α = 3
Plug-in 7.587E-03 -2.234E-04 7.466E-03 1.004E-01

SCV 8.163E-03 -2.462E-04 8.034E-03 1.008E-01

Proposed method, α = 4
Plug-in 6.894E-03 -2.027E-04 6.784E-03 9.981E-02

SCV 7.301E-03 -2.208E-04 7.189E-03 1.001E-01

Proposed method, α = 5
Plug-in 6.400E-03 -1.883E-04 6.297E-03 9.943E-02

SCV 6.698E-03 -1.874E-04 6.625E-03 9.968E-02

Table B6: Results for various bandwidth selectors from 100 simulations,

log-Gaussian Cox point processes with intensity λ4(x)
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h MISE

Diggle 4.336E-02 8.286E-02

PLCV 4.199E-02 8.312E-02

h2
1 - h2

2 MISE

Scott 9.010E-02 - 9.006E-02 2.081E-01

LSCV(Diag) 1.648E-03 - 2.055E-03 8.995E-02

Original
Plug-in 2.886E-03 - 2.887E-03 8.823E-02

SCV 2.978E-03 - 2.980E-03 8.985E-02

Smoothed bootstrap
Plug-in 6.322E-03 - 6.261E-03 1.654E-01

SCV 6.965E-03 - 6.876E-03 1.804E-01

Proposed method, α = 1
Plug-in 6.320E-03 - 6.258E-03 1.654E-01

SCV 6.963E-03 - 6.873E-03 1.803E-01

Proposed method, α = 2
Plug-in 5.017E-03 - 4.968E-03 1.341E-01

SCV 5.283E-03 - 5.216E-03 1.403E-01

Proposed method, α = 3
Plug-in 4.383E-03 - 4.340E-03 1.192E-01

SCV 4.490E-03 - 4.453E-03 1.218E-01

Proposed method, α = 4
Plug-in 3.982E-03 - 3.944E-03 1.100E-01

SCV 4.039E-03 - 3.982E-03 1.111E-01

Proposed method, α = 5
Plug-in 3.697E-03 - 3.661E-03 1.038E-01

SCV 3.713E-03 - 3.665E-03 1.040E-01

h11 h21 h22 MISE

LSCV(Full) 1.579E-03 8.383E-06 1.655E-03 1.372E-01

Original
Plug-in 2.896E-03 3.504E-05 2.897E-03 8.870E-02

SCV 2.990E-03 4.151E-05 2.997E-03 9.047E-02

Smoothed bootstrap
Plug-in 6.372E-03 6.954E-05 6.308E-03 1.665E-01

SCV 7.017E-03 8.200E-05 6.946E-03 1.816E-01

Proposed method, α = 1
Plug-in 6.370E-03 6.952E-05 6.306E-03 1.665E-01

SCV 7.019E-03 8.706E-05 6.949E-03 1.816E-01

Proposed method, α = 2
Plug-in 5.056E-03 5.516E-05 5.006E-03 1.315E-01

SCV 5.339E-03 6.457E-05 5.270E-03 1.418E-01

Proposed method, α = 3
Plug-in 4.417E-03 4.829E-05 4.373E-03 1.202E-01

SCV 4.536E-03 5.843E-05 4.528E-03 1.235E-01

Proposed method, α = 4
Plug-in 4.014E-03 4.368E-05 3.974E-03 1.110E-01

SCV 4.085E-03 4.803E-03 4.026E-03 1.125E-01

Proposed method, α = 5
Plug-in 3.726E-03 4.056E-05 3.689E-03 1.047E-01

SCV 3.751E-03 4.630E-05 3.710E-03 1.054E-01

Table B7: Results for various bandwidth selectors from 100 simulations,

inhomogeneous Poisson point processes with intensity λ5(x)
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h MISE

Diggle 5.160E-02 6.021E-02

PLCV 4.882E-02 6.100E-02

h2
1 - h2

2 MISE

Scott 8.508E-02 - 8.517E-02 1.079E-01

LSCV(Diag) 1.983E-03 - 1.950E-03 5.079E-02

Original
Plug-in 3.572E-03 - 3.572E-03 6.342E-02

SCV 3.712E-03 - 3.716E-03 6.474E-02

Smoothed bootstrap
Plug-in 7.413E-03 - 7.368E-03 1.098E-01

SCV 8.054E-03 - 7.985E-03 1.180E-01

Proposed method, α = 1
Plug-in 7.411E-03 - 7.366E-03 1.097E-01

SCV 8.049E-03 - 7.988E-03 1.180E-01

Proposed method, α = 2
Plug-in 5.883E-03 - 5.847E-03 8.984E-02

SCV 6.106E-03 - 6.068E-03 9.273E-02

Proposed method, α = 3
Plug-in 5.140E-03 - 5.108E-03 8.048E-02

SCV 5.239E-03 - 5.194E-03 8.165E-02

Proposed method, α = 4
Plug-in 4.670E-03 - 4.641E-03 7.484E-02

SCV 4.688E-03 - 4.650E-03 7.504E-02

Proposed method, α = 5
Plug-in 4.335E-03 - 4.309E-03 7.102E-02

SCV 4.325E-03 - 4.254E-03 7.071E-02

h11 h21 h22 MISE

LSCV(Full) 2.662E-03 1.259E-03 2.592E-03 6.062E-02

Original
Plug-in 4.136E-03 1.666E-03 4.137E-03 4.947E-02

SCV 4.513E-03 2.134E-03 4.491E-03 4.834E-02

Smoothed bootstrap
Plug-in 7.745E-03 1.724E-03 7.699E-03 9.389E-02

SCV 8.471E-03 2.116E-03 8.416E-03 9.938E-02

Proposed method, α = 1
Plug-in 7.742E-03 1.724E-03 7.696E-03 9.386E-02

SCV 8.462E-03 2.115E-03 8.414E-03 9.932E-02

Proposed method, α = 2
Plug-in 6.146E-03 1.369E-03 6.110E-03 7.625E-02

SCV 6.476E-03 1.599E-03 6.413E-03 7.772E-02

Proposed method, α = 3
Plug-in 5.369E-03 1.195E-03 5.338E-03 6.828E-02

SCV 5.538E-03 1.361E-03 5.491E-03 6.836E-02

Proposed method, α = 4
Plug-in 4.879E-03 1.086E-03 4.849E-03 6.360E-02

SCV 4.985E-03 1.209E-03 4.916E-03 6.318E-02

Proposed method, α = 5
Plug-in 4.529E-03 1.008E-03 4.502E-03 6.051E-02

SCV 4.562E-03 1.096E-03 4.522E-03 5.984E-02

Table B8: Results for various bandwidth selectors from 100 simulations,

inhomogeneous Poisson point processes with intensity λ6(x)
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국문초록

본학위논문에서는공간점과정의강도함수와짝상관함수의 LISA함

수를추정하는데있어커널추정사용시최적의띠너비선택방법을

제시한다. 특히, 강도함수의 추정에서 베이지안 붓스트랩을 사용하

여 작은 자료 크기를 통한 커널 추정에도 평활도를 조절할 수 있는

방법을 제시하며, 짝상관함수의 LISA 함수에서의 커널 추정에서도

평균적분제곱오차를 최소로 만드는 띠너비를 구하는 법에 대해 제

안한다. 마지막으로, 우리의 방법을 기존의 방법들과 수치적으로 비

교하고대부분의경우제안하는방법이기존의방법들을능가한다는

것을 보여주며 이를 두 가지 사례 연구에 적용한다.
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