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Abstract

High-dimensional data refers to data which contains a lot of variables more than

or equal to the number of observations. When dealing with high-dimensional

data, it is necessary to select variables with high importance for further analysis,

and association rule can be a useful method when data is binary. Association

rule is one of the data mining techniques that extracts meaningful relationships

from data. In this thesis, association rule will be used to analyze microbial DNA

fingerprint data. To this end, this thesis uses association rule as a classifier and

compares it with several machine learning models. Also, this thesis proposes a

variable selection algorithm based on association rule. By comparing association

rule with other variable selection methods, it was found that association rule is

a useful technique to solve classification problems for multivariate binary data.

Keywords: Classification, Association rule, High-dimensional data, Multivari-

ate binary data

Student Number: 2021-26231
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Chapter 1

Introduction

High-dimensional data refers to data which contains a lot of variables more than

or equal to the number of observations. When dealing with high-dimensional

data, it is necessary to select variables with high importance for further anal-

ysis, such as classification or regression. To this end, some variable selection

processes, such as forward stepwise selection and best subset selection, can be

used.

If the data is binary data containing only values of 0 and 1, association

rule can be a useful method for variable selection. Association rule is one of

the data mining techniques that extract meaningful relationships from data,

and is used in many fields such as market basket analysis (Agrawal 1993) and

bioinformatics. In many cases, a classification problem for high-dimensional

binary data needs to be solved. For example, to find out the treatment a sample

received, microbial fingerprint data from soil samples will be used. In such cases,

association rule is useful in that it can extract the relationship between variables

and treatment.
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In this thesis, association rule and several machine learning models will

be used to analyze microbial DNA fingerprint data (Wilbur et al. 2002) and

identify the treatment each sample received. First, association rule will be used

as a classifier to compare performance with machine learning models. Next,

association rule will be used as a variable selection algorithm rather than a

classifier, and then the classification problem will be solved using the selected

variable. Furthermore, comparison to the method proposed by Wilbur et al.

will be performed to check the usefulness of association rule in classification

problems for multivariate binary data.

Chapter 2 outlines the association rule and machine learning models to

be used in the analysis. Chapter 3 introduces the explanation of microbial

DNA fingerprint data, model evaluation metrics, and analysis results. Chapter

4 provides a conclusion, and the appendix contains the Python and R codes

used in the analysis.
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Chapter 2

Classification Methods

2.1 Association Rule

2.1.1 Association Rule

Association rule mining is a data mining technique to discover meaningful re-

lations among variables in a dataset. Due to its descriptive nature, association

rule mining has become an important tool in various domains such as market

basket analysis (Agrawal 1993) and bioinformatics.

Let I = {I1, . . . , In} be a set of all variables in the dataset D. D consists

of observations T ⊆ I and each observation can be represented by a binary

vector: Tk = 1 if T contains Ik and 0 otherwise. T is often called an itemset.

An association rule (Agrawal 1993) is the form of

X ⇒ Y

where X ⊆ I, Y ⊆ I and X ∩ Y = ∅. The right-hand-side of a rule is called

antecedent of the rule and the left-hand-side of a rule is called consequent of
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the rule.

To measure the reliability of an association rule, support and confidence

(Agrawal 1993) will be used. Support of a rule measures the fraction of obser-

vations that contain all variables of interest. One can eliminate rules having low

support.

support(X ⇒ Y ) =
n(X ∪ Y )

|D|

Confidence of a rule is defined to be the percentage of observations including

all variables of the rule among observations that carry all variables in the an-

tecedent of the rule. Confidence measures the reliability of the inference made

by a rule.

confidence(X ⇒ Y ) =
n(X ∪ Y )

n(X)
=

support(X ∪ Y )

support(X)

The process of generating association rules is as follows: Given the dataset,

fix the support threshold and confidence threshold denoted by minsupp and

minconf , respectively. Then

1. Generate all itemsets whose support is greater than minsupp. These item-

sets are called frequent itemsets.

2. From each itemset, generate all association rules that pass minconf .

Once we find the frequent itemsets in the first step, finding the solution to the

second step is straightforward. However, if the data is large, the first step is

computationally infeasible because calculating the support of an itemset needs

to scan all the data. Also, the number of possible itemsets increases exponen-

tially as the data becomes larger. For example, there are 2m possible itemsets

when the data has m variables. To resolve the problems, some algorithms such

as the Apriori algorithm (Agrawal, Srikant 1994) were introduced.
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2.1.2 Classification based on Association Rule

Association rule mining finds all rules that pass minsupp and minconf . Clas-

sification is a process of identifying observations or matching objects to pre-

determined categories. The consequent (or target) of an association rule is not

pre-determined while there is only pre-determined target in classification. In

the view of association rule mining, classification problem aims to discover

rules whose consequent are restricted to the class label of response variable. An

association rule whose consequent is restricted to the classification class label

is called class association rule (CAR) (Liu et al. 1998), and associative classifi-

cation (Liu et al. 1998) focuses on mining CARs. CBA (Classification Based on

Association) algorithm (Liu et al. 1998) is one of the algorithm for associative

classification.

2.2 L1 Regularized Logistic Regression

Logistic regression is a widely used technique in statistical learning when a

response variable is categorical. For a binary response variable Y ∈ {0, 1} and p-

dimensional explanatory variable X, logistic regression models the relationship

of features and the conditional probability of a class given x as follows:

logit[P (Y = 1|X = x;β0,β)] = β0 + βTx, β ∈ Rp,

or equivalently

P (Y = 1|X = x;β0,β) =
exp(β0 + βTx)

1 + exp(β0 + βTx)
.

The logit transformation allows us to no longer restrict the range of response

variable on [0, 1]. For a categorical response Y ∈ {1, . . . ,K}, logistic regression
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can be written as

pk(x; θ) ≡ P (Y = k|X = x; θ) =
exp(β0k + βT

k x)

1 +
∑K

l=1 exp(β0l + βT
l x)

, k = 1, . . . ,K − 1.

Here θ = {β01, . . . , β0(K−1),β
T
1 , . . . ,β

T
K−1} are the parameters of logistic re-

gression. For a classification problem, we use k∗ = argmaxk pk(x; θ) as a class

prediction for a new observation x.

min
θ

N∑
i=1

− log pgi(xi; θ)

Logistic regression models are fit by maximum likelihood estimation. With-

out any restrictions, it is an unconstrained convex optimization problem, so

it can be easily solved by convex optimization methods such as iteratively

reweighted least squares (IRLS) (Green 1984).

L1 regularization used in the lasso (Tibshirani 1996) can be used for vari-

able selection or avoiding overfitting. For (binary) logistic regression, we would

minimize penalized objective function:

min
β0,β

N∑
i=1

− log pgi(xi; θ) + λ∥β∥1.

This problem is called L1 regularized logistic regression. It is equivalent to

logistic regression with a Laplace prior (Tibshirani 1996).

2.3 Random Forest

2.3.1 Decision Tree

A decision tree (Breiman 1984) is a simple and easily interpretable algorithm for

classification and regression problems. Among input variables, it determines the

optimal splitting variable and the splitting rule for each node. For a continuous

splitting variable x, the corresponding rule is {x ≥ c} in general. If x is greater
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than or equal to c, it is assigned to the left child node, or vice versa. For a

categorical variable, the node is divided into two parts. For example, if x has

the range of {1, 2, 3}, one possible rule is x ∈ {1, 3}. Using impurity measure,

such as Gini index, entropy index or χ2 statistics, a decision tree grows until

the sum of impurity of the child nodes is less than that of the parent node.

We can write the decision tree as

f(x) =
∑
t∈T

ctI(x ∈ Rt), x ∈ Rp

where T is the set of terminal nodes. Rt = I(x1 ∈ Rt1, . . . , xp ∈ Rtp) is the

splitting rule of node t and Rtk is a subset of the domain of xk. If the sum of

squares
∑

(yi − f(xi))
2 is our regression criterion, the optimal predictive value

ct at node t is given by

ĉt =
1

|Rt|
∑
xi∈Rt

yi,

which is the average value of the response corresponding to input in node t. For

a K classification problem, we compute the proportion of class k at node t, i.e.,

p̂tk =
1

|Rt|
∑
xi∈Rt

I(yi = k),

and use k∗ = argmaxk p̂tk for prediction.

2.3.2 Random Forest

A decision tree tends to yield a very different result even when the data changes

slightly (high variance). Since this instability of decision trees originates from

the hierarchical structure, it still remains after pruning the branches of trees.

Bagging or bootstrap aggregating (Breiman 1996) reduces the variance by aver-

aging noisy but unbiased learners. To see this, let L = {(xi, yi), i = 1, . . . , N} be

a learning data and the response is continuous. If we adopt the sum of squares
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Algorithm 1 Random Forest for Classification (Hastie et al. 2009)

1. Given training data L = {(xi, yi),xi ∈ Rp, i = 1, . . . , n}, fix m ≤ p and

the number of trees B. Typically, m =
√
p or p/3.

2. For b = 1 to B:

(a) Draw a bootstrap sample L(b) from L with replacement n times.

(b) Select m input variables randomly among p variables.

(c) Fit a decision tree T (b)(x) using the boostrapped sample L(b).

3. Output the ensemble of {T (b)(x)}B1 :

(a) For regression, output f̂(x) = 1
B

∑B
b=1 T

(b)(x).

(b) For classification, let Nk be the number of trees whose class predic-

tion is k. Then output k∗ = argmaxk Nk (majority vote).

as the optimization criterion, the average prediction error of the aggregated

predictor fA(x) = ELf(x,L) is

EY,X(Y − fA(X))2.

Also, the average prediction error of a predictor f(x,L) is

EY,XEL(Y − f(X,L))2.

Using the Jensen’s inequality, we can see that

EY,XEL(Y − f(X,L))2 ≥ EY,X (Y − fA(X))2,

which shows the improvement of the aggregated predictor. Note that the dif-

ference between the two errors depends on the variance of f(x,L) over L. That
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is, the aggregated predictor fA(x) improves f(x,L) much more when the dif-

ference between ELf(x,L)2 and [ELf(x,L)]2 is large. On the other hand, if

f(x,L) is stable with respect to L, aggregation will not help. In this sense, a

decision tree is a good base learner of bagging.

Random forest (Breiman 2001) is an extension of bagging based on decision

tree. Unlike a decision tree, random forest only selects m ≤ p input variables to

de-correlate B decision trees. Without selecting variables, trees might be highly

correlated when there exists a variable which distinguishes the data well. When

m = p, random forest is equivalent to bagging.

Observations which did not appear in the bootstrapped sample are called

out-of-bag (OOB) samples. One can validate a model using OOB samples with

no price. For an OOB sample (xi, yi), let Oi = {b : (xi, yi) /∈ L(b)} and compute

f̂OOB(xi) =
1

|Oi|
∑
b∈Oi

T (b)(xi).

Then the OOB error estimate is given by

OOB error =
1

n

n∑
i=1

ℓ(yi, f̂OOB(xi)).

It is known that an OOB error estimate is approximately the same as a leave-

one-out cross validation error. Although only a subset of decision trees is used

for computing OOB scores, it can be a good alternative for validation when

the sample size is not large. The probability of not being included in the boot-

strapped sample is (
n− 1

n

)n

≈ e−1 ≈ 0.368.

About 37% of training data are available for each decision tree and therefore one

can use OOB samples for validating random forest or tuning hyperparameter.
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2.4 Boosting

2.4.1 AdaBoost

Freud and Schapire (1997) first proposed boosting algorithm called AdaBoost

(Adaptive Boosting). Boosting algorithm combines weak learners to improve

performance. Unlike bagging which fits the classifiers in parallel, boosting se-

quentially trains the classifiers giving higher weights to the currently misclassi-

fied observations. Then the weighted sum of every classifier becomes the final

classifier.

AdaBoost can be understood to be a forward stagewise additive modeling

using the exponential loss function

L(y, f(x)) = exp(−yf(x))

(Friedman et al. 2000). That is, if fm(x) is our current model, AdaBoost finds

(βm+1, Gm+1) by

(βm+1, Gm+1) = argmin
β,G

N∑
i=1

exp[−yi(fm(xi) + βG(xi))],

and then update

fm+1(x) = fm(x) + βmGm(x).

2.4.2 Gradient Boosting

Gradient boosting proposed by Friedman (2001) extended AdaBoost for gen-

eral loss functions such as squared error loss or logistic loss. The main idea of

gradient boosting is to reduce the errors of the previous model by building a

new model using the gradients of the previous model. For squared error loss,

the negative gradients called pseudo-residuals are computed by

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

= 2(yi − Fm−1(xi)), i = 1, . . . , N.

10



Algorithm 2 AdaBoost.M1 for Classification (Hastie et al. 2009)

1. Start with weights wi = 1/N, i = 1, . . . , N .

2. For m = 1 to M :

(a) Fit the classifier Gm(x) to the training data using weights wi.

(b) Compute

errm =

∑N
i=1wiI(yi ̸= Gm(xi))∑N

i=1wi

(c) Compute αm = log((1− errm)/errm).

(d) Update wi ← wi · exp[αm · I(yi ̸= Gm(xi))], i = 1, . . . , N .

3. Output G(x) = sign
[∑M

m=1 αmGm(x)
]
.

However, the negative gradients rim are only defined at the data points, so they

cannot be generalized to new observations. As an alternative, given the basis

function h, gradient boosting finds hm = {h(xi; γm)}Ni=1 as close as possible to

the negative gradients rm = {rim}Ni=1:

γm = argmin
γ,β

N∑
i=1

{rim − βh(xi; γ)}2.

Then the optimal step length ρm is calculated

ρm = argmin
ρ

N∑
i=1

L(yi, Fm−1(xi) + ρh(xi; γm)),

and the current solution is updated

Fm(x) = Fm−1(x) + ρmh(x; γm).

The step length ρm plays a role as a shrinkage factor (or learning rate). It

controls the rate at which the loss function is minimized. Taking lots of small
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steps in the right direction results in better predictions with a testing dataset,

i.e., lower variance (Friedman 2001).

2.4.3 XGBoost

Chen and Guestrin (2016) introduced XGBoost (eXtreme Gradient Boosting)

to compute efficiently and resolve the overfitting problem of gradient boosting.

XGBoost achieves the goal by minimizing the following regularized objective

function.

N∑
i=1

L(ŷi, yi) +
∑
k

Ω(fk) where Ω(f) = γT +
1

2
λ∥w∥2

Here L is a differentiable convex loss function and the second term Ω represents

the complexity of the model. T is the number of terminal nodes in the tree

and w is the weight for each terminal node. XGBoost has been showing good

performance in many areas and it is still widely used because of its useful

features such as efficient computation and early stopping.
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Chapter 3

Analysis and Results

3.1 Data Description

Characteristic profiles of microbial communities (or community DNA finger-

prints) have been used to examine the ecology of microbial systems, particularly

those in soil. These community DNA fingerprints can be represented by binary

vectors whose dimensions might be very high because some soil samples contain

tens of thousands of bacteria (Torsvik et al. 1996). Some methodologies were

introduced to investigate community DNA fingerprints. For example, Wilbur

et al. (2002) proposed variable selection methods for multivariate binary data.

In this thesis, the microbial community fingerprints data from Wilbur et al.

(2002) will be used. While the number of bacterial types has been estimated

to be on the order of 10,000, there are only d = 84 microbial communities that

were identified across n = 89 observations. All observations are obtained from

four agronomic treatments. According to the tillage practice (plow or no-till)

and the rotation practice (monoculture or rotation), all samples were classified

13



Treatment X1 X2 X3 X4 X5 · · · X82 X83 X84

1 0 0 1 0 0 · · · 0 1 0

2 1 0 0 0 0 · · · 1 0 1

3 1 1 1 0 1 · · · 0 1 1

4 1 1 0 0 1 · · · 0 0 0
...

...
...

...

Table 3.1: The microbial community fingerprints data (Wilbur et al. 2002). All

input variables are binary. Treatment is target variable.

into four categories. The distribution of the samples across the four treatment

groups is n1 = 23, n2 = n3 = n4 = 22, where the treatments are (1) corn grown

in monoculture in plowed soil, (2) corn grown in monoculture in undisturbed

(no-till) soil, (3) corn grown in rotation with soybean in plowed soil, and (4)

corn grown in rotation with soybean in undisturbed (no-till) soil. Our purpose

is to construct classifiers from the methods explained in the previous chapter

and compare the performance of each model.

3.2 Evaluation Metrics

To compare the performance of models, three classification evaluation metrics

will be used. The first one is accuracy score. Accuracy score is the fraction of

correctly classified samples in the test data.

F1 score =
2

Precision−1 +Recall−1

The second evaluation metric is F1 score, which is the harmonic mean of

precision and recall. Precision is the fraction of relevant instances among the

14



Predicted Class

Positive (PP) Negative (PN)

Actual Class
Positive (P) True Positive (TP) False Negative (FN)

Negative (N) False Positive (FP) True Negative (TN)

Table 3.2: A confusion matrix is a table with two rows and two columns that

reports the number of true positives, false negatives, false positives, and true

negatives. Precision is defined as TP / (TP + FP) and recall (or sensitivity,

true positive rate (TPR)) is defined as TP / (TP + FN). Also, the false positive

rate (FPR) is defined as FP / (FP + TN).

retrieved instances, while recall is the fraction of relevant instances that were

retrieved. F1 score measures the accuracy of a test and has a value between 0

and 1. The closer the value is to 1, the more accurate it is. F1 score can be

used to find an equal balance between precision and recall, which is extremely

useful when a dataset is imbalanced. For multi-class classification problem, F1

score is calculated by averaging F1 score of all classes.

The last evaluation metric is AUC-ROC curve (Area Under the Curve-

Receiver Operating Characteristic curve). A ROC curve illustrates the rela-

tionship of the true positive rate (sensitivity) and the false positive rate (1−

specificity) as the decision threshold of a binary classifier is varied. If a classifier

has poor performance, its ROC curve becomes closer to a straight line (AUC

= 0.5), so the AUC can be a good evaluation metric. That is, a good classifier

has an AUC value close to 1. For the multi-class classification problem, AUC of

each class is calculated by a one-vs-rest strategy, and the average of all AUCs

becomes the AUC of a classifier.
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Classifier Parameters

L1 Logistic Regression tol(tolerance for stopping), C(regularization strength)

Random Forest

max depth(the maximum depth), n estimators(the number of trees)

max features

(the number of features to consider when looking for the best split),

min samples leaf

(the minimum number of samples required to be at a leaf node),

min samples split

(the minimum number of samples required to split an internal node)

XGBoost

gamma(minimum loss reduction), subsample(subsample ratio)

learning rate, max depth,

min child weight

(minimum sum of instance weight needed in a child),

colsample bytree

(subsample ratio of columns when constructing each tree)

CBA supp(minimum support), conf(minimum confidence)

Table 3.3: Parameters for each model

3.3 Classification

In this section, classification results are presented according to four methods ex-

plained in the previous chapter. Using R and Python, libraries for each method

were used; arulesCBA library in R for classification based on association rule

(CBA), sklearn library in Python for logistic regression and random forest

and xgboost library in Python for XGBoost. Hyperparameter tuning was per-

formed prior to model fitting (Table 3.3). In the case of XGBoost, hyperparam-

eter tuning was performed sequentially to find parameters efficiently. For other

methods, optimal parameters are found by a grid search strategy. Using a 5-fold

CV strategy, 80% of the total data was used as training data and 20% of the

total data was used as test data. Once again, the training data is divided into

training data(80%) and validation data(20%) for model fitting and hyperpa-
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Classifier Accuracy score F1 score AUC

L1 Logistic Regression 0.905556(0.91) 0.888982(0.91) 0.978853(0.97)

Random Forest 0.922222(0.93) 0.916034(0.93) 0.985731(0.97)

XGBoost 0.898148(0.88) 0.890594(0.87) 0.980576(0.98)

CBA 0.776238(0.78) 0.770505(0.78) 0.857437(0.85)

Table 3.4: Comparison of classification evaluation metrics of four models.

rameter tuning, respectively. The evaluation metrics were calculated with the

test data.

The process was repeated 30 times to calculate the average value of each

metric (Table 3.4). All three metrics showed similar trends, and random forest

showed the best overall performance. The logistic regression is meaningful in

that its performance lags behind that of random forests, but its computation

speed was much faster than other models. XGBoost was faster than random

forest, but less accurate than logistic regression and random forest. On the other

hand, the classifier based on association rules showed worse performance than

other models. The results were similar even in the case of using the Leave-One-

Out-CV(LOOCV) strategy.

3.4 Variable Selection via Association Rule

In the previous section, association rule was used independently for classifi-

cation, and performance was poor. In this section, I would like to solve the

classification problem by using the association rule in the variable screening

process, not as a classifier. The variable screening process for data with an

insufficient number of observations and many variables is expected to help im-

prove classifier performance. The variable selection process is conducted using

17



Algorithm 3 Variable Selection via Association Rule

1. Set the candidate for the hyperparameter of CBA classifier, supp and

conf.

2. For each supp and conf, fit a classifier with LOOCV strategy.

3. Choose supp and conf of the best model with respect to accuracy score.

4. Select the variables included in the association rules with the chosen supp

and conf.

grid search and LOOCV strategy (Algorithm 3).

There were 13 variables(SAR) selected through the above process, which

was different from the two variable selection methods proposed by Wilbur et

al. (2002); the first method selected three variables(S1), and the second method

selected 19 variables(S2).

SAR = {X9, X12, X13, X19, X32, X34, X36, X39, X45, X48, X54, X55, X84}

S1 = {X13, X34, X54}

S2 = {X9, X12, X13, X14, X19, X32, X34, X36, X39, X40, X43, X45, X46,

X48, X49, X53, X54, X55, X84}

The results of solving the classification problem using the selected variable

are as follows (Table 3.5-7). It can be seen that the performance of S1 is not

good because there are too few variables included. When the variables selected

through the association rule were used, the number of variables was smaller

than that of the second method, but the performance was similar with the

second method. Therefore, it can be interpreted that variables are selected

more effectively among a large number of variables by association rule.

18



Classifier S1 S2 SAR

L1 Logistic Regression 0.724074 0.868519 0.848148

Random Forest 0.737037 0.877778 0.840741

XGBoost 0.731481 0.864815 0.809259

Table 3.5: Accuracy score for selected variables

Classifier S1 S2 SAR

L1 Logistic Regression 0.653317 0.857936 0.838857

Random Forest 0.685617 0.869949 0.834154

XGBoost 0.661207 0.854173 0.798846

Table 3.6: F1 score for selected variables

Classifier S1 S2 SAR

L1 Logistic Regression 0.916676 0.978493 0.972254

Random Forest 0.918578 0.976708 0.976170

XGBoost 0.922974 0.982932 0.974288

Table 3.7: AUC for selected variables

19



In addition, the three sets have an inclusion relationship, i.e., S1 ⊂ SAR ⊂

S2. In other words, the association rule tends to select variables with high

importance between S2 as can be seen from the feature importance obtained

from random forest (Figure 3.1). Although the evaluation metrics increase as the

number of variables increases, the difference is not large, so it can be interpreted

that the associated rule efficiently selects the variable.

Unlike the previous section, the logistic regression model showed the best

performance. It is meaningful in that the results are better than other ma-

chine learning models unlike before, even though it learned the fastest among

the three models. On the other hand, XGBoost model performed poorly even

though it took the longest time to learn.

20



Figure 3.1: Feature importance obtained from the random forest. The high-

ligthed variables were chosen by the association rule.
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Chapter 4

Conclusion

The classification problem for multivariate binary data was solved using several

machine learning models and association rule. When the association rule was

used as a classifier, the performance was significantly worse than that of other

machine learning models. The random forest showed the best performance for

all evaluation metrics, and the logistic regression model has a lower performance

than that, but has a great advantage in terms of computation time. There are

only 89 observations in the data, so it did not take a long time for all models

to fit the model, but the advantage of logistic regression is expected to stand

out if the data size increases.

After using the association rule in the variable screening process, a smaller

number of variables were selected, but the accuracy score is almost similar to

that of the method proposed by Wilbur et al. It suggests that association rule

can be a useful method when selecting variables of high variable importance

from high-dimensional data. If the speed of the algorithm for finding association

rules is improved, the process can be done more effectively. On the other hand,
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the performance of the logistic regression model was the best in this case, and

XGBoost still performed the worst.

High-dimensional data is widely covered in many fields such as bioinfor-

matics and genetics, and there is a lot of binary data in such fields. For future

research, excluding variables having low variable importance is needed. As seen

in the previous result, it is expected that high-dimensional binary data can be

effectively analyzed by selecting variables with high importance through the

variable screening process using association rule.
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Appendix A

Codes

A.1 R Code for Classification based on Association

Rule

1 library(caret)

2 library(arulesCBA)

3 library(pROC)

4

5 n_trial <- 30

6

7 accuracy_cba <- rep(0, n_trial)

8 f1_cba <- rep(0, n_trial)

9 auc_cba <- rep(0, n_trial)

10

11 for (i in 1:n_trial){

12

13 cv <- createFolds(data$trt, k = 5, list = T, returnTrain = F)

14

15 train <- data[-cv$Fold1, ]
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16 X_test <- data[cv$Fold1, 2:85]

17 y_test <- data[cv$Fold1, 1]

18

19 clf <- CBA(trt ~ ., data = train, supp = 0.1, conf = 0.9, verbose =

F)↪→

20 y_pred <- predict(clf, X_test)

21

22 acc <- sum(y_test == y_pred) / length(y_test)

23

24 confmat <- confusionMatrix(y_test, y_pred, mode = "everything")

25 f1 <- ifelse(is.na(mean(confmat$byClass[, 7])),

26 mean(confmat$byClass[, 7], na.rm = T) * 3 / 4,

27 mean(confmat$byClass[, 7]))

28

29 accuracy_cba[i] <- acc

30 f1_cba[i] <- f1

31 auc_cba[i] <- auc(multiclass.roc(y_test, as.numeric(y_pred)))

32 }

A.2 Python Code for L1 Regularized Logistic Regres-

sion

1 from sklearn.model_selection import train_test_split, KFold,

GridSearchCV↪→

2

3 from sklearn.preprocessing import label_binarize

4 from sklearn.multiclass import OneVsRestClassifier

5 from sklearn.metrics import accuracy_score, f1_score, roc_curve, auc

6

7 from sklearn.linear_model import LogisticRegression

8

9 accuracy_logistic = []

10 f1_logistic = []

25



11 fprs_logistic = []

12 tprs_logistic = []

13 roc_aucs_logistic = []

14

15 for i in range(n_trial):

16 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size

= test_size, random_state = i)↪→

17

18 y_copy = label_binarize(y, classes=[1, 2, 3, 4])

19 X_train_copy, X_test_copy, y_train_copy, y_test_copy =

train_test_split(X, y_copy, test_size = test_size, random_state

= i)

↪→

↪→

20

21 logistic = LogisticRegression(penalty = "l1", solver = "liblinear")

22

23 param_grid_log = {

24 "tol" : [1e-4, 1e-3, 0.01, 0.1],

25 "C" : [1e-5, 1e-4, 1e-3, 0.01, 0.1, 1, 10, 100]

26 }

27

28 grid_search_log = GridSearchCV(estimator = logistic, param_grid =

param_grid_log, cv = 4)↪→

29 grid_search_log.fit(X_train, y_train)

30

31 best_grid_log = grid_search_log.best_estimator_

32 y_pred = best_grid_log.predict(X_test)

33

34 accuracy_logistic.append(accuracy_score(y_test, y_pred))

35 f1_logistic.append(f1_score(y_test, y_pred, average = "macro"))

36

37 classifier = OneVsRestClassifier(best_grid_log)

38 y_score = classifier.fit(X_train_copy,

y_train_copy).decision_function(X_test_copy)↪→
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39

40 fpr = dict()

41 tpr = dict()

42 roc_auc = dict()

43

44 for i in range(n_classes):

45 fpr[i], tpr[i], _ = roc_curve(y_test_copy[:, i], y_score[:, i])

46 roc_auc[i] = auc(fpr[i], tpr[i])

47

48 fprs_logistic.append(fpr)

49 tprs_logistic.append(tpr)

50 roc_aucs_logistic.append(roc_auc)

A.3 Python Code for Random Forest

1 from sklearn.ensemble import RandomForestClassifier

2

3 accuracy_rf = []

4 f1_rf = []

5 fprs_rf = []

6 tprs_rf = []

7 roc_aucs_rf = []

8

9 for i in range(n_trial):

10 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size

= test_size, random_state = i)↪→

11

12 y_copy = label_binarize(y, classes=[1, 2, 3, 4])

13 X_train_copy, X_test_copy, y_train_copy, y_test_copy =

train_test_split(X, y_copy, test_size = test_size, random_state

= i)

↪→

↪→

14

15 rf = RandomForestClassifier()
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16

17 param_grid_rf = {

18 "max_depth" : [5, 10, 20],

19 "max_features" : ["sqrt", "log2"],

20 "min_samples_leaf" : [1, 2, 4],

21 "min_samples_split" : [2, 5, 10],

22 "n_estimators" : [20, 50, 80]

23 }

24

25 grid_search_rf = GridSearchCV(estimator = rf, param_grid =

param_grid_rf, cv = 4)↪→

26 grid_search_rf.fit(X_train, y_train)

27

28 best_grid_rf = grid_search_rf.best_estimator_

29 y_pred = best_grid_rf.predict(X_test)

30

31 accuracy_rf.append(accuracy_score(y_test, y_pred))

32 f1_rf.append(f1_score(y_test, y_pred, average = "macro"))

33

34 classifier = OneVsRestClassifier(best_grid_rf)

35 y_score = classifier.fit(X_train_copy,

y_train_copy).predict_proba(X_test_copy)↪→

36

37 fpr = dict()

38 tpr = dict()

39 roc_auc = dict()

40

41 for i in range(n_classes):

42 fpr[i], tpr[i], _ = roc_curve(y_test_copy[:, i], y_score[:, i])

43 roc_auc[i] = auc(fpr[i], tpr[i])

44

45 fprs_rf.append(fpr)

46 tprs_rf.append(tpr)
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47 roc_aucs_rf.append(roc_auc)

A.4 Python Code for XGBoost

1 from xgboost import XGBClassifier

2

3 accuracy_xgb = []

4 f1_xgb = []

5 fprs_xgb = []

6 tprs_xgb = []

7 roc_aucs_xgb = []

8

9 for i in range(n_trial):

10 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size

= test_size, random_state = i)↪→

11

12 y_copy = label_binarize(y, classes=[1, 2, 3, 4])

13 X_train_copy, X_test_copy, y_train_copy, y_test_copy =

train_test_split(X, y_copy, test_size = test_size, random_state

= i)

↪→

↪→

14

15 # max_depth, min_child_weight tuning

16 xgb1 = XGBClassifier(

17 learning_rate = 0.1,

18 max_depth = 3,

19 min_child_weight = 5,

20 gamma = 0,

21 subsample = 0.8,

22 colsample_bytree = 0.8,

23 objective = "multi:softmax",

24 nthread = -1,

25 seed = 123)

26
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27 param_grid_xgb1 = {

28 "max_depth" : [3, 6, 9],

29 "min_child_weight" : [1, 3, 5]

30 }

31

32 grid_search_xgb1 = GridSearchCV(estimator = xgb1, param_grid =

param_grid_xgb1, cv = 4)↪→

33 grid_search_xgb1.fit(X_train, y_train - 1)

34 best_param_1 = grid_search_xgb1.best_params_

35

36 # gamma tuning

37 xgb2 = XGBClassifier(

38 learning_rate = 0.1,

39 max_depth = best_param_1["max_depth"],

40 min_child_weight = best_param_1["min_child_weight"],

41 gamma = 0,

42 subsample = 0.8,

43 colsample_bytree = 0.8,

44 objective = "multi:softmax",

45 nthread = -1,

46 seed = 123)

47

48 param_grid_xgb2 = {

49 "gamma" : [i/10.0 for i in range(0, 5)]

50 }

51

52 grid_search_xgb2 = GridSearchCV(estimator = xgb2, param_grid =

param_grid_xgb2, cv = 4)↪→

53 grid_search_xgb2.fit(X_train, y_train - 1)

54 best_param_2 = grid_search_xgb2.best_params_

55

56 # subsample, colsample_bytree tuning

57 xgb3 = XGBClassifier(
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58 learning_rate = 0.1,

59 max_depth = best_param_1["max_depth"],

60 min_child_weight = best_param_1["min_child_weight"],

61 gamma = best_param_2["gamma"],

62 subsample = 0.8,

63 colsample_bytree = 0.8,

64 objective = "multi:softmax",

65 nthread = -1,

66 seed = 123)

67

68 param_grid_xgb3 = {

69 "subsample" : [i/10.0 for i in range(6, 10)],

70 "colsample_bytree" : [i/10.0 for i in range(6, 10)]

71 }

72

73 grid_search_xgb3 = GridSearchCV(estimator = xgb3, param_grid =

param_grid_xgb3, cv = 4)↪→

74 grid_search_xgb3.fit(X_train, y_train - 1)

75 best_param_3 = grid_search_xgb3.best_params_

76

77 # learning_rate tuning

78 xgb4 = XGBClassifier(

79 learning_rate = 0.1,

80 max_depth = best_param_1["max_depth"],

81 min_child_weight = best_param_1["min_child_weight"],

82 gamma = best_param_2["gamma"],

83 subsample = best_param_3["subsample"],

84 colsample_bytree = best_param_3["colsample_bytree"],

85 objective = "multi:softmax",

86 nthread = -1,

87 seed = 123)

88

89 param_grid_xgb4 = {
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90 "learning_rate" : [0.01, 0.05, 0.1, 0.15, 0.3]

91 }

92

93 grid_search_xgb4 = GridSearchCV(estimator = xgb4, param_grid =

param_grid_xgb4, cv = 4)↪→

94 grid_search_xgb4.fit(X_train, y_train - 1)

95 best_param_4 = grid_search_xgb4.best_params_

96

97 # final model

98 xgb_final = XGBClassifier(

99 learning_rate = best_param_4["learning_rate"],

100 max_depth = best_param_1["max_depth"],

101 min_child_weight = best_param_1["min_child_weight"],

102 gamma = best_param_2["gamma"],

103 subsample = best_param_3["subsample"],

104 colsample_bytree = best_param_3["colsample_bytree"],

105 num_class = 4,

106 objective = "multi:softproba",

107 nthread = -1,

108 seed = 123)

109

110 xgb_final.fit(X_train, y_train - 1)

111 y_pred = xgb_final.predict(X_test)

112

113 accuracy_xgb.append(accuracy_score(y_test - 1, y_pred))

114 f1_xgb.append(f1_score(y_test - 1, y_pred, average = "macro"))

115

116 classifier = OneVsRestClassifier(xgb_final)

117 y_score = classifier.fit(X_train_copy,

y_train_copy).predict_proba(X_test_copy)↪→

118

119 fpr = dict()

120 tpr = dict()
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121 roc_auc = dict()

122

123 for i in range(n_classes):

124 fpr[i], tpr[i], _ = roc_curve(y_test_copy[:, i], y_score[:, i])

125 roc_auc[i] = auc(fpr[i], tpr[i])

126

127 fprs_xgb.append(fpr)

128 tprs_xgb.append(tpr)

129 roc_aucs_xgb.append(roc_auc)
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초록

고차원 데이터는 변수의 개수가 관측치의 수와 비슷하거나 그 이상으로 많은 데이

터를 의미한다. 고차원 데이터를 다룰 때 추후 분석을 위해 중요도가 높은 변수를

선택하는것은필수적이며,데이터가이진변수로만이루어져있는경우연관규칙

은유용한방법이될수있다.연관규칙은데이터로부터유의미한관계를추출하는

데이터마이닝기법의하나이다.본논문에서는연관규칙을활용하여미생물 DNA

지문 데이터를 분석할 것이다. 이를 위해, 먼저 연관 규칙을 분류기로서 사용하고

여러 머신 러닝 모형과 그 성능을 비교한다. 더 나아가 연관 규칙에 기반한 변수

선택 방법을 제안하고, 이미 알려진 변수 선택 방법과 비교할 것이다. 이를 통해

다변량 이진 데이터의 분류 문제 해결에 있어서 연관 규칙이 유용함을 확인하는

것이 목표이다.

주요어: 분류, 연관 규칙, 고차원 데이터, 다변량 이진 데이터

학번: 2021-26231

37


	Abstract
	Chapter 1 Introduction
	Chapter 2 Classification Methods
	2.1 Association Rule
	2.1.1 Association Rule
	2.1.2 Classification based on Association Rule

	2.2 L1 Regularized Logistic Regression
	2.3 Random Forest
	2.3.1 Decision Tree
	2.3.2 Random Forest

	2.4 Boosting
	2.4.1 AdaBoost
	2.4.2 Gradient Boosting
	2.4.3 XGBoost


	Chapter 3 Analysis and Results
	3.1 Data Description
	3.2 Evaluation Metrics
	3.3 Classification
	3.4 Variable Selection via Association Rule

	Chapter 4 Conclusion
	Appendix A Codes
	A.1 R Code for Classification based on Association Rule
	A.2 Python Code for L1 Regularized Logistic Regression
	A.3 Python Code for Random Forest
	A.4 Python Code for XGBoost

	초록


<startpage>9
Abstract
Chapter 1 Introduction 1
Chapter 2 Classification Methods 3
 2.1 Association Rule 3
  2.1.1 Association Rule 3
  2.1.2 Classification based on Association Rule 5
 2.2 L1 Regularized Logistic Regression 5
 2.3 Random Forest 6
  2.3.1 Decision Tree 6
  2.3.2 Random Forest 7
 2.4 Boosting 10
  2.4.1 AdaBoost 10
  2.4.2 Gradient Boosting 10
  2.4.3 XGBoost 12
Chapter 3 Analysis and Results 13
 3.1 Data Description 13
 3.2 Evaluation Metrics 14
 3.3 Classification 16
 3.4 Variable Selection via Association Rule 17
Chapter 4 Conclusion 22
Appendix A Codes 24
 A.1 R Code for Classification based on Association Rule 24
 A.2 Python Code for L1 Regularized Logistic Regression 25
 A.3 Python Code for Random Forest 27
 A.4 Python Code for XGBoost 29
초록 37
</body>

