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ABSTRACT

Dimension Reduction Methods for

Multi-source and Manifold-valued Data

SeoWon Choi

The Department of Statistics

The Graduate School

Seoul National University

In this thesis, we discuss dimension reduction methods in non-

Euclidean space. Due to non-zero curvature, we cannot make use

of the traditional techniques like Pythagorean theorem in building

a statistical method in non-Euclidean space. To capture the struc-

ture of data set, it is necessary to understand the geometric na-

ture of a given non-Euclidean space. We propose the following two

dimension reduction methods, generalizing popular multivariate

data analysis methods, factor analysis and PCA, to non-Euclidean

settings.

In Chapter 2, we propose Principal Structure Identification

(PSI) for multi-source dataset.
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Analysis of multi-source dataset, where data on the same ob-

jects are collected from multiple sources, is of rising importance

in many fields, most notably in multi-omics biology. We propose

a novel framework and algorithms for integrative decomposition

of such multi-source data, to identify and sort out common fac-

tor scores in terms of whether the scores are relevant to all data

sources (fully joint), to some data sources (partially joint), or to

a single data source.

The key difference between our proposal and existing approaches

is that we utilize raw source-wise factor score subspaces in the iden-

tification of the partially-joint block-wise association structure. To

identify common score subspaces, which may be partially joint to

some of data sources, from noisy observations, our proposed al-

gorithm sequentially computes one-dimensional flag means among

source-wise score subspaces, then collects the subspaces that are

close to the mean.

In Chapter 3, we propose Penalized Principal Nested Spheres

(PenPNS) for dataset on the hypersphere surface.

Analysis of Principal Nested Spheres (PNS) (Jung, 2012) is

a flexible dimension reduction method for dataset on the hyper-

sphere, e.g. directional data (Fisher,1993; Fisher et al.,1993; Mar-

dia and Jupp,2000) and shape data (Kendall,1984; Dryden and

Mardia, 1998). In PNS, the dimension reduction is an iterative

procedure for discarding unimportant dimensions. It is specifically

designed to capture a certain type of non-geodesic variation by fit-

ting a small sphere.

However, PNS suffers from overfitting, a phenomenon where
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data points are fitted with a small sphere even though they are

generated from along a great sphere. We consider two types of

overfitting phenomena. (1) When the estimated radius r̂ is over

π/2, the estimated axis v̂ is flipped to −v̂ and we take the radius

as π− r̂, since the radius as parameter ranges from 0 to π/2. Then

the distribution of the estimated radius becomes a folded version

of the distribution between the true axis and the data points. Thus

the expectation of the estimated radius is less than π/2. (2) When

data points are generated along a great sphere but within a short

interval, the data point cloud has a disc shape and is usually fitted

by a small sphere with a very small radius.

PenPNS is an improvement of PNS that overcomes the over-

fitting phenomena in small sphere fitting. To deal with the first

type of overfitting phenomenon, PenPNS regularize radius in esti-

mation, where the value of the penalty term grows larger as radius

decreases departing from π/2. For the second type, PenPNS gives

a penalizing term on the cross-validation error in choosing tuning

parmeter. The penalizing term, called Index of Dispersion, has a

larger value in the case a disc-shaped distribution is fitted with

a small radius. In Simulation Study and Real Data analysis, we

demonstrate that PenPNS successfully mitigates the overfitting

phenomena.

Keywords: Dimension reduction, Non-Euclidean space, Multi-

source dataset, Dataset on the hypersphere, Multi-omics dataset.

Student Number: 2017− 38449
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Chapter 1

Introduction

Recent days, statistical methods for dataset in non-Euclidean space

have gained much attention, in need of analyzing unconventional

datasets, such as directional data (Fisher,1993; Fisher et al.,1993;

Mardia and Jupp,2000) and shape data (Kendall,1984; Dryden

and Mardia,1998), or exploring the geometric interpretations of

existing methods, such as PCA (Hotelling,1993). However, due to

non-zero curvature, applying even elementary statistical methods

to non-Euclidean space is a challenging task. The difficulties come

from two ways: (1) identify the mathematical entity of the dataset,

(2) design an estimate that explains the data set well, but also re-

flects well the geometric nature of the space where the data points

dwell in.

For example, defining even a basic statistical concept in non-

Euclidean space can be puzzling, e.g. defining “mean” on the

sphere surface, S2. We may raise the following questions: Is there

any concrete way of defining “mean” on the sphere, such as “sum-

ming up data points” on the sphere surface or “divide the sum by
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the number of points”? What would be the “geometrical entity”

of that mean? Does it even reside on the same original sphere sur-

face as data points? In building up an optimization problem to

find mean, how can we measure a distance between two points on

S2?

In this thesis, we consider two types of dataset.

1. Multi-source dataset (see Chapter 2)

2. Dataset on the hypersphere surface (see Chapter 3).

Before jumping into methodologies, we need to provide mathemat-

ical frameworks for these unconventional types of dataset. In the

next sections in this chapter, we give mathematical preliminaries

for the thesis.

We want to clarify the relation between our dataset and non-

Euclidean geometry. The non-Euclidean spaces upon which our

data sets reside are described as manifolds. Specifically, we ex-

plain (1) Grassmann manifold for multi-source dataset and (2)

the hypersphere Sd for dataset on the hypersphere surface.

We also provide related geometrical concepts therein, e.g. (1) a

concept of “distance” between two points on each manifold or (2)

an analogue of “mean” for data points in non-Euclidean space. We

utilize geometrical concepts in building statistical methods later.

We then present the proposed statistical methods to analyze

our datasets in the next chapters:

1. Partially-joint Structure Indentification (PNS) for multi-source

dataset (see Chapter 2)
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2. Penalized Principal Nested Sphere (PenPNS) for dataset on

the hypersphere surface (see Chapter 3).

A detailed introduction to each method is deferred to the chapter

of its own, see Section 2.1 and Section 3.1 respectively.

1.1 Mathematical Backgrounds for Multi-

source Dataset

By the multi-source data, we mean data obtained for multiple

groups of variables on the same set of subjects. In other words,

there are K data blocks, Xk ∈ Rpk×n, for k = 1, . . . ,K, observed

for matched n subjects. Assuming zero mean, each data block is

decomposed into

Xk = Zk + Ek = UkV
T
k + Ek, k = 1, . . . ,K, (1.1)

in which the low-rank “signal” matrix Zk (say, of rank rk) is fac-

tored into a loading matrix Uk and a score matrix Vk. The score

matrix Vk ∈ Rn×rk is an orthonormal matrix and can be viewed

as a representation of a rk-dimensional linear subspace in Rn. We

denote the score subspace spanned by the columns of Vk as [Vk]

and say that Vk represents the subspace [Vk].

In the language of matrix manifolds, each score subspace [Vk] is

described as an element of the Grassmann manifold. Formally, the

p-dimensional Grassmann manifold in Rn, Gr(n, p), is defined as

the set of all p-dimensional linear subspaces of the n-dimensional

vector space Rn.

The problem here is that score subspace [Vk] have different di-

mensions each other. In this section, we want to define a notion of

3



distance among linear subspaces of different dimensions (for short,

subspace distance). In other words, it is a distance d(A,B) with

A ∈ Gr(n, p1) and B ∈ Gr(n, p2) which allows p1 6= p2. We here

adopt the framework of Ye and Lim (2016). In fact, the framework

is a generalization of distance among linear subspaces of the same

dimension to the one of different dimensions.

The Framework of Ye and Lim (2016)

Let p1 ≤ p2. Suppose we have a distance d′ on Gr(n, p2), that

is, among linear subspaces of the same dimension p2. A distance

d between [A] ∈ Gr(n, p1) and [B] ∈ Gr(n, p2) is derived as

d([A], [B]) = min
{
d′([X], [B]) : [X] ∈ Ω([A])

}
,

where Ω([A]) = {[X] ∈ Gr(n, p2) : [A] ⊂ [X]}. For more details,

see Theorem 7 and 12 in Ye and Lim (2016).

In Chapter 2, we use the Frobenius norm distance which is

defined as

d([A], [B]) =
1√
2
‖AAT −BBT ‖F ,

where ‖ · ‖2F is the Frobenius norm and A and B are orthonormal

matrices which represent [A] ∈ Gr(n, p1) and [B] ∈ Gr(n, p2). (To

put it precisely, we generalize the Frobenius norm distance among

linear subspaces of the same dimension to of different dimensions

using Ye and Lim framework.)

Using the concept of subspace distance, we can define an ana-

logue of “mean” for a set of linear subspaces. One of the examples

4



is the one-dimensional mean among linear subspaces of different

dimensions (for short, mean direction).

Suppose linear subspaces [Vk] of dimension rk in Rn for k =

1, . . . ,K are given. The mean direction ŵ minimizes the sum of

the squares of subspace distances d between a candidate w and

subspaces [V̂k] for k ∈ Si,

ŵ = arg min
wTw=1

∑

k∈Si

d
(

[w], [V̂k]
)2
. (1.2)

When we use the Frobenius norm distance for d, the mean di-

rection ŵ can be computed easily using the truncated SVD, see

Section A.1.2 in the supplementary materials.

The concept of subspace distance among linear subspaces of

different dimensions will play a crucial role in Section 2.3.1. The

concept of mean direction, or one-dimensional average among lin-

ear subspaces of different dimensions will be used in Section 2.3.1,

notably (2.4).

1.2 Mathematical Backgrounds for Dataset

on Hypersphere

Our aim is to regard the hypersphere as a Riemannian manifold.

We begin by presenting a list of terminology.

A manifold of dimension d is a Hausdoff space with a countable

basis. Each point p of a d-dimensional manifold M has a neigh-

borhood that is homeomorphic to an open subset of real space Rd.

Thus one can attach to every point p a real vector space and we

call this real vector space a tangent space, TpM .
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The set of all local homeomorphisms (U, φ) is called atlas, such

that U ⊂ M is open and φ : U → φ(U) ⊂ Rd. If a manifold M is

equipped with a differentiable atlas, M is called a smooth mani-

fold. If a smooth manifold M is equipped with smoothly varying

inner product 〈 , 〉p on tangent bundle TM = ∪p∈MTpM , M is

called a Riemannian manifold.

To define a distance on a Riemannian manifold, we need to

define a length of a curve. Let a smooth map γ : [a, b] ⊂ R → M

be a curve in M . Indeed, for any t ∈ [a, b], γ̇(t) = dγ(d/dt) is a

tangent vector in Tγ(t)M . For a curve γ such that γ̇(t) 6= 0 for all

t ∈ [a, b], the length of γ is defined as

`[a,b](γ) =

∫ b

a

√
〈γ̇(t), γ̇(t)〉γ(t) dt.

Then, the geodesic distance between two points p, q ∈M is defined

as the shortest length of all curves joining p and q. The shortest

curve joining two points on M is called a geodesic.

For each p ∈ M , a geodesic at p with direction v ∈ TpM

is a curve γ : [0, 1] → M such that γ(0) = p, γ̇(0) = v and

‖γ̇(t)‖ = ‖v‖ for t ∈ [0, 1]. Such a geodesic exists uniquely by

the Picard’s existence theorem. Then the exponential map at p is

defined as a differentiable map Expp : U ⊂ TpM → M such that

Expp = γ(1) ∈M .

For more mathematical details about Riemannian manifold,

see Boothby (1986) and Lee (2006).

Now we can check that the hypersphere Sd, defined as

Sd = {x ∈ Rd+1 : xTx = 1},

has the following facts as a Riemannian manifold:

6



◦ The geodesic distance between two points p, q ∈ Sd is defined

as the angle between p and q at the center of Sd.

◦ We can explicit exponential maps of Sd using the coordinates

of Rd+1.

Without loss of generality, let p = (0, . . . , 0, 1) ∈ Sd be the

north pole of Sd. The exponential map at p is expressed as

Expp(v) =

(
v1

sin ‖v‖
‖v‖

, . . . , vd
sin ‖v‖
‖v‖

, cos ‖v‖
)

with v = (v1, . . . , vd) ∈ TpSd. The inverse exponential map

at p is expressed as

Exp−1
p (w) =

(
w1

θ

sin θ
, . . . , wd

θ

sin θ

)
,

where w = (w1, . . . , wd+1) ∈ Rd+1\(0, . . . , 0,−1) with wTw =

1 and θ = arccos(wd+1).

By exploiting the concepts of geodesic and geodesic distance,

we can define an analogue of “mean” for dataset on the hyper-

sphere Sd. One of the examples is Fréchet mean (Fréchet,1948;

Bhattacharya and Patrangenaru,2003).

We first consider X to be a Sd-valued random variable, which

is a measurable mapping from a probability space (Ω,F ,P) into

(Sd,G), where G denotes the Borel σ-algebra of Sm. LetX1, . . . , Xn

be random variables generated identically and independently from

the same law as X.

Fréchet mean minimizes the least expected squared geodesic

distance between a candidate Fréchet mean and data point. Specif-

ically, the population and sample Fréchet mean set is defined as

F =

{
p ∈ Sd : EXρ2(X, p) = inf

q∈Sd
EXρ2(X, q)

}
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and

Fn =

{
p ∈ Sd : EXρ2(X, p) = inf

q∈Sd
EXρ2(X, q)

}
.

Here the Fréchet mean sets F and Fn are guaranteed to be the set

of points that reside on Sd. Compare them with a naive definition

of mean on Sd: vector-sum all data points on Sd and scalar-divide

with the number of data points, n — the result does not even lo-

cate on the hypersphere surface, Sd. We see that building a statis-

tical descriptor using a geometrical information (such as geodesic

distance) instrinsic to manifold can enhance the interpretablity of

data set.

The notion of geodesic distance on Sd will play a key role in

Chapter 3. Fréchet mean will be generalized to sphere descriptor

of data points (called small/great sphere estimator in there), see

Section 3.2 and 3.4.
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Chapter 2

Partially-joint Structure

Identification

2.1 Introduction

In various fields of science and technology, there is a growing in-

terest in analyzing multi-source data in an integrative way. By the

multi-source data, we mean data obtained for multiple groups of

variables on the same set of subjects. Each group of variables is

observed from a common source, and form a data block. A promi-

nent example of multi-source data is modern multi-omics data that

include gene expressions, RNA sequencing, mutations, epigenetic

markers or metagenomic materials (Subramanian et al.,2020). The

recent development of high-throughput technologies enables us to

extract these sources of information comprehensively from a given

preparation of cancer/normal tissue samples (Reuter et al.,2015;

Norris et al.,2017).
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One of the main challenges in analyzing multi-omics data is

that data blocks come from distinct measurements of different

sources. For example, our motivating data set consists of three

data blocks, each from a drug response panel, genome-wide DNA

methylation profiles and RNA sequencing profiles (Dietrich et al.,2018);

see Section 2.6 for a detailed description of the data.

Separately analyzing each data block hinders the assessment

of inter-relations among different data blocks. To capture the po-

tentially joint association structures in these multi block data,

the linked component model has been oftentimes used (Smilde et

al.,2003; VanDeun et al.,2009; Lock et al.,2013).

Suppose that there are K data blocks, Xk ∈ Rpk×n, for k =

1, . . . ,K, observed for n subjects. The subjects in the data are

common and matched, i.e., the measurements for the ith sub-

ject appear in the ith column of each data matrix. Assuming zero

mean, each data block is decomposed into

Xk = Zk + Ek = UkV
T
k + Ek, k = 1, . . . ,K, (2.1)

where the low-rank “signal” matrix Zk is factored into a loading

matrix Uk and a score matrix Vk, which is perturbed by “noise”

matrix Ek. The linked component model further assumes that two

or more data blocks can potentially share a common score compo-

nent VanDeun et al. (2009). An extreme example is that all scores

are common to all data blocks, that is, V1 = · · · = Vk, as in Smilde

et al. (2003). The models considered in Lock et al. (2013) and Feng

et al. (2018) allow some scores to be common to all data blocks,

explaining the joint variation among all data blocks, and some

scores to be specific to each data blocks (explaining the individual
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variations in a single data block).

Following Gaynanova and Li (2019) and Gao et al. (2020), we

in addition allow partially-joint scores that are shared across mul-

tiple, but not necessarily all, data blocks. An illustrative example

of such a model, for K = 3 blocks of data, is (XT
1 , X

T
2 , X

T
3 )T =

UW T + E,

UW T =




U(1),1 U(1),2 0

U(2),1 U(2),2 0

U(3),1 0 U(3),3



(
W{1,2,3} W{1,2} W{3}

)T
,

(2.2)

where U is the loading matrix, W{1,2,3} is a matrix of scores

that affect all data blocks, and W{1,2} is a partially-joint score

matrix, affecting only the first two data blocks, but not the third.

The scores in W{3} are specific to the third data block. Our goal

is to delineate such an association structure from a multi-source

data.

In this chapter, we develop a novel framework and estimation

strategy for integrative decomposition of multi-source data, by

identifying scores that are fully joint to all data sources, partially

joint to some, or specific to a single data source. The framework

utilizes the signal score subspace [Vk], a rank rk subspace of Rn,

spanned by the rows of the signal matrix Zk in (2.1). The rationale

for using [Vk] is straightforward: If a common score of rank r is

shared by the first two data blocks, then the intersection of [V1]

and [V2] is non-empty, and is a dimension r subspace. To capture

the partially-joint block-wise association structure from the score
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subspaces [Vk], we define the collection of tuples

S := S({[Vk]}k=1,...,K) = {(S, r(S)) : S ⊂ K},

in which a non-empty subset S of K = {1, . . . ,K} denotes a spe-

cific pattern of block-wise association, WS denotes the correspond-

ing common scores (that are either fully-joint, partially-joint or

specific to data sources) of rank r(S). See Section 2.2 for a detailed

construction of S, and Section 2.4 for conditions to guarantee the

uniqueness of S.

To identify the partially-joint score structure S from noisy

observations, we propose to compute the flag mean of signal sub-

spaces (Draper,2014), and to test whether the mean is indeed close

to signal subspaces. If a mean w is “close” to [V1] and [V2], but

not to other subspaces, then it is a basis of (estimated) W{1,2}.

We use a tunable parameter to determine the closeness between

two subspaces. The algorithm, detailed in Section 2.3, is quick in

decomposing multi-source data sets, and boasts a superior per-

formance in identifying S and in the estimation of the subspaces

spanned by the loading matrices and by the common score matri-

ces.

Recently, there has been a growing interest in integrative de-

composition of multi-source data (Lock et al.,2013; Li and Jung,2017;

Feng et al.,2018; Li and Gaynanova,2018; Gaynanova and Li,2019;

Gao et al.,2020). Among these, Gaynanova and Li (2019) and Gao

et al. (2020) also considered modeling partially-joint association

structures. However, these authors focused on the loading matrix

U , and exploited the source-wise sparse structure of the matrix U ,

as seen in (2.2). On the contrary, we explicitly utilize the signal

12



score matrices Vk in (2.1) in identifying partially-joint scores of

(2.2). The loading matrix is naturally obtained as a subsequent

step in our proposal. Our approach extends the angle-based joint

and individual variation identification of Feng et al. (2018), in

which partially joint variations were not considered. In Section 2.5,

we numerically confirm that our proposal finds the true association

structure much more accurately than the aforementioned decom-

position methods.

The rest of chapter is organized as follows. In Section 2.2, we

formally present our integrative decomposition framework and de-

fine the partially joint structure S, followed by the proposed de-

composition algorithm and tuning parameter selection procedure

in Section 2.3. In Section 2.4, conditions to guarantee unique de-

compositions are discussed. Section 2.5 is devoted to numerical

illustrations and comparisons to existing methods. In Section 2.6,

we demonstrate the use of the proposed method in an analysis of a

blood cancer multi-omics data set associated with drug responses,

and reveal that the proposal detects a latent signal pattern, par-

tially joint across two, but not all, data sources, which is not easily

seen by a separate analysis of individual data blocks. Proofs, tech-

nical lemmas, examples and extended numerical results are given

in the supplementary materials.
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2.2 Statistical Framework

2.2.1 Partially-joint structures

Consider a set of row-centered data matrices Xk ∈ Rpk×n for k =

1, . . . ,K, where the ith column of each data matrix corresponds

to the same (ith) subject. Let p =
∑

k pk. We assume that each

Xk is additively decomposed into the rank rk true signal block Zk

and random errors Ek so that Xk = Zk + Ek.

We consider a model that the signal Z = (ZT1 , . . . , Z
T
K)T is

decomposed

Z = UW T ,

where each column of W has Euclidean norm 1, but not necessarily

orthonormal. We assume that the number of columns of U and W

is less than min(n, p).

Our goal is to find an association structure among Zk’s, where

multiple, but not necessarily all, of Zk’s share a joint signal com-

ponent. We describe this manner using a word “partially-joint”.

We give partially-jointness to the model by assuming block-

sparsity on U . For example, when K = 3, we can have a model




Z1

Z2

Z3


 =




U(1),1 U(1),2 0

U(2),1 U(2),2 0

U(3),1 0 U(3),3



(
W1 W2 W3

)T
,

where the blocks U(1),3, U(2),3 and U(3),2 are exactly zero. In this

case, (UT(1),1U
T
(2),1U

T
(3),1)TW T

1 is a signal component shared by all

Z1, Z2 and Z3 whereas (UT(1),2U
T
(2),2)W T

2 are shared “partially” by

Z1 and Z2 and U(3),2W
T
3 is the one specific to Z3.
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We associate each block-sparse pattern with with an index-set,

a subset of {1, . . . ,K}. For each index-set S, we say the rank of

S, or r(S), the number of the columns of W associated with S.

We summarize the block-sparsity as the partially-joint structure,

the collection of pairs (S, r(S)). In our example, if W1 and W2 are

composed of two and one columns, the partially-joint structure S

is given (({1, 2, 3}, 2), ({1, 2}, 1), ({3}, 1)).

For each index-set S, the columns of W associated with S are

concatenate into a n × r(S) matrix, called partially-joint score.

The columns of U associated with S are also concatenated into a

p×r(S) matrix, which can be split into block matrices of pk×r(S)

corresponding to Zk’s. We call these block matrices partially-joint

loading. From the block-sparsity, block matrices that corresponds

to Zk, k 6∈ S is zero. In our example, W1,W2 and W3 are partially-

joint scores and U(1),1, U(2),1, U(3),1, U(2),1, U(2),2 and U(3),3 are

partially-joint loadings.

For given Zi’s, our aim is to find partially-joint loadings Ui

and scores Wi. Only with the block-sparsity constraint, there may

be multiple candidates of both U and W . Now we give a plausible

strategy of defining U and W — by finding the column space of

each Wi.

Remark 2.1. The decomposition of Zk’s into the partially-joint

loading and score matrices is not unique. If instead of Wi (and

its corresponding loading matrix U(k),i), one chooses W ′i = WiR,

for an orthogonal matrix R, then the corresponding loading matrix

becomes U ′(k),i = U(k),iR. Nevertheless, if U(k),i is zero, then U(k),iR

is zero for any orthogonal R, so the block-sparsity is invariant to
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the choices of basis.

2.2.2 Partially-joint score subspace and index-set or-

dering

We now define the partially-joint score subspace, a linear subspace

spanned by the columns of a partially-joint score, in a constructive

manner. The definition depends mainly on the following two con-

cepts, the signal score subspace of signal block Zk and the ordering

of index-sets.

Let the true signal matrix be further decomposed, Zk = UkVk,

as in the factor analysis, where Vk ∈ Rn×rk is the factor score

matrix satisfying V T
k Vk = Irk . We call the column space of Vk,

denoted [Vk], as the signal score subspace for Zk. Note that [Vk] is

regarded as a rank-rk subspace of Rn, spanned by the columns of

Vk.

Our geometrical implication is as follows: If, given a S ⊂

{1, . . . ,K}, [Vk]’s overlap, then the corresponding signal blocks

Zk, k ∈ S share a common score, represented by the subspace

∩k∈S [Vk], which is at least partially-joint to signal blocks Zk,

k ∈ S. As we have assumed that signal blocks share a signal

component through the corresponding partially-joint score, the in-

tersections of signal score subspace plays an important role as a

building block in constructing partially-joint score subspace.

However, one of the challenge of this approach is that index-

sets, as subsets of {1, . . . ,K}, have a partially-ordered relation

with respect to set-inclusion. As two index-sets can be either nested

or intersected, the construction of a partially-joint score subspace
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on one index-set may affect the one on the other. Thus we suggest

a plausible way of constructing partially-joint score subspaces by

giving an ordering among index-sets.

We give an ordering to index-sets, sorted by the number of

elements in descending order. Each index-sets is allocated with

index numbers as Si for i = 1, . . . , 2K−1. We set S1 = {1, . . . ,K},

the maximal set, and the next K index-sets are of size K − 1, and

then the next K(K−1)/2 index-sets are of size k−2, . . . etc. Note

that index-set ordering is not unique for given K, since there can

be permutations among index-sets of the same size.

Example 2.1. For K = 3, S1 = {1, 2, 3} as appeared in the top

row of Fig. 2.1, and the next three sets (S2, S3, S4) are given by the

next row of the figure. That is, S2, S3, and S4 are {1, 2}, {2, 3},

{1, 3}, respectively. Likewise, S5 = {1}, S6 = {2}, S7 = {3}. Each

element Si stands for the indices of data blocks that potentially

possess a common score. Of course, such indexing is not unique,

and one may set, e.g., S6 = {3}, S7 = {2}.

Conditions to guarantee invariance of the decomposition with

respect to different choices of indexing will be discussed in Sec-

tion 2.4.

Using the concepts of signal score subspace and index-set or-

dering, we now define partially-joint score subspace.

Definition 2.1. Suppose matched data matrices Xk = Zk +Ek ∈

Rpk×n for k = 1, . . . ,K with true signal block Zk are given. With

an index-set ordering S1, . . . , S2K−1, a set of corresponding partially-

joint score subspace [Wi]’s for i = 1, . . . , 2K − 1 are constructed
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{1, 2, 3}

{2, 3} {1, 3}{1, 2}

{2} {3}{1}

Figure 2.1: An example of index-set ordering is depicted as the

indexed partially-ordered set. Arrow → stands for ⊂, e.g. {1} →

{1, 2} means {1} ⊂ {1, 2}.

sequentially

[W1] := ∩k∈S1 [Vk],

[W2] := P⊥1 (∩k∈Si [Vk]) ,
...

[Wi] := ( ©
{j:j<i,

Sj∩Si 6=φ}

P⊥j ) (∩k∈Si [Vk]) .

Here, P⊥j is the projection transformation of Rn onto the orthog-

onal complement of [Wj ]. The notation ©j∈JP
⊥
j ([A]), for an in-

dexed set J ⊂ {1, . . . , 2K − 1} and a subspace [A], stands for the

repeated applications of P⊥j on [A], where P⊥j s are applied one by

one by the increasing order of j ∈ J .

Note that depending on {[Vk]}, a [Wi] may be {0}.

Example 2.2. Suppose K = 3 and index-set ordering is as in

Example 2.1, with r(S1) = r(S2) = r(S4) = r(S7) = 1, and

r(Si) = 0 otherwise. Partially-joint score subspaces are obtained as
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W1 = ∩k∈S1 [Vk], W2 = P⊥1 (∩k∈S2 [Vl]), W4 = P⊥2 ◦ P⊥1 (∩k∈S4 [Vk])

and W7 = P⊥4 ◦ P⊥1 (∩k∈S7 [Vk]).

Partially-joint score subspaces have the following basic prop-

erties.

(1) The partially-joint score subspaces involved with each Zk

can restore the signal score subspace, or

[Vk] = +i∈{k∈Si}[Wi], (2.3)

as shown in Lemma A.3 in the supplementary material. Here

the notation ‘+’ means the sum of subspaces.

(2) For any i 6= j, [Wi] and [Wj ] do not overlap, i.e., [Wi]∩[Wj ] =

{0}, but they are not necessarily orthogonal. However, if

both [Wi] and [Wj ] are related to a common data source,

then they are orthogonal:

Lemma 2.1. For i, j ∈ IK and Si ∩ Sj 6= φ, [Wi] ⊥ [Wj ].

Lemma 2.1 ensures that all partially-joint score subspaces relevant

to the kth data block, {[WSi ] : k ∈ Si, i ∈ IK}, are orthogonal to

each other. Thus, the subspaces in the right hand side of (2.3) are

indeed orthogonal to each other.

2.2.3 Partially-joint score and loading

Given S, fix an orthogonal basis Wi ∈ Rn×r(Si) of [Wi] for i such

that |Si| > 0. The potential partially-joint score is linked to the

partially-joint loadings involved with Zk by

U(k) = ZkW(k),
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where U(k) and W(k) are column-wise concatenations of Ui’s and

Wi’s for i ∈ {i : k ∈ Si}. Indeed we can easily check that U(k)W
T
(k) =

ZkW(k)(W
T
(k)W(k))

−1W T
(k) = Zk, since W(k)(W

T
(k)W(k))

−1W T
(k) is

the projection onto [Vk] by the property (2.3) above. Then the

partially-joint loadings U(k),i for i ∈ {i : k ∈ Si} are obtained by

disjoining U(k). For i 6∈ {i : k ∈ Si}, U(k),i = 0.

2.3 Estimation

In practice, the signal Zk and error Ek of row-centered data ma-

trices Xk ∈ Rpk×n for k = 1, . . . ,K are unknown. We assume that

the ranks rk of the signal matrices are pre-determined and extract

the signal matrix using a low-rank approximation of Xk, and write

the rank rk approximation of Xk by Ẑk. The basis of the signal

score subspace V̂k is given either by the right singular vectors of

Zk from the SVD or by any off-the-shelf factor model estimates.

The overview of the estimation algorithm is as follows: (1) on

the outer loop, we iterate through all index-sets Si on a given

ordering, and (2) on the inner loop, we obtain the partially-joint

score subspace estimate [Ŵi] from {[V̂k]}k∈Si , identifying the basis

of [Ŵi] one-by-one.

The major challenge is that, we have the sample versions of sig-

nal blocks, Ẑk, and their signal score subspaces, [Vk], are contami-

nated by noise. Under noise, we may have ∩k∈Si [V̂k] = {0} even if

∩k∈Si [Vk] 6= {0}. Thus, there is a need to give a slack on identifying

the “intersection” of [Vk]’s, accounting for random perturbations

in [V̂k]. We propose to use principal angles between subspaces for

such identification, further developed in Section 2.3.1.
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In Section 2.3.1, we propose a procedure that finds a basis

matrix Ŵi for the partially-joint score subspace estimate [Ŵi] at

each ith step. The rank of the corresponding Si is set as r̂(Si) =

rank(Ŵi). Finishing the iteration over all Si’s, an estimated partially-

joint structure Ŝ = {(Si, r̂(Si)} and a set of corresponding [Ŵi]’s

are obtained. In Section 2.3.2, we then discuss the estimation of

corresponding partially-joint loading matrices from Ŝ and ŵ. In

Section 2.3.3, a strategy for thresholding at the right principal

angle is proposed.

2.3.1 Partially-joint Score Subspace Estimation

Our strategy on estimating partially-joint score subspace, [Ŵi], is

to estimate the partially-joint score subspace [Wi] by collecting

one-dimensional bases, that lie “close” to each and every score

subspaces in {[V̂k]}k∈Si .

For the notion of closeness, the principal angle between sub-

spaces is used as a threshold parameter λ ∈ [0, π/2) . For now, λ is

treated as a pre-determined tuning parameter, and a data-driven

choice of λ will be discussed in Section 2.3.3.

For a given λ ∈ [0, π/2), the estimation algorithm is applied

sequentially for i = 1, . . . , 2K − 1. At the ith stage, we begin

with Wi = ∅, to which the identified one-dimensional bases of the

partially-joint score subspace are added. Algorithm 1 summarizes

the proposed partially-joint structure identification procedure, us-

ing steps (a)—(c).

Step (a) : Find a mean direction that lies closest to all score
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Algorithm 1: Partially-joint Structure Identification

input: V̂1, . . . , V̂K , S1, . . . , S2K−1, λ

for i = 1, 2, . . . , 2K − 1 do

Set Wi = φ;

while dim([V̂k]) > 0 for all k ∈ Si do

(a) Compute the mean direction ŵ of

{[V̂k]}k∈Si ,see (2.4);

if the condition (2.5) is satisfied then

(b) Let Wi ←Wi ∪ {ŵ};

(c) Update V̂k ← V̂k,trunc for each k ∈ Si
else

break;

end

end

Let r̂(Si) = |Wi|, write Ŵi for the n× r̂(Si) matrix

consisting of elements in Wi and record

(Ŝi, r̂(Si), Ŵi) in Ŝ;

end

Result: Ŝ
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subspaces {[V̂k]}k∈Si , as a candidate that may be included in Ŵi.

As a candidate for a basis vector of the partially joint score

matrix, compute the mean direction ŵ among {[V̂k]}k∈Si , provided

that [V̂k] 6= {0} for all k ∈ Si. The mean direction minimizes the

sum of the squares of the subspace distances between a candidate

w and subspaces [V̂k] for k ∈ Si, and is

ŵ = arg min
wTw=1

∑

k∈Si

d
(

[w], [V̂k]
)2
, (2.4)

where d([w], [B]) = 1/
√

2 · ‖wwT −BBT ‖F is the Frobenius-norm

distance between subspaces [w] and [B] (Ye and Lim,2016). We

chose the Frobenius norm, since for any choice of the basis V̂k for

[V̂k],

∑

k∈Si

d
(

[w], [V̂i]
)2

= |Si| − wT

∑

k∈Si

V̂kV̂
T
k


w = |Si| − wT (HHT )w,

where H is the matrix given by the column-wise binding of V̂k’s

(Draper et al.,2014), and ŵ is the first left singular vector of H.

We mention in passing that [ŵ] is the one-dimensional flag mean

of subspaces {[V̂k]}k∈Si (Draper et al.,2014).

Step (b) : Check whether all of the signal score subspaces [V̂k]

are not too dispersed from ŵ in (2.4).

For this, given the prespecified λ, we check whether the prin-

cipal angle between the mean direction and each of [V̂k] is at most

λ, i.e.,

d([ŵ], [V̂k]) < sin(λ), for all k ∈ Si. (2.5)

Here, the principal angle θ([w], [B]) := arcsin(d ([w], [B])) ∈

[0, π/2] is the acute angle formed by the vector w and the sub-

23



space [B] (Björck and Golub,1973). If the condition (2.5) is not

satisfied, then skip the following and move to the next stage for

Si+1. If (2.5) is satisfied, then Wi is updated to Wi ←Wi ∪ {ŵ}.

Step (c) : Deflate each [V̂k] for k ∈ Si, so that the next mean

direction is orthogonal to previous ones.

We “peel” the basis ŵ, that has been added to Wi, from

each of [V̂k], k ∈ Si. Since ŵ is not exactly in [V̂k], the one-

dimensional subspace closest to ŵ is removed. Specifically, let

[V̂k,trunc] be the orthogonal complement of P
V̂k
ŵ within [V̂k]. (Note

that dim([V̂k,trunc]) = dim([V̂k]) − 1.) Write [V̂k] for [V̂k,trunc], for

each k ∈ Si. If any [V̂k] for k ∈ Si becomes {0}, then move to the

next stage for Si+1. Otherwise, move back to step (a).

We give an illustrative example for the three steps.

Example 2.3. Suppose n = 3 and K = 3. Assume that we are

at the stage Si = {1, 2} and [V̂1] has been deflated (in the previous

stages) to be of dimension 1, while [V̂2] is of dimension 2, as in

Fig. 2.2. There, [V̂1] is generated by (cosπ/6, 0, sinπ/6)T , and [V̂2]

by (1, 0, 0)T and (0, 1, 0)T . In Step (a), the mean direction is ŵ =

(cosπ/12, 0, sinπ/12)T . In Step (b), for k = 1, 2, θ([ŵ], [V̂k]) =

π/12, (2.5) is satisfied for any tuning parameter λ > π/12. Thus

we say that [V̂1] and [V̂2] share a partially-joint score subspace,

and ŵ is included as a basis of [Wi]. In step (c), [V̂2] is updated

to [V̂2]← [V̂2,trunc] = span((0, 1, 0)T ), and [V̂1] becomes {0}. Since

there is no more scores left to exploit, we move onto the next stage

for Si+1 = {2, 3}.
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p2
[V̂2]

[V̂1]

[V̂2,trunc]
w{1,2}

Figure 2.2: A figurative description for computing partially-joint

score subspace [Ŵi], for Si = {1, 2}. The two-dimensional subspace

[V̂2] is depicted as a disk. w{1,2} is the mean direction and p2 stands

for the projection of w{1,2} onto [V̂2].

For a singleton set Si = {k}, the mean direction ŵ is any

unit vector in (the deflated) [V̂k], and the condition (2.5) is always

satisfied. Thus, for this case, Ŵi = V̂k, in place of steps (a)—(c)

above.

Note that the estimated partially-joint score matrices Ŵi con-

sist of orthogonal columns, and Ŵ T
i Ŵi = Ir̂(Si).

2.3.2 Partially-joint Loading Matrix Estimation

Given the partially-joint structure estimate Ŝ = {(Si, r̂(Si)) : i ∈

IK} and the corresponding partially-joint score subspace estimates

[Ŵi]’s, we obtain the estimated partially-joint loading matrix Û .

Let Ẑ = (ẐT1 , . . . , Ẑ
T
K)T ∈ Rp×n, where p =

∑K
k=1 pk. Denote

the column-wise concatenation of Ŵi as Ŵ ∈ Rn×r̂, where r̂ =
∑

i∈IK r̂(Si).

We estimate the partially-joint loading matrix from the opti-

25



mization problem

Ũ = arg min
U∈Rp×r̂

‖Ẑ − U · Ŵ T ‖2F . (2.6)

with a constraint that U in (2.6) has the block sparsity structure

that corresponds to the estimated partially-joint structure Ŝ. For

example, given K = 2 and Ŝ = {({1, 2}, 2), ({1}, 1)}, U has a

block sparsity structure

p1

p2

{

{




U(1),1 U(1),2

U(2),1 0




with the number of columns of (UT(1),1, U
T
(2),1)T and U(1),2 is two

and one.

With the block-wise sparse constraint imposed, the objective

function (2.6) for U can be written separately for each data block,

i.e.,

‖Ẑ − U · Ŵ T ‖2F =
K∑

k=1

‖Ẑk − U(k)Ŵ
T
(k)‖

2
F (2.7)

Here U(k) and Ŵ(k) are the column-wise concatenation of each

U(k),i’s and Ŵi’s with i ∈ {i : k ∈ Si and r̂(Si) > 0}. The minimizer

of (2.7) is

Û(k) = ẐkŴ(k)(Ŵ
T
(k)Ŵ(k))

−1,

and Û(k)i for i ∈ J(k) are obtained by disjoining Û(k). By the con-

straint imposed, set Û(k)i = 0 if k /∈ Si. The estimated partially-

joint loading matrix consists of Û(k)i, and is denoted by Û ∈ Rp×r̂.
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2.3.3 Tuning Parameter Selection

The partially-joint structure identification, proposed in Section

3.1, depends heavily on the tuning parameter λ ∈ [0, π/2). If λ

is too small, then all scores are identified as individual scores,

specific to each data blocks. If λ is too large, then individual and

partially-joint scores may be falsely identified as fully-joint scores.

We use data splitting to select the value of tuning parameter

λ ∈ [0, π/2). For a single instance of data splitting, split n samples

of X = [XT
1 , . . . , X

T
K ]T into two groups of equal proportions, the

training set Xtr = [XT
tr,1, . . . , X

T
tr,K ]T and the test set Xtest =

[XT
test,1, . . . , X

T
test,K ]T .

Given the signal rank rk of each Xk, we then extract the train-

ing signal matrices Ẑtr,k for k = 1, . . . ,K using the rank rk ap-

proximation of Xtr,k. For each λ on the tuning parameter grid, we

identify the partially-joint structure from Ẑtr,k’s, and obtain the

partially-joint score Ŵtr,λ and the partially-joint loading matrix

Ûtr,λ, as discussed in Sections 3.1 and 3.2.

To assess the degrees to which the estimates are generalized to

the test set, we first evaluate the score matrix for the test set, given

by Ûtr,λ. The test score matrix Ŵtest,λ is defined as the minimizer

Ŵtest,λ ∈ Rntest×r̂ of

‖Xtest − Ûtr,λW T ‖2F

subject to W TW = W T
tr,λWtr,λ. The test score matrix is computed

as Ŵtest,λ = PλQ
T
λDλC

T
λ , where Pλ and Qλ are left and right

singular vector matrices of XT
test · Ûtr,λ = PλΣλQ

T
λ , and where

D2
λ and Cλ are diagonal and right singular vector matrices of
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W T
tr,λWtr,λ = CλD

2
λC

T
λ , using the Eckart-Young theorem (Eckart

and Young,1936).

Let λ̃ be the value of λ for which the minimum of the empirical

risk is attained. The empirical risk, defined for λ ∈ [0, π/2], is

Risk(λ) =
K∑

k=1

‖Xtest,k − Ûtr,λ,(k)Ŵ
T
test,λ‖2F

‖Xtest,k‖2F
, (2.8)

where Ûtr,λ,(k) is the kth row block of Ûtr,λ. A similar form was

used in Gaynanova and Li (2019). The corresponding partially-

joint structure is Ŝtr(λ̃).

Finally, we generalize Ŝtr(λ̃) to the whole data. Let Ẑk be the

rank rk approximation of Xk. Again on the grid of λ’s, we obtain

the partially-joint structure S(λ) from Ẑk’s. Then we choose the

best value λ̂ that minimize diff(Ŝtr(λ̃),S(λ)), where d is a mea-

sure of dissimilarity between two structure, which will be defined

shortly. Indeed, d is a special version of matching distance between

multi-sets (Bolt et al.,2022).

Measure of Dissimilarity

In generalizing Ŝtr(λ̃) to the whole data, we compute dissimilarity

measure between Ŝtr(λ̃) and S(λ) for each candidate λ. Here we

define a measure of dissimilarity using K-row binary structure ma-

trices, for example, when K = 2, (({1, 2}, 2), ({1}, 1)) corresponds

to

1 1 1

1 1 0


 .

Our strategy is that we consider the binary structure matrix as

a multi-set of binary column vectors (of size K). We devise a
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measure that swiftly captures dissimilarity between two multi-sets,

under a situation that we need to compute dissimilarity as many

time as the number of λ’s on grid for each instance of splitting.

Let dH(a, b) be the number of elements between column vec-

tors a, b ∈ {0, 1}K , i.e. Hamming distance, which we will use as a

ground distance. The dissimilarity measure d(A,B) between two

partially-joint structure A, B is defined as follows

d(A,B) =
∑

a∈A\B

dH(a,B \A) +
∑

b∈B\A

dH(b, A \B),

where A and B are the binary structure matrices for A and B.

The set minus operation, denoted \, is defined on a class of binary

matrices of K rows, regarded as a multi-set of binary columns.

See Section B.1 of the supplementary material for an exemplary

description.

Remark 2.2. It should be noted that d is not generally a distance:

the conditions (1) d(A,B) if and only if A = B and (2) d(A,B) =

d(B,A) hold, but (3) the triangular inequality does not.

2.4 Theory

Given an ordering of index-sets in (2K \ {φ},⊂) and the signal

blocks Z = {Zk : k ∈ K}, the partially-joint structure S(Z) =

{(Si, r(Si),Wi) : i ∈ IK} is uniquely determined. Unfortunately,

for different orderings of (2K \ {φ},⊂), the ranks r(Si) and the

partially-joint score subspaces [Wi] may be different. In this sec-

tion, we introduce conditions on relations among [Vk]’s for S(Z)

to be uniquely determined regardless of the choice of the orders of

(2K \ {φ},⊂).
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For each l = 1, . . . ,K, let Jl = {i ∈ IK : |Si| = l} be

the set of all indices with size l. For l = 1, . . . ,K − 1, we set

[Il] = +i∈{i:|Si|>l}(∩k∈Si [Vk]) = +i∈{i:|Si|>l}[Wi], and the projec-

tion onto [Il]
⊥ in Rn is denoted by P⊥Il . Note that when evaluating

the rank for [Wi] for i ∈ Jl, the definition of [Wi] in (??) utilizes the

deflated score subspaces orthogonal to [Il], using the given order

of Si’s among i ∈ Jl. We say {[Vk]}k∈K to be relatively indepen-

dent if, for every l = 1, . . . ,K−1 and i ∈ Jl, P⊥Il (∩k∈Si [Vk]) is lin-

early independent to [Cl,−i] = +j∈Jl\{i}(P
⊥
Il

(∩k∈Si [Vk])). In words,

{[Vk]}k∈K is relatively independent, if for each and every layer Jl,

each deflated subspace is lineary independent to [Cl,−i], the sum

of the other deflated subspaces in the layer Jl. If P⊥Il (∩k∈Si [Vk]) is

orthogonal to [Cl,−i] for every l = 1, . . . ,K − 1 and i ∈ Jl, then

{[Vk]}k∈K is said to be relatively orthogonal. We immediately check

that relative orthogonality implies relative independence.

Theorem 2.1. Given matched data matrices Xk = Zk + Ek ∈

Rpk×n for k = 1, . . . ,K with true signal Zk and error Ek, if

{[Vk]}k∈K, the collection of Zk’s signal score subspaces, is rela-

tively independent, then, regardless of the ordering of index-sets in

(2K \ {φ},⊂), there exists a unique set of pairs {(Si, r(Si))}i∈IK .

Under only the relative independence condition, the determi-

nation of the partially-joint score subspaces [Wi] corresponding

to Si, i ∈ IK , may not be unique, and depends on the ordering

of index-sets (see Examples A.3 and A.4 in the supplementary

materials). To ensure uniqueness of [Wi]’s, we require a rather

strong assumption. We say that {[Vk]}k∈K is absolutely orthogo-

nal, if (1) {[Vk]}k∈K satisfies relative orthogonality, and (2) for
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each l = 1, . . . ,K − 1 and for every i ∈ Jl,

P⊥Il (∩k∈Si [Vk]) = P⊥Ji (∩k∈Si [Vk]), (2.9)

where [Ji] = +j∈Ji,>l(∩k∈Sj [Vk]) = +j∈Ji,>l [Wj ] and Ji,>l = {j :

|Sj | > l, Si ∩ Sk 6= φ}. In Example 2.1, when l = 1 and i = 6,

(2.9) holds if (©j∈{1,2,3,4}P
⊥
j )([V1]) = (©j∈{1,2,3}P

⊥
j )([V2]). Note

that for i = 6, Si = {2} and the index-sets Sj ’s for j ∈ Ji,>l are

S1 = {1, 2, 3}, S2 = {1, 2}, S3 = {2, 3}, excluding S4 = {1, 3}.

Theorem 2.2. Given matched data matrices Xk = Zk + Ek ∈

Rpk×n for k = 1, . . . ,K with true signal Zk and error Ek, if

{[Vk]}k∈K is absolutely orthogonal, then partially-joint score sub-

spaces [Wi] for i ∈ IK are uniquely determined.

The uniqueness of each partially-joint loading subspace [U(k),i]

is deduced from the uniqueness of [Wi]’s.

Corollary 2.1. Given matched data matrices Xk = Zk + Ek ∈

Rpk×n for k = 1, . . . ,K with true signal Zk and error Ek, if

{[Vk]}k∈K is absolutely orthogonal, then each partially-joint load-

ing subspace [U(k),i] is uniquely determined for k = 1, . . . ,K and

i ∈ I(k).

We provide proofs of theorems in this section and examples for

relative independence and absolute orthogonality in Section A.2

of the supplementary materials.
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2.5 Simulation Study

2.5.1 Example Dataset Generation

In the simulation study, we use the following data generation set-

ting for numerically analyzing the performance of our proposal.

Throughout, we use K = 3 blocks of data sets, in which the asso-

ciation structures are given by the ranks of index-sets.

First, we set a pre-determined rank r(Si) for each index-set

Si for i = 1, . . . , 2K − 1. The generic partially-joint score matrix

Wcomp,i ∈ Rn×r(Si) for each index-set is a column-wise concatena-

tion of randomly generated vectors wcomp,i,j for j = 1, . . . , r(Si).

Each wcomp,i,j are generated element-wise and the entries of wcomp,i,j

follows N (0, σ2
i,j) independently; not only independent within a

wcomp,i,j , but independent between wcomp,i,j ’s as well. The magni-

tude of signal σ2
i,j ’s depends on the simulation settings, and sum-

marized as σ2
M = {(σ2

i,j) : i ∈ IK , j = 1, . . . , r(Si), r(Si) > 0}.

The column-wise concatenation of Wcomp,i is denoted Wcomp of

size n×
∑2K−1

i=1 r(Si).

The generic loading matrices Ucomp,k,i ∈ Rpk×r(Si) for i =

1, . . . , 2K − 1 and k = 1, . . . ,K are given as follows. The en-

tries of Ucomp,k,i are generated independently from the uniform

distribution, Unif(0, 1), and all the columns of Ucomp,k,i are scaled.

We give Ucomp,k,i orthonormality by the QR decomposition. We

then derive the generic signal matrix Zk for k = 1 . . . ,K by

Zk = weightk ·
∑2K−1

i=1 (Ucomp,k,i · Wcomp,i), where weightk’s are

weights for each dataset, which reflect the magnitude of signals.

The concatenation of generic loading matrices is denoted Ucomp,
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and is of size
∑K

k=1 pk ×
∑2K−1

i=1 r(Si).

The error matrix Ek is generated element-wisely, such that

ek,ij ∼ N (0, σ2) independently for i = 1, . . . , pk and j = 1, . . . , n.

The magnitude of error σ2 is set as the reciprocal of the signal-to-

noise ratio (SNR), σ2 = 1/SNR, where SNR is predetermined as

a simulation setting.

We use the following six models. We set n = 200, p1 = p2 =

p3 = 100 and weight1 = weight2 = weight3 = 1, for all six cases.

1. (Individuals) S = {({1}, 2), ({2}, 2), ({3}, 2)}, σ2
M = {(1.4, 0.8), (1.3, 0.7),

(1.2, 0.6)}

2. (Fully joint) S = {({1, 2, 3}, 2)}, σ2
M = {(1.0, 0.9)}

3. (Circular, partially joint) S = {({1, 2}, 2), ({1, 3}, 2), ({2, 3}, 2)},

σ2
M = {(1.4, 0.8), (1.3, 0.7), (1.2, 0.6)}

4. (Mix of fully joint and individuals) S = {({1, 2, 3}, 2), ({1}, 2), ({2}, 2),

({3}, 2)}, σ2
M = {(1.5, 0.8), (1.4, 0.7), (1.3, 0.6), (1.2, 0.5)}

5. (Fully joint and partially joint) S = ({1, 2, 3}, 2), ({1, 2}, 2), ({1, 3}, 2),

({2, 3}, 2)}, σ2
M = {(1.5, 0.8), (1.4, 0.7), (1.3, 0.6), (1.2, 0.5)}

6. (All possible combinations) S = ({1, 2, 3}, 2), ({1, 2}, 2), ({1, 3}, 2),

({2, 3}, 2), ({1}, 2), ({2}, 2), ({3}, 2)}, σ2
M = {(1.8, 0.8), (1.7, 0.7), (1.6, 0.6),

(1.5, 0.5), (1.4, 0.4), (1.3, 0.3), (1.2, 0.2)}

2.5.2 Results on Comparative Study

In this subsection, we numerically compare the performance of

our proposal to other competitors, including SLIDE (Gaynanova

and Li,2019), COBS (Gao et al.,2020), AJIVE (Feng et al.,2018),
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and JIVE (Lock et al.,2013). Note that from the estimates of each

method, the partially-joint structure S can be extracted, as well

as the concatenated partially-joint score matrix Ŵ and loading

matrix Û . See Section A.3.2 of the supplementary materials for

a brief review of these methods. Our proposal will be called the

method of partially-joint structure identification, or PSI for short.

To assess the efficacy of finding the true partially-joint struc-

ture Ŝ and proper loading and score matrices, we use the following

measures.

(1) Partially-joint structure Ŝ : The rate of finding the true

partially-joint structure, E1(S = Ŝ0).

(2) Partially-joint loading matrix Û : We find the difference be-

tween Ucomp and Û as follows. We denote the principal an-

gles between Ucomp,k,i and Û(k.) by θU,k,i,j for k = 1, . . . ,K,

i = 1, . . . , 2K−1 and j = 1, . . . , r(Si). We report the average

of all the values of θU,k,i,j ’s as θ(U, Û).

(3) Partially-joint score matrix Ŵ : We find the difference be-

tween Wcomp and Ŵ as follows. We denote the principal

angle between wcomp,i,j and Ŵ by θW,i,j for i = 1, . . . , 2K−1

and j = 1, . . . , r(Si). We report the average of all the values

of θW,i,j ’s as θ(W, Ŵ ).

In the comparative study, the measures E1(S = Ŝ), θ(U, Û)

and θ(W, Ŵ ) were computed to assess the performance of PSI and

other four methods. The simulation was conducted on different

values of SNR (10 and 5) for the example models 1 to 6. Given a

fixed true partially-joint loading matrix Ucomp, one hundred data
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Table 2.1: Comparative Study on Model 1 to 3. The unit for

E1(S = Ŝ) is percent. Numbers in parantheses are standard de-

viations.

Model SNR Measure PSI SLIDE bcv COBS AJIVE JIVE

1 10 E1(S = Ŝ) 100 1 18 93 5

θ(U, Û) 13.69 (0.48) 25.26 (14.08) 52.59 (9.43) 13.72 (0.52) 13.62 (0.49)

θ(W, Ŵ ) 18.47 (0.58) 19.55 (0.79) 20.85 (1.39) 18.55 (0.95) 18.62 (0.64)

5 E1(S = Ŝ) 100 3 48 93 6

θ(U, Û) 20.01 (0.76) 36.26 (14.96) 67.24 (6.13) 20.14 (0.9) 19.94 (0.77)

θ(W, Ŵ ) 25.96 (0.71) 28.14 (2.19) 34.48 (3.41) 26.33 (1.8) 26.1 (0.75)

2 10 E1(S = Ŝ) 100 100 100 100 0

θ(U, Û) 12.99 (0.59) 13.03 (0.59) 19.27 (1.82) 12.99 (0.59) 13.33 (0.63)

θ(W, Ŵ ) 10.86 (0.55) 11.47 (0.77) 11.17 (0.62) 10.86 (0.55) 10.67 (0.53)

5 E1(S = Ŝ) 100 100 100 100 0

θ(U, Û) 18.43 (0.88) 18.46 (0.88) 32.35 (2.8) 18.43 (0.88) 19.47 (1)

θ(W, Ŵ ) 15.66 (0.85) 16 (0.83) 17.14 (1.12) 15.66 (0.85) 15.38 (0.83)

3 10 E1(S = Ŝ) 100 22 0 0 0

θ(U, Û) 13.27 (0.41) 24.47 (8.16) 24.22 (2.82) 13.68 (0.57) 13.32 (0.44)

θ(W, Ŵ ) 13.52 (0.39) 14.05 (0.48) 14.66 (0.54) 13.73 (0.53) 13.12 (0.42)

5 E1(S = Ŝ) 89 56 1 0 0

θ(U, Û) 19.13 (0.71) 34.52 (7.09) 45.44 (5.54) 20.39 (0.84) 19.61 (0.75)

θ(W, Ŵ ) 19.52 (0.62) 19.75 (0.66) 26.92 (2.77) 20.93 (1.15) 18.84 (0.61)

sets were generated for each SNR value. We tested all 5 methods

over these datasets.

We give each method the initial ranks as follows : (1) PSI,

AJIVE, JIVE : Truncate each Xk with its true rank. For exam-

ple, in Model 3, each Xi was truncated with the true rank 4, (2)

SLIDE : Use the whole X, the row-concatenation of Xi’s. After

standardization, X is then truncated with the sum of each index-

set’s true rank (for example, 6 = 2 + 2 + 2 in Model 3), and (3)

COBS : Use the whole X, the row-concatenation of Xi’s. Set the

number of components as the sum of each index-set’s true rank.

Average and standard deviation for each measure are reported

in Tables 2.1 and 2.2.

In the example model 1, in which case there are only individual
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Table 2.2: Comparative Study on Model 4 to 6.

Model SNR Measure PSI SLIDE bcv COBS AJIVE JIVE

4 10 E1(S = Ŝ) 100 2 24 100 0

θ(U, Û) 13.31 (0.36) 20.03 (6.06) 34.19 (4.37) 13.3 (0.36) 13.45 (0.37)

θ(W, Ŵ ) 17.28 (0.43) 18.07 (0.47) 19.69 (1.4) 17.1 (0.42) 17.36 (0.43)

5 E1(S = Ŝ) 100 8 24 100 0

θ(U, Û) 19.23 (0.57) 28.35 (8.82) 47.6 (2.85) 19.19 (0.57) 19.63 (0.61)

θ(W, Ŵ ) 24.37 (0.64) 27.65 (3.66) 33.98 (2.65) 24.1 (0.63) 24.04 (0.66)

5 10 E1(S = Ŝ) 100 35 0 0 0

θ(U, Û) 13.28 (0.29) 22.01 (6.24) 24.2 (2.2) 13.49 (0.38) 13.42 (0.33)

θ(W, Ŵ ) 13.28 (0.32) 13.68 (0.41) 14.51 (0.58) 13.4 (0.43) 12.9 (0.49)

5 E1(S = Ŝ) 69 58 0 0 0

θ(U, Û) 19.19 (0.59) 29.23 (4.95) 41.43 (3.36) 19.79 (0.53) 19.73 (0.53)

θ(W, Ŵ ) 19.14 (0.6) 19.22 (0.62) 26.37 (1.89) 19.86 (0.72) 18.33 (0.64)

6 10 E1(S = Ŝ) 99 0 0 0 0

θ(U, Û) 14.28 (0.33) 29.54 (9.7) 30.71 (2.27) 14.12 (0.32) 14.31 (0.34)

θ(W, Ŵ ) 17.88 (0.45) 20.9 (2.29) 24.53 (1.21) 17.66 (0.45) 17.54 (0.49)

5 E1(S = Ŝ) 55 0 0 0 0

θ(U, Û) 21.27 (0.69) 29.8 (9.71) 44.91 (2.77) 21.24 (0.73) 21.44 (0.67)

θ(W, Ŵ ) 25.71 (0.84) 28.45 (1.68) 34.2 (1.09) 25.95 (1.07) 24.52 (0.84)

scores, PSI and AJIVE identified the true partially-joint struc-

ture for almost all instances. In the example model 2, in which

case there are only joint score, all methods but JIVE find the

true structure for almost all SNRs and instances. PSI, SLIDE and

AJIVE have estimated identical score subspaces. In the example

model 3, in which partially-joint scores are entangled in a cyclic

structure, PSI boasts superior performances in identifying the true

structures. Table 2.1 confirms these observations.

In the example model 4, in which case both joint and individ-

ual scores are composited, both PSI and AJIVE showed superior

performance in identifying the true structure. Our method was as

competent in estimating score subspaces as AJIVE. In the exam-

ple model 5 and 6, the complicated cases with joint, partially-joint

and individual scores mixed, PSI is prominent in estimating true

structure, loading and score subspaces. See Table 2.2.
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2.5.3 Results on Imbalanced Signal Strength between

Joint and Individual Components

Next, we consider cases where the signal strengths of joint com-

ponents and individual components are grossly imbalanced. Con-

sider a new model, with K = 3 and p1 = p2 = p3 = 100, whose

index-set ordering is S1 = {1, 2, 3}, S5 = {1}, S6 = {2} and

S7 = {3}. We set inherent joint rank r(S1) = 10 and individ-

ual ranks r(S5) = r(S6) = r(S7) = 10. Other index-sets have zero

ranks, r(S2) = r(S3) = r(S4) = 0. Throughout, n = 200.

For the case in which there are larger variations in the joint

component than the individual components, we set σ2
1,j � σ2

i,j for

i = 5, 6, 7 and all j’s. In the opposite case, we give larger variations

in the individual components than the joint component, σ2
i,j � σ2

1,j

for i = 5, 6, 7 and all j’s. Details are given in Section A.3.5 of the

supplementary materials.

We carried out comparative simulations on both cases at SNR

levels ∞ and 5. Not only the success rate of finding true structure

but also the numbers of estimated joint and individual compo-

nents were evaluated. In Table 2.3, in which case the joint compo-

nent has larger variations, PSI, AJIVE and JIVE showed superior

performances to other methods. SLIDE only succeeded in finding

joint components even when there is no noise. When the individ-

ual components have larger variations, in Table 2.4, our method

still shows better performances in finding both joint and individ-

ual components when there is no noise, but failed to estimate any

joint structure with noise. At SNR 5, AJIVE and JIVE was the

most competent among all methods.
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Table 2.3: The case where the joint component has larger varia-

tions than the individual components.

SNR Measure PSI SLIDE bcv COBS AJIVE JIVE

∞ E1(S = Ŝ) 100 0 0 0 100

Joint 10 (0) 10 (0) 39.58 (0.59) 3.79 (1.95) 10 (0)

Individual 30 (0) 0 (0) 0.02 (0.14) 48.63 (5.84) 30 (0)

5 E1(S = Ŝ) 100 0 0 1 0

Joint 10 (0) 10 (0) 12.49 (1.76) 10 (0) 10 (0)

Individual 30 (0) 0 (0) 18.54 (2.61) 33.19 (1.01) 43.29 (1.53)

Table 2.4: The case where the individual components have larger

variations than the joint components.

SNR Measure PSI SLIDE bcv COBS AJIVE JIVE

∞ E1(S = Ŝ) 100 0 0 0 0

Joint 10 (0) 9.84 (0.77) 38.33 (1.46) 3.67 (1.74) 15.05 (1.7)

Individual 30 (0) 25.88 (1.29) 0.14 (0.35) 48.99 (5.21) 27.35 (1.2)

5 E1(S = Ŝ) 0 0 0 0 1

Joint 0 (0) 10.18 (1.42) 15.28 (3.04) 8.27 (0.58) 11.38 (2.94)

Individual 59.4 (1.41) 21.48 (1.77) 12.33 (2.31) 36.41 (1.88) 27.27 (1.14)

2.6 Real Data Analysis

In this section, we apply the proposed PSI to a dataset called

EGAS0000100174, a blood cancer multi-omics data set linked to a

drug response panel (Dietrich et al.,2018). We have chosen to use

121 cases diagnosed with chronic lymphocytic leukemia (CLL).

The drug response panel (XDrug) records the ex vivo cell viabili-

ties at a series of 5 concentrations, for each of 62 drugs that target

onco-related pathways or are used widely in clinical practice. This

multi-omics data set consists of the genome-wide DNA methy-

lation profiles and the RNA sequencing profiles. The top 5,000

most variable CpG sites were selected (XMeth) from the 450K il-
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lumina assay DNA methylation profile. As for the RNA sequenc-

ing profile, we selected the top 5,000 gene expressions with the

largest stabilized variances (XExp) from the high-throughput se-

quencing (HTS) assay. In summary, we have three blocks of data

sets XDrug ∈ R121×310, XMeth ∈ R121×5000 and XExp ∈ R121×5000.

We repeat the estimation process over 100 repetitions (of data

splitting) and select the mode structure, that is, the estimated

partially-joint structure that appears the most out of 100 repeti-

tions. The estimated mode structure is

Ŝ = {({Drug,Meth}, 1), ({Drug}, 4), ({Meth}, 41), ({Exp}, 3)},

which means that PSI detected the index-set {Drug,Meth} of rank

1, and no fully-joint score or other forms of partially-joint scores

were detected. This structure appeared 53 times out of 100 repe-

titions. The index-set {Drug,Meth} of rank 1 stands for the exis-

tence of one-dimensional latent score, partially-joint for Drug and

Meth data sets (but not for Exp data set).

PSI showed better performance in computation time over other

methods. In an Intel R© Xeon R© CPU E5-2640 v4 @ 2.40GHz sys-

tem, it took 9.38 seconds per single data splitting instance (54.56

seconds for 100 instances with 40 cores). In comparison, the SLIDE

with bcr method detected the same structure as our method, but

it took almost 9 hours on the same machine. The COBS yielded

an eccentric result, giving the fully-joint score of rank 50, taking

about 14 minutes.

PSI was also robust over different choices of initial ranks. As

a preprocessing, we set the ranks of the signal matrices using the

principal component analysis which accounts for cumulative pro-
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portion of variances at 30%, 40%, 50% and 60%. Resulting sig-

nal ranks for Drug, Meth and Exp datasets are (2, 6, 1), (2, 15, 1),

(3, 28, 2) and (5, 42, 3), respectively. For all cases, PSI detected the

same index-set {Drug,Meth} of rank 1.

The analysis by PSI for the patient sample multi-block data re-

veals a particular pattern in the latent partially-joint score, which

cannot be identified by applying, e.g. principal component analy-

sis to each data block. To support this claim, we plot the recon-

structed matrices Û(k),iŴ
T
i for the identified partially-joint and

individual parts of the data in Fig. 2.3. Both the samples and

the variables of XDrug are ordered by a hierarchical bi-clustering

applied to the partially-joint component Û(Drug),2Ŵ
T
2 of XDrug,

where Ŵ2 = Ŵ{Drug,Meth}. The matrix ZDrug,S2 := Û(Drug),2Ŵ
T
2 is

shown in the top left part of Fig. 2.3. The variables of XMeth are

similarly ordered.

Focusing on the partially-joint scores corresponding to {Drug,Meth},

the samples are clustered into two distinct subgroups. These sub-

groups are shown in Fig. 2.4(a), and are denoted by groups α

and β. There, it can be seen that the variables in XDrug and

XMeth show a contrasting pattern according to the two subgroups

α and β. Comparing ZDrug,S2 (Fig. 2.4(a)) with the whole XDrug

(Fig. 2.4(b)), we observe that the subgroups identified above are

hidden inXDrug. Moreover, the subgroups α and β are well-separated

in the partially-joint score Ŵ{Drug,Meth} of ZDrug,S2 (Fig. 2.4(c)),

while it is hard to find any subgroup in the principal component

scores of whole XDrug (Fig. 2.4(d)). The same conclusion can be

made by inspecting the component of XMeth corresponding to the
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partially-joint score Ŵ{Drug,Meth}, denoted ZMeth,S2 , and the whole

Xmeth in Fig. 2.4(e) and (f). Thus we observed that PSI gives a

more effective measure of finding inherent subgroups in a multi-

omics data set than a separate application of the principal com-

ponent analysis on each of the data matrix.
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To find indicators that best explain the subgroups α and β, we

conducted the Fisher exact test simultaneously on 59 gene muta-

tions or chromosome defects of each patients, available as an ancil-

lary information. The p-values from each Fisher exact test were ad-

justed by the Benjamini-Hochberg (BH) method (Benjamini and

Hochberg,1995). The smaller p-values indicate stronger differences

of each mutation or chromosome defect between the subgroup α

and β. We found that the immunoglobulin heavy chain variable

(IGHV) region mutation status has the most associated relation

with the subgroups at BH-adjusted p-value 1.026×10−13. We also

present the 2 × 2 table of the IGHV status and the subgroups,

see Tables A.4.1 and A.4.2 in the supplementary materials. We

postulate IGHV mutation status gives a substantial explanation

for the subgrouping of CLL patients, that is, wild type matches

to the subgroup α and mutation type to the subgroup β. Sur-

vival analyses on overall survival rates was also conducted, and

we found statistically significant differences in survival between

the two subgroups α and β as shown in Fig. 2.5.

Again in Fig. 2.4(a), the variables in ZDrug,S2 can be clustered

into subgroups [a] and [b] showing a contrasting response pat-

tern to the subgroups α and β (variables showing weak responses

were excluded as subgroup [c]). The subgroup [a] shows higher

viability for β (IGHV mutated) than α (IGHV wild type) and

vice versa for [b]. Table A.4.3 (in the supplementary materials)

presents the list of prominent drugs that have appeared in sub-

groups [a] and [b] at least 4 times out of 5 concentrations. For

the subgroup [a], the table lists a number of inhibitor drugs that
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target the B cell receptor (BCR) components, such as Bruton’s

tyrosine kinase (BTK; spebrutinib, ibrutinib), phosphatidylinosi-

tol 3-kinase (PI3K; idelalisib, duvelisib) and spleen tyrosine kinase

(STK; tamatinib, PRT062607 HCL). AKT inhibitor(MK-2206) or

SRC inhibitors (dasatinib) targets signal transduction pathways

that promotes survival and growth of B cell lymphocytes. Unex-

pected encounter with HSP90 inhibitor (AT13387 or Onalespib)

may be related to the stability of lymphocyte-specific SRC family

kinases (Mshaik et al.,2021). The appearance of CHK inhibitors

(PF 477736, AZD7762, CCT241533) may be linked to repairing

mechanisms of DNA damages at G2 phase, known to be associ-

ated with WEE1 kinase and the AKT/PKB pathway (Zhang and

Hunter,2014). For the subgroup [b], the appearance of mTOR in-

hibitor (everolimus) may suggest that mTOR pathway and shows

different drug sensitivities to the BCR component, despite the fact

that it is on the downstream of AKR/PKB pathway. The role of

IGHV in this implication requires further investigation. BCL2 in-

hibitor (navitoclax) and rotenone might be related to the role of

mitochondria in apoptosis (Wang and Youle,2014).
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(a) ZDrug,S2
(b) the whole XDrug

(c) ZDrug,S2
(d) the whole XDrug

(e) ZMeth,S2
(f) the whole XMeth

Figure 2.4: (a) The matrix ZDrug,S2 := Û(Drug),2Ŵ
T
2 . (b) The whole

XDrug data matrix. (c) The density plot of the subgroups α and

β along the first principal component (PC) score of ZDrug,S2 ; (d)

The PC scores plot for the whole XDrug; (e) The density plot of the

subgroups α and β along the first principal component of ZMeth,S2 ;

(f) The PC scores plot of the whole XMeth.
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Figure 2.5: The difference in overall survival between the sub-

groups α and β is displayed on a Kaplan plot with p-value 0.0028

from the log-rank test.
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Chapter 3

Penalized Principal

Nested Spheres

3.1 Introduction

In this section, we review forward nestedness of PCA, the non-

Euclidean generalization of PCA to PGA and backward nestedness

of PNS. We then present the concept of overfitting phenomenon

in PNS and give the motivations of PenPNS.

Nearly for a century, Principal Component Analysis (PCA)

(Hotelling, 1933) has been a popular technique in multivariate

data analysis. PCA is a dimension reduction method, in that it

linearly transforms data points into a lower dimensional linear

space with a new coordinate system. More specifically, PCA finds a

coordinate, called the first principal component, on which the data

points are projected so that the projected points have the largest
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variance. PCA next finds another coordinate, the second principal

components, on which the data points are projected again and

have the largest variance in the complementary space of the first

principal component. The third principal components are found

in the same manner and so on.

The mechanism described above on which PCA is operating is

summarized as the concept forward nestedness. PCA is a stepwise

procedure. At the current m + 1th step, where m principal com-

ponents are already identified, m+1th principal component is the

best descriptor of the data points projected into the complement

of the space that is spanned by the first to m-th principal compo-

nent. By the nestedness, we describe that the subspace spanned

by the principal components is a nested structure, that is,

span(PC1) ⊂ span(PC1,PC2) ⊂ span(PC1,PC2,PC3) ⊂ . . . ,

where PCm denotes the mth principal component. By the for-

ward, we describe that the nested structure is built on from one

dimension to larger step by step.

Our aim is to generalize PCA to a non-Euclidean spaces. There

has been several attempts to apply PCA method on manifold sur-

face (Gower,1975; Huckemann and Ziezold,2006; Huckemann et

al.,2010; Mardia et al.,2021) and one of the elementary approach

is Principal Geodesic Analysis (PGA) (Fletcher et al., 2004). PGA

adopts forward nestedness, but with approximating the manifold

surface by Euclidean space. The overall generalization framework

is as follows.

(1) Given a base point µ on the manifold M , the data points

xi ∈M on the manifold surface are mapped to the points ui’s
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of the tangent space TµM (approximation of the manifold

surface by the tangent space, which is Euclidean space by

definition)

(2) Then in the tangent space TµM , find the descriptors vk’s

that best explains the points ui’s in a manner of forward

nestedness.

Specifically, PGA finds the base point µ as the intrinsic mean

of xi’s, that is, a minimizer point of expected squared intrinsic

distance (Kobayashi and Nomizu, 1969; Karcher, 1977). The data

points xi ∈ M are mapped to ui by an inverse exponential map,

Exp−1
µ . In the tangent space TµM , PGA performs PCA on points

ui’s. Each descriptor vk ⊂ TµM is mapped back to a geodesic

through µ on M , Expµ(vk), by an exponential map. Thus, we

have geodesic descriptors Expµ(vk) of data points xi ∈M .

The major pitfall of this framework is that its result depends

largely on the choice of the base point µ. The distribution of points

ui’s in the tangent space TµM varies greatly on the choice of the

base point and can lead to way different results in finding descrip-

tos vk. Also, PGA’s choice of intrinsic mean is somewhat arbitrary.

Moreover, there is a counter-example where the geodesic descrip-

tors Expµ(vk) do not explain the data points xi’s well.

Example 3.1. Let M = S2, a sphere in R3. Suppose the data

points xi’s are distributed uniformly on the equator. It can be easily

shown that both north and south poles are the intrinsic mean µ of

xi’s. Then the geodesic descriptors Expµ(vk) are longitude lines

passing through both north and south poles, but intuitively they

are not good descriptors for data points on the equator.
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To cope with these difficulties, Analysis of Principal Nested

Spheres (PNS) (Jung, 2012) takes a different strategy, backward

nestedness. PNS is an analogue of PCA for data points on hyper-

sphere, Sd. Instead of building up a nested structure from dimen-

sion one, PNS starts from Sd and reduces dimension one by one.

The PNS framework, at the mth step, is

(1) Finds a best-fitting subsphere Ad−m of dimension d −m in

Sd−m+1.

(2) Project the points xi ∈ Sd−m+1 onto Ad−m.

(3) As the subsphere Ad−m is homeomorphic to Sd−m, map the

points of Ad−m to Sd−m using an isomorphism fd−m.

As a result, PNS yields the following nested structure

Sd ⊃ Ad−1
∼= Sd−1 ⊃ Ad−2

∼= Sd−2 ⊃ . . . ⊃ A0
∼= S0,

where Ad−1 = Ad−1 and Ad−m = f−1
d−1 ◦ · · · ◦ f

−1
dm

(Ad−m) for

m = 2, . . . , d. By adopting backward nestedness, there is no more

need to choose a base point and mapping data points to the tan-

gent space. Instead, we only need to estimate the parameters that

describe the subsphere. A subsphere is defined by the axis v ∈ Sm

and radius r ∈ [0, π/2] as

Am−1(v, r) = {x ∈ Sm : arccos(vTx) = r}.

For more details about the framework of PNS, see Section 3.2.

One of the major characteristics of PNS is that the subsphere

is not necessarily a great sphere. Here a great sphere means a sub-

sphere with radius r = π/2 and it is a high-dimensional analogue
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(a)
(b)

Figure 3.1: (a) Data points generated along a small sphere with r =

π/4. (b) Data points generated along a great sphere (the equator),

but inside a short interval of 10◦ (perturbed by von Mises-Fisher

distribution with κ = 50). Blue circle is the fitted small sphere by

PNS.

of a geodesic circle of S2. Permitting a small sphere (r < π/2)

gives PNS more flexibility in fitting a certain type of non-geodesic

variation on a hypersphere. For example, if data points are dis-

tributed along a circle which is posited on latitude 45◦ of S2, it is

reasonable to fit the data points with a small sphere with param-

eters v = (0, 0, 1)T and r = π/4, see Figure 3.1a.

However, at the same time, permitting a small sphere can in-

duce a somewhat pathological phenomenon, called overfitting phe-

nomenon. Overfitting phenomenon in PNS indicates a situation

where the fitted radius is less than π/2 even if data points are

generated along a great subsphere. In this chapter, we discuss two

types of overfitting phenomenon in PNS.
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Type 1 Overfitting Phenomenon : When data points are

generated along a great sphere, the angle between the true axis

and data point would make a distribution around π/2. However,

when the estimated radius r̂ is over π/2, the estimated axis v̂ is

flipped to −v̂ and we take the estimated radius π − r̂, since ra-

dius as a parameter ranges from 0 to π/2 (For example, if the

parameters are yielded as ((0, 0, 1)T , π/2 + 0.01), then we take

(v̂, r̂) = ((0, 0, 1)T , π/2− 0.01) instead). Hence, the distribution of

the estimated radius is a folded version of the distribution of the

angle between the true axis and the data points. As a result, the

expectation of estimated radius, Er̂ is underestimated even if the

true radius is π/2.

Type 2 Overfitting Phenomenon : Suppose data points

are generated along a great subsphere but within a very short in-

terval. This would make the point cloud have a disc shape. In this

case, subsphere fitting would yield a small subsphere inside the

point cloud, not the original great subsphere where data points

were generated, see Figure 3.1b.

To mitigate overfitting phenomena, we propose Penalized Prin-

cipal Nested Spheres (PenPNS). First, PenPNS alleviate type 1

overfitting phenomenon by regularizing r in parameter estima-

tion. Well-known regularization, like penalizing with L1, L2 or

MCP terms, are examined in simulation studies. Second, to deal

with type 2 overfitting phenomenon, PenPNS imposes a penalizing
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term on the cross-validation error in choosing tuning parameter.

This penalizing term is derived from a concept Index of Disper-

sion (IoD), an index which has a large value when a disc-shaped

distribution is fitted with a small radius.

The rest of this chapter is organized as follows. In Section 3.2,

we formally review the nested subsphere structure of PNS and

present the PenPNS framework. The computational algorithm and

validation method are explained in Section 3.3. In Section 3.4, the

geometry of parameter space is described and conditions to guar-

antee strong consistency are discussed. In Section 3.5, we present

a heuristic method to avoid type 2 overfitting phenomenon. The

concepts of IoD and IoD criterion are defined therein. In Section

3.6, the results of numerical simulation are presented, mainly fo-

cused on the mitigation of overfitting phenomena. In Section 3.7,

we compare the result of the proposed PenPNS with the original

PNS and PNGS (Jung,2012) on the Cephalometric X-ray Image

Data. Proofs, technical lemmas and extended numerical results are

given in Chapter 3 of the supplementary materials.

3.2 Statistical Framework

3.2.1 Nested Subsphere Structure

In this section, we present the concept of the nested subsphere

structure, proposed in Jung (2012). Given a natural number m

and the unit sphere Sm in Rm+1, a subsphere Am−1(v, r) of Sm

is defined with a unit vector v ∈ Sm, called an axis, and a radius

r ∈ [0, π/2].
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Definition 3.1. When m > 1, a subsphere Am−1(v, r) of Sm with

an axis v ∈ Sm and a radius r ∈ [0, π/2] is defined

Am−1(v, r) = {x ∈ Sm : ρm−1(v, x) = r},

where ρm−1(x, y) = arccos(xT y) denotes the geodesic distance be-

tween x, y ∈ Sm. When m = 1, a subsphere A0 is a point on a

unit circle S1.

Note that a subsphere Am−1(v, r) is the intersection of Sm with

a m-dimensional affine subspace in Rm+1, denoted Hm(v, r) =

{x ∈ Rm+1 : vTx − cos r = 0}. The projection from Sm onto

Am−1(v, r) is defined as

πm−1(v, r)(x) = arg min
s∈Am−1(v,r)

ρm−1(x, s) =
sin r · x+ sin(ρm−1(x, v)− r)v

sin(ρm−1(x, v))

for x ∈ Sm and m ≥ 2.

We observe that there is an isomorphism between Am−1(v, r)

and Sm−1, given as fm−1(v, r) : Am−1(v, r)→ Sm−1 such that

fm−1(v, r)(x) = R−(v)x/ sin r,

which has an inverse f−1
m−1(v, r) : Sm−1 → Am−1(v, r) such that

f−1
m−1(v, r)(y) = RT (v)

(
sin r · yT cos r

)T
.

Here, R(v) ∈ R(m+1)×(m+1) is a rotation mapping that moves v to

the north pole and R−(v) consists of the first m rows of R(v). By

fm−1 and f−1
m−1, Am−1(v, r) is identified with a unit sphere Sm−1.

Let d be a natural number and consider a family of subspheres

Am−1(vm−1, rm−1) in Sm for each m = 1, . . . , d. A nested sphere

Am−1 corresponding to Am−1(vm−1, rm−1) is defined in Sd as fol-

lows.
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Definition 3.2. Suppose d is a natural number and there is a

family of subspheres Am−1(vm−1, rm−1) with axis vm−1 ∈ Sm and

radius rm−1 ∈ [0, π/2] for each m = 1, . . . , d. The projection from

Sm onto Am−1(vm−1, rm−1) is denoted πm−1. A m-dimensional

nested sphere Am−1 of Sd is defined as

(1) if m = d, Ad−1 = Ad−1(vd−1, rd−1),

(2) if 1 ≤ m < d, Am−1 = f−1
d−1 ◦ · · · ◦ f

−1
m−1(Am−1(vm−1, rm−1)),

where f−1
m−1 = f−1

m−1(vm−1, rm−1) for each m = 1, . . . , d. Then the

nested subsphere structure A is defined A = {A0, . . . ,Ad−1}.

3.2.2 Estimation of Subspheres

For d ≥ 2, suppose n data points x
(1)
1 , . . . , x

(1)
n ∈ Sd are sam-

pled. Our goal is to fit subspheres Âd−k for k = 1, . . . , d sequen-

tially. At each step k = 1, . . . , d − 1, the estimated subsphere

Âd−k is obtained by estimating its parameters vd−k and rd−k, that

is, Âd−k = Ad−k(v̂d−k, r̂d−k). After fitting Âd−k, we update data

points as x
(k+1)
i = fd−k(v̂, r̂) ◦ πd−k(v̂, r̂)(x

(k)
i ) for all i = 1, . . . , n,

so that the new data points reside on Sd−k.

For each step 1 ≤ k < d, we seek to minimize the objective

function

F (v, r) =
1

2n

n∑

i=1

L
(
x

(k)
i ; v, r

)
+ jτk(r), (3.1)

over (v, r) ∈ Sd−k+1 × [0, π/2]. Here, L(x; v, r) is a loss function

that measures a discrepancy between a subsphere Ad−k(v, r) and

a data point x ∈ Sd−k+1. The function jτk introduces the form

of penalization, where the value of jτk is larger for the smaller
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value of the radius r. The tuning parameter τk ∈ [0,∞) controls

the degree of penalization. The choice of loss function and penalty

function is presented in the subsections below.

At the last step k = d, we compute Â0 as the Fréchet mean of

x
(d)
1 , . . . , x

(d)
n ∈ S1, that is,

Â0 = arg min
s∈S1

n∑

i=1

ρ(xi, s).

The loss function corresponding to the original PNS proposal

(Jung,2012) is

LI(x; v, r) = (ρm−1(x, v)− r)2 = (arccos(xT v)− r)2, (3.2)

which may be called the intrinsic squared loss function. For PenPNS,

we follow the instrinsic squared loss as the original PNS.

We use the penalty function jτk in order to penalize the de-

parture from great sphere (r = π/2) by assigning large value for

smaller r. For the intrinsic loss functions, (3.2), we set the penalty

function in the forms of L1 and L2 norms,

jL1
τ (r) = τ · |π/2− r|, , (3.3)

jL2
τ (r) = τ · (π/2− r)2, (3.4)

and also use the MCP (Zhang,2010)

jMCP
τ (r) =




τ · (π/2− r)− (π/2− r)2/2γ, if (π/2− r) ≤ γτ

γτ2/2, otherwise

(3.5)

with a constant γ > 1.
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3.3 Computational Algorithms

A general strategy of solving (1) is an alternating minimization

method. Given a current iterate (v0, r0), we first optimize over v

with the fixed r0, obtaining v1 satisfying F (v1, r0) ≤ F (v0, r0).

Then we obtain r1 from given v1, satisfying F (v1, r1) ≤ F (v1, r0).

The algorithm for minimization of F with respect to v is dis-

cussed in Section 3.3.1. Given v, the problem of minimizing F

in terms of r has a closed form solution with appropriate L1, L2

or MCP penalties, as discussed in Section 3.3.2. We propose to

optimize F (v, r) as follows. For the jth iterate (vj , rj),

1. Obtain vj+1 satisfying F (vj , rj+1) ≤ F (vj , rj) (Section 3.3.1).

2. Obtain rj+1 satisfying F (vj+1, rj+1) ≤ F (vj , rj+1) (Section

3.3.2).

3. Stop if F (vj , rj) − F (vj+1, rj+1) < ε for a predetermined

threshold ε > 0. Otherwise, return to the j + 1th step.

3.3.1 Update of v

The current axis vj is updated by solving the following nonlinear

least-squares problem,

vj+1 = arg min
v∈Sd−k+1

n∑

i=1

(
ρd−k(x

(k)
i , vj)− rj

)2
,

numerically, e.g. Levenberg-Marquardt Algorithm (Levenberg,1944;

Marquardt,1963).
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3.3.2 Update of r

Suppose we have datasets x
(k)
i ∈ Sm−k+1 for i = 1, . . . , n. It is

easy to check that the solution to

rj+1 = arg min
r∈R

1

2n

n∑

i=1

(ρm−1(x
(k)
i , vj+1)− r)2 + jτ (r),

is given as (1) for L1 penalty, rj+1 = π/2− sign(π/2− a)(|π/2−

a|− τ)+ and (2) for L2 penalty, rj+1 = (a+ τπ/2)/(1 + τ) and (3)

for the MCP,

rj+1 =




a, if |π/2− a| > γτ

π
2 −

γ
γ−1sign(π/2− a) (|π/2− a| − τ)+ , otherwise

,

where a = 1
n

∑n
i=1 arccos(vTx

(k)
i ). Here, for a ∈ R, a+ = a if a ≥ 0

and a+ = 0 if a < 0.

Remark 3.1. In particular, using the L1 penalty and the MCP,

i.e., jL1
τ (π/2− r) and jMCP

τ (π/2− r), will ensure that the updated

radius rj+1 is π/2 for large enough τ .

Remark 3.2. In the original PNS, rj+1 = a.

3.3.3 Tuning Parameter Selection

For every steps k = 1, . . . , d, We use the cross-validation method

to select the value of tuning parameter τk ∈ [0,∞). Let the num-

ber of cross-validation be B. For the bth instance of the cross-

validation with b = 1, . . . , B, we split the n data points X(k) =

{x(k)
1 , . . . , x

(k)
n } into two disjoint sets, the training set X

(k)
tr,b of size

b(B−1)/B ·nc and the test set X
(k)
test,b = {x(k)

1,test,b, . . . , x
(k)
n′,test,b} of
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size n′ = d1/B ·ne. Given X
(k)
tr,b and a grid of τk’s, we solve the op-

timization problem (3.1) for each τk and the estimated parameters

are denoted v̂tr,b(τk) and r̂tr,b(τk).

To evaluate the accuracy of the prediction, we estimate the

prediction error for each τk by the cross-validation error,

Êrrk(τk) =
1

B

B∑

b=1

1

n′

n′∑

i=1

L
(
x

(k)
i,test,b; v̂tr,b(τk), r̂tr,b(τk)

)
,

where L(x; v, t) is a loss function. The best tuning parameter τ̂best,k

is the one that minimizes Êrrk over the interval τk ∈ [0,∞). Fi-

nally, we refit the model on the full data X(k) with τ̂best,k and the

estimated parameters are denote v̂k,best and r̂k,best.

3.4 Theory

We consider X to be a Sm-valued random variable, which is a mea-

surable mapping from a probability space (Ω,F ,P) into (Sm,G),

where G denotes the Borel σ-algebra of Sm. Let X1, . . . , Xn be

random variables generated identically and independently from

the same law as X.

3.4.1 Geometry of Parameter Space

In this section, let a small subsphere p(v, r) on Sm for m ≥ 2 be

parameterized with a pair of a center and a radius (v, r) ∈ Θ0 =

Sm × [0, π/2], or explicitly

p(v, r) = {x ∈ Sm : ρ(v, x) = r},

where ρ(x, y) = arccos(xT y) denotes the geodesic distance between

x, y ∈ Sm.
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However, when r = π/2, two small subspheres p(v, π/2) and

p(−v, π/2) represent the same small sphere. To remedy this, we

define an equivalence relation∼ that identifies p(v, r) with p(−v, r)

whenever r = π/2. The parameter space Θ is defined as Θ =

Θ0/ ∼, that is, Θ = {[v, r] : (v, r) ∈ Θ0}. Note that both Θ0 and

Θ are compact spaces.

A distance between p1 = [v1, r1] and p2 = [v2, r2] ∈ Θ is defined

as

d(p1, p2) = min (d1(p1, p2), d2(p1, p2))

where

d1(p1, p2) =
(
arccos(vT1 v2)2 + |r1 − r2|2

)1/2

d2(p1, p2) =
(
arccos(−vT1 v2)2 + |π − r1 − r2|2

)1/2
.

Lemma 3.1. The distance d is a metric.

For a pair of parameters p = [v, r] ∈ Θ, the projection from

Sm onto p0(v, r) is defined as

π(p)(x) = arg min
s∈p(v,r)

ρ(x, s) =
sin r · x+ sin(ρ(x, v)− r)v

sin(ρ(x, v))

for x ∈ Sm. Abusing the notation, we denote ρ(x, p) = infs∈p(v,r) ρ(x, s)

with p ∈ Θ. Since ρ is continuous and Sm is compact, uniform con-

tinuity holds for ρ, that is, for every x ∈ Sm, p ∈ Θ and ε > 0,

there exists a δ > 0 such that |ρ(x, p′)− ρ(x, p)| < ε for all p′ ∈ Θ

with d(p, p′) < δ.

3.4.2 Strong Consistency

We discuss a consistency of the subsphere estimator p̂ = p(v̂, r̂) ∈

Θ for X1, . . . , Xn on Sm, where the model is equipped with a
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penalty. Our aim is to show the strong consistency with respect

to the distance d, where p̂ is obtained by solving the minimization

of a penalized likelihood function

min
p∈Θ

n∑

i=1

ρ2(Xi, p) + jτ (r),

where jτ : [0, π/2]→ [0,∞) is a function with the following prop-

erties.

(P1) jτ (x) is decreasing on x ∈ [0, π/2]

(P2) jτ (π/2) = 0 and jτ (x) is left continuous as x→ π/2.

(P3) jτ (x) is continuous in x ∈ [0, π/2)

(P4) jτ (x)→ 0 monotonically as j → 0 for all x ∈ [0, π/2]

Example 3.2. Penalties in (3.3),(3.4) and (3.5), that is, L1, L2,

and MCP penalties, satisfy (P1) - (P4).

In Bhattacharya and Patrangenaru (2003) and Huckemann

(2011), the population and sample Fréchet ρ-mean set for the un-

penalized likelihood are suggested by as

E =

{
p ∈ Θ : EXρ2(X, p) = inf

q∈Θ
EXρ2(X, q)

}

and

En =

{
p ∈ Θ :

n∑

i=1

ρ2(Xi, p) = inf
q∈Θ

n∑

i=1

ρ2(Xi, q)

}
,

For the penalized function with a penalty jτ , we define the

population solution set as

Eτ =

{
p = [v, r] ∈ Θ : EXρ2(X, p) + jτ (r) = inf

q=[v′,r′]∈Θ
EXρ2(X, q) + jτ (r′)

}
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and the sample solution set as

Eτn =

{
p = [v, r] ∈ Θ :

n∑

i=1

ρ2(Xi, p) + jτ (r) = inf
q=[v′,r′]∈Θ

n∑

i=1

ρ2(Xi, q) + jτ (r′)

}
.

Next, we introduce the following modes of convergence (Schotz,2022).

Definition 3.3. Let (Θ, d) be a metric space. For a sequence of

sets En ⊂ Θ for n = 1, 2, . . ., the outer limit of En is

∩∞n=1∪∞k=nEk.

The one-sided Hausdorff distance between two sets E1 and E2 in

(Θ, d) is defined as

dH(E1, E2) = sup
x1∈E1

inf
x2∈E2

d(x1, x2).

Strong consistency of random closed sets, on the ground of two

modes of convergence above, were developed by Ziezold (1977) and

Bhattacharya and Patrangenaru (2003) as follows.

Definition 3.4. Let (Θ, d) a metric space. For a random closed

set E ⊂ Θ and a sequence of random closed sets En ⊂ Θ for

n = 1, 2, . . .,

(ZC) En converges to E strongly in the sense of Ziezold (1977) if

∩∞n=1∪∞k=nEk ⊂ E a.s.

(BPC) En converges to E strongly in the sense of Bhattacharya

(2003) if for every ε > 0, there is a sufficiently large n > 0

such that

∪∞k=nEk ⊂ {p ∈ Θ : ∃q ∈ E s.t. d(p, q) ≤ ε} a.s.
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(ZC) and (BPC) are indeed random closed set version of con-

vergence in outer limit or one-sided Hausdorff distance respec-

tively. Under the condition that Θ is compact, (ZC) and (BPC)

imply each other.

Proposition 3.1. Let (Θ, d) be a metric space with Θ compact.

Consider a random closed set E and a sequence of random closed

sets En for n = 1, 2, . . .. En converges to E in the sense of (ZC)

if and only if En converges to E in the sense of (BPC).

We now prove the strong consistency of the sample solution

sets Eτn, extending the discussions in Huckemann (2011). First, we

assert the strong consistency (ZC) for a given tuning parameter

τ ≥ 0.

Theorem 3.1. For a given tuning parameter τ ≥ 0, Eτn converges

to Eτ in the sense of (ZC) if the penalty function jτ satisfies (P1)

to (P3).

The sets Eτ are deterministic and for any decreasing sequences

τk → 0, Eτk converges to E in outer limit.

Theorem 3.2. Let τk → 0 be any decreasing sequences. Then Eτk

converges to E in outer limit if the penalty function jτ satisfies

(P4).

Or we can show the consistency of Eτn by setting τn → 0 as n

goes to infinity.

Theorem 3.3. Let τn be a decreasing sequence as n → 0. Then

Eτn converges to Eτ in the sense of (ZC) with respect to d in Θ if

the penalty function pτ satisfies (P1) to (P4).
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Figure 3.2: A small sphere estimator and a great sphere estima-

tor on a disc-shaped distribution (left) and a doughnut-shaped

distribution (right).

We provide proofs of theorems in this section and examples for

relative independence and absolute orthogonality in Section B.1 of

the supplementary materials.

3.5 IoD Criterion to Avoid Overfitting

Type 2 overfitting phenomenon usually occurs when data points

are generated along a great subsphere but within a very short

interval. To emulate this case, we assume that the data points fol-

low a highly concentrated unimodal distribution, what we call a

disc-shaped distribution. This disc-shaped distribution is a coun-

terpart of a doughnut-shaped distribution, where the distribution

is highly concentrating along a small sphere mode, like a doughnut

shape. Small sphere estimator resides inside the disc-shaped cloud

of data points and its radius is unnecessarily small but with much

lower variance, see Figure 3.2.

For more practical interpretability, our aim is to estimate this
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type of data with a great circle estimator. For that, we propose a

concept of Index of Dispersion (IoD), an index which reflects how

much data points are congested in a small area. If the data point

cloud has a disc shape, IoD will have a high value. In contrast,

if the data point cloud has a doughnut shape, IoD will have a

low value. We utlize IoD in tuning parameter selection, where the

radius of small sphere estimator varies as the tuning parameter

τ does. By penalizing cross-validation errors with IoD value, we

avoid estimate a disc-shaped distribution with a small subsphere

with a small radius.

3.5.1 Index of Dispersion (IoD) and IoD Criterion

We first define the index of dispersion (IoD) with respect to a

direction v for a distribution on the sphere Sm.

Definition 3.5. Suppose a random variable X has a distribution

ν on Sm. Given a vector v ∈ Sm, the angle between v and X is

denoted as θv = arccos(vTX). The first and second moments of θv

are given as

µ1 =

∫

Sm
θv dν(X), µ2 =

∫

Sm
θ2
v dν(X).

Then the index of dispersion (IoD) with respect to a direction v is

defined as

IoD(v) =

(
µ2 − µ2

1

µ1

)2

.

Remark 3.3. Our concept of IoD is inspired from the original

version of IoD from Cox (1966), which has a form σ2/µ, thus

it is indeed correct to call our version as squared IoD. Bur for
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convenience in naming, we will allow a slight misnomer for this

concept in our thesis.

For a highly concentrated unimodal (disc-shaped) distribution

around v ∈ Sm, IoD(v) tends to be large since density gathers in

a small area on the sphere, and therefore the mean value of θv

is small. In contrast, when density is highly concentrated along a

small or great circle (doughnut-shaped) and v coincides with the

center of the circle, the mean value of θv grows larger and the value

of IoD(v) decreases as much.

The sample version of the IoD is defined in view of the penal-

ized PNS estimates.

Definition 3.6. Given a small circle estimator A(v̂(τ), r̂(τ)) from

the penalized PNS, we compute the azimuthal angles {θv,i}ni=1 from

the dataset {xi}ni=1 such that θv,i = arccos(v̂(τ)Txi). Then the

sample version of IoD with respect to v̂(τ) is defined as

ÎoD(v̂(τ)) =

(∑n
i=1 θ

2
v,i/n− (

∑n
i=1 θv,i/n)2

∑n
i=1 θv,i/n

)2

From now on we denote ÎoD(v̂(τ)) as ÎoD(τ).

When τ goes down, say τs, the small circle estimator has a

smaller radius and v̂ tends to approach to the cloud of data points.

Thus, in this case, the small circle estimator should have a larger

sample IoD, ÎoD(τs). In contrast, when τ becomes bigger, say τl,

the small circle tends to have a larger radius and the axis gets

further from the cloud of data points. In this case, the small circle

estimator has a smaller sample IoD, ÎoD(τl), that is, ÎoD(τl) <

ÎoD(τs).
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Our strategy is, in order to compensate the overfitting phe-

nomenon in PNS, to add an compensating IoD to the validation

error.

For that, we first suggest a concept of a criterion by adding an

IoD term to the empirical risk,

1

n

n∑

i=1

L (xi; v̂(τ), r̂(τ)) ,

given each value of tuning parameter τk. Given data points, we

define a criterion for the small sphere estimator by penalizing the

empirical risk as follows.

Definition 3.7. Given a dataset x1, . . . , xn on Sm and a small

sphere estimator A(v̂(τ), r̂(τ)) from the penalized PNS, we define

the IoD criterion ÎCC with a constant C > 0

ÎCC(τ) =
1

n

n∑

i=1

L (xi; v̂(τ), r̂(τ)) + C · ÎoD(τ)

In tuning parameter selection, we derive the IoD criterion ÎCC,(b)(τ)

for each test set Xtest,b with b = 1, . . . , B

ÎCC,(b)(τ) =
1

n′

n′∑

i=1

L(xi,test,b; v̂tr,b(τ), r̂tr,b(τ)) + C · ÎoD(b)(τ),

where ÎoD(b)(τ) is obtained from the test set Xtest,b. The IoD cri-

teria are aggregated to ÎCtest,C(τ) = 1/B ·
∑B

b=1 ÎCC,(b)(τ) and we

select the best tuning parameter τbest,C that minimizes ÎCtest,C .

3.5.2 Choice of the Constant C

The major issue here is the choice of the constant C. We assume a

situation in the population setting, where we estimate a data point
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cloud with two representing cases, a small sphere estimator and a

great sphere estimator. We determine the value of the constant C

such that the IoD term compensates the difference of risks between

small and great sphere estimators.

To put it formally, we first define IoD criterion in the popu-

lation setting, by adding an IoD term to the risk, EL (X; v, r), as

follows.

Definition 3.8. Suppose we have a random variable X ∈ Sm.

Given a small circle A(v, r), which is independent from X, we

define a IoD criterion for X and A(v, r)

ICC(v, r) = EL (X; v, r) + C · IoD(v)

with some constant C > 0.

We adopt a heuristic method to choose the value of C, whose

brief overview is as follows.

We consider a disc-shaped distribution scenario. For each cases,

we suppose generic situations where the distribution is estimated

with small or great sphere estimator. Then the variance and IoD

of two estimators are computed and we find the range of C where

the overfitting phenomenon is mitigated.

We denote the parameters for a small sphere estimator as

(vsmall, rsmall) and the ones for a great sphere estimator as (vgreat, rgreat).

Then, our aim is to find a constant C such that type 2 overfitting

phenomenon is mitigated for disc-shaped distribution, that is, IoD

criterion is bigger for small sphere estimator than great sphere es-

timator. Our aim is summarized as follows.

ICC(vsmall, rsmall) > ICC(vgreat, rgreat). (3.6)
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For notations, suppose X ∈ Sm follows a disc or doughnut-

shaped distribution with a pole µ. Let vs and vg be the center of

the small and great sphere estimator for X. Let θg = arccos(vTg X),

θs = arccos(vTs X) and θµ = arccos(µTX).

Disc-shaped distribution

We call a high concentrated unimodal distribution with a mode

µ as a disc-shaped distribution on the sphere Sm with a pole µ.

We consider a disc-shaped distribution invariant to the rotation

around µ and whose support is a convex subset of Sm that includes

µ, which is not a point density on µ nor uniform density on the

whole surface of Sm.

For a disc-shaped distribution, we set a small sphere estimator

concentric to X, that is, θs = θµ and its radius coincides with

Eθs. In contrast, we set a great sphere estimator to pass across the

density through µ. Then the center of the great sphere v makes

a perpendicular angle with the pole µ, Eθg = π/2, see Figure 3.2

left. The small sphere estimation represents the overfitting phe-

nomenon.

Note that the risk of the small sphere estimator, EL(X; vs, rs)

is the same as the variance of θs. It is the same for the great sphere

estimator, that is, EL(X; vg, rg) = Var(θg).

To satisfy (3.6), we require C should be large than the division

of the variance difference by the IoD difference, that is,

C > (Var(θg)−Var(θs)) / (IoD(vs)− IoD(vg)) , (3.7)

so that the IoD criterion (ICC) of the small sphere estimator is

larger than that of the great sphere estimator.
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In practice, we set C as two times the RHS value of (3.7). The

determination of C depends on the distribution of data points.

In the following examples, we choose the value of C for disc-

shape distributions. For convenience, we use p = m + 1 to follow

the notational convention Sp−1 = Sm.

Example 3.3. We first consider the spherical τ -ball uniform dis-

tribution, Sτ , for some small τ > 0. The sectional function of Sτ
is

gSτ (θ1) = c(p, τ)1(θ1<τ),

where c(p, τ) is the normalizing term. Using the following approx-

imation formula
∫ τ

0
xq sinp x dx =

1

p+ q + 1
τp+q+1 − 1

6

p

p+ q + 3
τp+q+3 +O(τp+q+5),

we can obtain an approximating expression for the normalizing

term c(p, τ),

c(p, τ) =
Γ
(
p−1

2

)

2π
p−1
2

[
p− 1

τp−1
+

1

6

(p− 1)2(p− 2)

p+ 1

1

τp−3

]
+O(τ5−p).

The variance and IoD for both small and great circle estimates are

approximated as

Varsmall =
p− 1

p2(p+ 1)
τ2 +O(τ4)

Vargreat =
1

(p+ 1)
τ2 +O(τ4)

IoDsmall =
1

p2(p+ 1)2
τ2 +O(τ4)

IoDgreat =
4

π2

1

(p+ 1)2
τ4 +O(τ6)
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From these, the compensating factor C must satisfy

C ≥ (p+ 1)(p2 − p+ 1).

We observe that C diverges at a polynomial rate of order p3 with

fixed τ .

Example 3.4. In the case of positive kurtosis, we propose the

following probability density on Sp−1

S2,τ (x;µ, τ) = c(p, τ)1(arccosµT x<τ)

(
1− 1

τ2
arccos2(µTx)

)
, x ∈ Sp−1

with the mode µ ∈ Sp−1 and sufficiently small τ > 0. The normal-

izing term in an approximated polynomial form is

c(p, τ) ≈
Γ
(
p−1

2

)

2π
p−1
2

[
(p− 1)(p+ 1)

2

1

τp−1
+

1

12

(p− 1)2(p− 2)(p+ 1)

p+ 3

1

τp−3

]

The sectional function is

gS2,τ (θ1) = 1(θ1<τ)

(
1− 1

τ2
θ2

1

)
.

The variance and IoD for both small and great circle estimates

are approximated as

Varsmall =
(p− 1)(2p2 + 4p+ 3)

p2(p+ 2)2(p+ 3)
τ2 +O(τ4)

Vargreat =
1

p+ 3
τ2 +O(τ4)

IoDsmall =
(2p2 + 4p+ 3)2

p2(p+ 1)2(p+ 2)2(p+ 3)2
τ2 +O(τ4)

IoDgreat =
4

π2

1

(p+ 3)2
τ4 +O(τ6)
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From these, the compensating factor C must satisfy

C >
p2(p+ 1)2(p+ 2)2(p+ 3)

(2p2 + 4p+ 3)2
.

Here C diverges at a polynomial rate of order p3 with fixed τ too.

Example 3.5. In the case of von Mises-Fisher distribution (Fisher,1953;

Mardia and Jupp,1999), it is computationally intractable to derive

an analytic form for moments of the azimuthal angle θ1 directly.

Instead, we approximate highly-concentrated von Mises-Fisher dis-

tribution as a normal distribution on a q-dimensional tangent plane

(q = p − 1). On the tangent plane, a radius r from the tangent

point is equivalent to the azimuthal angle θ1 from the pole µ on

the sphere Sp−1. Here we set a spherical coordinate on the tangent

plane as (r, θ′1, . . . , θ
′
q−2, φ

′). The marginal density of r is given as

gnormal(r) =
1

(2πσ2)q/2
2πq/2

Γ(q/2)
rq−1e−r

2/2σ2

where σ2 is the variance of the normal distribution on the tangent

plane and very close to 0. The moments of r are then

µ1 =
√

2σ
Γ((q + 1)/2)

Γ(q/2)

=
√

2σ

√
q

2

(
1− 1

4q
+O(q−2)

)

µ2 = σ2q.

For µ1, we used the following asymptotic expansion (Qi,2010)

Γ(x+ 1/2)

Γ(x)
= x1/2 − 1

8
x−1/2 +O(x−3/2)
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as x goes to infinity. From these, the variance and IoD for small

circle estimate are

Varsmall =
σ2

2
+O(q−1)

IoDsmall =
σ2

2(2q − 1)
+O(q−2)

The variance of θr for a great circle estimate, or the second mo-

ment of the signed residual

π

2
− θv ≈ r sin θ′1 . . . sin θ

′
q−2 sinφ′

is given by

Vargreat =
1

(2πσ2)q/2

∫ 2π

0

∫ π

0
· · ·
∫ π

0
e−r

2/2σ2
rq+1 sinq+1 θ′1 · · · sin3 θ′q−2 sin2 φ′ dθ′1 · · · dφ′

= σ2.

and the IoD for a great circle estimate is

IoDgreat = σ4/(π/2)2.

From these, the compensating factor C must satisfy

C > 2p− 1.

Here C diverges at a polynomial rate of order 1 with respect to p.

In Simulation Study (Section 3.6) and Real Data Analysis (Sec-

tion 3.7), we use the result of Example 3.5. Heuristically, to em-

phasize the contrast, we use the constant, two times 2p− 1.

Notice that the determination of C only depends on the di-

mension p (or equivalently, m).
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3.5.3 Geometric Interpretation of Model Bias

Suppose the data points on Sm are concentrated near a subsphere

Am−1 of radius rm, and we wish to recover Am−1. Generally, it

turns out that the subsphere estimate does not work well, but

rather it is biased in radius. The bias occurs from the curvature of

Am−1, in that there are more chances the noise mass falls outward

Am−1 than inward, and so the estimate tends to have a larger

radius than Am−1. (Briefly, we use a term “outward” for a point

x ∈ Sm if arccos(vTx) > rm and “inward” if arccos(vTx) < rm.)

We give a illustrative example. Let Am−1 be a subsphere on Sm

which has an axis v at the north pole and a radius 0 < rm ≤ π/2.

The points x0i for i = 1, . . . , n are distributed on Am−1. Each data

point xi is generated from a rotationally invariant distribution

with a mean direction x0i.

It is easy to notice that the noise mass outward Am−1 is bigger

than that of inward, so that xi has more chance to posited outward

Am−1 than inward, see Figure 3.3. Thus the estimated radius r̂m

is bigger than the true radius rm generally. A similar example on

the plane was discussed in Hastie (1984).

We quantify the bias in the case where the noise follows the

von Mises-Fisher distribution on Sm (Fisher,1953; Mardia and

Jupp,1999). Consider a vector µ such that arccos(µT v) = r and

the von Mises-Fisher distribution with the mean direction µ and

the concentration parameter κ whose density is given as

fvMF(µTx;κ) = Cm+1(κ)exp(κ · µTx),

where the normalizing constant is Cm+1(κ) = κ(m−1)/2/
(
(2π)(m+1)/2I(m+1)/2(κ)

)

with Ik(x) the modified Bessel function of order k for x ≥ 0. We
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Am−1

µ = x0i
v

xi

r

Eθv

Figure 3.3: A bird’s eye view from the direction of v. Each data

point xi is generated from a rotationally invariant distribution

(circle) with a mean direction µ = x0i.

suggest the following proposition about computing the expecta-

tion of θv = arccos(vTX), the angle between X and an arbitrary

point v ∈ Sm on the sphere. Then the bias is defined as Eθv − r.

Proposition 3.2. Let v ∈ Sm. Suppose a random vector X ∈ Sm

follows the von Mises-Fisher distribution with the mean direction

µ ∈ Sm and the concentration parameter κ. Then the expectation

of θv = arccos(vTX) is given as

Eθv =

∫

Sm
arccos(vTx)C(κ)exp(κ · µTx) dσ(x) (3.8)

=
∞∑

l=0

A(l)Y 0
l (vTµ)

ωm

C
(m−1)/2
l (1)

∫ 1

−1
arccos(t)C

(m−1)/2
l (t)(1− t2)(m−2)/2 dt,

(3.9)
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where λ = (m−1)/2, ωm+1 = 2π(m+1)/2/Γ((m+ 1)/2) the surface

area of Sm+1, Y 0
l (cos θ) the spherical harmonic function of degree

l and order 0 for 0 ≤ θ ≤ π, Ckl (x) the Gegenbauer polynomial of

degree l and order k for x ∈ [−1, 1], Γ(x) the gamma function for

x > 0,

cl =

√
π

(m− 1)l2m−2

Γ(m+ l − 1)

Γ(m/2)Γ((m− 1)/2)

I(m−1)/2+l(κ)

I(m+1)/2−1(κ)
,

and

A(l) =
∞∑

l=0

1

ωm+1

l + λ

λ
cl

√
(m− 1)l

m−1
2

l!(l + m−1
2 )

.

For the numerical computation of Eθv, see Remark B.3 of Sec-

tion B.1.6 in the supplementary materials. In a brief numerical

study, where the angle arccos(vTµ) ranges from 0 to π/2, we ob-

serve that the bias always shows positive values and decreases

monotonically, see Figure 3.4. The bias vanishes only when v and

µ are perpendicular. Also the bias becomes larger as the dimension

m increases. This is due to the curse of dimensionality, in that the

more the dimension m grows, the more the angle between separate

points on Sm become perpendicular. However, the bias becomes

smaller as the concentration parameter κ increases, that is, the

noise mass is more concentrated around µ.

3.6 Simulation Study

3.6.1 Example Dataset Generation

In this section, we shall evaluate the performance of our method.

We consider the following random point generation procedures on

Sd with von Mises-Fisher error along a small arc.
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Figure 3.4: The biases calculated from (3.8) are drawn in solid

lines. The biases from Monte Carlo simulations are in dashed lines.

The confidence intervals for Monte Carlo simulations are in gray-

shaded areas.

Fix v = (0, . . . , 0, 1)T ∈ Sd and r ∈ [0, π/2]. Given a fixed

vector (t1, . . . , td−1)T ∈ [0, 2π]d−1, we generate spherical angles

(ψ1, . . . , ψd−1)T with each component ψi ∼ Unif([−0.5 · ti, 0.5 · ti]).

Then the signal point x′ ∈ Sd is obtained by the coordinate change,

x′ = ((

d−1∏

i=1

sinψi) sin r, cosψ1(

d−1∏

i=2

sinψi) sin r, . . . , cosψd−1 sin r, cos r)T .

Let the point x follow von Mises-Fisher distribution with a pole

x′ and a concentration parameter κ. We generate n signal points

x1, . . . , xn identically and independently as the same law as x. For

figurative examples, see Figure 3.5.

Note that θv = arccos(vTx) is not independent from θi =

arccos(eTi x), where ei is the ith coordinate vector with i = 1, . . . , d.

We generate 100 sets of n data points for given parameters. We

then compute the average and standard deviation of estimated ra-
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(a) (b)

Figure 3.5: Examples of generic data generation (n = 100) (a)

r = 45◦, κ = 100, t1 = 30◦, (b) r = 90◦, κ = 100, t1 = 10◦.

dius for L1, L2 penalties and MCP. In validation, we used 5-cross

validation on a grid of the tuning parameter τ , (0, 10−3, 10−2.9, . . . , 10−0.1, 100).

For the case where the true radius r = 90◦, we additionally

record the number of data sets that mitigate type 1 overfitting

phenomenon, that is, when the estimated radius r̂ = 90◦. For

every dataset, we compute the mean and median of the angles

between the true axis v = (0, . . . , 0, 1)T and data points xi’s, what

we call oracle mean and median of radius.

3.6.2 Results

We first consider the case where d = 2 and n = 100. We assess

the performance at the combination of settings, r = 90◦, 45◦, κ =

100, 30 and t1 = 90◦, 60◦.

We start with the results when the true radius r is 90◦. Here

we want to see if the penalization of r works well in mitigating
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type 1 overfitting phenomenon.

We set κ = 100. When t1 = 90◦, we observe that the estimated

radius has median at 90◦ for L1 penalty and MCP, see Figure 3.6a.

In 76 of L1 penalty and 78 of MCP penalty out of 100 data sets,

type 1 overfitting was mitigated, see Table 3.1. No other penalties

(original PNS and L2 penalty) could not mitigate type 1 overfitting

phenomenon. When t1 = 60◦, 74 of L1 penalty and 74 of MCP out

of 100 data sets achieved r̂ = 90◦, see Figure 3.6b and Table 3.1.

The pattern of estimated radius is quite different between t1 =

90◦ and 60◦ cases. When t1 = 60◦, as data points spans only 1/3

of the true arc (equator of S2), the estimation of axis, v̂, suffers

larger variance compared to t1 = 90◦. Indeed, we can observe the

variances of estimated radius, r̂, is much larger when ti = 60◦, see

Figure 3.7. However, even though larger variance in estimating v

and r, the rate of overfitting mitigation is quite similar in both

t1 = 90◦ and 60◦ cases, see Table 3.1.

Next, for κ = 30, where von Mises-Fisher distribution has a

larger variance. When t1 = 90◦, 71 of L1 penalty and 73 of MCP

penalty out of 100 data sets mitigated type 1 overfitting, see Figure

3.6c and Table 3.1. When t1 = 60◦, 75 of L1 penalty and 76 of

MCP penalty out of 100 data sets mitigated type 1 overfitting, see

Figure 3.6b and Table 3.1. We observe larger variances in radius

estimations than κ = 100 cases. Even though the instability in axis

estimation, the rate of overfitting mitigation showed no significant

difference from the case κ = 100.

For a larger data set size, n = 1000 with the same setting,

r = 90◦, κ = 100, 30 and t1 = 90◦, 60◦. The rate of overfitting
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(a) r = 90◦, t1 = 90◦, κ = 100 (b) r = 90◦, t1 = 60◦, κ = 100

(c) r = 90◦, t1 = 90◦, κ = 30 (d) r = 90◦, t1 = 60◦, κ = 30

Figure 3.6: Results of radius estimation when d = 2, r = 90◦ and

n = 100.

mitigation improved compared to n = 100 cases, see Figure B.2.1

and Table 3.1. The mean and standard deviation of estimated

radius are improved significantly.

When r = 45◦, there is no danger of type 1 overgfitting. L1

and L2 penalties shows significantly large bias in estimating radius,

see Figure 3.8 and Table B.2.1, whereas MCP shows the identical

results as original PNS. L1 and L2 penalties also shows larger

variance than original PNS and MCP due to the instability in

axis estimation.

To present the results on type 2 overfitting phenomenon, we

consider two situtation, (1) r = 5◦ with t1 = 90◦, κ = 100, n = 100

and (2) r = 90◦ with t1 = 10◦, κ = 100, n = 100. The first case

mimics a disc-shaped distribution (high concentrated unimodal
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(a) t1 = 90◦, PNS (b) t1 = 90◦, L1 (c) t1 = 90◦, MCP

(d) t1 = 60◦, PNS (e) t1 = 60◦, L1 (f) t1 = 60◦, MCP

Figure 3.7: Results of axis estimation when d = 2, r = 90◦ and

n = 100. The estimated axis v̂ are mapped to the tangent plane

at (0, 0, 1)T by the exponential map Exp(0,0,1)T .

(a) r = 45◦, t1 = 90◦, κ = 100,

n = 100

(b) r = 45◦, t1 = 60◦, κ = 100,

n = 100

(c) r = 45◦, t1 = 90◦, κ = 30,

n = 100

(d) r = 45◦, t1 = 90◦, κ = 100,

n = 1000

Figure 3.8: Results of radius estimation when d = 2, r = 45◦.
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distribution) (Figure 3.2 left) and the second case represents a

situation where the data points are generated along a great sphere

but on a short interval (Figure 3.1b).

In both cases, IoD criterion successfully mitigated type 2 over-

fitting phenomenon. In the first case (r = 5◦), only L1 penalty

with IoD and MCP with IoD estimated radius as 90◦ with rates

91 and 92 out of 100 data sets. In the second case (r = 90◦), L1

penalty and MCP mitigated overfitting only 5 and 4 times respec-

tivelym but L1 penalty with IoD and MCP with IoD achieved 94

and 99 times out of 100 data sets. The original PNS only yielded

overfitted results.

3.7 Real Data Analysis

In this section, we apply the proposed PenPNS to a dataset called

the Cephalometric X-ray Image Data, a landmark dataset on the

sagittal-view X-ray images of patients’ skulls (Wang et al.,2016).

We choose to use 400 adolescent cases with 19 landmarks on 2-D

dental X-ray images, that is, the dataset has dimension 19 × 2 ×

400. The dataset was preprocessed by the Generalized Procrustes

Analysis method (GPA) (Mardia and Jupp,1999; Chapter 3 of

Dryden and Mardia,2016), which results in 400 points on S36.

We applied PNS, PenPNS (MCP), Principal Geodesic Nested

Spheres (PNGS) (Jung,2012) and PenPNS (MCP) with IoD crite-

rion (for short, PenPNS+IoD)on the Cephalometric X-ray Image

Data. Here, PNGS is a variant of PNS, such that radius r is fixed

as π/2 while estimating parameters of each subsphere Am, thus the

data points are forced to be estimated by great sphere at every
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step.

We want to compare the results of the methods with respect to

variance explained (Figure B.3.1 and B.3.2) and estimated radii

(Figure 3.10). For overall results, see Table B.3.1 - B.3.4 in the

supplementary materials.

Variance explained is obtained as follows. We use the resid-

ual Ξ(m) of Am after fitting Am inside Am+1 (they are indeed

analogues of the (m + 1)th PC of classical PCA in Euclidean

space). The variance s2
m of the mth component is the squared

sum of Ξ(m). The percent of variance s2
m is the proportion of s2

m

over the sum of all variances. For more details, see Section 2.4 of

(Jung,2012).

PenPNS yielded 66.53% in the first component of variance pro-

portions. This figure is slightly lower than the one of PNS, 68.49%,

see Figure B.3.1 and Table B.3.1 and B.3.2 in the supplementary

materials.

However, two methods show a different implication in the es-

timated radii. The estimated radii of PNS vary from 15.47◦ to 90◦

(Table B.3.1). In contrast, PenPNS yielded mostly 90◦ except 8.86◦

of A3 and 22.23◦ of A1 (Table B.3.2), which means PenPNS mit-

igated type 1 overfitting phenomenon in nearly every dimension.

It is notable that type 1 overfitting mitigations in high dimensions

show little influence on variance proportions in lower dimensions.

In constrast, PNGS and PenPNS+IoD featured 39.41% and

40.79% in the first component of variance proportions, see Figure

B.3.2 and Table B.3.3 and B.3.4 in the supplementary materials.

It is notable that every estimated radii of PenPNS+IoD is 90◦
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(Figure 3.10) and PenPNS+IoD yielded nearly identical results as

PNGS (Table B.3.3 and B.3.4).

One of the key observations here is that PenPNS+IoD miti-

gated type 2 overfitting at A3 (8.86◦ to 90◦), in addition to type 1

overfitting mitigation by PenPNS. It may seem a small correction

in radius estimation, but resulted in large differences in variance

proportions between two methods.

We interpret the results as follows. By mitigating type 2 over-

fitting at A3, PenPNS+IoD corrected overfitting tendency shown

in the original PNS and PenPNS (66.53 and 68.59% to 40.79%

in the first component of variance proportions). It also corrected

slight underfitting in PNGS (39.41% to 40.79%).

We visualize the results by drawing the principal mode of vari-

ation (call PC1 and PC2 from A1 and A2 respectively) on the

data points, see Figure 3.11 and 3.12. We observe that PC1 of

the original PNS and PenPNS make small circles in data point

clouds, which implies type 2 overfitting phenomenon. In contrast,

PC1 of PenPNS+IoD and PNGS draw gentle arcs through data

point clouds, which implies the mitigation of type 2 overfitting.

85



(a) r = 5◦, t1 = 90◦, κ = 100, n = 100

(b) r = 90◦, t1 = 10◦, κ = 100, n = 100

Figure 3.9: Results on mitigating type 2 overfitting phenomenon.
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Figure 3.10: Cephalometric X-ray Image Data : Estimated radii r̂m

of small sphere estimators Am(v̂k, r̂m) for PNS, PenPNS (MCP),

PNGS and PenPNS (MCP) + IoD Criterion.
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(a) (b)

(c) (d)

Figure 3.11: Cephalometric X-ray Image Data : The principal

mode of variation by A1 (left column) and A2 (right column).

(a)(b) PNS, (c)(d) PenPNS (MCP).
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(a) (b)

(c) (d)

Figure 3.12: Cephalometric X-ray Image Data : The principal

mode of variation by A1 (left column) and A2 (right column).

(a)(b) PNGS, (c)(d) PenPNS (MCP) + IoD criterion.
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Appendix A

Supplementary Materials

for Chapter 2

A.1 Mathematical Backgrounds of Section

2.3.1

A.1.1 Principal Angles

There had been suggested several definitions of the distance be-

tween two linear subspaces [A] and [B] in Rn, see Table 2 and

Theorem 12 of Ye and Lim (2016). Indeed, these distances can be

expressed by principal angles between two linear subspaces.

In this section, we present the concept of principal angles (Bj orck

and Golub,1973). Principal angles between two linear subspaces

are defined as follows: Given [A] ∈ Gr(n, p1) and [B] ∈ Gr(n, p2),

let p = min(p1, p2). The ith principal vectors (ai, bi), i = 1, . . . , p

91



are defined as a pair of unit vectors that satisfies

aTi bi = max
v∈[A]

max
u∈[B]

vTu

with the condition ai ⊥ a1, . . . , ai−1 and bi ⊥ b1, . . . , bi−1. Princi-

pal angles are then a set of angles θ = (θ1, . . . , θp)
T such that

cos θi = aTi bi

for i = 1, . . . , p. We call θi as ith principal angle between [A] and

[B]. Note that 0 ≤ θ1 ≤ . . . ,≤ θp ≤ π/2.

The computation of principal angles can be performed using

SVD. Suppose [A] and [B] are represented by A ∈ V(n, p1) and

B ∈ V(n, p2) respectively. By the untruncated SVD, we decompose

ATB into

ATB = UΣV T ,

where U ∈ Rp1×p1 and V ∈ Rp2×p2 are orthonormal and Σ ∈

Rp1×p2 is a diagonal matrix of a rectangular shape,

Σ =


Σ1 0

0 0




with a diagonal Σ1 ∈ Rp×p. The diagonal elements of Σ1 are writ-

ten σ1 ≥ . . . ≥ σp ≥ 0 in order and the principal angles between

[A] and [B] can be easily calculated as

σi = cos θi

for i = 1, . . . , p.

We show an example of subspace distance expressed using prin-

cipal angles: the Frobenius norm distance, appeared in Section 1.1
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and 2.3.1, can be expressed as

d([A], [B]) =
1√
2
‖AAT −BBT ‖2

=
√

2(n− Tr(ATABTB))

=
√

2(n− (cos2 θ1 + . . .+ cos2 θn))

=
√

2

p∑

i=1

sin2 θi

=
√

2‖ sin θ‖22,

where A and B are orthonormal matrices which represent [A] ∈

Gr(n, p1) and [B] ∈ Gr(n, p2) and p = min(p1, p2).

A.1.2 Calculation of Mean Direction

We wish to explain the concept of mean direction in perspective of

the flag mean. The mean direction among a set of linear subspaces

[V1], . . . , [VK ] is defined as a one-dimensional subspace v{[Vi]}Ki=1

that minimize the sum of the squares of the subspace distances

between v{[Vi]}Ki=1
and each linear subspace [Vi]. That is,

v{[Vi]}Ki=1
= arg min

[v]∈Gr(n,1)

K∑

i=1

d ([v], [Vi])
2 , (A.1)

where d([A], [B]) is a subspace distance between subspaces [A] and

[B].

In this definition, we adopt the Frobenius norm distance as a

measure of distance between two linear subspaces. The optimiza-

tion problem (A.1) can be rewritten as follows (we quoted the

derivations directly from Draper et al. (2014):
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v{[Vi]}Ki=1
= arg min

[v]∈Gr(n,1)

K∑

i=1

dpF ([v], [Vi])
2

= arg min
[v]∈Gr(n,1)

K∑

i=1

‖ sin θi‖2

= arg max
[v]∈Gr(n,1)

K∑

i=1

‖ cos θi‖2

= arg max
[v]∈Gr(n,1)

K∑

i=1

cos2 θi

= arg max
[v]∈Gr(n,1)

K∑

i=1

vTViV
T
i v

= arg max
[v]∈Gr(n,1)

vT

(
K∑

i=1

ViV
T
i

)
v.

There is a merit of using Frobenius norm distance we can see in

the fifth equality, in that there is a closed form converting an ex-

pression of the principal angle θ into of v and Vis, or, cos2 θi =

vTViV
T
i v. Other distances, such as the Procrustes distance 2‖ sin2 1

2θ‖

or the geodesic distance ‖θ‖2, are not suitable for making this kind

of linear expression using v and Vis.

Another merit comes from the last equality that this optimiza-

tion problem is equivalent to the variational characterization of

SVD (Draper et al.,2014). The solution is indeed the first singular

vector of the symmetric matrix

(
K∑

i=1

ViV
T
i

)
.

This sum of matrices term can be rewritten with respect to a

concatenated matrix. Let V be a matrix that is a column concate-
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nation of Vis,

V = [V1;V2; . . . ;VK ] ∈ Rn×
∑
ri .

It is easy to show that V V T =
∑K

i=1 ViV
T
i . Therefore, the principal

direction among V1, . . . , VK can be conveniently computed using

SVD. The SVD of V is expressed as

V = QΣW T

and subsequently

V V T = QΣΣTQT .

Note that the rank of V V T is the same as that of V . The first

column of Q is the principal direction v{Vi}Ki=1
we are looking for.

In practice, it can be computed efficiently using truncated SVD

numerical solutions.
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A.2 Proofs

A.2.1 Some Basic Facts for Proofs

As it is the most elementary fact, we begin by recapitulating

Lemma 2.2 and show its proof.

Lemma 2.2. For i, j ∈ IK and Si ∩ Sj 6= φ, [Wi] ⊥ [Wj ].

Proof. From the definition of the partially-joint score subspace,

[Wi], we immediately find that

[Wi] ⊥ [Wj ], i, j ∈ IK and Sj ∩ Si 6= φ

by the range-kernel complementarity property of the vector space

projection transformation.

We denote I<i = {j : j < i, Sj ∩ Si 6= φ}. Hereafter N (T ) is

the null space of a linear transformation T of Rn and R(T ) its

range space.

Lemma A.1. For i ∈ IK , we have N (©k∈I<iP
⊥
k ) = ⊕k∈I<i [Wk].

Proof. Let v ∈ ⊕k∈I<i [Wk]. Then there exists a unique {vk}k∈I<i
with vk ∈ [Wk] such that the sum of all vk is v. For each j1 ∈ I<i
and vj1 ∈ [Wj1 ], it can be easily checked that (©k∈I<j1P

⊥
k )(vj1) =

{0} and then (©k∈I<iP
⊥
k )(vj1) = {0} follows. Thus (©k∈I<iP

⊥
k )(v) =

{0} and N (©k∈I<iP
⊥
k ) ⊃ ⊕k∈I<i [Wk].

Conversely, let v′ 6∈ ⊕k∈I<i [Wk]. Then there exists a unique

{vk}k∈I<i with vk ∈ [Wk] and non-zero a ∈ (⊕k∈I<i [Wk])
⊥ such

that v′ is the sum of all vk and a. For each j1 ∈ I<i and vj1 ∈ [Wj1 ],

we have (©k∈I<iP
⊥
k )(vj1) = {0} as before. Since a ⊥ [Wk′′ ] for
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any k′′ ∈ I<i, we also have (©k∈I<iP
⊥
k )(a) 6= 0. Thus we have

(©k∈I<iP
⊥
k )(v′) 6= {0} and N (©k∈I<iP

⊥
k ) ⊂ ⊕k∈I<i [Wk].

Lemma A.2. For i ∈ IK , we have ⊕k∈I<i [Wk] = +k∈I<i(∩k′∈Sk [Vk′ ]).

Proof. We give a proof by induction on k. If k = 1, there is nothing

to prove. If k = 2, [W1] = ∩k′∈S1 [Vk′ ], so the statement is true for

k = 1, 2.

For any k ≥ 3, suppose the statement holds, that is,

⊕j∈I<m [Wj ] = +j∈I<m(∩k′∈Sj [Vk′ ])

for all 1 ≤ m ≤ k. Let k̃ be the largest element in I<k+1. We

denote P =©k′∈I<k̃P
⊥
k′ and P⊥, the projection onto N (P ) of Rn.

Then, we have

+j∈I<k+1
(∩k′∈Sj [Vk′ ]) = ⊕j∈I<k̃ [Wj ] + ∩k′∈Sk̃ [Vk′ ]

= ⊕j∈I<k̃ [Wj ] + P (∩k′∈Sk̃ [Vk′ ]) + P⊥(∩k′∈Sk̃ [Vk′ ])

Indeed, P⊥(∩k′∈Sk̃ [Vk′ ]) ⊂ N (P ) and N (P ) = ⊕k′∈I<k̃ [Wk′ ] by

the previous lemma. Thus

+j∈I<k+1
(∩k′∈Sj [Vk′ ]) = ⊕j∈I<k̃ [Wj ] + P (∩k′∈Sk̃ [Vk′ ])

= ⊕j∈I<k̃ [Wj ]⊕ [Wk̃]

= ⊕j∈I<k+1
[Wj ].

Therefore the statement holds for any k ≥ 3 and the proof is

completed.

Lemma A.3. For k = 1, . . . ,K, +i∈{k∈Si}[WSi ] = [Vk].
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Proof. In Lemma A.2, we set i such that Si = {k}. Then I<i =

{j : k ∈ Sj , |Sj | > 1} and ⊕j∈I<i [Wj ] = +j∈I<i(∩k′∈Sj [Vk′ ]). The

proof goes similarly as in Lemma A.2. Let ĩ be the largest element

in I<i. We denote P = ©k′∈I<ĩP
⊥
k′ and P⊥, the projection onto

N (P ) of Rn.

+j∈I<i∪Si(∩k′∈Sj [Vk′ ]) = ⊕j∈I<i [Wj ] + ∩k′∈Si [Vk′ ]

= ⊕j∈I<i [Wj ] + P (∩k′∈Si [Vk′ ]) + P⊥(∩k′∈Si [Vk′ ])

= ⊕j∈I<i [Wj ] + P (∩k′∈Si [Vk′ ])

= ⊕j∈I<i [Wj ]⊕ [Wi]

= ⊕j∈I<i∪Si [Wj ].

By the set inclusion-exclusion principle, as I<i ∪Si involves every

index-set that contains k, it is immediate that +j∈I<i∪Si(∩k′∈Sj [Vk′ ]) =

[Vk].

A.2.2 Proof of Theorem 2.1

Proof. We claim that rank([Wi]) is uniquely determined. By Sylvester’s

law of nullity, we have

rank([Wi]) = rank(∩k∈Si [Vk])− rank(N (©j∈I<iP
⊥
j ) ∩ (∩k∈Si [Vk])),

where I<i = {j : j < i, Sj ∩ Si 6= φ} as before. By lemma A.1 and

A.2, Sylvester’s law of nullity for our theorem is restated as

rank([Wi]) = rank(∩k∈Si [Vk])− rank
(
(+k∈I<i(∩k′∈Sk [Vk′ ])) ∩ (∩k∈Si [Vk])

)
.

We want to make this expression in a more explicit form. For that,

we suggest the following assertions.
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Let l = |Si|. We set [Il] = +k∈{k:|Sk|>l}(∩k′∈Sk [Vk′ ]). The pro-

jection onto [Il] in Rn is denoted by PIl and the projection onto

[Il]
⊥ is denoted by P⊥Il . Moreover, we consider an index set Ji,>l =

I<i ∩ {k : |Sk| > l} and let [Ji] = +k∈Ji,>l(∩k′∈Sk [Vk′ ]). The pro-

jection onto [Ji] in Rn is denoted by PJi and the projection onto

[Ji]
⊥ by P⊥Ji . Finally, we define Ji,l = I<i ∩ {k : |Sk| = l}.

Lemma A.4. P⊥Il = P⊥Il ◦ P
⊥
Ji

.

Proof. Trivial from the fact N (P⊥Ji ) ⊂ N (P⊥Il ).

Lemma A.5. If vj ∈ P⊥Ji (∩k′∈Sj [Vk′ ]) with j ∈ Ji,l \ J ′i,l, then

vj ∈ (∩k′∈Sj [Vk′ ]) ∩ (∩k′∈Sm [Vk′ ]) for some m < i, m 6= j such

that Sm ∩ Si = {0} and not for any m < i, m 6= j such that

Sm ∩ Si 6= {0}.

Proof. Consider the cases

(1) vj ∈ (∩k′∈Sj [Vk′ ])∩(∩k′∈Sm [Vk′ ]) for some m < i, m 6= j such

that Sm ∩ Si 6= {0} but not for any Sm ∩ Si = {0},

(2) (∩k′∈Sj [Vk′ ]) ∩ (∩k′∈Sm [Vk′ ]) = {0} for only m ∈ Ji,l

In case (1), vj becomes automatically an element of ∩k′∈St [Vk′ ]

such that Sj ⊂ St and Sm ⊂ St. Then vj ∈ [Ii] since Si ∩ St 6= φ

and |St| > |Si|, and this is a contradiction. In case (2), vj 6∈ R(PIl)

and this is contradict to the assumption.

Proposition A.1. If [Vk]k∈K is relatively independent, then +k∈Ji,lP
⊥
Ji

(∩k′∈Sk [Vk′ ])

and P⊥Ji (∩k∈Si [Vk]) are independent.

Proof. We want to show that the relative independence of [Vk]k∈K

is violated if +k∈Ji,lP
⊥
Ji

(∩k′∈Sk [Vk′ ]) and P⊥Ji (∩k∈Si [Vk]) are linearly
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dependent. Suppose that there is nonzero v ∈ +k∈Ji,lP
⊥
Ji

(∩k′∈Sk [Vk′ ])∩

P⊥Ji (∩k∈Si [Vk]) with l = |Si|. We are going to show that +k∈Ji,lP
⊥
Ji

(∩k′∈Sk [Vk′ ])∩

P⊥Ji (∩k∈Si [Vk]) is not {0} in the following cases.

First we exclude the case where P⊥Il (∩k′∈Si [Vk′ ]) = {0}. If so

we have ∩k′∈Si [Vk′ ] = ⊕k′′∈{k′′:Si⊂Sk′′}[W
′′
k ] = +k′′∈{k′′:Si⊂Sk′′}[V

′′
k ],

then ∩k′∈Si [Vk′ ] itself is in [Ii] = N (P⊥Ji )).

Next, under the assumption that P⊥Il (∩k′∈Si [Vk′ ]) 6= {0}, we

run through the following situations. Now on J ′i,l = {k : |Sk| =

l, k ∈ I<i, P⊥Ii (Sk) 6= {0}}.

(i) |Ji,l| = 0 : There is nothing to prove.

(ii) |Ji,l| = 1 and |J ′i,l| = 0 :

We will show that this case is vacuous. Suppose there exist

nonzero v ∈ P⊥Ji (∩k′∈Si [Vk′ ])∩P
⊥
Ji

(∩k′∈Sk [Vk′ ]) with k ∈ Ji,l.

As P⊥Il (∩k′∈Sk [Vk′ ]) = {0}, we can deduce that P⊥Il (v) = 0.

We pick a vector u in ∩k′∈Sj [Vk′ ] such that Si ⊂ Sj and

Sj ⊂ Sj . As ∩k′∈Sj [Vk′ ] ⊂ ∩k′∈Si [Vk′ ] and ∩k′∈Sj [Vk′ ] ⊂

∩k′∈Sk [Vk′ ], we have u ∈ (∩k′∈Si [Vk′ ]) ∩ (∩k′∈Sk [Vk′ ]). As

Si ∩ Sj 6= φ, we observe that ∩k′∈Sj [Vk′ ] ⊂ [Ii] = N (P⊥Ji ).

u ∈ PJi((∩k′∈Si [Vk′ ]) ∩ (∩k′∈Sk [Vk′ ]))

⊂ PJi(∩k′∈Si [Vk′ ]) ∩ PJi(∩k′∈Sk [Vk′ ]).

Let w = u+v. Since u ∈ PJi(∩k′∈Sk [Vk′ ]) and v ∈ P⊥Ji (∩k′∈Sk [Vk′ ])

with respect to Sk and the same for Si, we find that w ∈

(∩k′∈Si [Vk′ ]) ∩ (∩k′∈Sk [Vk′ ]), and then, w ∈ [Ii] = N (P⊥ji ).

But this forces P⊥Ji (w) = v and v to be zero and leads to

vacuity.
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(iii) |Ji,l| = 1 and |J ′i,l| = 1 :

Suppose there is nonzero v ∈ P⊥Ji (∩k′∈Sk [Vk′ ]) with k ∈ Ji,l.

From Lemma A.4, we have P⊥Il (v) ∈ P⊥Il (∩k′∈Sk [Vk′ ]). By

the same argument, P⊥Il (v) ∈ P⊥Il (∩k′∈Si [Vk′ ]). Then there is

a nonzero P⊥Il (v) ∈ P⊥Il (∩k′∈Si [Vk′ ]) ∩ P
⊥
Il

(∩k′∈Sk [Vk′ ]).

(iv) |Ji,l| ≥ 2, |J ′i,l| = 0 and v ∈ P⊥Ji (∩k′∈Sk [Vk′ ]) with some

k ∈ Ji,l : the same as case (ii).

(v) |Ji,l| ≥ 2, |J ′i,l| = 0 and v 6∈ P⊥Ji (∩k′∈Sk [Vk′ ]) with any of

k 6∈ Ji,l :

We will show that this case is a generalization of case (ii)

and also vacuous. As v ∈ +k∈Ji,lP
⊥
Ji

(∩k′∈Sk [Vk′ ]), we express

v =
∑

j∈Ji,l

ajvj

for each aj ∈ R (at least two of them are nonzero) and

vj ∈ P⊥Ji (∩k′∈Sj [Vk′ ]).

By Lemma A.5, for each vj for j ∈ Ji,l, we can find Sm,j

such that vj ∈ Sm,j and m < i, m 6= j, Sm ∩ Si = {0}. And

this also implies that there exists certain St,j and vj ∈ St,j
such that Sj ⊂ St,j and Sm,j ⊂ St,j . Here we point out that

as St,j ∩ Si 6= φ, since Sj ∩ Si 6= φ. Then all ∩k′∈St,j [Vk′ ]

for j ∈ Ji,l and their linear combinations are subsets of [Ii].

This leads to the conclusion v ∈ [Ii] and shows the vacuity

of this case.

(vi) |Ji,l| ≥ 2, |J ′i,l| ≥ 1 and v ∈ P⊥Ji (∩k′∈Sk [Vk′ ]) with some

k ∈ Ji,l :
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If k ∈ J ′i,l, then the same as the case (iii). If k 6∈ J ′i,l, then

the same as the case (ii).

(vii) |Ji,l| ≥ 2, |J ′i,l| ≥ 1 and v 6∈ P⊥Ji (∩k′∈Sk [Vk′ ]) with any of

k ∈ Ji,l :

As v ∈ +k∈Ji,lP
⊥
Ji

(∩k′∈Sk [Vk′ ]), we express

v =
∑

j∈Ji,l

ajvj

for each aj ∈ R (at least two of them are nonzero) and

vj ∈ P⊥Ji (∩k′∈Sj [Vk′ ]). Note that if aj′ = 0 for all j′ ∈ J ′i,l,

then this case is essentially the same as case (v), so we only

consider the situation at least one aj′ 6= 0 for j′ ∈ J ′i,l.

By Lemma A.5 and its consequences in case (v), for each

j ∈ Ji,l \ J ′i,l, there exists St,j and vj ∈ St,j such that Sj ⊂

St,j and Sm,j ⊂ St,j . As previously discussed, ∩k′∈St,j [Vk′ ]

for j ∈ Ji,l \ J ′i,l is a subset of [Ii]. So we rule out the terms

involving j ∈ Ji,l \ J ′i,l and then

P⊥Il (v) =
∑

j′∈J ′i,l

aj′P
⊥
Il

(vj′).

Since each ∩k′∈Sj′ [Vk′ ] 6= {0} for j ∈ J ′i,l is a subset of [Ii]

and at least one aj′ 6= 0, we deduce that P⊥Il (v) is non-zero.

Therefore, the relative independence is violated.

Now the last term in the RHS of our law of nullity is re-
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expressed as

(+k∈I<i(∩k′∈Sk [Vk′ ])) ∩ (∩k∈Si [Vk]) (A.2)

=((+k∈Ji,<l(∩k′∈Sk [Vk′ ]))⊕ (+k∈Ji,lP
⊥
Ji (∩k′∈Sk [Vk′ ]))) ∩ (∩k∈Si [Vk])

=((+k∈Ji,<l(∩k′∈Sk [Vk′ ]))⊕ (+k∈Ji,lP
⊥
Ji (∩k′∈Sk [Vk′ ])))

∩ (PJi(∩k∈Si [Vk])⊕ P
⊥
Ji (∩k∈Si [Vk]))

In Proposition A.1, we have observed that +k∈Ji,lP
⊥
Ji

(∩k′∈Sk [Vk′ ])

and P⊥Ji (∩k∈Si [Vk]) are independent. As PJi(∩k∈Si [Vk]) ⊂ +k∈Ji,<l(∩k′∈Sk [Vk′ ],

the term (A.2) becomes

(+k∈I<i(∩k′∈Sk [Vk′ ])) ∩ (∩k∈Si [Vk]) = (+k∈Ji,<l(∩k′∈Sk [Vk′ ]) ∩ (PJi(∩k∈Si [Vk])).

Finally, we have demonstrated

rank([Wi]) = rank(∩k∈Si [Vk])− rank
(

(+k∈I′<i(∩k′∈Sk [Vk′ ])) ∩ (∩k∈Si [Vk])
)

= rank(∩k∈Si [Vk])

− rank
(
(+k∈Ji,<l(∩k′∈Sk [Vk′ ]) ∩ (PJi(∩k∈Si [Vk])) ∩ (∩k∈Si [Vk])

)

= rank(∩k∈Si [Vk])− rank (PJi(∩k∈Si [Vk])) .

It is notable that the determination of rank([Wi]) depends only

on Ji,>l, that is, the set of indices j such that |Sj | > |Si| and

Sj ∩ Si 6= φ. In other words, it does not depend on any index-sets

of the same size as Si and their orderings.

As partially-joint score subspaces [Wi] are constructed recur-

sively and the determination of each [Wi]’s rank only depends on

Ji,>l, not on the ordering index-sets of size l = |Si|, we conclude

that the set of pairs {(Si, r(Si)) : i ∈ IK} is unique.
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A.2.3 Proof of Theorem 2.2

Proof. We give a proof recursively on l ∈ K. If l = K, there

only exists [W1] = ∩k′∈S1 [Vk′ ] for S1 = K, so there is nothing to

prove. If l = K − 1, by absolute orthogonality, all P⊥1 (∩k′∈Si [Vk′ ])

are orthogonal each other for i = {2, . . . ,K + 1}. Therefore, in

determining each [Wi] for i = {2, . . . ,K + 1}, other [Wt] for t ∈

Ji,2 = I<i ∩ {i′ : |Si′ | = 2} does not affect on the construction of

[Wi].

For any l ≤ K − 2, suppose the statement holds, that is,

a partially-joint score subspace [Wj ] such that |Sj | = l′ > l is

uniquely determined only by [Wj′ ] for Sj′ > Sj . For each in-

dex i ∈ Jl = {i′ : |Si| = l} (regardless of ordering), we have

PIl(∩k′∈Si [Vk′ ]) = PJi(∩k′∈Si [Vk′ ]) by absolute orthogonality. Then

among all indices i′ ∈ Jl, P⊥Ji′ (∩k′∈Si′ [Vk′ ]) are orthogonal each

other.

Suppose an ordering on the set of all index-sets of size l is

given, denoted by (Si1 , . . . , Sih) with h = KCl. For i1, [Wi1 ] is

just determined as P⊥Ji1
(∩k′∈Si1 [Vk′ ]). Next for i2, as [Wi1 ] and

P⊥Ji2
(∩k′∈Si2 [Vk′ ]) are orthogonal, we check that P⊥i1 ◦P

⊥
Ji2

(∩k′∈Si2 [Vk′ ]) =

P⊥Ji2
(∩k′∈Si2 [Vk′ ]). Thus [Wi2 ] is determined regardless of [Wi1 ]. In

recursive manner, for i ∈ {i3, . . . , ih}, [Wi] is determined regardless

of all [Wi′ ] for i′ ∈ Ji,l, or in other word, is uniquely determined

as P⊥Ji (∩k′∈Si [Vk′ ]) depending only on [Wj′ ]s for Sj′ > l.
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A.2.4 Proof of Corollary 2.1

Proof. From the discussions of Section 2, we know that [W(k.)]

is indeed the score subspace of Zk for each k = 1, . . . ,K. Thus,

given unique [Wi]’s for i ∈ I(k) from Theorem 2, the subspace

[U(k),i] generated by U(k),i is unique.

A.2.5 Examples

The following two examples presents the cases where relative in-

dependence is satisfied and not:

Example A.1. Let K = 3, n = 4 and

V1 =




1 0

0 1

0 0

0 0



, V2 =




1 0

0 1/
√

2

0 1/
√

2

0 0



, V3 =




1 0

0 0

0 1/
√

2

0 1/
√

2




then [I1] = [(1, 0, 0, 0)T ] and P⊥I1 [V1] = [(0, 1, 0, 0)T ], P⊥I1 [V2] =

[(0, 1/
√

2, 1/
√

2, 0)T ] and P⊥I1 [V3] = [(0, 0, 1/
√

2, 1/
√

2)T ] are lin-

early independent. Thus {[V1], [V2], [V3]} is relatively independent.

Example A.2. Let K = 3, n = 4 and

V1 =




1 0

0 1

0 0

0 0



, V2 =




1 0

0 1/
√

2

0 1/
√

2

0 0



, V3 =




1 0 0

0 0 0

0 1 1/
√

2

0 0 1/
√

2




As P⊥I1 [V3] ∩ (P⊥I1 [V1] + P⊥I1 [V2]) = [(0, 0, 1, 0)T ] is not empty, thus

{[V1], [V2], [V3]} is not relatively independent.
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We present the following examples that support Theorem 1,

that relative independence indeed guarantee the uniqueness of the

brief version of partially-joint structure S0 = {(Si, r(Si)) : i ∈

IK , r(Si) > 0}.

Example A.3 (cont’d from Example A.1.). Under the ordering

S1 = {1, 2, 3}, S5 = {1}, S6 = {2}, S7 = {3}, we obtain [W1] =

[(1, 0, 0, 0)T ], [W5] = [(0, 1, 0, 0)T ], [W6] = [(0, 0, 1, 0)T ] and [W7] =

[(0, 0, 0, 1)T ]. Then we have

S0 = {({1, 2, 3}, 1), ({1}, 1), ({2}, 1), ({3}, 1)}.

On the other hand, in the case S1 = {1, 2, 3}, S5 = {2}, S6 =

{1}, S7 = {3}, we obtain [W1] = [(1, 0, 0, 0)T ], [W5] = [(0, 1/
√

2, 1/
√

2, 0)T ],

[W6] = [(0,−1/
√

2, 1/
√

2, 0)T ] and [W7] = [(0, 0, 0, 1)T ]. The partially-

joint structure is still the same as above.

Example A.4 (cont’d from Example A.2.). Under the ordering

S1 = {1, 2, 3}, S5 = {1}, S6 = {2}, S7 = {3}, we obtain [W1] =

[(1, 0, 0, 0)T ], [W5] = [(0, 1, 0, 0)T ], [W6] = [(0, 0, 1, 0)T ] and [W7] =

[(0, 0, 0, 1)T ]. The partially-joint structure is

S0 = {({1, 2, 3}, 1), ({1}, 1), ({2}, 1), ({3}, 1)}.

On the other hand, in the case S1 = {1, 2, 3}, S5 = {3}, S6 =

{2}, S7 = {1}, we obtain [W1] = [(1, 0, 0, 0)T ], [W5] = [(0, 1, 0, 0)T , (0, 0, 1/
√

2, 1/
√

2)T ],

[W6] = [(0, 0, 1/
√

2,−1/
√

2)T ] and [W7] = {0}. This time, the

partially-joint structure is

S0 = {({1, 2, 3}, 1), ({1}, 0), ({2}, 1), ({3}, 2)}.
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We also present the following examples that support Theorem

2, that absolute orthogonality guarantee the uniqueness of the

partially-joint score subspaces.

Example A.5. Let K = 4, n = 7 and

V1 =
(

0 0 1 0 0 0
)T

V2 =
(

0 0 0 1 0 0
)T

V3 =


1/
√

2 1/
√

2 0 0 0 0

0 0 0 0 1 0



T

V4 =


1/
√

2 1/
√

2 0 0 0 0

0 0 0 0 0 1



T

.

This example satisfies absolute orthogonality. Between under two

orderings (S11 = {3, 4}, S12 = {1}, S13 = {2}) and (S11 = {3, 4}, S12 =

{2}, S13 = {1}), the determinations of [W12] and [W13] are the

same.

Example A.6. Let K = 4, n = 7 and

V1 =
(

1/2
√

2
√

3/2
√

2 1/
√

2 0 0 0
)T

V2 =
(√

3/2
√

2 1/2
√

2 0 1/
√

2 0 0
)T

V3 =


1/
√

2 1/
√

2 0 0 0 0

0 0 0 0 1 0



T

V4 =


1/
√

2 1/
√

2 0 0 0 0

0 0 0 0 0 1



T

.

This example satisfies relative orthogonality, but not absolute or-

thogonality. Between under two orderings (S11 = {3, 4}, S12 =
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{1}, S13 = {2}) and (S11 = {3, 4}, S12 = {2}, S13 = {1}), the

determinations of [W12] and [W13] are not the same because [V1]

and [V2] are not orthogonal and [W11] = (1/
√

2, 1/
√

2, 0, 0, 0, 0)T

does not have an effect on the determination of [W12] and [W13]

by definition.
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A.3 Additional Information on Simulation

Study

A.3.1 Examples of the Measure of Dissimilarity be-

tween Two Partially-Joint Structures

For the comparison between two partially-joint structure, we de-

vised a following concept of the measure of dissimilarity between

partially-joint structures.

First, we introduce a partially-joint structure matrix T̂ for a

(brief version of) partially-joint structure Ŝ0, a matrix each of

whose columns indicates an identified index-set among datasets

and each of whose elements show whether the corresponding dataset

belongs to that index-set. For example, when K = 3, if the esti-

mated partially-joint structure is

Ŝ0 = {({1, 2, 3}, 2), ({1, 2}, 1), ({1, 3}, 1), ({2, 3}, 1), ({3}, 1)},

then

T̂ =




1 1 1 1 0 0

1 1 1 0 1 0

1 1 0 1 1 1


 .

Next, consider two partially-joint structure matrices T̂1 ∈ {0, 1}n×m1

and T̂2 ∈ {0, 1}n×m2 . Discarding all the identical columns between

T̂1 and T̂2, we denote the remaining columns T̃1 and T̃2. For ex-

ample, from

T̂1 =




1 1

1 1

1 0


 , T̂2 =




1 1 0

1 1 1

1 1 1


 ,

109



we obtain

T̃1 =




1

1

0


 , T̃2 =




1 0

1 1

1 1


 .

For each remaining column of T̂1 (or T̂2), find the closest column

of T̂2 (or T̂1) in the Frobenius norm sense. The measure of dissim-

ilarity between T̂1 and T̂2 is the sum of the squares of all these

Frobenius norms between the remaining columns between T̃1 and

T̃2. In the example above, for (1, 1, 0)T of T̃1, the closest column

of T̃2 is (1, 1, 1)T and the difference is 1. For (1, 1, 1)T of T̃2, the

difference between (1, 1, 0)T is 1 and for (0, 1, 1)T of T̃2, it is 2.

The overall difference between T̂1 and T̂2 is then 12 + 12 + 22 = 6.

The measure of dissimilarity between two partially-joint structure

matrix T̂1 and T̂2 is denoted diff(T̂1, T̂2).

Finally, if the partially-joint structure Ŝ0,1 (or Ŝ0,2) has partially-

joint structure matrices T̂1 (or T̂2), then the measure of dissimi-

larity between Ŝ0,1 and Ŝ0,2 is diff(Ŝ0,1, Ŝ0,2) = diff(T̂1, T̂2).

A.3.2 Review on Methodology of Other Methods

We briefly review the methodology of AJIVE (Feng et al.,2018),

SLIDE (Gaynanova and Li,2019), COBS (Gao et al.,2020) and

JIVE (Lock et al.,2013).

AJIVE In AJIVE, each signal matrix Zk ∈ Rpk×n is regarded

as a sum of joint structure Jk and individual structure Ik for

k = 1, . . . ,K. A joint structure Jk is viewed as the score subspace

[VM ] ∈ Rn shared by all Zi’s.
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AJIVE extracts each estimated signal matrix Ẑk from dataset

Xk and Ẑk is of initial rank estimate r̃k. The estimated shared joint

component [V̂M ] is obtained as a flag mean among score subspaces

of Ẑk’s, or [V̂1], . . . , [V̂k], in a sense of the projection Frobenius

norm distance as our method. The rank rJ of [V̂M ] (called the joint

rank) is estimated using the simulated distribution of the largest

singular value of the concatenated matrix of random directions

and that of Wedin bounds:

(1) If the largest squared singular value of the column concatena-

tion matrix V̂ of V̂k’s is larger than the 5th percentile of the

simulated distribution of the largest squared singular value

of the concatenation matrix of random orthogonal matrices

of the same size as V̂k’s (or random direction bound), then

[V̂M ] is not generated by noise in 95 percent of probability.

(2) If there are r̂J squared singular values of V̂ are larger than

the 95th percentile of the simulated distribution of Wedin

bounds, then the first r̂J right singular vectors are used as

the basis for the estimated joint score subspace [V̂M ].

The estimated joint structure Ĵk is a projection of the dataset

Xk onto the estimated joint score subspace [V̂M ], that is, Ĵk =

XkV̂M V̂
T
M . Each estimated individual structure Îk is obtained as

Xk·(I−V̂M V̂ T
M ). The row spaces of each estimated individual struc-

ture Îk is orthogonal to [V̂M ]. There is no guarantee that individual

structures are mutually orthogonal. The joint score matrix is just

defined as V̂M and the corresponding joint loading matrix for kth

data source is a regression of Ĵk on V̂ T
M , computed as Ĵk · V̂M . The
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individual loading and score matrices are obtained from SVDs of

Îk’s.

SLIDE SLIDE identifies the partially-joint structure with the

penalized matrix factorization, that is,

(Ũ , Ṽ ) = arg min
U,V

K∑

k=1

1

2
‖Xk − UkV T ‖2F + λ

r∑

j=1

‖Ukj‖2 s.t. V TV = I,

where Ukj is the jth column of the loading matrix Uk of Xk and

r is the number of all possible sparsity patterns. After computing

Ũ and Ṽ with an iterative algorithm, the corresponding struc-

ture matrix T̂ is obtained from the sparse structure of Ũ . Note

that the concept of the structure matrix T̂ here is identical to the

partially-joint structure matrix of ours in Section B.1. Even though

this optimization problem is nonconvex and there is no guarantee

about convergence to the global optimum, authors reported that a

local solution can be obtained heuristically by initializaing V with

the left singular matrix of concatenated X that works well in the

simulation.

Then SLIDE estimate the loading and score matrices, Û and V̂ ,

for the structure T̂ by solving the following optimization problem

with an iterative algorithm,

(Û , V̂ ) = arg min
U,V

‖X − UV T ‖2F s.t. V TV = I,

with the constraint that the loading U has the same sparsity struc-

ture as T̂ .

In model validation, SLIDE adapt the block cross validation

(BCV) procedure to select the best structure T̂best. BCV splits

rows and columns of each datasetXk into submatricesX11
k , X

12
k , . . . , X

21
k , . . ..
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Then it holds out a set of submatrices Xij = [Xij
1 , X

ij
2 , . . . , X

ij
K ]

of the same sub-block position in each dataset Xk and evaluate

the prediction error on Xij ’s. Given a set of structure candidates

T̂1, T̂2, . . ., we select one that minimizes the error across all folds.

JIVE Like in AJIVE, JIVE decompose each signal matrix

Xi as a sum of joint structure Ji and individual structure Ii,

for i = 1, . . . ,K. After defining R to be a row concatenation of

Ri = Xi − Ji − Ii, JIVE estimate both joint and individual struc-

tures by minimizing ‖R‖2F under the given ranks. An alternating

iterative algorithm is implemented for the estimation finding indi-

vidual component with given joint component at one step and vice

versa at another step. The estimated joint structure is identical to

the first rJ terms in the SVD of X with individual components

removed and the estimated individual structures to the first ri

terms in the SVD of Xi with the joint component removed. The

selection of rJ and ris are validated using the permutation test.

COBS COBS iteratively estimates a sequence of loading vec-

tors, ui for i = 1, . . . , r for given r, while updating the data matrix

X = [X1, . . . , Xk] ∈ Rn×
∑
pk . The algorithm starts with X [0] = X.

At the ith step, with the current data matrix X [i−1], the ith load-

ing vector ui is estimated solving the following maximization prob-

lem, that is,

ũi = max
u
‖(X [i−1])Tu‖22 s.t. uTu = 1.

As each ui is equipped with block structure ui =
(
uT(1) . . . u

T
(K)

)T
,

we can give sparsity at two levels of thresholding, one for block-

wise sparsity and the other for overall sparsity in estimating ũi.

The tuning parameters αv ∈ [0, 1] and λv ≥ 0 control the two
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levels of sparsity respectively, and û is thresholded as a normalized

solution of

min
x

1

2
‖x− ũi‖2 + γ1‖x‖1 + γ2‖x‖2,1,

where γ1 = αvλv and γ2 = (1 − αv)λv. Then the score vector vi

is estimated as the empirical BLUP and dataset X [i−1] is updated

as X [i] = X [i−1] − ûiv̂T .

114



A.3.3 Results on Tuning Parameter Selection

We report the performances of our tuning parameter selection pro-

cedure of Section 2.3.3 using the six models given in Section 2.5.

Since the tuning parameter λ represents a threshold for princi-

pal angles, the candidates for λ are given by λ = 0◦, 1◦, . . . , 90◦.

For each value of λ, we evaluated the empirical risk. As discussed

in Section 2.3.3, we take the parameter λ̃ that gives the smallest

empirical risk and also compare diff(Ŝ0(λ̃0; Ẑtr), Ŝ0(λ; Ẑ)) as a

function of λ. We also present diff(Ŝ0(λ, Ẑ),S0), which reflects

how much the estimated structure differs from the true structure

on each value of angle threshold, under the situation where the

true structure (‘oracle’) is known.

When SNR = 10, getnfrac function estimated true signal

ranks correctly for models 1 to 5. The empirical risk is mini-

mized at an interval of λ’s, and for any λ in the interval, the

corresponding structure Ŝ0 matches the true S0; the valley bot-

toms of empirical risk (solid line) are posited inside those of the

measure of dissimilarity (dashed line) with value zero, as seen in

Fig. A.3.1. For each model in the figure, solid line (empirical risk)

shows a similar shape as dashed line (the measure of dissimilar-

ity), which implies that empirical risk well reflects the difference

between the estimated structure and the true structure. In Model

6, the true signal rank is 8 for each dataset, for instance, from

{({1, 2, 3}, 2), ({1, 2}, 2), ({1, 3}, 2), ({1}, 2)} in the case X1. How-

ever, getnfrac function only estimated r1 = 8, r2 = 8 and r3 = 7.

The estimated partially-joint structure lacks ({3}, 1) from the true

structure.
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Figure A.3.1: The values of empirical risk (solid) and

diff(Ŝ0(λ̃0; Ẑtr), Ŝ0(λ; Ẑ)) (dotted), diff(Ŝ0(λ, Ẑ),S0), (dashed).

When the signal-to-noise ratio is small, SNR = 2, getnfrac

function estimated signal ranks as zero for all six cases, so we give

the true inherent signal ranks instead. Unfortunately, the empirical

risk is minimized at smaller values of λ than desired; see Fig. A.3.2.

Unlike Fig. A.3.1, solid line (empirical risk) shows a far different

shape than dashed line (the measure of dissimilarity), except for

Model 1, which implies that empirical risks fail to detect the true

structure. This is due to the lower value of SNR, with which the

magnitude of noise overwhelms that of signal. As the score vectors

of each dataset have almost random directions in low SNRs, there

is a tendency that signals from a partially-joint (and fully-joint)

scores are counted separately as if they belong to individual data

blocks.
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Figure A.3.2: The values of penalized empirical risk for λ when

n = 200 and SNR = 2. The values of empirical risk (solid line)

and the measure of dissimilarity, diff(Ŝ0(λ, Ẑ),S0), (dashed line)

over varying λ are shown.
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A.3.4 Simulation Settings for Section 2.5.3

In the unbalance of signal strength between joint and individual

component settings, we set n = 200 and K = 3.

In the first case, we set the elements of σ2
M as

(1) Joint (S1) : (15, 14.5, . . . , 5.5),

(2) Individual 1 (S2) : (0.150, 0.141, 0.132, . . . , 0.069),

(3) Individual 2 (S3) : (0.147, 0.138, 0.129, . . . , 0.066),

(4) Individual 3 (S4) : (0.144, 0.135, 0.126, . . . , 0.063),

so the strength of joint signals are about 100 times stronger than

those of individual signals.

In the second case case, we set the elements of σ2
M as

(1) Joint (S1) : (0.15, 0.145, . . . , 0.055),

(2) Individual 1 (S2) : (15, 14.1, 13.2, . . . , 6.9),

(3) Individual 2 (S3) : (14.7, 13.8, 12.9, . . . , 6.6),

(4) Individual 3 (S4) : (14.4, 13.5, 12.6, . . . , 6.3),

so the strength of individual signals are about 100 times stronger

that those of joint signals.
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A.4 Additional Information on Real Data

Analysis

Table A.4.1: Fisher’s exact tests between gene muta-

tions/chromosome defects and the CLL subgroups, α and β

with top 5 adjested p-values (Benjamini-Hochberg method).

Gene mutation/Chromosome defect adjusted p-value

IGHV 1.036× 10−13

MED12 0.173

del17p13 0.174

del13q14 0.178

TP53 0.184

Table A.4.2: The association between IGHV mutation status and

the CLL subgroups with adjusted p-value (9 missing values ex-

cluded).

Mutation \ Subgroup α β

IGHV Wild type 49 8

IGHV Mutated 7 48
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Table A.4.3: The most appeared drugs in the subgroups [a] and

[b] with appearances at least four times out of 5 concentrations.

The most appeared drugs in subgroup [a]

Drug name Target pathway Appearances

spebrutinib BTK 5

idelalisib PI3K delta 5

duvelisib PI3K gamma, PI3K delta 5

tamatinib SYK 5

dasatinib ABL1, KIT, LYN, PDGFRA, PDGFRB, SRC 5

PF 477736 CHK1, CHK2 5

MK-2206 AKT1/2 (PKB) 5

ibrutinib BTK 4

selumetinib MEK1/2 4

PRT062607 HCL SYK 4

AZD7762 CHK1/2 4

CCT241533 CHK2 4

TAE684 ALK 4

MK-1775 WEE1 4

AT13387 HSP90 4

The most appeared drugs in the subgroup [b]

Drug name Target pathway Appearances

everolimus mTOR 5

thapsigargin SERCA 5

orlistat LPL 5

rotenone Electron transport chain in mitochondria 5

afatinib EGFR, ERBB2 4

fludarabine Purine analogue 4

navitoclax BCL2, BCL-XL, BCL-W 4
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Appendix B

Supplementary Materials

for Chapter 3

B.1 Proofs

B.1.1 Proof of Lemma 3.1

Proof. Suppose we have any p1 = [v1, r1] and p2 = [v2, r2] ∈ Θ.

First, it is easy to check that d(p1, p1) = 0. The non-negativity

and symmetry of d are trivial.

We show a triangle inequality. Let p3 = [v3, r3] be any point

in Θ. By the spherical triangle inequality [Ramsay and Richt-

myer, 1995], we have arccos(v1, v2) ≤ arccos(v1, v3)+arccos(v2, v3).

121



Without loss of generality, d1(p1, p2) ≤ d2(p1, p2). Then

d1(p1, p2) =
(
arccos2(vT1 v2) + |r1 − r3 + r3 − r2|2

)1/2

≤
((

arccos(vT1 v3) + arccos(vT2 v3)
)2

+ (|r1 − r3|+ |r3 − r2|)2
)1/2

≤
(
arccos2(vT1 v3) + |r1 − r3|2

)1/2
+
(
arccos2(vT2 v3) + |r2 − r3|2

)1/2

= d1(p1, p3) + d1(p2, p3)

and

d2(p1, p2) =
(
arccos2(−vT1 v2) + |r1 − (π − r2)|2

)1/2

≤
((

arccos(vT1 v3) + arccos(−vT2 v3)
)2

+ (|r1 − r3|+ |π − r3 − r2|)2
)1/2

= d1(p1, p3) + d2(p2, p3).

or d1(p1, p2) ≤ d1(p1, p3) + d2(p2, p3). In a similar way,

d1(p1, p2) ≤ d2(p1, p3) + d2(p2, p3)

d1(p1, p2) ≤ d2(p1, p3) + d1(p2, p3).

B.1.2 Proof of Proposition 3.1

Proof. If E is empty, it is trivial. In the case E non-empty, we first

show (BPC) implies (ZC). Let Bn = ∪∞k=nEk and B = ∩∞n=1Bn.

By (BPC), there is a sufficiently large n such that d(pn, E) ≤ ε for

any pn ∈ Bn, that is, there exists q ∈ E with d(p, q) ≤ ε.

Given p ∈ B, we can find pN ∈ Bn for sufficiently large N such

that d(pN , p) ≤ ε and d(p,E) ≤ ε. Then d(p,E) = infq∈E d(p, q) ≤

d(pn, p) + infq∈E d(pN , q) ≤ 2ε. Since E is a closed set, p ∈ E as

ε→ 0. This proves (ZC).
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We next show (ZC) implies (BPC). Consider a sequence pn ∈

En such that pn = arg maxp∈En d(p,E) and let rn = maxp∈En d(p,E).

Then we have either rn → 0 or rn 6→ 0. If rn → 0, then (BPC)

holds. In the case rn 6→ 0, there exists a sequence n(k) such

that rn(k) ≥ r0 > 0. If pn(k) has an accumulation point p′, then

d(p′, E) > 0, which leads to a contradiction to (ZC). Thus pn(k)

has no accumulation point.

As Θ is compact and thus totally bounded, we can find a finite

cover {Aj} of Θ such that diam(Aj) = ε for any small ε > 0.

Since there is no accumulation point, each Aj contains only finitely

many pn(k). However, this is contradict to the existence of the

subsequence pn(k).

B.1.3 Proof of Theorem 3.1

Proof. Let ∆(x, p1, p2) = ρ(x, p1)−ρ(x, p2) for x ∈ Sm and p1, p2 ∈

Θ. Under uniform continuity, for every p ∈ Θ and ε > 0, there

exists δ > 0 such that |∆(X, p, p′)| < ε a.s. whenever d(p, p′) < δ.

For ω ∈ Ω and p = [v, r] ∈ Θ, denote

Fn(p) =
1

n

n∑

i=1

ρ(Xi(ω), p)2 + jτ (r),

F (p) = E(ρ(X, p)2) + jτ (r),

`n = inf
p∈Θ

Fn(p), ` = inf
p∈Θ

F (p),

Eτn = {p ∈ Θ : Fn(p) = `n}, Eτ = {p ∈ Θ : F (p) = `}.

Let {p1, p2, . . .} ⊂ Θ be dense. For each k = 1, 2, . . ., given

pk = [vk, rk], we have Fn(pk)→ F (pk) almost surely by the Strong
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Law of Large Numbers. We put this in another way as follows. Let

Ak = {ω : Fn(pk) → F (pk), n → ∞} ⊂ Ω, then P(Ak) = 1. With

A = ∩∞k=1Ak, we have P(A) = 1 and

Fn(pk)→ F (pk)

for all ω ∈ A and each k = 1, 2, . . ..

For any p = [v, r], p′ = [v′, r′] ∈ Θ, we check

|Fn(p′)− Fn(p)| ≤ 1

n

n∑

i=1

(
ρ(Xi, p

′) + ρ(Xi, p)
)
|ρ(Xi, p

′)− ρ(Xi, p)|

+ |jτ (r′)− jτ (r)|

=
1

n

n∑

i=1

(
2ρ(Xi, p

′) + |∆(Xi, p, p
′)|
)
|∆(Xi, p, p

′)|

+ |jτ (r′)− jτ (r)|.

(B.1)

By plugging pk = [vk, rk] into p′ in (B.1),

1

n

n∑

i=1

ρ(Xj , pk)
2 + jτ (rk)−

1

n

n∑

i=1

(2ρ(Xi, pk) + |∆(Xi, p, pk)|) |∆(Xi, p, pk)|

− |jτ (pk)− jτ (p)| ≤ 1

n

n∑

i=1

ρ(Xi, p)
2 + jτ (p) ≤ 1

n

n∑

i=1

ρ(Xi, pk)
2 + jτ (rk)

+
1

n

n∑

i=1

(2ρ(Xi, pk) + |∆(Xi, p, pk)|) |∆(Xi, p, pk)|+ |jτ (rk)− jτ (r)|.

We now consider a situation pk → p as k → ∞ for any p ∈ Θ.

Then for arbitrary ε, ε′ > 0, there exists a sufficiently large k0 such

that for k > k0, (a) by uniform continuity, |∆(Xj , p, pk)| < ε, (b)

|jτ (rk) − jτ (r)| < ε′ by (P2) and (P3). As n → ∞, we also have

(c) 1
n

∑n
i=1 ρ(Xj , pk) → Eρ(X, pk)

2 by the Strong Law of Large
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Numbers. Combining (a)-(c),

Eρ(X, pk)
2 + jτ (rk)− (2Eρ(X, pk) + ε) ε− ε′

≤ lim inf
n→∞

1

n

n∑

i=1

ρ(Xi, p)
2 + jτ (r) ≤ lim sup

n→∞

1

n

n∑

i=1

ρ(Xi, p)
2 + jτ (r)

≤ Eρ(Xj , pk)
2 + jτ (rk) + (2Eπ(Xi, pk) + ε) ε+ ε′.

Sending ε, ε′ → 0 and n → ∞, as 1
n

∑n
i=1 ρ(Xi, p)

2 and jτ (r) are

bounded above and below, for any subsequence pks → p, we have

lim
s→∞

Eρ(X, pks)
2 + jτ (rks) = lim

n→∞

1

n

n∑

i=1

ρ(Xi, p)
2 + jτ (r).

Thus, for all ω ∈ A,

Fn(p)→ F (p). (B.2)

Next, plugging pk into p and p into p′ in (B.1),

|Fn(pn)− Fn(p)| ≤ 1

n

n∑

i=1

(2ρ(Xi, p) + |∆(Xi, pn, p)|) |∆(Xi, pn, p)|

+ |jτ (r′)− jτ (r)| → 0.

by (a) and (b). Thus |Fn(pn)−F (p)| ≤ |Fn(pn)−Fn(p)|+ |Fn(p)−

F (p)| → 0 and

Fn(pn)→ F (p) (B.3)

for all sequences pn → p and ω ∈ A.

Finally, we assert the theorem.

◦ When ∩∞n=1∪∞k=nE
τ
n = φ : trivial
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◦ When ∩∞n=1∪∞k=nE
τ
n 6= φ : Denote Bn = ∪∞k=nE

τ
k . Let {bn ∈

Bn} be a sequence such that bn → b ∈ ∩∞n=1Bn. For each

n, we can find an index kn such that bn ∈ Eτkn . We want to

show that b ∈ Eτ .

By (B.3), `kn = Fkn(pkn)→ F (b) ≥ `. At the same time, by

(B.2), for any arbitrary q ∈ Θ, there exists a sequence εn → 0

such that F (q) ≥ Fn(q)− εn ≥ `n − εn. Then infq∈Θ F (q) =

` ≥ lim supn→∞ `n and we conclude `n → ` = F (b).

B.1.4 Proof of Theorem 3.2

Proof. We first introduce the concept of epi-convergence (Rock-

afellar and Wets,1998).

Definition B.1. Consider arbitrary functions h and {hk} defined

on a metric space (Θ, d) to R for k = 1, 2, . . .. The sequence {hk}

epi-converges to h at p ∈ Θ if and only if

(1) for every sequence qk → q ∈ Θ, lim infk→∞ hk(qk) ≥ h(q)

(2) there exists a sequence qk → q ∈ Θ, lim supk→∞ hk(qk) ≤

h(q).

Our first aim is to assure that, for p = (v, r), the function

fτk(p) = EXρ2(X, p) + jτ (r) epi-converges to f0(p) = EXρ2(X, p).

To show epi-convergence, we utilize the following proposition, see

Proposition 7.15 of Rockafellar and Wets (1998) or Royset (2018).

Proposition B.1. Let a function h and a sequence of functions

hk for k = 1, 2, . . . be on a metric space (Θ, d) to R. If {hk} are
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continuous and converges uniformly to h, then {hk} epi-converges

to f .

By definition, fτk(p) are continuous on p = [v, r] ∈ Θ. Also

{fτk} uniformly converges to f0, since for all p ∈ Θ,

|fτk(p)− f0(p)| = |ρτk(r)| → 0

as k →∞ by (P4). Thus, {fτk} epi-converges to f0.

Before going into the next step, we define the following set, the

population solution set inflated by ε > 0. Given τ ≥ 0 and ε > 0,

Eτ,ε =

{
p ∈ Θ : EXρ2(X, p) + jτ (p) ≤ ε+ inf

q∈Θ
EXρ2(X, q) + jτ (q)

}
.

Our second aim is to show, given any decreasing sequence εk →

0, Eτk,εk converges to E in outer limit. We use the following fact,

see Theorem 7.31 of Rockafellar and Wets (1998).

Proposition B.2. Let a function h and a sequence of functions

hk, k = 1, 2, . . . be defined on a metric space (Θ, d) to R. Suppose

{hk} epi-converges to h with −∞ < inf h < ∞. Let εk → 0 be a

decreasing sequence and set Bε
k = {p ∈ Θ : hk(p) ≤ ε+ inf hk} and

B = {p ∈ Θ : inf h}. Then Bε
k converges to B in outer limit as

k →∞.

In our case, as −∞ < 0 ≤ EXρ2(X, p) ≤ π2/4 < ∞, we have

Eτk,εk converges to E in outer limit as k →∞.

From the fact Eτk ⊂ Eτk,εk , it is easily derived that ∩∞n=1∪∞k=nE
τk ⊂

∩∞n=1∪∞k=nE
τk,εk . Therefore, we conclude that Eτk converges to E

in outer limit as k →∞.
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B.1.5 Proof of Theorem 3.3

Proof. Let ∆(x, p1, p2) = ρ(x, p1)−ρ(x, p2) for x ∈ Sm and p1, p2 ∈

Θ. Under uniform continuity, for every p ∈ Θ and ε > 0, there

exists δ > 0 such that |∆(X, p, p′)| < ε a.s. whenever d(p, p′) < δ.

For ω ∈ Ω and p = [v, r] ∈ Θ, denote

F τn (p) =
1

n

n∑

i=1

ρ(Xi(ω), p)2 + jτ (r),

Fn(p) =
1

n

n∑

i=1

ρ(Xi(ω), p)2,

F (p) = E(ρ(X, p)2),

`n = inf
p∈Θ

Fn(p), ` = inf
p∈Θ

F (p),

Eτn = {p ∈ Θ : Fn(p) = `n}, Eτ = {p ∈ Θ : F (p) = `}.

Let {p1, p2, . . .} ⊂ Θ be dense. For each k = 1, 2, . . ., given

pk = [vk, rk], we have Fn(pk)→ F (pk) almost surely as n→∞ by

the Strong Law of Large Numbers. By (P4), we also have jτn(rk)→

0 monotonically as n→∞. By the continuous mapping theorem,

combining two results, for each pk, F
τn
n (pk)→ F (pk) almost surely

as n → ∞. We put this as follows. Let Ak = {ω : F τnn (pk) →

F (pk), n→∞} ⊂ Ω, then P(Ak) = 1. With A = ∩∞k=1Ak, we have

P(A) = 1 and

Fn(pk)→ F (pk)

for all ω ∈ A and each k = 1, 2, . . ..
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For any p = [v, r], p′ = [v′, r′] ∈ Θ, we check

|F τnn (p′)− F τnn (p)| ≤ 1

n

n∑

i=1

(
ρ(Xi, p

′) + ρ(Xi, p)
)
|ρ(Xi, p

′)− ρ(Xi, p)|

+ |jτn(r′)− jτn(r)|

=
1

n

n∑

i=1

(
2ρ(Xi, p

′) + |∆(Xi, p, p
′)|
)
|∆(Xi, p, p

′)|

+ |jτn(r′)− jτn(r)|.

(B.4)

By plugging pk = [vk, rk] into p′ in (B.4),

1

n

n∑

i=1

ρ(Xj , pk)
2 + jτn(rk)−

1

n

n∑

i=1

(2ρ(Xi, pk) + |∆(Xi, p, pk)|) |∆(Xi, p, pk)|

− |jτn(pk)− jτn(p)| ≤ 1

n

n∑

i=1

ρ(Xj , p)
2 + jτn(p) ≤ 1

n

n∑

i=1

ρ(Xj , pk)
2 + jτn(rk)

+
1

n

n∑

i=1

(2ρ(Xi, pk) + |∆(Xi, p, pk)|) |∆(Xi, p, pk)|+ |jτn(rk)− jτn(r)|.

We now consider a situation pk → p ∈ Θ as k → ∞ for some p.

Then for arbitrary ε, ε′ > 0, there exists a sufficiently large k0 such

that for k > k0, (a) by uniform continuity, |∆(Xj , p, pk)| < ε, (b)

|jτn(rk)− jτn(r)| < ε′ by (P2) and (P3). As n→∞, we also have

(c) 1
n

∑n
i=1 ρ(Xj , pk) → Eρ(X, pk)

2 almost surely by the Strong

Law of Large Numbers. Combining (a)-(c),

Eρ(X, pk)
2 + jτn(rk)− (2Eρ(X, pk) + ε) ε− ε′

≤ lim inf
n→∞

1

n

n∑

i=1

ρ(Xj , p)
2 + jτn(r) ≤ lim sup

n→∞

1

n

n∑

i=1

ρ(Xj , p)
2 + jτn(r)

≤ Eρ(Xj , pk)
2 + jτn(rk) + (2Eρ(Xi, pk) + ε) ε+ ε′.
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Sending ε, ε′ → 0 and n → ∞, as 1
n

∑n
i=1 ρ(Xi, p)

2 and jτn(r) are

bounded above and below, for any subsequence pks → p, we have

lim
s→∞

Eρ(X, pks)
2 + jτn(rks) = lim

n→∞

1

n

n∑

i=1

ρ(Xi, p)
2 + jτn(r).

Thus, for all ω ∈ A,

F τnn (p)→ F (p). (B.5)

Next, plugging pk into p and p into p′ in (B.4),

|F τnn (pn)− F τnn (p)| ≤ 1

n

n∑

i=1

(2π(Xi, p) + |∆(Xi, pn, p)|) |∆(Xi, pn, p)|

+ |ρτn(r′)− ρτn(r)| → 0.

by (a) and (b). Thus |F τnn (pn) − F (p)| ≤ |F τnn (pn) − Fn(p)| +

|F τnn (p)− F (p)| → 0, and

F τnn (pn)→ F (p) (B.6)

for all sequences pn → p and ω ∈ A.

Finally, we assert the theorem.

◦ When ∩∞n=1∪∞k=nE
τ
n = φ : trivial

◦ When ∩∞n=1∪∞k=nE
τ
n 6= φ : Denote Bn = ∪∞k=nE

τ
k . Let {bn ∈

Bn} be a sequence such that bn → b ∈ ∩∞n=1Bn. For each

n, we can find an index kn such that bn ∈ Eτkn . We want to

show that b ∈ Eτ .

By (B.6), `kn = Fkn(pkn)→ F (b) ≥ `. At the same time, by

(B.5), for any arbitrary q ∈ Θ, there exists a sequence εn → 0

such that F (q) ≥ Fn(q)− εn ≥ `n − εn. Then infq∈Θ F (q) =

` ≥ lim supn→∞ `n and we conclude `n → ` = F (b).
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B.1.6 Proof of Proposition 3.2

We start with deriving series expansion of von Mises-Fisher distri-

bution with respect to spherical harmonics. For convenience, let

p = m+ 1, following the conventional notation Sp−1.

Proposition B.3. The density of von Mises-Fisher distribution

on Sp−1 with the mean direction µ and the concentration parame-

ter κ is given with respect to spherical harmonics as

fvMF(xTµ;κ) =
1

ωp

∞∑

l=0

dimHpl∑

j=1

clY
m
l (µ)Y m

l (x)

=
1

ωp

∞∑

l=0

l + λ

λ
clC

λ
l (xTµ)

=
1

ωp

∞∑

l=0

cl

√
(p− 2)l

l!

√
l + λ

λ
Y 0
l (xTµ),

where λ = (p − 2)/2 and ωp = 2πp/2/Γ(p/2) the surface area of

Sp−1, Y 0
l (cos θ) the spherical harmonic function of degree l and

order 0 for 0 ≤ θ ≤ π, and

cl =

√
π

(p− 2)l2p−3

Γ(p+ l − 2)

Γ((p− 1)/2)Γ((p− 2)/2)

I(p−2)/2+l(κ)

Ip/2−1(κ)
.

Proof. The probability density function of the von Mises-Fisher

distribution for the random p-dimensional unit vector x is given

by

fvMF(xTµ;κ) = Cp(κ)exp(κµTx),

with a concentration parameter κ > 0 and a pole µ ∈ Sp−1. The

normalization constant Cp(κ) is given by

Cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
,
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where Iν denotes the modified Bessel function of the first kind at

order ν.

By the Funk-Hecke formula (Dai and Xu,2013), we have

∫

Sp−1

fvMF(xTµ;κ)Y m
l (x)dσ(x) = clY

m
l (µ),

where

cl =
ωp−1

C
(p−2)/2
l (1)

∫ 1

−1
fvMF(t;κ)C

(p−2)/2
l (t)(1− t2)

p−3
2 dt.

We express cl with respect to the modified Bessel function

cl =

√
π

(p− 2)l2p−3

Γ(p+ l − 2)

Γ((p− 1)/2)Γ((p− 2)/2)

I(p−2)/2+l(κ)

Ip/2−1(κ)
.

using the following lemma.

Lemma B.1. We have the following formula involving exponen-

tial function and Gegenbauer polynomial (Dai and Xu,2013),

∫ 1

−1
eκtC

(p−2)/2
l (t)(1− t2)(p−3)/2 dt =

4π

2p/2l!

Γ(p+ l − 2)

Γ((p− 2)/2)
κ−(p−2)/2I(p−2)/2+l(κ).

Proof. For the formula 7.321 in Gradshteyn and Ryzhik (2014,

p.805),

∫ 1

−1
(1− x2)ν−1/2eiαxCνn(x) dx =

π21−νinΓ(2ν + l)

l!Γ(ν)
α−νJν+l(α)

for Re ν > −1/2, put ν = (p − 2)/2 and α = −iκ. Here Jν is the

Bessel function of the first kind at order ν. Then, use the identity

9.6.3 in Abramowitz and Stegun (1972, p.375)

e±νπi/2Iν(z) = Jν(ze±πi/2).
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Then using the addition formula of spherical harmonics, we

have

fvMF(xTµ;κ) =
1

ωp

∞∑

l=0

dimHpl∑

j=1

clY
m
l (µ)Y m

l (x)

=
1

ωp

∞∑

l=0

l + λ

λ
clC

λ
l (xTµ)

=
1

ωp

∞∑

l=0

cl

√
(p− 2)l

l!

√
l + λ

λ
Y 0
l (xTµ),

with λ = (p− 2)/2 and ωp, the surface area of Sp−1.

Remark B.1. In Mardia and Jupp (1999, p.168), the normalizing

constant is given as

Cp(κ) =
(κ

2

)p/2−1 1

Γ(p/2)Ip/2−1(κ)
.

Remark B.2. When p = 3, this result coincides with Jammala-

madaka and Terdik (2019) that

fvMF(xTµ;κ) =

∞∑

l=0

√
2l + 1

4π

Il+1/2(κ)

I1/2(κ)
Y 0
l (xTµ).

The proof of Proposition 3.2 is as follows.
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Proof.

Eθv =

∫

Sp−1

arccos(vTx)Cp(κ)exp(κµTx) dσ(x)

=

∫

Sp−1

arccos(vTx)

∞∑

l=0

1

ωp

l + λ

λ
cl

√√√√(p− 2)l
p−2

2

l!(l + p−2
2 )

Y 0
l (xTµ) dσ(x)

=
∞∑

l=0

1

ωp

l + λ

λ
cl

√√√√(p− 2)l
p−2

2

l!(l + p−2
2 )

∫

Sp−1

arccos(vTx)Y 0
l (xTµ) dσ(x)

=
∞∑

l=0

A(l)Y 0
l (vTµ)

ωp−1

C
(p−2)/2
l (1)

∫ 1

−1
arccos(t)C

(p−2)/2
l (t)(1− t2)(p−3)/2 dt,

where

A(l) =
∞∑

l=0

1

ωp

l + λ

λ
cl

√√√√(p− 2)l
p−2

2

l!(l + p−2
2 )

.

Remark B.3. We compute the integral term
∫ 1

−1
arccos(t)C

(p−2)/2
l (t)(1− t2)(p−3)/2 dt

numerically using the following facts.

When l = 0, as C
(p−2)/2
0 = 1, we use the following result.

∫ 1

−1
arccos(t)(1− t2)(p−3)/2 dt =





((p−3)!!)2

(p−2)! , p odd

((p−3)!!)2

2(p−2)! , p even.

When l > 0, we use the Maclaurin series of arccos on the interval

[−1, 1],

arccos t =
π

2
−
∞∑

n=0


2n

n




4n(2n+ 1)
t2n+1, |t| ≤ 1.
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It can be shown from integration by parts that

∫ 1

−1
tkCλl (t)(1− t2)λ−1/2 dt




> 0 if k ≥ l and k − l is even

= 0 otherwise

and from the formula 7.311.2 in Gradshteyn and Ryzhik (2014,

p.802),

∫ 1

−1
tl+2ρCλl (t)(1− t2)λ−1/2 dt =

Γ(2λ+ l)Γ(2ρ+ l + 1)Γ(λ+ 1/2)Γ(ρ+ 1/2)

2ll!Γ(2λ)Γ(2ρ+ 1)Γ(l + λ+ ρ+ 1)
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B.2 Additional Information on Simulation

Study

(a) r = 90◦, t1 = 90◦, κ = 100 (b) r = 90◦, t1 = 60◦, κ = 100

(c) r = 90◦, t1 = 90◦, κ = 30 (d) r = 90◦, t1 = 60◦, κ = 30

Figure B.2.1: Results of radius estimation when d = 2, r = 90◦

and n = 1000.
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B.3 Additional Information on Real Data

Analysis

(a)

(b)

Figure B.3.1: Cephalometric X-ray Image Data : Data points in

the coordinates by PNS (top) and PenPNS (MCP) (bottom). The

number means the percent variance explained.
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(a)

(b)

Figure B.3.2: Cephalometric X-ray Image Data : Data points in the

coordinates by PNGS (top) and PenPNS (MCP) + IoD Criterion

(bottom). The number means the percent variance explained.
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Table B.3.1: Results of the Original PNS on Cephalometric X-ray

Image Data. SSR stands for ‘sum of squared residuals’. Size is a

size (radius) of Am in Rd+1.

Dimension SSR Proportion (%) Radius (◦) Size in Rd+1

35→34 9.28e-07 0 89.616 1

34→33 6.438e-06 0.02 86.7994 0.99998

33→32 4.248e-06 0.04 55.9552 0.99842

32→31 1.3369e-05 0.55 15.4737 0.82729

31→30 8.592e-06 0.1 89.3343 0.22072

30→29 1.041e-05 0.11 89.3539 0.2207

29→28 1.3123e-05 0.16 87.0537 0.22069

28→27 1.4962e-05 0.19 86.5 0.2204

27→26 2.7532e-05 0.19 85.1729 0.21999

26→25 2.1458e-05 0.24 89.4131 0.21921

25→24 2.2423e-05 0.27 79.8502 0.21919

24→23 2.4921e-05 0.28 83.2425 0.21576

23→22 2.7892e-05 0.3 87.8096 0.21426

22→21 2.9107e-05 0.33 84.726 0.21411

21→20 3.3793e-05 0.35 84.2716 0.2132

20→19 3.7577e-05 0.37 76.3937 0.21214

19→18 9.0956e-05 0.43 83.8254 0.20618

18→17 5.0163e-05 0.46 85.9081 0.20499

17→16 6.1442e-05 0.57 68.0432 0.20446

16→15 6.0078e-05 0.55 80.5524 0.18963

15→14 6.717e-05 0.58 77.1097 0.18706

14→13 8.2036e-05 0.81 61.6184 0.18235

13→12 9.1071e-05 0.72 82.6931 0.16043

12→11 0.00010021 0.83 75.1032 0.15913

11→10 0.000111185 1.04 65.447 0.15378

10→9 0.000142635 1.04 72.4487 0.13987

9→8 0.000121618 1.2 71.6694 0.13336

8→7 0.000188541 1.4 71.1073 0.1266

7→6 0.000239954 1.46 74.0747 0.11978

6→5 0.000255995 1.69 79.4723 0.11518

5→4 0.000332435 2.28 78.773 0.11324

4→3 0.000345227 2.82 73.0055 0.11107

3→2 0.000461081 4.01 74.0964 0.10622

2→1 0.00097963 6.13 37.3427 0.10216

1→0 0.009077118 68.49 . 0.06197

Sum 0.01315532 100 . .
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Table B.3.2: Results of PenPNS (MCP) on Cephalometric X-ray

Image Data

Dimension SSR Proportion (%) Radius (◦) Size in Rd+1

35→34 9.29e-07 0 90 1

34→33 0.000165633 0.02 90 1

33→32 0.000407293 0.03 90 1

32→31 0.000383708 0.07 90 1

31→30 0.000166148 0.12 90 1

30→29 0.000118163 0.13 90 1

29→28 0.000136102 0.19 90 1

28→27 0.000122323 0.23 90 1

27→26 0.000126636 0.22 90 1

26→25 0.000127404 0.28 90 1

25→24 0.000120823 0.31 90 1

24→23 9.2e-05 0.33 90 1

23→22 7.9903e-05 0.34 90 1

22→21 5.0067e-05 0.37 90 1

21→20 5.5969e-05 0.39 90 1

20→19 5.45e-05 0.43 90 1

19→18 6.8102e-05 0.49 90 1

18→17 6.9583e-05 0.52 90 1

17→16 7.5542e-05 0.58 90 1

16→15 8.1184e-05 0.61 90 1

15→14 8.0205e-05 0.64 90 1

14→13 9.2151e-05 0.78 90 1

13→12 9.7528e-05 0.8 90 1

12→11 0.000107125 0.9 90 1

11→10 0.00011202 0.95 90 1

10→9 0.000124998 1.07 90 1

9→8 0.000130583 1.21 90 1

8→7 0.000213865 1.46 90 1

7→6 0.000225034 1.67 90 1

6→5 0.000234899 1.94 90 1

5→4 0.000307102 2.32 90 1

4→3 0.000345819 3.32 8.8589 1

3→2 0.000433961 4.08 90 0.154

2→1 0.000905904 6.7 22.2347 0.154

1→0 0.002882381 66.53 . 0.05827

Sum 0.008795588 100 . .
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Table B.3.3: Results of PNGS on Cephalometric X-ray Image Data

Dimension SSR Proportion (%) Radius (◦) Size in Rd+1

35→34 9.4e-08 0 90 1

34→33 2.193e-06 0.03 90 1

33→32 5.238e-06 0.08 90 1

32→31 2.3826e-05 0.35 90 1

31→30 3.0398e-05 0.45 90 1

30→29 3.2492e-05 0.48 90 1

29→28 3.6514e-05 0.53 90 1

28→27 3.7737e-05 0.55 90 1

27→26 3.6922e-05 0.54 90 1

26→25 4.288e-05 0.63 90 1

25→24 4.4287e-05 0.65 90 1

24→23 4.4848e-05 0.66 90 1

23→22 4.6415e-05 0.68 90 1

22→21 4.8862e-05 0.72 90 1

21→20 5.005e-05 0.73 90 1

20→19 5.2152e-05 0.76 90 1

19→18 5.9216e-05 0.87 90 1

18→17 6.3302e-05 0.93 90 1

17→16 6.7462e-05 0.99 90 1

16→15 7.1574e-05 1.05 90 1

15→14 7.4471e-05 1.09 90 1

14→13 8.8939e-05 1.3 90 1

13→12 9.0918e-05 1.33 90 1

12→11 0.000102183 1.5 90 1

11→10 0.00010737 1.57 90 1

10→9 0.000119884 1.76 90 1

9→8 0.000134624 1.97 90 1

8→7 0.000161609 2.37 90 1

7→6 0.000184337 2.7 90 1

6→5 0.000211901 3.1 90 1

5→4 0.0002532 3.71 90 1

4→3 0.000328375 4.81 90 1

3→2 0.000439975 6.45 90 1

2→1 0.001041575 15.26 90 1

1→0 0.002689564 39.41 . 1

Sum 0.006825388 100 . .
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Table B.3.4: Results of PenPNS (MCP) + IoD Criterion on

Cephalometric X-ray Image Data

Dimension SSR Proportion (%) Radius (◦) Size in Rd+1

35→34 9.4e-08 0 90 1

34→33 2.192e-06 0.03 90 1

33→32 3.349e-06 0.05 90 1

32→31 7.641e-06 0.12 90 1

31→30 1.252e-05 0.19 90 1

30→29 1.4332e-05 0.22 90 1

29→28 2.0421e-05 0.31 90 1

28→27 2.5036e-05 0.38 90 1

27→26 2.4269e-05 0.37 90 1

26→25 3.0032e-05 0.46 90 1

25→24 3.3803e-05 0.51 90 1

24→23 3.5842e-05 0.54 90 1

23→22 3.7117e-05 0.56 90 1

22→21 4.0047e-05 0.61 90 1

21→20 4.234e-05 0.64 90 1

20→19 4.6403e-05 0.7 90 1

19→18 5.2768e-05 0.8 90 1

18→17 5.6474e-05 0.86 90 1

17→16 6.2659e-05 0.95 90 1

16→15 6.593e-05 1 90 1

15→14 6.8979e-05 1.05 90 1

14→13 8.4216e-05 1.28 90 1

13→12 8.6101e-05 1.31 90 1

12→11 9.7564e-05 1.48 90 1

11→10 0.000102898 1.56 90 1

10→9 0.000115491 1.75 90 1

9→8 0.000130464 1.98 90 1

8→7 0.000157646 2.39 90 1

7→6 0.00018072 2.74 90 1

6→5 0.000209631 3.18 90 1

5→4 0.000250704 3.8 90 1

4→3 0.000326408 4.95 90 1

3→2 0.00043827 6.65 90 1

2→1 0.001040521 15.79 90 1

1→0 0.002688727 40.79 . 1

Sum 0.006591607 100 . .
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국문초록

본 학위논문에서는 비유클리드 공간에서의 차원축소법에 대해 다룬

다. 비유클리드 공간에선 곡률로 인해 피타고라스 정리와 같은 유

클리드 공간에서 널리 사용되는 방법론을 활용하기 힘들다. 자료의

구조를 파악하기 위해 주어진 비유클리드 공간의 기하학적 성질을

이해하는것이중요하다.이논문에서는주성분분석이나인자분석과

같이널리사용되는다변량자료분석을비유클리드공간에일반화하

고자 다음 두 방법론을 제안한다.

제 2장에서는 다중 근원 자료를 분석하고자 Principal Structure

Identification (PSI) 방법론을 제안한다.

다중근원자료는같은관찰대상으로부터여러변수집단에대해

채취된 자료이다. 요즘 각광받는 다중 오믹스 자료가 좋은 예이다.

다중 근원 자료를 통합적인 관점에서 분석하기 위해, 장료들 사이의

공통 스코어가 있는지 확인하도록 한다. 이때 공통 스코어는 모든

자료 집단들이 공유하는 것일수도, 일부 자료집단들이 공유하는 것

일수도, 혹은 하나의 자료집단에만 귀속되는 것일수도 있다.

우리 방법론이 가지는 가장 큰 특징 중 하나는, 각 자료가 가지는

인자 스코어 선형부공간을 자료 간 연관관계를 밝히는 기하학적 기

본 요소로 사용하는 것이다. 공통 스코어 선형부공간을 알아내는데

있어잡음으로부터생기는부정확함을회피하고자,자료집단의인자
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스코어 선형부공간의 1차원 깃발 공간을 계산한다. 이 1차원 깃발

공간과 근접한 선형부공간들을 골라내어 스코어를 공유하는 자료집

단을 묶어주는 절차적 알고리즘을 제안한다.

제 3장에서는 초구면체 위의 자료를 분석하는 Penalized Princi-

pal Nested Spheres (PenPNS) 방법론을 제안한다.

Analysis of Principal Nested Spheres (Jung, 2012)는 초구면체

위의자료를분석하는차원축소방법론이다. PNS에서는차원축소가

절차적 과정을 통해 이루어지며, 불필요한 차원이 하나씩 축소된다.

특히 작은 구로 자료를 가늠하여 비측지선 추정을 가능케한 것이

장점이다.

하지만 PNS에게는과적합이란단점이있다.과적합이란큰구를

따라 생성된 데이터가 지나치게 작은 구로 추정되는 현상을 말한다.

우리는 두 종류의 과적합을 다룬다. (1) 모수로서 반지름은 0에서

π/2까지의 범위를 가지게 되므로, 추정된 반지름이 π/2보다 큰 경우

추정된 축은 구면의 반대편의 것으로 대체되며 반지름 추정도 그에

따른다.따라서,추정된반지름의분포는실제축과점들사이의각도

의분포가반으로접힌모양을가지게된다.이와같은이유로반지름

추정의 값은 π/2보다 작을 수 밖에 없다. (2) 만약 자료가 큰 구를 따

라 생성되었지만 매우 짧은 구간에서 생성되는 경우, 자료점 구름의

모양은 접시 모양과 가까워지게 된다. 이 경우 접시 모양 구름 안에

들어있는 반지름이 아주 작은 작은 구로 자료가 추정된다.

PenPNS는 과적합 현상을 교정하는 PNS의 개량형이다. 첫번째

과적합 현상을 교정하기 위해, PenPNS는 추정 과정에서 반지름을

정규화한다. 이때 반지름이 π/2보다 작아질수록 벌점화 항목의 값이

커진다. 두번째 과적합 현상을 교정하기 위해, PenPNS는 교차 검증

오차에 벌점화 항목을 반영한다. 이 벌점화 항목은 퍼짐지표에서 유

래하는데, 퍼짐지표는 접시모양 데이터 구름이 작은 반지름의 구로
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추정되는 상황에서 그 값이 커진다. 이와 같은 과적합 해결 방법의

효과를 모의실험과 실제 데이터 분석을 통해 보이겠다.

주요어 : 차원축소, 비유클리드 공간, 다중 근원 자료, 초구면체 위

자료, 멀티 오믹스 자료.

학 번 : 2017− 38449
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