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ABSTRACT

Dimension Reduction Methods for

Multi-source and Manifold-valued Data

SeoWon Choi
The Department of Statistics
The Graduate School

Seoul National University

In this thesis, we discuss dimension reduction methods in non-
Fuclidean space. Due to non-zero curvature, we cannot make use
of the traditional techniques like Pythagorean theorem in building
a statistical method in non-Euclidean space. To capture the struc-
ture of data set, it is necessary to understand the geometric na-
ture of a given non-Euclidean space. We propose the following two
dimension reduction methods, generalizing popular multivariate
data analysis methods, factor analysis and PCA, to non-Euclidean
settings.

In Chapter [2, we propose Principal Structure Identification

(PSI) for multi-source dataset.



Analysis of multi-source dataset, where data on the same ob-
jects are collected from multiple sources, is of rising importance
in many fields, most notably in multi-omics biology. We propose
a novel framework and algorithms for integrative decomposition
of such multi-source data, to identify and sort out common fac-
tor scores in terms of whether the scores are relevant to all data
sources (fully joint), to some data sources (partially joint), or to

a single data source.

The key difference between our proposal and existing approaches

is that we utilize raw source-wise factor score subspaces in the iden-
tification of the partially-joint block-wise association structure. To
identify common score subspaces, which may be partially joint to
some of data sources, from noisy observations, our proposed al-
gorithm sequentially computes one-dimensional flag means among
source-wise score subspaces, then collects the subspaces that are

close to the mean.

In Chapter |3, we propose Penalized Principal Nested Spheres
(PenPNS) for dataset on the hypersphere surface.

Analysis of Principal Nested Spheres (PNS) (Jung, 2012) is
a flexible dimension reduction method for dataset on the hyper-
sphere, e.g. directional data (Fisher,1993; Fisher et al.,1993; Mar-
dia and Jupp,2000) and shape data (Kendall,1984; Dryden and
Mardia, 1998). In PNS, the dimension reduction is an iterative
procedure for discarding unimportant dimensions. It is specifically
designed to capture a certain type of non-geodesic variation by fit-

ting a small sphere.

However, PNS suffers from overfitting, a phenomenon where

ii
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data points are fitted with a small sphere even though they are
generated from along a great sphere. We consider two types of
overfitting phenomena. (1) When the estimated radius 7 is over
/2, the estimated axis v is flipped to —v and we take the radius
as m—T, since the radius as parameter ranges from 0 to 7/2. Then
the distribution of the estimated radius becomes a folded version
of the distribution between the true axis and the data points. Thus
the expectation of the estimated radius is less than 7/2. (2) When
data points are generated along a great sphere but within a short
interval, the data point cloud has a disc shape and is usually fitted
by a small sphere with a very small radius.

PenPNS is an improvement of PNS that overcomes the over-
fitting phenomena in small sphere fitting. To deal with the first
type of overfitting phenomenon, PenPNS regularize radius in esti-
mation, where the value of the penalty term grows larger as radius
decreases departing from 7/2. For the second type, PenPNS gives
a penalizing term on the cross-validation error in choosing tuning
parmeter. The penalizing term, called Index of Dispersion, has a
larger value in the case a disc-shaped distribution is fitted with
a small radius. In Simulation Study and Real Data analysis, we
demonstrate that PenPNS successfully mitigates the overfitting
phenomena.

Keywords: Dimension reduction, Non-Euclidean space, Multi-
source dataset, Dataset on the hypersphere, Multi-omics dataset.

Student Number: 2017 — 38449
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Chapter 1

Introduction

Recent days, statistical methods for dataset in non-Euclidean space
have gained much attention, in need of analyzing unconventional
datasets, such as directional data (Fisher,1993; Fisher et al.,1993;
Mardia and Jupp,2000) and shape data (Kendall,1984; Dryden
and Mardia,1998), or exploring the geometric interpretations of
existing methods, such as PCA (Hotelling,1993). However, due to
non-zero curvature, applying even elementary statistical methods
to non-Euclidean space is a challenging task. The difficulties come
from two ways: (1) identify the mathematical entity of the dataset,
(2) design an estimate that explains the data set well, but also re-
flects well the geometric nature of the space where the data points
dwell in.

For example, defining even a basic statistical concept in non-
Euclidean space can be puzzling, e.g. defining “mean” on the
sphere surface, S2. We may raise the following questions: Is there
any concrete way of defining “mean” on the sphere, such as “sum-

ming up data points” on the sphere surface or “divide the sum by



the number of points”? What would be the “geometrical entity”
of that mean? Does it even reside on the same original sphere sur-
face as data points? In building up an optimization problem to
find mean, how can we measure a distance between two points on
5§27

In this thesis, we consider two types of dataset.
1. Multi-source dataset (see Chapter
2. Dataset on the hypersphere surface (see Chapter .

Before jumping into methodologies, we need to provide mathemat-
ical frameworks for these unconventional types of dataset. In the
next sections in this chapter, we give mathematical preliminaries
for the thesis.

We want to clarify the relation between our dataset and non-
Euclidean geometry. The non-Euclidean spaces upon which our
data sets reside are described as manifolds. Specifically, we ex-
plain (1) Grassmann manifold for multi-source dataset and (2)
the hypersphere S? for dataset on the hypersphere surface.

We also provide related geometrical concepts therein, e.g. (1) a
concept of “distance” between two points on each manifold or (2)
an analogue of “mean” for data points in non-Euclidean space. We
utilize geometrical concepts in building statistical methods later.

We then present the proposed statistical methods to analyze

our datasets in the next chapters:

1. Partially-joint Structure Indentification (PNS) for multi-source

dataset (see Chapter [2))

;ﬁ'! 2 1_..” .__;J!_ W



2. Penalized Principal Nested Sphere (PenPNS) for dataset on
the hypersphere surface (see Chapter [3)).

A detailed introduction to each method is deferred to the chapter

of its own, see Section [2.1] and Section [3.1] respectively.

1.1 Mathematical Backgrounds for Multi-

source Dataset

By the multi-source data, we mean data obtained for multiple
groups of variables on the same set of subjects. In other words,
there are K data blocks, X € RP**™ for k = 1,..., K, observed
for matched n subjects. Assuming zero mean, each data block is

decomposed into
Xp=Zp+Ex=UVI +E,, k=1,... K, (1.1)

in which the low-rank “signal” matrix Z (say, of rank ry) is fac-
tored into a loading matrix Uy and a score matrix Vj. The score
matrix Vi, € R™ " is an orthonormal matrix and can be viewed
as a representation of a ri-dimensional linear subspace in R™. We
denote the score subspace spanned by the columns of Vi as [V]
and say that Vj, represents the subspace [Vi].

In the language of matrix manifolds, each score subspace [Vj] is
described as an element of the Grassmann manifold. Formally, the
p-dimensional Grassmann manifold in R™, Gr(n,p), is defined as
the set of all p-dimensional linear subspaces of the n-dimensional
vector space R™.

The problem here is that score subspace [Vj] have different di-

mensions each other. In this section, we want to define a notion of

;ﬁ'! 2 1_..” .__;J!_ W



distance among linear subspaces of different dimensions (for short,
subspace distance). In other words, it is a distance d(A, B) with
A € Gr(n,p1) and B € Gr(n,pz) which allows p; # ps. We here
adopt the framework of Ye and Lim (2016). In fact, the framework
is a generalization of distance among linear subspaces of the same

dimension to the one of different dimensions.

The Framework of Ye and Lim (2016)
Let p1 < po. Suppose we have a distance d’' on Gr(n,ps), that
is, among linear subspaces of the same dimension py. A distance

d between [A] € Gr(n,p1) and [B] € Gr(n, p2) is derived as
d([A], [B]) = min {d'([X], [B]) : [X] € Q([A])},

where Q([A]) = {[X] € Gr(n,p2) : [4] C [X]}. For more details,
see Theorem 7 and 12 in Ye and Lim (2016).

In Chapter [2| we use the Frobenius norm distance which is

defined as

1
d([4],[B]) = —=||AAT — BBT ||,
(4118) = 5] Ir
where || - ||% is the Frobenius norm and A and B are orthonormal

matrices which represent [A] € Gr(n,p;) and [B] € Gr(n,p2). (To
put it precisely, we generalize the Frobenius norm distance among
linear subspaces of the same dimension to of different dimensions
using Ye and Lim framework.)

Using the concept of subspace distance, we can define an ana-

logue of “mean” for a set of linear subspaces. One of the examples



is the one-dimensional mean among linear subspaces of different
dimensions (for short, mean direction).

Suppose linear subspaces [Vi] of dimension 74 in R" for k =
1,..., K are given. The mean direction ®w minimizes the sum of
the squares of subspace distances d between a candidate w and

subspaces [Vk] for k € S;,

i = argmin 3" d ([ul], W)’ (1.2)

T opy—
wiw=1 keS;

When we use the Frobenius norm distance for d, the mean di-
rection w can be computed easily using the truncated SVD, see
Section in the supplementary materials.

The concept of subspace distance among linear subspaces of
different dimensions will play a crucial role in Section The
concept of mean direction, or one-dimensional average among lin-

ear subspaces of different dimensions will be used in Section [2.3.1

notably (2.4)).

1.2 Mathematical Backgrounds for Dataset
on Hypersphere

Our aim is to regard the hypersphere as a Riemannian manifold.
We begin by presenting a list of terminology.

A manifold of dimension d is a Hausdoff space with a countable
basis. Each point p of a d-dimensional manifold M has a neigh-
borhood that is homeomorphic to an open subset of real space R%.
Thus one can attach to every point p a real vector space and we

call this real vector space a tangent space, T,,M.



The set of all local homeomorphisms (U, ¢) is called atlas, such
that U C M is open and ¢ : U — ¢(U) C R?. If a manifold M is
equipped with a differentiable atlas, M is called a smooth mani-
fold. If a smooth manifold M is equipped with smoothly varying
inner product (, ), on tangent bundle TM = UpepT,M, M is
called a Riemannian manifold.

To define a distance on a Riemannian manifold, we need to
define a length of a curve. Let a smooth map ~ : [a,b] CR — M
be a curve in M. Indeed, for any ¢ € [a,b], ¥(t) = dy(d/dt) is a
tangent vector in T, ;) M. For a curve v such that §(t) # 0 for all
t € [a,b], the length of v is defined as

Crap (v / VT ))(r) dt.

Then, the geodesic distance between two points p, g € M is defined
as the shortest length of all curves joining p and g. The shortest
curve joining two points on M is called a geodesic.

For each p € M, a geodesic at p with direction v € T,M
is a curve v : [0,1] — M such that v(0) = p, 4(0) = v and
I7(@®)]| = |lv|| for t € [0,1]. Such a geodesic exists uniquely by
the Picard’s existence theorem. Then the exponential map at p is
defined as a differentiable map Exp, : U C T,M — M such that
Exp, = (1) € M.

For more mathematical details about Riemannian manifold,
see Boothby (1986) and Lee (2006).

Now we can check that the hypersphere S¢, defined as

={z e R . 2Tx =1},

has the following facts as a Riemannian manifold:



o The geodesic distance between two points p, ¢ € S% is defined

as the angle between p and ¢ at the center of S¢.

o We can explicit exponential maps of S¢ using the coordinates
of R4+,
Without loss of generality, let p = (0,...,0,1) € S¢ be the

north pole of S¢. The exponential map at p is expressed as

sin ||| sin ||v]]
Expp(v):<v1 ol yeres g ol , cos ||v]]

with v = (v1,...,v4) € TpS% The inverse exponential map

at p is expressed as

0 0
Exp. ! = —_ ..
xp, - (w) <w1sinﬁ7 7wdsin@)7

where w = (w1, ..., wqy1) € RITIN(O,...,0, —1) with w’w =

1 and 0 = arccos(wgi1)-

By exploiting the concepts of geodesic and geodesic distance,
we can define an analogue of “mean” for dataset on the hyper-
sphere S?. One of the examples is Fréchet mean (Fréchet,1948;
Bhattacharya and Patrangenaru,2003).

We first consider X to be a S%valued random variable, which
is a measurable mapping from a probability space (€2, F,P) into
(8%, G), where G denotes the Borel -algebra of S™. Let X1, ..., X,
be random variables generated identically and independently from
the same law as X.

Fréchet mean minimizes the least expected squared geodesic
distance between a candidate Fréchet mean and data point. Specif-

ically, the population and sample Fréchet mean set is defined as

F= {p e 5. Exp?(X,p) = inf Exp?(X, q)}
gesd



and
F, = {p € S Exp?(X,p) = qienngXpQ(X, q)} )

Here the Fréchet mean sets F' and F}, are guaranteed to be the set
of points that reside on S?. Compare them with a naive definition
of mean on S%: vector-sum all data points on S% and scalar-divide
with the number of data points, n — the result does not even lo-
cate on the hypersphere surface, S%. We see that building a statis-
tical descriptor using a geometrical information (such as geodesic
distance) instrinsic to manifold can enhance the interpretablity of
data set.

The notion of geodesic distance on S¢ will play a key role in
Chapter [3| Fréchet mean will be generalized to sphere descriptor

of data points (called small/great sphere estimator in there), see

Section [3:2] and 341



Chapter 2

Partially-joint Structure

Identification

2.1 Introduction

In various fields of science and technology, there is a growing in-
terest in analyzing multi-source data in an integrative way. By the
multi-source data, we mean data obtained for multiple groups of
variables on the same set of subjects. Each group of variables is
observed from a common source, and form a data block. A promi-
nent example of multi-source data is modern multi-omics data that
include gene expressions, RNA sequencing, mutations, epigenetic
markers or metagenomic materials (Subramanian et al.,2020). The
recent development of high-throughput technologies enables us to
extract these sources of information comprehensively from a given
preparation of cancer/normal tissue samples (Reuter et al.,2015;

Norris et al.,2017).



One of the main challenges in analyzing multi-omics data is
that data blocks come from distinct measurements of different
sources. For example, our motivating data set consists of three

data blocks, each from a drug response panel, genome-wide DNA

methylation profiles and RNA sequencing profiles (Dietrich et al.,2018);

see Section for a detailed description of the data.

Separately analyzing each data block hinders the assessment
of inter-relations among different data blocks. To capture the po-
tentially joint association structures in these multi block data,
the linked component model has been oftentimes used (Smilde et
al.,2003; VanDeun et al.,2009; Lock et al.,2013).

Suppose that there are K data blocks, X; € RP*" for k =
1,..., K, observed for n subjects. The subjects in the data are
common and matched, i.e., the measurements for the ith sub-
ject appear in the ith column of each data matrix. Assuming zero

mean, each data block is decomposed into
Xo=Zp+E,=U VI +E,, k=1,... K, (2.1)

where the low-rank “signal” matrix Zj is factored into a loading
matrix U and a score matrix Vi, which is perturbed by “noise”
matrix Ey. The linked component model further assumes that two
or more data blocks can potentially share a common score compo-
nent VanDeun et al. (2009). An extreme example is that all scores
are common to all data blocks, that is, V; = --- = Vj, as in Smilde
et al. (2003). The models considered in Lock et al. (2013) and Feng
et al. (2018) allow some scores to be common to all data blocks,
explaining the joint variation among all data blocks, and some

scores to be specific to each data blocks (explaining the individual
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variations in a single data block).

Following Gaynanova and Li (2019) and Gao et al. (2020), we
in addition allow partially-joint scores that are shared across mul-
tiple, but not necessarily all, data blocks. An illustrative example
of such a model, for K = 3 blocks of data, is (X{, XJ, XI)T =
UWT + B,

Una Uz 0 .
UW' = Uga Uga 0 <W{1,2,3} Wi 2y W{s}) )
Usn 0 Up)gs

(2.2)
where U is the loading matrix, Wy 93y is a matrix of scores
that affect all data blocks, and Wy, 5y is a partially-joint score
matrix, affecting only the first two data blocks, but not the third.
The scores in W3y are specific to the third data block. Our goal
is to delineate such an association structure from a multi-source

data.

In this chapter, we develop a novel framework and estimation
strategy for integrative decomposition of multi-source data, by
identifying scores that are fully joint to all data sources, partially
joint to some, or specific to a single data source. The framework
utilizes the signal score subspace [Vj], a rank 7 subspace of R",
spanned by the rows of the signal matrix Z; in . The rationale
for using [V%] is straightforward: If a common score of rank r is
shared by the first two data blocks, then the intersection of [V7]
and [V3] is non-empty, and is a dimension 7 subspace. To capture

the partially-joint block-wise association structure from the score
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subspaces [Vj], we define the collection of tuples
S = S({[Vil}r=1,..x) = {(5,r(5)) : S C K},

in which a non-empty subset S of K = {1,..., K} denotes a spe-
cific pattern of block-wise association, Wg denotes the correspond-
ing common scores (that are either fully-joint, partially-joint or
specific to data sources) of rank r(S). See Section [2.2] for a detailed
construction of &, and Section for conditions to guarantee the
uniqueness of &.

To identify the partially-joint score structure & from noisy
observations, we propose to compute the flag mean of signal sub-
spaces (Draper,2014), and to test whether the mean is indeed close
to signal subspaces. If a mean w is “close” to [V4] and [V3], but
not to other subspaces, then it is a basis of (estimated) Wy oy.
We use a tunable parameter to determine the closeness between
two subspaces. The algorithm, detailed in Section is quick in
decomposing multi-source data sets, and boasts a superior per-
formance in identifying & and in the estimation of the subspaces
spanned by the loading matrices and by the common score matri-
ces.

Recently, there has been a growing interest in integrative de-

composition of multi-source data (Lock et al.,2013; Li and Jung,2017;

Feng et al.,2018; Li and Gaynanova,2018; Gaynanova and Li,2019;
Gao et al.,2020). Among these, Gaynanova and Li (2019) and Gao
et al. (2020) also considered modeling partially-joint association
structures. However, these authors focused on the loading matrix
U, and exploited the source-wise sparse structure of the matrix U,

as seen in (2.2). On the contrary, we explicitly utilize the signal
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score matrices Vi in in identifying partially-joint scores of
. The loading matrix is naturally obtained as a subsequent
step in our proposal. Our approach extends the angle-based joint
and individual variation identification of Feng et al. (2018), in
which partially joint variations were not considered. In Section 2.5
we numerically confirm that our proposal finds the true association
structure much more accurately than the aforementioned decom-
position methods.

The rest of chapter is organized as follows. In Section [2.2] we
formally present our integrative decomposition framework and de-
fine the partially joint structure &, followed by the proposed de-
composition algorithm and tuning parameter selection procedure
in Section In Section conditions to guarantee unique de-
compositions are discussed. Section [2.5] is devoted to numerical
illustrations and comparisons to existing methods. In Section [2.6
we demonstrate the use of the proposed method in an analysis of a
blood cancer multi-omics data set associated with drug responses,
and reveal that the proposal detects a latent signal pattern, par-
tially joint across two, but not all, data sources, which is not easily
seen by a separate analysis of individual data blocks. Proofs, tech-
nical lemmas, examples and extended numerical results are given

in the supplementary materials.
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2.2 Statistical Framework

2.2.1 Partially-joint structures

Consider a set of row-centered data matrices X € RP:*™ for k =
1,..., K, where the ith column of each data matrix corresponds
to the same (ith) subject. Let p = >, pr. We assume that each
X, is additively decomposed into the rank rj true signal block Zj
and random errors E} so that X, = Z; + E.

We consider a model that the signal Z = (Z{,..., ZL)T is

decomposed
Z=UwT7,

where each column of W has Euclidean norm 1, but not necessarily
orthonormal. We assume that the number of columns of U and W
is less than min(n, p).

Our goal is to find an association structure among Z3’s, where
multiple, but not necessarily all, of Z;’s share a joint signal com-
ponent. We describe this manner using a word “partially-joint”.

We give partially-jointness to the model by assuming block-

sparsity on U. For example, when K = 3, we can have a model

Zy Una Upe 0

T
ZQ = U(2),1 U(Q)}Q 0 (Wl W2 W3) )
Z3 Usp 0 Upgygs

where the blocks Uy 3, U(g) 3 and U)o are exactly zero. In this

case, (U(:q) 1U(g) 1U(7,;) 1)TI/VIT is a signal component shared by all
71, Z» and Z3 whereas (U(:q) 2U(:g) 2)W2T are shared “partially” by

Z1 and Zo and U(3)72W§F is the one specific to Z3.
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We associate each block-sparse pattern with with an indezx-set,
a subset of {1,..., K}. For each index-set S, we say the rank of
S, or r(S), the number of the columns of W associated with S.
We summarize the block-sparsity as the partially-joint structure,
the collection of pairs (S, 7(5)). In our example, if W; and Wy are
composed of two and one columns, the partially-joint structure &
is given (({1,2,3},2), ({1,2},1), ({3},1)).

For each index-set S, the columns of W associated with S are
concatenate into a n x r(S) matrix, called partially-joint score.
The columns of U associated with S are also concatenated into a
pxr(S) matrix, which can be split into block matrices of pi x 7(5)
corresponding to Z;’s. We call these block matrices partially-joint
loading. From the block-sparsity, block matrices that corresponds
to Zk, k € S is zero. In our example, W1, W5 and W3 are partially-
joint scores and Uy 1, U2)1, Uy, Ug)1, Uwg)2 and Ug) 3 are
partially-joint loadings.

For given Z;’s, our aim is to find partially-joint loadings U;
and scores W;. Only with the block-sparsity constraint, there may
be multiple candidates of both U and W. Now we give a plausible
strategy of defining U and W — by finding the column space of
each W;.

Remark 2.1. The decomposition of Z;’s into the partially-joint
loading and score matrices is not unique. If instead of W; (and
its corresponding loading matriz Uy, ;), one chooses W! = WiR,
for an orthogonal matriz R, then the corresponding loading matriz
becomes U(/k),i = U, R. Nevertheless, if Uy, ; is zero, then U, ; R

is zero for any orthogonal R, so the block-sparsity is invariant to
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the choices of basis.

2.2.2 Partially-joint score subspace and index-set or-

dering

We now define the partially-joint score subspace, a linear subspace
spanned by the columns of a partially-joint score, in a constructive
manner. The definition depends mainly on the following two con-
cepts, the signal score subspace of signal block Z; and the ordering
of index-sets.

Let the true signal matrix be further decomposed, Z; = Ui V4,
as in the factor analysis, where V;, € R™ "k is the factor score
matrix satisfying VkTVk = I,,. We call the column space of Vj,
denoted [Vy], as the signal score subspace for Zj. Note that [Vj] is
regarded as a rank-rp subspace of R", spanned by the columns of
Vi.

Our geometrical implication is as follows: If, given a S C
{1,..., K}, [Vk]'s overlap, then the corresponding signal blocks
Zi, k € S share a common score, represented by the subspace
Nkes[Vk], which is at least partially-joint to signal blocks Zj,
k € S. As we have assumed that signal blocks share a signal
component through the corresponding partially-joint score, the in-
tersections of signal score subspace plays an important role as a
building block in constructing partially-joint score subspace.

However, one of the challenge of this approach is that index-
sets, as subsets of {1,..., K}, have a partially-ordered relation
with respect to set-inclusion. As two index-sets can be either nested

or intersected, the construction of a partially-joint score subspace

16

;ﬁ'! 2 1_..” .__;J!_ W



on one index-set may affect the one on the other. Thus we suggest
a plausible way of constructing partially-joint score subspaces by
giving an ordering among index-sets.

We give an ordering to index-sets, sorted by the number of
elements in descending order. Each index-sets is allocated with
index numbers as S; fori = 1,...,25 —1. Weset S; = {1,..., K},
the maximal set, and the next K index-sets are of size K — 1, and
then the next K (K —1)/2 index-sets are of size k—2, ... etc. Note
that index-set ordering is not unique for given K, since there can

be permutations among index-sets of the same size.

Example 2.1. For K =3, S1 = {1,2,3} as appeared in the top
row of Fig. and the next three sets (Sa,Ss, S4) are given by the
next row of the figure. That is, Sa, S3, and Sy are {1,2}, {2,3},
{1,3}, respectively. Likewise, S5 = {1}, S¢ = {2}, S7 = {3}. Fach
element S; stands for the indices of data blocks that potentially
possess a common score. Of course, such indexing is not unique,

and one may set, e.g., S¢ = {3}, S7 = {2}.

Conditions to guarantee invariance of the decomposition with
respect to different choices of indexing will be discussed in Sec-
tion 2.4

Using the concepts of signal score subspace and index-set or-

dering, we now define partially-joint score subspace.

Definition 2.1. Suppose matched data matrices Xy = Z + E), €
RPEX™ for k =1,..., K with true signal block Zy are given. With

an index-set ordering S, ..., Syx_1, a set of corresponding partially-
joint score subspace [Wi]’s fori = 1,...,2K — 1 are constructed
17
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{1,2,3}

/1IN

{1,2} {2,3} {1,3}

bYeN

{1} {2} {3}

Figure 2.1: An example of index-set ordering is depicted as the
indexed partially-ordered set. Arrow — stands for C, e.g. {1} —
{1,2} means {1} C {1,2}.

sequentially

(W] == Nikes, [Vil,
[Wa] := Pi- (Nies, [Vil) »

Wil:=( O P (Mies: [Vi]) -
{5:9<4,
SiNS;#$}
Here, PjL 18 the projection transformation of R™ onto the orthog-
onal complement of [Wj|. The notation OjeJPjJ'([A]), for an in-
deved set J C {1,...,25 — 1} and a subspace [A], stands for the
repeated applications of ij_ on [A], where PJ-J‘S are applied one by

one by the increasing order of j € J.
Note that depending on {[Vi]}, a [W;] may be {0}.

Example 2.2. Suppose K = 3 and index-set ordering is as in
Ezample with r(S1) = r(S2) = r(Ss) = r(S7) = 1, and

r(Si) = 0 otherwise. Partially-joint score subspaces are obtained as

18
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W1 = Nies, [Vil, Wa = Pi-(Nies, Vi), Wi = P~ o Pi-(Nies, [Vi])
and Wy = Pjt o P (Npes, [Vi]).

Partially-joint score subspaces have the following basic prop-

erties.

(1) The partially-joint score subspaces involved with each Zj

can restore the signal score subspace, or

[Vi] = +ietresy Wil (2.3)

as shown in Lemma A.3 in the supplementary material. Here

the notation ‘+’ means the sum of subspaces.

(2) For any i # j, [W;] and [W}] do not overlap, i.e., [W;]N[W;] =
{0}, but they are not necessarily orthogonal. However, if
both [W;] and [WW;] are related to a common data source,

then they are orthogonal:
Lemma 2.1. Fori,j € Ix and S; N Sj #* ¢, [Wz] 1 [WJ]

Lemma/2.1|ensures that all partially-joint score subspaces relevant
to the kth data block, {[Wg,] : k € Si,i € I}, are orthogonal to
each other. Thus, the subspaces in the right hand side of (2.3) are

indeed orthogonal to each other.

2.2.3 Partially-joint score and loading

Given &, fix an orthogonal basis W; € R™*"(5)) of [W;] for i such
that |S;| > 0. The potential partially-joint score is linked to the
partially-joint loadings involved with Zj, by

Uy = ZeWi()s
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where Uy and Wy, are column-wise concatenations of U;’s and
Wi'stfori € {i: k € S;}. Indeed we can easily check that U(k)W(% =
ZkW(k)(ng)W(k))_lw(:Z) = Zy, since W(k)(WgC)W(k))_IWg;) is
the projection onto [Vi] by the property above. Then the
partially-joint loadings Uy ,; for i € {i : k € S;} are obtained by

disjoining U(yy. For i & {i : k € S;}, Uy, = 0.

2.3 Estimation

In practice, the signal Z; and error E}, of row-centered data ma-
trices X, € RPe*™ for k = 1,..., K are unknown. We assume that
the ranks r; of the signal matrices are pre-determined and extract
the signal matrix using a low-rank approximation of X, and write
the rank rp approximation of Xj by Ek The basis of the signal
score subspace ‘719 is given either by the right singular vectors of
Z. from the SVD or by any off-the-shelf factor model estimates.

The overview of the estimation algorithm is as follows: (1) on
the outer loop, we iterate through all index-sets S; on a given
ordering, and (2) on the inner loop, we obtain the partially-joint
score subspace estimate [WZ} from {[Vk]}kegi, identifying the basis
of [I//I\/'Z} one-by-one.

The major challenge is that, we have the sample versions of sig-
nal blocks, ch, and their signal score subspaces, [Vi], are contami-
nated by noise. Under noise, we may have Nicg, [Vi] = {0} even if
Nkes,; [Vk] # {0}. Thus, there is a need to give a slack on identifying
the “intersection” of [Vj]’s, accounting for random perturbations
in [Vk] We propose to use principal angles between subspaces for

such identification, further developed in Section [2.3.1
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In Section [2.3.1, we propose a procedure that finds a basis
matrix WZ for the partially-joint score subspace estimate [WZ] at
each ith step. The rank of the corresponding S; is set as 7(S;) =

—

rank(W;). Finishing the iteration over all S;’s, an estimated partially-
joint structure & = {(S;, 7(5;)} and a set of corresponding [Wi]’s
are obtained. In Section [2.3.2] we then discuss the estimation of
corresponding partially-joint loading matrices from S and @. In
Section 2:3.3] a strategy for thresholding at the right principal

angle is proposed.

2.3.1 Partially-joint Score Subspace Estimation

Our strategy on estimating partially-joint score subspace, [/V[Z], is
to estimate the partially-joint score subspace [W;] by collecting
one-dimensional bases, that lie “close” to each and every score
subspaces in { [ﬁk] tees, -

For the notion of closeness, the principal angle between sub-
spaces is used as a threshold parameter A € [0,7/2) . For now, A is
treated as a pre-determined tuning parameter, and a data-driven
choice of A will be discussed in Section 2.3.3]

For a given A € [0,7/2), the estimation algorithm is applied
sequentially for i = 1,...,25 — 1. At the ith stage, we begin
with W; = 0, to which the identified one-dimensional bases of the
partially-joint score subspace are added. Algorithm [I] summarizes

the proposed partially-joint structure identification procedure, us-

ing steps (a)—(c).

Step (a) : Find a mean direction that lies closest to all score
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Algorithm 1: Partially-joint Structure Identification

input: ‘71, ceey ‘A/K, Sty Sor_1, A
fori=1,2,...,2K —1do
Set W; = ¢;

while dim([V;]) > 0 for all k € S; do
(a) Compute the mean direction w of

{[Vil}kes; see

if the condition

is satisfied then

(b) Let W; « W; U {w};

(c) Update 17;9 — Vk,tmnc for each k € S;
else

break;

end

end

Let 7(S;) = [W;|, write W; for the n x 7(S;) matrix
consisting of elements in W; and record

(Si,7(S:), W;) in &;

end

Result: &
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subspaces {[Vi] e s;, as a candidate that may be included in w;.

As a candidate for a basis vector of the partially joint score
matrix, compute the mean direction @ among {[Vk]} kes;, provided
that [V}] # {0} for all k € S;. The mean direction minimizes the
sum of the squares of the subspace distances between a candidate
w and subspaces [V;] for k € S;, and is

W = arg min Z d <[w], [‘A/k]>2 , (2.4)

wlw=1 peg,
where d([w], [B]) = 1/v2 - |ww” — BB || is the Frobenius-norm
distance between subspaces [w]| and [B] (Ye and Lim,2016). We
chose the Frobenius norm, since for any choice of the basis ‘A/k for

[‘/}k]v

Y d ([w], [@-])2 =18 =" | SRV | w =8| - wT (HH )w,

kJGSi k‘ESi

where H is the matrix given by the column-wise binding of ?k’s
(Draper et al.,2014), and w is the first left singular vector of H.
We mention in passing that [w] is the one-dimensional flag mean

of subspaces {[Vk]}kesz (Draper et al.,2014).

Step (b) : Check whether all of the signal score subspaces [V;]
are not too dispersed from w in .

For this, given the prespecified A, we check whether the prin-
cipal angle between the mean direction and each of [V;] is at most
A, le.,

d([@], [Vi]) < sin(\), for all k € S;. (2.5)

Here, the principal angle 0([w],[B]) := arcsin(d ([w], [B])) €
[0,7/2] is the acute angle formed by the vector w and the sub-
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space [B] (Bjorck and Golub,1973). If the condition ({2.5)) is not
satisfied, then skip the following and move to the next stage for

Siy1. If (2.5) is satisfied, then W; is updated to W; < W,; U {w}.

Step (c) : Deflate each [Vi] for k € S;, so that the next mean
direction is orthogonal to previous ones.

We “peel” the basis w, that has been added to W;, from
cach of [V;], k € S;. Since w0 is not exactly in [Vi], the one-
dimensional subspace closest to w is removed. Specifically, let
[Vk’tmm] be the orthogonal complement of P‘A/kzi) within [Vk] (Note
that dim([Vi trunc]) = dim([V%]) — 1.) Write [Vi] for [Vi trunc, for
cach k € S;. If any [V}] for k € S; becomes {0}, then move to the

next stage for S;11. Otherwise, move back to step (a).

We give an illustrative example for the three steps.

Example 2.3. Suppose n = 3 and K = 3. Assume that we are
at the stage S; = {1,2} and [Vi] has been deflated (in the previous
stages) to be of dimension 1, while [V3] is of dimension 2, as in
Fig. . There, [V1] is generated by (cos7/6,0,sinw/6)T, and [Vs]
by (1,0,0)” and (0,1,0)T. In Step (a), the mean direction is i =
(cosm/12,0,sin7/12)T. In Step (b), for k = 1,2, 0([@], [Vi]) =
/12, is satisfied for any tuning parameter X > w/12. Thus
we say that [Vi] and [Va] share a partially-joint score subspace,
and W is included as a basis of [W;]. In step (c), [Va] is updated
to [Va] [%,tmnc] = span((0,1,0)T), and [V4] becomes {0}. Since
there is no more scores left to exploit, we move onto the next stage

fOT’ Si-i—l = {2, 3}
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Figure 2.2: A figurative description for computing partially-joint
score subspace [WZ], for S; = {1,2}. The two-dimensional subspace
[V3] is depicted as a disk. wyy 2} is the mean direction and ps stands

for the projection of wy; 5y onto [172]

For a singleton set S; = {k}, the mean direction w is any
unit vector in (the deflated) [V}], and the condition is always
satisfied. Thus, for this case, W; = Vj, in place of steps (a)—(c)
above.

Note that the estimated partially-joint score matrices /V[Z con-

sist of orthogonal columns, and WiT/WZ = Iis,)-

2.3.2 Partially-joint Loading Matrix Estimation

Given the partially-joint structure estimate & = {(S;,7(S;)) 11 €
Tk } and the corresponding partially-joint score subspace estimates
[/V[Z-]’s, we obtain the estimated partially-joint loading matrix U.

Let Z = (21[, .. .,2[T<)T € RP*"™ where p = Zlepk. Denote
the column-wise concatenation of /V[Z as W € R™*" where 7 =
Zz’eIK f’(S,)

We estimate the partially-joint loading matrix from the opti-
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mization problem

U=argmin|Z —U - WTH% (2.6)

UeRpx?
with a constraint that U in ([2.6)) has the block sparsity structure
that corresponds to the estimated partially-joint structure &. For
example, given K = 2 and & = {({1,2},2), ({1},1)}, U has a

block sparsity structure

with the number of columns of (U} U(:g)J)T and U)o is two

1,1
and one.

With the block-wise sparse constraint imposed, the objective
function for U can be written separately for each data block,
ie.,

K
1Z—U- W3 =" 11 Zk — Uy Wy I3 (2.7)

k=1
Here U, and /W(k) are the column-wise concatenation of each
Ur,i's and Wi's with i € {i: k € S; and r(S;) > 0}. The minimizer

of is
Uy = ka(k)(W(Tk)W(k))_l,

and ﬁ(k)i for i € J(y) are obtained by disjoining ﬁ(k). By the con-
straint imposed, set ﬁ(k)i =0 if k ¢ S;. The estimated partially-

joint loading matrix consists of ﬁ(k)i, and is denoted by U € RP*7,
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2.3.3 Tuning Parameter Selection

The partially-joint structure identification, proposed in Section
3.1, depends heavily on the tuning parameter A € [0,7/2). If A
is too small, then all scores are identified as individual scores,
specific to each data blocks. If A is too large, then individual and
partially-joint scores may be falsely identified as fully-joint scores.

We use data splitting to select the value of tuning parameter

A € [0,7/2). For a single instance of data splitting, split n samples

of X = [XT,..., XIT(]T into two groups of equal proportions, the

training set Xy, = [XtTM,...,XtTT,K]T and the test set Xyest =
T T T

[Xtest,b T 7Xtest,K] :

Given the signal rank r of each Xj, we then extract the train-
ing signal matrices Ztr,k for k = 1,..., K using the rank r; ap-
proximation of Xy, ;. For each A on the tuning parameter grid, we
identify the partially-joint structure from ka’s, and obtain the
partially-joint score Wtr, » and the partially-joint loading matrix
ﬁtr, A\, as discussed in Sections 3.1 and 3.2.

To assess the degrees to which the estimates are generalized to
the test set, we first evaluate the score matrix for the test set, given
by ﬁtr, A. The test score matrix Wtest’ y is defined as the minimizer

Wtest,)\ € Rntmt)@ of
||Xtest - Utr,)\WTH%‘

subject to WTW = Wtr‘f \Wira. The test score matrix is computed
as /V[desm = PAQ?(D,\CT, where Py and @) are left and right
singular vector matrices of Xtigst . ﬁtn/\ = P,\Z,\Q;, and where

Dg\ and C) are diagonal and right singular vector matrices of

27



ng Wiy = CADE\CT, using the Eckart-Young theorem (Eckart
and Young,1936).
Let A be the value of A for which the minimum of the empirical

risk is attained. The empirical risk, defined for A € [0, 7/2], is

K HXtest k— ﬁt A A” L ||2
: ) A (k) YWtest MIF
Risk(\) = E - : ) 2.8

where ﬁtr’%(k) is the kth row block of [Aftw\. A similar form was
used in Gaynanova and Li (2019). The corresponding partially-
joint structure is (‘AStT(S\)

Finally, we generalize @tr(X) to the whole data. Let Zk be the
rank r; approximation of Xj. Again on the grid of A’s, we obtain
the partially-joint structure G(A) from Zi’s. Then we choose the
best value A that minimize diff(@tr(j\), S(N)), where d is a mea-
sure of dissimilarity between two structure, which will be defined
shortly. Indeed, d is a special version of matching distance between

multi-sets (Bolt et al.,2022).

Measure of Dissimilarity

In generalizing étr(S\) to the whole data, we compute dissimilarity
measure between (‘AStT(S\) and S(A) for each candidate A\. Here we
define a measure of dissimilarity using K-row binary structure ma-
trices, for example, when K = 2, (({1,2},2),({1},1)) corresponds

to

1 11
1 10

Our strategy is that we consider the binary structure matrix as

a multi-set of binary column vectors (of size K). We devise a
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measure that swiftly captures dissimilarity between two multi-sets,
under a situation that we need to compute dissimilarity as many
time as the number of A’s on grid for each instance of splitting.

Let dp(a,b) be the number of elements between column vec-
tors a,b € {0,1}%, i.e. Hamming distance, which we will use as a
ground distance. The dissimilarity measure d(2,B) between two
partially-joint structure 2, B is defined as follows

dA,B)= > dy(a,B\A)+ Y  du(b,A\B),
a€A\B beB\A

where A and B are the binary structure matrices for 2l and 3.
The set minus operation, denoted \, is defined on a class of binary
matrices of K rows, regarded as a multi-set of binary columns.
See Section B.1 of the supplementary material for an exemplary

description.

Remark 2.2. It should be noted that d is not generally a distance:
the conditions (1) d(2,B) if and only if A =B and (2) d(A,B) =
d(B,20) hold, but (3) the triangular inequality does not.

2.4 Theory

Given an ordering of index-sets in (2% \ {#},C) and the signal
blocks Z = {Zj : k € K}, the partially-joint structure &(Z2) =
{(Si,r(S;),W;) : i € Ik} is uniquely determined. Unfortunately,
for different orderings of (2 \ {¢}, C), the ranks 7(S;) and the
partially-joint score subspaces [W;] may be different. In this sec-
tion, we introduce conditions on relations among [Vj]’s for &(Z)

to be uniquely determined regardless of the choice of the orders of

2\ {¢},©).
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For each | = 1,...,K, let J; = {i € Ig : |Si| = I} be
the set of all indices with size [. For [ = 1,..., K — 1, we set
(L] = +icginsi > (Mkes; [Vi]) = +iefiysi>n[Wil, and the projec-
tion onto [[;]* in R™ is denoted by Pﬁ. Note that when evaluating
the rank for [W;] for ¢ € J;, the definition of [W;] in (?7?) utilizes the
deflated score subspaces orthogonal to [[;], using the given order
of S;’s among i € J;. We say {[Vi|}rex to be relatively indepen-
dent if, for every [ = 1,..., K —1 and i € Jj, Pi-(Nies, [Vi]) is lin-
early independent to [C] _;] = +jejl\{i}(Pﬁ(ﬂkeSi [(Vk])). In words,
{[Vik]} ek is relatively independent, if for each and every layer 7,
each deflated subspace is lineary independent to [Cj _;], the sum
of the other deflated subspaces in the layer J;. If Pﬁ(ﬂkegi [Vi]) is
orthogonal to [C _;] for every [ = 1,..., K — 1 and i € [Jj, then
{[Vk] }kek is said to be relatively orthogonal. We immediately check

that relative orthogonality implies relative independence.

Theorem 2.1. Given matched data matrices X, = Z;, + E}, €
RPeX™ for k = 1,..., K with true signal Zy and error Ey, if
{IVk]}rekc, the collection of Zy’s signal score subspaces, is rela-
tively independent, then, regardless of the ordering of index-sets in

(28\ {9}, ©), there exists a unique set of pairs {(Si,r(S:)) Viezy -

Under only the relative independence condition, the determi-
nation of the partially-joint score subspaces [W;] corresponding
to S;, @ € i, may not be unique, and depends on the ordering
of index-sets (see Examples A.3 and A.4 in the supplementary
materials). To ensure uniqueness of [W;]’s, we require a rather
strong assumption. We say that {[Vi]}rex is absolutely orthogo-
nal, if (1) {[Vk|}rex satisfies relative orthogonality, and (2) for
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eachl=1,..., K — 1 and for every i € 7,
Pir(Nkes; [Vi]) = P71 (Nies, Vi), (2.9)

where [Ji] = +jeg, ., (NMies; [Vi]) = +jeg, ., [W;] and i = {5 -
|S;| > 1,5: N Sk # ¢}. In Example when [ = 1 and i = 6,
(2-9) holds if (Oje{1,2,3,4}Pf)([V1]) = (Oje{l,Q,B}PjJ_)([V?])' Note
that for i = 6, S; = {2} and the index-sets S;’s for j € J; -, are
S1 ={1,2,3}, So = {1,2}, S5 = {2,3}, excluding Sy = {1, 3}.

Theorem 2.2. Given matched data matrices X, = Zy + Ej, €
RPEX™ for k = 1,...,K with true signal Zy and error Ey, if
{[Vk|}rek is absolutely orthogonal, then partially-joint score sub-

spaces [W;] fori € I are uniquely determined.

The uniqueness of each partially-joint loading subspace [Ug ;]

is deduced from the uniqueness of [W;]’s.

Corollary 2.1. Given matched data matrices X = Zp + Ey, €
RPeX™ for k = 1,..., K with true signal Zy and error E, if
{[Vi|}rexc is absolutely orthogonal, then each partially-joint load-
ing subspace [Ug, ;] is uniquely determined for k = 1,..., K and
i € Liy-

We provide proofs of theorems in this section and examples for
relative independence and absolute orthogonality in Section A.2

of the supplementary materials.
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2.5 Simulation Study

2.5.1 Example Dataset Generation

In the simulation study, we use the following data generation set-
ting for numerically analyzing the performance of our proposal.
Throughout, we use K = 3 blocks of data sets, in which the asso-

ciation structures are given by the ranks of index-sets.

First, we set a pre-determined rank r(S;) for each index-set
S; for i = 1,...,2K — 1. The generic partially-joint score matrix
Weomp,i € R™<7(5) for each index-set is a column-wise concatena-
tion of randomly generated vectors weomp,i; for j =1,...,7(S;).
Each weomp,i,j are generated element-wise and the entries of wWeomp,i,
follows N (O,Uﬁj) independently; not only independent within a
Weomp,i,j, but independent between weomyp,i,;’s as well. The magni-
tude of signal 01'2, ;'s depends on the simulation settings, and sum-
marized as 03, = {(UZ]-) ci € Ik,j = 1,...,7(5:),r(S;) > 0}.
The column-wise concatenation of Weomp,; is denoted Weppp of
size n X Z?:l_l 7(.S;).

The generic loading matrices Ucomp i € RPex7(50) for § =
1,...,25 —1 and k = 1,...,K are given as follows. The en-
tries of Ucomp,k,i are generated independently from the uniform
distribution, Unif(0, 1), and all the columns of Ucomp ki are scaled.
We give Ucomp,k,; orthonormality by the QR decomposition. We
then derive the generic signal matrix Z; for £k = 1...,K by
Z, = weight, - Z?:fl(mepM - Weomp,i), where weight,’s are
weights for each dataset, which reflect the magnitude of signals.

The concatenation of generic loading matrices is denoted Ucomyp,
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and is of size S5, pr X Z?:l_l r(S;).
The error matrix FEj is generated element-wisely, such that
er,ij ~ N(0,0%) independently for i = 1,...,pg and j = 1,...,n.

2 is set as the reciprocal of the signal-to-

The magnitude of error o
noise ratio (SNR), 02 = 1/SNR, where SNR is predetermined as
a simulation setting.

We use the following six models. We set n = 200, p; = py =

p3 = 100 and weight; = weight, = weight; = 1, for all six cases.

1. (Individuals) & = {({1},2), ({2}, 2), ({3}, 2)}, 02, = {(1.4,0.8), (1.3,0.7),
(1.2,0.6)}

2. (Fully joint) & = {({1,2,3},2)}, o3, = {(1.0,0.9)}

3. (Circular, partially joint) & = {({1,2},2), ({1, 3},2), ({2,3},2)},
o2, ={(1.4,0.8),(1.3,0.7),(1.2,0.6)}

4. (Mix of fully joint and individuals) & = {({1, 2, 3},2), ({1}, 2), ({2}, 2),
({3},2)}, 02, = {(1.5,0.8), (1.4,0.7), (1.3,0.6), (1.2,0.5)}

5. (Fully joint and partially joint) & = ({1, 2,3},2), ({1,2},2), ({1, 3},2),
({2,3},2)}, 02, = {(1.5,0.8), (1.4,0.7), (1.3,0.6), (1.2,0.5)}

6. (All possible combinations) & = ({1, 2,3}, 2), ({1,2},2), ({1, 3}, 2),
({2,3},2), {1}, 2), ({2}, 2), ({3},2)}, o3, = {(1.8,0.8),(1.7,0.7), (1.6,0.6),

(1.5,0.5), (1.4,0.4), (1.3,0.3), (1.2,0.2)}
2.5.2 Results on Comparative Study

In this subsection, we numerically compare the performance of
our proposal to other competitors, including SLIDE (Gaynanova

and Li,2019), COBS (Gao et al.,2020), AJIVE (Feng et al.,2018),
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and JIVE (Lock et al.,2013). Note that from the estimates of each
method, the partially-joint structure & can be extracted, as well
as the concatenated partially-joint score matrix W and loading
matrix U. See Section A.3.2 of the supplementary materials for
a brief review of these methods. Our proposal will be called the
method of partially-joint structure identification, or PSI for short.

To assess the efficacy of finding the true partially-joint struc-
ture & and proper loading and score matrices, we use the following

measures.

(1) Partially-joint structure S : The rate of finding the true
partially-joint structure, E1(S = @0).

(2) Partially-joint loading matriz U : We find the difference be-
tween Ucomyp and U as follows. We denote the principal an-
gles between Ucomp k,; and ﬁ(k.) by Oy for k=1,... K,
i=1,...,25 ~1andj=1,...,7(S;). We report the average
of all the values of 8y ; ;s as (U, (/j)

(3) Partially-joint score matriz W : We find the difference be-
tween Weomp and W as follows. We denote the principal
angle between weomp,i,; and W by Oy, jfori=1,..., 2K _1
and j =1,...,7(S;). We report the average of all the values
of Oy ;s as O(W, /V[7)

In the comparative study, the measures E1(& = é), 6(U,U)
and 6(W, W) were computed to assess the performance of PSI and
other four methods. The simulation was conducted on different
values of SNR (10 and 5) for the example models 1 to 6. Given a

fixed true partially-joint loading matrix Ugomyp, one hundred data
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Table 2.1: Comparative Study on Model 1 to 3. The unit for

E1(6 = @) is percent. Numbers in parantheses are standard de-

viations.
Model \ SNR  Measure \ PST SLIDE bev COBS AJIVE JIVE
1 10 EI(S=8) 100 1 18 93 5
(U, T) 13.69 (0.48)  25.26 (14.08) 52.59 (9.43)  13.72 (0.52)  13.62 (0.49)
O(W,W) | 18.47 (0.58)  19.55 (0.79)  20.85 (1.39)  18.55 (0.95)  18.62 (0.64)
5 EIG=6) 100 3 48 93 6
(U, T) 20.01 (0.76)  36.26 (14.96) 67.24 (6.13)  20.14 (0.9)  19.94 (0.77)
(W, W) | 25.96 (0.71)  28.14 (2.19)  34.48 (3.41)  26.33 (1.8) 26.1 (0.75)
2 10  E1(6=8) 100 100 100 100 0
(U, T) 12.99 (0.59)  13.03 (0.59)  19.27 (1.82) 12.99 (0.59)  13.33 (0.63)
AT 10.86 (0.55)  11.47 (0.77)  11.17 (0.62)  10.86 (0.55)  10.67 (0.53)
5 EIG=8) 100 100 100 100 0
(U, T) 18.43 (0.88)  18.46 (0.88)  32.35 (2.8)  18.43 (0.88) 19.47 (1)
AT 15.66 (0.85) 16 (0.83) 17.14 (1.12)  15.66 (0.85)  15.38 (0.83)
3 10 E1(&=86) 100 22 0 0 0
(U, 0) 13.27 (0.41)  24.47 (8.16)  24.22 (2.82)  13.68 (0.57)  13.32 (0.44)
AT 1352 (0.39)  14.05 (0.48)  14.66 (0.54)  13.73 (0.53)  13.12 (0.42)
5 EL(&=6) 89 56 1 0 0
(U, T) 19.13 (0.71) 3452 (7.09)  45.44 (5.54)  20.39 (0.84)  19.61 (0.75)
AT 19.52 (0.62)  19.75 (0.66)  26.92 (2.77)  20.93 (1.15)  18.84 (0.61)

sets were generated for each SNR value. We tested all 5 methods
over these datasets.

We give each method the initial ranks as follows : (1) PSI,
AJIVE, JIVE : Truncate each X} with its true rank. For exam-
ple, in Model 3, each X; was truncated with the true rank 4, (2)
SLIDE : Use the whole X, the row-concatenation of X;’s. After
standardization, X is then truncated with the sum of each index-
set’s true rank (for example, 6 = 2 + 2 + 2 in Model 3), and (3)
COBS : Use the whole X, the row-concatenation of X;’s. Set the
number of components as the sum of each index-set’s true rank.

Average and standard deviation for each measure are reported

in Tables 2.1 and 2.2

In the example model 1, in which case there are only individual
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Table 2.2: Comparative Study on Model 4 to 6.

Model | SNR  Measure | PSI SLIDE bev COBS AJIVE JIVE
4 10 EIS=8) 100 2 24 100 0
(U, D) 13.31 (0.36)  20.03 (6.06) 34.19 (4.37)  13.3 (0.36)  13.45 (0.37)
(W, W) 17.28 (0.43)  18.07 (0.47)  19.69 (1.4)  17.1 (0.42)  17.36 (0.43)
5 EI(6=258) 100 8 24 100 0
(U, D) 19.23 (0.57)  28.35 (8.82)  47.6 (2.85)  19.19 (0.57)  19.63 (0.61)
(W, W) 24.37 (0.64)  27.65 (3.66) 33.98 (2.65)  24.1 (0.63)  24.04 (0.66)
5 10 E1(&=6) 100 35 0 0 0
U, 0) 13.28 (0.29) 22.01 (6.24)  24.2 (2.2) 13.49 (0.38)  13.42 (0.33)
(W, W) 13.28 (0.32)  13.68 (0.41) 14.51 (0.58)  13.4 (0.43) 12.9 (0.49)
5 EI(G=6) 69 58 0 0 0
B(U,0) 19.19 (0.59) 29.23 (4.95) 41.43 (3.36)  19.79 (0.53)  19.73 (0.53)
W, W) 19.14 (0.6)  19.22 (0.62) 26.37 (1.89)  19.86 (0.72)  18.33 (0.64)
6 10 E1(&=28) 99 0 0 0 0
(U, 0) 14.28 (0.33)  20.54 (9.7)  30.71 (2.27) 14.12 (0.32)  14.31 (0.34)
(W, W) 17.88 (0.45)  20.9 (2.29)  24.53 (1.21)  17.66 (0.45)  17.54 (0.49)
5 EI(G=6) 55 0 0 0 0
(U, 0) 21.27 (0.69)  29.8 (9.71)  44.91 (2.77) 21.24 (0.73)  21.44 (0.67)
(W, W) 25.71 (0.84)  28.45 (1.68) 342 (1.09)  25.95 (1.07)  24.52 (0.84)

scores, PSI and AJIVE identified the true partially-joint struc-
ture for almost all instances. In the example model 2, in which
case there are only joint score, all methods but JIVE find the
true structure for almost all SNRs and instances. PSI, SLIDE and
AJIVE have estimated identical score subspaces. In the example
model 3, in which partially-joint scores are entangled in a cyclic
structure, PSI boasts superior performances in identifying the true

structures. Table 2.1l confirms these observations.

In the example model 4, in which case both joint and individ-
ual scores are composited, both PSI and AJIVE showed superior
performance in identifying the true structure. Our method was as
competent in estimating score subspaces as AJIVE. In the exam-
ple model 5 and 6, the complicated cases with joint, partially-joint
and individual scores mixed, PSI is prominent in estimating true

structure, loading and score subspaces. See Table
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2.5.3 Results on Imbalanced Signal Strength between

Joint and Individual Components

Next, we consider cases where the signal strengths of joint com-
ponents and individual components are grossly imbalanced. Con-
sider a new model, with K = 3 and p; = ps = p3 = 100, whose
index-set ordering is S1 = {1,2,3}, S5 = {1}, S¢ = {2} and
S7 = {3}. We set inherent joint rank r(S;) = 10 and individ-
ual ranks r(S5) = r(Se) = r(S7) = 10. Other index-sets have zero
ranks, r(S2) = r(S3) = r(Ss) = 0. Throughout, n = 200.

For the case in which there are larger variations in the joint
component than the individual components, we set U%J > J% j for
1 =5,6,7 and all j’s. In the opposite case, we give larger variations
in the individual components than the joint component, Jz j > a% j
for ¢ = 5,6,7 and all j’s. Details are given in Section A.3.5 of the

supplementary materials.

We carried out comparative simulations on both cases at SNR
levels co and 5. Not only the success rate of finding true structure
but also the numbers of estimated joint and individual compo-
nents were evaluated. In Table [2.3] in which case the joint compo-
nent has larger variations, PSI, AJIVE and JIVE showed superior
performances to other methods. SLIDE only succeeded in finding
joint components even when there is no noise. When the individ-
ual components have larger variations, in Table our method
still shows better performances in finding both joint and individ-
ual components when there is no noise, but failed to estimate any
joint structure with noise. At SNR 5, AJIVE and JIVE was the

most competent among all methods.
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Table 2.3: The case where the joint component has larger varia-

tions than the individual components.

SNR  Measure PSI  SLIDE bev COBS AJIVE JIVE
0 ELG=8)| 100 0 0 0 100
Joint 10 (0) 10 (0)  39.58 (0.59)  3.79 (1.95) 10 (0)
Individual | 30 (0) 0 (0) 0.02 (0.14)  48.63 (5.84) 30 (0)
5 EI(G=68)| 100 0 0 1 0
Joint 10 (0) 10 (0) 12.49 (1.76) 10 (0) 10 (0)
Individual | 30 (0) 0 (0) 18.54 (2.61)  33.19 (1.01)  43.29 (1.53)

Table 2.4: The case where the individual components have larger

variations than the joint components.

SNR  Measure PsI SLIDE bev COBS AJIVE JIVE
0 EIG=8) 100 0 0 0 0
Joint 10 (0) 9.84 (0.77)  38.33 (1.46)  3.67 (1.74) 15.05 (1.7)
Individual 30 (0) 25.88 (1.29)  0.14 (0.35)  48.99 (5.21)  27.35 (1.2)
5 EI(&=8) 0 0 0 0 1
Joint 0 (0) 10.18 (1.42) 15.28 (3.04)  8.27 (0.58)  11.38 (2.94)
Individual | 59.4 (1.41)  21.48 (1.77)  12.33 (2.31) 36.41 (1.88) 27.27 (1.14)

2.6 Real Data Analysis

In this section, we apply the proposed PSI to a dataset called
EGAS0000100174, a blood cancer multi-omics data set linked to a
drug response panel (Dietrich et al.,2018). We have chosen to use
121 cases diagnosed with chronic lymphocytic leukemia (CLL).
The drug response panel (Xpryg) records the ex vivo cell viabili-
ties at a series of 5 concentrations, for each of 62 drugs that target
onco-related pathways or are used widely in clinical practice. This
multi-omics data set consists of the genome-wide DNA methy-
lation profiles and the RNA sequencing profiles. The top 5,000
most variable CpG sites were selected (Xyietn) from the 450K il-
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lumina assay DNA methylation profile. As for the RNA sequenc-
ing profile, we selected the top 5,000 gene expressions with the
largest stabilized variances (Xgxp) from the high-throughput se-
quencing (HTS) assay. In summary, we have three blocks of data
sets Xprgg € RIZIB10. X0 € RIZIXS000 apd X € R121X5000,
We repeat the estimation process over 100 repetitions (of data
splitting) and select the mode structure, that is, the estimated
partially-joint structure that appears the most out of 100 repeti-

tions. The estimated mode structure is
S = {({Drug, Meth}, 1), ({Drug},4), ({Meth},41), ({Exp}, 3)},

which means that PSI detected the index-set {Drug, Meth} of rank
1, and no fully-joint score or other forms of partially-joint scores
were detected. This structure appeared 53 times out of 100 repe-
titions. The index-set {Drug, Meth} of rank 1 stands for the exis-
tence of one-dimensional latent score, partially-joint for Drug and
Meth data sets (but not for Exp data set).

PSI showed better performance in computation time over other
methods. In an Intel ® Xeon ® CPU E5-2640 v4 @ 2.40GHz sys-
tem, it took 9.38 seconds per single data splitting instance (54.56
seconds for 100 instances with 40 cores). In comparison, the SLIDE
with ber method detected the same structure as our method, but
it took almost 9 hours on the same machine. The COBS yielded
an eccentric result, giving the fully-joint score of rank 50, taking
about 14 minutes.

PSI was also robust over different choices of initial ranks. As
a preprocessing, we set the ranks of the signal matrices using the

principal component analysis which accounts for cumulative pro-
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portion of variances at 30%, 40%, 50% and 60%. Resulting sig-
nal ranks for Drug, Meth and Exp datasets are (2,6,1), (2,15,1),
(3,28,2) and (5,42, 3), respectively. For all cases, PSI detected the
same index-set {Drug, Meth} of rank 1.

The analysis by PSI for the patient sample multi-block data re-
veals a particular pattern in the latent partially-joint score, which
cannot be identified by applying, e.g. principal component analy-
sis to each data block. To support this claim, we plot the recon-
structed matrices (/]\(k)J/WiT for the identified partially-joint and
individual parts of the data in Fig. 2.3] Both the samples and
the variables of Xp,,e are ordered by a hierarchical bi-clustering
applied to the partially-joint component [?(Drug),g/WQT of Xprug,
where Wg = /W{Drug,Meth}. The matrix Zpryg,s, 1= ﬁ(Drug),Q/WQT is
shown in the top left part of Fig. The variables of Xyiet, are

similarly ordered.

Focusing on the partially-joint scores corresponding to {Drug, Meth},

the samples are clustered into two distinct subgroups. These sub-
groups are shown in Fig. [2.4{a), and are denoted by groups «
and (3. There, it can be seen that the variables in Xp;, and
Xweth show a contrasting pattern according to the two subgroups
a and (. Comparing Zprug,s, (Fig. [2.4(a)) with the whole Xpyug
(Fig. [2.4(b)), we observe that the subgroups identified above are

hidden in Xp,,g. Moreover, the subgroups « and 3 are well-separated

in the partially-joint score W{Drug,Meth} of Zprug,s, (Fig. (c)),

while it is hard to find any subgroup in the principal component
scores of whole Xpyyg (Fig. 2.4(d)). The same conclusion can be

made by inspecting the component of Xyetn corresponding to the
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partially-joint score I//I\/'{Dmg’Meth}, denoted Zyetn,s,, and the whole
Xumeth in Fig. 2.4e) and (f). Thus we observed that PSI gives a
more effective measure of finding inherent subgroups in a multi-
omics data set than a separate application of the principal com-

ponent analysis on each of the data matrix.
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To find indicators that best explain the subgroups « and 3, we
conducted the Fisher exact test simultaneously on 59 gene muta-
tions or chromosome defects of each patients, available as an ancil-
lary information. The p-values from each Fisher exact test were ad-
justed by the Benjamini-Hochberg (BH) method (Benjamini and
Hochberg,1995). The smaller p-values indicate stronger differences
of each mutation or chromosome defect between the subgroup «
and 8. We found that the immunoglobulin heavy chain variable
(IGHV) region mutation status has the most associated relation
with the subgroups at BH-adjusted p-value 1.026 x 10713, We also
present the 2 x 2 table of the IGHV status and the subgroups,
see Tables A.4.1 and A.4.2 in the supplementary materials. We
postulate IGHV mutation status gives a substantial explanation
for the subgrouping of CLL patients, that is, wild type matches
to the subgroup « and mutation type to the subgroup . Sur-
vival analyses on overall survival rates was also conducted, and
we found statistically significant differences in survival between

the two subgroups o and 3 as shown in Fig.

Again in Fig. [2.4(a), the variables in Zp,ug s, can be clustered
into subgroups [a] and [b] showing a contrasting response pat-
tern to the subgroups a and  (variables showing weak responses
were excluded as subgroup [c]). The subgroup [a] shows higher
viability for f (IGHV mutated) than o (IGHV wild type) and
vice versa for [b]. Table A.4.3 (in the supplementary materials)
presents the list of prominent drugs that have appeared in sub-
groups [a] and [b] at least 4 times out of 5 concentrations. For

the subgroup [a], the table lists a number of inhibitor drugs that
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target the B cell receptor (BCR) components, such as Bruton’s
tyrosine kinase (BTK; spebrutinib, ibrutinib), phosphatidylinosi-
tol 3-kinase (PI3K; idelalisib, duvelisib) and spleen tyrosine kinase
(STK; tamatinib, PRT062607 HCL). AKT inhibitor(MK-2206) or
SRC inhibitors (dasatinib) targets signal transduction pathways
that promotes survival and growth of B cell lymphocytes. Unex-
pected encounter with HSP90 inhibitor (AT13387 or Onalespib)
may be related to the stability of lymphocyte-specific SRC family
kinases (Mshaik et al.,2021). The appearance of CHK inhibitors
(PF 477736, AZD7762, CCT241533) may be linked to repairing
mechanisms of DNA damages at G2 phase, known to be associ-
ated with WEE] kinase and the AKT/PKB pathway (Zhang and
Hunter,2014). For the subgroup [b], the appearance of mTOR in-
hibitor (everolimus) may suggest that mTOR pathway and shows
different drug sensitivities to the BCR component, despite the fact
that it is on the downstream of AKR/PKB pathway. The role of
IGHYV in this implication requires further investigation. BCL2 in-
hibitor (navitoclax) and rotenone might be related to the role of

mitochondria in apoptosis (Wang and Youle,2014).
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Figure 2.4: (a) The matrix Zprug,s, := ﬁ(Drug),QWQT . (b) The whole
Xprug data matrix. (c¢) The density plot of the subgroups « and
B along the first principal component (PC) score of Zpyg,s,; (d)
The PC scores plot for the whole Xp,yg; (€) The density plot of the
subgroups v and 3 along the first principal component of Zyjeth,s,;

(f) The PC scores plot of the whole Xyfeth.
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from the log-rank test.
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Chapter 3

Penalized Principal

Nested Spheres

3.1 Introduction

In this section, we review forward nestedness of PCA, the non-
FEuclidean generalization of PCA to PGA and backward nestedness
of PNS. We then present the concept of overfitting phenomenon
in PNS and give the motivations of PenPNS.

Nearly for a century, Principal Component Analysis (PCA)
(Hotelling, 1933) has been a popular technique in multivariate
data analysis. PCA is a dimension reduction method, in that it
linearly transforms data points into a lower dimensional linear
space with a new coordinate system. More specifically, PCA finds a
coordinate, called the first principal component, on which the data

points are projected so that the projected points have the largest
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variance. PCA next finds another coordinate, the second principal
components, on which the data points are projected again and
have the largest variance in the complementary space of the first
principal component. The third principal components are found
in the same manner and so on.

The mechanism described above on which PCA is operating is
summarized as the concept forward nestedness. PCA is a stepwise
procedure. At the current m + 1th step, where m principal com-
ponents are already identified, m + 1th principal component is the
best descriptor of the data points projected into the complement
of the space that is spanned by the first to m-th principal compo-
nent. By the nestedness, we describe that the subspace spanned

by the principal components is a nested structure, that is,
span(PC1) C span(PC1,PC2) C span(PC1,PC2,PC3) C ...,

where PCm denotes the mth principal component. By the for-
ward, we describe that the nested structure is built on from one
dimension to larger step by step.

Our aim is to generalize PCA to a non-Euclidean spaces. There
has been several attempts to apply PCA method on manifold sur-
face (Gower,1975; Huckemann and Ziezold,2006; Huckemann et
al.,2010; Mardia et al.,2021) and one of the elementary approach
is Principal Geodesic Analysis (PGA) (Fletcher et al., 2004). PGA
adopts forward nestedness, but with approximating the manifold
surface by Euclidean space. The overall generalization framework

is as follows.

(1) Given a base point p on the manifold M, the data points

x; € M on the manifold surface are mapped to the points u;’s
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of the tangent space T),M (approximation of the manifold
surface by the tangent space, which is Euclidean space by

definition)

(2) Then in the tangent space T, M, find the descriptors v’s
that best explains the points u;’s in a manner of forward

nestedness.

Specifically, PGA finds the base point u as the intrinsic mean
of x;’s, that is, a minimizer point of expected squared intrinsic
distance (Kobayashi and Nomizu, 1969; Karcher, 1977). The data
points x; € M are mapped to u; by an inverse exponential map,
Expljl. In the tangent space T),M, PGA performs PCA on points
u;’s. Bach descriptor v, C T, M is mapped back to a geodesic
through p on M, Exp,(vg), by an exponential map. Thus, we
have geodesic descriptors Exp,,(vx) of data points z; € M.

The major pitfall of this framework is that its result depends
largely on the choice of the base point u. The distribution of points
u;’s in the tangent space 1), M varies greatly on the choice of the
base point and can lead to way different results in finding descrip-
tos vg. Also, PGA’s choice of intrinsic mean is somewhat arbitrary.
Moreover, there is a counter-example where the geodesic descrip-

tors Exp,,(vr) do not explain the data points z;’s well.

Example 3.1. Let M = S?, a sphere in R3. Suppose the data
points x;’s are distributed uniformly on the equator. It can be easily
shown that both north and south poles are the intrinsic mean p of
x;’s. Then the geodesic descriptors Expu(vk) are longitude lines
passing through both north and south poles, but intuitively they

are not good descriptors for data points on the equator.
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To cope with these difficulties, Analysis of Principal Nested
Spheres (PNS) (Jung, 2012) takes a different strategy, backward
nestedness. PNS is an analogue of PCA for data points on hyper-
sphere, S%. Instead of building up a nested structure from dimen-
sion one, PNS starts from S? and reduces dimension one by one.

The PNS framework, at the mth step, is

(1) Finds a best-fitting subsphere A;_,, of dimension d — m in
Sd—m-&-l.

: : . d—m+1
% —-m-
(2) Project the points z; € S onto Ay

(3) As the subsphere A4_,, is homeomorphic to S~ map the

points of Ag_,, to S using an isomorphism fi_,,.
As a result, PNS yields the following nested structure
Sd DAg 1 = Sd_l DAy o= Sd_2 D...D0% = SO,

where A4_1 = Ag_1 and A4_,, = fd__l1 0---0 fd_ml(Ad,m) for
m = 2,...,d. By adopting backward nestedness, there is no more
need to choose a base point and mapping data points to the tan-
gent space. Instead, we only need to estimate the parameters that
describe the subsphere. A subsphere is defined by the axis v € S™

and radius r € [0, 7/2] as
Ap—1(v,r) ={x € S™: arccos(vTa:) =r}.

For more details about the framework of PNS, see Section [3.2
One of the major characteristics of PNS is that the subsphere
is not necessarily a great sphere. Here a great sphere means a sub-

sphere with radius » = 7/2 and it is a high-dimensional analogue
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Figure 3.1: (a) Data points generated along a small sphere with r =
7 /4. (b) Data points generated along a great sphere (the equator),
but inside a short interval of 10° (perturbed by von Mises-Fisher
distribution with x = 50). Blue circle is the fitted small sphere by
PNS.

of a geodesic circle of S2. Permitting a small sphere (r < 7/2)
gives PNS more flexibility in fitting a certain type of non-geodesic
variation on a hypersphere. For example, if data points are dis-
tributed along a circle which is posited on latitude 45° of S2, it is
reasonable to fit the data points with a small sphere with param-

eters v = (0,0, 1)7 and r = 7/4, see Figure

However, at the same time, permitting a small sphere can in-
duce a somewhat pathological phenomenon, called overfitting phe-
nomenon. Overfitting phenomenon in PNS indicates a situation
where the fitted radius is less than 7/2 even if data points are
generated along a great subsphere. In this chapter, we discuss two

types of overfitting phenomenon in PNS.
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Type 1 Overfitting Phenomenon : When data points are
generated along a great sphere, the angle between the true axis
and data point would make a distribution around 7/2. However,
when the estimated radius 7 is over m/2; the estimated axis v is
flipped to —7 and we take the estimated radius m — 7, since ra-
dius as a parameter ranges from 0 to 7/2 (For example, if the
parameters are yielded as ((0,0,1)7,7/2 + 0.01), then we take
(v,7) = ((0,0,1)T,7/2 —0.01) instead). Hence, the distribution of
the estimated radius is a folded version of the distribution of the
angle between the true axis and the data points. As a result, the
expectation of estimated radius, E7 is underestimated even if the

true radius is /2.

Type 2 Overfitting Phenomenon : Suppose data points
are generated along a great subsphere but within a very short in-
terval. This would make the point cloud have a disc shape. In this
case, subsphere fitting would yield a small subsphere inside the
point cloud, not the original great subsphere where data points

were generated, see Figure|3.1b

To mitigate overfitting phenomena, we propose Penalized Prin-
cipal Nested Spheres (PenPNS). First, PenPNS alleviate type 1
overfitting phenomenon by regularizing r in parameter estima-
tion. Well-known regularization, like penalizing with Li, Lo or
MCP terms, are examined in simulation studies. Second, to deal

with type 2 overfitting phenomenon, PenPNS imposes a penalizing
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term on the cross-validation error in choosing tuning parameter.
This penalizing term is derived from a concept Index of Disper-
sion (IoD), an index which has a large value when a disc-shaped
distribution is fitted with a small radius.

The rest of this chapter is organized as follows. In Section
we formally review the nested subsphere structure of PNS and
present the PenPNS framework. The computational algorithm and
validation method are explained in Section [3.3] In Section [3.4] the
geometry of parameter space is described and conditions to guar-
antee strong consistency are discussed. In Section 3.5 we present
a heuristic method to avoid type 2 overfitting phenomenon. The
concepts of IoD and IoD criterion are defined therein. In Section
the results of numerical simulation are presented, mainly fo-
cused on the mitigation of overfitting phenomena. In Section
we compare the result of the proposed PenPNS with the original
PNS and PNGS (Jung,2012) on the Cephalometric X-ray Image
Data. Proofs, technical lemmas and extended numerical results are

given in Chapter [3] of the supplementary materials.

3.2 Statistical Framework

3.2.1 Nested Subsphere Structure

In this section, we present the concept of the nested subsphere
structure, proposed in Jung (2012). Given a natural number m
and the unit sphere S™ in R™*! a subsphere A, 1(v,r) of S™
is defined with a unit vector v € S™, called an azis, and a radius

r e [0,m/2].
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Definition 3.1. When m > 1, a subsphere Ay,—1(v,r) of S™ with

an azis v € S™ and a radius v € [0,7/2] is defined
Am—l(’U,T) = {l’ c Sm : pm_l(’l}’x) = 7"}’

where py_1(x,y) = arccos(x’y) denotes the geodesic distance be-
tween x,y € S™. When m = 1, a subsphere Ay is a point on a

unit circle St.

Note that a subsphere A,,—1(v, ) is the intersection of ™ with
a m-dimensional affine subspace in R™*!, denoted H,,(v,r) =
{z € R™*! : vTx — cosr = 0}. The projection from S™ onto

Ap—1(v,r) is defined as

sinr - & + sin(pm—1(x,v) —r)v

Tm—1(v,7)(x) = argmin pp,_1(z,s) = -
( )( ) s€Am—1(v,r) ( ) Sln(ﬂm—l(x?U))

for x € S™ and m > 2.

We observe that there is an isomorphism between A,,_1(v,r)

and S™!, given as fin—1(v,7) : Ap1(v,7) = S™7! such that
fm—1(v,7)(z) = R™ (v)x/sinr,

which has an inverse f,.! (v,r): S™"! = A;,_1(v,r) such that

frﬁll(vvr)(y) = RT(”) <sinr -yT cos r)T.

Here, R(v) € R(mH1)x(m+1) s 5 rotation mapping that moves v to
the north pole and R~ (v) consists of the first m rows of R(v). By
fm—1 and frgll, Ap_1(v,7) is identified with a unit sphere S™~1.

Let d be a natural number and consider a family of subspheres
Ap—1(Vm—1,Tm—1) in 8™ for each m = 1,...,d. A nested sphere
1 corresponding to A, _1(vm-_1,7m_1) is defined in S¢ as fol-

lows.
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Definition 3.2. Suppose d is a natural number and there is a
family of subspheres Ap—1(Vm—1,7"m—1) with axis vy,—1 € S™ and
radius ry—1 € [0,7/2] for each m = 1,...,d. The projection from
S™ onto Apm—1(Um—1,Tm—1) is denoted my,—1. A m-dimensional

nested sphere Up,_1 of S¢ is defined as
(1) if m=d, A4-1 = Ag—1(va-1,7d-1),

(2) if1<m<d, Ay = fJ_ll ©:-:0 %il(Am—l(Um—lvrm—l)%

where fnfbi1 = ;il(vm_l,rm_l) for each m =1,...,d. Then the

nested subsphere structure 2 is defined A = {Ao, ..., Aq—1}.

3.2.2 Estimation of Subspheres

For d > 2, suppose n data points xgl),...,a:,(ll) e S are sam-

pled. Our goal is to fit subspheres A\d_k for k =1,...,d sequen-
tially. At each step K = 1,...,d — 1, the estimated subsphere
gd_k is obtained by estimating its parameters vq_j and rq_g, that
is, ﬁd_k = Ay ;(Vg—p,Ta—r). After fitting gd_k, we update data

EY = fak(0,7) 0 may(@,7) (@) for all i = 1,....,m,

points as x
so that the new data points reside on S%*.
For each step 1 < k < d, we seek to minimize the objective

function
L, -
F(v,r) = o ;:1 L (xz ,v,r) + jr (1), (3.1)

over (v,r) € S¥F+1 x [0,7/2]. Here, L(x;v,r) is a loss function
that measures a discrepancy between a subsphere Ay (v,7) and
a data point € S4**1. The function Jr, introduces the form

of penalization, where the value of j; is larger for the smaller
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value of the radius r. The tuning parameter 7 € [0,00) controls
the degree of penalization. The choice of loss function and penalty
function is presented in the subsections below.
At the last step k = d, we compute EO as the Fréchet mean of
xgd), . ,x%d) € S, that is,
n
Ay = arg min Z p(zi,s).
seSt 4
The loss function corresponding to the original PNS proposal
(Jung,2012) is

Li(z;0,7) = (pm_1(x,v) — )% = (arccos(z’v) — r)?, (3.2)

which may be called the intrinsic squared loss function. For PenPNS,

we follow the instrinsic squared loss as the original PNS.

We use the penalty function j;, in order to penalize the de-
parture from great sphere (r = 7/2) by assigning large value for
smaller r. For the intrinsic loss functions, , we set the penalty

function in the forms of L1 and Lo norms,

) =7 /2 =, (3.3)

jrr) =7 (n/2 =), (3.4)
and also use the MCP (Zhang,2010)

jyop(r) T- ()2 —71) = (7/2 —71)2/2y, if (m/2—71)<~T

y72/2, otherwise

with a constant v > 1.
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3.3 Computational Algorithms

A general strategy of solving (1) is an alternating minimization

0 79), we first optimize over v

method. Given a current iterate (v
with the fixed r0, obtaining v! satisfying F(v!,r%) < F(°,70).
Then we obtain 7! from given v!, satisfying F(v!,r!) < F(v!,70).

The algorithm for minimization of F' with respect to v is dis-
cussed in Section [3.3.1] Given v, the problem of minimizing F
in terms of r has a closed form solution with appropriate Ly, Lo

or MCP penalties, as discussed in Section [3.3.2l We propose to

optimize F(v,r) as follows. For the jth iterate (v7,r7),
1. Obtain v/*! satisfying F(v?,r/+1) < F(v7,77) (Section|3.3.1]).

2. Obtain 77+ satisfying F(v/ 1, 77H1) < F(v7,r7F1) (Section

3.3.9).

3. Stop if F(v/,r7) — F(v/ T ritl) < € for a predetermined

threshold € > 0. Otherwise, return to the j 4+ 1th step.

3.3.1 Update of v

The current axis v/ is updated by solving the following nonlinear

least-squares problem,

4 N2
It = argmmZ(pd k(z (k) 3)—7’]> ,

veSd—k+1

numerically, e.g. Levenberg-Marquardt Algorithm (Levenberg,1944;
Marquardt,1963).
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3.3.2 Update of r

Suppose we have datasets H:Ek) e Smhtl for ¢ = 1,...,n. It is

easy to check that the solution to

; 1< B
41— arganin 13 @ 57 <1 ),
g g, 3 (om0 ) = 450
is given as (1) for L; penalty, /T = 7/2 — sign(n/2 — @)(|7/2 —
@l —7)4 and (2) for Ls penalty, /! = (@+77/2)/(1+7) and (3)
for the MCP,
L a, if |7/2 —a| > 7

L %Sjgn(w/Q —a)(|r/2—a|] —7),, otherwise

wherea =1 3% | arccos(vTxl(.k)). Here, fora € R, ay =aifa >0

and a; =0 if a < 0.

Remark 3.1. In particular, using the L1 penalty and the MCP,
i.e., jE1 (/2 —r) and MCP (/2 — 1), will ensure that the updated

radius vt is /2 for large enough 7.

Remark 3.2. In the original PNS, r’t! =a.

3.3.3 Tuning Parameter Selection

For every steps k = 1,...,d, We use the cross-validation method
to select the value of tuning parameter 74 € [0, 00). Let the num-

ber of cross-validation be B. For the bth instance of the cross-

validation with b = 1,..., B, we split the n data points X*) =

)

{xgk), e 1:7(1]?)} into two disjoint sets, the training set Xt(fb of size

|(B—1)/B-n] and the test set ngs)nb = {m@est’b, e ,:ng?test?b} of
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size n’ = [1/B-n]. Given X( 3) and a grid of 73’s, we solve the op-
timization problem for each 75, and the estimated parameters
are denoted vy, (1) and 7, p(7x).

To evaluate the accuracy of the prediction, we estimate the

prediction error for each by the cross-validation error,

Erry () Z Z ( Ztestbavtrb(Tk) ?tr,b(Tk)>7

where L(z;v,t) is a loss function. The best tuning parameter Tpest
is the one that minimizes Err; over the interval 7, € [0, 00). Fi-
nally, we refit the model on the full data X (%) with Thest,k and the

estimated parameters are denote Uy pest and 7, pest-

3.4 Theory

We consider X to be a S™-valued random variable, which is a mea-
surable mapping from a probability space (2, F,P) into (S™,G),
where G denotes the Borel o-algebra of S™. Let Xq,...,X,, be
random variables generated identically and independently from

the same law as X.

3.4.1 Geometry of Parameter Space

In this section, let a small subsphere p(v,r) on S™ for m > 2 be
parameterized with a pair of a center and a radius (v,7) € ©p =

S™ % [0,7/2], or explicitly
p(v,r) ={z € S : p(v,x) =1},

where p(z,y) = arccos(z”y) denotes the geodesic distance between

x,y € S™.
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However, when r = 7/2, two small subspheres p(v,7/2) and
p(—v,m/2) represent the same small sphere. To remedy this, we
define an equivalence relation ~ that identifies p(v, r) with p(—v, r)
whenever » = m/2. The parameter space O is defined as © =
©¢/ ~, that is, © = {[v, 7] : (v,7) € Op}. Note that both ©¢ and
O are compact spaces.

A distance between p; = [v1,71] and pa = [v9, 2] € O is defined

as

d(p1,p2) = min (di(p1, p2), d2(p1,p2))

where
— T, \2 2\ 1/2
di(p1,p2) = (arccos(v{ v2)* + |r1 — 72|*)
1/2

da(p1,p2) = (arccos(—vag)2 +|r—r— rg\z)
Lemma 3.1. The distance d is a metric.
For a pair of parameters p = [v,r] € O, the projection from
S™ onto pg(v,r) is defined as

sinr - x + sin(p(z,v) — r)v

(p)(z) = arg min plz,5) = sin(p(x, v))

for z € S™. Abusing the notation, we denote p(z, p) = infep (v, P(7, 5)
with p € ©. Since p is continuous and S™ is compact, uniform con-
tinuity holds for p, that is, for every x € S™, p € © and € > 0,
there exists a § > 0 such that |p(z,p’) — p(x,p)| < € for all p’ € ©
with d(p,p’) < é.

3.4.2 Strong Consistency

We discuss a consistency of the subsphere estimator p = p(v,7) €

O for Xy,...,X,, on S™, where the model is equipped with a
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penalty. Our aim is to show the strong consistency with respect
to the distance d, where p is obtained by solving the minimization

of a penalized likelihood function

n

. 2 .
; T )
gélél ;Zl:p (Xi,p) + jr(7)

where j; : [0,7/2] — [0,00) is a function with the following prop-

erties.

(P1) jr(z) is decreasing on z € [0, 7/2]

(P2) j-(m/2) =0 and j,(z) is left continuous as z — 7/2.
(P3) j-(x) is continuous in z € [0,7/2)

(P4) j;(z) — 0 monotonically as j — 0 for all z € [0,7/2]

Example 3.2. Penalties in , and , that is, L1, Lo,
and MCP penalties, satisfy (P1) - (P4).

In Bhattacharya and Patrangenaru (2003) and Huckemann
(2011), the population and sample Fréchet p-mean set for the un-
penalized likelihood are suggested by as

E= {p €0 :Exp*(X,p) = ig(gEXpQ(X, q)}
q
and
E,= {p €0:) p’(Xip) = qig(gZpZ(Xi,q)} :
i=1 i=1

For the penalized function with a penalty j., we define the

population solution set as

E™ = {p =[v,r|€O: IEXpQ(X,p) +j-(r)= inf IEXpQ(X, q) +j7(r’)}

q=[v",r"]€O
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and the sample solution set as

E = O: T = f inq T .
{p [v,7] € Zp p)+ir(r) = _in e®Zp q) + jr-(r )}

Next, we introduce the following modes of convergence (Schotz,2022).

Definition 3.3. Let (©,d) be a metric space. For a sequence of
sets B, C © forn=1,2,..., the outer limit of E, is

ZO:IUEO:nEk.
The one-sided Hausdorff distance between two sets E1 and Esy in

(©,d) is defined as

dyg(E1, Ey) = sup inf d(xq1,x2).
x1€E; z2€Es

Strong consistency of random closed sets, on the ground of two
modes of convergence above, were developed by Ziezold (1977) and

Bhattacharya and Patrangenaru (2003) as follows.

Definition 3.4. Let (©,d) a metric space. For a random closed
set E C © and a sequence of random closed sets E, C © for
n=12...,

(ZC) E, converges to E strongly in the sense of Ziezold (1977) if

MU By CE  a.s.

(BPC) E, converges to E strongly in the sense of Bhattacharya
(2003) if for every e > 0, there is a sufficiently large n > 0
such that

U, Br C{p€e®©:3qge FE s.t.dp,q) <e} as.
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(ZC) and (BPC) are indeed random closed set version of con-
vergence in outer limit or one-sided Hausdorff distance respec-
tively. Under the condition that © is compact, (ZC) and (BPC)
imply each other.

Proposition 3.1. Let (©,d) be a metric space with © compact.
Consider a random closed set E and a sequence of random closed
sets B, forn =1,2,.... E, converges to E in the sense of (ZC)
if and only if E, converges to E in the sense of (BPC).

We now prove the strong consistency of the sample solution
sets B, extending the discussions in Huckemann (2011). First, we
assert the strong consistency (ZC) for a given tuning parameter

7> 0.

Theorem 3.1. For a given tuning parameter T > 0, E7 converges
to E7 in the sense of (ZC) if the penalty function j. satisfies (P1)
to (P3).

The sets E™ are deterministic and for any decreasing sequences

T, — 0, E™* converges to E in outer limit.

Theorem 3.2. Let 7, — 0 be any decreasing sequences. Then E™F

converges to E in outer limit if the penalty function j, satisfies

(P4)-

Or we can show the consistency of E] by setting 7, — 0 as n

goes to infinity.

Theorem 3.3. Let 7, be a decreasing sequence as n — 0. Then
ET converges to ET in the sense of (ZC) with respect to d in © if

n

the penalty function p, satisfies (P1) to (P4).
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Small sphere estimator

Great sphere estimator

Figure 3.2: A small sphere estimator and a great sphere estima-
tor on a disc-shaped distribution (left) and a doughnut-shaped
distribution (right).

We provide proofs of theorems in this section and examples for
relative independence and absolute orthogonality in Section B.1 of

the supplementary materials.

3.5 IoD Criterion to Avoid Overfitting

Type 2 overfitting phenomenon usually occurs when data points
are generated along a great subsphere but within a very short
interval. To emulate this case, we assume that the data points fol-
low a highly concentrated unimodal distribution, what we call a
disc-shaped distribution. This disc-shaped distribution is a coun-
terpart of a doughnut-shaped distribution, where the distribution
is highly concentrating along a small sphere mode, like a doughnut
shape. Small sphere estimator resides inside the disc-shaped cloud
of data points and its radius is unnecessarily small but with much
lower variance, see Figure [3.2]

For more practical interpretability, our aim is to estimate this
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type of data with a great circle estimator. For that, we propose a
concept of Index of Dispersion (IoD), an index which reflects how
much data points are congested in a small area. If the data point
cloud has a disc shape, IoD will have a high value. In contrast,
if the data point cloud has a doughnut shape, IoD will have a
low value. We utlize IoD in tuning parameter selection, where the
radius of small sphere estimator varies as the tuning parameter
7 does. By penalizing cross-validation errors with IoD value, we
avoid estimate a disc-shaped distribution with a small subsphere

with a small radius.

3.5.1 Index of Dispersion (IoD) and IoD Criterion

We first define the index of dispersion (IoD) with respect to a

direction v for a distribution on the sphere S™.

Definition 3.5. Suppose a random variable X has a distribution
v on S™. Given a vector v € 8™, the angle between v and X is
denoted as 0, = arccos(v’ X). The first and second moments of 0,

are given as

,ulz/ 0, dv(X), /@:/ 62 dv(X).

Then the index of dispersion (IoD) with respect to a direction v is

defined as

241

ToD(v) = <“2_"%>2

Remark 3.3. Our concept of IoD is inspired from the original
version of IoD from Cox (1966), which has a form o?/u, thus

it is indeed correct to call our version as squared IoD. Bur for
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convenience in naming, we will allow a slight misnomer for this

concept in our thesis.

For a highly concentrated unimodal (disc-shaped) distribution
around v € S™, IoD(v) tends to be large since density gathers in
a small area on the sphere, and therefore the mean value of 6,
is small. In contrast, when density is highly concentrated along a
small or great circle (doughnut-shaped) and v coincides with the
center of the circle, the mean value of 6, grows larger and the value
of IoD(v) decreases as much.

The sample version of the IoD is defined in view of the penal-

ized PNS estimates.

Definition 3.6. Given a small circle estimator A(v(1),7(T)) from
the penalized PNS, we compute the azimuthal angles {60, ;}1 , from
the dataset {x;}"_; such that 0,,; = arccos(v(r)Tx;). Then the
sample version of IoD with respect to V(1) is defined as

n n I 2
ToD(0()) = <zi:1 05 4/m — (i Ovi/ )2>

2 i1 vi/n
From now on we denote I/ob(i)\(T)) as @(T).

When 7 goes down, say 75, the small circle estimator has a
smaller radius and v tends to approach to the cloud of data points.
Thus, in this case, the small circle estimator should have a larger
sample IoD, I/O]\)(’TS). In contrast, when 7 becomes bigger, say 7,
the small circle tends to have a larger radius and the axis gets
further from the cloud of data points. In this case, the small circle
estimator has a smaller sample IoD, 1/0]\)(77), that is, 1/0]\)(77) <

ToD(7,).

66



Our strategy is, in order to compensate the overfitting phe-
nomenon in PNS, to add an compensating IoD to the validation
error.

For that, we first suggest a concept of a criterion by adding an

ToD term to the empirical risk,
1 n
=3 L (0,7 (),
i=1

given each value of tuning parameter 7. Given data points, we
define a criterion for the small sphere estimator by penalizing the

empirical risk as follows.

Definition 3.7. Given a dataset x1,...,z, on S™ and a small
sphere estimator A(v(7),7(7)) from the penalized PNS, we define

the IoD criterion fbc with a constant C > 0

ICo(r) = % > L (24;9(r),7(7) + C - ToD(r)
=1

In tuning parameter selection, we derive the IoD criterion I/éc,(b) (1)

for each test set Xjeqp withb=1,..., B

— 1 R R _
ICC,(b) (T) = ﬁ Z L(xi,test,lﬁ Utr,b(T)a Ttr,b(T)) +C- IO]:)(b) (T)7
=1

where I/o]\)(b) (1) is obtained from the test set Xiestp. The IoD cri-
teria are aggregated to I/étest’c(T) =1/B- 25:1 I/GC,(Z,) (1) and we

select the best tuning parameter 7.5, that minimizes I/étest,C-

3.5.2 Choice of the Constant C

The major issue here is the choice of the constant C'. We assume a

situation in the population setting, where we estimate a data point
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cloud with two representing cases, a small sphere estimator and a
great sphere estimator. We determine the value of the constant C
such that the IoD term compensates the difference of risks between
small and great sphere estimators.

To put it formally, we first define IoD criterion in the popu-
lation setting, by adding an IoD term to the risk, EL (X;v,7), as

follows.

Definition 3.8. Suppose we have a random wvariable X € S™.
Given a small circle A(v,r), which is independent from X, we

define a IoD criterion for X and A(v,r)
ICc(v,r) =EL (X;v,7)+ C - IoD(v)
with some constant C > 0.

We adopt a heuristic method to choose the value of C', whose
brief overview is as follows.

We consider a disc-shaped distribution scenario. For each cases,
we suppose generic situations where the distribution is estimated
with small or great sphere estimator. Then the variance and IoD
of two estimators are computed and we find the range of C' where
the overfitting phenomenon is mitigated.

We denote the parameters for a small sphere estimator as

(Usmall> Tsmali) and the ones for a great sphere estimator as (Vgreat, Tgreat)-

Then, our aim is to find a constant C' such that type 2 overfitting
phenomenon is mitigated for disc-shaped distribution, that is, IoD
criterion is bigger for small sphere estimator than great sphere es-

timator. Our aim is summarized as follows.

ICC(Usmalla Tsmall) > ICC(Ugreata Tg'reat)- (36)
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For notations, suppose X € S™ follows a disc or doughnut-
shaped distribution with a pole u. Let vs and vy be the center of
the small and great sphere estimator for X. Let §, = arccos(ng ),

0s = arccos(v! X) and 6, = arccos(u’ X).

Disc-shaped distribution

We call a high concentrated unimodal distribution with a mode
w as a disc-shaped distribution on the sphere S™ with a pole pu.
We consider a disc-shaped distribution invariant to the rotation
around g and whose support is a convex subset of S that includes
1, which is not a point density on p nor uniform density on the
whole surface of S™.

For a disc-shaped distribution, we set a small sphere estimator
concentric to X, that is, 6, = 6, and its radius coincides with
[Ef,. In contrast, we set a great sphere estimator to pass across the
density through p. Then the center of the great sphere v makes
a perpendicular angle with the pole u, Ef, = 7/2, see Figure
left. The small sphere estimation represents the overfitting phe-
nomenon.

Note that the risk of the small sphere estimator, EL(X; vs,7s)
is the same as the variance of 6. It is the same for the great sphere
estimator, that is, EL(X;v,,14) = Var(y).

To satisfy , we require C should be large than the division

of the variance difference by the IoD difference, that is,
C > (Var(6,) — Var(fy)) / (IoD(vs) — IoD(vy)), (3.7)

so that the IoD criterion (IC¢) of the small sphere estimator is

larger than that of the great sphere estimator.

69

;ﬁ'! 2 1_..” .__;J!_ W



In practice, we set C' as two times the RHS value of (3.7)). The
determination of C depends on the distribution of data points.

In the following examples, we choose the value of C for disc-
shape distributions. For convenience, we use p = m + 1 to follow

the notational convention SP~! = §™.

Example 3.3. We first consider the spherical T-ball uniform dis-
tribution, Sy, for some small T > 0. The sectional function of S;
18

gs- (91) = C(p, T)1(91<T)7

where c(p,T) is the normalizing term. Using the following approx-

imation formula

/T zdsin? x dx = _ rPratl 1_» TPHIT3 L (7P Hats)
0 p+qg+1 6p+q+3 ’

we can obtain an approximating expression for the mormalizing
term c(p, 7),

F(%) {p—1+1(p—1)2(p—2) 1

cp.7) = B2 |l 6 p+1 TP—3

+ O(T°7P).

272
The variance and IoD for both small and great circle estimates are

approrimated as

p— 2 4
Var. = —=——F—7"+0(7
small p2<p+ 1) ( )
1
Var = 2+ 0
great (p+ 1) ( )
1
IoD =724+ 0@
small p2(p+1)2 ( )
ToDoreat = 2 e T
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From these, the compensating factor C' must satisfy
C>@p+1)@* —p+1).

We observe that C diverges at a polynomial rate of order p® with

fixed T.

Example 3.4. In the case of positive kurtosis, we propose the

following probability density on SP~1
Sor (21, 7) = el(p, 7)1 1 - L arceos®(uTz) e 571
2.7 (T3 1 T) = (P T) L (arceos uTa<r) — arccos”(u ) |, T

with the mode € SP~ and sufficiently small 7 > 0. The normal-

izing term in an approximated polynomial form is

P )~ o 2 71712 p+3 =3

r(=) [<p—1>(p+1> 1 1(p-D*p-2)(p+1) 1 ]
21 2

The sectional function is

1
95, - (91) = 1(91<T) <1 - 7_29%> .

The variance and IoD for both small and great circle estimates

are approrimated as

(p—1)(2p* +4p+3) ,

Varsman = 2+ 2%+ 3) +0O(
Vargreat = . 372 +0(r)
2 2
ToDgpan = 70 _(ff)Q(;‘ff;;f(L - 3)27_2 + oY
ToDgreqr = ;@4_13)274 + 0%
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From these, the compensating factor C' must satisfy

P+ 12(p+27°(p+3)

C >
(2p? +4p + 3)2

Here C diverges at a polynomial rate of order p> with fixed T too.

Example 3.5. In the case of von Mises-Fisher distribution (Fisher,1953;

Mardia and Jupp,1999), it is computationally intractable to derive
an analytic form for moments of the azimuthal angle 01 directly.
Instead, we approximate highly-concentrated von Mises-Fisher dis-
tribution as a normal distribution on a q-dimensional tangent plane
(¢ = p—1). On the tangent plane, a radius r from the tangent
point is equivalent to the azimuthal angle 01 from the pole p on

the sphere SP~1. Here we set a spherical coordinate on the tangent

plane as (r,01,...,0,_5,¢"). The marginal density of r is given as
1 2792 2 /942
_ q—1_—r%/20
guormal(") = 5 R T (qj2)

where o2 is the variance of the normal distribution on the tangent

plane and very close to 0. The moments of r are then

_ 5, Dla+1)/2)
= VR

infi (i)

piz = 0°q.

For p1, we used the following asymptotic expansion (Qi,2010)

Dl +1/2) _ 1

L g _3/2
Tw) 5% + O(z77#)
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as x goes to infinity. From these, the variance and IoD for small

circle estimate are

o? 1
Varsmall = ? + O(q )
ToDat = —2 ¢ O(q7?)
small — 2(2q — 1) q

The variance of 0, for a great circle estimate, or the second mo-

ment of the signed residual

T : . .
5 — 0, =~ r81n9/1...81n0;7281n¢/

s given by

Vargreat = W /:W /07r - /07r e /207 patl ipatl 6 ---sin® 042 sin? ¢’ df} - - - de
=02
and the IoD for a great circle estimate is
10D grear = 0/ (/2)2.
From these, the compensating factor C must satisfy
C>2p—1.

Here C diverges at a polynomial rate of order 1 with respect to p.

In Simulation Study (Section[3.6)) and Real Data Analysis (Sec-
tion , we use the result of Example Heuristically, to em-
phasize the contrast, we use the constant, two times 2p — 1.

Notice that the determination of C' only depends on the di-

mension p (or equivalently, m).
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3.5.3 Geometric Interpretation of Model Bias

Suppose the data points on S™ are concentrated near a subsphere
A1 of radius r,,, and we wish to recover A,, 1. Generally, it
turns out that the subsphere estimate does not work well, but
rather it is biased in radius. The bias occurs from the curvature of
A,,_1, in that there are more chances the noise mass falls outward
A,,_1 than inward, and so the estimate tends to have a larger
radius than A, ;. (Briefly, we use a term “outward” for a point
x € 8™ if arccos(v? x) > 1y, and “inward” if arccos(v’z) < rp,.)

We give a illustrative example. Let A,,_1 be a subsphere on 5™
which has an axis v at the north pole and a radius 0 < r,,, < /2.
The points xg; for i = 1, ..., n are distributed on A,,_1. Each data
point z; is generated from a rotationally invariant distribution
with a mean direction z;.

It is easy to notice that the noise mass outward A,,—; is bigger
than that of inward, so that x; has more chance to posited outward
A1 than inward, see Figure [3.3] Thus the estimated radius 7,
is bigger than the true radius r,, generally. A similar example on
the plane was discussed in Hastie (1984).

We quantify the bias in the case where the noise follows the
von Mises-Fisher distribution on S™ (Fisher,1953; Mardia and
Jupp,1999). Consider a vector u such that arccos(ufv) = r and
the von Mises-Fisher distribution with the mean direction u and

the concentration parameter x whose density is given as
fonp (" 25 5) = Crpsa (K)exp(s - p" ),

where the normalizing constant is Cy,4 1 (k) = (™~ 1/2/ ((27r)(m+1)/2l(m+1)/2(/£))

with I (z) the modified Bessel function of order k for x > 0. We
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Figure 3.3: A bird’s eye view from the direction of v. Each data
point z; is generated from a rotationally invariant distribution

(circle) with a mean direction pu = ;.

suggest the following proposition about computing the expecta-
tion of 6, = arccos(v” X), the angle between X and an arbitrary

point v € S™ on the sphere. Then the bias is defined as E#, — r.

Proposition 3.2. Let v € S™. Suppose a random vector X € S™
follows the von Mises-Fisher distribution with the mean direction
uw € S™ and the concentration parameter k. Then the expectation

of 0, = arccos(v’ X) is given as

Ef, = / arccos(v! z)C (k) exp(k - p’ z) do () (3.8)

s 1
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where A = (M —1)/2, Wyt = 20 HD/2/D((m+1)/2) the surface
area of S™H, Y}O(cos 0) the spherical harmonic function of degree
I and order 0 for 0 <6 <, Clk(x) the Gegenbauer polynomial of

degree | and order k for x € [—1,1], T'(z) the gamma function for

x>0,
o - VT 'm+1-1) Tim—1)/241(K)
' (m = 0272 T(m/2)T((m = 1)/2) i 1y2-1()°
and
00 —1),m=1
ap =y 2 [ D%
=0 Wm+1 l(l + T)

For the numerical computation of Ef,, see Remark of Sec-
tion [B.1.6| in the supplementary materials. In a brief numerical
study, where the angle arccos(v? i) ranges from 0 to 7/2, we ob-
serve that the bias always shows positive values and decreases
monotonically, see Figure [3.4] The bias vanishes only when v and
1 are perpendicular. Also the bias becomes larger as the dimension
m increases. This is due to the curse of dimensionality, in that the
more the dimension m grows, the more the angle between separate
points on S™ become perpendicular. However, the bias becomes
smaller as the concentration parameter x increases, that is, the

noise mass is more concentrated around pu.

3.6 Simulation Study

3.6.1 Example Dataset Generation

In this section, we shall evaluate the performance of our method.
We consider the following random point generation procedures on

S% with von Mises-Fisher error along a small arc.
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Figure 3.4: The biases calculated from || are drawn in solid
lines. The biases from Monte Carlo simulations are in dashed lines.
The confidence intervals for Monte Carlo simulations are in gray-

shaded areas.

Fix v = (0,...,0,1)7 € 8% and r € [0,7/2]. Given a fixed
vector (t1,...,tq_1)7 € [0,27]9!, we generate spherical angles
(Y1, ... ,94-1)" with each component 1); ~ Unif([—0.5-t;,0.5-%;]).
Then the signal point 2’ € S¢ is obtained by the coordinate change,

d—1 d—1

— ((H sin ;) sin r, cos wl(H sin;)sinr, ..., cosg_1 sinr,cosr)L.

i=1 i=2
Let the point = follow von Mises-Fisher distribution with a pole
2’ and a concentration parameter k. We generate n signal points

T1i,...,Ty identically and independently as the same law as x. For

figurative examples, see Figure [3.5

Note that 6, = arccos(v’z) is not independent from 6; =
arccos(e! x), where e; is the ith coordinate vector withi = 1,...,d.

We generate 100 sets of n data points for given parameters. We

then compute the average and standard deviation of estimated ra-
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Figure 3.5: Examples of generic data generation (n = 100) (a)
r=45°, k = 100, t; = 30°, (b) 7 = 90°, x = 100, t; = 10°.

dius for Ly, Ly penalties and MCP. In validation, we used 5-cross

validation on a grid of the tuning parameter 7, (0,1073,10729 ... 10791 10°).

For the case where the true radius r = 90°, we additionally
record the number of data sets that mitigate type 1 overfitting
phenomenon, that is, when the estimated radius 7 = 90°. For
every dataset, we compute the mean and median of the angles
between the true axis v = (0,...,0,1) and data points z;’s, what

we call oracle mean and median of radius.

3.6.2 Results

We first consider the case where d = 2 and n = 100. We assess
the performance at the combination of settings, r = 90°,45°, k =
100, 30 and ¢; = 90°,60°.

We start with the results when the true radius r is 90°. Here

we want to see if the penalization of r works well in mitigating
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type 1 overfitting phenomenon.

We set k = 100. When t; = 90°, we observe that the estimated
radius has median at 90° for L, penalty and MCP, see Figure
In 76 of L; penalty and 78 of MCP penalty out of 100 data sets,
type 1 overfitting was mitigated, see Table No other penalties
(original PNS and Ls penalty) could not mitigate type 1 overfitting
phenomenon. When t; = 60°, 74 of L1 penalty and 74 of MCP out
of 100 data sets achieved 77 = 90°, see Figure [3.6b| and Table

The pattern of estimated radius is quite different between t; =
90° and 60° cases. When ¢; = 60°, as data points spans only 1/3
of the true arc (equator of S2), the estimation of axis, v, suffers
larger variance compared to t; = 90°. Indeed, we can observe the
variances of estimated radius, 7, is much larger when ¢; = 60°, see
Figure However, even though larger variance in estimating v
and r, the rate of overfitting mitigation is quite similar in both

t1 = 90° and 60° cases, see Table [3.1]

Next, for k = 30, where von Mises-Fisher distribution has a
larger variance. When ¢; = 90°, 71 of L; penalty and 73 of MCP
penalty out of 100 data sets mitigated type 1 overfitting, see Figure
and Table When t; = 60°, 75 of L; penalty and 76 of
MCP penalty out of 100 data sets mitigated type 1 overfitting, see
Figure [3.6b] and Table 3.1} We observe larger variances in radius
estimations than x = 100 cases. Even though the instability in axis
estimation, the rate of overfitting mitigation showed no significant

difference from the case k = 100.

For a larger data set size, n = 1000 with the same setting,

r = 90° x = 100,30 and t; = 90°,60°. The rate of overfitting

79

21

| &1

1V



(a) r =90°, t; = 90°, k=100 (b) r = 90°, t; = 60°, k = 100
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Figure 3.6: Results of radius estimation when d = 2, » = 90° and

n = 100.

mitigation improved compared to n = 100 cases, see Figure
and Table 3.1l The mean and standard deviation of estimated
radius are improved significantly.

When r = 45°, there is no danger of type 1 overgfitting. L
and Lo penalties shows significantly large bias in estimating radius,
see Figure 3.8/ and Table whereas MCP shows the identical
results as original PNS. L; and Lo penalties also shows larger
variance than original PNS and MCP due to the instability in
axis estimation.

To present the results on type 2 overfitting phenomenon, we
consider two situtation, (1) r = 5° with t; = 90°, Kk = 100, n = 100
and (2) r = 90° with ¢; = 10°, k = 100, n = 100. The first case

mimics a disc-shaped distribution (high concentrated unimodal
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Figure 3.7: Results of axis estimation when d = 2, » = 90° and
n = 100. The estimated axis ¥ are mapped to the tangent plane

at (0,0,1)7 by the exponential map Exp (g 0,1y7-
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distribution) (Figure left) and the second case represents a
situation where the data points are generated along a great sphere
but on a short interval (Figure [3.1p).

In both cases, IoD criterion successfully mitigated type 2 over-
fitting phenomenon. In the first case (r = 5°), only L; penalty
with ToD and MCP with IoD estimated radius as 90° with rates
91 and 92 out of 100 data sets. In the second case (r = 90°), L
penalty and MCP mitigated overfitting only 5 and 4 times respec-
tivelym but L; penalty with IoD and MCP with IoD achieved 94
and 99 times out of 100 data sets. The original PNS only yielded

overfitted results.

3.7 Real Data Analysis

In this section, we apply the proposed PenPNS to a dataset called
the Cephalometric X-ray Image Data, a landmark dataset on the
sagittal-view X-ray images of patients’ skulls (Wang et al.,2016).
We choose to use 400 adolescent cases with 19 landmarks on 2-D
dental X-ray images, that is, the dataset has dimension 19 x 2 x
400. The dataset was preprocessed by the Generalized Procrustes
Analysis method (GPA) (Mardia and Jupp,1999; Chapter 3 of
Dryden and Mardia,2016), which results in 400 points on S3°.
We applied PNS, PenPNS (MCP), Principal Geodesic Nested
Spheres (PNGS) (Jung,2012) and PenPNS (MCP) with IoD crite-
rion (for short, PenPNS+IoD)on the Cephalometric X-ray Image
Data. Here, PNGS is a variant of PNS, such that radius r is fixed
as 7/2 while estimating parameters of each subsphere A,,, thus the

data points are forced to be estimated by great sphere at every
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step.

We want to compare the results of the methods with respect to

variance explained (Figure [B.3.1f and [B.3.2) and estimated radii

(Figure [3.10)). For overall results, see Table - in the

supplementary materials.

Variance explained is obtained as follows. We use the resid-
ual Z(m) of A, after fitting 2, inside 2A,,+1 (they are indeed
analogues of the (m + 1)th PC of classical PCA in Euclidean
space). The variance s, of the mth component is the squared
sum of Z(m). The percent of variance s2, is the proportion of s2,
over the sum of all variances. For more details, see Section 2.4 of
(Jung,2012).

PenPNS yielded 66.53% in the first component of variance pro-
portions. This figure is slightly lower than the one of PNS, 68.49%,
see Figure and Table [B.3.1] and [B.3.2]in the supplementary

materials.

However, two methods show a different implication in the es-
timated radii. The estimated radii of PNS vary from 15.47° to 90°
(Table. In contrast, PenPNS yielded mostly 90° except 8.86°
of Az and 22.23° of A; (Table [B.3.2), which means PenPNS mit-
igated type 1 overfitting phenomenon in nearly every dimension.
It is notable that type 1 overfitting mitigations in high dimensions

show little influence on variance proportions in lower dimensions.

In constrast, PNGS and PenPNS+IoD featured 39.41% and
40.79% in the first component of variance proportions, see Figure
[B.3.2] and Table [B.3.3] and [B.3.4] in the supplementary materials.
It is notable that every estimated radii of PenPNS+IoD is 90°
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(Figure 3.10]) and PenPNS+IoD yielded nearly identical results as
PNGS (Table B.3.3| and [B.3.4)).
One of the key observations here is that PenPNS+IoD miti-

gated type 2 overfitting at As (8.86° to 90°), in addition to type 1
overfitting mitigation by PenPNS. It may seem a small correction
in radius estimation, but resulted in large differences in variance
proportions between two methods.

We interpret the results as follows. By mitigating type 2 over-
fitting at Az, PenPNS+IoD corrected overfitting tendency shown
in the original PNS and PenPNS (66.53 and 68.59% to 40.79%
in the first component of variance proportions). It also corrected
slight underfitting in PNGS (39.41% to 40.79%).

We visualize the results by drawing the principal mode of vari-
ation (call PC1 and PC2 from 2(; and %A respectively) on the
data points, see Figure and We observe that PC1 of
the original PNS and PenPNS make small circles in data point
clouds, which implies type 2 overfitting phenomenon. In contrast,
PC1 of PenPNS+IoD and PNGS draw gentle arcs through data
point clouds, which implies the mitigation of type 2 overfitting.
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Figure 3.10: Cephalometric X-ray Image Data : Estimated radii 7,
of small sphere estimators A, (Vk, 7y) for PNS, PenPNS (MCP),

PNGS and PenPNS (MCP) + IoD Criterion.

87



%

- -
e 4
:
S R S
bl )
< <

‘
0.4 -03 02 0.1 0.0 0.1 02 03
()

© «
2 2
N )
3 3
s S

- -
Q =3
2 :
s s
o o
< <

0.0
I

(d)
# *
T
n ¥

Figure 3.11: Cephalometric X-ray Image Data : The principal

mode of variation by 2; (left column) and 2 (right column).

(a)(b) PNS, (¢)(d) PenPNS (MCP).

88



0.2 03

0.2 -0.1 0.0 0.1

0.3

0.0 0.2

-0.2 -0.1

Figure 3.12: Cephalometric X-ray Image Data :

»®

T T T
-04 -03 -0.2

T
-0.1

T T
0.0 0.1

T
0.2 03

®

T T T T T T
04 03 02 01 00 0.1

T T
02 03

02 03

0.2 -0.1 0.0 0.1

0.0 0.1 0.2 03

-02 -0.1

T T T T T T
04 03 02  -01 0.0 0.1

T T
02 03

The principal

mode of variation by 2; (left column) and A (right column).

(a)(b) PNGS, (c)(d) PenPNS (MCP) + IoD criterion.

89



90

: _-r: ;‘1 %E‘H ;E"l.].-l?—

SECRIL WATCLAL |IMMVERSTY



Appendix A

Supplementary Materials
for Chapter

A.1 Mathematical Backgrounds of Section
2.3.1]

A.1.1 Principal Angles

There had been suggested several definitions of the distance be-
tween two linear subspaces [A] and [B] in R", see Table 2 and
Theorem 12 of Ye and Lim (2016). Indeed, these distances can be

expressed by principal angles between two linear subspaces.

In this section, we present the concept of principal angles (Bj orck
and Golub,1973). Principal angles between two linear subspaces
are defined as follows: Given [A] € Gr(n,p1) and [B] € Gr(n, p2),
let p = min(py, p2). The ith principal vectors (a;,b;), i =1,...,p
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are defined as a pair of unit vectors that satisfies

al'b; = max max v’ u
v€E[A] u€[B]
with the condition a; L ai,...,a;,_1 and b; L by,...,b;_1. Princi-

pal angles are then a set of angles 6§ = (61,...,6,)T such that
cos; = ainZ-

fori=1,...,p. We call 6; as ith principal angle between [A] and
[B]. Note that 0 < 60; <...,<#6, <m7/2.

The computation of principal angles can be performed using
SVD. Suppose [A] and [B] are represented by A € V(n,p;) and
B € V(n, p2) respectively. By the untruncated SVD, we decompose
AT B into

ATB=UxvT,

where U € RP1*P1 gnd V € RP2*P2 gre orthonormal and X €

RP1%P2 ig a diagonal matrix of a rectangular shape,

1 0
0 0

Y=

with a diagonal 37 € RP*P. The diagonal elements of 31 are writ-
ten 01 > ... > 0, > 0 in order and the principal angles between

[A] and [B] can be easily calculated as
o; = cos b;

fori=1,...,p.
We show an example of subspace distance expressed using prin-

cipal angles: the Frobenius norm distance, appeared in Section[l.1
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and can be expressed as

d([A], [B]) |AAT - BBT|]?

!
= \ﬁ‘
=V2(n — Tr(ATABTB))

=V2(n — (cos? 0y + ... 4 cos? 0,))
P

= ﬂz sin? 6;
i=1

= V2| sin 6|3,

where A and B are orthonormal matrices which represent [A] €

Gr(n,p1) and [B] € Gr(n, p2) and p = min(pi, p2).

A.1.2 Calculation of Mean Direction

We wish to explain the concept of mean direction in perspective of
the flag mean. The mean direction among a set of linear subspaces
[Vi],...,[Vk] is defined as a one-dimensional subspace vy K
that minimize the sum of the squares of the subspace distances

between vy 3x and each linear subspace [Vi]. That is,

K

vy, = argmin Zd([v], Vi)?, (A.1)
- [v]€Gr(n,1) ;1

where d([A], [B]) is a subspace distance between subspaces [A] and
[B].

In this definition, we adopt the Frobenius norm distance as a
measure of distance between two linear subspaces. The optimiza-
tion problem can be rewritten as follows (we quoted the
derivations directly from Draper et al. (2014):
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K

VgypE = argmin dF([U]a[Vi])2
{[ ]}221 [v]eGr(n,l); p

K
= argmin Z | sin 6; |2
[v]eGr(n,1) ;5

K

= arg max Z || cos 652
[v]€Gr(n,1) ,

K

= argmax Z cos? 6;
[v]€Gr(n,1) ;5

K

= argmax ZUTVZ‘VZTU
[v]€Gr(n,1) ;5

K
= argmax v’ (Z VZVZT> .
i=1

[v]€Gr(n,1)

There is a merit of using Frobenius norm distance we can see in
the fifth equality, in that there is a closed form converting an ex-
pression of the principal angle @ into of v and Vs, or, cos®8; =
vTV;V;Tv. Other distances, such as the Procrustes distance 2| sin? 6|
or the geodesic distance ||0|2, are not suitable for making this kind
of linear expression using v and V;s.

Another merit comes from the last equality that this optimiza-
tion problem is equivalent to the variational characterization of
SVD (Draper et al.,2014). The solution is indeed the first singular

vector of the symmetric matrix

This sum of matrices term can be rewritten with respect to a

concatenated matrix. Let V be a matrix that is a column concate-
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nation of V;s,
V=[Vi;Va;...;Vk| € R7X22Ti,

It is easy to show that VV7T = Zfi 1 VZVZT Therefore, the principal
direction among Vi,...,Vk can be conveniently computed using

SVD. The SVD of V is expressed as
VvV =Qxw?’
and subsequently
vt =QexTQt.

Note that the rank of VV7 is the same as that of V. The first
column of () is the principal direction v (VK | we are looking for.
In practice, it can be computed efficiently using truncated SVD

numerical solutions.
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A.2 Proofs

A.2.1 Some Basic Facts for Proofs

As it is the most elementary fact, we begin by recapitulating

Lemma 2.2 and show its proof.
Lemma 2.2. Fori,j € T and S; N Sj #+ ¢, [WZ] 1 [Wj]

Proof. From the definition of the partially-joint score subspace,

[W;], we immediately find that
[W;] L [Wj], i,j €Ig and S;NS; # ¢

by the range-kernel complementarity property of the vector space

projection transformation. O

We denote Zo; = {j : j < i,5;NS; # ¢}. Hereafter N(T) is
the null space of a linear transformation 7" of R"” and R(T) its

range space.
Lemma A.1. Fori € Iy, we have N(OkGIQ.P,j-) = ®rer_, [Wi].

Proof. Let v € ®rez_,[Wi]. Then there exists a unique {vy}rez_,
with vy € [Wj] such that the sum of all vy is v. For each j; € Z;
and vj, € [Wj, ], it can be easily checked that (Ogez.;, P (vj,) =
{0} and then (Opez_, PH) (vj,) = {0} follows. Thus (Ogez_, Pi) (v)
{0} and N (Orez., Py") D Grez, [Wil.

Conversely, let v & @®pez_,[Wi]. Then there exists a unique
{vgtkez., with v, € [Wy] and non-zero a € (®rez_,[Wi])* such
that v’ is the sum of all v, and a. For each j; € Z; and vj, € [Wj,],
we have (Ogez_; Pi-)(vj,) = {0} as before. Since a L [Wj] for
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any k" € T;, we also have (Okez.,Pi-)(a) # 0. Thus we have
(Okez., Pi) (') # {0} and N (Orez., Py) C Srez., [Wi- O

Lemma A.2. Fori € Ix, we have BreT., (W] = +kEI<i(ﬁk/€Sk Vir])-

Proof. We give a proof by induction on k. If £ = 1, there is nothing
to prove. If k = 2, [W1] = Nyres, [Vir], so the statement is true for
k=1,2.

For any k > 3, suppose the statement holds, that is,

Djezon Wil = +jezen, (Mies; [Vir])

for all 1 < m < k. Let k be the largest element in Tekt1- We
denote P = Ok’eI<,;Pkl/ and P, the projection onto '(P) of R™.

Then, we have

tietepi (Mwes; Vir]) = ®jez_i W] + Nives; [Vir]

= @jer_. (Wil + P(Mwes, Vi) + P (Mwes, [Vir)

Indeed, P(Npes,[Viv]) € N(P) and N(P) = @®per_ [Wi] by

E

the previous lemma. Thus

tieTop (Mwes; Vi) = @jez_; W] + P(Nies; [Vir])
= @jer_; [W;] ® [Wy]
= @j€I<k+1 [WJ]

Therefore the statement holds for any & > 3 and the proof is
completed. O

Lemma A.3. Fork=1,...,K, +icires;}[Ws.] = [Vil.
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Proof. In Lemma A.2, we set i such that S; = {k}. Then Z; =
{7+ k€858 > 1} and @jezr,[W;] = +jer.,(Nwes; [Vir]). The
proof goes similarly as in Lemma Let ¢ be the largest element
in Z.;. We denote P = Ok/gdP,j and P, the projection onto
N(P) of R™.

+jezous (Mwes; [Vir]) = ®jez, W] + Nwes, [Vie]
= Djer., W) + P(Mwes: [Vir]) + P (Nwves, [Var])
= ®jez, (W)l + P(Mwes, [Vir])
= Bjer, (Wil @ Wi
= ®jer_,us: (W)
By the set inclusion-exclusion principle, as Z.; U.S; involves every

index-set that contains k, it is immediate that +je7_,us; (Ni'e S; Vi) =
[Vi]. O

A.2.2 Proof of Theorem [2.1]

Proof. We claim that rank([W;]) is uniquely determined. By Sylvester’s

law of nullity, we have
rank([W;]) = rank(Mies, [Vi]) — rank(N (Ojez, ") N (Mies, [Vi]),

where Z; = {j : j <i,5;NS; # ¢} as before. By lemma and
Sylvester’s law of nullity for our theorem is restated as

rank([W;]) = rank(Nges,[Vi]) — rank ((+rez., (Mwes, [Vir])) N (Nkes, [Vi])) -

We want to make this expression in a more explicit form. For that,

we suggest the following assertions.
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Let | = |S;|. We set [[i] = +peqrs,|>1 (Mwes, [Var])- The pro-
jection onto [[}] in R™ is denoted by Py, and the projection onto
[I;]* is denoted by Pﬁ. Moreover, we consider an index set J; ~; =
Zein{k : |Sk| > 1} and let [J;] = +reg, ., (Mies, [Vir]). The pro-
jection onto [J;] in R™ is denoted by Pj, and the projection onto

[Ji]* by PJLZ_. Finally, we define J;; = Z; N {k : | S| = }.
Lemma A .4. Pﬁ = Pﬁ o Pfi.
Proof. Trivial from the fact /\/'(Pj;) C N(PIJ[) O

Lemma A.5. If vj € Py (Nwes,[Viv]) with j € Ty \ J},, then
vj € (Mwes; [Vir]) N (Mwes,,, [Vir]) for some m < i, m # j such
that Sy, N'S; = {0} and not for any m < i, m # j such that
Sm N S; # {0}.

Proof. Consider the cases

(1) vj € (Mwes; [Vir]) N(Nires,, [Vir]) for some m < i, m # j such
that S, N.S; # {0} but not for any S,, N .S; = {0},

(2) (Nwes;[Vir]) N (Nires,, [Vir]) = {0} for only m € Ji

In case (1), v; becomes automatically an element of Ny/eg, [Vi/]
such that S; C S; and S, C S;. Then v; € [I;] since S; N Sy # ¢
and |S¢| > |5/, and this is a contradiction. In case (2), v; € R(Fr,)

and this is contradict to the assumption. O

Proposition A.1. If [Vi]|kek is relatively independent, then —‘rke\ji’lpj;(ﬁklesk Vir])

and Pj;(mkesi [Vi]) are independent.

Proof. We want to show that the relative independence of [Vi]rex

is violated if +keji7lpj;(mk/esk [Vir]) and Pj;(ﬂkesi [Vk]) are linearly
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dependent. Suppose that there is nonzero v € —‘rkeji’lpj;(mklesk [Vie )N
Pi(ﬁkesi [Vi]) with I = |.S;|. We are going to show that +k€\7i!lpj;(mklesk VN
Pi(ﬂkesi [Vi]) is not {0} in the following cases.

First we exclude the case where Pﬁ(ﬂkregi [Vir]) = {0}. If so
we have Nwes, [Vir] = @preprsics,y Wil = trrepersics, Vil
then Nieg, [Vir] itself is in [[;] = N(PJLZ))

Next, under the assumption that Pﬁ(ﬂkz'esi [Vir]) # {0}, we
run through the following situations. Now on J/, = {k : |Si| =

(i) |Jiil = 0 : There is nothing to prove.

(i) [Jigl =1 and [F;[ =0

We will show that this case is vacuous. Suppose there exist
nonzero v € Pj;(ﬂk’esi Vir]) ﬂPj;(ﬂkfesk [(Vir]) with k € J; .
As Pﬁ(ﬁk/egk [Vir]) = {0}, we can deduce that PIJ[(“) =0.
We pick a vector u in Npeg;[Vir] such that S; C S; and
Sj C Sj. As Mwes, [Vir] C Nies;[Viv] and Npres; [Vir] C
Nwes, [Vir], we have u € (Npes,[Vir]) N (Mwes, [Vir]). As
S; N Sj # ¢, we observe that Nyeg, [Vir] C [Ii] = N(Pi)

u € Pr,((Npes, [Vir]) N (Nires, [Vir]))

C Py (Nwes; [Vir]) N Py, (Nires, [Vie])-

Let w = u+v. Since u € Py, (Nwes, [Vir]) and v € Pf(Nwes, [Vi])
with respect to S and the same for S;, we find that w €
(ﬂklesi [Vk’]) N (ﬂk’ESk [Vkl]), and then, w e [IZ] = ./\/'(.P]f)
But this forces P}i(w) = v and v to be zero and leads to

vacuity.
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(iii)

(iv)

(vi)

|Jigl =1 and |J/)| =1

Suppose there is nonzero v € Pj‘i(ﬂk’esk [Vir]) with k € J;;.
From Lemma we have Pﬁ(v) € Pﬁ(ﬂk’esk Vir]). By
the same argument, Pﬁ(v) € Pfl‘(ﬁk'esi [Vir]). Then there is

a nonzero Pﬁ(v) € Pﬁ(ﬂk/esi Vir]) N Pﬁ(ﬂk/esk Vir]).

\Tial > 2, |J))| = 0 and v € Pi(ﬂkzesk[vk/]) with some

k € Ji, : the same as case (ii).

"7“| > 2, "71/7” =0and v ¢ Pj;(ﬂklesk[vk/]) with any of
k¢ T
We will show that this case is a generalization of case (ii)

and also vacuous. As v € +4c 7. lPJLi(ﬁk’eSk [Vir]), we express

v= Z a;v;
JE€Tiu

for each a; € R (at least two of them are nonzero) and
vj € Pj‘i(ﬁk/esj Vir]).

By Lemma for each v; for j € J;;, we can find Sy, ;
such that v; € Sp,; and m < i, m # j, Sp NS; = {0}. And
this also implies that there exists certain S;; and v; € S
such that S; C S;; and S, ; C S ;. Here we point out that
as St NSy # ¢, since S;NS; # ¢. Then all Nyreg, ; [Vir]
for j € J;; and their linear combinations are subsets of [I;].
This leads to the conclusion v € [/;] and shows the vacuity

of this case.

| Tt > 2, |~7z,,l| > 1and v € Pj;(ﬂk’esk[vk/]) with some
ke %J :
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(vii)

If k € Jj;, then the same as the case (iii). If k¥ ¢ J;,, then

the same as the case (ii).

\Jigl > 2, |T{)| > 1 and v ¢ Pj;(ﬂk'esk[vk’]) with any of
ke ‘72'71 :
Asv e +k€«7i,lpj;(mklesk [Vir]), we express

v = Z a;V;
JETi 1
for each a; € R (at least two of them are nonzero) and
vj € Pj;(ﬂkxegj [Vir]). Note that if ajy = 0 for all j' € J/},
then this case is essentially the same as case (v), so we only

consider the situation at least one aj # 0 for j' € J/;.

By Lemma and its consequences in case (v), for each
J € Jix \ Jj;, there exists S j and v; € Sy ; such that S; C
Stj and Smj C Sij. As previously discussed, Nires, ,[Vir]
for j € Jiu \ Jj,; is a subset of [[;]. So we rule out the terms
involving j € J;; \ J;, and then

Pfl‘(v) = Z aj:Pﬁ(vj/).
JeTi
Since each Nyes, [Vir] # {0} for j € J!, is a subset of [I;]
and at least one a;s # 0, we deduce that Pﬁ(v) is non-zero.

Therefore, the relative independence is violated.

Now the last term in the RHS of our law of nullity is re-
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expressed as

(treze, (Mwes, [Vir])) N (Mies; [Vi]) (A.2)
=((+hed o (Mwes, [Vir)) @ (+regn, P (Mwes, Vi) N (Mkes, [Vi])
=((+reg, . (Nwes Vi) ® (+reg, Pr (Miwes, [Vir])))

N (P, (Nkes, Vi) @ Pr.(Nies: [Vi]))

In Proposition we have observed that +k€$,zpi(ﬂk’65k Vi)
and Pj;(ﬂkesi [Vi]) are independent. As Py, (Mies,[Vi]) C +reg, o, (Mwes, [Vir],
the term (A.2)) becomes

(+k€I<i(mk’€Sk [Vk’])) N (mkGSi [Vk]) = (+k€~7i,<l(mk‘/65k [Vk"]) N (PJi(mkESi [Vk]))

Finally, we have demonstrated

vank([Wi]) = rank(es, [Vil) = rank ((+xez, (Owes, [Vir) 0 (Nkes, (Vi) )
= rank(Nes, [Vi])
—rank ((+reg, o, (Mires, [Vir]) N (Pr (Mies, [Vi]) N (Mies, [Vi]))
= rank(Mkes,[Vi]) — rank (Py, (Nkes, [Vi])) -

It is notable that the determination of rank([W;]) depends only
on J; -1, that is, the set of indices j such that [S;| > |S;| and
S;NS; # ¢. In other words, it does not depend on any index-sets
of the same size as .S; and their orderings.

As partially-joint score subspaces [W;] are constructed recur-
sively and the determination of each [W;]’s rank only depends on
Ji 1, not on the ordering index-sets of size [ = |.S;|, we conclude

that the set of pairs {(S;,r(S;)) : i € Zx} is unique.
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A.2.3 Proof of Theorem [2.2]

Proof. We give a proof recursively on | € K. If [ = K, there
only exists [W1] = Nieg, [Vir] for S1 = K, so there is nothing to
prove. If [ = K — 1, by absolute orthogonality, all Pi-(Nies, [Vir])
are orthogonal each other for ¢ = {2,..., K 4 1}. Therefore, in
determining each [W;] for ¢ = {2,..., K 4 1}, other [W;] for t €
Ji2 =T;N{i" :|Sy| =2} does not affect on the construction of
[Wi].

For any [ < K — 2, suppose the statement holds, that is,
a partially-joint score subspace [W;] such that |S;| = I > [ is
uniquely determined only by [Wj] for S;; > S;. For each in-
dex i € Jp = {¢ : |Si| = I} (regardless of ordering), we have
Pr(Nires; [Vir]) = Py, (Nires, [Vir]) by absolute orthogonality. Then
among all indices i’ € 7, Pj;/ Nires, [Vir]) are orthogonal each

other.

Suppose an ordering on the set of all index-sets of size [ is
given, denoted by (Sj,,...,S;,) with h = gCj. For iy, [W;,] is

just determined as PJli1 (ﬂk’eSil [Vir]). Next for i, as [W;,] and

PJLZ_2 (ﬁk/eSiQ [Vir]) are orthogonal, we check that R‘J{OPJLZ-Q (ﬁk'eSQ Vir]) =

PJLZ_2 (Mires,, [Vir]). Thus [W;,] is determined regardless of [W;,]. In
recursive manner, for i € {is, ..., i}, [W;] is determined regardless
of all [Wy] for i’ € J;;, or in other word, is uniquely determined

as Pi(mk'esi [Vi]) depending only on [Wj]s for Sy > [.
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A.2.4 Proof of Corollary

Proof. From the discussions of Section 2, we know that [W(; ]
is indeed the score subspace of Z; for each k = 1,..., K. Thus,
given unique [W;]’s for i € Iy from Theorem 2, the subspace

[Utk) 5] generated by U, ; is unique. O

A.2.5 Examples

The following two examples presents the cases where relative in-

dependence is satisfied and not:

Example A.1. Let K =3, n =4 and

10 1 0 1 0
0 1 0 1/v2 0 0
1= , Vo= V2 , V=
00 0 1/v2 0 1/v2
0 0 0 0 0 1/v2

then [I;] = [(1,0,0,0)T] and Pi-[Vi] = [(0,1,0,0)T], Pj[Va] =
[(0,1/v2,1/v2,0)T] and P{-[Va] = [(0,0,1/v2,1/v2)T] are lin-

early independent. Thus {[V1], [Va], [V3]} is relatively independent.

Example A.2. Let K =3, n=4 and

10 1 0 10 0
0 1 0 1/v2 00 0
V1= , Vo= /\f7V3:
00 0 1/v2 0 1 1/v2
00 0 0 00 1/v2

As PIJI-[Vfg] N (Pfl'[Vl] + P[l1 [Va]) = [(0,0,1,0)T] is not empty, thus
{[V1], [Va], [V3]} is not relatively independent.
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We present the following examples that support Theorem 1,
that relative independence indeed guarantee the uniqueness of the
brief version of partially-joint structure So = {(S;,r(S;)) : @ €
Tk,r(S;) > 0}.

Example A.3 (cont’d from Example ) Under the ordering
S1 = {1,2,3},S5 = {1}, S = {2}, S7 = {3}, we obtain [W;] =
[(1,0,0,0)7], [W5] =[(0,1,0,0)"], [We] = [(0,0,1,0)"] and [W7] =
[(0,0,0,1)T]. Then we have

So = {({17 2, 3}7 1)7 ({1}7 1)7 ({2}7 1)7 ({3}7 1)}

On the other hand, in the case S1 = {1,2,3},S5 = {2},5s =
{1}, S7 = {3}, we obtain [W1] = [(1,0,0,0)T], [Ws] = [(0,1/v/2,1/+/2,0)7],
(Ws] = [(0, —1/v/2,1/+/2,0)T] and [W+] = [(0,0,0,1)7]. The partially-

joint structure s still the same as above.

Example A.4 (cont’d from Example [A.2]). Under the ordering
S1 = {1,2,3}, S5 = {1}, 5S¢ = {2},S7 = {3}, we obtain [W;] =
[(1,0,0,0)7], [Ws] =[(0,1,0,0)"], [We] =[(0,0,1,0)"] and [W7] =
[(0,0,0,1)T]. The partially-joint structure is

So = {({1,2,3}, 1), {1}, 1), {2}, 1), {3}, D}-

On the other hand, in the case S1 = {1,2,3},S5 = {3},5s =
{2}, 87 = {1}, we obtain [W1] = [(1,0,0,0)7], [Ws] = [(0,1,0,0)7,(0,0,1/v/2,1//2)"]
[Ws] = [(0,0,1/v2,—-1/v/2)T] and (W] = {0}. This time, the

partially-joint structure is

So = {({17 2, 3}7 1)a ({1}70)7 ({2}7 1)> ({3}7 2)}
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We also present the following examples that support Theorem
2, that absolute orthogonality guarantee the uniqueness of the

partially-joint score subspaces.

Example A.5. Let K =4, n=7 and

T
V1:<001000)
T
‘/2:(000100)
T
v 1/vV2 1/¥/2 0 0 0 0
Y =
0 0 0010
T
v 1/vV2 1/¥/2 0 0 0 0
4:
0 0 0001

This example satisfies absolute orthogonality. Between under two
ordermgs (SH = {3,4}, 512 = {1}, 513 = {2}) and (SH = {3,4}, 512 =
{2}, S13 = {1}), the determinations of [Wia] and [Wi3] are the

same.

Example A.6. Let K =4, n=7 and

V1=(1/2\/§ V3/2v2 1/v/2 0 0 o)T
sz(\/§/2\/§ 1/2v/2 0 1/vV2 0 o)T

T

1/vV2 1/¥/2 0 0 0 0

0 0 0010
T

1/vV2 1/¥/2 0 0 0 0
0 0 0001

Vs =

Vi =

This example satisfies relative orthogonality, but not absolute or-

thogonality. Between under two orderings (S11 = {3,4}, 512 =
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{1}, 513 = {2}) and (S11 = {3,4},S12 = {2}, 513 = {1}), the
determinations of [Wi2] and [Wi3] are not the same because [Vi]
and [Va] are not orthogonal and [W11] = (1/v/2,1/+/2,0,0,0,0)7
does not have an effect on the determination of [Wis] and [Wis)

by definition.
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A.3 Additional Information on Simulation

Study

A.3.1 Examples of the Measure of Dissimilarity be-

tween Two Partially-Joint Structures

For the comparison between two partially-joint structure, we de-
vised a following concept of the measure of dissimilarity between
partially-joint structures.

First, we introduce a partially-joint structure matriz T for a
(brief version of) partially-joint structure S, a matrix each of
whose columns indicates an identified index-set among datasets
and each of whose elements show whether the corresponding dataset
belongs to that index-set. For example, when K = 3, if the esti-

mated partially-joint structure is

&o = {({1,2,3},2), ({1,2}, 1), ({1,3}, 1), ({2, 3}, 1), ({3} 1)},

then

N)
I
— = =
S -

1
1
0

— o

0 0
10
11

Next, consider two partially-joint structure matrices T 1 €40, 1}
and T) € {0,1}™*2_Discarding all the identical columns between
T\l and fz, we denote the remaining columns Tl and TQ. For ex-

ample, from

11 110
Ti=11 1|, T=1_11 1/,
1 0 111
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we obtain

o
—_
—

For each remaining column of T, (or fg), find the closest column
of Ty (or ﬁ) in the Frobenius norm sense. The measure of dissim-
ilarity between ﬁ and fg is the sum of the squares of all these
Frobenius norms between the remaining columns between T and
T». In the example above, for (1,1,0)T of T, the closest column
of Ty is (1,1,1)T and the difference is 1. For (1,1,1)T of Ty, the
difference between (1,1,0)7 is 1 and for (0,1,1)" of Ty, it is 2.
The overall difference between T 1 and fg is then 12 4+ 1% + 22 = 6.
The measure of dissimilarity between two partially-joint structure

matrix fl and T\Q is denoted diff(j“\l, T\g)

Finally, if the partially-joint structure é()’l (or éo’g) has partially-

joint structure matrices T, (or fg), then the measure of dissimi-

larity between éOJ and @072 is diff(éo’l, éo,g) = diff(ﬁ, fg)

A.3.2 Review on Methodology of Other Methods

We briefly review the methodology of AJIVE (Feng et al.,2018),
SLIDE (Gaynanova and Li,2019), COBS (Gao et al.,2020) and
JIVE (Lock et al.,2013).

AJIVE In AJIVE, each signal matrix Z; € RPx*™ is regarded
as a sum of joint structure J; and individual structure I for

k=1,..., K. A joint structure Jy is viewed as the score subspace

[Var] € R™ shared by all Z;’s.
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AJIVE extracts each estimated signal matrix Zk from dataset
X} and Zk is of initial rank estimate 7. The estimated shared joint
component [VM] is obtained as a flag mean among score subspaces
of Ek’s, or [Vl],...,[x?k], in a sense of the projection Frobenius
norm distance as our method. The rank r of [XA/M] (called the joint
rank) is estimated using the simulated distribution of the largest
singular value of the concatenated matrix of random directions

and that of Wedin bounds:

(1) If the largest squared singular value of the column concatena-
tion matrix V of TA/k’s is larger than the 5th percentile of the
simulated distribution of the largest squared singular value
of the concatenation matrix of random orthogonal matrices
of the same size as Vi’s (or random direction bound), then

[\7M] is not generated by noise in 95 percent of probability.

(2) If there are 7; squared singular values of V are larger than
the 95th percentile of the simulated distribution of Wedin
bounds, then the first 7; right singular vectors are used as

the basis for the estimated joint score subspace [VM]

The estimated joint structure j;g is a projection of the dataset
X} onto the estimated joint score subspace [VM], that is, j}c =
XkXA/MIA/AE. Each estimated individual structure ./fk is obtained as
X (I —?M?]a) The row spaces of each estimated individual struc-
ture I, is orthogonal to [Vy]. There is no guarantee that individual
structures are mutually orthogonal. The joint score matrix is just
defined as ‘?M and the corresponding joint loading matrix for kth

data source is a regression of J; on VAE, computed as Jg - Vs. The
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individual loading and score matrices are obtained from SVDs of
IAk’s.
SLIDE SLIDE identifies the partially-joint structure with the

penalized matrix factorization, that is,

)

K T

. 1

(U, V) =argminy_ 2| Xi = UV I+ A [Tkl st VIV =T,
k=1

j=1
where Uy; is the jth column of the loading matrix Uy of X} and
r is the number of all possible sparsity patterns. After computing
U and V with an iterative algorithm, the corresponding struc-
ture matrix 7 is obtained from the sparse structure of U. Note
that the concept of the structure matrix T here is identical to the
partially-joint structure matrix of ours in Section B.1. Even though
this optimization problem is nonconvex and there is no guarantee
about convergence to the global optimum, authors reported that a
local solution can be obtained heuristically by initializaing V' with
the left singular matrix of concatenated X that works well in the
simulation.

Then SLIDE estimate the loading and score matrices, U and XA/,
for the structure T by solving the following optimization problem

with an iterative algorithm,
(U, V) =argmin|| X —UVT|Z st VIV =1,
uv

with the constraint that the loading U has the same sparsity struc-
ture as 7.

In model validation, SLIDE adapt the block cross validation
(BCV) procedure to select the best structure j:best- BCV splits

rows and columns of each dataset X}, into submatrices X,il, X,?, cee X%l, e
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Then it holds out a set of submatrices X% = [X{j ,X;j - ,X}g]
of the same sub-block position in each dataset X and evaluate
the prediction error on X%’s. Given a set of structure candidates
ﬁ, 'fg, ..., we select one that minimizes the error across all folds.
JIVE Like in AJIVE, JIVE decompose each signal matrix
X; as a sum of joint structure J; and individual structure I,
for i = 1,..., K. After defining R to be a row concatenation of
R, = X; — J; — I;, JIVE estimate both joint and individual struc-
tures by minimizing || R||% under the given ranks. An alternating
iterative algorithm is implemented for the estimation finding indi-
vidual component with given joint component at one step and vice
versa at another step. The estimated joint structure is identical to
the first r; terms in the SVD of X with individual components
removed and the estimated individual structures to the first r;
terms in the SVD of X; with the joint component removed. The
selection of rj and r;s are validated using the permutation test.
COBS COBS iteratively estimates a sequence of loading vec-
tors, u; for i = 1,...,r for given r, while updating the data matrix
X = [X1,..., Xx] € R"*2Pk, The algorithm starts with X0 = X
At the 4th step, with the current data matrix X1 the ith load-
ing vector wu; is estimated solving the following maximization prob-

lem, that is,
;= max|| (X2 st wTu=1.
u

T
As each u; is equipped with block structure u; = (“{1) .. u(TK)) ,

we can give sparsity at two levels of thresholding, one for block-
wise sparsity and the other for overall sparsity in estimating ;.

The tuning parameters «, € [0,1] and A\, > 0 control the two
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levels of sparsity respectively, and @ is thresholded as a normalized

solution of
1 ~ 12
HIxIHQHx_uiH +mllzll + 2721,

where 71 = ayA, and 2 = (1 — ay)A,. Then the score vector v;
is estimated as the empirical BLUP and dataset X"~! is updated

as Xl = xli-1 _ 357,
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A.3.3 Results on Tuning Parameter Selection

We report the performances of our tuning parameter selection pro-
cedure of Section 2.3.3 using the six models given in Section 2.5.
Since the tuning parameter A\ represents a threshold for princi-
pal angles, the candidates for A are given by A = 0°,1°,...,90°.
For each value of A\, we evaluated the empirical risk. As discussed
in Section 2.3.3, we take the parameter X that gives the smallest
empirical risk and also compare diﬂ’(@o(j\o;zr),éo()\;é)) as a
function of A\. We also present diff (@30(/\7 Z ), ©p), which reflects
how much the estimated structure differs from the true structure
on each value of angle threshold, under the situation where the

true structure (‘oracle’) is known.

When SNR = 10, getnfrac function estimated true signal
ranks correctly for models 1 to 5. The empirical risk is mini-
mized at an interval of X’s, and for any A in the interval, the
corresponding structure (‘ASO matches the true Gy; the valley bot-
toms of empirical risk (solid line) are posited inside those of the
measure of dissimilarity (dashed line) with value zero, as seen in
Fig. For each model in the figure, solid line (empirical risk)
shows a similar shape as dashed line (the measure of dissimilar-
ity), which implies that empirical risk well reflects the difference
between the estimated structure and the true structure. In Model
6, the true signal rank is 8 for each dataset, for instance, from
{({1,2,3},2),({1,2},2),({1,3},2),({1},2)} in the case X;. How-
ever, getnfrac function only estimated r; =8, ro =8 and r3 = 7.
The estimated partially-joint structure lacks ({3}, 1) from the true

structure.
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Case 1 n=200 SNR =10 Case 2 n=200 SNR =10

0 25 75 0 25

50 50
lambda lambda
Case 3 n=200 SNR =10 Case4 n=200 SNR=10
259 k25 L S I S S S ST ST ko5
20 H r2o
244 24 1
E 15% é K |5%
234 ro 234 jmmmm— 10
rs ) _,f 5
0 0
7 0 25 50 5
lambda lambda

Case 5 n=200 SNR =10 Case 6 n=200 SNR =10

====

Figure A.3.1: The values of empirical risk (solid) and
diff (So(Ao; Zir), Go(X; Z)) (dotted), diff(So(A, Z), &), (dashed).

When the signal-to-noise ratio is small, SNR = 2, getnfrac
function estimated signal ranks as zero for all six cases, so we give
the true inherent signal ranks instead. Unfortunately, the empirical
risk is minimized at smaller values of A than desired; see Fig.[A.3.2]
Unlike Fig. solid line (empirical risk) shows a far different
shape than dashed line (the measure of dissimilarity), except for
Model 1, which implies that empirical risks fail to detect the true
structure. This is due to the lower value of SNR, with which the
magnitude of noise overwhelms that of signal. As the score vectors
of each dataset have almost random directions in low SNRs, there
is a tendency that signals from a partially-joint (and fully-joint)
scores are counted separately as if they belong to individual data

blocks.
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Case1 n=200 SNR=2 Case2 n=200 SNR=2

3.000

lambda. lambda

Case 5 n=200 SNR=2 Case 6 n=200 SNR=2

Bip

Figure A.3.2: The values of penalized empirical risk for A when
n = 200 and SNR = 2. The values of empirical risk (solid line)
and the measure of dissimilarity, diff (@0()\, Z),8), (dashed line)

over varying A are shown.
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A.3.4 Simulation Settings for Section [2.5.3

In the unbalance of signal strength between joint and individual
component settings, we set n = 200 and K = 3.

In the first case, we set the elements of 012\4 as
(1) Joint (Sy) : (15,14.5,...,5.5),
(2) Individual 1 (S2) : (0.150,0.141,0.132,...,0.069),
(3) Individual 2 (S3) : (0.147,0.138,0.129, ...,0.066),
(4) Individual 3 (S4) : (0.144,0.135,0.126,...,0.063),

so the strength of joint signals are about 100 times stronger than
those of individual signals.

In the second case case, we set the elements of 0]2\/[ as
(1) Joint (S7) : (0.15,0.145,...,0.055),
(2) Individual 1 (S2) : (15,14.1,13.2,...,6.9),
(3) Individual 2 (S3) : (14.7,13.8,12.9,...,6.6),
(4) Individual 3 (Sy) : (14.4,13.5,12.6,...,6.3),

so the strength of individual signals are about 100 times stronger

that those of joint signals.
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A.4 Additional Information on Real Data
Analysis

Table A.4.1: Fisher’s exact tests between gene muta-
tions/chromosome defects and the CLL subgroups, o and f

with top 5 adjested p-values (Benjamini-Hochberg method).

Gene mutation/Chromosome defect | adjusted p-value
IGHV 1.036 x 10713

MED12 0.173

del17p13 0.174

dell3q14 0.178

TP53 0.184

Table A.4.2: The association between IGHV mutation status and
the CLL subgroups with adjusted p-value (9 missing values ex-

cluded).

Mutation \ Subgroup | « |
IGHV Wild type | 49 | 8
IGHV Mutated 7 | 48
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Table A.4.3: The most appeared drugs in the subgroups [a] and

[b] with appearances at least four times out of 5 concentrations.

The most appeared drugs in subgroup [a]

Drug name Target pathway Appearances
spebrutinib BTK 5
idelalisib PI3K delta 5
duvelisib PI3K gamma, PI3K delta 5
tamatinib SYK 5
dasatinib ABLI, KIT, LYN, PDGFRA, PDGFRB, SRC 5
PF 477736 CHK1, CHK2 5
MK-2206 AKT1/2 (PKB) 5
ibrutinib BTK 4
selumetinib MEK1/2 4
PRT062607 HCL SYK 4
AZD7762 CHK1/2 4
CCT241533 CHK2 4
TAE684 ALK 4
MK-1775 WEE1 4
AT13387 HSP90 4
The most appeared drugs in the subgroup [b]
Drug name Target pathway Appearances
everolimus mTOR 5
thapsigargin SERCA 5
orlistat LPL 5
rotenone Electron transport chain in mitochondria 5
afatinib EGFR, ERBB2 4
fludarabine Purine analogue 4
navitoclax BCL2, BCL-XL, BCL-W 4
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Appendix B

Supplementary Materials

for Chapter

B.1 Proofs

B.1.1 Proof of Lemma [3.1]

Proof. Suppose we have any p; = [v1,7r1] and py = [ve,72] € O.
First, it is easy to check that d(pj,p1) = 0. The non-negativity

and symmetry of d are trivial.

We show a triangle inequality. Let ps = [vs,r3] be any point
in ©. By the spherical triangle inequality [Ramsay and Richt-

myer, 1995], we have arccos(vy, vg) < arccos(vy, v3)+arccos(ve, vs).
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Without loss of generality, di(p1,p2) < d2(p1,p2). Then

1/2
di(p1,p2) = (arccosZ(vag) +|r — 3415 — 742|2) /

9 1/2
< ((arccos(vlTvg) + arccos(vavg)) + (Jr1 —r3| + |rs — r2|)2>

1/2 1/2

< (aI“CCOSQ(U?U;),) +|r — 7"3\2) + (arccosz(UQTvg) +|ry — r3]2)

= di(p1,p3) + di(p2,p3)

and

1/2
da(p1, p2) = (arccos(—vTvg) + [y — (x — 12)[2) "

) 1/2
< ((arccos(fulTvg) + arccos(—vgvg)) +(Jry —rg| + |7 —r3— r2])2)

= di(p1, p3) + da(p2,p3)-
or di(p1,p2) < di(p1,p3) + da(p2,p3). In a similar way,

di(p1,p2) < da(p1, p3) + da(p2, p3)

di(p1,p2) < da(p1,p3) + di(p2, p3)-

B.1.2 Proof of Proposition (3.1

Proof. If F is empty, it is trivial. In the case £ non-empty, we first
show (BPC) implies (ZC). Let B,, = U2, Ej and B = N2> B,.
By (BPC), there is a sufficiently large n such that d(p,, E) < € for
any p, € By, that is, there exists ¢ € F with d(p,q) < e.

Given p € B, we can find py € B, for sufficiently large N such
that d(pn,p) < e and d(p, E) < €. Then d(p, E) = inf,cp d(p, q) <
d(pn,p) + infeep d(pn, q) < 2. Since E is a closed set, p € E as
€ — 0. This proves (ZC).

122



We next show (ZC) implies (BPC). Consider a sequence p,, €
By, such that p, = argmax,cp, d(p, E) and let r, = maxep, d(p, ).
Then we have either r,, — 0 or r,, 4 0. If r,, — 0, then (BPC)
holds. In the case r, # 0, there exists a sequence n(k) such
that r,x) > ro > 0. If py) has an accumulation point p’, then
d(p’, E) > 0, which leads to a contradiction to (ZC). Thus py
has no accumulation point.

As O is compact and thus totally bounded, we can find a finite
cover {A;} of © such that diam(A4;) = e for any small € > 0.
Since there is no accumulation point, each A; contains only finitely
many p). However, this is contradict to the existence of the

subsequence p, ).

O]

B.1.3 Proof of Theorem [3.1]

Proof. Let A(x,p1,p2) = p(x,p1)—p(x, p2) for x € S™ and py, ps €

O. Under uniform continuity, for every p € © and € > 0, there

exists § > 0 such that |[A(X,p,p')| < € a.s. whenever d(p,p’) < 4.
For w € Q and p = [v,r] € ©, denote

Falp) = = 3 p(Xi(w), )* + ),
=1

F(p) = E(p(X,p)?) + jr(r),

gn:‘an 5 ¢ = inf I )
Inf (p) inf (p)

El={peO®:F,(p)=0y}, E"={pecO:F(p) =1

Let {p1,p2,...} C O be dense. For each k = 1,2,..., given
Pk = [k, 7], we have F,,(pr) — F(py) almost surely by the Strong
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Law of Large Numbers. We put this in another way as follows. Let
A ={w: Fu(pr) = F(pr),n — oo} C Q, then P(Ay) = 1. With
A =2, Ay, we have P(A) =1 and

Fo(pr) — F(pr)

forallw € A and each kK =1,2,....
For any p = [v,r],p' = [/, '] € ©, we check
n

) = Falp)] < 5 3 (p(600) + p(X02) |0(Xi, ') = p(X0, 1)
=1

+ ‘jT("J) - ]T(r)|
= LS o) + 1A 8)]) (X))
=1
+ ‘jT(T,) - ]T(r)|
(B.1)

By plugging py = [vg, %] into p’ in (B.1]),
n

1< , 1
- > (X, pe)? + Gr(re) — - > (2p(Xi, i) + IAXi,p,pr)]) |A(Xs, p,pe)|
i=1 =1

— |jr(pr) — 3 ()] < % > p(Xi,p)® + jr(p) < % > o(Xi,pi)® + G (i)
i=1 i=1

n

3" 00X 0) + 1A, 2, p) A, i) + L () — 30
i=1

We now consider a situation p — p as k — oo for any p € O.

Then for arbitrary €, ¢ > 0, there exists a sufficiently large kg such

that for & > ko, (a) by uniform continuity, |A(X;,p,pr)| < €, (b)

|7+ (re) — J-(r)] < € by (P2) and (P3). As n — oo, we also have

(c) L3, p(Xj,pr) — Ep(X,pg)? by the Strong Law of Large

n
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Numbers. Combining (a)-(c),

Ep(vak)Q +]7—(7"k) - (2EP(Xapk) + 6) € — 6/
1 & R
<liminf =37 p(Xi,p)? + () < limsup = 3 p(Xi,p)? + o (1)
=1

n—oo M 4 n—00 n'l
1=

< Ep(X;,pr)* + jr(rg) + (2Em(X;, pr) + €) e + €.

Sending €,¢’ — 0 and n — oo, as %Z?:l p(X;,p)? and j,(r) are

bounded above and below, for any subsequence p;, — p, we have

1 n
. 9 . . 1 RV .
lim Ep(X, pr,)* + (k) = lim — Zl p(Xip)? + jr (7).
1=

Thus, for all w € A,

Fo(p) — F(p). (B.2)

Next, plugging py into p and p into p’ in (B.1)),

SRS

|Fn(pn) - Fn(p)| < Z (2p(X¢,p) + ]A(Xi,pn,pﬂ) |A(Xi7pmp)|
=1

+ |jT(T/) - ]T(r)| — 0.

by (a) and (b). Thus [Fy(pn) = F(p)| < [Fn(pn) — Fn(p)| + [ Fn(p) -
F(p)] — 0 and

Fn(pn) = F(p) (B.3)

for all sequences p, — p and w € A.

Finally, we assert the theorem.

o When NP2, U ET = ¢ : trivial

k=n"n
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o When N52,UX ET # ¢ : Denote B,, = U EJ. Let {b, €
B,} be a sequence such that b, — b € ﬂzolein. For each
n, we can find an index k,, such that b, € E,Zn. We want to

show that b € E7.

By (B.3), ¢k, = Fx,, (pr,) — F(b) > . At the same time, by
(B.2)), for any arbitrary ¢ € O, there exists a sequence €, — 0
such that F'(q) > F,.(q) — €n > £y — €,. Then inf cq F(q) =

¢ > limsup,,_, ¢» and we conclude ¢, — ¢ = F(b).

B.1.4 Proof of Theorem [3.2

Proof. We first introduce the concept of epi-convergence (Rock-

afellar and Wets,1998).

Definition B.1. Consider arbitrary functions h and {hy} defined
on a metric space (©,d) to R for k=1,2,.... The sequence {hy}
epi-converges to h at p € © if and only if

(1) for every sequence g — q € ©, iminfy_,o hi(gx) > h(q)

(2) there exists a sequence g — q € O, limsupy_, o hx(qr) <
h(a)-

Our first aim is to assure that, for p = (v,r), the function

fr(p) = Exp®(X,p) + j-(r) epi-converges to fo(p) = Exp*(X,p).
To show epi-convergence, we utilize the following proposition, see

Proposition 7.15 of Rockafellar and Wets (1998) or Royset (2018).

Proposition B.1. Let a function h and a sequence of functions

hy for k = 1,2,... be on a metric space (0,d) to R. If {hy} are
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continuous and converges uniformly to h, then {hy} epi-converges

to f.

By definition, f;, (p) are continuous on p = [v,r] € 6. Also

{fr.} uniformly converges to fo, since for all p € ©,

7. (p) = fo(p)| = |pr,.(r)| = 0

as k — oo by (P4). Thus, {f;, } epi-converges to fj.
Before going into the next step, we define the following set, the

population solution set inflated by € > 0. Given 7 > 0 and € > 0,

E™¢ = {p € 0 : Exp*(X,p) + j-(p) < e+qir€1(gExp2(X, q) +j7(q)} :

Our second aim is to show, given any decreasing sequence € —
0, E™ converges to F in outer limit. We use the following fact,

see Theorem 7.31 of Rockafellar and Wets (1998).

Proposition B.2. Let a function h and a sequence of functions
hi, k=1,2,... be defined on a metric space (0,d) to R. Suppose
{hi} epi-converges to h with —oo < infh < oco. Let ¢, — 0 be a
decreasing sequence and set B, = {p € O : hi(p) < e+inf hy} and
B = {p € © :infh}. Then Bj converges to B in outer limit as

k — oo.

In our case, as —oo < 0 < Exp?(X,p) < 72/4 < oo, we have

E7¢ converges to E in outer limit as k — oo.

From the fact E™ C E™ it is easily derived that N02_,UP°  E7k C

U2, Ekek . Therefore, we conclude that E™ converges to £/
in outer limit as & — oo.

O

127

A 2t 8

1V



B.1.5 Proof of Theorem [3.3

PTOOf' Let A(‘T?plapQ) = p(x’pl)_p($7p2) forz € S™ andp17p2 S
©. Under uniform continuity, for every p € © and € > 0, there
exists § > 0 such that |[A(X,p,p')| < € a.s. whenever d(p,p’) < 4.

For w € Q and p = [v,r] € ©, denote

F0) = — 3 p(Xu(w), ) +3:(0),
=1

Falp) = = 3 plXi(w). )
i=1

F(p) = E(p(X,p)?),

l, = inf F,(p), ¢= inf F(p),
Inf () Inf ()

Er={pcO:Fp)=>4} E ={pcO©:F(p) =1~}

Let {p1,p2,...} C © be dense. For each k = 1,2,..., given
pr = [vk, k], we have F,,(px) — F(pk) almost surely as n — oo by
the Strong Law of Large Numbers. By (P4), we also have j,, (%) —
0 monotonically as n — oco. By the continuous mapping theorem,
combining two results, for each py, F;"(pr) — F(py) almost surely
as n — oo. We put this as follows. Let Ay = {w : F*(px) —
F(pi),n — oo} C Q, then P(A;) = 1. With A = N2, Ay, we have
P(A) =1 and

Fo(pr) — F(pr)

forallw € A and each £k =1,2,....
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For any p = [v,r],p' = [/, '] € ©, we check

3\*—‘

|E () — F7 (p Z Xi,0') + p(Xi,p)) [p(Xs,0') = p(Xi, )|

+ 1 (1) = G (7))

72 20(X;,7') + |AX;,p,P)|) [A(X;,p,P)|

+ G (') = G (7))
(B.4)

By plugging py, = [vg, 7] into p’ in (B.4),

n

1 , 1
— 20X pk) o+ (k) = — D (200X, i) + 1A p,pi)]) [ A (X, )|

i=1 i=1
n

Nina () = G D) < = D7 0K G (0) < D (X5, + (1)

i=1 i=1
1>
+ > @p(Xispr) + [AX, 2, o)) [A (X, P o) + i, (78) = i (7).
i=1
We now consider a situation pp — p € © as kK — oo for some p.
Then for arbitrary €, ¢’ > 0, there exists a sufficiently large ko such
that for £ > ko, (a) by uniform continuity, |A(X;,p, pr)| < €, (b)
|77, (ri) = Jr (1)] < € by (P2) and (P3). As n — oo, we also have
(c) 1370, p(Xj,pk) — Ep(X,px)? almost surely by the Strong
Law of Large Numbers. Combining (a)-(c),

Ep(X,pi)? + jr,(re) — (Ep(X,pr) +€)e— €

i 30004 ) S s &3+ 7 0

n—00 n—00
=1

< Ep(Xj,pr)? + jr, (r) + (2Ep(Xi,pr) + €) € + €.
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Sending €, € — 0 and n — oo, as £ 3" | p(X;,p)? and jr,(r) are

bounded above and below, for any subsequence pi, — p, we have
lim Ep(X, px.)? + jr (1%,) = lim lzn: (Xi,p)? + g (1)
500 p )pks ]Tn ks _71—>OO7'L - 1p l?p an .
-
Thus, for all w € A,
o (p) = F(p). (B.5)

Next, plugging py into p and p into p’ in (B.4)),

n

1
[F7 (on) = F(0)] < = > (27(X, p) + [A(X3, s ) ) A (X, s )|
i=1

+1pr, (1) = pr, ()] = 0.

by (a) and (b). Thus |Fj*(pn) — F(p)| < [F*(pn) — Fu(p)| +
|[Ee(p) — F(p)| — 0, and

E(pn) = F(p) (B.6)

for all sequences p, — p and w € A.

Finally, we assert the theorem.

o When N92 U ET = ¢ : trivial

k=n"n

o When N52,UX  ET # ¢ : Denote B,, = U2 E7. Let {b, €
B,} be a sequence such that b, — b € ﬁfleBin- For each
n, we can find an index k,, such that b, € E,Zn We want to

show that b € E7.

By (B.6), ¢k, = Fy,(pk,) — F(b) > £. At the same time, by
(B.5)), for any arbitrary ¢ € O, there exists a sequence €, — 0
such that F'(q) > Fy,(q) — €, > ¢, — €. Then inf cq F(q) =

¢ > limsup,,_, ¢n and we conclude ¢, — ¢ = F(b).
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B.1.6 Proof of Proposition

We start with deriving series expansion of von Mises-Fisher distri-
bution with respect to spherical harmonics. For convenience, let

p =m + 1, following the conventional notation SP~1.

Proposition B.3. The density of von Mises-Fisher distribution
on SP~1 with the mean direction yn and the concentration parame-

ter Kk is given with respect to spherical harmonics as

dimH
1 > : m m
Fomp(x" s k) = UTZ > aY (WY (x)
Pi=0 j=1
Ry NEpY
= — aC (@ )
“P =0
1 & (p—Q)l\/H‘/\ 0/, T
= — Y,
“r 120 “ I P (" p),

where X = (p — 2)/2 and w, = 277/2/T(p/2) the surface area of
Sp—t, Y}O(cos 0) the spherical harmonic function of degree I and
order 0 for 0 <0 <7, and

VT I'(p+1-2) Lp—9)/241(K)
(P =223 T((p— 1)/2T((p = 2)/2)  ILpjp-1(k)

Proof. The probability density function of the von Mises-Fisher

C] =

distribution for the random p-dimensional unit vector x is given

by
fonr (" s k) = Cp(r)exp(rp’ @),

with a concentration parameter x > 0 and a pole u € SP~1. The
normalization constant Cp(k) is given by
K;p/Q—l

CP("{) = (27r)p/21p/2,1(/<5) ’
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where I, denotes the modified Bessel function of the first kind at
order v.

By the Funk-Hecke formula (Dai and Xu,2013), we have

|, S (@ Y @) do (o) = e (),
where
1
Wp—1 / (p—2)/2 9\ P=3
a=——7— [ Jr(t;r)C )1 —t*) "2 dt.
Cl(p 2)/2(1) 1 l

We express ¢; with respect to the modified Bessel function

VT T(p+1-2) L(p—2)/241()
(p—2)2r3T((p—1)/2)T((p — 2)/2) ILpja—1(k)

using the following lemma.

C] =

Lemma B.1. We have the following formula involving exponen-

tial function and Gegenbauer polynomial (Dai and Xu,2013),

1
Kt (p—2)/2 np-3)/2 4T Tlp+1-2) _, 9
/_1 e tClp (t)(l —t )(p ) dt = 2p/2[| F((p o 2)/2) K =2/ I(p—Q)/Q'H(K)'

Proof. For the formula 7.321 in Gradshteyn and Ryzhik (2014,
p.805),

/1 (1 — ZE2)V_1/2€2'O£930V(:L‘) dz — Wzlillinl—‘(ZV + l)

. o) Sl

for Mev > —1/2, put v = (p — 2)/2 and a = —ik. Here J, is the
Bessel function of the first kind at order v. Then, use the identity
9.6.3 in Abramowitz and Stegun (1972, p.375)

e:l:mri/QIV(z) _ J,,(zeim/Q).
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Then using the addition formula of spherical harmonics, we

have

Somr (@7 s ) = o > Z a¥™ (w)Y" (x)

with A = (p — 2)/2 and wy, the surface area of SP~1.

Remark B.1. In Mardia and Jupp (1999, p.168), the normalizing

constant 1s given as

K\ P/2—1 1
G0 =(5)" o

Remark B.2. When p = 3, this result coincides with Jammala-

madaka and Terdik (2019) that

SN V20+ 1 Iy )2(k)
T IH/ Y0 (2" ).
=0 ™ 1/2(“)

fomr(z® p; k) =

The proof of Proposition [3.2]is as follows.
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Ef, = /S arccos(v! 2)Cyp(r)exp(kp’ ) do(x)

p—1
1 l+A | (p-2)52
T 2 0., T
= arccos(v' — c Y (x do(x
[ avecos D et e = e AOE
X1 l4A —2),22
:Z— + o b )l_22 / arccos(vT )Y, (2T p) do ()
= wr A N+ 57) Jsrm

Remark B.3. We compute the integral term
1
/ arccos(t)Cl(p_Q)/Q(t)(l — 2 (P=3)/2 gt
-1
numerically using the following facts.

When I =0, as C(()p72)/2 =1, we use the following result.

! (p—3)11)2
/ arccos(t)(1 — 2)P=3)/2 gt = (pz))g?'! 27 p odd
- ((217(;7)2'53 , D even.

When | > 0, we use the Maclaurin series of arccos on the interval

[_171]:

2n
T o~ n
— 2n+1
arccost = 5 — Z mt y ‘t‘ S 1.
n=0
134

=> A(Z)YZO(UTM)Cp%_l)/ arccos(t)CP ™22 (1) (1 — 12)P=3/2 4,
!



It can be shown from integration by parts that

1 >0 if k>1 and k —1 is even
/ tFCM)(1 — 2)AV2 @t f k2

-1 =0 otherwise

and from the formula 7.311.2 in Gradshteyn and Ryzhik (2014,
p.802),

! _ CTEA+DT2p+ 1+ 1)T(A+1/2)T(p+1/2)
/_1 GO = )t = e S G T DT T 9+ 1)
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B.2 Additional Information on Simulation

Study

(a) r =90° t; = 90°, k =100
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(b) r =90°, ; = 60°, k = 100
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Figure B.2.1: Results of radius estimation when d = 2, r = 90°

and n = 1000.
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B.3 Additional Information on Real Data

Analysis
(a)
PNS
010 .

= 0.054 o |.. - . -.l . .
© s g w"* . r et
F R T A% i
g .. .. . * . ‘-. ." I..’. ... . '." - e .
§ oo ek SR DA VRl 1 ¥ 4 PR T .
E 3 Ao 1Y o
w L]

Small Sphere 1, 6.7%

0.1 00 01
Small Sphere 0, 66.53%

Figure B.3.1: Cephalometric X-ray Image Data : Data points in
the coordinates by PNS (top) and PenPNS (MCP) (bottom). The

number means the percent variance explained.
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Figure B.3.2: Cephalometric X-ray Image Data : Data points in the
coordinates by PNGS (top) and PenPNS (MCP) + IoD Criterion

(bottom). The number means the percent variance explained.
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Table B.3.1: Results of the Original PNS on Cephalometric X-ray

Image Data. SSR stands for ‘sum of squared residuals’. Size is a

size (radius) of 2, in R+,

‘ Dimension ‘ SSR Proportion (%) Radius (°) Size in R4+!
35—34 9.28e-07 0 89.616 1
34—33 6.438e-06 0.02 86.7994 0.99998
33—32 4.248¢-06 0.04 55.9552 0.99842
32—31 1.3369e-05 0.55 15.4737 0.82729
31—30 8.592¢-06 0.1 89.3343 0.22072
30—29 1.041e-05 0.11 89.3539 0.2207
29—28 1.3123e-05 0.16 87.0537 0.22069
28—27 1.4962e-05 0.19 86.5 0.2204
27—26 2.7532¢-05 0.19 85.1729 0.21999
26—25 2.1458e-05 0.24 89.4131 0.21921
25—24 2.2423e-05 0.27 79.8502 0.21919
24—23 2.4921e-05 0.28 83.2425 0.21576
23—22 2.7892e-05 0.3 87.8096 0.21426
22—21 2.9107e-05 0.33 84.726 0.21411
21—20 3.3793e-05 0.35 84.2716 0.2132
20—19 3.7577e-05 0.37 76.3937 0.21214
19—18 9.0956e-05 0.43 83.8254 0.20618
18—17 5.0163e-05 0.46 85.9081 0.20499
17—16 6.1442¢-05 0.57 68.0432 0.20446
16—15 6.0078e-05 0.55 80.5524 0.18963
15—14 6.717e-05 0.58 77.1097 0.18706
14—13 8.2036e-05 0.81 61.6184 0.18235
13—12 9.1071e-05 0.72 82.6931 0.16043
12—11 0.00010021 0.83 75.1032 0.15913
11—10 0.000111185 1.04 65.447 0.15378
10—9 0.000142635 1.04 72.4487 0.13987

9—8 0.000121618 1.2 71.6694 0.13336
8—7 0.000188541 1.4 71.1073 0.1266
7—6 0.000239954 1.46 74.0747 0.11978
6—5 0.000255995 1.69 79.4723 0.11518
5—4 0.000332435 2.28 78.773 0.11324
4—3 0.000345227 2.82 73.0055 0.11107
3—2 0.000461081 4.01 74.0964 0.10622
2—1 0.00097963 6.13 37.3427 0.10216
1—0 0.009077118 68.49 0.06197
Sum 0.01315532 100
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Table B.3.2: Results of PenPNS (MCP) on Cephalometric X-ray

Image Data
‘ Dimension SSR Proportion (%) Radius (°) Size in R+!
35—34 9.29¢-07 0 90 1
34—33 0.000165633 0.02 90 1
33—32 0.000407293 0.03 90 1
32—31 0.000383708 0.07 90 1
31—30 0.000166148 0.12 90 1
30—29 0.000118163 0.13 90 1
29—28 0.000136102 0.19 90 1
28—27 0.000122323 0.23 90 1
27—26 0.000126636 0.22 90 1
26—25 0.000127404 0.28 90 1
25—24 0.000120823 0.31 90 1
24—23 9.2e-05 0.33 90 1
23—22 7.9903e-05 0.34 90 1
22—21 5.0067e-05 0.37 90 1
21—20 5.5969e-05 0.39 90 1
20—19 5.45e-05 0.43 90 1
19—18 6.8102e-05 0.49 90 1
18—17 6.9583e-05 0.52 90 1
17—16 7.5542¢-05 0.58 90 1
16—15 8.1184e-05 0.61 90 1
15—14 8.0205e-05 0.64 90 1
14—13 9.2151e-05 0.78 90 1
13—12 9.7528e-05 0.8 90 1
12—11 0.000107125 0.9 90 1
11—10 0.00011202 0.95 90 1
10—9 0.000124998 1.07 90 1
9—8 0.000130583 1.21 90 1
87 0.000213865 1.46 90 1
76 0.000225034 1.67 90 1
6—5 0.000234899 1.94 90 1
5—4 0.000307102 2.32 90 1
4—3 0.000345819 3.32 8.8589 1
3—2 0.000433961 4.08 90 0.154
2—1 0.000905904 6.7 22.2347 0.154
1—0 0.002882381 66.53 0.05827
Sum 0.008795588 100
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Table B.3.3: Results of PNGS on Cephalometric X-ray Image Data

‘ Dimension ‘ SSR Proportion (%) Radius (°) Size in R4+! ‘
35—34 9.4e-08 0 90 1
34—33 2.193e-06 0.03 90 1
33—32 5.238e-06 0.08 90 1
32—31 2.3826e-05 0.35 90 1
31—30 3.0398e-05 0.45 90 1
30—29 3.2492e-05 0.48 90 1
29—28 3.6514¢-05 0.53 90 1
28—27 3.7737e-05 0.55 90 1
27—26 3.6922¢-05 0.54 90 1
26—25 4.288e-05 0.63 90 1
25—24 4.4287e-05 0.65 90 1
24—23 4.4848¢-05 0.66 90 1
23—22 4.6415e-05 0.68 90 1
22—21 4.8862e-05 0.72 90 1
21—20 5.005e-05 0.73 90 1
20—19 5.2152e-05 0.76 90 1
19—18 5.9216¢-05 0.87 90 1
18—17 6.3302e-05 0.93 90 1
17—16 6.7462¢-05 0.99 90 1
16—15 7.1574e-05 1.05 90 1
15—14 7.4471e-05 1.09 90 1
14—13 8.8939e-05 1.3 90 1
13—12 9.0918e-05 1.33 90 1
12—11 0.000102183 1.5 90 1
11—10 0.00010737 1.57 90 1
10—9 0.000119884 1.76 90 1

9—8 0.000134624 1.97 90 1
8—7 0.000161609 2.37 90 1
7—6 0.000184337 2.7 90 1
6—5 0.000211901 3.1 90 1
5—4 0.0002532 3.71 90 1
4—3 0.000328375 4.81 90 1
3—2 0.000439975 6.45 90 1
2—1 0.001041575 15.26 90 1
1—0 0.002689564 39.41 1
Sum 0.006825388 100
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Table B.3.4: Results of PenPNS (MCP) + IoD Criterion on

Cephalometric X-ray Image Data

‘ Dimension ‘ SSR Proportion (%) Radius (°) Size in R+!
35—34 9.4e-08 0 90 1
34—33 2.192e-06 0.03 90 1
33—32 3.349¢-06 0.05 90 1
32—31 7.641e-06 0.12 90 1
31—30 1.252e-05 0.19 90 1
30—29 1.4332¢-05 0.22 90 1
29—28 2.0421e-05 0.31 90 1
28—27 2.5036e-05 0.38 90 1
27—26 2.4269e-05 0.37 90 1
26—25 3.0032e-05 0.46 90 1
25—24 3.3803e-05 0.51 90 1
24—23 3.5842e-05 0.54 90 1
23—22 3.7117e-05 0.56 90 1
22—21 4.0047e-05 0.61 90 1
21—20 4.234e-05 0.64 90 1
20—19 4.6403e-05 0.7 90 1
19—18 5.2768e-05 0.8 90 1
18—17 5.6474e-05 0.86 90 1
17—16 6.2659e-05 0.95 90 1
16—15 6.593e-05 1 90 1
15—14 6.8979e-05 1.05 90 1
14—13 8.4216e-05 1.28 90 1
13—12 8.6101e-05 1.31 90 1
12—11 9.7564e-05 1.48 90 1
11—10 0.000102898 1.56 90 1
10—9 0.000115491 1.75 90 1

9—8 0.000130464 1.98 90 1
87 0.000157646 2.39 90 1
76 0.00018072 2.74 90 1
6—5 0.000209631 3.18 90 1
5—4 0.000250704 3.8 90 1
4—3 0.000326408 4.95 90 1
3—2 0.00043827 6.65 90 1
2—1 0.001040521 15.79 90 1
1—0 0.002688727 40.79 1
Sum 0.006591607 100
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