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Abstract

Today, the importance of generating synthetic data has arisen more than

ever. It comes from the fact that although there are a lot of datas these days,

regardless of big and small, the risk of privacy leakage also arises from there.

Therefore, to achieve the initial goal of analyzing the data while preserving

privacy of the person of the origin of the data, generating synthetic data should

come into place. For synthetic data generation, many generative models have

been used, including Generative Adversarial Network, or GAN. In this paper,

we use inferential Wasserstein Generative Adversarial Network, or iWGAN,

which is an improvement of GAN, to generate synthetic data and see how it

performs.

keywords: Deep Learning, Generative Adversarial Network(GAN), WGAN,

iWGAN, Synthetic data, Data generation

student number: 2021-20687
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Chapter 1

INTRODUCTION

1.1 Introduction

Synthetic data is an artificially generated data which mimics the data from the

real world. The concept of the synthetic data started from Rubin (1993), and

have developed in variety as the progressions were made in theory and technol-

ogy.

There are a lot of points indicating that generating synthetic data is beneficial.

First of all, as datasets of sensitive origin have been collected more and more,

possible risk of privacy disclosure came into an issue. To avoid this, instead of

directly utilizing the original data, using synthetically generated data would be

a remedy. Also, if the data is biased, generating additional data and augmenting

it to the original data would give the better result. For example, if the dataset

consists of male and female with female numbers significantly bigger than the

male, then it would make sense to generate more male data to make more accu-

rate comparison within the male and female.

Including reasons mentioned above, the need for good synthetic data has been

increasing nowadays. From here, the ’good’ synthetic data indicates the data
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which avoids or augments the possible downside of using the original data, but

meanwhile also is able to give the same, or at least similar result of analysis with

working with the original data.

To generate synthetic data by deep-learning based models, generative models

have been used, such as Generative Adversarial Network (GAN) or Variational

Autoencoder (VAE). In particular, GAN and its variations are mostly utilized

this days. In this paper, we seek to utilize iWGAN, recently proposed augmented

version of GAN and VAE simultaneosly by Chen et al., to generate the synthetic

data.

In Chapter 2, there will be an introduction about GAN and Wasserstein GAN,

or WGAN, which is an upgrade of GAN and a base of iWGAN. Additionally,

explanation about Autoencoder GAN going to be provided. In Chapter 3, there

will be a description about iWGAN. In Chapter 4, there will be an application

of the main algorithm iWGAN to practical synthetic data generation. Summary

and discussion will be given in Chapter 5.
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Chapter 2

BACKGROUND

2.1 Generative Adversarial Network

Generative Adversarial Network, or GAN, is the deep generative model first

proposed by Goodfellow et al.(2014) The idea of GAN is to train the two neural

networks simulatenously. Discriminator network D is trained to discriminate

whether the sample x is from the real data or the generator network G. Also, the

generator is trained to create the sample which is closer to the real data. This

process could be explained as the two-player minimax game by D and G with

the value function V(G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ex∼pz(z)[log(1−D(G(z)))]

From this process, the idea of a data generation comes into the place. As the

generator gets better by training, it would be able for the generator to create

the sample which is close to the real data. Also, since the generator generates

the data without having an direct interaction with the real dataset, such dataset

wouldn’t have an possible risk that the original data might have, such as pri-

vacy risk. However, there are some downsides of vanilla GAN. According to
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Figure 2.1: Illustration of GAN

Arjovsky and Bottou (2017), the vanilla GAN tends to have worse updates and

massively unstable optimizations.

There have been many variations of GANs proposed, such as Conditional GAN

(Mirza et al., 2014), CycleGAN (Zhu et al., 2017), Pix2pix (Isola et al., 2017),

StyleGAN2 (Karras et al., 2019). and WGAN (Arjovski et al., 2017) Since the

main topic in this paper is iWGAN, brief explanation about WGAN is going to

be provided first.

2.1.1 Wasserstein GAN (WGAN)

Wasserstein GAN, or WGAN, is the deep-learning model first proposed by Ar-

jovsky et al.(2017). WGAN is the most popular method, which uses Wasserstein

distance metric to optimize the generating distribution, which is defined as

W (Pr,Pg) = inf
γ∼Π(Pr,Pg)

E(x,y)∼γ [∥x− y∥],
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where Π(Pr,Pg) denotes the set of all joint distributions γ(x, y) whose marginals

are respectively Pr and Pg. Such distance is alternatively defined as the Earth-

Mover (EM) distance.

Since the infimum defined above is highly intractable, at Arjovky et al, the al-

ternate form

W (Pr,Pg) = sup
∥f∥Lv≤1

Ex∼Pr [f(x)]− Ex∼Pθ
[f(x)],

by using Kantorovich-Rubinstein duality. Such alternation is also used in defin-

ing iWGAN model.

Wasserstein distance is proposed to substitute other used distances, such as Total

Variation (TV), Kullback-Leibler (KL), and Jensen-Shannon (JS) divergence.

Wasserstein distance possesses the characteristic of continuity and differentia-

bility almost everywhere, by the Theorem 1 from Arjovsky et al. From such

property, it is possible to train the WGAN critic until optimality. The critic does

not saturate and converges to a linear function that gives clean gradients ev-

erywhere. Also, theoretically the mode collapsing from vanilla GAN does not

happen because the critic could be trained until optimality. Also, compared with

vanilla GAN, WGAN has a better stability. However, mode collapse problem

still occurs in WGAN in practice, and there is no metric clearly defined to de-

tect the convergence.

2.1.2 Autoencoder GAN

Autoencoder is a process such that it passes through the input data into the

encoder network to bottled hidden layer, or latent variable. Then, the latent vari-

able is passed through the decoder network once again to get an output. During

the process, the difference between the input data and the output data is the loss

value.
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The difference between vanilla GAN and Autoencoder GAN is that besides with

the generator G, there also exists the encoder Q;X → Z which sends the data

x ∈ X into the latent space Z . Also, in Autoencoder GAN, the discriminator

work as the decoder from the autoencoder network. The Wasserstein Autoen-

coder, which is a foundation for the iWGAN, proposes an encoder Q which

minimizes the reconstruction error:

inf
Q∈Q

EX∥X −G(Q(X))∥

According to Chen et al., autoencoder generative model must satisfy 3 condi-

tions simultaneously. First one is the good generator condition, which indicates

that the fake generated data G(Z) has the similar distribution with PX . Second

one is the meaningful encoding condition, which is that the Q(X) has the similar

distribution with the latent variable Z. And the final one is the small reconstruc-

tion error condition, which indicates that the original data X and G(Q(X)) has

the small difference.
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Chapter 3

ALGORITHM

3.1 iWGAN

Inferential Wasserstein GAN, or iWGAN (Chen et al., 2021) is a variant of

the WGAN, which takes an advantage of both the WGAN and WAE. iWGAN

jointly learns an encoder network which maps the samples from the data space

to the latent space, and a generator network which maps the latent variables to

the data space. The iWGAN defines the divergence between PX and PG(Z) by

W 1(PX , PG(Z)) = inf
Q∈Q

sup
f∈F

[EX∥X −G(Q(X))∥+ EX {f(G(Q(X))}

−EZ {f(G(Z))}]

where F is a set of all bounded 1-Lipschitz functions. According to the Theorem

1 of Chen et al., the encoder Q which satisfies the conditions for autoencoder

generative model which was mentioned from previous chapter exists, and such

Q(X) follows multivariate standard normal distribution.

The objective is to find (G,Q, f) which minimizes W 1(PX , PG(Z)). In prac-

tice, Ŵ 1(PX , PG(Z)), the empirical version of W 1(PX , PG(Z)) is minimized,

where the expectations are substituted by the empirical average on the observed
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Figure 3.1: Illustration of iWGAN

data for X , and a random sample of standard normal random variables for Z.

According to the Theorem 3 of Chen et al., 1-Wasserstein distance between PX

and PG(Z) can be upper bounded by Ŵ 1(PX , PG(Z)), and Rademacher com-

plexity of F .

With the regularization term added, the optimization problem becomes

min
G∈G,Q∈Q

max
f∈F

[Êobs∥x−G(Q(x))∥+ Êobs {f(G(Q(x)))} − Êz {f(G(z))}

−λ1J1(f) + λ2J2(Q)]

with J1 and J2 be regularization term for f and Q respectively. Since assump-

tion is given that f is 1-Lipschitz, in Chen et al, the gradient penalty is defined

as J1(f) = Ex̂

{
(∇̂x̂f(x̂)∥∥2 − 1)2

}
as given in Gulrajani et al. Also, from

the normality of Q(X), the maximum mean discrepancy (MMD) proposed by

Gretton et al., is used. It is defined as J2(Q) = MMDk(PQ(X), PZ)

=
1

n(n− 1)

∑
l ̸=j

k(zil , z
i
j)+

1

n(n− 1)

∑
l ̸=j

k(Q(xil), Q(xij))−
2

n2

∑
l,j

k(zil , Q(xij))
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Algorithm 1 The training algorithm of iWGAN (Chen et al., 2021)
Require: The regularization coefficients λ1 and λ2, tolerance for duality gap ϵ1, tolerance for loss ϵ2, and

running steps n

initialization (G0.Q0, f0)

while DualGap(Gi.Qi, f i) > ϵ1 or L(Gi.Qi, f i) > ϵ2 do

for t = 1, ..., n do

Sample real data
{
xi
k

}n

k=1
∼ PX , latent variable

{
zik

}n

k=1
∼ PZ , and

{
ϵik

}n

k=1
∼ U [0, 1]

Set x̂i
k ← ϵkx

i
k + (1− ϵk)G

i(zik), i = 1, ..., n for the calculation of gradient penalty.

Calculate: Li = L(Gi, Qi, f i), J1(f i) = (∥∇x̂if i(x̂i)∥2 − 1)2 and

−∇fL
i = ∇f

 1

n

n∑
k=1

(
f i(Gi(zik))− f i(Gi(Qi(xi

k))) + λ1J1(f
i))

)
Update f by Adam: f i+1 ← f i +Adam(−∇fL

i)

end for

for t = 1, ..., n do

Sample real data
{
xi
k

}n

k=1
∼ PX , latent variable

{
zik

}n

k=1
∼ PZ

Calculate: L′i = L(Gi, Qi, f i+1), J2(Qi) and

∇G,QL′i = ∇G,Q

 1

n

n∑
k=1

(
∥xi

k −Gi(Qi(xi
k))∥+ f i+1(Gi(Qi(xi

k)))− f i+1(Gi(zik)) + λ2J2(Q
i)
)

Update G, Q by Adam: (Gi+1, Qi+1)← (Gi, Qi) +Adam(∇G,QL′i)

end for

DualGap(Gi+1.Qi+1, f i+1) = L(Gi, Qi, f i+1)− L(Gi+1, Qi+1, f i+1)

i← i+ 1

end while

We might suggest an alternative loss for the optimization problem, by ap-

plying Jenson-Shannon divergence once again. This will give an alternate algo-

rithm as given. As we look through real data examples at section 4, training at

Jenson-Shannon divergence type loss show similar, or better performance. For

later studies, we will demonstrate this theoretically.
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Algorithm 2 The training algorithm of iWGAN (Chen et al., 2021)
Require: The regularization coefficients λ1 and λ2, tolerance for duality gap ϵ1, tolerance for loss ϵ2, and

running steps n

initialization (G0.Q0, f0)

while DualGap(Gi.Qi, f i) > ϵ1 or L(Gi.Qi, f i) > ϵ2 do

for t = 1, ..., n do

Sample real data
{
xi
k

}n

k=1
∼ PX , latent variable

{
zik

}n

k=1
∼ PZ , and

{
ϵik

}n

k=1
∼ U [0, 1]

Set x̂i
k ← ϵkx

i
k + (1− ϵk)G

i(zik), i = 1, ..., n for the calculation of gradient penalty.

Calculate: Li = L(Gi, Qi, f i), J1(f i) = (∥∇x̂if i(x̂i)∥2 − 1)2 and

−∇fL
i = ∇f

 1

n

n∑
k=1

(
log

{
f i(Gi(zik))

}
+ log

{
1− f i(Gi(Qi(xi

k)))
}
+ λ1J1(f

i))
)

Update f by Adam: f i+1 ← f i +Adam(−∇fL
i)

end for

for t = 1, ..., n do

Sample real data
{
xi
k

}n

k=1
∼ PX , latent variable

{
zik

}n

k=1
∼ PZ

Calculate: L′i = L(Gi, Qi, f i+1), J2(Qi) and

∇G,QL′i =∇G,Q[
1

n

n∑
k=1

(∥xi
k −Gi(Qi(xi

k))∥+ log
{
f i+1(Gi(Qi(xi

k)))
}

+ log
{
1− f i+1(Gi(zik))

}
+ λ2J2(Q

i))]

Update G, Q by Adam: (Gi+1, Qi+1)← (Gi, Qi) +Adam(∇G,QL′i)

end for

DualGap(Gi+1.Qi+1, f i+1) = L(Gi, Qi, f i+1)− L(Gi+1, Qi+1, f i+1)

i← i+ 1

end while
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iWGAN also has an advantage in the perspective of maximum likelihood

estimation (MLE). Although MLE is a fundamental framework for learning

models from data, it is hard to compute MLE for complex models. iWGAN

is advantageous in a perspective that it provides an easier way to compute MLE.

From Chen et al., surrogate log-likelihood is given as

L(θ; θ̃) = −Êobs∥x−Gθ(Qθ(x))∥+ E
θ̃
∥x−Gθ(Qθ(x))∥ −H(p(x|θ̃)).

From Theorem 4 of Chen et al., this surrogate log-likelihood is an upper bound

for (real) log-likelihood, and if an algorithm which is updated by maximizing

the surrogate log-likelihood converges, then the solution for it is the MLE.
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Chapter 4

SIMULATION

In Chen et al., application has been conducted only for the image data. In this

paper, we would like to see in addition that iWGAN also makes a good gener-

ation on general table data. In this chapter, IWGAN algorithm is applicated to

the real world table data, whether without any modification on the algorithm, or

giving an additional shift or conditioning to the algorithm.

4.1 Numerical Data Case

We first conduct an experiment on a table which contains only numerical vari-

ables. We use the classic Iris dataset for this case, proposed by Fisher, 1936.

We only use the first 4 rows of the dataset, which is Sepal.Length, Sepal.Width,

Petal.Length, and Petal.Width. We have set the iteration number as 5000, and

learning rate as 1e-4.

We use the R package synthpop, which is designed by Nowok et al., to compare

the quality of synthesized data. We first see the similarity of the distributions of

each columns of the data. From figure 1, we can see that for each columns, the

distribution of the observed, or original data and the synthetic data is similar.

12



Figure 4.1: Comparison of the original iris dataset and the data synthesized by

iWGAN

Also, we check pMSE, or propensity score mean square error of the synthesized

data. pMSE is proposed by Woo et al., 2009, which is defined as

Up =
1

N

N∑
i=1

[p̂i − c]2

where N = n1+n2 is the total number of rows of original, n1, and synthesized

dataset, n2, p̂i is the estimated propensity score for unit i, and c is the proportion

of units with synthetic data and the total merged data, or simply c =
n2

N
.

pMSE of this synthetic data is proposed at table 4.1. We can see that the numbers

of pMSE are generally low, so we can consider that the synthetic data is well

generated.

In addition, as for slight alteration, we have changed the objective by shifting

13



Variables pMSE SpMSE df

Sepal.Length 0.013906 8.343512 4

Sepal.Width 0.011667 7.000000 4

Petal.Length 0.002248 1.348622 4

Petal.Width 0.039627 23.776323 4

Table 4.1: pMSE of synthetic data

Variables pMSE SpMSE df

Sepal.Length 0.000805 0.482843 4

Sepal.Width 0.006667 4.000000 4

Petal.Length 0.005257 3.153970 4

Petal.Width 0.050512 30.307323 4

Table 4.2: pMSE of synthetic data (Jenson-Shannon type loss)

the EM distance as Jenson-Shannon divergence version, as

min
G∈G,Q∈Q

max
f∈F

[Êobs∥x−G(Q(x))∥+log(Êobs {f(G(Q(x)))})+log(1−Êz {f(G(z))})

−λ1J1(f) + λ2J2(Q)]

, and did the simulation under same setting. The results are shown in the figure

4.2 and the table 4.2. As we can see, the simulation worked well, or even in fact

improved. Further studies are to be conducted to give theoretical background to

this result.

4.2 General Case

Now, we conduct an experiment on a table with the both numerical variables

and the categorical variables. We use the automobile data, from 1985 Ward’s

14



Figure 4.2: Comparison of the original iris dataset and the data synthesized by

iWGAN (Jenson-Shannon type loss)
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Automotive Yearbook. It has total 26 variables, with 16 numerical variables

and 10 categorical variables. For the categorical variables, we have applied the

Reversible Data Transforms, or RDT to transform it to numerical values. For

all the categorical values, FrequencyEncoder has been applied. It transforms the

data into decimals in range [0, 1]. This range is broken up into separate intervals

for each category, where popular categories take up larger intervals. The rest of

the setting is the same with numerical data case.

After the data is transformed, we generate the numerical data and transformed

categorical data separately, and reunite it after generation. For the categorical

variables, we have applied cross-entropy loss at generation. Then, we applied

the same Synthpop package for comparison between the original data and the

synthetic data. Table 4.3 is the result of the comparison.

As we can see, for most of the cases, numerical variables were generated

nicely, but categorical variables are generated quite not good. It would be our

goal to find out the reason that the transformed categorical data were not gener-

ated well.
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Variables pMSE SpMSE df

symboling.value 0.040208 32.970228 4

normalized losses.value 0.026602 21.813405 4

make.value 0.008507 6.975610 4

fuel type.value 0.132900 145.304426 4

aspiration.value 0.095317 104.213541 3

num doors.value 0.167067 136.994943 4

body style.value 0.064116 52.574906 4

drive wheels.value 0.202063 165.691262 4

engine location.value 0.221936 242.649713 3

wheel base.value 0.020826 17.077354 4

length.value 0.005532 4.536585 4

width.value 0.012415 10.180592 4

height.value 0.024340 19.959130 4

curb weight.value 0.011207 9.189905 4

engine type.value 0.116664 127.553055 3

num cylinders.value 0.142677 155.993044 3

engine size.value 0.007615 6.243902 4

fuel system.value 0.043301 35.506911 4

bore.value 0.016637 13.642011 4

stroke.value 0.009726 7.975418 4

compression ratio.value 0.22386 18.341463 4

horsepower.value 0.012196 10.000465 4

peak rpm.value 0.029873 24.496101 4

city mpg.value 0.021027 17.241801 4

highway mpg.value 0.025402 20.829268 4

price.value 0.006960 5.707317 4

Table 4.3: pMSE of synthetic data (Automobile)
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Chapter 5

CONCLUSIONS

In this paper, we have discussed about how to implement recently proposed

iWGAN algorithm to synthetic data generation. By theory, iWGAN is an im-

provement of several previously proposed GANs and VAEs, and we have seen

that it has shown efficient, and stable learning compared to them. Also, in chap-

ter 4, we managed to show that iWGAN creates synthetic data well not only

for the image cases, but also the cases of tabular data. Indeed, to guarantee if

the quality of the generated data is always good, there need to be more appli-

cation. Also, we need to consider not only the synthesized data resembles the

original data, but also need to consider the privacy of the data, which is seeing

whether the synthetic data doesn’t reveal the sensitive information to defined an

individual. If we are able to succesfully combine the iWGAN framework into

the privacy protecting methods which have been used before, we would be able

to create a decent data synthesizing framework to meet the demand which has

gotten bigger than ever.

For further studies, we are going to discuss about the way to improve the iW-

GAN algorithm with respect of data synthesizing. We will try to find a theoret-

18



ical foundation to incorporate already existing methods for applying GAN as

data synthesizer to iWGAN algorithm, such as CTGAN proposed by Xu et al.,

and improved it.

Furthermore, there is a problem of heavy computation if the data to be synthe-

sized is too large, but generative models introduced so far doesn’t have solutions

for it. Zhao et al. (2021) have introduced the method of data condensation to deal

with this problem, by synthesizing a small batch of data which gives not only

the same optimization result but also a similar path throught the optimization.

If we could combine this method into in-theory effective iWGAN, we might be

able to create a powerful tool for synthesizing data.
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초록

최근에합성데이터를생성하는것에대한중요성이그어느때보다도올

라갔다. 이는 지금 같은 상황에서 크기에 무관하게 많은 데이터가 존재하고,

그로 인해 사생활에 대한 침해의 우려 때문에 발생하는 상황이다. 이에 따라

데이터를분석하는최초의목적을달성함과동시에원데이터로부터의사생

활 침해 우려를 막기 위해서 합성 데이터 생성이 필요하다. 합성 데이터 생

성을위해많은생성모델이활용되었는데,그중에는 Generative Adversarial

Network,또는 GAN이있다.이논문에서는 GAN의일종인새로제안된기법

inferential Wasserstein Generative Adversarial Network,또는 iWGAN을활용

하여합성데이터를생성하고,생성이얼마나잘되는지를확인할것이다.

주요어: Deep Learning, Genarative Adversarial Network(GAN), Wasserstein

GAN, Synthetic data, Data generation

학번: 2021-20687
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