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Abstract

In this paper, we discuss a method for detecting and monitoring the point

where conditional volatility changes in the ARMA-GARCH time series using

a sequential neural network model. In a stationary time series, we predict the

future values and volatilities with the values of the previous point in time using

a sequential neural network model such as LSTM or GRU. After creating test

statistics with the predicted values obtained from the previous process, we per-

form a monitoring process based on the CUSUM test to detect points that pro-

ceed differently from the previous ones, especially the point where conditional

volatility increases rapidly. In the process, we find appropriate hyperparameters

through a grid search, then apply the monitoring process in simulation data and

stock price data S&P 500 and the KOSPI index, and analyze the results finally.

Keywords: Monitoring, GRU, ARMA-GARCH, Neural Network, Conditional

Volatility, financial market

Student Number: 2021-25859
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Chapter 1

Introduction

The problem of detecting parameter changes in statistical models has been of

interest to many researchers. It originally started with quality control, but as

we often experience the situation in which the structure of statistical models

changes due to external factors such as social issues and policy, the problem

of detecting a model change has been explored in financial time series. On

this background, Lee et al. (2003) conducted a study on how to test changes

in parameters and autocovariance functions in time series models. Lee and

Song (2008), Oh and Lee (2018), and Song and Kang (2018) tested changes in

parameters in the ARMA-GARCH model.

However, these studies have limitations in detecting changes over a fixed

period in already observed data. In the financial market, it is important to

detect and respond to instability by monitoring rapidly the fluctuations in stock

prices or exchange rates. Leisch et al. (2000), Horváth et al. (2004), and Zeileis

et al. (2005) conducted a study to monitor a change in parameters in regression

models, Berkes et al. (2004a) expanded to monitor changes in GARCH models,
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and Na et al. (2011) proposed a procedure to monitor changes in parameters

and autocovariance functions of time series models. In addition, Gombay and

Serban (2009) conducted monitoring studies in AR models, and Dienes and

Aue (2014) and Aue et al. (2015) conducted the task in ARMA models. The

method of finding parameter changes in observed data using the cumulative

sum (CUSUM) based on residuals showed excellent performance in GARCH

models (Kim et al., 2000; Lee et al., 2004). Oh and Lee (2018) and Song and

Kang (2018) proposed a method using score vectors in the ARMA-GARCH

model, particularly, a two-dimensional test statistic in the former’s study. Oh

and Lee (2019) devised new statistics that can detect changes in both scale and

location parameters using the CUSUM of the squared residuals. The method

based on the modified residuals is much simpler to calculate than the method

based on the score vector, and the performance is better when the error term

deviates significantly from the normal distribution in a rather complex model

with many parameters.

Therefore, in this study, the CUSUM method based on the modified resid-

uals proposed by Oh and Lee (2019) is applied to the monitoring procedure

for the location-scale heteroscedastic models, where the residuals are obtained

based on a neural network (NN) model. The NN model is used to check whether

the monitoring procedure is well implemented through hyperparameter tuning.

Throughout an empirical simulation study, we design an appropriate NN model,

adjust hyperparameters, and check whether monitoring works well in the ac-

tual daily stock prices data such as S&P 500 and KOSPI. Especially, we detect

the points where stock prices change rapidly due to economic recession. This

paper consists of four chapters. Chapter 2 introduces monitoring procedures in

sequential neural network models, and chapters 3 and 4 conduct a simulation

study and real data analysis. Chapter 5 provides conclusions.
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Chapter 2

Model Description

2.1 Neural Network

2.1.1 RNN(Recurrent Neural Network)

The single RNN model is presented as follows:

ht = g(Wxt + Uht−1 + b) (2.1)

where xt is the m - dimensional input vector at time t, ht is the n-dimensional

hidden state, g is the activation function, such as the logistic function, the

hyperbolic tangent function, or the Rectified Linear Unit (ReLU) andW , U and

b are the appropriately sized parameters (two weights and a bias). Specifically,

in this case,W is an n×mmatrix, U is an n×nmatrix, and b is an n×1 vector. It

is well known that RNN is difficult to capture long-term dependencies because

the stochastic gradients tend to either vanish or explode with long sequences.
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2.1.2 LSTM(Long Short-Term Memory)

The LSTM model uses the computation of equation (2.1) as an intermediate

candidate for the internal memory cell state c̃t and adds it in a weighted sum

to the previous value of the internal memory state ct−1 to produce the current

value of the memory cell ct. This can be expressed in the following equations:

ct = ft ⊙ ct−1 + it ⊙ c̃t (2.2)

c̃t = g(Wcxt + Ucht−1 + bc) (2.3)

ht = ot ⊙ g(ct) (2.4)

The g is a nonlinear activation function typically used as the hyperbolic tangent

function or Rectified Linear Unit (ReLU). The weighted sum is implemented

in equation (2.2) through element-wise Hadamard multiplication denoted by ⊙

to gating signals. The gating signals are the input, forget, and output signals

denoted it, ft, and ot, respectively.

it = σ(Wixt + Uiht−1 + bi) (2.5)

ft = σ(Wfxt + Ufht−1 + bf ) (2.6)

ot = σ(Woxt + Uoht−1 + bo) (2.7)

2.1.3 GRU(Gated Recurrent Unit)

The GRU reduces the gating signals to two from the LSTM model. The two

gates are named an update gate zt and a reset gate rt.
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ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

h̃t = g(Whxt + Uh(rt ⊙ ht−1) + bh)

with two gates presented as:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

In the case of LSTM, there were three gates: a forget gate, an input gate, and

an output gate, but GRU uses only two gates: a reset gate and an update gate.

In addition, the cell state and hidden state are combined to express one hidden

state. GRU has a lower number of parameters than LSTM, which makes training

time faster than LSTM with no disadvantage in prediction performance.

2.2 Monitoring on heteroscedastic location-scale time

series

Next, take a look monitoring process idea. In this study, we use the method of

Lee and Kim (2022). Consider the time series model as follows:

yt = gt(µ0) + ht
1
2 (θ0)ηt (2.8)

where gt(µ0) = gt(yt−1, yt−2, ...;µ) and ht(θ0) = ht(yt−1, yt−2, ...; θ) are the

conditional mean and variance. The {ηt} is an iid error process with zero mean

and finite variance. Also, {ηt} is independent with yt. A typical example is the

ARMA(m,n)-GARCH(p,q) model. It is defined as follows:
yt = µ+

m∑
i=1

ϕiyt−i +
n∑

j=1
θjϵt−j + ϵt, ϵt = ht

1/2ηt

ht = ω +
p∑

i=1
αiϵ

2
t−j +

q∑
j=1

βjht−i,

(2.9)
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where {ηt} is an iid error process with mean zero and finite variance. Next,

to detect a change of model parameters Θ = (µ, θ)T using yt, we set up null

and alternative hypothesis:

H0 : Θt = Θ0, t = 1, . . . , n vs.

H1 :


Θt = Θ0, t = 1, . . . , k

Θt = Θ1, t = k + 1, . . . , n

for some k = 1, . . . , n− 1 (2.10)

with Θ1 ̸= Θ0. To conduct a test (2.3), we consider bivariate time series

referring to Oh and Lee(2019):

ξt(θ) = (gt(µ)ηt(θ), ηt
2(θ)− 1)T (2.11)

with ηt(θ) = (yt−gt(µ))/ht
1/2(θ) is residual. As ηt(θ) is not observable, we take

η̂t(θ) = (yt − ĝt(µ))/ĥt
1/2

(θ)

where ĝt(µ) and ĥt(θ) is predicted via NN model. Under proper conditions, we

get the basic process:

Ŵk = K̂n
−1/2

k∑
t=1

ξ̂t

with

ξ̂t(θ) = (ĝt(µ̂l)η̂t(θ̂l), η̂t
2(θ̂l)− 1)T , K̂n =

1

l

l∑
t=1

ξ̂t
′ξ̂t

′T ,

where ξ̂t
′
is obtained from training set y1

′, . . . , yl
′. Then, we construct the mon-

itoring process using T̂n(k) = max
{
T̂n1(k), T̂n2(k)

}
with


Tn1(k) =

1√
n
∥ max

m≤k
Ŵm − Ŵk ∥max

Tn2(k) =
1√
n
∥ min

m≤k
Ŵm − Ŵk ∥max

6



where for any vector process xm = (xm1, . . . , xmp)
T ∈ R2, max

m≤k
xm( min

m≤k
xm )

denotes the vector whose ith entry is equal to max
m≤k

xmi( min
m≤k

xmi ) for i =

1, . . . , p, and for y = (y1, . . . , yp)
T ∈ Rp, ∥ y ∥max = max

1≤k≤p
|yk|. Then, by

Donker’s invariance principle and the continuous mapping theorem, the follow-

ing holds:

T̂n := max
1≤k≤n

T̂n(k) = max
1≤k≤n

(T̂n1(k) ∨ T̂n2(k))
d→ T2

∗ := T21
∗ ∨ T22

∗ (2.12)

with 
T21

∗ = sup
0≤s≤1

| sup
0≤u≤s

B2(u)−B2(s)|

T22
∗ = sup

0≤s≤1
| inf
0≤u≤s

B2(u)−B2(s)|,

where B2 denotes a two-dimensional standard Brownian motion. It means that

H0 is rejected if Tn > C(α), where C(α) denotes the control limit for significance

level 0 < α < 1. In addition, if T̂n(k) crosses the control limit C(α) at some

point k = 1, . . . , n, an anomaly is detected. Since T̂n is a combination of T̂n1 and

T̂n2, it can detect not only the increasing process but also decreasing process.

However, it is important to find a point where the volatility increases rapidly

in the financial market, so the primal purpose is to find a point where the

conditional variance increases in a simulation study and real data.
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Chapter 3

Simulation Study

In this section, we check the performance of the monitoring process using NN.

To speed up the model training, we use the GRU model. Using the GRU model,

we try to fit the simulation-generated stationary time series model and find the

hyperparameters that enable rational prediction via grid search. Since the time

series model is motivated from ARMA(1,1)-GARCH(1,1), which is a relatively

simple model, the NN prediction model structure is also designed appropriately

simple. The parameters to build a model are as follows.

• input shape(= steps): size or shape of input data. In this study, it is

equivalent to time step j in yt−1, yt−2, . . . , yt−j to predict ŷt. For simplicity,

let it be steps.

• units: the dimension of the hidden layer. If the number of units is too

small( or too large), it is likely to happen underfitting( or overfitting).

• epoch: one epoch means that training is completed once for the entire data

set. If the epoch number is too small, underfitting can happen. Conversely,

8



if it is too large, the risk of overfitting increases, and the training time

would be longer.

• batch size: the size of the data sample assigned for each batch, which is a

dataset divided for smooth learning. 32, 64, and 128 are used generally.

• estimators: maximum number of base models for boosting. If the NN

structure is simple, the trained model may be biased and result in unstable

prediction. To prevent this situation, a boosting technique that generates

and combines multiple base models with the same structure can be used.

• scaler: feature scaling function. In general, when two or more features

are input, there is a risk of biased prediction if the units or distributions

of each feature value are different. In addition, the NN may not be well

trained when the input value is not balanced, or the input value is too

small or large. For this reason, scaling input value is required before model

training or prediction. The scaling function includes MinMax, Robust,

Standard, etc.

• loss: loss function that evaluates the performance of the model. The

smaller the loss, the model performance is better, and the loss function

can be Mean Square Error(MSE), Mean Absolute Error(MAE), and Root

Mean Square Error(RMSE).

• optimizer: method of updating a model from loss obtained through loss

function. It can be SGD, Adam, and RMSprop.

3.1 Selecting optimal parameters

In this section, we find the optimal parameters of the conditional mean and

variance model via the grid search method. First, we generate 2000 simulation

9



data (yt) following the ARMA(1,1)-GARCH(1,1) model. Among them, the pre-

vious 1500 and the later 500 data have different parameters and movements

on the graph (the most noticeable difference is the variance of yt). Since it is

impossible to find the predictions of conditional mean and conditional variance

at the same time with the NN model designed in the study, the prediction val-

ues of conditional mean are first derived with one NN(mean NN model). And

the residuals of the true and predictive values generate the time series of con-

ditional variance. Then the predicted value of conditional variance is obtained

with another NN(variance NN model). The hyperparameters obtained from the

NN model and the comparison of model predictions and actual values are as

follows.

Tuning Parameter mean model variance model

steps (1, 2, 4, 6, 10) (1, 2, 4, 6, 10)

scaler (MinMax, Standard, Robust) (MinMax, Standard, Robust)

epochs (5, 10, 20, 40, 60) (5, 10, 20, 40, 60)

batch size (16, 32, 64, 128) (16, 32, 64, 128)

estimators (2,5,10,50,100,200) (2,5,10,50,100,200)

units (5, 10, 20, 50, 100, 200, 300) (5, 10, 20, 50, 100, 200, 300)

Table 3.1 Set of tuning parameter for grid search

3.2 Monitoring results in simulation

In this section, we calculate the statistic T̂n(k) via NN predictions ĝt, ĥt and

residuals η̂t obtained from the simulation data and check the monitoring process

10



tuning parameter mean model variance model

steps 4 2

scaler Robust MinMax

epochs 40 40

batch size 32 32

estimators 2 2

units 200 200

Table 3.2 Optimal parameters

Figure 3.1 Test set : yt vs ĝt(µ̂l)

Figure 3.2 Test set : ht vs ĥt(θ̂l)
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based on them. The specific calculation process of T̂n(k) is referred to in the

previous chapter, 2.2. In addition, the critical value of the significance level

at α = 0.05 in the test (2.3) uses the value c = 2.689, obtained by Monte

Carlo simulations. Therefore, if the value of T̂n(k) exceeds 2.689, we conclude

that there is a change in the structure of the time series at t = k, and if the

value of T̂n := max
1≤k≤n

T̂n(k) is less than c = 2.689, we conclude that there is no

change. Since the primal purpose of this study is to detect changes in conditional

volatility, we set a change point in the test data with the parameter shift of the

GARCH model. For the change point, we select t = [n/2], which is the middle

point of the test set. In addition, the size of the train set and the size of the

test set are given as l = 1000 and n = 1000.

• Case 1 : (α, β, ω) : (0.2, 0.2, 0.2) → (0.2, 0.7, 0.2)

• Case 2 : (α, β, ω) : (0.2, 0.2, 0.2) → (0.7, 0.2, 0.2)

• Case 3 : (α, β, ω) : (0.2, 0.2, 0.2) → (0.2, 0.2, 0.9)

• Case 4 : (α, β, ω) : (0.2, 0.7, 0.2) → (0.2, 0.2, 0.2)

• Case 5 : (α, β, ω) : (0.7, 0.2, 0.2) → (0.2, 0.2, 0.2)

• Case 6 : (α, β, ω) : (0.2, 0.2, 0.9) → (0.2, 0.2, 0.2)

• Case 7 : (α, β, ω) : (0.2, 0.2, 0.2) → (0.2, 0.7, 0.5)

The graphs show the results of monitoring in each case. The orange and blue

graphs represent actual values and NN predictions, respectively. And the black

dotted line in the center, i.e., t = [n/2], is the parameter change point and the

green line is the point where T̂n(k) starts to exceed the critical value, that is,

the point where the parameter of the model changes at the significance level of

12



0.05. According to the results, the performance is good when the conditional

volatility increases in the data (cases 1, 2, 3, 7), but the performance is poor

when the conditional volatility decreases (cases 4, 5, 6). Perhaps in the sections

where the conditional volatility is high, the training error value also has a high

variance, which results in poor monitoring performance in the cases where the

volatility decreases. If we increase the length of the training set or increase

the learning rate to reduce errors, we can detect changes in parameters with

better performance. In addition, changing the structure of models or tuning

hyperparameters can sensitively respond to test statistics even if the volatility

decreases, but it may cause type 1 errors, so we should try it carefully. Of

course, in the actual stock price data, the above-mentioned problem is trivial.

But in situations where it is important to detect variance shrink, we may take

the risk of type 2 errors.

Figure 3.3 (α, β, ω) : (0.2, 0.2, 0.2) → (0.2, 0.7, 0.2)
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Figure 3.4 (α, β, ω) : (0.2, 0.2, 0.2) → (0.7, 0.2, 0.2)

Figure 3.5 (α, β, ω) : (0.2, 0.2, 0.2) → (0.2, 0.2, 0.9)
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Figure 3.6 (α, β, ω) : (0.2, 0.7, 0.2) → (0.2, 0.2, 0.2)

Figure 3.7 (α, β, ω) : (0.7, 0.2, 0.2) → (0.2, 0.2, 0.2)
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Figure 3.8 (α, β, ω) : (0.2, 0.2, 0.9) → (0.2, 0.2, 0.2)

Figure 3.9 (α, β, ω) : (0.2, 0.2, 0.2) → (0.2, 0.7, 0.5)
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Chapter 4

Real Data Analysis

In this section, we aim to detect a point where stock price volatility changes

rapidly in the stock price data of S&P500 and KOSPI using the NN monitoring

method. We can obtain them from ”Investing.com”, and daily closing prices

for about 20 years are used for analysis. Since stock price data does not satisfy

stationarity, the rate of return (or log return) is derived through differencing

closing prices as follows:

yt = 100× (log zt − log zt−1) (t ≥ 1), (4.1)

where zt denotes closing price, and accordingly, yt denotes log return. Looking

at the graph of yt, we can see that the volatility was very high in 2008, and it

increased for a while in 2020. In 2008, there was a global financial crisis that

started in the United States, and in early 2020, there was a global economic

downturn caused by COVID-19, so we can assume that this graph shape rep-

resents these events. To ensure that the monitoring process works well around

early 2020, where yt had high volatility. To do this, we start training the NN

17



model from the time when the volatility of yt stabilizes after 2012. The values

up to 2018 are used for training the model. In monitoring, the time is consid-

ered as a change point, where the value of T̂n(k) is greater than 2.689. When

the monitoring is applied with this rule, the following result is obtained. In the

graphs below, the vertical line means the change point estimated via T̂n(k) with

α = 0.05. In addition, the estimated change points are “2020-03-10” in KOSPI

and “2020-02-27” in S&P500, respectively.
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Figure 4.1 S&P500 index

Figure 4.2 KOSPI index
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Figure 4.3 Monitoring result in KOSPI

Figure 4.4 Monitoring result in S&P500
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Figure 4.5 Monitoring result in KOSPI

Figure 4.6 Monitoring result in S&P500
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Chapter 5

Conclusions

In the previous section, we tested the monitoring in GARCH-type time series

using the NN model. The advantage of monitoring based on the NN model is

that it can be used even if the data structure is not linear ARMA-GARCH and

unknown. Our results overall proved the merits of NN method in monitoring.

However, NN model has a complex structure that cannot be explained by ex-

isting statistical knowledge, so it does not present well the model explaining

a given data. Also, the NN model has many hyperparameters to be adjusted,

making it hard to find the optimal parameters, which need adjusting for each

given data set. As only the NN method was considered here, conducting a com-

parison study with other machine learning methods will be our future project.
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국문초록

본 연구에서는 순환 신경망 모델을 사용하여 자기회귀(AR) 이동평균(MA) - 일반

화 자기회귀이분산성(GARCH) 시계열에서 조건부 변동성이 변화하는 지점을 감

지하고 모니터링하는 방법에 대해 논의한다. 주어진 정상 시계열 데이터를 LSTM

이나 GRU와 같은 순환 신경망 모델을 이용하여 이전 시점의 관측값으로 미래

시점의 예측값과 변동성을 구한다. 그 과정에서 얻은 예측값으로 적절한 통계량을

만든 후, 시계열의 진행이 변하는 지점, 특히 조건부 변동성이 급격히 증가하는

점을탐지하기위해 CUSUM테스트기반모니터링을수행한다.예측에필요한적

절한 하이퍼파라미터는 그리드 서치를 이용하고, 시뮬레이션 데이터 및 실제 주가

데이터 S&P 500과 KOSPI 지수에서 모니터링 과정을 적용하고 결과를 분석한다.

주요어: 모니터링, GRU, 이분산성시계열모형, 신경망 모델, 변동성, 금융시장

학번: 2021-25859
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