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Abstract

Pathway—based approach using hierarchical structural

component models to analyze multinomial phenotypes

Md Kamruzzaman
Department of Statistics
The Graduate School

Seoul National University

To identify novel pathways from markers associated with a
particular disease, several statistical methods of pathway analysis
have been applied. However, most of the available methods are based
on single pathway analyses and do not consider multiple pathways
simultaneously. Since pathways are highly correlated, multiple
pathway analyses suffer from this correlation. To address this issue,
a hierarchical structural component model (HisCoM) was developed,
which considered all pathways at the same time, as well as the
correlations among them. HisCoM has been successfully applied to
the analysis of continuous, counts, and binary phenotypes but it is not
readily applicable for analyzing multinomial phenotypes.

In this thesis, we propose novel statistical methods, the
hierarchical structural component analysis for multinomial
phenotypes (HisCoM—Categ), and hierarchical structural component
analysis for longitudinal data with multinomial phenotypes (HisCoM-—

RCateg). In addition, we also propose a parametric testing approach



rather than a permutation approach for HisCoM to find the association
between pathways and phenotypes.

As the existing HisCoM, HisCoM—Categ considers the
biomarker and pathway hierarchies while accounting for the
correlations of all pathways by using the ridge penalty. For
identifying the association between pathways and phenotype,
HisCoM—Categ uses the baseline category logit model for nominal
phenotypes and the proportional odds model for ordinal phenotypes.
HisCoM—RCateg is an extended version of HisCoM—Categ for
longitudinal multinomial phenotypes. Like HisCoM—Categ, HisCoM-—
RCateg can also identify the significant pathways associated with the
desired phenotype by analyzing all pathways at a same time. Both
HisCoM—Categ and HisCoM—RCateg are flexible enough to be used for
various types of omics data. For example, we used our HisCoM—Categ
and HisCoM—RCateg methods on a real metabolomic dataset from the
Korean Association Resource (KARE) to identify the association
between metabolite pathways and type 2 diabetics (T2D). It is noted
that T2D is a metabolic disease affected by multiple genetic factors,
which is a major public health concern. Application to the KARE
metabolite dataset demonstrates that HisCoM—Categ and HisCoM-—
RCateg are able to identify the pathways that are associated with TZ2D.
Through simulation study, we also show that HisCoM—Categ and

HisCoM—RCateg perform better than other methods.

Keywords: Pathway analysis, hierarchical structure, longitudinal data,
multinomial phenotype, parametric testing.

Student Number: 2018—34194
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Chapter 1. Introduction

1.1. Omics data analysis with biological context

1.1.1 Definition of omics data

The word “omics” refers to a variety biological science fields
of research that seeks to characterize and quantify collections of
biological molecules that translate into the structure, function, and
mapping of an organism or organisms [1]. The suffix “omics”
identifies members of the omics group, which includes genomics,
transcriptomics, proteomics, and metabolomics. Genomics,
transcriptomics, proteomics, and metabolomics stages make up the

transmission of every single cell (Figure 1.1) [2].

Genomics is central to the science of biology [3] and is the
study of the complete set of DNA in an organism, including all of its
gene [1]. A human genome has approximately 3 billion DNA base
pairs which are distributed across 23 pairs of chromosomes [4]. DNA
is structured of two bases that contains nitrogen that couple up to
form the molecule. Adenine (A), cytosine (C), guanine (G), and
thymine (T) are the four bases of DNA. These bases come in
particular pairs (A with T, and G with C). A genomic variant at a
single base position in the DNA is known as single nucleotide
polymorphism (SNP). Because of the development of high—
throughput genomics technology Genome—wide association studies
(GWAS) become a widely used stategy to identify associations
between SNP and a complex disease of interest such that type 2

diabetics, parkinson's disease, crohn's disease etc [5].
1



Transcriptomics 1s one of the popular topics in biology.
Transcriptomics is the study of the transcriptome, which is a
complete set of all RNA (including mRNA, miRNA) molecules

expressed in cell, tissue or organism [6].

The extensive study of proteins, their structure, and their
physiological role or function is known as proteomics [7]. Most of
the functional information of genes is characterized by the proteome
[8]. Identification of the protein or collection of proteins that cause a

particular disease is the aim of proteomics [9].

A thorough examination of the metabolites in a biological
specimen is called metabolomics [10]. It is used as a complementary
approach to genomics, transcriptomics and proteomics [11].
Combination of two or more omics datasets is known as multi—omics
data [12]. The major molecules of each omics, such as common and
rare variants Iin genomics, genes In transcriptomics, proteins in
proteomics, and metabolites in metabolomics, are collectively

referred to as biomarkers in this thesis.
Figure 1.1.Fundamental principle for multi—omics profiling in system

biology [2].

Genomics Transcriptomicss Proteomics Metabolomics Phenotypic
expression




1.1.2 Pathways

Since biomarkers interact with one another, they do not work
alone. A series of interactions among molecular biomarkers in a cell
makes a biological pathway. It can initiate to manufacture of new
molecular biomarker like proteins or lipids. Cells are continually
receiving chemical cues from both inside and outside the body that
are prompted on by injury, infection, stress, etc. Sometimes
biological pathways do not work properly. The dysregulation of
multiple biomarkers connected in a pathways 1is caused by complex

diseases [13].

Pathway analysis aids the understanding of various omics data
collected from high—throughput sequencing methods by using the
pre—existing biological knowledge of pathways. Pathway analysis is
mostly used to assess the relationship between a disease status and
a pathway that consists of a set of biomarkers. Many statistical
approaches of pathway analysis have been developed to identify

novel pathways connected with a phenotype.

1.1.3 Statistical approach for analyzing omics data

A common approach of association studies in omics data is to

search for the relationship between a single biomarker and phenotype.

For example, GWAS typically focuses on single SNP biomarker
analysis, and it is effective in identifying SNP with large effects. But
even with high sample numbers, most biomarkers for complicated
diseases have tiny effects, making them challenging to detect [14].
For this reason, instead of analyzing one biomarker at a time, analyze

a group of biomarkers that are associated with complex diseases.

3 3 .



Analyze multiple biomarkers together, one such approach is gene set
analysis, also known as pathway analysis, which uses prior biological
knowledge of gene function. The pathway—based approaches
typically examine whether a group of related biomarkers in the same
functional pathway are jointly associated with a phenotype of interest
[15]. For pathway analysis, several methods were proposed. Gene
Set Enrichment Analysis (GSEA), the most widely used analytical
technique for pathway analysis using gene expression microarray
data [16]. The Kolmogorov—Smirnov statistic is used by GSEA to
measure the degree of differential gene expression in a gene—set.
Again, the GSEA method was adopted using a minimum p-—value
approach to analyze the GWAS data motivated by pathway—based
methods of microarray data [17]. Similar to the GSEA, metabolite set
enrichment analysis (MSEA) was developed to investigate the
biological pathway for human and/or mammalian metabolic studies

[18].

Similar to the pathway based approach, an adaptive so—called
sum of powered score (aSPU) was developed for identifying the
association between phenotype and a group of predictors of interest
[19]. Later, aSPU for multiple SNPs in a pathway (aSPUpath) to test
the association between pathway and phenotype was developed by
extending aSPU [20]. Treating an SNP as an ordinal phenotype,
POMaSPU was proposed for proportional odds model (POM) to

identify the association between SNP and multiple predictors [21].

Those previous pathway methods and association tests
consider one pathway at a time. As a result, the correlation among
pathways is not considered. Since some of the biomarkers are shared

between several pathways simultaneously, which makes high
4
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correlation between pathways. Without considering this correlation
results may be wrong. To account for these issues, a pathway based
approach using hierarchical structural components of collapsed rare
variants (PHARAOH) was developed [22]. PHARAOH used a
hierarchical structure of biomarkers and pathways in the model and
can analyze the associations between a phenotype and all pathways
simultaneously. To account for the correlation among biomarkers and
pathways, PHARAOH used ridge penalty on both biomarker and
pathway levels. Following PHARAOH, hierarchical structural
component analysis of miRNA—mRNA integration (HisCoM—mimi)
method have been developed to investigate how miRNA indirectly
affect the phenotype accounting for biological relationships between
miRNA and mRNA [23]. By taking the advantage of HisCoM model,
HisCoM—PAGE was proposed for gene expression data for the
survival phenotype [24]. For the survival phenotype, mimi—surv was
proposed to identify the significant miRNA—mRNA sets associated
with survival phenotype [25]. Recently, DeepHisCoM has been
developed that employs deep learning methods to discover the impact
of pathway together with complex biomarkers contributions to the
phenotype [26]. Later, by expanding the kernel machine regression,
the HisCoM—kernel was proposed to identify the non—linear
relationships between biomarkers and phenotypes [27]. All the
previously developed HisCoM models can handle continuous, binary
or survival phenotypes. Following the PHARAOH, PHARAOH—Multi
and PHARAOH—-GEE was developed for pathway analysis for
multiple phenotypes and cluster phenotypes, respectively [28, 29].
However, these approaches are not directly suitable for analyzing

multinomial phenotypes. Thus, a pathway approach using



Hierarchical structural Component analysis for multinomial

phenotype is needed.

1.2. Objective of the study

The primary purpose of this study is to develop novel
statistical methods for pathway analysis of the multinomial
phenotypes. Since some of the biomarkers are shared between
several pathways simultaneously, which makes high correlation
between pathways. Thus, we focus on analyzing multiple pathways
simultaneously in a single model using HisCoM. In the first study, we
propose HisCoM—Categ by extending HisCoM for pathway analysis
of multinomial phenotypes. As the existing HisCoM, the proposed
HisCoM—Categ considers the biomarker and pathway hierarchies
with accounting the correlations of all pathways using the ridge
penalty. For identifying the association between pathways and
phenotypes, HisCoM—Categ uses nominal phenotypes as well as

ordinal phenotypes.

In the second study, we develop an extended version of
HisCoM—Categ for longitudinal multinomial phenotypes using

generalized estimating equations approach (HisCoM—RCateg).

To evaluate the significance of association between pathways
and phenotype, HisCoM uses the permutation test. Like as HisCoM,
HisCoM—Categ and HisCoM—RCateg use the permutation approach
for testing the effect of pathways to phenotypes. Finally, in the third
study, we develop a parametric test approach of HisCoM to reduce

the computational burden and time of the permutation test.



1.3. Layout of the thesis

The structure of thesis is as follows. Chapter 1 is an
introduction and goal of this study. Chapter 2 contains the review of
the existing pathway—based methods and models for multinomial
phenotypes. Chapter 3 and Chapter 4 describe in detail the proposed
methods HisCoM—Categ and HisCoM—RCateg, including simulation
studies and real data applications. Chapter 5 introduces the
parametric testing approach of HisCoM. Lastly, Chapter 6 presents a

summary and conclusion of this thesis.



Chapter 2. Review of existing pathway—based
methods and models for multinomial

phenotypes

2.1. Review of single pathway—based methods

Pathway analysis is a powerful method for analyzing large—
scale omics data. Pathway analysis provides a thorough
understanding of the molecular processes underlying complex
diseases [17]. Several different pathway—based approaches have

been developed recently to analyze different kinds of omics data.
2.1.1 Gene set enrichment analysis (GSEA)

For the GSEA method, we consider the total number of
biomarkers is N and the predefined pathway set is S. First, we fit the

univariate ordinal regression for N biomarkers and compute their

regression coefficients (f) and corresponding t—statistic (=f/se(B)).

Second, we rank order the N biomarkers according to the t—statistic
value () < <tu)). Then, we compute the enrichment score (ES)

using

max
ES = 1<i< k{lphit - Pmissl}

where

p
t .
Pyt = Z %,Where Np = Z |t(j)|p
gjeS R gj€s

j<i



1
Priss = Z N— N,

gj&s
j<i

with Ny is the number of biomarkers not in the pathway. When p =0,
GSEA reduces to the standard Kolmogorov—Smirnov statistics, that
GSEA1. By comparing the observed ES with the permutation

distribution values of ES, we evaluate the significance level.
2.1.2 An adaptive sum of power score (aSPU)

Let yf €{1,2,..,(J +1) > 2} be the ordinal phenotype for the

it" (i=1,2,..,n) subject that can take one of J levels. Let X;=
(i1, %12, ...,xip)T is p multiple markers in a single pathway and Z; =
(zi1) Zigy > zy)T 1 1 adjusting covariates. The POM can be written as

logit[Pr(y; <j)] = a; + Z;6 + X;p.

We want to test the null hypothesis Hy: B = (ﬁl,...,ﬁp)T =0, that is,
there 1s no association between any biomarkers in pathway and

phenotype. Suppose U, is the k"(k =1,2,..,p) component of the

score vector U = (Ul, ...,Up)T. For an integer y = 1, the test statistic

of SPU(y) can be defined as

P
SPU(y) = Z uy.
k=1
Since we are unsure of which y value will produce a high power of
SPU(y), thus an adaptive SPU test is developed
aSPU(y) = minPspy(y)

where the p—value of SPU(y) is Pspy(y) be, and I be a set of y = 1; for

r=1{1,2,..,8,0} was used the good performance of the numerical

9



study. Finally, the permutation approach was used calculate the p—

values of all the SPU and aSPU tests.

2.2. Review of multiple pathway—based method: The
PHARAOH method

The PHARAOH is a pathway—based approach that uses a
hierarchy of rare variant—gene—pathway. A key feature of

PHARAOH is the analysis of the entire pathways with a single model:

K [ Mk K
nj =P+ Z z XjkmWim | B = Bo + Z firBr
k=1|m=1 k=1
where 7; is a linear predictor for j* individual, B =[By B1 - Bk],

K is the number of pathways, xjxy, is a value of the mt" biomarker in
the k" pathway for j* individual, wy,, is the m!* biomarker effect
size belonging to the k" pathway, and the number of biomarkers in

the k" pathway is M.

An alternating least squares (ALS) algorithm was used for
solving the following penalized log—likelihood equation to estimate

the parameters for PHAROH,

K Mg K

C 1 , 1 ,
6= ZIOgP(Yiika,Bk) —Elmz Z Wiem _EApZﬁk'
k=1m=1

i=1 k=1

where p(yi; Wem, Br) be the probability density function of phenotype
for individual i, A, and 4, are the associated tuning parameters

corresponding to the biomarkers and pathways, respectively.

The objective function § was maximized using the iterative

reweighted least squares (IRWLS) algorithm. Minimizing the

10



following penalized least—squares function is equivalent to the

maximizing the above objective function &,

n K 2 K Mg K

1 2 1 2
6= wilzi= D fubi| —5m ). > Whn—3h ) B

i=1 k k=1m=1 k=1

K Mg K
T 1 2 1 2
== FBVE—FB) ~hn Y > Win =4 > B,
k=1m=1 k=1

where z is an adjusted response variable with elements z; =n; +

i —w)/vii ., F=[f1 - fy]" is a latent matrix representing

pathways, V is a diagonal matrix with elements v; = (auj/anj)z/rj,
and 7; is the variance function. PHARAOH accounts for both
correlations between pathways and correlations between biomarkers
by imposing ridge penalties (i.e. A,,,4p) on the pathway and gene
effects. The ALS algorithm is used to estimate the parameters w and
B. The ALS algorithm iterates the two steps of estimating two
parameters by estimating one parameter given the other parameter
fixed at a time. The statistical significance is calculated using a

permutation test which permutes the phenotype.

2.3. Review of regression for multinomial phenotypes

Let y; € {1,2,...,] > 2} be the multinomial phenotype for subject
i(i=1.2,..,n) that can take one of J levels. Let y;; be the binary
variable for j =1,2,...,J, where y;; =1 when subject i is in category j

and y;; = 0 otherwise. We define the (J — 1) X 1 response vector for

the i subject y; = (yi1, ¥iz, ...,yi])’, in which we omitted y;;4; since

11



T )
Z§=1J’ij =1. Letx; = (xil,---,xip) denote explanatory variable values

for subject i. Let m;j(x;) = P(y; = jlxy).
2.3.1 Nominal phenotypes: Baseline—Category logits models

Consider the response variable y; is nominal. It has no natural

ordering. Then the general baseline—category logit model becomes

log <7Tj(xi)

ﬂ](xi)

)z Boj +Bix;, j=1,..]—-1

where B; = (B, ...,ﬁjp)T denote the parameters for the jt* baseline—

category logit.
2.3.2 Ordinal phenotypes

Cumulative logit model

Consider the phenotype y; is ordinal. Cumulative logit model

for ordinal data can be define as
logit(P(y; <jlx)) = Boj+B™x;, j=1,...]—1,

where fy; 1s the category—specific intercept, and g = (B4, ...,Bp)T for

the parameters associated with covariates.
Latent variable motivation for cumulative logit models
Let U be the underlaying latent variable and consider
U=-B"x+e¢
where € has a standard logistic distribution with cumulative

distribution function (cdf) with

12 3



Then

Py<j)=PU<a)
=P(—BTx+¢e<a))
=P(e<a;+px)
ea]-+ﬂTx
T 1+ eutFT
Thus, the ordinal response y* can be determined by category—

specific intercept fy; according to the thresholds

Y =] if Boj-1 <u< Py

where

=0 = g < Bo1 < Poz <+ < Po; = 0.

Adjacent categories logit models

The adjacent—categories logits for ordinal phenotypes are
defined by

logit(P(y; < jlyi € {j,j + 1)) = log =1, —1.

Tjt1

The proportional odds from of the adjacent—categories logit
model can be defined as

mi(x) \ . - i
o <7Tj+1(xi)> = Boj + B xi, j=1,...] -1

13



2.4. Generalized estimating equations for multinomial

phenotypes

Let Y;; € {1,2,...,(J + 1) > 2} be the multinomial phenotype for
i" (i=1,2,..,n) subject at t" (¢t =1,2,..,T) time point. Define a
binary random variable Y{Zj for j=1,2,..,(J +1) category, where
Y;; =1 when i*"subject has j*response category at t'* time and

Yitj =0 otherwise. We convert Y; into the Jx1 vector ¥Y; =

(Y1, - Yi)' in which we omitted ¥, since 41V, = 1. Then, the
phenotype vector for the it" subject ¥; = (Y}, Y}y, ..., Yip)': is TJ X
1 vector. Suppose xj; = (i1, Xitz) -, Xiep) 1S @ pX1 vector of
explanatory variables. We also consider Z;; is a J X (J + k) covariate
matrix for time t including the intercept, time-—stationary, time—
varying, and category —specific which is composed from x;;. Then for

it"subject, Z; = (Z4, ..., Zi)' is the TJ x (J + k) covariate matrix. The

marginal density of ¥;; is,
J
F@elZies B = | |ms,
j=1
where  my; =1 j(B) = E(Yyj|Zie; B) = Pr(Yi; = 1|1Z;;B)  be  the
probability of the j®* phenotype at t* time, and B = (B : B.) be a
(J + k) x 1 vector of parameters, where the ] X 1 vector of category—
specific intercepts is Bo = (Bo1, Boz, ...,ﬁoj)’ and B, is the k x 1 vector
of parameters associated with variables. Suppose the marginal
probability vector m; = E(Y;|Z;) = (m}, ..., Tjp)" represents the TJ X
1 mean vector of ¥;, where my = (1, .., 7)) -
Let g: (0,1)/ > R/: (J x 1) be a vector of link functions and we

use a multinomial generalized linear model [30] to model the marginal

expected vector m;; = E(Y;¢|Z;;) for subject i at time t,
14 8



IIEWYi|Zi)] = g(my) = Zy1B,

where the vector of link functions is chosen such that it consists
baseline—category logit functions for nominal responses and
cumulative logit link functions or adjacent—categories logit functions
for ordinal responses.

The estimate the B, the generalized estimating equations was

solved [31, 32] ,
1 n
S(B) = > DIV B)(Y: —m(B) = 0,
i=1

where D;(B) = 01:;'_1(;@, and V;(B) is a T xT] “working” covariance

matrix for ¥; [31, 32]. The covariance matrix V;(B) can be
decomposed in terms of the working correlation matrix R;(ea) and

1 1
Vi(B) = A(B)R;(a)A;(B), where A; is the matrix of marginal variances,

1

Ay, given by Ay = diag|mi (1 — 1), oo, mi(1 — my;)] and also Af =

1 1

1 1
diag [AZ AfT] Then, R;(a) = A,?V;;A,*1s the ] x ] diagonal blocks

i1
for the correlation matrix ¥;, where the J X J diagonal blocks of V; is

Vi = diag(m;;) — mymh, and the J X J off—diagonal blocks are p;,r =

Pite'(@) = Corr(Y;, Y ), t #t'. Define e; = Al._;(Yit —m;;) be the vector
of Pearson residual. Then, it follows that
Pice' (@) = Corr(Yy, Y1) = E(ejceyyr).
A various number of working correlation matrices including
exchangeable, unstructured etc. were adopted. Finally, the vector of
unknown parameters a for the working correlation matrices can be

estimated by the method of moments [31].

15



Chapter 3. Pathway—based Approach using
Hierarchical Structural Component Models to

Analyze Multinomial Phenotypes

3.1. Introduction

In this chapter, we develop a novel statistical approach, the
hierarchical structural component analysis for multinomial
phenotypes (HisCoM—Categ). In a summary, the proposed HisCoM—
Categ i1s an extension of the HisCoM for analyzing multinomial
phenotypes. As the existing HisCoM, the proposed HisCoM—Categ
considers the biomarker and pathway hierarchies while accounting
for the correlations of all pathways. For identifying the association
between pathways and phenotype, HisCoM—Categ uses the baseline
category logit model for nominal phenotypes and the proportional
odds model [33] for ordinal phenotypes. HisCoM—Categ is flexible
enough to be used for different types of omics data. For example, we
used our HisCoM—Categ methods on a real metabolomics dataset

from the Korean Association Resource (KARE) to identify the

association between metabolite pathways and type 2 diabetics (T2D).

It is noted that T2ZD is a metabolic disease affected by multiple
genetic factors [34], which is a major public health concern.
Application to the KARE metabolite dataset demonstrates that
HisCoM—Categ can well identify the T2D related pathways. Also,
through the simulation studies, we evaluate the performance of
HisCoM—Categ compared to other pathway analysis methods.

16 ¥
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3.2. Methods

3.2.1 Model

Lety/ €{1,2,..,(J +1) > 2} be the multinomial phenotype for
it" (i = 1,2,...,n) subject that can take one of (J +1) levels. Let yij be
the binary variable for j =1,2,...,(J + 1), where

o {1, when subject i is in category j
Yij = 0, otherwise '

th

We define the Jx1 response vector for the i subject

yi = (yiv Yz ...,yi])’, in which we omitted y; ;41 since Zf:i yij = 1. Let

the number of pathways is K and k**(k = 1,2,...,K) pathway contains
M, biomarkers. Let xj;, be the m** (m = 1,2, ..., M}) biomarker value

th

in the kth pathway for i subject. Let X; =

(%1115 Xi125 s Xiamtys s Xig1s Xik2, ...,xiKMK)’ be a Mx1 vector of
consisting all biomarkers for the i* subject across K pathways,
where M = YK_, My.. Next, let wy,, be the weight associated with xj,,
leading to the k" pathway. Let fi = Z%’;lwkmxikm be the component
score for it"subject of the k" pathway. Let f; = (fi1, ..., fix) bea K x 1
vector consisting of all pathways for the it"* subject. The probability

density function of y;

g+1

foilxo = | [lmeol™,
j=1

where m;(x;) = E(y;j|x;) = Pr(y;; = 1]x;) is the probability of the
jt" response category it" for subject. Let, the ] X 1 mean vector of y;
is @ = E(y;|x;) = (mi, ., m) . The covariance matrix of multinomial
trial is

17



X, = Var(y;) = Dy, — i,
where Dy, is the diagonal matrix of ;.

Let g;j(-) and n;; be the link function and linear predictor,
respectively for subject i at category j. Then the HisCoM—Categ can

be defined as
n;=g(m) =F;B = X;WB,

where n; = (01,012, ...,r)i])’ is a Jx1 vector of linear predictors,
g(my) = (gl(rt,-),gz(n',-), ...,g](rt,-)) is a J X 1 vector of link functions, W
represents a matrix of weight coefficients linking biomarkers to
pathways, B is a vector of coefficients linking pathways to phenotype.
The vector of link functions is chosen such that it consists baseline—
category logit functions for nominal phenotypes and cumulative logit

link functions or adjacent—categories logit functions for ordinal

phenotypes. The form of F;, X;, W and B depend on the link function.

For Baseline—category Logit model, the design matrix X; is

1 2 00 0 0
lo o 0 0 - 1 xI

B = (Bo1, BY, -...Boy, BY)" ,and
B; = (BijoBojr ~1Bky) -

18



. . o w . . .
The weight Matrix W = . :2 1s block diagonal matrix,
0 0o - W,
1 0 0 0
0 wyyy 0 0
0 W1M1j 0 e 0
0 0 W21j cee 0
where  W; = | : : : is M+1)xEK+1)
0 0 WZMZj cee 0
0 0 0 cee WKlj
_0 0 0 WKMKj-

dimensional weight matrix.

For cumulative logit model, the design matrix is

Xi
X;=|Ix; i xi| and B = (Bos, -, Bos Br B2 - Bx)
Xi
The weight Matrix is W=| -+ - isJ+M)x(J+K)
OMX] Wll M x K
weight matrix with
W11 0 0
Wipm, 0 0
0 Wy 0
Wi=10 w, 0
0 0 Wk1
0 0 Wi

3.2.2 Parameter estimation
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In order to estimate the parameters W and B, we seek to

maximize the following penalized log—likelihood equation

1 1
QW,B) = LW, ) =5 AnlWI =3 2, IBI2 W

with respect to W and B, subject to Tr(FFT) = nI [35], where A,, and
A, are tuning parameters for the ridge penalty [36] for biomarkers
and pathways, respectively. These two penalties are included to
control the correlation in both biomarkers and pathways. For a vector
or a matrix B , denote |B| =[Tr(BBT)]Y?. Also, I(W,B)=

~ilogf(y;x, W,B). We employed the ALS algorithm to maximize
the objective function, that repeats the following two steps until

convergence.

Step 1: We update W for fixed B. Let w = vec(W), and by removing
all zeros and ones from w vector we constructed a vector w*. To

estimate the w*, we solve the following score function

n
aQW, B) om\" .
T=Z(awi) Iy - ) —Amw
=1
n
aﬂ'i T
= —®;) 1 (y,—m) — *
DGy @) i —m) —Aw

1l
[

i

where @; is a J] X (J + M) matrix constructed by removing the columns
of (X; ® B') corresponding to the zeros and ones of w. Then, using
the iterative reweighted least square (IRLS) algorithm, w* can be

estimated by

-1

w* z":<ani¢) z-l(a”i¢>+/1 I
; on; ' ' on; ' m

(ani(b)TE‘l
ani i i Zi)

n
=1
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;).

an;
Zl - nl + anl

Step 2: We update B for fixed W, and we solve the following score

function

%Mp/’ﬁ) N i (%_?)T I —m) — B
n T

S w2
= . \Gm, i|] 2 (i —m; B

where F; = X;W. Then, using IRLS algorithm, B can be estimated by

Z a”l (aniF>+/1 I§ Z(a"iF) !
— . — . . Z .
am on;" )P ong; Y/ Tt

i=1

Finally, we determine the optimal tuning parameter values of 4,, and
A, using k—fold cross—validation (CV). In CV, we compare the log—
likelihood values of a two—dimensional grid of candidate values of 4,,

and A,.

3.2.3 Penalized HisCoM—Categ estimation

For the penalized HisCoM-—Categ, penalized log—likelihood
equation in (1) can be written as
K Mg

B, W) = 1(8, W)—nz Zm (Wiem]) —nz pa, (B)

where 4, and 4, are tuning parameters for biomarkers and pathways,
respectively. p, (-) and plp(-) are the penalty functions associated

with biomarkers and pathways. The penalized maximizing likelihood
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estimators (PMLEs) are obtained by solving the following estimating

equation
2Q(W,B) al(w ) K Uk
Qar'ﬁ ¢ z[m (Iwiem D] —"ZE[W (8eh]

where I' = (W, B). By local quadratic approximation (LQA) algorithm
[37]

P4, (IWiem )
T 1 km»

D2 (WiemD] = B, (Wi 59 (Wi {
|ka|

where pﬁm is the derivative of penalty function and sgn(:) is the sign

function. Similarly, by the LQA algorithm

pa,,(wko}
NP

(b2, 18D] = ps, UBeD)- sgn(Bi) ~ {
’ ’ 1Bl

In this study we use three well-known penalty functions.
They are the least absolute shrinkage and selection operator (LASSO)
[38], the smoothly clipped absolute deviation penalty (SCAD) [37]
and the minimum concave penalty (MCP) [39]. The function of

LASSO penalty is

pa(l0]) = A16].
The function of SCAD penalty is

pa(161) = 10110 < |61 < 2)
012~ 2

ar(|6] = 1) —
242 |ia<6]<ad)

(a-1)

_ 2
+<M+AZ>I(|9| > al),

2

and the derivative of SCAD penalty is
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A if [0l <2

al — @ )
—3 if A<|6] <at

0 if 18] >ad

p;(16]) =

for some a > 2.

The function of MCP penalty is

2 Aa

pa(16]) = </18 + z—a>1(0 < 6] < ad) +( > >I(|9| > al),

and the first derivative of MCP penalty is

(,1 9) @ i 18] <ak
p;(161) ={ a) o8 ! =a
0, if 18] >al

for some a > 1.

3.3. Materials

In this study, we use metabolite data from the Korean
Association Resource (KARE) cohort to identify the association
between pathways and T2D. This cohort is a community —based
cohort established through the Korean Genomic Epidemiologic Study
(KoGES) project in the Ansung and Ansan areas of Kyounggi
province, South Korea [40]. In 2001—-2202, 10,300 individuals aged
40 to 69 were recruited as the baseline, and following surveys were
conducted every two years. The dataset was obtained from the from
6™, 7™ and 8" follow—ups of the KoGES study and called phase 6,
phase 7 and phase 8. The serum metabolites of the subjects were
measured using liquid chromatography—mass spectrometry (LC—

MS). Among them, 64 metabolites were quantitively analyzed.
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Systematical error and batch—effect correction were removed using
the systematic error removal using random forest (SERRF) method
which may have risen due to instrument and injection time [41]. Then,
these 64 metabolites were first mapped to the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway database. Among 64

metabolites, 52 unique metabolites were mapped to 65 pathways.

Individuals were classified into three different groups such as
the normal group, the pre—diabetics group (Pre T2D), and the T2D
group. Table 1 displays the total number of samples in each group
and follow—up. In phase 6, 691 samples were recruited for
metabolomics data collection, with 348 samples being normal, 272
samples having pre—"T2D, and the remaining 71 samples having T2D,
as shown in Table 3.1. According to Table 3.1, Among the 689
samples in phase 7, there are 330, 226 and 133 samples in the normal,
preT2D, and T2D groups, respectively. As shown in Table 3.1, total
666 samples were recruited for metabolomics data collection in phase
8, including 330, 226 and 133 samples in the normal, preTZ2D, and
T2D groups, respectively. In total 664 samples were present in all

three phases.

Table 3.1.Frequency of the total number of participants.

T2D category | Phase 6 | Phase 7 | Phase 8
Normal 348 330 316
Pre T2D 272 226 158
T2D 71 133 192
Total 691 689 666
24



3.4. Simulation study

3.4.1 Simulation model

To assess the performance of HisCoM—Categ a simulation
study is conducted. To evaluate the performance of HisCoM—Categ
with other existing methods, we generate the ordinal phenotype. To
generate the ordinal phenotype y;, consider the following cumulative

logit model

K [ Mg
Pr(y; < jlx;) = Pr(U < Boj|x;) = G| Boj — Z Z XikmWim | Bre |
k=1|m=1

where i =1,..,n, j=1,..,J] and G denotes the distribution function of
the standard logistic distribution. The following latent regression

model is considered for generating the y;

M

K
U; = Z Z XikmWikm | Br + €i»
k=1|m=1

where €;~G and E[¢;] = 0.

Now, we categorize U; using the corresponding category—

specific intercept according to the following threshold to generate y;,
Vi =J © PBoj-1 <Ui < Boj,
where —oo = Byg < Bo1 <+ < Poy < Bo,g+1) = ©-

In simulation study, we use same biomarkers and pathways

from real KARE phase 6 metabolite dataset and generate the ordinal
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phenotype. Thus, similar to the real dataset, we set the number of
categories (J + 1) is 3, total number of pathways is K = 65. Here we
assume that first five pathways are causal pathway and remaining 60
pathways are non—causal pathway. Let By = (Bo1,Boz2 ) = (—0.3, 0.8)".
For the causal pathways, we considered two different parameter
settings: two biomarker level effects (w= 0.2 and 0.3), four
pathway—level effects (B; =B, =3 =P+ =PB5=0.3, 0.4, 0.5,0.6). To
evaluate the type I error, we use B; = ff, = i3 = B4 = Bs = 0. Again, for
the non—causal pathways we use B¢ = 7 = - = Bg5 = 0. We generate
100 datasets with the sample size for each dataset being the same as
the real KARE phase 6 dataset. To calculate the performance, we
permute each simulated response 1000 times to calculate the type I
error and power. The proportion of cases where at least one true null
hypothesis is wrongly rejected is used to calculate the type I error.
The proportion of the cases in which all false null hypotheses are

correctly rejected is used to compute the statistical power.

3.4.2 Simulation results

In order to demonstrate the statistical performance of the
proposed HisCoM—Categ we perform the simulation study. For the
purpose of the performance comparison, we compared the type I
error and power for HisCoM—Categ with other existing pathway—
based methods. We consider GSEA, aSPU and HisCoM as existing
pathway—based methods. To use the HisCoM, we use two cases for
simulated phenotype (0, 1+2) and (0+1, 2); because HisCoM is for

binary phenotype. After generating the phenotype for each simulation,
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we obtain the optimal tuning parameter set (4,,, Ap) using the 3 folds

cross—validation. Then, we evaluate the type I error and power.

Results of the empirical type I error shows in Figure 3.1.
Overall, type I errors are shown to well —controlled in various method
except GSEA. Especially in HisCoM—Categ method, type I error is
well control. Type I error for HisCoM—Categ was well controlled

compare to the others methods.

Results of empirical power presents in Figure 3.2, where the
x—axis shows the effect sizes of pathways and the y—axis shows the
power. The left panel of Figure 3.1 represents the power for
biomarkers effect w = 0.2 and the right panel is for biomarkers effect
w = 0.3. HisCoM—Categ and HisCoM (0,1+2) showed similar power
for small and large effect sizes for both pathways and biomarkers.
HisCoM—Categ outperformed for moderate effect sizes compared to
the all other methods. Again, for large effect size HisCoM—_Categ,
HisCoM (0,1+2) and aSPU provides similar effects where GSEA had
the lowest power. Finally, regardless of the effect sizes, HisCoM—

Categ and HisCoM (0,1+2) outperformed the conventional methods.

Figure 3.1. Results of the empirical type I error
0.04

nna
u.Ua

0.0

HISCOM HIQC(‘ 1 GSEA U HISCOM_M
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Figure 3.2.Results of the empirical power
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3.5. Real data analysis results

3.5.1 Real data analysis results of HisCoM—Categ

In this section, we used the KARE phase 6 dataset to examine
the association between pathways using HisCoM—Categ. To identify
the pathways that associated with T2D, we performed HisCoM-—
Categ and aSPU, where age, gender and BMI were included as
adjusting covariates. For the KARE phase 6 metabolite dataset,
consider the phenotype T2D is an ordinal variable. Let y; be the level
of T2D (1 = Normal, 2 = Pre T2D and 3 = T2D) for it" (i = 1,2,...,n)
subject. Since the phenotype is an ordinal variable, thus we apply the

HisCoM—Categ method for the following cumulative logit link,

65 My
logitlPr(y; < )1 = Foj+ ) Bie| D TiemWiom | + Bos *age
k=1 m=1

+ Pe7 * gender + S¢g * BMI,
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for j = 1,2, which represents a proportional odds model.

We use 5—fold cross—validation to choose the best optimal
tuning parameters for biomarkers (4,,) and pathways (4,). As a
comparison, we also performe an aSPU test and GSEA to find the
association between pathways and ordinal phenotypes. Note that,
both aSPU and GSEA consider a single pathway at a time. To compare,
we also perform HisCoM for a binary phenotype considering normal
and T2D for two different cases: (i) normal (0) + pre—=T2D (1) vs.
T2D (2), and (ii) normal (0) vs. pre—T2D (1) + T2D(2). We use
10000 permutations for calculating the p—values of pathways for all
comparative methods. For multiple comparison, FDR adjusted p—
values (g —values) were calculated [42]. The g —values of all
comparative methods are shown in the Table 3.2. Venn diagrams in
Figure 3.3 showes the number of commonly significant pathways
from all of the comparative methods. There are 53, 55, 23, 4 and 4
pathways are selected by HisCoM—Categ, aSPU, HisCoM (0, 1+2),
HisCoM (0+1, 2) and GSEA methods. Among the selected pathways,
23 pathways are commonly selected by HisCoM—Categ, aSPU and
HisCoM (0, 1+2) methods. Table 3.3 summarizes the list 23
commonly significant pathways by HisCoM—Categ, aSPU and HisCoM
(0, 1+2) methods. All of these pathways except “pathways of
neurodegeneration — multiple diseases” and “propanoate metabolism”

have already been identified by HisCoM [43].

Figure 3.3. The number of significantly identified pathways by

HisCOM-—Categ and other comparative methods
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Table 3.2. Detailed results of HisCoM—Categ and other methods

qg—value

Pathway Names HisCoM— HisCoM HisCoM
aSPU  GSEA
Categ 0,1+2 0+1,2

Primary bile acid
0.0007  0.0004 0.3274 0.2133 0.4177
biosynthesis
Arginine biosynthesis  0.0002  0.0001 0.6582 0.0626 0.4440
Purine metabolism 0.0002 0.0001 0.7576 0.3362 0.4440
Caffeine metabolism 0.0002  0.0001 0.4559 0.1479 0.4440

Pyrimidine
0.0115 0.0260 0.3674 0.3367 0.4177
metabolism

Alanine, aspartate and
0.0002 0.0001 0.4192 0.0170 0.4440
glutamate metabolism

Glycine, serine and
0.0002 0.0001 0.4422 0.3553 0.4440
threonine metabolism

Cysteine and

methionine 0.0002 0.0001 0.7929 0.3244 0.4440
metabolism
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Valine, leucine and
isoleucine
degradation
Valine, leucine and
isoleucine
biosynthesis
Lysine degradation
Arginine and proline
metabolism
Histidine metabolism
Tyrosine metabolism
Phenylalanine
metabolism
Tryptophan
metabolism
Phenylalanine,
tyrosine and
tryptophan
biosynthesis
beta—Alanine
metabolism
Taurine and
hypotaurine
metabolism
Glutathione
metabolism
Glycerophospholipid

metabolism

0.0066

0.0074

0.0022

0.0002

0.0002
0.0002

0.0002

0.0751

0.0002

0.0006

0.0002

0.0002

0.4990

31

0.0038

0.0096

0.0016

0.0001

0.0001
0.0001

0.0001

0.0364

0.0001

0.0003

0.0001

0.0001

0.6713

0.3963

0.3741

0.4422

0.7756

0.3741
0.4330

0.4192

0.6398

0.4422

0.7576

0.1114

0.8318

0.8811

0.3490

0.8168

0.1861

0.1805

0.2902
0.0092

0.0897

0.1585

0.0129

0.6604

0.0331

0.2021

0.7497

0.4440

0.6829

0.444

0.4177

0.444
0.6365

0.6186

0.7241

0.4440

0.4440

0.4177

0.4177

0.4440



Pyruvate metabolism
Glyoxylate and
dicarboxylate
metabolism
Propanoate
metabolism
Butanoate metabolism
Thiamine metabolism
Nicotinate and
nicotinamide
metabolism
Pantothenate and CoA
biosynthesis
Biotin metabolism
Porphyrin metabolism
Nitrogen metabolism
Sulfur metabolism
Aminoacyl—tRNA
biosynthesis
Metabolic pathways
Carbon metabolism
2—0xocarboxylic acid
metabolism
Biosynthesis of amino
acids
Biosynthesis of
cofactors

ABC transporters

0.0002

0.0002

0.3512

0.0002

0.0002

0.0002

0.0002

0.0543
0.0002
0.0002
0.1583

0.0002

0.0007
0.0002

0.0002

0.0002

0.0002

0.0002

32

0.0001

0.0001

0.3912

0.0001

0.0001

0.0004

0.0001

0.1092
0.0001
0.0001
0.0941

0.0001

0.0001
0.0001

0.0001

0.0001

0.0001

0.0001

0.3741

0.4128

0.9313

0.4422

0.8106

0.8811

0.3741

0.7962
0.7929
0.6398
0.3741

0.3741

0.7576
0.4720

0.0407

0.4192

0.6582

0.5307

0.1386

0.0331

0.1861

0.0756

0.0017

0.1110

0.6409

0.3667
0.0331
0.0129
0.3362

0.0121

0.3255
0.0263

0.0976

0.0593

0.2152

0.3658

0.4440

0.4440

0.4440

0.4440

0.4440

0.4440

0.4177

0.444
0.6614

0.444
0.4177

0.4440

0.4177
0.4177

0.4440

0.7103



cAMP signaling
pathway
Neuroactive ligand—
receptor interaction
Sulfur relay system
mTOR signaling
pathway
Ferroptosis
Gap junction
Thermogenesis
Synaptic vesicle cycle
Retrograde
endocannabinoid
signaling
Glutamatergic
synapse
Cholinergic synapse
GABAergic synapse
Taste transduction
Proximal tubule
bicarbonate
reclamation
Salivary secretion
Protein digestion and
absorption
Bile secretion
Vitamin digestion and

absorption

0.9324

0.0002

0.0002

0.0032

0.0002
0.0002
0.2947
0.0002

0.0002

0.0002

0.4990
0.0002
0.0002

0.0002

0.7129

0.0002

0.1351

0.2244

33

0.9397

0.0001

0.0001

0.0042

0.0001
0.0001
0.2842
0.0001

0.0001

0.0001

0.6713
0.0001
0.0001

0.0001

0.7211

0.0001

0.2391

0.2400

0.4422

0.6555

0.4192

0.7903

0.2802
0.1114
0.9420
0.7576

0.3865

0.6398

0.8811
0.6398
0.3741

0.6398

0.6362

0.3741

0.8824

0.8811

0.7516

0.2820

0.0129

0.0259

0.0129
0.1479
0.4638
0.1585

0.0129

0.0129

0.7497
0.0222
0.2315

0.0129

0.7639

0.0129

0.6409

0.6046

0.9903

0.4177

0.4440

0.9903

0.4440
0.9903
0.9903
0.8743

0.9903

0.4440

0.4440
0.6703
0.9903

0.4440

0.9903

0.4440

0.4177

0.4177



Mineral absorption 0.0002

Amyotrophic lateral

0.0002
sclerosis
Pathways of
neurodegeneration — 0.0002

multiple diseases

Cocaine addiction 0.0002

Amphetamine

0.0002

addiction
Nicotine addiction 0.0002
Alcoholism 0.0002

African
0.0751

trypanosomiasis

0.0001 0.7576 0.1106 0.4440

0.0001 0.4330 0.0092 0.9903

0.0001 0.4422 0.0099 0.9903

0.0001 0.0402 0.0017 0.9903

0.0001 0.0402 0.0017 0.9903

0.0001 0.4192 0.1106 0.9903
0.0001 0.0402 0.0017 0.9903

0.0309 0.6398 0.1585 0.7241

Table 3.3. List of the 23 commonly significant pathways associated

with T2D in all phases by HisCoM—Categ, aSPU and HisCoM (0, 1+2)

Alanine, aspartate and

glutamate metabolism

Nitrogen metabolism

Alcoholism

Pathways of
neurodegeneration —

multiple diseases

Aminoacyl—tRNA biosynthesis

Phenylalanine, tyrosine and

tryptophan biosynthesis

Amphetamine addiction

Porphyrin and chlorophyll

metabolism
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' . Protein digestion and
Amyotrophic lateral sclerosis )
absorption

Proximal tubule bicarbonate
Carbon metabolism _
reclamation

_ o Retrograde endocannabinoid
Cocaine addiction _ .
signaling

Ferroptosis Sulfur relay system

. Taurine and hypotaurine
GABAergic synapse .
metabolism

Glutamatergic synapse Thiamine metabolism

Glyoxylate and dicarboxylate . _
Tyrosine metabolism
metabolism

mTOR signaling pathway

3.5.2 Real data analysis results of penalized HisCoM—Categ

In real data analysis using penalized HisCoM—Categ, we use
the same metabolomics dataset that we used in HisCoM-—categ.
Selected pathways using three different penalties are shown in Table
3.3. Among the total 65 pathways SCAD penalty selects 6 pathways,
MCP penalty selects 4 pathways and LASSO selects 3 pathways.
Commonly selected pathways using three different penalties are
shown in Figure 3.4. Venn—diagram in Figure 3.4 shows that 2
pathways such as ‘ferroptosis’ and ‘metabolic pathways’.
Additionally, the LASSO penalty selects ‘nicotinate and nicotinamide
metabolism’ pathway which is also selected by the SCAD penalty.

Again, SCAD and LASSO penalty commonly selects 4 pathways.

Figure 3.4. Commonly selected pathways using penalized HisCoM—

Categ
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SCAD

MCP

LASSO

Table 3.4. Results of penalized HisCoM—Categ

Pathway coefficient (8)
Pathway Name

SCAD MCP LASSO
Cyanoamino acid
0.2614 - -
metabolism
Glutathione metabolism —-1.3157 —2.7944 -
Thiamine metabolism 1.5655 3.0662 -
Nicotinate and
0.1892 - 0.0609
nicotinamide metabolism
Ferroptosis -0.4190 —-0.5276 —-0.0001
Metabolic Pathways 0.4306 0.4388 0.8013

3.6. Discussion

In summary, Hierarchical Structural Component Models of
Pathway Analysis for Multinomial Phenotypes (HisCoM—Categ) is
propose for identifying pathways that have been associated with
multinomial a phenotype. HisCoM—Categ considers the hierarchies
among pathways and biomarkers. HisCoM—Categ evaluates the

relationship between pathways and a multinomial phenotype in a

,-,,ﬂ
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single model. HisCoM—Categ also enables us to control the
correlations among pathways and among biomarkers. HisCoM—Categ
is flexible enough to be used for both nominal and ordinal phenotypes.
Using the simulation data, we also show the comparison of propose
HisCoM—Categ with other comparative methods. Based on the
simulation results, performance of HisCoM—Categ is higher than all
other methods and control type I error well. We also apply three
different penalties in HisCoM—Categ method. The real metabolite
data analysis shows that HisCoM—Categ is able to identify the well—
known pathways that have been associated with multinomial
phenotypes. Therefore, we hope that HisCoM—Categ may be able to
help the researchers identify the pathways that are associated with
multinomial phenotypes. We also think that HisCoM—Categ is robust

for use with any other types of omics data, such as microbiome data.
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Chapter 4. Pathway—based Approach using
Hierarchical Structural Component Models to

Analyze longitudinal Multinomial Phenotypes

4.1. Introduction

In this chapter, we propose a novel statistical approach, the
Hierarchical Structural Component Models to Analysis longitudinal
Multinomial phenotypes using Generalized Estimating Approach
(HisCoM—Rcateg). In a summary, the proposed HisCoM—Rcateg is
an extension of the HisCoM—Categ method for analyzing longitudinal
multinomial phenotypes. As an extension of the existing HisCoM—
Categ, the proposed HisCoM—Rcateg considers the biomarker and
pathway hierarchies while accounting for the correlations of all
pathways by using the ridge penalty. Like HisCoM—Categ, for
identifying the association between pathways and phenotype,
HisCoM—Rcateg uses the baseline category logit model for nominal
phenotypes and the proportional odds model [33] for ordinal
phenotypes. HisCoM—Rcateg is also flexible enough to be used for
different types of omics data. For example, we used our HisCoM—
Rcateg methods on a real metabolomic dataset from the Korean
Association Resource (KARE) to identify the association between
metabolite pathways and type 2 diabetics (T2D). Application to the
KARE metabolite dataset demonstrates that HisCoM—Rcateg can

well identify the T2D related pathways.
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4.2. Methods

4.2.1 Model

Let y;; €{1,2,...,(J + 1) > 2} be the multinomial phenotype for
ith (i =1,2,..,n) subject at t*®(t =1,2,...,T) time point that can take
one of (J+1) levels. Let y;; be the binary variable for j=
12,..,(J + 1), where y;; =1 when i subject is in j™ category at t*
time and y;;; = 0 otherwise. We define the J X 1 response vector for
the i*" subject at t™* time y; = (y;"tl,...,y;"t])’, in which we omitted

Yitj+1 Since Zf:iyi*tjzl. Then, the response vector for the ith

subjecty; = Vi1, Yiz» - ¥Yir)': is T] x 1vector. Let the total number
of pathways are K and k'™(k=1,2,..,K) pathwa contains M,
biomarkers. Let x;ym be the mt* (m = 1,2,...,M;) biomarker value in

th

the k'™ pathway for i subject at time t . Let x;=

(Xit11, Xit12s o r Xit1My» o » Xitk 1, xith,...,xitKMK)’ is a Mx1 vector of
consisting all biomarkers for the it" subject across K pathways,
where M = YK_, My.. Next, let wy,, be the weight associated with x;im,
leading to the k" pathway. Let fi = Z%’;lwkmxitkm be the
component score for it*subject of the k" pathway at time t. Let f; =
(fit1, - fix)' be a K x 1 vector consisting of all pathways for the it"
subject at time t. The marginal density function of y;; is consider to

the multinomial distribution, that is

J+1)

fielxie) = 1_[ [T[tij]yitjr

j=1

where m;; = E(yij|%i) = Pr(yie; = 1|x;) be the probability of the j™

phenotype category for i*" subject at t** time. Let m; =
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EWilxie) = (Ti1, ...,nit])’ is the J x 1 mean vector of y;, and the TJ x 1

mean vector of y; is m; = E(y;1X;) = (1t{y, ..., i)'

Let g;(-) and n;; be the link function and linear predictor,
respectively for subject i in category j at time t. Then the HisCoM—

RCateg can be defined as
Nit = gj(”it) =FyB: = X;WB,,
where n; = (nitl,mtz,...,nm)' is a J x1 vector of linear predictors,

g(my,) = (gl(nit),gz(nit), ...,g](nit)), is a Jx1 vector of link
functions, W represents a matrix of weight coefficients that make the
link between biomarkers and pathways, and B denotes a vector of
coefficients of pathways to phenotype. The choice of the vector of
link functions g is the baseline—category logit function for nominal
response and cumulative link function for ordinal response. The form

of Fi, Xit, W and B; depend on the link function.

4.2.2 Parameter estimation

To estimate the parameters W and B, we maximize the
following penalized generalized estimating equation with respect to

W and B

subject to Tr(FFT)=nI [35], where S(W,B) is the generalized
estimating equation for parameters, A,, and 4, are tuning parameters

for the ridge penalty [36] for biomarkers and pathways, respectively

and p; () is the first derivation of ridge penalty with py(B) = %||B||2.
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For a vector or a matrix B, denotel||B| = [Tr(BBT)]*/?. We employ
these two ridge penalties to regulate the correlation in both the

biomarkers and the pathways.

Now the generalized estimating equation (GEE) for the

parameters 1s

Sw,b) = ) Diw, Y% W, b)(yi — mi(w, b))

omi(w,b)
d(w,b)

where D;(w,b) = and X;(w,b) is a TJxT] “working”

covariance matrix of y;. Let R;(a) be the working correlation matrix

for it" the subject. Then, the working covariance matrix Z;(w, b) can

be written as

1 1
Z; = Z;(w,b) = A2(w,b)R;(a)A?(w, b)

where A; is the matrix of marginal variances, A;;, detailed in section
2.3.

To maximize the penalized generalized estimating equation
function U(w,b), we used the alternating iterative algorithm that

repeats the following steps until convergence.

To maximize the objective function, we used the alternating
least squares (ALS) algorithm, which iterates the following two steps

until convergence.

Step 1: We update w for fixed b. Let w=vec(W), and w, is the
vector formed by eliminating all zero and one elements of w. To

estimate the w,, we solve the following score function
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< aﬂ'i _1
= § (6w ) 2y —m) — Apw
i=1 *

n
' anl l l l l m

where @; is a J X (J + M) matrix constructed by removing the columns
of (X; ® B') corresponding to the zero and one elements of w. Then,

using the IWRLS algorithm, w, can be estimated by

.= (Y Crto) = (o) rant )

1=

where

— (y; — my).

Step 2: We update b for fixed w, and we solve the following score

function

n T
an'l- -1
i
= aTl'l' T 1
= Z(am Fi) (i —m) — B,

l
where F; = X;W. Then, using IWRLS algorithm, b can be estimated
by

[DEDES

i=1

5= [ (k) 5t (2k) 4 a0
on; Fi on; ' P

i=1
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Finally, we apply k—fold cross—validation (CV) to determine
the values of A, and 4, which compares the multiclass AUC [44]

values of a two—dimensional grid of candidate values of 4,, and 4,.

4.3. Simulation study

4.3.1 Simulation model

We conduct a simulation study to demonstrate the
performance of HisCoM—RCateg. To demonstrate the performance

of HisCoM—RCateg, we generate correlated ordinal phenotype.

In order to generate the correlated ordinal phenotype yj;,

consider the following marginal cumulative logit model

P(yi < jlxip) = G(ﬂoj + xiTtWﬂ)'

where i=12,..,n; t=12,..,T; j=12,..,], and G is the cdf of the
standard logistic distribution. The following multivariate latent

regression model is considered for generating the y;;

Ujp
ui = H =
uir

where w;; = —xL,Wp and €;, i = 1,..,n denote n independent random

€i1

Uix

+ :[li+ €;,

HiT €ir
vectors and marginally, €;;~G Vi,t. Let R, be a T X T latent correlation
matrix for €;. Then, NORTA (NORmal To Anything) method was used
[45] to generate €; for the marginal distribution function ¢ with R,.
The NORTA method was originally introduced to generate data for
any kind of marginal distribution [46]. In NORTA method, first a
vector Z; = (Zj1,Zy, ..., Zi7) With correlation matrix R, was generated
from standard multivariate normal (MVN) distribution. Then, the
transformation €;; = F~1[®(Z;;)] Vt was used, where ® represents the

43 T 1 1
-':l-a._! _'H.I.- ok i !i -".l |



cdf of the standard normal distribution. Then R, can be approximated
by R, using some mild regularity conditions, i.e. R, ~ R, [46]. The
NORTA approach, then, guarantees that marginally €;;~G. Then, we
categorize U;; by the corresponding category—specific intercepts

according to the following threshold to generate y;;

Yie =J © Boj-1 < Uit < Bjo,

where —oo =49 < Bo1 < Poz <+ < Boj < Po,j+1) = ©.

In this simulation study, we use same biomarkers and
pathways from real longitudinal metabolite data set that describe in
Section 3.3 and generate the ordinal phenotype. Thus, we set the
number of categories (J + 1) is 3, total number of pathways is K = 65.
Here we assume that first five pathways are causal pathway and
remaining 60 pathways are non—causal pathway. Let By,=
(Bo1,Boz )’ = (—0.3, 0.8)". For the causal pathways, we considered two
different parameter settings: two biomarker level effects (w =0.2
and 0.3), four pathway —level effect (B; = B, = 3 = Bs = Bs = 0.3, 0.4,
0.5,0.6). For non—causal pathways fg = 7 = -+ = B¢s = 0. To generate
the correlated u; from latent regression we consider the following
latent correlation matrix,

R, =10.85 1.00 0.85

0.80 0.85 1.00

1.00 0.85 0.85]

We generate 100 datasets with the sample size for each

dataset being the same as the real dataset. We permute each

simulated response 1000 times to calculate the p—value for pathways.

4.3.2 Simulation Results
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To demonstrate the performance of the propose
HisCoM_RCateg, we perform the simulation study. For the purpose
of the performance comparison, we compare the type I error and
power for HisCoM—RCateg with other existing pathway—based
methods. We consider GSEA, and HisCoM—GEE method as existing
pathway—based method. To use the HisCoM—GEE method, we use
two case for simulated phenotype 0O, 1+2 and O+1, 2; because
HisCoM—GEE 1is for binary phenotype. After generating the
phenotype for each simulation, we obtained the optimal tuning
parameter set (1, Ap) using the 4 folds cross—validation. Then, we

evaluate the type I error and power.

Results of the empirical type I error shows in Figure 4.1,
Overall, type I errors were shown to well—controlled in various
method except GSEA. Especially, type I error for HisCoM—RCateg
method and HisCoM—GEE (0+1,2) are more conservation compare

to HisCoM—GEE (0, 1+2) and GSEA.

Results of empirical power presents in Figure 4.2, where the
x—axis shows the effect sizes of pathways and y—axis shows the
power. The top panel of Figure 4.2 represents the power for
biomarkers effect w =0.2 and the bottom panel is for biomarkers
effect w= 0.3. HisCoM—RCateg has higher power compare to all
other methods for small and large effect sizes both pathways and
biomarkers. For small effect size HisCoM—GEE (0, 1+2) has higher
power than HisCoM—GEE (0+1, 2). For moderate to large effect
sizes HisCoM—GEE (0+1, 2) always higher power than HisCoM—
GEE (0, 1+2). Again, the power of GSEA always smaller than all
methods for small to large effect size GSEA. Finally, the HisCoM—
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RCateg outperforms the other approaches regardless of the effect

sizes.

Figure 4.1. Results of empirical type I error
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Figure 4.2. Results of empirical power

mHisCoM (0.1+2) mHisCoM (0+1.,2) mGSEA = HisCoM—RCateg

1
0.8
% 0.6
5
£ 04
0
8=0.3 8=0.4 8=0.5 5=0.6

w= 0.2



mHisCoM (0,1+2) mHisCoM (0+1,2) mGSEA rHisCoM_RCateg

1
0.8
iﬁ 0.6
%
£ 04
i Il
0
£=0.3 3=0.4
w= 0.3

4.4. Real data analysis results

In this section, we use the KARE dataset to examine the
association between pathways using HisCoM—RCateg. Description of
the KARE dataset is in Section 3.3. To apply the HisCoM—RCateg,
we used KARE phase 6, phase 7 and phase 8 datasets. Thus, we use
664 samples that are common in 3 different phases. To identify the
pathways that associated with T2D, we performed HisCoM—RCateg,
where age, gender and BMI were included as adjusting covariates.
To apply the HisCoM—RCateg approach to KARE data, we considered
the T2D as an ordinal phenotype. Then, ordinal phenotype y;; is the
T2D level (1= Normal, 2 = Pre T2D and 3 = T2D) for it" (i =
1,2,...,664) subject at time t(t = 1,2,3). Since the phenotype is ordinal,
we applied the HisCoM—RCateg method using the following

proportional odds model to the cumulative logits,

65 My
logit[Pr(yic < )] = foj + ) ik | ) XemWem | + oo * age
k=1 m=1
47
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+L¢7 * gender + B¢g * BMI,

for j =1,2.

We used 4—fold cross—validation to select the optimal tuning
parameters for biomarkers (4,,) and pathways (4,). We used 10000
permutations for calculating the p —values of pathways for the
HisCoM—RCateg. For multiple comparison, FDR adjusted p—values
(g —values) were calculated. The null hypothesis Hgy: Bi1 = Bz =
Brs =0 can be tested to get the global effect of a pathway. To
combine the p—values we use the Fisher’s method [47]. Accorfing
to the Fisher’s method, the test statistic for is T=
-2 Z?zllog(pi) ~)((22Q), where p; is the individual p—value for each
phase and Q = 3 is the total number of phases. The g—values for each

pathway from HisCoM—RCateg are presented in the Table 4.1.

Table 4.1. Results of the g—values from HisCoM—RCateg

Pathway Phase 6 Phase7 Phase8 Global
2-Oxocarboxylicacid 5970 0999 0.0128 1.73E-04
metabolism
ABC transporters 0.0162 0.0858 0.0189 4.39E-04
African 0.0506 0.1579 0.4431  0.0497
trypanosomiasis
Alanine, aspartate and 5505 935 0036  1.72E-06
glutamate metabolism
Alcoholism 0.0022 0.0136 0.0036 1.01E-06
Aminoacyl=tRNA - hoo0 0590 0.0105 4.00E—05
biosynthesis
Amphetamine
addiction
Amyotrophic lateral
sclerosis
Arginine and proline

. 0.0022 0.0252 0.0251 1.98E-05
metabolism
Arginine biosynthesis  0.0022 0.0340 0.0340 3.80E—-05

0.0022 0.0136 0.0036 1.01E-06

0.0022 0.0097 0.0105 8.29E-07
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beta—Alanine
metabolism
Bile secretion
Biosynthesis of amino
acids
Biosynthesis of
cofactors
Biotin metabolism
Butanoate metabolism
Caffeine metabolism
cAMP signaling
pathway
Carbon metabolism
Cholinergic synapse
Cocaine addiction
Cysteine and
methionine
metabolism
Ferroptosis
GABAergic synapse
Gap junction
Glutamatergic
synapse
Glutathione
metabolism
Glycerophospholipid
metabolism
Glycine, serine and
threonine metabolism
Glyoxylate and
dicarboxylate
metabolism
Histidine metabolism
Lysine degradation
Metabolic pathways
Mineral absorption
mTOR signaling
pathway
Neuroactive ligand—
receptor interaction

0.2314
0.0237
0.0055

0.0022

0.2863
0.0022
0.0133

0.4197

0.0022
0.2363
0.0022

0.0510

0.0022
0.0022
0.0022

0.0022

0.0022

0.2363

0.0133

0.0022

0.0022
0.0640
0.0043
0.0517

0.0506

0.0022

49

0.4837
0.0097
0.0858

0.0827

0.4225
0.0385
0.2579

0.1320

0.0113
0.0984
0.0136

0.1579

0.0136
0.0136
0.0136

0.0136

0.0097

0.0984

0.0375

0.0097

0.0505
0.0525
0.0984
0.0858

0.0841

0.0113

0.2065
0.0459
0.0140

0.0036

0.1013
0.0036
0.3479

0.1488

0.0036
0.1255
0.0036

0.0113

0.0036
0.0089
0.0036

0.0113

0.0065

0.1255

0.0464

0.0202

0.0128
0.1063
0.0262
0.0189

0.2904

0.0036

0.2039
5.35E-05
1.21E-04

7.25E-06

0.1257
3.04E-06
0.0199

0.0950

4.43E-07
0.0391
1.01E-06

0.0016

1.01E-06
2.72E-06
1.01E-06

3.92E-06

4.43E-07

0.0391

0.0004

2.06E-06

1.95E-05
0.0051

2.04E-04
0.0014

0.0162

4.43E-07



Nicotinate and
nicotinamide
metabolism

Nicotine addiction
Nitrogen metabolism
Pantothenate and CoA
biosynthesis
Pathways of
neurodegeneration —
multiple diseases

Phenylalanine
metabolism

Phenylalanine,
tyrosine and
tryptophan
biosynthesis

Porphyrin metabolism
Primary bile acid
biosynthesis
Propanoate
metabolism
Protein digestion and
absorption

Proximal tubule
bicarbonate
reclamation

Purine metabolism
Pyrimidine
metabolism

Pyruvate metabolism
Retrograde
endocannabinoid
signaling

Salivary secretion

Sulfur metabolism

Sulfur relay system

Synaptic vesicle cycle

Taste transduction
Taurine and
hypotaurine
metabolism

Thermogenesis

0.1232

0.0022
0.0022

0.0994

0.0022

0.0022

0.0022

0.0022

0.1650

0.9550

0.0055

0.0022

0.0055
0.2539
0.0087
0.0022
0.2742
0.8921
0.0055
0.0022
0.0022
0.0022

0.3163

50

0.5597

0.0113
0.0136

0.2788

0.0113

0.0510

0.0858

0.0097

0.0113

0.7710

0.0520

0.0136

0.0097
0.5597
0.7150
0.0136
0.1061
0.1438
0.0623
0.0097
0.0136
0.0136

0.1055

0.2904

0.0036
0.0113

0.1013

0.0036

0.0140

0.0089

0.0065

0.0740

0.5584

0.0105

0.0113

0.1156
0.5704
0.1864
0.0036
0.1124
0.6540
0.0036
0.0036
0.0036
0.0036

0.2565

0.1910

4.43E-07
3.52E-06

0.0388

4.43E-07

2.32E-05

2.18E-05

4.43E-07

0.0010

0.9340

4.00E-05

3.92E-06

3.35E-05
0.4937
0.0191
1.01E-06
0.0441
0.4788
1.46E-05
2.36E—-07
1.01E-06
8.29E-07

0.0987
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Thiamine metabolism  0.0022 0.0136 0.0036 8.29E-07
Tryptophan
metabolism

Tyrosine metabolism 0.0022 0.0984 0.0036 9.90E-06

Valine, leucine and
isoleucine 0.1664 0.1579 0.0289 0.0125
biosynthesis

Valine, leucine and
isoleucine 0.1664 0.2662 0.0299 0.0206
degradation

Vitamin digestion and
absorption

0.0506  0.1579 0.4431 0.0500

0.4446 0.7450 0.2283 0.4609

4.5. Discussion

In this chapter we proposed a new method, HisCoM—RCateg,
to find the association between pathway and longitudinal multinomial
phenotype. While our previous HisCoM—Categ method can handle
only multinomial phenotype from cross—sectional data, whereas
HisCoM—RCateg uses longitudinal multinomial phenotypes. HisCoM—
RCateg also able to handle both time dependent and time independent
biomarkers. HisCoM—RCateg evaluates the relationship between
pathways and a multinomial phenotype in a single model. To develop
the HisCoM—RCateg we use the basic framework of the GEE for
categorical response. Like as HisCoM-—Categ, HisCoM—RCateg is
flexible enough to be used for both nominal and ordinal phenotypes.
Through the simulation study we show that HisCoM—RCateg
performs better than other methods. The analysis of a real dataset
with T2D phenotypes, HisCoM—RCateg, can identify pathways that

have an associated with multinomial phenotype. Therefore, we fully
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expect that HisCoM—Categ will help the researchers identify the
pathways that are associated with multinomial phenotypes. In
conclusion, we hope that HisCoM—RCateg can serve as a main tool
for pathway analysis of longitudinal multinomial phenotypes for omics

data.
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Chapter 5. Parametric testing for hierarchical
structural component models

5.1. Introduction

In chapter 5, a parametric testing approach HisCoM is propose.
For testing the significance of the pathway effect, the original
HisCoM uses the permutation approach. When the asymptotic
distribution is unknown, the permutation test is useful for generating
the exact distribution under the null hypothesis. Sometimes, the
permutation test is problematic for high—dimensional data because of
its computational burden and time. HisCoM was originally developed
for high—dimensional data, so it requires a long time to get the
significant value of pathways. To account for this issue, in this
chapter we introduce a parametric test to get the significant value of
pathways. To do this, first, we estimated the asymptotic variance of
pathways and then use the Wald type test. After that, we performe

the non—centrality test to find the significant value of pathways.

5.2. Methods

5.2.1 HisCoM

From chapter 2, the HisCoM model can be written as,

K K [ Mk
o= 9@ = Bo+ ) fuhe=Bo+ ) | D TiemWiom | B = FB = XWB
k=1 k=1|m=1

We aim to maximize the following penalized log—likelihood function

to estimate the parameter
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1 1
QW, B) = LW, B) — 32 IWI =3 - IBIP

where Q(W,B) is the penalized loglikelihood function and (W, B) is

the log likelihood function.

Theorem 5.1: Assume yjy, ..., ¥y, are independent with pdf f(y;| wo, Bo)

for wy € 2, and By € Qg , where wy and B, are the true values of w

and B. If n - o, 1, = 0(v/n) and 4, = 0(v/n) then

I#6 — woll = 0, (\/—15) 1B = Boll = 0 (%)

Proof:

We want to show that for any given & > 0, there exist a large constant

C such that

1 1
P sup Q Wy +_u1,ﬂo+_u2 <Q(W0,Bo)}21—8
{uz(uf,ug)T: llull=C ( Vn Vn )

This implies with probability 1 — € that there exists a local maximizer

of Q(wy, By) in the ball {wo + \/l—ﬁul,po + \/iﬁ

there exists a local maximizer such that

uy: ||l u)?|| < C}. Hence,

1o — woll = 0, (%) 1Bo = Boll = 0y (%)

We have,

1 1
D(wy,Bo) = Q (Wo +ﬁu1rﬂo + _nu2> — Q(wy, Bo)

N
= [L (wo + %ul,ﬁo + %uz) - L(Wo:ﬁo)]
2
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> ({50 )
) {/3 +—uy | — B }
pk:1 0k n 2k 0k

= (61) - (Gz)-

Now, using the Taylor series approximation

(Gy) = [L (Wo + \/_1%”1'30 + \/_1%”2> - L(WOIﬁo)]

1 1
= L(wg, Bo) + \/—ﬁAwoL(Wo'ﬁo) u; + \/—ﬁAﬁoL(Wo'ﬁo) u;

Lor(1\ .2 1or(1\ .2
+ Eul (E) Ay, L(wo, Bo) uy + Euz (E) AﬁoL(WOIBO) U,

1
+uf (1—1> AzwoﬁDL(Wo»ﬁo) u, — L(wo, Bo)

1 1
= ﬁAwoL(WO,BO) u; + ﬁAﬁOL(Wo,ﬁo) U,

Lor(1\ e Lor(1) 2
+ et (1—1> Ay, L(wo, Bo) uy + S W (E) Ag L(wo, Bo) u,

+uT(1>A2 L(wg, Bo) u
15 ) B, g, L(Wo, Bo) Uz

Since,
1
ﬁAwoL(Wo'ﬂo) = 0,(1)
1
\/_EABOL(WO:.BO) = Op(l)
1.
—;AwoL(Wo'ﬁo) -P Iwo(Wo’ﬁo)
1.
_T_lAwoﬁoL(Wo'ﬁo) -P 1,,8,(Wo, Bo)
1
—EAéOL(WO:ﬁo) -P Ip (wo, Bo)-
Therefore,

1
Gl = 0p(1)u1 + Op(l)uz - =

2 u{lwo (Wo, Bo)uy
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1, 1.
_Eu1lwoﬁo (Wo, Bo)u, —Euzlﬁo(wo,ﬁo)uz

= Gll + GIZ + 613 + 614 + 615.

Here, Gi; + G;, is dominated by Gy3 + G4 + G;5 for sufficiently large
C.

Theorem 5.2: Let y=WT,BNT and p,(y) =%AG||W||2+%AP||B||2 )
Assume yy, ..., ¥, are independent with pdf f(y;| y) for y, € 2,, where

Y, are the true values of y. Let ¥ are the estimates of y. Then
1 n =
Vn(I(yo) + —Pi(ro) 17 — 7o)

1 1 n - !
+ 1—l<1()’0) + Epl (Yo)) pi(Yo){ — N(O'I(}’o))

where pj and pj are the first and second derivative of py(y) with

respect to y.

Proof: Expanding the function (;(y) into a Taylor series about y, and
evaluation it at ¥, we get
0w | 6l(}')I R
ay Y= ay Y=Y [ AN 4
al(yo) alz(YO)
=y 7y @ —7vo) —Pi(¥o) —P1 (o) ¥ — ¥o)
= oy | oyt + ;¥ ¥0) | ¥ — 7o) + P2(¥o)
1 0l(yo) . [ 1 alz(YO) 1,
> — = + ,
Jn oy =Vn(@ — vo) 6y6y Pa L (Y0) (Vo) \/ﬁpl(}’o)
Since E (%};’)) = 0, by central limit theorem (CLT)
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ial()’o)
Vn Oy

-P N(0,1(yy)),

By the law of large numbers,

108 ,p <_lal2(}’0)>

" n ayayT n dyadyT
That is
1 alz(YO) P
Then,
= 1 n 1 !
V@ —vo) | I(¥o) + —Pi(ro) | + ﬁm(n) - N(0,1(yo))

1
=>n <I(yo) + ;pi{()'o)> {(T' —Yo)

-1

1 1 n !
+- <I (Yo) + —Pi (m)) pi(vo)t = N(0,1(yy))

Thus, the asymptotic covariance matrix of y is,

{L,(ro) + Pi o)} " Li(¥o) I (¥o) + P (¥o)}

where I(vo) = nl(¥o).

5.3. Hypothesis test

To check the effect of an individual pathway on the phenotype,

we consider the following null hypothesis
HO:ﬁk =0 US.Ha:ﬁk * 0.

To perform the test of hypothesis we use the following Wald type

test
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_ Bk
z= =
se(Pk)

~N(0,1).

Under the Hy, the Wald statistic Wp = zz~)((21). Under the H,, the Wald
statistic Wﬁ~)((21,5), where § is the non—centrality parameter. The
mean of this non—central def,(g) random variable is § +df. Thus, the
mean of Wp is § + 1, and we estimate the non—centrality parameter
as § = max(0, i — 1), where fiis the mean of Wp under the H,. To
estimate g, we permute the phenotype a few times and calculate Wpg,
then take a sample mean for Wy as 4. Empirically we determine the
number of permutations is 100 for calculating the sample mean f.
Then we calculate the pathway significance value using both the
central and non—central approach and compare them with our gold

standard permutation p—value.

Again, to adjust the asymptotic test, we do the saddle point
approximation and df adjustment. Further, we also perform the
modified asymptotic test using the modification for the objective
function of parameter estimation of the original HisCoM. To do this
we revisit the HisCoM and consider the single ridge penalty for the
product of biomarker effect and pathway effect rather than consider

the double ridge penalty.

5.4. Modified asymptotic test
Recall the penalized log—likelihood function

1 1
QW,B) = LW, B) = S A IWI =S 2, IBIP
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Instead of using separate penalty function, consider the single
penalty function for the product of W and . Thus, the objective

function is

1

To estimate the W and B, separately, derivative of p;(WB) with
respect to W and B. The first and second derivative of p,(WB) with

respect to W is

olp,(W

w = diag(ﬂl, .--ﬁ1, ""ﬁK’ ""BK)W*B*:
02[p, (W
% = Miag(BZ, ..., B2, ..., B3, ... BE)

= Abdiag (diag(B?), ...,diag(B))

where B, is the vector of B without intercept term and w, is the
matrix of W without first column and first row and diag(B?), k =
1,..,K is My X M, diagonal matrix, where My is the number of
biomarkers in the k' pathway. Again, the first and second derivative

of py(WpB) with respect to B

pa(WB)]
P[0, (WP)) _
—apogr

Theorem 5.3: Let y,,, = WB and py(Yws) %l IWB||?> Assume yq, ..., ¥,
are independent with pdf f(y;| yws) for vy, € 2,,,,. Where y,,, are the

true values of y,,. Let ¥,,p are the estimates of y,,,. Then
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Vn (1 (Yop) + %pﬁ{ (Y?m)) {(T’wb ~Ywb)

1 1 rn - !
#2108 +3500)) B0 N (010)

Theorem 5.3 can be proved in the similar way to the Theorem 5.2.

Then, the asymptotic covariance matrix of y,,p is,

(%) + P (Vo)) T (o) In (Vo) + Py (¥o0))
where I,(vop) = nl(vop)-

Using the result of this asymptotic theorem, we then perform
hypothesis test of each biomarker effect to the phenotype via
pathways. That is the null hypothesis for mt" biomarker in kt"

pathway is
HO:kaﬂk =0 vs Hllwkmﬂk * 0.

We use the Wald type of test and permutation test to perform
the testing of the above null hypothesis. Compare their results

discuss in result section.

Moreover, using this asymptotic result we further test the effect

of pathway effect using the following two hypotheses.
Hypothesis 1: Consider full degrees of freedom
HO: CkWB = 0

Hypothesis 2: Consider one degrees of freedom

My
Hy: Z BiWim = 0
m=1
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In summary, to assess the pathway effect to the phenotype we

perform 7 different test including permutation test.
1. Permutation test for Hy: 8, =0
2. Asymptotic test for Hy: B, =0
3. Non-—centrality test for Hy: 8, =0
4. DF adjustment for Hy: 8, =0
5. Saddle point Approximation for Hy: B =0
6. Modified Asymptotic test for with full df, Hy:C,WB =0

7. Modified Asymptotic test for with one df, HO:Z%’;lﬁkwkm =0

5.5. Results

To compare the results of the parametric test with the

permutation test we perform a simulation study and real data analysis.

In real data analysis, we consider four examples. In example 1, we
choose 5 non—overlapping pathways; in example 2, 10 overlapping
pathways; in example 3, 20 overlapping pathways from the KARE
phase 6 dataset and finally for example 4, we consider the KARE

phase 6 dataset.

5.5.1 Number of permutations of non—central test

To determine the number of permutations for the non—central
parameter we use the first three examples. First, we permute the
phenotype 10, 20, 30, 40, 50, and 100 times; and calculate the
noncentral parameters. Then repeat this process 10 times and

61 - .
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calculate the mean and confidence interval. Figure 5.1 shows the
results for the first example with five pathways. In Figure 5.1, the
x—axis is for pathways; and the y—axis is for mean and CI for the
noncentral parameter. Figure 5.1 shows that when the number of
permutations is small noncentral parameter is varied but for a large
number of permutations noncentral parameter is not varied. Results
of the second and third examples are shown in Figure 5.2 and Figure
5.3. In both Figure 5.2 and Figure 5.3, the x—axis shows the number
of repetitions and the y—axis shows the mean and CI, and each panel
is for each pathway. Figure 5.2 shows the mean and CI of 6 pathways
from 10 pathways in example 2. Figure 5.3 shows the mean and CI
of 6 pathways from 20 pathways in example 2. Both Figure 5.2 and
Figure 5.3 shows that when the number of permutation small
noncentral parameter vary a lot but for a large number of
permutations noncentral parameter changes slightly. Thus, in our
study, we fix the number of permutations as 100 for calculating the

non—central parameter for hypothesis testing.

Figure 5.1. Mean and CI for noncentral parameter with repetition for

example with 5 pathways
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Figure 5.2. Mean and CI for noncentral parameter with repetition for

example with 10 pathways
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Figure 5.3. Mean and CI for noncentral parameter with repetition for

example with 20 pathways
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5.5.2 Comparison of the results of testing the modified

asymptotic test

Figure 5.4 shows the comparison of —log;o(p-value) between
permutation and asymptotic test for Hy: Wi, Bx = 0 test. In Figure 5.4,
the left top plot is for example 1, the right top plot is for example 2,
the left bottom plot is for example 3, and the right bottom plot is for
example 4. Figure 5.4 shows that the asymptotic test is similar to the

permutation for most of the cases.

Figure 5.4. Comparison of —log;,(p—value) for permutation vs

asymptotic test Hy: wi, S = 0

-log10(asymptotic p-value)

-log10{asymptotic p-value)

-og10(permutation pvalue) -log10(permutation p-value)

5.5.3 Comparison of the results of pathway effect test

Figure 5.5 to Figure 5.8 shows the comparison of
—logyo(p-value) of pathway effect test using different hypotheses. For
comparison, we considered the permutation approach as a gold

standard. We use the correlation to measure the degree of the
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relation of p—values from two different approaches. Also, to test
whether two sets of p—values from different testing approaches
come from the same distribution or not, we perform the Kolmogorov—
Smirnov test. For all examples, p—values from the non—centrality
test are close to the permutation test and their correlation is higher
than the other methods. SAP and df adjustment contribute nothing,
1t’s similar to the asymptotic result. The modified asymptotic test
with full df performs better than the modified asymptotic test with
one df. For the first three examples, the modified asymptotic test
with full df is almost similar to the asymptotic test. Figure 5.8 shows
that, the p—values of the modified asymptotic test with full df inflated
more than that of the asymptotic test. The modified asymptotic test
with one df always provides less power compared to the other
methods. In summary, the non—central test provides consistent
results for all examples and it can be used as the alternative method

for the permutation approach in HisCoM.

Figure 5.5. Comparison of —logo(p—Vvalue) of pathway effect test

for example 1
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Figure 5.6. Comparison of —logo(p—value) of pathway effect test

for example 2
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Figure 5.7. Comparison of —log¢(p—Vvalue) of pathway effect test

for example 3
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Figure 5.8. Comparison of —logo(p—value) of pathway effect test

for example 4
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5.6. Simulation study

5.6.1 Simulation model

We perform a simulation study to compare the performance of
propose different types of parametric tests in HisCoM. To evaluate
the performance, we generate a binary phenotype. Also, in our
simulation study, we use real metabolite data from KARE phase 6.

We conduct the simulation from metabolite data. In generate the

binary phenotype, consider the following logit model

o2 -, > s

=1|m=1
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where i =1,..,n. The total number of pathways K =65 is in the
metabolite dataset in the metagenome dataset. From metabolite data,
we randomly select 5 pathways are causal pathways and the
remaining 60 pathways as non—causal pathways. For the causal
pathways, we considered two different parameter settings: two
biomarker level effects (w=0.2 and 0.3), and four pathway—level
effects (By =B, =P5=Ps =Ps =0.3, 0.4, 0.5, 0.6), and the effect of
non—causal pathways is zero. We generated 1000 datasets with the
sample size for each dataset being the same as the real dataset for
Type I error and 100 datasets for power calculation. To calculate the
p—value for the permutation test, we permute each simulated
response 1000 times to calculate the type—1I error and power. Again,
to calculate the p—value for the non—central x? test, we permuted

each simulated response 1000 times.

5.6.2 Simulation results

To demonstrate the statistical performance of the proposed
parametric testing approach for HisCoM we perform the simulation
study. For the performance comparison, we compare the type [ error
and power for seven different tests of HisCoM. To do so, first, we
generate the binary phenotype from KARA phase 6 metabolite data.
After generating the phenotype for each simulation, we obtained the
optimal tuning parameter set (4, 4,) using the 3 folds cross—

validation. Then, we evaluate the type I error and power.

Results of the empirical type I error are shown in Figure
5.9. The permutation test, the modified asymptotic test with full df,

and the modified asymptotic test with one df successfully control the
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type I error in simulation for the metabolite data. Type I error for the
non—central x? test is seeming good after 100 data generation but it
1s higher after 1000 data generation. Again, the type I error cannot
be controlled by an asymptotic x? test, saddle point approximation,
and df adjustment. The modified asymptotic test with one df provides

a lower type I error compare to all other methods.

Results of empirical power are present in Figure 5.11, where
the x—axis shows the effect sizes of pathways and the y—axis shows
the power. The left panel of Figure 5.11 represents the power for
biomarkers effect w = 0.2 and the right panel is for biomarkers effect
w = 0.3. Power for the non—central x? test is comparable with the
permutation test. Power for the asymptotic test, the SPA, and the df
adjustment test is always higher than permutation and noncentral test;
but they cannot control type I error. Again, the modified asymptotic
test with full df and the modified asymptotic test with one df always
provide higher power compared to the permutation test and non—
central test, also they control type [ error well. The modified
asymptotic test with one df provides slightly higher power compared

to the modified asymptotic test with full df.

Based on the simulation study, we can use the non—central x?
test for the original HisCoM rather than the permutation test to
reduce the computational burden. Otherwise, we can use the modified
asymptotic test with full df and the modified asymptotic test with full
df rather than the permutation test in the original HisCoM. In the
permutation test, we test the individual pathway effect (i.e., Hy: B =
0) but in the modified asymptotic test we check the effect of the
biomarker to phenotype via pathway ( Hy:C WP =

0 and Ho: Yk, Bxwim = 0). Since
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Ho:ﬁk =0= HO:CkWBz 0
Ho:CkWB= 0= HO:ﬂk =0

and

My
Ho: B = 0= Hy: Z BiWikm =0
m=1

My

Ho: Bkam =0 HO: ﬂk =0.

m=1

Thus, the hypothesis of the individual pathway effect test and the

hypothesis for the modified asymptotic test are equivalent.

Figure 5.9. Empirical type I errors computed from metabolite data
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Figure 5.10. Empirical power from metabolite data
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5.7. Conclusion

In summary, we proposed a parametric testing approach to
identify the association between pathways and phenotype. The main
contribution of this study is to provide a p—value for testing the
association between pathway and phenotype with a simple and
effective parametric procedure instead permutation approach. This
parametric testing approach reduces the computational burden and
computational time compared to the permutation test. We use
different types of adjustment for the asymptotic test such that non—
central test, modified asymptotic test, etc., and then compare their
results with the permutation test results. Real data analysis shows
that results from the non—centrality test are close to the permutation
test results. However, the number of permutations to calculate the
non—central parameter was determined empirically. We also perform
a simulation study to compare the performance of tests. In simulation
study shows that the power of the non—centrality test is comparable
with the permutation test. Modified asymptotic test with one df has
higher power compared to the all other methods and control type I

error well.
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Chapter 6. Summary and Conclusion

In this study, we propose a novel pathway—based approach for
multinomial phenotypes. To handle this issue, we propose a
hierarchical structural component analysis for the multinomial
phenotype (HisCoM—Categ) and its extension HisCoM—RCateg for
the longitudinal multinomial phenotype. Furthermore, we proposed
penalized version of both HisCoM—Categ. All approaches use the
biological context of hierarchies among pathways and biomarkers.
For the penalized version, we consider three penalty functions i.e.,

LASSO, SCAD and MCP.

In chapter 3, we propose a novel method, HisCoM—Categ and
penalized HisCoM—Categ for the multinomial phenotype to identify
the significant pathway. HisCoM—Categ is flexible to use a variety of
omics data with both nominal categorical phenotype and ordinal
categorical phenotype. In simulation studies, we compare the
performances of HisCoM—Categ with the original HisCoM, GSEA, and
aSPU. From that comparison, HisCoM—Categ shows better
performance than the other three methods. Also, in real data analysis,
HisCoM—Categ successfully identified the pathways which are

associated with T2D.

In chapter 4, we propose HisCoM—RCateg and its penalized
version, an extension of HisCoM—Categ for the longitudinal
multinomial phenotype. In application to the real data analysis,
HisCoM—RCateg successfully identified the pathways. In simulation
studies, we compare the performance of HisCoM—RCateg with

HisCoM—GEE. The simulation studies showed that HisCoM—RCateg
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has than the HisCoM—GEE approach for multinomial responses and

controlled the type I error very well.

In chapter 5, we propose a parametric test for HisCoM to
identify the significant pathways. To reduce the computational
burden for the original HisCoM, we propose an asymptotic test and
then compare their results with permutation test results. We also use
many different adjustments of the proposed parametric test. Real
data analysis shows that the results of non—centrality adjustment are
close to the permutation test. Thus, we believe that the proposed
parametric test helps to identifying pathways when fitting any large

and high—dimensional data.
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