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ABSTRACT

Hwankam Ryu

The Department of Statistics

The Graduate School

Seoul National University

In this thesis, we investigate anomaly detection, which builds

the stability of the system by separating data different from nor-

mal data. For a systematic and sustainable system, the task of

continuously monitoring and classifying abnormal data plays an

important role, and various methodologies using machine learn-

ing/deep learning as well as statistical methods are being used.

In this paper, after briefly introducing the methodology used in

previous studies, we propose the RRCF+CAD model, a real-time

anomaly detection method that combines the Robust Random Cut

Forest Model and Conformal Prediction. This method enables real-

time updating of the model, and based on this, a statistical test

method is executed by finding an anomaly score of the data.

Keywords: Outlier, Anomaly score, Semi-supervised learning,

Robust Random Cut Forest, Conformal Prediction

Student Number: 2021− 27025
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Chapter 1

Introduction

The goal of anomaly detection is to find abnormal data in

multi-dimensional data. Anomalies can be identified for each vari-

able using means, variance, quartiles, or the predicted residual er-

ror sum of squares(PRESS). This data refining method effectively

screens data by removing anomalies. Additionally, in the context of

machine learning for anomaly detection, defective goods or system

flaws picked up by the detection model can aid the administrator

in keeping a running system.

Anomaly detection has evolved into a crucial process. Several

anomaly detection algorithms have been developed in accordance

with these industries’ specific requirements. Since there are fewer

anomalous data points from systematic processes, approaches like

oversampling, unsupervised learning, or semi-supervised learning

have arisen to address the problem.

However, there are few studies on using real-time learning to

detect anomalies in data. In this thesis, we examine properties of

Robust Random Cut Forest(RRCF), which transforms Isolation
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Forest among tree-based anomaly detection methods, and show

the performance of RRCF models. We apply the RRCF method

to a case study with sequentially generating data.

Current machine learning techniques arbitrarily define thresh-

olds based on the outcomes of algorithms. As a result, it is diffi-

cult to update the threshold in real-time. To address this issue, we

present a conformal prediction that method to update the thresh-

old in real-time.

The issue of identifying pump system failure in real-time for-

mat will be covered in the case study. Sensor data on the pump

was recorded every second and had a severe imbalance between

labels for success and failure.
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Chapter 2

Statistical Models

2.1 Keywords

2.1.1 Anomaly

Depending on the goal of the study and the type of informa-

tion gathered, the definition of an anomaly can vary. For instance,

it could refer to ”outlier data” that significantly deviates from

the original dataset or ”novelty data” that falls under a brand-new

category. Alternately, it could be ”abnormal data” that occurred

as a result of a data gathering mistake. In this study, our goal is to

identify a suitable method for separating this differently defined

anomaly from the normal, similar to creating an appropriate clas-

sification model when there are too many or too few data points

on the specific label.

Anomaly detection is utilized because the data on each label is

not balanced. The masking effect and the swamping effect should

therefore be taken into consideration. The swamping effect relates
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to a false positive in which normal data are mistakenly identified

as anomalous, while the masking effect refers to a false negative in

which anomalies are grouped and the model or test method cannot

identify an true anomaly.

2.1.2 Imbalanced data

For the model to learn well, the balance between the label of

data is important. The model can return all predictions with only

one specific single class, especially when the imbalance between

classes is quite severe. Yet even in this instance, the overall accu-

racy can be very high.

Therefore, an oversampling algorithm has emerged to amplify

data to solve the problem of data imbalance. SMOTE(Synthetic

Minority Oversampling Technique), introduced by Chawla et al.

(2002), ADASYN(Adaptive Synthetic Sampling Approach for Im-

balanced Learning), introduced by He et al. (2008), and Additional

Generative Models, introduced by Xu et al. (2019), are three well-

known algorithms that amplify structured data. However, there is

a drawback in that the versatility of the data cannot be reproduced

because these models generate data based on a limited quantity

of previously gathered data.

On the other hand, there is a methodology that makes use of

the current data’s structure rather than data amplification. By

focusing on the properties of the data itself or modeling only with

normal data, an unsupervised learning or semi-supervised learning

process can be used to identify the class. These techniques estab-

lish a suitable feature space and identify it as an anomaly when it
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extends the feature space boundary.

2.2 Literature Review

2.2.1 Unsupervised Learning

Unsupervised learning collectively refers to a learning method

that does not consider the response variable Y (Hastie et al., 2001).

In other words, unsupervised learning is based on a marginal dis-

tribution p(X) while supervised learning derives a conditional dis-

tribution p(Y |X) for the independent variable X and the response

variable Y. Popular unsupervised learning methods for anomaly

detection are as follows.

1. DBSCAN(Density Based Spatial Clustering Application with

Noise)

DBSCAN is based on a density-based clustering model (Ester

et al., 1996). The three ideas of Core point, Noise point, and Bor-

der point are used in this method to find geometric grouping data.

Using the ϵ value set by researchers, Points are categorized based

on the quantity of data located in the ϵ radius of the data. The

specific procedure for determining anomaly with DBSCAN is as

follows.

Sets data Xi, radius ϵ, minimum number of data accepted as

clusters m

1. Let the number of data present within the ϵ radius around

5



arbitrary data Xi be n1.

2. If n1 ≥ m, assign the corresponding point Xi as a core point.

If n1 < m, assign the corresponding pointXi as a noise point.

3. Now repeat the following process. If one of the points ex-

isting within the ϵ radius of core point Xi is Xj , let’s say

the number of data in the ϵ radius around Xj is n2 for this

point.

4. If n2 ≥ m, assign the corresponding point Xj as a core point.

If n1 < m, assign the corresponding point Xi as a border

point.

5. Repeat steps 1-4 to define the point characteristics for all

data.

6. A cluster is created by connecting core point and border

point, and for anomaly detection, it is considered normal

data and the remaining noise points are classified as outliers.

2. Local Outlier Factor

Breunig et al. (2000) proposed a density-based classification

model, the Local Outlier Factor model, which can be used to detect

anomalies. This technique uses data from the neighborhood to

determine the anomaly score. Using the hyperparameter k, the

process of calculating the anomaly score of data using how close

the K neighboring data exist around is summarized below.

• Data point Xi
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• Number of neighborhood data you want to examine : k

• Distance between data : d(Xi, Xj)

• Average distance between k neighborhood data points and

Xi : k-distance(Xi)

• neighborhood data closer than k-distance(Xi) for data Xi :

Nk(Xi)

For p ∈ Nk(Xi), the density of neighborhood data of the ob-

servation Xi may be expressed as follows.

local reachability density of data Xi (lrd)

lrdk(Xi) =
|Nk(Xi)|∑

p∈Nk(Xi)
max{k-distance(Xi), d(p,Xi)}

After comparing the density of the data with the density of

its neighborhood data using the local reachability density value,

the anomaly score of the data can be obtained as follows. The

likelihood that anything is anomalous increases with the size of

the anomaly score.

LOFk(p) =

∑
p∈Nk(Xi)

lrdk(p)
lrdk(Xi)

|Nk(Xi)|

3. Robust Covariance

Peña and Prieto (2001) proposed a distance-based anomaly de-

tection method for multi-dimensional data. Researchers can clas-

sify normal and abnormal data using the Mahalanobis distance
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while taking the covariance structure of the data into account and

changing the border limits.

• multidimensional data X

• mean vector of each feature on data : µx = [µx1, µx2, · · · , µxn]

• data covariance matrix Σ

• normal data limit range η

• Determine data as anomaly if
√
(X − µ)TΣ−1(x− µ) ≥ η

A distance-based anomaly detection method that takes into

account the distribution of data, especially by using Mahalanobis

distance rather than Euclidian distance, reflects on the correlation

between variables.

4. Isolation Forest

Liu et al. (2008) proposed a tree-based anomaly detection

method. Abnormal data will deviate from normal data. That is,

when inspecting the data on a binary tree data structure, the

abnormal data will be found at the top of the tree because the

abnormal data is more likely to branch first. On the other hand,

normal data will be similarly clustered and close in distance, so a

binary tree will recursively partition data and require a relatively

large number of branches. That means the normal data is more

likely to be located at the bottom of the tree.

• We create Isolation Tree for a sampling without replacement

S from data X. Based on this, an Isolation Forest, which is

8



an ensemble structure, may be constructed and a masking

effect through this sampling may be prevented.

• When making the tree, the criterion of the branch is an arbi-

trary value within a range of the arbitrarily selected variable

■ Sets the number of features constituting data as M .

Then, feature selected as the basis of the branch has a

probability of 1
M .

■ Selects a junction Xi ∼ Unif [minxi,maxxi] for the

selected feature Xi.

• Let’s calculate the number of branches of data point Xi

for each tree as h(Xi), and set that the average number of

branches of points Xi in Forest is E(h(Xi)).

• For the typical average number of spliting c(N) for n data

points, we define an anomaly score for the entire data as

follows.

Score(Xi, N) = 2
−E(h(Xi))

c(N)

2.2.2 Semi-Supervised Learning

According to whether or not response variables (also known as

data labels) were used for learning, supervised learning and un-

supervised learning were segmented in the previous section. On

the other hand, semi-supervised learning seeks to develop a model

while simultaneously using data with and without response vari-

ables. In order to effectively use data without response variables in

9



semi-supervised learning, Van Engelen and Hoos (2020) presented

three conditions.

1. smoothness: If the density of predictor P (x) is similar, the

response variable accordingly is also the same or very similar.

2. low-density: No boundary of classification occurs in the part

where the value of the probability density function P (x) is

high.

3. manifold: It follows the manifold assumption that the struc-

ture of high-dimensional data is composed of several low-

dimension. Therefore, even high-dimensional complex data

can be accessed by projecting it into low-dimensional struc-

tures, and several existing response variables help to infer

the non-existing class of response variables.

Based on these three conditions, semi-supervised learning is

the process of improving performance on unlabeled data by using

labeled data; in this thesis, we will apply the methodology of Song

et al. (2017). This is to conduct machine learning with only normal

data when the proportion of normal data is very high. After that,

data outside the normal data space is counted as an anomaly. In

a similar preceding study, deep learning researchers suggested a

strategy for categorizing anomalies using data feature space (Lukas

et al., 2018).

2.2.3 Real-time Learning

The advance of technology has facilitated the accumulation of

a vast amount of data. The amount of data attainable is still in-
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creasing, especially as it becomes possible to use sensors to acquire

data in real-time. The interest in real-time learning to instantly

incorporate real-time data into the model has increased due to its

larger size and faster data collection, and various past studies have

been carried out.

According to Cesa-Bianchi and Orabona (2021), real-time learn-

ing is defined as updating existing predictive models while pro-

cessing data. Real-time learning techniques range from those that

quickly update parameters in sequential data to those that use

parameter-free real-time learning algorithms based on analysis and

model properties. One well-known early real-time learning tech-

nique is the ”online newton step” or ”online linear regression.”

According to Bahri et al. (2021), the characteristics of real-

time learning and data can be summarized as follows.

• As the amount of information increases, high-dimensional

data is generated, which affects memory issues and model

learning time.

• In real-time learning, it is important to process data as

quickly as possible.

• As the data itself evolves which concept drift means in AI

or machine learning, the model required for prediction must

also be changed in real time.

• Generating data labels is slower than the data itself. If data

labeling is slow, it can be difficult to utilize in the model

and the model performance is degraded in the concept drift

situation.
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• If the data structure is imbalanced, learning has no choice

but to proceed with only a specific class in a streaming en-

vironment.

To deal with this real-time learning environment, numerous

real-time learning procedures have been developed. Bahri et al.

(2021) has outlined the approaches currently being employed. Among

them, the sliding window model, which will be used for data anal-

ysis in Chapter 3.2, is well recognized. In a drift shift structure

where the data distribution progressively changes, Ng and Dash

(2010) referred to the idea of a continuous bundle of sequential

data as a ”window” to obtain the necessary information. In par-

ticular, sliding windows, which move windows sequentially over

time, can be utilized if the purpose of the modeling is to predict

the new data label by using some late data. This refers to se-

quentially extracting the most up-to-date information over time

by utilizing the window size w to store information continuously

in a data streaming environment. However, because only the most

recent w bits of information are used according to the time stamp,

the initial data in w size are not continuously taken into account

over time. Below is a picture of the concept of window sliding.

12



2.3 Robust Random Cut Forest Model

Next, the Robust Random Cut Forest(RRCF) model is intro-

duced.

2.3.1 Different Concepts of anomaly in models

The idea of anomaly has been freshly defined within the RRCF

model, which is a tree-based model such as the Isolation Forest

model previously discussed. RRCF defines anomaly based on how

quickly the tree structure changes whether specific data is in or

not, whereas earlier tree models defined anomaly based on data

distant from a normal and specified cluster. Guha et al. (2016)

defined this amount of depth changes as displacement. It serves as

an anomaly score.

Definition 1. Defines the displacement for the data point x. For

tree T, let the probability of randomly selecting a tree T be P[T],

and for the dataset Z, let’s say the depth of the data point y is

13



f(y,Z,T).

Disp(x, Z) =
∑

T,y∈Z−{x}

p[T ](f(y, Z, T )− f(y, Z − {x}, T ′))

Additionally, even when data is clustered, abnormal data can

be found because random sampling produces numerous tree struc-

tures in a forest. In other words, it avoids the masking effect and

appropriately takes into account a cluster of data that hides an

anomaly. Guha et al. (2016) called it colluder. In the same vein, it

is necessary to calculate the amount of variations considering the

colluder by appropriately capturing a cluster of data. The average

value of the maximum displacement in a tree-changing colluder is

what we refer to as ”collaborative displacement” because we are

unsure of how far to select the neighbors to value the colluder.

Definition 2. Defines the collusive displacement for the data point

x. Let a group that hides anomaly due to clustered data be C, the

size of group C be |C|, and the sample used for that tree be S

because it makes several trees. CoDisp(x, Z, |S|) is defined as fol-

lows:

ES⊂Z,T [ max
x∈C⊆S

1

|C|
∑

y∈S−C

(f(y, S, T )− f(y, S − C, T ′)]

2.3.2 Algorithm

In the beginning, one can rapidly spot sudden changes in val-

ues. Collusive Displacement, an anomaly score, has a clear value

since it can avoid useless axial branching, unlike Isolation Forest,

which makes use of the tree structure. This is due to the fact that

14



RRCF avoids situations where anomalies cannot be discovered by

an ineffective dimension by choosing a feature that turns into a

branch criterion with varying probability based on the range of

data. The branching proceeds in the following manner.

1. For li = maxxi−minxi, choose a random dimension(feature)

in proportional to li∑
j lj

.

2. Choose a split point Xi ∼ Unif [minxi,maxxi] for the se-

lected dimension.

3. Create a tree by repeating the process of selecting S1 =

{x|x ∈ S, xi ≤ Xi} as the left child node, S2 = S \ S1 as the

right child node.

Second, it can be suitable for real-time modeling. That means

updating and removing data inside the model is acceptable be-

cause this model is founded on the characteristic that a range of

data is taken into account when branching. Guha et al. (2016)

propose the following lemma.

1. For any feature k, its data points set S and new datat point

p, the probability of choosing any cut in RRCF is the same

as the conditional probability of selecting a new cut for up-

dating data set S
⋃
{p}.

2. Considering a random tree of RRCF(S
⋃
{p}), based on the

fact that first branch split the new point p from S, the re-

mainder is the same as RRCF(S)
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2.4 Conformal Prediction

Conformal Prediction (CP) is to determine how appropriate

the expected observations are based on current observations. On

the basis of the CP framework, possible prediction candidates can

be found under a suitable level of confidence, whereas general re-

gression or classification only produces one prediction. The frame-

work is simply as follows.

1. Set a confidence level.

2. Determine the prediction region based on the confidence

level. The predicted value ŷ belonging to the area is as fol-

lows.{
ŷ :

|{i = 1, . . . , n : ŷ ≥ yi}|+ 1

n+ 1
≥ confidence level

}
3. The more accurate the prediction region is, the smaller the

prediction region is, and the true value is more likely to

belong to the region.

The prediction region, according to the previously introduced,

is determined by comparing the anticipated value with the prior

true value data. And with the same mechanism, if the data does

not fall into a predetermined prediction region, it is determined

to be an anomaly. Therefore, for the next step, to utilize Confor-

mal Prediction for anomaly detection, designing a score indicating

how ’strange’ the data is and creating criteria for the prediction

region are required. This is referred to as a Non-Conformity Mea-

sure(NCM) in earlier studies. From the RRCF’s point of view, an
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algorithm can be created to determine anomalies by setting the

anomaly score returned through RRCF as NCM.

The whole algorithm is as follows.

Algorithm 1 RRCF+CAD

1: For data X, make Robust Random Cut Tree (RRCT) Tn for

sample without replacement Sn

2: Calculate the codisplacement value for each data point x from

RRCT.

3: Codisplacement is specified as a non-conformity score in con-

formal prediction framework to determine how extreme that

score is.

4: Consider domain characteristics or data, specify confidence

level

5: Data whose codisplacement does not belong to the confidence

region is determined as an anomaly.

By using the conformal prediction framework for anomaly de-

tection, it is possible to indicate the statistical significance level

for detection results. In other words, controlling the significance

level is the same as controlling the threshold, which becomes an

anomaly.

2.5 Real-time Learning model with RRCF+CAD

The CP framework can continuously determine whether the

anticipated value satisfies the confidence level, making it applica-

ble to real-time learning scenarios. Due to the algorithm’s struc-
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ture, which has already been discussed, RRCF is very simple to

update and remove data without having to learn all of the data

again. Therefore, we propose RRCF+CAD in this thesis, which

combines RRCF and CP framework.

It has been suggested in previous studies to combine KNN, SVM,

or other algorithms with the CP framework, but this approach has

the drawback that it takes a while to acquire NCM for each tech-

nique and makes it challenging to update the model right away

with new data.

2.6 Metrics

Anomaly detection is eventually a classification problem, specif-

ically a binary classification problem to determine whether some-

thing is normal or not. There are several evaluation metrics that

evaluate the performance of a model in a classification problem.

ROC curve to compare the AUC value that examines the area at

the bottom may be a good choice, or we could pay attention to

Accuracy, Recall, Precision, F-beta-score, which are derived from

contents in the Confusion Matrix. In particular, F-beta-score is a

value created by a combination of harmonic means and particu-

lar weights for recall and precision. The evaluation criteria that

researchers want to stress can be weighted differently to ensure

proper evaluation. Here are the specifics:

F - beta - measure

• (1+β2)·Precision·Recall
β2·Precision+Recall
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• There are various F-measure depending on the β value of

the evaluation.

1. F1-measure : false-negative and false-positive are all im-

portant

2. F2-measure : false-negative is important

∵ maximize recall → minimize false negative

3. F 0.5-measure : false-positive is important

Because the absolute value of evaluation metrics like Accuracy

and AUC is too high or the difference in the score value is so

small, it is challenging to view them as desired measures in the

field of anomaly detection. That’s because there are many fewer

abnormal data points than normal data. Bifet et al. (2015) out-

lines the drawbacks of current evaluation techniques for real-time

learning models and suggests evaluation metrics that help address

these issues. The F-beta-score, which may assess the model’s per-

formance from imbalanced data, is used in this thesis to judge

the analytical findings of real data. Because it is more crucial to

limit the number of false negatives when the model can predict the

failure of the pump sensor, we will utilize an F2-score in Chapter

3.3 of this study that prioritizes recall above precision. Particu-

larly, we would like to utilize Macro-F2-score that is computed by

arithmetic mean for all class F2-score to cover the extreme data

imbalance.
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Chapter 3

Case Study

3.1 Data Description

Pump sensor data collected from Kaggle (https://www.kaggle.com/datasets/nphantawee/pump-

sensor-data ) were utilized to examine the efficiency of the RRCF+CAD

algorithm described in Chapter 2. To prevent performance failures,

we wish to verify the effectiveness of the RRCF+CAD algorithm,

which identifies pump system faults in advance. The data that

must be examined is a time series generated by the pump sensor’s

values.

Table 3.1 represents a portion of the raw data. It briefly depicts

a cycle of normal operation, failure, repair, and return to normal.
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Table 3.1: Pump sensor data

Seven system failures occurred in total throughout the data

collection period (April 2018 sim October 2018), with data being

collected at one-second intervals. In other words, just seven data

points out of more than 200,000 are anomalies, and they are noted

in the ”machine status” variable with the label BROKEN, which

denotes a pump failure. After a system failure, not all sensors stop

working; some continue to function, and the value is recorded.

On the other hand, the sensor measurements of the parts directly

related to the failure are not recorded.

This information is initially recorded in NORMAL condition,

and when a pump failure is discovered, a process to repair the

pump is necessary. Therefore, in this situation, RECOVERING is

recorded in the variable ”machine status.” Null values appeared in

the sensor during the recovery process, especially for sensors that

failed. Once the recovery process is complete, the machine status

is updated to NORMAL. That indicates that the regular process
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can start.

Anonymity is a characteristic of this data. Because of this, it

is challenging for us to interpret the features. Therefore, proper

feature interpretation will enable us to execute more reliable pre-

processing.

We start by examining the data plot across time. Axis X rep-

resents time, and axis Y represents sensor value. When a failure

happens, it is indicated by the symbol ”X” in blue, and when a

recovery follows the failure, it is indicated in green. If a value is

missing from any sensor, it is indicated in red. The plot was re-

moved for sensors 15 and 50 which had a significant missing value

ratio.
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Figure 3.1: Time series plot :sensor 00 ∼ sensor 07
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Figure 3.2: Time series plot : sensor 08 ∼ sensor 14, sensor 15
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Figure 3.3: Time series plot : sensor 17 ∼ sensor 24
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Figure 3.4: Time series plot : sensor 25 ∼ sensor 32
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Figure 3.5: Time series plot : sensor 33 ∼ sensor 40
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Figure 3.6: Time series plot : sensor 41 ∼ sensor 48
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Figure 3.7: Time series plot : sensor 49, sensor 51
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3.2 Data Analysis

1. Data with missing values was initially processed for real-

time modeling. The 51 total sensors are not used for analysis since

sensors 15 and 50 have unusually high missing values of 1 and 0.35,

respectively. For the remaining sensor values, a simple substitution

through the previous value was used. This is for the most intuitive

and fast missing imputation for real-time modeling. Additionally,

when viewing the data as a time series per variable, the value of 0

can occasionally be seen; therefore, taking into account the time

series data’s autocorrelation, it was handled as a missing value and

interpolated.

2. All available features were included in the model. When ana-

lyzing the correlation between variables in the data, some variables

have a very high correlation. Nevertheless, because all data aspects

are masked, it is challenging to determine the precise meaning of

each variable, and if the correlation is large, it might be much more

challenging to identify a good variable to omit. It is fair to include

all variables because, in the event of pump failure, if strongly cor-

related variables change swiftly at the same time, employing an

RRCF model that detects changes in variable values will be more

sensitive. In fact, the performance was better.

3. In the analysis using time series data, the data value was

shifted using the K-Shingling technique to detect abnormal er-

rors in advance. Anand and Jeffrey (2010) suggested the shingling

technique to combine short-term pieces of consecutively generated

time series data into a single dataset. By appropriately modifying

the k value and batching and processing the data created within a

30



given time, it has the advantage of lowering the similarity of time

series data.

Figure 3.8: shingling example : k=3

4. There are only seven failures to predict through modeling,

and if a failure occurs, the process of repairing the pump machine

continues. As a result, total data was reconstructed into 7 data

sets by grouping them into cycles beginning with the repair and

ending with the failure.

5. For semi-supervised learning, 3000 initial normal data points

are used to model an initial RRCF before real-time data are added

to the model. Using the sliding window model proposed by Ng and

Dash (2010), we take the oldest data out of 3000 from the model

while adding the latest data to it, and then calculate and return

the codisplacement value of the incoming data from the model.

With the assistance of the domain specialist, the researcher may

have set the initial 3,000 in a more appropriate manner. In the

event of a failure, the machine starts the recovery process. After

the failure and recovery procedure is complete, the model instantly

begins real-time learning and prediction utilizing the data created
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in the subsequent cycle, based on RRCF with data collected one

minute prior to the failure.

6. The model must sound an alarm prior to the failure time be-

cause the challenge at hand is to foresee the failure in advance and

prevent the failure of the pump machine. Therefore, even when as-

sessing a model’s success, the timing of the failure will be based

on whether the failure is classified well in advance, not on whether

the point of failure is well classified. To this end, the performance

of the model will also be evaluated by considering the six points

immediately before the failure as failures.

7. According to Guha et al. (2016), the RRCF model calculates

the data’s codisplacement value concurrently with learning the

new data. The p-value value is calculated by comparing this with

the pre-computed 3000 codisplacement values. Conformal predic-

tion determines significance level based on domain characteristics

or the researcher’s settings, and this level can be chosen from a

variety of factors.

3.3 Analysis Results

3.3.1 RRCF and RRCF+CAD

We will examine the model’s performance when the RRCF+CAD

algorithm’s significance level, which is established by normal data,

is set to 0.003. The reason for setting the lower limit as above is

that of the 3000 data points used for the real-time learning model,
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the value of 1/3000 comes out when the data of interest is the

most extreme codisplacement value. Time series graphs depict the

detection of pump failure using RRCF in black and RRCF+CAD

in red for each cycle from the normal state right after repair to

the point of each failure for 7 pump failures.

We discuss the rationale behind the significance level control

used to determine how extreme the current value is in compar-

ison to the non-conformity score (in RRCF, codsiplacement) of

the previously produced data for RRCF+CAD. As can be seen in

the graph below, using the RRCF+CAD model, we demonstrate

that red dots appear one after another and indicate an impending

machine failure. When the values observed by the pump sensors

change quickly, a failure is anticipated, and an alert signal is re-

leased. On the other hand, it’s crucial to figure out how large the

codisplacement value is while utilizing solely the RRCF model.

That is, the RRCF method by itself does not constitute a proba-

bilistic control (significance level). It is challenging to estimate the

model’s codisplacement value since it depends on the distribution

of the data and the data cycle, and the standards for determining

this value are similarly empirical. As a result, in this thesis, the

choice was based on the number 350, which optimizes the macro-

F2-score among the model’s performances.
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Figure 3.9: failure prediction alerts when 1,2,3,4th failure
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Figure 3.10: failure prediction alerts when 5,6,7th failure

Let’s contrast the RRCF model with the threshold set experi-

mentally with the RRCF+CAD model with the threshold set on a

reasonable basis. Both models failed to forecast the fifth and sixth

failures at all, although it is clear that the failures were similarly

identified beforehand for the other failures. Following is a compar-
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ison of how well the two models performed on all of the data up to

the seventh failure. As described in Chapter 2, evaluation metrics

will use Accuracy, Recall, Precision, F1-score, and F-beta-score.

Since the data is so severely unbalanced, we will mainly compare

Macro-F2-score among the six metrics to check if the model just

predicts failures.

It is confirmed that RRCF+CAD is showing better perfor-

mance on all metrics.

Table 3.2: Evaluation metircs for total data : RRCF vs

RRCF+CAD

3.3.2 RRCF+CAD and Other Machine Learning Mod-

els

Previously, we compared the performance differences between

the existing RRCF model and the RRCF+CAD model proposed

in the paper using the whole dataset with 7 failures. In this part,

the evaluation metrics for seven failure cycles for RRCF+CAD,

Isolation Forest, Local Outlier Factor, and Robust Covariance are

compared.

Isolation Forest is an unsupervised learning method, as men-

tioned in Chapter 2.2.1. In the Python package for data analy-

sis, the ratio, which is the number of anomalies to the total data,

should be set as a hyperparameter. In order to do this, the anomaly
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ratio of 0.003 was applied, the same as in RRCF+CAD. Similarly,

for the Local Outlier Factor model, the number of neighborhood

data to be explored was used equally as the 3000 data that were

retained within the model in RRCF+CAD. By adjusting the Ma-

halanobis distance while taking the covariance structure of the

data into consideration, the Robust Covariance technique identi-

fied anomalous data. The data with the greatest distance from an

anomaly that met the requirement that the ratio of the anomaly

is 0.003 as in the RRCF+CAD model was used for the determi-

nation. The results are listed below, organized by cycle.

Table 3.3: Evaluation metrics for 1th cycle : RRCF+CAD vs others

Table 3.4: Evaluation metrics for 2th cycle : RRCF+CAD vs others
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Table 3.5: Evaluation metrics for 3th cycle : RRCF+CAD vs others

Table 3.6: Evaluation metrics for 4th cycle : RRCF+CAD vs others

Table 3.7: Evaluation metrics for 5th cycle : RRCF+CAD vs others

Table 3.8: Evaluation metrics for 6th cycle : RRCF+CAD vs others

In light of the findings, it cannot be said that RRCF+CAD

consistently outperforms other methods. In particular, the IF model

performed exceptionally well in cycle 5 when compared to other

models, while the robust covariance model performed quite well
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Table 3.9: Evaluation metrics for 7th cycle : RRCF+CAD vs others

in cycle 6. However, the RRCF+CAD model outperformed other

models based on the macro-F2-score in other cycles (1, 2, 3, 4,

and 7). In particular, the RRCF+CAD model updates the data

in real-time over time, achieving results comparable to or bet-

ter than popular algorithms by taking into account its predicted

performance and updating the model. In contrast, other models

measured the performance of the model with full data for each

cycle.
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Chapter 4

Conclusion

Anomaly detection using machine learning is used in various

fields. Signals can be found to stop failures by total score using

the RRCF+CAD method presented in this work. This allows a

typical system to function in any situation where a sensor is used.

Additionally, when it comes to the world of finance, RRCF+CAD

algorithms might be utilized to detect credit fraud and anticipate

fraudulent card transactions.

Additionally, the volume of data increases, and the generated

data loads into the computer quickly. The reality or trend is chang-

ing faster than ever, so it is important to choose wisely based on

the most recent information. Given these changes, efforts to handle

anomalies and their real-time detection will contribute to discov-

ering new values. In this thesis, I examine prior research and use

real-time learning models, the RRCF+CAD model, and a case

study using them.

The RRCF+CAD model processes data in real-time, main-

taining only the appropriate data within the model while demon-
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strating superior performance. Of course, more investigation will

be required to determine how much data is kept in the model.

In addition, it would be a more valuable study if other real-time

models could be compared together. Furthermore, it is expected

in future work that a confidence interval using bootstrapping can

be set while utilizing Conformal Prediction, or that research using

a multiple testing method can be conducted using the codisplace-

ment value of a specific interval.
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국문초록

류환감

통계학과

대학원

서울대학교

본 논문에서는 정상 데이터와는 다른 데이터를 분리해내어 시

스템의 안정을 구축하는 이상치 탐지에 대해 알아본다. 체계적이고

지속가능한시스템을위해서이상데이터를지속적으로감시하고분

류하는 작업은 중요한 역할을 하며, 통계적 방법 뿐만 아니라 머신러

닝/딥러닝을 활용한 다양한 방법론이 사용되고 있다. 본 논문에서는

선행 연구에서 사용된 방법론을 간략히 소개한 뒤, Robust Random

Cut Forest Model과 Conformal Prediction을결합한실시간이상탐

지 방법인 RRCF+CAD 모델을 제안한다. 이 방법은 모델의 실시간

업데이트가 가능하며 이를 기반으로 데이터의 이상 score를 찾아 통

계적 검정 방법을 실행한다.

주요어 : 이상치, 이상 스코어, 준지도학습, 로버스트 랜덤 컷 포레

스트, 적합 예측

학 번 : 2021− 27025
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