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Abstract

When it comes to fixed domain asymptotics for stationary Gaussian random

fields, there are many results emphasizing the role of tail behavior of spectral

densities. Examples are smoothness of random fields, asymptotically optimal

kriging under misspecified spectral density and equivalence of Gaussian mea-

sures. Assuming parametric tail behavior structure on spectral density, this dis-

sertation aims to estimate parameters therein consistently under fixed domain

asymptotics. Specifically, we focus on the data collected on a regular lattice in

a fixed bounded subset of Rd and develop periodogram-based spectral domain

approach to construct objective functions which resemble Whittle likelihood.

Smoothed periodogram emerges as an important statistics during the construc-

tion, thus we first proved consistency and asymptotic normality of smoothed

periodogram under fixed domain asymptotics. Next, based on two types of

smoothed peridograms, tapered periodogram and smoothed periodogram with

a compactly supported kernel, we construct a Whittle type objective function

whose minimizer becomes an estimator for spectral tail behavior parameters.

Consistency and asymptotic order of our estimators are derived with asymp-

totic normality for some cases. As a byproduct, our result enables statistical

inference for the estimated parameters. Simulation experiments are included to

support our theoretical results. As real world applications, we analyze sea ice

profiles data and monthly maximum temperature data.
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Chapter 1

Introduction

Throughout this dissertation, we will consider the data observed on a d-dimensional

rectangular lattice in a bounded region. When the data is collected from a

real-valued mean zero stationary Gaussian process, many statistical procedures

begins with estimating the underlying true measure or equivalently the auto-

covariance structure. Using the relation between autocovariance functions and

spectral densities, we can instead estimate spectral density to get covariance

structure of the process. The structure is often fully or partially parametrized,

in which case estimating these parameters is of great interest. For the most

cases, deriving finite sample properties of parameter estimators is difficult and

mathematically intractable in general so that asymptotic properties of these pa-

rameters are usually investigated. Asymptotic framework suitable to describe

densely observed data over a bounded region is called the fixed domain asymp-

totics.
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We will focus on estimating the tail behavior of f , which means the behavior

of f(ω) as |ω| → ∞. We will consider a family of tail behavior of spectral density

which can be expressed as follows:

f(ω) ∼ c|ω|−αh

(
ω

|ω|
;α,β

)
(1.1)

as |ω| → ∞, where c > 0, α > d, h is a bounded function on a unit sphere

Sd−1 in Rd and a(ω) ∼ b(ω) means that a(ω)/b(ω) → 1 as |ω| → ∞. We call

(c, α,βT )T the spectral tail parameter, or simply the tail parameter and denote

it as θ. The main goal is to propose a method to estimate θ and prove fixed

domain asymptotic properties of the estimator.

Model (1.1) covers wide range of covariance models which are frequently

used for random field modeling. For example, the isotropic Matérn covariance

function, which is given as

C(s;σ2, ν, a) =
σ2(a|s|)ν

Γ(ν)2ν−1
Kν(a|s|), s ∈ Rd,

where σ2 and a > 0 are the variance and scale parameters, ν > 0 is the smooth-

ness parameter and Kν is the modified Bessel function of the second kind, has

the spectral density

f(ω;σ2, ν, a) =
σ2a2νΓ(ν + d/2)

πd/2Γ(ν)(a2 + |ω|2)ν+d/2
, ω ∈ Rd.

Observing f(ω;σ2, ν, a) ∼ σ2a2νΓ(ν+d/2)

πd/2Γ(ν)
|ω|−2ν−d, the isotropic Matérn model

satisfies (1.1) by reparametrizing (c, α, a) =
(
σ2a2νΓ(ν+d/2)

πd/2Γ(ν)
, 2ν + d, a

)
. When

geometric anisotropy is introduced on the Matérn covariance structure so that

the covariance function becomes C(As;σ2, ν, a, A) with an anisotropy matrix A,
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its spectral density can be written simply by replacing |ω| into |A−Tω| from that

of the isotropic Matérn spectral density. Adopting previous reparametrization,

it is easy to see that f(ω; c, α,A, a) ∼ c|A−Tω|−α. By setting h(ω/|ω|;α,A) =

(|A−Tω|/|ω|)−α, we get the tail behavior of the form in (1.1).

Note that only the tail of spectral density, not the whole structure, is mod-

eled in (1.1). There are some theoretical results from which we can notice that

spectral tail behavior matters under fixed domain asymptotics. One is about the

equivalence of Gaussian measures and its relation with parameter estimability.

Look at the following which is Theorem A.1. of Stein (2004):

Suppose that P0 and P1 are two Gaussian measures that makes

Z(s), s ∈ Rd a mean zero stationary Gaussian random field with

spectral densities f0 and f1. If, for some α > d, f0(ω)|ω|α is bounded

away from 0 and ∞ as |ω| → ∞ and, for some finite R,∫
|ω|>R

{
f1(ω)− f0(ω)

f0(ω)

}2

dω < ∞, (1.2)

then P0 and P1 are equivalent on the path of Z(s), s ∈ D, for any

bounded subset D ⊂ Rd.

This theorem serves an important role in Zhang (2004) to prove that in the

isotropic Matérn model it is impossible to estimate σ2 and a separately when

ν is known and d ≤ 3 based on any sample from a bounded region. The proof

is essentially to show that any two spectral densities f0 and f1 contained in

{f(ω;σ2, ν, a) : σ2a2ν = C} for some C > 0 with a fixed ν meet the cri-

terion (1.2), which holds because the ratio f1(ω)/f0(ω) converges to 1 fast

enough. This means that parameters which make different spectral densities

3



close enough on their tails cannot be consistently estimated under fixed do-

main asymptotics, from which we can glimpse the relation between spectral

tail behavior and parameter estimability.

Another is related to an interpolation problem. Specifically, Theorem 12

in page 136 of Stein (1999) implies that if f0 ∈ Qd and f1(ω)/f0(ω) → c

as |ω| → ∞ for some positive c, then the linear interpolation obtained by

using f1 is asymptotically optimal if the true spectral density is f0 when the

observation becomes dense on a bounded region in Rd. Here Qd is the set of

functions f : Rd → R such that f(ω)/|φ(ω)|2 is bounded and away from zero

as |ω| → ∞ for some function φ which is the Fourier transform of a square

integrable function with a bounded support. This suggests us the importance

of spectral tail behavior in that we only need to specify tail behavior of spectral

density when our purpose is prediction.

The spectral tail behavior is also closely related to the roughness or smooth-

ness of random fields. The fractal or Hausdorff dimension is a measure for such

properties. For instance, suppose that Z(s) is a stationary Gaussian random

field on Rd whose variogram γ2(s) = 1
2E(Z(x + s) − Z(x))2 = C(0) − C(s)

satisfies

γ2(s) = |c2s|α +O(|s|α+β) as |s| → 0,

where α ∈ (0, 2], β ≥ 0 and c2 > 0. Then it is known that the graph of Z has the

fractal dimension D = d+ 1− α
2 . The graph becomes smoother when D takes

values close to d, and becomes rougher as it gets close to d+1 (Gneiting et al.,

2012). The behavior of the variogram around the origin, or equivalently that of

the covariance function around the origin, is closely related to the decay rate

4



of the spectral measure on its tail, which is a result of Abelian and Tauberian

theorems (Stein, 1999, Section 2.8). Since spectral density is just a Radon-

Nikodym derivative of a spectral measure, relation between a decay rate of a

spectral density and smoothness of a random field is revealed.

In order to estimate spectral density, periodogram is the most classical yet

widely used statistics. Periodogram is a nonparametric estimator for spectral

density originated from time series analysis. It is well known that for a sta-

tionary time series with a fixed time interval, periodogram is an asymptotically

unbiased estimator for the spectral density (e.g. Brillinger, 2001). Its variance

however does not vanish so that the periodogram is not consistent. Decorrela-

tion effect of a discrete Fourier transform used in the evaluation of periodogram

provides a remedy by smoothing periodogram to lower the variance. Smoothed

peridogram itself can be regarded as a nonparametric estimate for spectral den-

sity, and used to estimate the parameters in spectral density as well. Analogue

for random fields, which is an extension toward d ≥ 2, can be found in literature

such as Guyon (1982) and Heyde and Gay (1993). It is important to mention

that an asymptotic framework underlying these results are called increasing

domain asymptotics, which is an assumption that the distance between neigh-

boring observations is fixed while the size of the observation domain increases.

Natural desire would be to extend the methodologies in the increasing do-

main setting toward fixed domain perspective. However, it incurs extremely

cumbersome calculations for theoretical investigation in general. To the best

of our knowledge, Stein (1995) was the first successful attempt that investi-

gated theoretical aspects of periodogram for random fields under fixed domain

5



asymptotic circumstances. Emphasizing the tail behavior of spectral density,

Stein (1995) assumed f(ω) ∼ c|ω|−α and investigated periodogram when the

data is observed on a lattice lying in [0, 1]d with a neighboring distance δ which

tends to 0. To avoid blow-up tendency of the aliased spectral density around

the origin, Stein (1995) proposed a filter called discrete Laplacian operator

and proved that spatial periodogram achieved from the data filtered with this

filter has asymptotic unbiasedness and uncorrelatedness under fixed domain

asymptotics. Based on these theories, estimating c and α through mimicking

Whittle’s likelihood approximation had been attempted in its discussion sec-

tion. Although simulation results were depicted, the estimation procedure had

not been theoretically investigated.

Inspired by Stein (1995), we define the smoothed spatial periodogram and

investigate its asymptotic properties under fixed domain asymptotics when the

underlying spectral density satisfies (1.1). Our smoothed periodogram is de-

fined by integrating periodogram with a kernel function. We then define an

objective function using smoothed periodograms whose form can be seen as a

locally smoothed version of Whittle’s approximated likelihood. By minimizing

the objective function, we prove that the minimizer becomes a consistent es-

timator for the spectral tail parameter θ = (c, α,βT )T in (1.1). The order of

convergence for our estimator is also derived as well as asymptotic distribution

for some cases.
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Chapter 2

Literature Reviews

2.1 Studies on Periodograms for Random Fields

As in our method, most spectral domain approaches are based on periodograms.

Periodograms for random fields are studied in various literature. Guyon (1982)

studied periodogram of a stationary random fields on a d-dimensional lattice

under increasing domain perspective and discovered that there is a bias in pe-

riodogram called the edge effect which becomes significant when d ≥ 2. He

suggested to use an unbiased periodogram to remove the edge effect. Heyde

and Gay (1993) derived asymptotic distribution of smoothed periodogram for

random fields under increasing domain setting where the periodogram therein

is unbiased as in Guyon (1982). As mentioned before, Stein (1995) investigated

spatial periodograms under fixed domain asymptotic framework. Lim and Stein

(2008) generalized the result of Stein (1995) toward multivariate random fields
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and derived asymptotic normality of locally smoothed spatial periodogram ma-

trix.

Some trials have been made to apply periodogram to irregularly spaced data.

Matsuda and Yajima (2009) constructed irregularly spaced observation on Rd

via sampling location randomization and considered mixed asymptotic regime.

They evaluated periodogram from irregularly spaced stationary random fields

and showed that smoothed periodogram serves as a nonparametric estimate for

spectral density. Rao (2018) studied periodogram based statistics for randomly

spaced data under increasing domain asymptotics and fixed domain asymp-

totics. Guinness (2019) used periodic embedding to estimate spectral density

of a random field on a d-dimensional lattice from incomplete gridded data.

Compared to the aforementioned works, our result for smoothed peridogram

can be seen as a fixed domain asymptotic version of Heyde and Gay (1993) and

is different from Stein (1995) and Lim and Stein (2008) since our smoothed

periodogram is defined by global integration over frequency domain where those

in two works are defined by weighted local summation on a shrinking set in a

frequency domain.

2.2 Parameter Estimation using Spectral Analysis

Parameter estimation through spectral domain approach usually involves Whit-

tle’s idea of likelihood approximation and its variants. Guyon (1982) constructed

negative Whittle likelihood using smoothed unbiased periodogram and prove

consistency and asymptotic order of its minimizer. Robinson (1995) considered

8



the Gaussian time series model with spectral density f behaves like f(ω) ∼

c|ω|−α as |ω| → 0 for c > 0 and α ∈ (−1, 1). Under increasing domain set-

ting, he showed that the minimizer of partially discretized negative Whittle’s

approximated likelihood becomes a consistent estimator for α with asymptotic

normality. Stein (1995) is the work on fixed domain asymptotics when the spec-

tral density f of Gaussian random field reveals the tail behavior f(ω) ∼ c|ω|−α

as |ω| → ∞ for c > 0 and α > d. By constructing discretized Whittle likeli-

hood based on his spatial periodogram theory, he showed simulation results for

estimating c and α.

Sharing the same spectral density assumption as in Stein (1995), Wu et al.

(2013) and Wu and Lim (2016) proposed estimators for c and α under fixed

domain asymptotic regime. Their estimation were based on the negative local

Whittle likelihood whose theories are based on periodogram properties demon-

strated in Lim and Stein (2008). Wu et al. (2013) proposed a consistent esti-

mator for c when α is known and a consistent estimator for α when c is an

arbitrary fixed value, and Wu and Lim (2016) more focused on the estimation

of the smoothness parameter α when c is unknown and reduced the bias of the

estimator.

For irregularly spaced data, Fuentes (2007) approximated the likelihood via

Whittle likelihood when the irregularity is considered as missing values on a reg-

ular lattice in Rd. Matsuda and Yajima (2009) showed that the minimizer of a

local Whittle likelihood constructed with the smoothed periodogram evaluated

from their irregular data periodogram serves as a consistent parameter estima-

tor with asymptotic normality under mixed domain asymptotics. Investigation

9



on the Whittle likelihood itself to reduce the bias can be found in Sykulski et al.

(2019) and Rao and Yang (2021), both of which are targeted to time series data.

Instead of removing bias from periodogram as in Guyon (1982), Sykulski et al.

(2019) removed the bias by replacing the spectral density in Whittle likelihood

into the actual expected value of periodogram. Rao and Yang (2021) compared

Whittle likelihood with the original Gaussian likelihood to get an approxima-

tion error and proposed a new version of the Whittle likelihood which can yield

better an estimator with satisfactory finite sample properties.

Our work is related to Robinson (1995); Wu et al. (2013); Wu and Lim

(2016) in that parameters in semiparametric models for spectral density has

been estimated. Especially, our work is close to Wu et al. (2013) and Wu and

Lim (2016) because these works also deal with the spectral tail parameter es-

timation. However, the spectral tail behavior model in our work incorporates

much broader and general classes of spectral densities compared to them. More-

over, if we assume f(ω) ∼ c|ω|−α as |ω| → ∞ which is a special case of (1.1),

the method we propose can simultaneously estimate c and α consistently with

asymptotic normality which had not been possible in Wu et al. (2013) and Wu

and Lim (2016). Additionally, our idea to remove bias in the stage of construct-

ing an objective function is similar to that in Sykulski et al. (2019).
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2.3 Parameter Estimation under Fixed Domain Asymp-

totics

Under fixed domain perspective, spatial domain approaches to estimate pa-

rameters in a covariance function are also actively studied. Ying (1991) shows

that when Z(s), s ∈ [0, 1] is Gaussian with an exponential covariance structure

C(s;σ2, a) = σ2e−a|s|, we cannot estimate both σ2 and a consistently. Note that

this is the special case of Matérn when ν = 0.5. Instead, it is shown that σ2a,

called the microergodic parameter in literature, can be consistently estimated

through MLE methods.

Ying (1993) shows that when Z(s), s ∈ [0, 1]d is Gaussian and the co-

variance structure is multiplicative exponential given as C(s;σ2, a1, · · · , ad) =

σ2e−
∑d

j=1 a1|sj | and d ≥ 2, all the parameters σ2 and a1, · · · , ad are consistently

estimable through the MLE based on complete lattice observations. Zhang

(2004) proves that when Z(s), s ∈ D for a bounded subset D ⊂ Rd with a

Matérn covariance structure, we cannot estimate both σ2 and a consistently

when the smoothness parameter ν is known. However the microergodic pa-

rameter σ2a2ν can be estimated consistently through the MLE by fixing a as

any value, say a1, and optimizing the likelihood with respect to σ2. This re-

sult holds when the observations at different stages are nested, ν is known and

d ≤ 3. Kaufman et al. (2008) studied the fixed domain asymptotics of a tapered

MLE, which pursues computational efficiency in inverting a covariance matrix,

for σ2a2ν when the covariance structure is Matérn with a known ν and d ≤ 3.

They proved the strong consistency of their estimator. Du et al. (2009) further
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derived asymptotic distribution of a tapered MLE in Kaufman et al. (2008)

when d = 1, and Wang and Loh (2011) extended this result to d ≤ 3.

For the general d, Anderes (2010) showed that σ2a2ν and A can be both

consistently estimated using squared increments when the underlying covari-

ance model is anisotropic Matérn with an anisotropy matrix A and a known

ν. Moreover, the work also showed that σ2 and a can also be estimated sep-

arately when d ≥ 5. Note that this work assumed lattice observation as in

our work. Bevilacqua et al. (2019) assumed their covariance function belongs

to a generalized Wendland class. This model contains four parameters, µ, κ, β

and σ2. Here κ can be seen as a smoothness parameter whose role is similar

to ν in the Matérn class. By assuming µ and κ are known, they showed that

σ2β−1−2κ can be consistently estimated under fixed domain asymptotics when

d ≤ 3. While all the aforementioned results treated the smoothness parameter

known, Gneiting et al. (2012) provides a comprehensive review for estimating

a smoothness parameter. Most of the methods presented in it are about fractal

dimension of time series, which is related to the smoothness parameter when

d = 1. Some methods applicable for spatial data with d = 2 are also introduced

in its Section 4. For the simultaneous estimation of a microergodic parameter

and a smoothness parameter of the Matérn class, Loh et al. (2021) recently

proposed an estimator for ν and then estimated σ2a2ν based on the estimated

ν so that both are consistent under the fixed domain asymptotics with various

sampling designs when d ≤ 3.

Since our method can also be applied to a parametric model, we can compare

our estimator to those in the literature. When we apply our method to the

12



Matérn model, for instance, what we can get is a jointly consistent estimator

for σ2a2ν and ν as in Loh et al. (2021). One difference is on the sampling scheme,

which is a regular lattice, while various irregular lattice designs are covered in

Loh et al. (2021). Another is while the consistency in Loh et al. (2021) is verified

d ≤ 3, our method is proved to be valid for general d.
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Chapter 3

Preliminaries

3.1 Prewhitening Random Fields and Periodogram

Throughout this work, we suppose that Z is a real-valued stationary Gaussian

random field on Rd with spectral density f(ω),ω ∈ Rd. We assume that our

observation is from δZd so that the distance between neighboring observations

in each direction is δ. A fixed domain asymptotic regime is then endowed by

taking δ ↓ 0. Note that {Z(δJ),J ∈ Zd} can be seen as a lattice process on Zd

whose spectral density f̄δ(ω),ω ∈ Td is given as

f̄δ(ω) =
1

δd

∑
Q∈Zd

f

(
ω + 2πQ

δ

)
.

Here T is a torus R/2πZ = [−π, π]. On T, −π and π are identified to equip a

periodic structure. Hence functions defined on a d-dimensional torus Td which

will constantly appear in this work should be understood to possess periodicity.

Unfortunately, f̄δ is changing under the fixed domain asymptotics as δ ↓ 0
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and it typically shows a blow-up tendency around the origin. For instance,

suppose f(ω) ∼ c|ω|−α as |ω| → ∞. For f to be integrable, we need α > d.

We then have δd−αf̄δ(ω) → c
∑

Q∈Zd |ω + 2πQ|−α as δ ↓ 0 for each ω ̸=

0. The limit function is clearly not integrable since it explodes like c|ω|−α

around the origin. For further explanation, see Stein (1995). As a remedy to

suppress this explosive behavior, Stein (1995) suggested to prewhiten the data

using the discrete Laplacian operator, iteratively, if it is needed. Since we also

take this idea into account, we briefly review this operator. Define the lattice

process Yδ(J),J ∈ Zd as Yδ(J) = Z(δJ). The process after applying the discrete

Laplacian operator τ -times is defined by the iterative relation

Y τ
δ (J) =

d∑
j=1

{
Y τ−1
δ (J+ ej)− 2Y τ−1

δ (J) + Y τ−1
δ (J− ej)

}
, τ ∈ N

with Y 0
δ (J) = Yδ(J), where ej is the unit vector along the jth coordinate axis.

Then the spectral density of Y τ
δ (J), denoted by f̄ τ

δ (ω), is given as

f̄ τ
δ (ω) =

1

δd


d∑

j=1

4 sin2
(ωj

2

)
2τ ∑

Q∈Zd

f

(
ω + 2πQ

δ

)
, ω ∈ [−π, π]d.

By taking τ such that 4τ − α > 0 under the the tail behavior assumption, we

can successfully suppress the explosive behavior as we desired.

Now, consider that we have the filtered data {Y τ
δ (J) : J ∈ Zd

N} where

ZN = {0, 1, · · · , N − 1}. Since this data is on a rectangular lattice comprised

of Nd-data with neighboring distance δ along each coordinate axis, we can

still impose the fixed domain asymptotic circumstance by letting Nδ fixed.

Hereafter, we set Nδ = 1 without loss of generality, since the whole theory can

be adapted straightforwardly for the case when Nδ = b ̸= 1. A nonparametric
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estimator of the spectral density called fixed domain periodogram, or simply

periodogram evaluated from this form of data is defined as

Iτ
N,δ(ω) =

1

(2πN)d

∣∣∣∣∣∣
∑
J∈Zd

N

Y τ
δ (J) exp

−i⟨ω,J⟩

∣∣∣∣∣∣
2

,

whose first proposal can be found in Stein (1995) and its multivariate gen-

eralization is in Lim and Stein (2008). In Chapter 4, it will be shown that

a smoothed fixed domain periodoram with a smoothing kernel ϕ(·), written as∫
Td ϕ(ω)Iτ

N,δ(ω)dω, has a nondegenerated limit after appropriate scaling under

a mild condition on the spectral density.

3.2 Spectral Tail Behavior Model

Recall that we assumed (1.1) for the tail model of the spectral density, which

we restate here

f(ω) ∼ c|ω|−αh

(
ω

|ω|
;α,β

)
as |ω| → ∞,

where c > 0, α > d and h(x;α,β), x ∈ Sd−1 is a bounded parametrized func-

tion defined on a unit sphere in Rd. The function h, for instance, enables to

incorporate geometric anisotropy into the model. Under this model, we have

δd−αf̄ τ
δ (ω) → c


d∑

j=1

4 sin2
(ωj

2

)
2τ ∑

Q∈Zd

|ω + 2πQ|−αh

(
ω + 2πQ

|ω + 2πQ|
;α,β

)

=: g(ω; c, α,β) (3.1)

for each ω ̸= 0 as δ ↓ 0. Since (c, α,β) is the set of parameters that affects tail

behavior of the spectral density, we call it spectral tail parameters or shortly tail

16



parameters. The set of the tail parameters will be expressed as θ = (c, α,βT )T .

It can be shown that g(ω;θ) → 0 as ω → 0 when 4τ − α > 0. Since we will

assume 4τ−α > 0, we define g(0;θ) = 0 hereafter. We often write g(·;θ) or more

simply g(θ), omitting its argument ω, to indicate the function ω 7→ g(ω;θ).

3.3 Notions and Notations

We finish this chapter with introducing some notions and notations. The d-

dimensional Fejér kernel with an order M ∈ N, denoted as KM is given as

KM (ω) =
d∏

j=1

1

2πM

sin2
(
Mωj

2

)
sin2

(ωj

2

)
=

1

(2πM)d

∣∣∣∣∣∣
∑

J∈Zd
M

ei⟨ω,J⟩

∣∣∣∣∣∣
2

=
1

(2π)d

∑
J:∥J∥∞≤M

aM−|J|e
i⟨ω,J⟩,

where ∥·∥∞ is a max-norm and aM−|J| =
∏d

j=1

(
1− |Jj |

M

)
. Convolution between

two functions is expressed using ∗ so that the convolution of g and KM is

denoted as g ∗ KM . We also use the subscripted expression gM for simplicity.

That is,

gM (ω) = (g ∗KM )(ω) =

∫
Td

g(ω − υ)KM (υ)dυ =

∫
Td

g(υ)KM (ω − υ)dυ.

When this gM is again convoluted with another Fejér kernel with an order L,

this is denoted as gL,M . Since the convolution operation is commutative and

associative, we have gL,M = gM ∗KL = gL ∗KM .

The notation C1(Td) is the set of continuously differentiable function on

Td. When a vector-valued function is in C1(Td), it means each of component

functions is in C1(Td). Notation a(ω) ≲ b(ω) means that there exists C > 0
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such that |a(ω)| ≤ C · b(ω) for all ω, where C is independent of any variables,

functions and arguments on both sides including a, b and ω. When a(ω) ≲ b(ω)

and b(ω) ≲ a(ω), we write a(ω) ≍ b(ω).
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Chapter 4

Fixed Domain Smoothed
Periodogram

4.1 Fixed Domain Asymptotics for Smoothed Peri-

odogram

Before we introduce asymptotic properties of the proposed smoothed peri-

odograms, we provide our motivation to use smoothed periodograms in esti-

mating the tail parameter θ.

It can be easily checked that the expected value of periodogram Iτ
N,δ(ω)

is expressed as EIτ
N,δ(ω) = (f̄ τ

δ ∗KN )(ω). If the convergence of δd−αf̄ τ
δ (ω) to
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g(ω;θ) is uniform in ω, we have

sup
ω∈Td

∣∣∣δd−αEIτ
N,δ(ω)− g(ω;θ)

∣∣∣
≤ sup

ω∈Td

∣∣∣((δd−αf̄ τ
δ − g(θ)) ∗KN )(ω)

∣∣∣+ sup
ω∈Td

|(g(θ) ∗KN )(ω)− g(ω;θ)|

→ 0

as N → ∞. The second term goes to zero due to the well-known property of

the Fejér kernel. See for instance the proof of Proposition 1.15 in Muscalu and

Schlag (2013). We can then mimic Whittle’s (negative) likelihood approxima-

tion for estimating θ which results in

LN (θ) =

∫
Td

{
Iτ
N,δ(ω)

δα−dg(ω;θ)
+ log

(
δα−dg(ω;θ)

)}
dω.

When the true tail parameter is θ0 = (c0, α0,β
T
0 )

T , the previous argument says

that EIτ
N,δ(ω) ≈ δα0−dg(ω;θ0) under the true measure. Hence we may expect

LN (θ) to be close to

L0(θ) =

∫
Td

{
δα0−dg(ω;θ0)

δα−dg(ω;θ)
+ log

(
δα−dg(ω;θ)

)}
dω

under the true measure. If this is the case, we expect that the minimizer of LN

would be close to the true tail parameter θ0. This can be seen from the fact

that L0 is equivalent to∫
Td

{
δα0−dg(ω;θ0)

δα−dg(ω;θ)
− 1− log

(
δα0−dg(ω;θ0)

δα−dg(ω;θ)

)}
dω

as an objective function for minimization with respect to θ, and the function

x 7→ x− 1− log x is nonnegative and uniquely minimized at x = 1. These two

facts imply that θ0 minimizes L0(θ), which now justifies our motivation for
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constructing LN . If we can prove that the minimizer of LN , say θ̂, is consistent

to θ0, then we can further obtain an asymptotic order and distribution of the

estimator through the classical approximation

θ̂ − θ0 ≈ −
(

∂2

∂θ∂θT
LN (θ0)

)−1(
∂

∂θ
LN (θ0)

)
.

Answering whether the above approach is theoretically valid eventually boils

down to the following problem: for which function ϕ(ω) does δd−α
∫
ϕ(ω)Iτ

N,δ(ω)dω

becomes close to
∫
ϕ(ω)g(ω;θ)dω? Moreover, can we derive the joint limiting

distribution of
∫
Φ(ω)Iτ

N,δ(ω)dω = (
∫
ϕ1(ω)Iτ

N,δ(ω)dω, · · · ,
∫
ϕp(ω)Iτ

N,δ(ω)dω)T

for a given p-dimensional vector-valued function Φ = (ϕ1, · · · , ϕp)
T ? We answer

these questions with the next theorem, which can be said as the smoothed pe-

riodogram theorem under the fixed domain asymptotics. Before we proceed,

we would like to mention that this can be seen as a fixed domain asymptotic

analogue of Heyde and Gay (1993).

Theorem 4.1. Suppose we have a mean zero stationary Gaussian random field

Z on Rd whose spectral density is f with tail behavior (1.1). Apply the discrete

Laplacian operator τ times to get Y τ
δ whose spectral density is f̄ τ

δ as defined in

Chapter 3. Assume that δd−αf̄ τ
δ (ω) and its first partial derivatives with respect

to ω converge uniformly. We also assume that δd−αf̄ τ
δ (ω) and its limit g(ω;θ)

is in C1(Td). Suppose there is a vector-valued function Φ = (ϕk)
p
k=1 in C1(Td).

With the periodogram Iτ
N,δ defined as in Chapter 3, a fixed domain smoothed

periodogram has the following limiting distribution:

Nd/2δd−α

∫
Td

Φ(ω)
(
Iτ
N,δ(ω)− EIτ

N,δ(ω)
)
dω

d−−−−→
N→∞

N
(
0, (2π)dΣ

)
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where

Σ =

∫
Td

{
Φ(ω)ΦT (ω) +Φ(ω)ΦT (−ω)

}
g2(ω;θ)dω.

The expectation of the fixed domain smoothed periodogram also has the following

convergence result:

δd−α

∫
Td

Φ(ω)EIτ
N,δ(ω)dω −−−−→

N→∞

∫
Td

Φ(ω)g(ω;θ)dω.

The proof relegated in the appendix is based on calculations of the limits

of all the joint cumulants. Note that ϕ1, · · · , ϕp ∈ C1(Td) is required which

is a stronger condition than integrability or continuity. Intuitively speaking,

this is because the integration with a function that resembles a Dirichlet kernel

appears in the cumulant representation. It is well known that unlike the Fejér

kernel, convolution of a function with a Dirichlet kernel may not converge to the

true function value when the function is just integrable or continuous. We can

anticipate similar phenomenon from the cumulants of smoothed periodograms,

which justifies our possibly restrictive C1 assumption on ϕ1, · · · , ϕp.

This C1 requirement turns out to be critical indeed for answering whether

the usage of LN is valid or not. When we use Theorem 4.1 to answer this

question, the reciprocal of g(·;θ) is used as ϕ. However, we have g(ω;θ) ≍

|ω|4τ−α under the tail assumption (1.1). Then the reciprocal of g(ω;θ) explodes

near the origin under the assumption 4τ − α > 0, from which 1
g(·;θ) /∈ C1(Td).

Hence we cannot apply Theorem 4.1 to verify whether
∫ δd−α0Iτ

N,δ

g(·;θ) behaves like∫ g(·;θ0)
g(·;θ) when the true tail parameter is θ0.
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4.2 Tapered Periodogram and Smoothed Periodogram

with a compactly supported kernel

Although the previous attempt to estimate θ using LN is not successful, it helps

us to devise a suitable kernel to construct a Whittle type objective function.

Suppose we choose ϕ(·) = K(· −ω) for some ω ∈ Td, where K is a C1 function

on Td whose mass is mostly concentrated around the origin. Then, Theorem 4.1

provides theoretical background that δd−α
∫
K(x− ω)Iτ

N,δ(x)dx will approach

to
∫
K(x − ω)g(x;θ)dx as N → ∞. We can expect that

∫
K(x − ω)g(x;θ)dx

would contain essential information about g(ω;θ) since the mass of K(· −ω) is

mostly concentrated around ω. Denote
∫
K(x−ω)Iτ

N,δ(x)dx as Îτ
N,δ,K(ω) and∫

K(x − ω)g(x;θ)dx as gK(ω;θ). By collecting Îτ
N,δ,K(ω) from many distinct

ω ∈ Ω ⊂ Td, we can gather the information about g(ω;θ) at ω ∈ Ω in the form

of gK(ω;θ). This can be exploited to estimate the tail parameter. Assuming

that the true tail parameter is θ0, Theorem 4.1 implies that δd−α0 Îτ
N,δ,K(ω)

gets close to gK(ω;θ0) as N → ∞. Then by seeking θ̂ that makes Îτ
N,δ,K(ω)

and δα̂−dgK(ω; θ̂) as close as possible for all ω ∈ Ω, we could have θ̂ close to

θ0. In fact, this approach is the essence of the method we propose, which will

be theoretically investigated in Chapter 5.

There are several ways to choose a kernel K. One is to use a compactly sup-

ported function. For instance, assume that there is a function K ∈ C1(Td) such

that K ≥ 0,K(x) = K(−x),
∫
K(x)dx = 1 and K(x) = 0 whenever ∥x∥∞ ≥ 1.

With K(·) = 1
hdK

( ·
h

)
for small h > 0, we can get a suitable kernel function.

In this case, we write Îτ
N,δ,K(ω) as Îτ

N,δ,h(ω) to show the dependency of the
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smoothed periodogram on the bandwidth h clear, and call it the smoothed peri-

odogram with the kernel K and the bandwidth h. The benefit of this construction

is that the corresponding smoothed periodograms become asymptotically un-

correlated. Observe that Theorem 4.1 implies that

cov
(
δd−αÎτ

N,δ,h(ω), δd−αÎτ
N,δ,h(υ)

)
→
(
2π

h2

)d ∫
Td

{
K

(
x− ω

h

)
K

(
x− υ

h

)
+K

(
x− ω

h

)
K

(
−x− υ

h

)}
g2(x;θ)dx

as N → ∞. Because of the properties of K, the right hand side becomes 0 if

∥ω±υ∥∞ ≥ 2h. By taking Ω ⊂ Td∩{ω : 0 < ω1 < π} to satisfy ∥ω−υ∥∞ ≥ 2h

for all ω,υ ∈ Ω such that ω ̸= υ, the smoothed periodograms {ÎN,δ,h(ω) : ω ∈

Ω} are asymptotically mutually independent, which is a handy property to work

with.

Another is to use the Fejér kernel. Its advantage is revealed in the evaluation

of Îτ
N,δ,K(ω) in practice. From the definition of Îτ

N,δ,K, we can see that

Îτ
N,δ,K(ω) =

1

(2πN)d

∫
Td

K(x− ω)

∣∣∣∣∣∣
∑
J∈Zd

N

Y τ
δ (J)e

−i⟨x,J⟩

∣∣∣∣∣∣
2

dx

=
1

(2π)d

∑
J:∥J∥∞≤N

 1

Nd

∑
K:J+K,K∈Zd

N

Y τ
δ (J+K)Y τ

δ (K)


∫
Td

K(x− ω)e−i⟨x,J⟩dx

=:
1

(2π)d

∑
J:∥J∥∞≤N

Ĉτ
δ (J)K̂(J)e−i⟨ω,J⟩,

where K̂ is the Fourier coefficient of K given as

K̂(J) =

∫
Td

K(x)e−i⟨x,J⟩dx.

Now, consider to take K = KM , where KM is the Fejér kernel of an order

M , for some large enough M ∈ N yet M much less than N . We can write
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Îτ
N,δ,K = Îτ

N,δ,M to explicitly show its dependency to M . Since

KM (x) =
1

(2πM)d

∣∣∣∣∣∣
∑

J∈Zd
M

ei⟨x,J⟩

∣∣∣∣∣∣
2

=
1

(2π)d

∑
J:∥J∥∞≤M

aM−|J|e
i⟨x,J⟩

where aM−|J| =
∏d

j=1

(
1− |Jj |

M

)
, we have

K̂M (J) =


aM−|J|, ∥J∥∞ ≤ M,

0, otherwise.

Then Îτ
N,δ,M (ω) becomes

Îτ
N,δ,M (ω) =

1

(2π)d

∑
J:∥J∥∞≤M

aM−|J|Ĉ
τ
δ (J)e

−i⟨ω,J⟩.

The benefit of this choice is that it is enough to store Ĉτ
δ (J) for ∥J∥∞ ≤ M to

evaluate Îτ
N,δ,M (ω) for any ω ∈ Td. There are only (2M − 1)d values of such

Ĉτ
δ (J), which is much less than Nd so that it saves our memory in computation

in practice. Furthermore, if we set Ω =
{
2πK
M : K ∈ Zd

}
and evaluate Îτ

N,δ,M (ω)

at ω ∈ Ω, we can exploit the fast Fourier transform algorithm.

Compared to the original periodogram Iτ
N,δ(ω) which can be expressed as

Iτ
N,δ(ω) =

1

(2πN)d

∣∣∣∣∣∣
∑
J∈Zd

N

Y τ
δ (J)e

−i⟨ω,J⟩

∣∣∣∣∣∣
2

=
1

(2π)d

∑
∥J∥∞≤N

 1

Nd

∑
K:J,J+K∈Zd

N

Y τ
δ (J+K)Y τ

δ (K)

 e−i⟨ω,J⟩

=:
1

(2π)d

∑
∥J∥∞≤N

Ĉτ
δ (J)e

−i⟨ω,J⟩,

the summation in Îτ
N,δ,M (ω) is up to M which can be much less than N . Hence,

we call Îτ
N,δ,M (ω) as the tapered periodogram of an order M . One property of
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the tapered periodogram is that it is guaranteed to be nonnegative. Although

Iτ
N,δ is always nonnegative, there is no positivity restriction on ϕ in Theorem 4.1

so that the corresponding smoothed periodogram can be negative for general ϕ.

However, the Fejér kernel, which is always nonnegative, guarantees the tapered

periodogram to be nonnegative. The smoothed periodogram with a compactly

supported kernel also has this property since we use a kernelK satisfyingK ≥ 0.

Closing the current chapter, we would like to leave two comments. The first

is that the order M for the tapered periodogram and the bandwidth h for the

smoothed periodogram with a compactly supported kernel are considered to be

fixed throughout this work. We may expect δd−αÎτ
N,δ,M (ω) and δd−αÎτ

N,δ,h(ω)

to converge toward g(ω;θ) for each ω by letting M increase to infinity or h

decrease to zero along N , yet this needs further theoretical investigation to be

justified. The other is that under the fixed domain asymptotics, the smoothed

periodogram
∫
ϕ(ω)Iτ

N,δ(ω)dω needs to be scaled by δd−α to have a nondegen-

erate limit
∫
ϕ(ω)g(ω;θ)dω which is implied by Theorem 4.1. When we have

little knowledge for α, the scaling factor becomes an unknown quantity. Hence

the smoothed periodogram itself cannot be used as a nonparametric estimator

in this case. However, we can estimate α consistently under the tail assumption

(1.1) and some regularity assumptions, which is proved in Chapter 5.
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Chapter 5

Tail Parameter Estimation

5.1 Estimation and Fixed Domain Asymptotic Result

Based on the discussion in Chapter 4, we compare Îτ
N,δ,M (ω) or Îτ

N,δ,h(ω) with

δα−dgM (ω;θ) to estimate θ, where gM (·;θ) = g(·;θ)∗KM . Consider to minimize

∑
ω∈ΩM

{
Îτ
N,δ,M (ω)

δα−dgM (ω;θ)
+ log

(
δα−dgM (ω;θ)

)}

with respect to θ for some prespecified finite set ΩM . The idea for this construc-

tion is similar to LN introduced in the beginning of Chapter 4. Speaking the

conclusion first, however, the minimizer of the above has an N−1-order bias.

This bias is the same type of bias with the one introduced in Guyon (1982)

and is called the edge effect bias. The edge effect bias in the fixed domain

asymptotics is originated from the convergence rate of δd−αEÎτ
N,δ,M (ω) toward
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gM (ω;θ). The brief description is that we have

EÎτ
N,δ,M (ω) = f̄ τ

N,δ,M (ω) := (f̄ τ
δ ∗KN ∗KM )(ω)

which is getting close to gN,M (ω;θ) = (g(θ) ∗ KN ∗ KM )(ω) after scaling by

δd−α with a speed of δd−αf̄ τ
δ (ω) getting close to g(ω;θ), while gN,M (ω;θ) goes

to gM (ω;θ) with a speed of N−1. That is to say, even when δd−αf̄ τ
δ (ω) goes to

g(ω;θ) faster thanN−1, the difference between δd−αEÎτ
N,δ,M (ω) and gM (ω;θ) is

of order N−1. To alleviate the edge effect, we propose to replace gM in the above

objective function with gN,M . The replacement with gN,M just removes the

source of N−1-order bias so that it enhances the performance of the estimator.

Note that when we are working with Îτ
N,δ,h, the smoothed periodogram with a

kernel K and a bandwidth h, gN,h is used instead of gN,M where

gN,h(ω;θ) =

∫
Td

∫
Td

g(υ)KN (x− υ)
1

hd
K

(
x− ω

h

)
dυdx.

When the tapered periodogram is in use, we take ΩM =
{
2πJ
M : J ∈ Zd

M

}
\

(−t, t)d ⊂ Td for some given small t > 0. Benefit of choosing frequencies of the

form 2πJ
M has been already discussed in the previous section. Puncturing some

small set around the origin is to avoid values close to the origin in the denom-

inator. Note that g(ω;θ) is defined as zero and continuous at the origin when

4τ −α > 0, which makes gN,M (ω;θ) also close to zero around the origin as well

when both N and M are large. When the smoothed periodogram with a com-

pactly supported kernel is in use, we take h = π
M for some large M ∈ N and set

Ωh = ΩM =
{
2hJ : J ∈ Zd

M , 0 < J1 <
M
2

}
\ (−t, t)d. This choice not only allows

us to exploit fast Fourier transform for evaluating smoothed periodograms but
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also makes the corresponding smoothed periodograms asymptotically uncorre-

lated. By the choice of h depending on the natural number M , we may write

Îτ
N,δ,h as Îτ

N,δ,M , which is the same notation for tapered periodogram. From

now and below, we will use Îτ
N,δ,M , gN,M and ΩM to indicate both versions of

objective functions.

Along with the above discussion, we arrive at the next objective function

which can be interpreted as a locally smoothed version of negative Whittle

likelihood:

LN (θ) =

(
2π

M

)d ∑
ω∈ΩM

{
Îτ
N,δ,M (ω)

δα−dgN,M (ω;θ)
+ log

(
δα−dgN,M (ω;θ)

)}
.

In order to prove that the minimizer of LN consistently estimates the tail pa-

rameter, we impose mild regularity assumptions on the parameter space and

the limiting function g(ω;θ) in the following:

Assumption 1.

(A1) The parameter space is Θ = R+ × A × B so that c ∈ R+, α ∈ A and

β ∈ B. A is a compact interval [αL, αU ] ⊂ (d, 4τ) and B is a compact set

with a nonempty interior B◦. We also assume that {g(ω;θ) : ω ∈ Td}

is identifiable on Θ, i.e., if there exists θ,θ′ ∈ Θ satisfying g(ω;θ) =

g(ω;θ′) almost everywhere on ω ∈ Td, we have θ = θ′. Recall that

g(ω;θ) is of the form

g(ω;θ) = c


d∑

j=1

4 sin2
(ωj

2

)
2τ ∑

Q∈Zd

|ω + 2πQ|−αh

(
ω

|ω|
;α,β

)

with θ = (c, α,βT )T when ω ̸= 0 and g(0;θ) is defined as zero.
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(A2) There exists a constant γ > 0 such that

sup
ω∈Td

∣∣∣δd−αf̄ τ
δ (ω)− g(ω;θ)

∣∣∣ = O(δγ)

for each θ ∈ Θ. We allow γ = γ(θ) to depend on θ. Moreover, all the

first partial derivatives of δd−α(ω) with respect to ω converge uniformly.

(A3) g(·; 1, α,β) ∈ C1(Td),

sup
{
g(ω; 1, α,β) : ω ∈ Td, (α,β) ∈ A× B

}
< ∞

and

sup

{∣∣∣∣ ∂g∂ωj
(ω; 1, α,β)

∣∣∣∣ : ω ∈ Td, (α,β) ∈ A× B, j = 1, · · · , d
}

< ∞.

(A4) For each t > 0,

inf
{
g(ω; 1, α,β) : ω ∈ Td \ (−t, t)d, (α,β) ∈ A× B

}
> 0.

(A5) (α,β) 7→ g(ω; 1, α,β) is continuous on A× B for each ω ∈ Td.

(A6) ∂g(·;1,α,β)
∂(α,β) and ∂2g(·;1,α,β)

∂(α,β)∂(α,β)T
are C1(Td), continuous with respect to (α,β)

for each ω ∈ Td, and uniformly bounded on ω ∈ Td and (α,β) ∈ A×B.

Under the above assumptions, we prove that the minimizer of LN is a con-

sistent estimator for the tail parameter under the fixed domain asymptotics

and derive the asymptotic order of the estimator as well. For some cases, we

can also derive the asymptotic distribution of the estimator. These results are

stated in the following theorem.
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Theorem 5.1. Suppose we have a mean zero stationary random field Z on

Rd whose spectral density is f with the tail behavior (1.1). Apply the discrete

Laplacian operator τ times to obtain Y τ
δ whose spectral density is f̄ τ

δ which is

described in Chapter 3. With the periodogram Iτ
N,δ which is defined in Chapter 3,

M ∈ N and a small positive number t > 0, consider Îτ
N,δ,M (ω), which represents

either the tapered periodogram of an order M or the smoothed periodogram with

a kernel K and a bandwidth h where both are introduced in Chapter 4. Here,

a kernel K should satisfy K ∈ C1(Td),K ≥ 0,K(x) = K(−x),
∫
K(x)dx = 1

and K(x) = 0 whenever ∥x∥∞ ≥ 1. Consider Îτ
N,δ,M (ω) at frequencies ω ∈

ΩM where ΩM =
{
2πJ
M : J ∈ Zd

}
\ (−t, t)d ⊂ Td for the tapered periodogram

and ΩM = Ωh =
{
2hJ : J ∈ Zd

M , 0 < J1 <
M
2

}
\ (−t, t)d with h = π

M for the

smoothed periodogram with a compactly supported kernel. Define

LN (θ) =

(
2π

M

)d ∑
ω∈ΩM

{
Îτ
N,δ,M (ω)

δα−dgN,M (ω;θ)
+ log

(
δα−dgN,M (ω;θ)

)}
where gN,M (θ) = g(θ)∗KN∗KM for the tapered periodogram case and gN,M (θ) =

gN,h(θ) = g(θ) ∗KN ∗ 1
hdK

( ·
h

)
for the smoothed periodogram with a compactly

supported kernel case. Consider the Assumption 1 and assume that the true tail

parameter θ0 lies in the interior of Θ. Then there exists M0 ∈ N such that for

every M ≥ M0, the minimizer θ̂ of LN (θ) converges to θ0 in probability as

N → ∞. Specifically,

Nmin{ d
2
,γ}

α̂− α0

β̂ − β0

 = OP (1)

and

Nmin{ d
2
,γ}(logN)−1(log ĉ− log c0) = Nmin{ d

2
,γ}(α̂− α0) + oP (1).
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If d
2 < γ, then

Nd/2

α̂− α0

β̂ − β0

 d−−−−→
N→∞

N
(
0, (2π)d[J −1ΣJ −1]−1,−1

)

where [A]−1,−1 is the matrix made by removing the first row and the first column

each from the matrix A, and J and Σ are defined as

J =

(
2π

M

)d ∑
ω∈ΩM

(
∂ log gM (ω;θ0)

∂θ

)(
∂ log gM (ω;θ0)

∂θ

)T

and

Σ =

∫
Td

{
ΦM (x)ΦT

M (x) +ΦM (x)ΦT
M (−x)

}
g2(x;θ0)dx

where

ΦM (x) =

(
2π

M

)d ∑
ω∈ΩM

∂ log gM (ω;θ0)

∂θ

KM (ω − x)

gM (ω;θ0)

when the tapered periodogram is used. When the smoothed periodogram with a

compactly supported kernel is used, then the same result holds with

J = (2h)d
∑
ω∈Ωh

(
∂ log gh(ω;θ0)

∂θ

)(
∂ log gh(ω;θ0)

∂θ

)T

and

Σ = (2h)2d
∑
ω∈Ωh

(
∂ log gh(ω;θ0)

∂θ

)(
∂ log gh(ω;θ0)

∂θ

)T 1

g2h(ω;θ0)

×
∫
Td

g2(x;θ0)

{
1

hd
K

(
ω − x

h

)}2

dx,

where gh(θ) = g(θ)∗ 1
hdK

( ·
h

)
. The limiting distribution of Nd/2(logN)−1(log ĉ−

log c0) is identical to that of Nd/2(α̂− α0).

32



Sketch of the proof. The detailed proof is deferred to the appendix. We briefly

sketch the idea of the proof with some explanations about the Assumption 1.

The proof takes a detour: showing the consistency and asymptotic order of

the estimator which is obtained by minimizing L0N (θ), instead of LN (θ), where

L0N (θ) is defined as

L0N (θ) =

(
2π

M

)d ∑
ω∈ΩM

{
δd−α0 Îτ

N,δ,M (ω)

gN,M (ω;θ)
+ log gN,M (ω;θ)

}
.

α0 is the true value of α. Be aware that although this requires the knowledge

of α0, we still have α as a variable in minimization so that its estimator can

be obtained. This seems odd at first glance, but it is needed for extending the

result to cover the case for unknown α.

Recall that from our tail behavior model (1.1), θ = (c, α,βT )T . By the

profiling approach and the compactness of A and B in the assumption (A1), it

is shown that Θ′ ⊂ Θ can be taken as a compact set so that

P
(
argmin

θ∈Θ
L0N (θ) ∈ Θ′

)
→ 1

as N → ∞.

Next we show that

L0N (θ) ≈
∫
Ω̄

{
g(ω;θ0)

g(ω;θ)
+ log g(ω;θ)

}
dω (5.1)

where Ω̄ = Td \ (−t, t)d for the tapered periodogram case and Ω̄ = {ω ∈

Td : 0 < ω1 < π} \ (−t, t)d for the smoothed periodogram with a compactly

supported kernel case. To show this, the assumption (A2) is used (actually

its weaker version is enough. See Proposition B.3 for details) to make use of
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Theorem 4.1 so that δd−α0 Îτ
N,δ,M (ω) ≈ gM (ω;θ0). (gM (θ) should be understood

as gh(θ) = g(θ) ∗ 1
hdK

( ·
h

)
when the smoothed periodogram with a compactly

supported kernel is used.) Next, the assumption (A3) is used to ensure the

approximation gN,M (ω;θ) ≈ gM (ω;θ) and further gM (ω;θ) ≈ g(ω;θ). The

assumption (A4) controls g(ω;θ) in the denominator.

We now claim that the minimizer of L0N (θ) is asymptotically close enough

to the minimizer of the right hand side of (5.1). As an objective function, it is

equivalent to

∫
Ω̄

{
g(ω;θ0)

g(ω;θ)
− 1− log

g(ω;θ0)

g(ω;θ)

}
dω.

This is minimized when g(ω;θ0) = g(ω;θ) for almost every ω ∈ Ω̄. The con-

tinuity with respect to θ (the assumption (A5)) and the identifiability (the

assumption (A1)) are now applied to complete the proof for consistency of the

minimizer of L0N (θ).

The asymptotic order and normality just follow from the classical delta

method and the proof is in Proposition B.4. Assumptions (A2) and (A6) are

involved in this process.

Now we work with LN (θ), a version with unknown α. It is immediate that

LN (θ) = LN (c, α,β) is equivalent to L0N (cδα−α0 , α,β) as an objective function.

Hence denoting the minimizer of LN (θ) as θ̂ = (ĉ, α̂, β̂T )T , (ĉδα̂−α0 , α̂, β̂T )T is

consistent to (c0, α0,β
T
0 )

T and its convergence order is OP (N
−min{ d

2
,γ}) where γ

is a constant in the assumption (A2). Especially, we have α̂−α0 = OP (N
−min{ d

2
,γ})

from which we have (α̂−α0) log δ = OP (N
−min{ d

2
,γ} logN). Since we also have

log ĉ+(α̂−α0) log δ−log c0 = OP (N
−min{ d

2
,γ}), we now haveNmin{ d

2
,γ} logN(log ĉ−
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log c0) = α̂− α0 +OP ((logN)−1).

5.2 Examples with Parametric Models

When we only impose the tail behavior condition on the spectral density f

and do not have the exact form of it, we cannot check whether the assumption

(A2) actually holds or not. However, we can check (A2) for available parametric

covariance models. In the next three examples, we will describe some parametric

models with their γ in (A2). Moreover, we briefly compare our results to the

relevant preexisting works.

Example 5.2. Recall that the isotropic Matérn covariance function has the

spectral density

f(ω;σ2, ν, a) =
σ2a2νΓ(ν + d

2)

π
d
2Γ(ν)

(a2 + |ω|2)−ν− d
2 , ω ∈ Rd.

We can easily find out that

∣∣∣δd−(2ν+d)f̄ τ
δ (ω;σ2, ν, a)− g(ω;σ2, ν, a)

∣∣∣ = O(max{δ4τ−2ν−d, δ2})

where

g(ω;σ2, ν, a) =
σ2a2νΓ(ν + d

2)

π
d
2Γ(ν)


d∑

j=1

4 sin2
(ωj

2

)
2τ ∑

Q∈Zd

|ω + 2πQ|−(2ν+d).

We can reparametrize (σ2, ν, a) into (c, α, a) with

c =
σ2a2νΓ(ν + d

2)

π
d
2Γ(ν)

,

α = 2ν + d.
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Then, g(ω;σ2, ν, a) can be rewritten as g(ω; c, α). It can be shown that the

assumption (A2) is met with γ = 2 whenever 4τ − α ≥ 2. Taking A as a

compact subset of (d, 4τ − 2], it can also be shown that g(ω; c, α) satisfies the

rest of Assumption 1. Now Theorem 5.1 is applicable so that our estimator

minimizing LN is consistent with

Nmin{ d
2
,2}(α̂− α0) = OP (1),

Nmin{ d
2
,2}(logN)−1(ĉ− c0) = Nmin{ d

2
,2}(α̂− α0) + oP (1),

when the true parameter is (c0, α0). Moreover, their asymptotic distributions

can also be derived when d ≤ 3.

There are several works which estimate parameters in the isotropic Matérn

covariance model. Zhang (2004) proved that under the nested sampling fixed

domain asymptotic scheme, σ2a2ν can be consistently estimated using the max-

imum likelihood estimation method assuming ν is known and d ≤ 3. Here, the

nested sampling scheme means that the next sample is obtained by adding more

observations to the previous sample. Speaking in detail, what Zhang (2004)

actually does is to maximize the likelihood with respect to σ2 after fixing a

as an arbitrary value a1 > 0. It is shown that the corresponding estimator,

σ̂2a2ν1 , converges to σ2
0a

2ν
0 almost surely when the true parameter for (σ2, a)

is (σ2
0, a0). Kaufman et al. (2008) showed that under the same assumptions

as Zhang (2004), maximizing tapered likelihood gives asymptotically the same

result. Du et al. (2009) derived the asymptotic normality for both MLE and

tapered MLE when d = 1 and ν is known under the nested sampling scheme.

Specifically, writing the sample size as N , what Du et al. (2009) showed is
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that N
1
2 (σ̂2a2ν1 − σ2

0a
2ν
0 ) converges weakly to a normal distribution when σ̂2 is

achieved through both ML and tapered ML method. Wang and Loh (2011) ex-

tended the result of Du et al. (2009) to d ≤ 3 but still ν is assumed to be known.

Summarizing, we can see that σ2a2ν can be estimated consistently through both

MLE and tapered MLE and the estimator has asymptotic normality under the

scaling by square root of the sample size.

Compared to the aforementioned results, our estimator has both similar and

different aspects with them. Our method jointly estimates tail parameter c and

α, which corresponds to joint estimation of σ2a2ν and ν. In other words, ν

need not be known and can be estimated simultaneously with σ2a2ν . Moreover,

N
d
2 (ν̂ − ν0) and N

d
2 (logN)−1(σ̂2a2ν − σ2

0a
2ν0
0 ) converges weakly to a normal

distribution when the true parameter is (σ2
0, ν0, a0). Since we assume lattice

observation, we can understand N
d
2 as a square root of the sample size. At

first glance, the asymptotic order for σ̂2a2ν seems inferior by the presence of

additional logN term. However this is not an appropriate comparison in the

point of view that this logN amount of sacrifice arises from assuming ν to be

unknown. In fact, it can be shown that the order of convergence for σ̂2a2ν is

recovered to OP (N
− d

2 ) if we assume ν to be known. It is worthwhile to mention

that our result holds even when the underlying structure does not actually follow

a Matérn structure. This is because we only assume the tail structure of spectral

density. For further explanation with an example, see Example 5.4.

There is another work, Loh et al. (2021), which estimates both σ2a2ν and

ν in the isotropic Matérn class when d ≤ 3. They used higher-order quadratic

variations to estimate ν first and plugged it in to achieve the estimator for
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σ2a2ν . Three different types of sampling schemes are considered together in

Loh et al. (2021), namely stratified sampling designs, randomized sampling

designs and deformed lattice designs. Lattice sampling design can be seen as

a special case of stratified sampling design. In the method proposed in Loh

et al. (2021), their estimator for ν under stratified sampling design satisfies

E|ν̂ − ν0| = O(N− d
d+2 ) and the corresponding estimator for σ2a2ν satisfies

E| log(σ̂2a2ν) − log(σ2
0a

2ν0
0 )| = O(N− d

d+2 logN). It can be inferred from their

proof that these orders will be improved when especially lattice sampling de-

sign is assumed, however we do not verify this explicitly. Although Loh et al.

(2021) cannot be directly compared with our method, we mention as a ref-

erence that the estimator from our method satisfy ν̂ − ν0 = OP (N
− d

2 ) and

log(σ̂2a2ν)− log(σ2
0a

2ν0
0 ) = OP (N

− d
2 logN) when d ≤ 3. We also point out that

our method is also applicable for d ≥ 4 and for non-Matérn cases as long as the

tail structure coincides. (See Example 5.4.)

Example 5.3. Another example is the anisotropic Matérn model whose spectral

density is

f(ω;σ2, ν, A, a) =
σ2a2νΓ(ν + d

2)

π
d
2Γ(ν)

(a2 + |ATω|2)−ν− d
2 , ω ∈ Rd,

where A is an anisotropy matrix. It is easy to verify that the model becomes iden-

tifiable when A is assumed to be upper triangular matrix whose determinant is

1 (Anderes, 2010). The same argument with the isotropic Matérn also applies

to the anisotropic Matérn class, from which (A2) also holds with γ = 2. Ap-

plying our method, simultaneously consistent estimator for (c, α,A) is achieved

with its asymptotic order and the asymptotic distribution is only provided when
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d ≤ 3.

Anderes (2010) also proposed estimators of σ2a2ν and A for the anisotropic

Matérn model. The similarity of Anderes (2010) to our result is that both as-

sume lattice observations and are applicable for general dimension d. However,

Anderes (2010) neither provided the convergence rate directly nor derived the

asymptotic distribution while our result contains both. Another difference is that

Anderes (2010) assumed ν to be known while our method can estimate all the

σ2a2ν , ν and A, simultaneously. There is one more critical difference, which

is that Anderes (2010) proved that the method therein can separately estimate

σ2 and a when d ≥ 5. This separate estimation cannot be conducted with our

method in the current chapter, since the design of the objective function LN is

not capable of distinguishing σ2 and a in the tail behavior point of view. How-

ever, using the approach in the next chapter which is modified for parametric

models, we can also prove that σ2 and a can be separately estimated when d ≥ 5

and the result coincides with Anderes (2010).

Example 5.4. The generalized Wendland covariance class is designed for a

compactly supported covariance structure, whose fixed domain asymptotic result

can be found in Bevilacqua et al. (2019). Generalized Wendland covariance

function is parametrized with 4 parameters, ν, κ, β and σ2. For κ, σ2, β > 0 and

µ ≥ λ = d+1
2 + κ, its spectral density satisfies

f(ω) = σ2Lςβd
[
cς3(β|ω|)−2λ

{
1 +O(|ω|−2)

}
+cς4(β|ω|)−(µ+λ)

{
cos(β|ω| − cς5) +O(|ω|−1)

}]
for |ω| → ∞ where cς3 =

Γ(µ+2λ)
Γ(µ) , cς4 =

Γ(µ+2λ)
Γ(λ)2λ−1 , c

ς
5 =

π
2 (µ+λ), Lς = KςΓ(κ)

21−κB(2κ,µ+1)
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and

Kς =
2−κ−d+1π− d

2Γ(µ+ 1)Γ(2κ+ d)

Γ(κ+ d
2)Γ(µ+ 2λ)

where ς = (µ, κ, d). f(ω) can be similarly extended to the case κ = 0. (See

Theorem 1 in Bevilacqua et al. (2019).) For convenience, we only state for

κ > 0 but the same holds for κ = 0. From the above, we have

f̄ τ
δ (ω) =

σ2Lς

δd


d∑

j=1

4 sin2
(ωj

2

)
2τ cς3β−1−2κδ2λ

∑
Q∈Zd

|ω + 2πQ|−2λ

+O(1)× cς3β
−1−2κδ2λ+2

∑
Q∈Zd

|ω + 2πQ|−2λ−2

+cς4β
−1−2κ−(µ−λ)δµ+λ

∑
Q∈Zd

|ω + 2πQ|−(µ+λ) cos

(
β|ω + 2πQ|

δ
− cς5

)

+O(1)× cς4β
−1−2κ−(µ−λ)δµ+λ+1

∑
Q∈Zd

|ω + 2πQ|−(µ+λ+1)

 .

Define g(ω; c, λ) as

g(ω; c, λ) = c


d∑

j=1

4 sin2
(ωj

2

)
2τ ∑

Q∈Zd

|ω + 2πQ|−2λ

with g(0; c, λ) = 0. If µ > λ and 4τ > 2λ+ 2, then we have

sup
ω∈Td

∣∣∣δd−2λf̄ τ
δ (ω)− g(ω; c, λ)

∣∣∣ = O(δmin{2,µ−λ})

where c = σ2β−1−2κLςcς3. Moreover, under the same restriction on parame-

ters, it can be shown using the known fact about the derivative of generalized

hypergeometric function that all the first partial derivatives of δd−αf̄ τ
δ (ω) con-

verge uniformly. The rest of Assumption 1 holds because the limit function g is

identical to the Matérn case, therefore we can apply Theorem 5.1. Not only the
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estimator (ĉ, λ̂) is consistent but the limiting distribution can be derived when

d
2 < min{2, µ − λ}. Note that this is especially simplified as µ > λ + d

2 when

d ≤ 3.

In Bevilacqua et al. (2019), they assumed known µ and κ (then λ is also

known and thus cς3 and Lς are all known), µ > λ + d
2 and d ≤ 3. Then, they

proved that maximizing the likelihood function with respect to σ2 while β is

fixed as an arbitrary value gives a consistent estimator for σ2β−1−2κ which is

a similar result as in Zhang (2004) for the Matérn class. Using our method,

we can estimate λ and σ2β−1−2κLςcς3 both consistently. Comparisons for the

asymptotic order and normality when d ≤ 3 are similar to that for the Matérn

class. Similarly again, our method has a benefit in that it can be applied for

data from general dimension d, but has a limit in that our method is only for

lattice data.

In this example, we discuss about the benefit of the tail behavior assumption

when the covariance model is misspecified. Observe that by reparametrizing 2λ

as α, the limiting function g(ω; c, α) becomes exactly the same with the isotropic

Matérn case. This has already been expected from Theorem 5 in Bevilacqua et al.

(2019), in which Gaussian measure equivalences between generalized Wendland

class and Matérn class are proved by showing their spectral densities share same

tail behaviors. Zhang (2004) and Bevilacqua et al. (2019) both used likelihoods

which depend on which parametric model has been assumed. Hence, a question

such as what if we use Matérn class likelihood function when the true underly-

ing structure follows in fact generalized Wendland class and vice versa has not

been answered. Our method serves an answer for this question. Using LN con-
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structed with the same limit function g(ω; c, α), both Matérn and generalized

Wendland class parameters can be estimated. The estimated parameter (ĉ, α̂)

would be an estimator for

(
σ2a2νΓ(ν+ d

2
)

π
d
2 Γ(ν)

, 2ν + d

)
when the underlying covari-

ance structure were Matérn, and for
(
σ2β−1−2κLςcς3, 2λ

)
when the underlying

covariance structure were generalized Wendland. It does not matter what the

real underlying model was because two models induce equivalent Gaussian mea-

sures on any bounded domain, as proved in Theorem 5 in Bevilacqua et al.

(2019).

42



Chapter 6

Tail Parameter Estimation in
parametric covariance models

The tail parameter estimation method proposed in Chapter 5 requires evalu-

ation of Îτ
N,δ,M (ω) and gN,M (ω;θ) at ω ∈ ΩM . When ÎN,δ,M is the tapered

periodogram or the smoothed periodogram with a compactly supported kernel

whose Fourier coefficients are completely known and a bandwidth h = π
M , it

can be exactly evaluated as explained in Chapter 4. For evaluating gN,M (ω;θ),

however, we cannot help but approximating this value, since g(ω;θ) is defined

with the infinite sum whose value cannot be exactly obtained. Fortunately, we

can modify our objective function so that it can be evaluated exactly when we

assume a parametric covariance model instead of only a tail behavior model on

the spectral density.

Assume that we have a parametric covariance function model C(s;θ,η), s ∈

Rd with the corresponding spectral density f(ω;θ,η),ω ∈ Rd so that
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δd−αf̄ τ
δ (ω;θ,η) → g(ω;θ) as δ ↓ 0. We can modify LN (θ) into RN (θ,η) defined

as

RN (θ,η) =

(
2π

M

)d ∑
ω∈ΩM

{
ÎN,δ,M (ω)

f̄ τ
N,δ,M (ω;θ,η)

+ log f̄ τ
N,δ,M (ω;θ,η)

}
(6.1)

where f̄ τ
N,δ,M (·;θ,η) = f̄ τ

δ (·;θ,η) ∗KN ∗KM for the tapered periodogram case

and f̄ τ
N,δ,M (·;θ,η) = f̄ τ

δ (·;θ,η) ∗KN ∗ 1
hdK

( ·
h

)
for the smoothed periodogram

with a compactly supported kernel. Observe that f̄ τ
δ (ω;θ,η) is the spectral

density of Y τ
δ (J),J ∈ Zd when the underlying covariance function of the original

process Z(s), s ∈ Rd is C(s;θ,η). From the definition of Y τ
δ (J), we can derive its

covariance function Cτ
δ (J;θ,η) which is expressed by a finite linear combination

of C(δJ;θ,η). Specifically, it can be shown that

Cτ
δ (J;θ,η) = ∆2τCδ(J;θ,η),

Cδ(J;θ,η) = C(δJ;θ,η)

where ∆ is the discrete Laplacian operator defined in Chapter 3. Then we have

a relation

f̄ τ
δ (ω;θ,η) =

1

(2π)d

∑
J∈Zd

Cτ
δ (J;θ,η)e

−i⟨ω,J⟩.

Convolution of this with KN is given as

f̄ τ
N,δ(ω;θ,η) =

1

(2π)2d

∑
J∈Zd

∑
K:∥K∥∞≤N

aN−|K|C
τ
δ (J;θ,η)

∫
Td

e−i⟨υ,J⟩e−i⟨ω−υ,K⟩dυ

=
1

(2π)d

∑
∥J∥∞≤N

aN−|J|C
τ
δ (J;θ,η)e

−i⟨ω,J⟩

where aN−|J| is defined as in Chapter 4. Now, if we use the tapered periodogram

for Îτ
N,δ,M , then f̄ τ

N,δ,M = f̄ τ
N,δ ∗KM where KM is the Fejér kernel of an order
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M so that it becomes

f̄ τ
N,δ,M (ω;θ,η) =

1

(2π)d

∑
∥J∥∞≤M

aN−|J|aM−|J|C
τ
δ (J;θ,η)e

−i⟨ω,J⟩.

When Îτ
N,δ,M is the smoothed periodogram with a kernel K and a bandwidth

h = π
M , then f̄ τ

N,δ,M = f̄ τ
N,δ ∗

1
hdK

( ·
h

)
so that it becomes

f̄ τ
N,δ,M (ω;θ,η) =

1

(2π)d

∑
∥J∥∞≤N

aN−|J|K̂(hJ)Ĉτ
δ (J;θ,η)e

−i⟨ω,J⟩

where

K̂(s) =

∫
Td

K(x)e−i⟨x,s⟩dx.

Since these are finite sums, RN (θ,η) can be evaluated without approximation.

We propose two ways to estimate θ using RN (θ,η). The first approach is to fix η

as an arbitrary value η1 and minimize RN (θ,η1) with respect to θ. The second

approach is to minimize RN (θ,η) with respect to both θ and η. The following

additional assumption is helpful to justify these attempts theoretically.

Assumption 2.

(A7) The parameter space H for η is compact. Moreover, the following uni-

form convergences hold:

sup
ω∈Td,α∈A,β∈B,η∈H

∣∣∣δd−αf̄ τ
δ (ω; 1, α,β,η)− g(ω; 1, α,β)

∣∣∣→ 0,

sup
ω∈Td,α∈A,β∈B,η∈H

∥∥∥∥ ∂

∂(α,β)

(
δd−αf̄ τ

δ (ω; 1, α,β,η)− g(ω; 1, α,β)
)∥∥∥∥

∞
→ 0,

sup
ω∈Td,α∈A,β∈B,η∈H

∥∥∥∥ ∂2

∂(α,β)∂(α,β)T

(
δd−αf̄ τ

δ (ω; 1, α,β,η)− g(ω; 1, α,β)
)∥∥∥∥

∞
→ 0.

45



With this additional assumption, the following theorem says that in either

way we can get a consistent estimator of θ with desirable fixed domain asymp-

totic properties.

Theorem 6.1. Assume the same as in Theorem 5.1 with Assumption 1 and

additionally Assumption 2. Suppose RN (θ,η) is defined as in (6.1).

If we fix η as arbitrary value, say η1 ∈ H, then the minimizer θ̂ of RN (θ,η1)

converges to θ in probability and its asymptotic properties are the same as that

achieved in Theorem 5.1.

If we fully minimize RN (θ,η) with respect to (θ,η) ∈ Θ×H, then θ̂ of the

minimizer (θ̂, η̂) converges to θ in probability and its asymptotic properties are

same as that achieved in Theorem 5.1.

Proof. The proof is similar to Theorem 5.1, hence we briefly sketch the proof

omitting details. First we define

R0N (θ,η) =

(
2π

M

)d ∑
ω∈ΩM

{
δd−α0 ÎN,δ,M (ω)

δd−αf̄ τ
N,δ,M (ω;θ,η)

+ log
(
δd−αf̄ τ

N,δ,M (ω;θ,η)
)}

.

Note that R0N (θ,η) is close to L0(θ) where L0 is defined in the proof of Propo-

sition B.3. Using almost same arguments with Proposition B.3, consistency of

θ̂ for both cases can be shown.

To show the limiting distribution of θ̂, first we consider the case when η is

fixed as η1. In this case, almost same arguments with Proposition B.4 shows the

desired result. It is more complicated when η is not fixed. In this case, all we

need to show is that ∂
∂θR0N (θ̂, η̂) = 0. Then as in the former case, we can just

follow the arguments in Proposition B.4 again. Since (θ̂, η̂) is the minimizer of
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R0N (θ,η) on Θ×H, we have

〈 ∂
∂θR0N (θ̂, η̂)

∂
∂ηR0N (θ̂, η̂)

 ,

v

w

〉 ≥ 0

for all feasible (vT ,wT )T . When we can say that θ̂ and η̂ are in the interior of

Θ and H respectively, any vector in the Euclidean space of the corresponding

dimension is feasible for v and w. Hence we get both ∂
∂θR0N (θ̂, η̂) = 0 and

∂
∂ηR0N (θ̂, η̂) = 0. When η̂ is on the boundary of H, not all vectors are feasible

for w. However we know that θ̂ converges to its true value θ0 which lies in the

interior of Θ, hence so does θ̂ with probability tending to 1. Thus any vector is

feasible for v. This means that although we cannot say whether ∂
∂ηR0N (θ̂, η̂) is

a zero vector or not, we still have ∂
∂θR0N (θ̂, η̂) = 0. With this we can show the

asymptotic order and normality of θ̂ when η is not fixed. Note that we require

the assumption (A7) to deal with the limiting distribution of ∂
∂θR0N (θ0,η1)

when η is fixed as η1 and that of ∂
∂θR0N (θ0, η̂) when η is not fixed.

Now the argument from R0N to RN is the same as that from L0N to LN in

Theorem 5.1.

Remark 6.2. The approach in Theorem 6.1 is actually not limited to the es-

timation within a certain parametric class. It can be also used to enhance the

estimation accuracy when the underlying covariance structure is unknown. Here

we explain how this works through an example. Suppose that the spectral density

f satisfies f(ω) ∼ c|ω|−α as |ω| → ∞. This tail behavior model is the same

as an isotropic Matérn model. In the real application, we never know whether

(A2) in Assumption 1 and (A6) in Assumption 2 holds or not. Hence we need to
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assume that both hold with some γ > 0. Now consider to construct RN (c, α, a)

in which f̄ τ
N,δ,M (c, α, a) is from the Matérn model. Modifying the proof slightly,

it can be shown that by minimizing this RN (c, α, a) over c ∈ R+, α in some

compact interval containing the true value, and a being fixed or in any com-

pact interval, the minimizer ĉ and α̂ become consistent estimators for the tail

parameters of the underlying spectral density whose asymptotic orders become

Nmin{ d
2
,2,γ}(α̂− α0) = OP (1),

Nmin{ d
2
,2,γ}(logN)−1(ĉ− c0) = OP (1),

where c0 and α0 indicate the true values. Moreover, when d
2 < min{2, γ}, the

asymptotic distribution of the estimator can be derived as same as in Theorems

5.1 and 6.1.

For a more specific example, this can be used when the underlying covariance

structure is the generalized Wendland model. In Example 5.4, it has been already

discussed that γ in (A2) is min{2, µ−λ} under the generalized Wendland model.

When µ−λ > d
2 and d ≤ 3, then min{d

2 , 2, γ} = d
2 . This means that when d ≤ 3,

RN (c, α, a) constructed by the Matérn covariance function gives a consistent

and asymptotically normal estimator when the underlying covariance structure

is the generalized Wendland model. Of course, this argument would also hold

converting the role of two covariance models, i.e., the underlying structure is

the Matérn model and RN is constructed by the generalized Wendland model.
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Chapter 7

Simulation Studies

To illustrate our theoretical result, we conducted experiments using generated

data. The first experiment uses Gaussian stationary random fields Z on R2 with

isotropic Matérn covariance structures to generate samples for {Y τ
δ (J) : J ∈

Z2
N}. Aware that this requires a sample Z(s) at s ∈

{
− τ

N ,− τ−1
N , · · · , N−1+τ

N

}2
which is composed of observations at (N+2τ)2 locations. This τ -sized buffer on

each boundary emerges because of our setting Nδ = 1 imposed for the sake of

convenience. We briefly mention that this buffer is unnecessary both in theory

and application if Nδ is fixed as b, allowing b to have different value than 1.

Recall that the isotropic Matérn covariance function is given as

C(s;σ2, ν, a) =
σ2(a|s|)ν

Γ(ν)2ν−1
Kν(a|s|)

with spectral density

f(ω;σ2, ν, a) ∼ σ2a2νΓ(ν + d/2)

πd/2Γ(ν)
|ω|−2ν−d = c|ω|−α.
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In this model we are interested in estimating tail parameter θ = (c, α). For

simulation, we fixed σ2 = 1 and considered four different models: (ν, a) =

(0.5, 2.1), (0.5, 9), (1.5, 5) and (1.5, 14.3). Smoothness parameter ν = 0.5 and

1.5 are chosen as representatives for a continuous but nondifferentiable random

field and once but not twice differentiable random field in a mean-square sense,

respectively. For ν = 0.5, a = 2.1 and a = 9 are taken to illustrate relatively

strong and weak dependence. These values for the scale parameter are calculated

by seeking a that makes C(s; 1, 0.5, a) close to 0.5 and 0.05 respectively when

|s| = 1
3 . a = 5 and a = 14.3 for ν = 1.5 are taken similarly. For each model,

we considered N = 50 and N = 100 to demonstrate convergence properties of

our estimators. Since our asymptotic theory requires 4τ − α ≥ 2 (see Example

5.2) and d = 2 so that ν = 0.5, 1.5 implies α = 2ν + d = 3, 5 with τ = 2. For

each set of (ν, a,N), 500 repeated experiments that estimate tail parameters

by minimizing LN given in Theorem 5.1 are made and the results are drawn as

histograms.

Before delving into the result, we would like to mention about the term

gN,M (ω;θ) in LN which needs to be approximately calculated. Consider first

LN with the tapered periodogram. Observe that gN,M (θ) can be written as

gN,M (ω;θ) =

∫
Td

∫
Td

g(υ;θ)KN (x− υ)KM (ω − x)dυdx

=
1

(2π)2d

∫
Td

∫
Td

g(υ;θ)
∑

∥J∥∞≤N

aN−|J|e
i⟨x−υ,J⟩

∑
∥K∥∞≤M

aM−|K|e
i⟨ω−x,K⟩dυdx.

By writting

ĝ(J;θ) =

∫
Td

g(υ;θ)e−i⟨υ,J⟩dυ, J ∈ Zd,
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we can write

gN,M (ω;θ) =
1

(2π)2d

∫
Td

∑
∥J∥∞≤N

aN−|J|ĝ(J;θ)e
i⟨x,J⟩

∑
∥K∥∞≤M

aM−|K|e
i⟨ω−x,K⟩dx

=
1

(2π)d

∑
∥J∥∞≤M

aN−|J|aM−|J|ĝ(J;θ)e
i⟨ω,J⟩.

Hence we can approximate gN,M (ω;θ) for each ω ∈ ΩM and θ ∈ Θ if we can

approximate Fourier coefficients ĝ(J;θ) for J ∈ Zd satisfying ∥J∥∞ ≤ M . We

can think that Fourier coefficients can be approximated via Riemann sum as

ĝ(J;θ) ≈
(
2π

N

)d ∑
K∈Zd

N

g

(
2πK

N
;θ

)
e−i⟨ 2πK

N
,J⟩.

This approximation would work well if M ≪ N , which is satisfied in our case

since we fix M while N goes to infinity. Note that the fast Fourier transform

algorithm can be used for above approximation. For LN with smoothed peri-

odograms with a compactly supported kernel K and a bandwidth h = π
M , the

form of gN,M becomes

gN,M (ω;θ) =
1

(2π)d

∑
∥J∥∞≤N

aN−|J|K̂(hJ)ĝ(J;θ)ei⟨ω,J⟩

which can again be approximately evaluated as similar as the tapered peri-

odogram case.

Meanwhile, we also need to approximate g(ω;θ) because it is defined as an

infinite lattice sum which does not have an explicit expression in general. Under

the spectral tail model (1.1), recall that g is expressed as

g(ω;θ) = c


d∑

j=1

4 sin2
(ωj

2

)
2τ ∑

Q∈Zd

|ω + 2πQ|−αh

(
ω + 2πQ

|ω + 2πQ|
;α,β

)
.
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Since h is bounded, the absolute value of each term in the summand is com-

parable to |ω + 2πQ|−α, which decays fast toward zero as |Q| → ∞. Hence we

can approximate g by taking a threshold, say q, and summing the terms up to

∥Q∥∞ ≤ q. Note that this threshold should be taken carefully depending on

α. If α is close to d, then small q does not approximate g well. In the current

isotropic Matérn experiments with d = 2, q = 10 is taken for ν = 1.5 which

corresponds to α = 5 and q = 20 for ν = 0.5 which corresponds to α = 3. Al-

though we do not depict here, experiments with q = 10 under ν = 0.5 showed

significant biases which does not vanish as N increases.

Figure 7.1 Tail parameter estimates of the isotropic Matérn model when σ2 = 1

and ν = 0.5. Vertical red line indicates the location of the true parameter.

Figure 7.1 shows how the tail parameters c and α are estimated under

four different settings when ν = 0.5. M is set as 10 and t is considered to be
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Figure 7.2 Tail parameter estimates of the isotropic Matérn model when σ2 = 1

and ν = 1.5. Vertical red line indicates the location of the true parameter.

smaller than 2π
M for the tapered periodogram and 2π

M < t < 4π
M for the smoothed

periodogram with a compactly supported kernel. This leads ΩM to containMd−

1 frequencies for the tapered periodogram and
([

M
2

]
− 1
)
×Md−1−3 frequencies

for the smoothed peridogram with a compactly supported kernel. Although it

seems that the former makes uses around twice of frequencies than the latter at

first glance, there are duplicated information in periodogram originated from its

periodicity which makes the amount of frequencies in two cases comparable. The

left two columns illustrate estimation result for log c and α when the dependency

is strong and the right two columns correspond to weak dependency. The upper

two rows uses the tapered periodogram to construct LN and the last row uses

the smoothed periodogram with a compactly supported kernel. For the compact
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ν a N Type
log c α

bias st. dev. RMSE bias st. dev. RMSE

0.5

2.1

50 tapered -0.0516 0.4887 0.4909 -0.0131 0.0924 0.0932

100 tapered -0.0402 0.2539 0.2568 -0.0102 0.0425 0.0436

100 cptsupp -0.0765 0.3594 0.3671 -0.0143 0.0600 0.0616

9

50 tapered -0.1573 0.4797 0.5044 -0.0322 0.0902 0.0957

100 tapered -0.0641 0.2631 0.2705 -0.0139 0.0440 0.0461

100 cptsupp -0.0593 0.3493 0.3539 -0.0111 0.0585 0.0595

1.5

5

50 tapered -0.0653 0.3562 0.3618 -0.0121 0.0741 0.0750

100 tapered -0.0140 0.1917 0.1920 -0.0022 0.0347 0.0347

100 cptsupp -0.0400 0.3876 0.3893 -0.0070 0.0695 0.0698

14.3

50 tapered -0.5907 0.3492 0.6860 -0.1121 0.0719 0.1331

100 tapered -0.1783 0.1970 0.2655 -0.0299 0.0357 0.0465

100 cptsupp -0.1175 0.3726 0.3904 -0.0192 0.0671 0.0697

Table 7.1 Biases, standard deviations and root mean squared errors of estimated

log c and α.

support kernel, a multidimensional biweight kernel is used which is defined as

K(s) =

d∏
j=1

15

16
(1− s2j )

2
1[−1,1](sj)

where 1A(x) denotes the indicator function taking values 1 when x ∈ A and 0

otherwise. The result in the first row corresponds to N = 50 while the second

and the third row correspond to N = 100. For all cases, we can see that both

c and α are consistently estimated. Comparing the first two rows clearly shows

that estimation variance decreases as N increases which experimentally indi-

cates the consistent tendencies of our estimates. We can also see that the result
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of the second row shows the result of lower variance than the third row, implying

that using the tapered periodogram gives more accurate estimate than using

the smoothed periodogram with the multivariate biweight kernel when M is set

as same. Although the tapered periodogram version is beneficial both in esti-

mation accuracy and computational cost, the privilege of using the smoothed

periodogram with a compactly supported kernel is that the asymptotic variance

of the estimators can be numerically approximated so that statistical inference

becomes possible.

Similar experiment for ν = 1.5 is depicted in Figure 7.2. Although all the

result shows consistent and asymptotically unbiased tendency as in the former

case, the meaningful bias is captured when the spatial dependency is weak

(a = 14.3) and N = 50. This can be explained by the discrepancy between

the limiting spectral density and finite sample spectral density. The spectral

density of the isotropic Matérn model is of form f(ω; c, α, a) = c(a2+ |ω|2)−α/2

so that

f̄ τ
δ (ω; c, α, a) = cδα−d


d∑

j=1

4 sin2
(ωj

2

)
2τ ∑

Q∈Zd

(a2δ2 + |ω + 2πQ|2)−α/2.

The term a2δ2 becomes ignorable when N is large, however, its effect should be

considered under the finite sample situation. Indeed, for our case of a = 14.3

with N = 50 and aδ = 0.286, the simulation shows that a significant bias was

created in the actual estimates. The bias seems to be alleviated when N is

increased to 100, which makes sense since aδ becomes a half of the previous

value. We do not depict the result here, but we have observed that this bias

almost disappears when N is increased to 200. The results of Figure 7.1 and
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7.2 are also summarized in Table 7.1.

Theorem 5.1 implies that when d
2 < γ, which means d ≤ 3 since γ = 2

in the Matérn case, the asymptotic behavior of N
d
2 (logN)−1(log ĉ − log c0)

is equal to that of N
d
2 (α̂ − α0). This means that log ĉ − log c0 and α̂ − α0

are asymptotically perfectly correlated. Figure 7.3 provides an experimental

evidence for this theoretical result. We mention here that similar phenomenon

has been reported in the simulation study of Stein (1995).

Figure 7.3 Asymptotic perfect linear correlation between log ĉ and α̂. Red

crosses are locations of true parameters.

We have already discussed that variance of the limiting distribution for the

estimated parameters can be evaluated numerically when the smoothed peri-

odogram with a compactly supported kernel is used. This enables us to evaluate

approximated confidence intervals for the parameters. For each 500 indepen-

dent realization of each setting when N = 100, we evaluated 95% confidence
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intervals. The results are displayed in Figure 7.4. The coverage probabilities

calculated from this procedure, which is in Table 7.2, do not become exactly

0.95 as expected. One reason for this is that there is an approximation error

in the numerically approximated variance of the limiting distribution. The lim-

iting variance stated in Theorem 5.1 requires evaluations of the terms gh, its

derivatives with respect to the tail parameter and g2 ∗ 1
h2dK

2
( ·
h

)
. Since gh can-

not be exactly evaluated, we use gL,h = g ∗ KL ∗ 1
hdK

( ·
h

)
for some large L

as an approximation of gh. By using the exact formula of Fourier coefficients

for the multivariate biweight kernel K, we could efficiently approximate gh.

A similar approach can be applied to evaluate remaining functions. Although

this approximation theoretically makes sense, we cannot help but using a finite

value for L so that the approximation error remains. Another reason is that we

should plug the estimated parameters in the limiting variance while the true

limiting variance should be calculated based on the true tail parameters. We

should not also overlook the fact that there would always be difference between

the limiting distribution and the finite sample distribution. Nevertheless, we

can still consider to use this approximated statistical inference approach as a

reference.

Next experiment is conducted based on the anisotropic Matérn covariance

structure. Recall that the covariance function is given as

C(s;σ2, ν, A, a) =
σ2(a|As|)ν

Γ(ν)2ν−1
Kν(a|As|)
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Figure 7.4 Approximated 95% confidence intervals for estimated log c and α.

For each of 500 replication, estimated value is depicted by either skyblue dot or

red cross. Skyblue dot means the estimated confidence interval actually contains

the true value, while red cross means the opposite. Horizontal green dotted lines

are drawn at corresponding true values.

so that the spectral density satisfies

f(ω;σ2, ν, A, a) ∼
σ2a2νΓ(ν + d

2)

π
d
2Γ(ν)

|A−Tω|−2ν−d = c|A−Tω|−α.

For identifiable parametrization, A is restricted to upper triangular matrices

whose diagonals are positive and determinant is 1 (Anderes, 2010). Sampling

scheme is the same as before with N = 100 and now two values are considered

for τ which is 2 and 3. Tapered periodograms are used to construct LN with

M = 10. Simulations are made based on σ = 1.5, a = 0.8, ν = 1.75, A11 = 1.2
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ν a
Coverage Prob.

log c α

0.5
2.1 0.890 0.974

9 0.910 0.972

1.5
5 0.890 0.958

14.3 0.892 0.952

Table 7.2 Coverage probabilities calculated via approximated 95% confidence

intervals.

and A12 = 0.5, which are the same setting as in the simulation study of Anderes

(2010). With 500 independent realizations, we first compared our periodogram

based method to the squared increment method proposed in Anderes (2010)

assuming ν is known.

σ̂2a2ν Â11 Â12

bias st. dev. RMSE bias st. dev. RMSE bias st. dev. RMSE

Tail Est., τ = 2 -0.00010 0.01660 0.01658 -0.00048 0.00612 0.00613 -0.00008 0.00873 0.00872

Anderes, m = 2 -0.10211 0.06596 0.12152 -0.00329 0.02423 0.02442 0.00005 0.03421 0.03418

Tail Est., τ = 3 -0.00255 0.02214 0.02226 0.00055 0.00833 0.00834 0.00041 0.01179 0.01178

Anderes, m = 3 -0.00200 0.01542 0.01553 0.00031 0.00561 0.00562 0.00013 0.00811 0.00811

Table 7.3 Biases, standard deviations and root mean squared errors for param-

eter estimates under the known ν.

Through the histograms in Figure 7.5, we can observe that using 2 incre-

ments in the squared increment method seems to produce biased estimates for

the microergodic parameter σ2a2ν as well as estimates with larger variances

for A11 and A12 compared to the others. This result coincides with the pre-

59



Figure 7.5 Estimation result of σ2a2ν , A11 and A12 assuming ν = 1.75 is known.

Red vertical lines indicate the locations of true values.

viously reported result in Anderes (2010). In the periodogram based method,

both τ = 2 and τ = 3 show satisfactory results, yet τ = 2 seems a slightly

better performance in its variance than τ = 3. We also present quantitative

comparisons in Table 7.3.

Using the same samples with τ = 2, we apply our method to estimate the

smoothness parameter together and display the result in Figure 7.6 and Table

7.4. Note that now c =
σ2a2νΓ(ν+ d

2
)

π
d
2 Γ(ν)

so that its meaning is somewhat different

from the traditional microergodic parameter σ2a2ν . We can see that all the tail
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Figure 7.6 Tail parameter estimates of log c, α,A11 and A12 using periodogram

based method. Red vertical lines indicate the locations of true values.

bias st. dev. RMSE

log c -0.01152 0.20683 0.20695

α -0.00187 0.03746 0.03747

A11 0.00011 0.00634 0.00633

A12 0.00064 0.00900 0.00900

Table 7.4 Biases, standard deviations and root mean squared errors of estimated

tail parameters.

parameters are estimated well.
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Chapter 8

Real Data Analysis

8.1 Sea Ice Profiles Data

The first data example is an application to smoothness estimation of Arctic

sea ice profiles which had been investigated in Gneiting et al. (2012) and Wu

and Lim (2016). Available from https://nsidc.org/data/g01360, the data

consists of upward looking sonar sea ice draft data collected by submarines.

To compare with the results in the literature, we choose the same six profiles

each of whose length is 1024 as displayed in Figure 8.1. In spite of the clear

non-Gaussianity and/or non-stationarity, the previous analyses do not apply

any preprocessing such as transformation. Hence for fair comparison, we also

applied our periodogram method directly to the raw data.

Gneiting et al. (2012) andWu and Lim (2016) estimated smoothness of these

data through several methods and presented the result in the form of fractal
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Figure 8.1 Six profiles of Arctic sea ice. Each is comprised of 1024 observations

and the distance between two neighboring observations is 1 meter.

dimension. The fractal or Hausdorff dimension is a notion that measures rough-

ness of geometric objects. When a function on Rd which takes values from R is

smooth and differentiable, its graph embedded in Rd+1 has the fractal dimen-

sion d which is the same as its topological dimension. When such a function

is nondifferentiable and rough, however, its fractal dimension takes values be-

tween d and d+1 which is definitely non-integer. The rougher the graph is, the

larger the fractal dimension becomes.

As in Wu and Lim (2016), we assume f(ω) ∼ c|ω|−α with α > d = 1 to each

profile. When α ∈ (1, 3], the fractal dimension of sample paths whose spectral

density satisfies the tail condition becomesD = 5−α
2 ∈ [1, 2) (see Gneiting et al.,
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2012, Table 2). Considering that all the 6 profiles look nondifferentiable, we may

expect D ∈ (1, 2) which means α < 3. This again implies that 4τ − α > 1 for

τ = 1 which is enough for g(·; c, α) to be in C1(T) where

g(ω; c, α) = c
{
4 sin2

(ω
2

)}2τ ∑
Q∈Z

|ω + 2πQ|−α.

Hence τ = 1 is acceptable choice to apply our method. Since the neighboring

observations are 1 meter apart, we take δ = 0.001km. Note that this choice is

not important, because the scale of δ only changes the estimate of c and does

not affect the estimate of α, and our interest in this analysis is focused on the

estimation of α. Each sample contains 1024 observations, while actual N gets

smaller after applying discrete Laplacian operator so that N = 1022 when τ =

1. Tapered periodograms are used to construct LN with M = 25, 50, 100, 200

and t < 2π
200 so that ΩM =

{
2πJ
M : J = 1, 2, · · · ,M − 1

}
. The complete result for

this can be found in Table C.1 in the appendix, while we only present here the

average of four estimates as our final estimates in the form of fractal dimension

in Table 8.1. We also compare the result with those in Gneiting et al. (2012)

and Wu and Lim (2016) in Table 8.1, from which we can see that the estimated

fractal dimensions from our method mostly concur with the previous results.

8.2 Monthly Maximum Temperature Data

For the second data example, we used TerraClimate data which is comprised of

worldwide monthly climate information. Using climatically aided interpolation

and combining high-spatial resolution with coarser temporal resolution data,

TerraClimate produces monthly climate dataset for global terrestrial surfaces
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Method sc98drft.002 sc98drft.003 sc98drft.005 sc98drft.006 sc98drft.007 sc98drft.008

Variogram 1.43 1.37 1.38 1.40 1.42 1.30

Variation(1) 1.37 1.38 1.29 1.32 1.42 1.33

Variation(0.5) 1.32 1.37 1.24 1.27 1.38 1.31

Hall-Wood 1.39 1.35 1.30 1.30 1.43 1.32

Wu & Lim (2016) 1.47 1.32 1.32 1.39 1.41 1.31

Tapered Periodogram 1.38 1.30 1.31 1.36 1.38 1.18

Table 8.1 Comparison of estimated fractal dimensions between various methods.

The last row is from our proposed method while the rest are adopted from Wu

and Lim (2016).

with spatial resolution of 1
24

◦
. The data are available from https://www.cli-

matologylab.org/terraclimate.html and Abatzoglou et al. (2018) can be

referred for further details. We analyze monthly maximum temperature in Jan-

uary 2021. Among the global terrestrial surfaces, relatively local areas are se-

lected by limiting longitude from -120 to -95 and latitude from 35 to 60. The grid

points included in this area is of size 600 by 600. We additionally take 2 more

layers of grid points surrounding this selected area to maintain N = 600 after

discrete Laplacian operator is applied with τ ≤ 2. A heatmap for worldwide

data distribution and the selected area are in Figure 8.2.

We first consider a stationary model for the data whose spectral density has

tail behavior f(ω) ∼ c|A−Tω|−α where α > d = 2 and A is an upper triangular

matrix with positive diagonals and determinant 1. Using the smoothed peri-

odogram with a multivariate biweight kernel andN = 600, τ = 2, δ = 1
24 , h = π

M

with M = 25, 50, 100, 200, we estimated tail parameters which are summarized

in Table 8.2. For t > 0 involved in the construction of ΩM , we choose t = 0.5.
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Figure 8.2 The left is the heatmap of the worldwide maximum temperature on

global terrestrial surfaces in January 2021. The red corresponds to higher tem-

perature while the yellow to lower temperature. Box with the black boundary

line is the selected area of interest which is magnified on the right. Since we

add buffers on the boundary of the selected area, the data we are working with

actually contains 604× 604 temperature values.

Although we do not present the result here, we also performed the estima-

tion under τ = 1 and achieved the similar estimated result. However theoret-

ical backgrounds we established in the former chapters are only valid when

4τ − α > 0, which is violated when τ = 1 and satisfied when τ = 2 since the

estimated α were always located between 4 and 5. This is the reason why we

choose τ = 2. We also calculated approximate 95% confidence intervals for each

parameter. It seems that different choices of M return similar estimates for all

the parameters and approximate confidence intervals are mostly overlapped.

Moreover all the estimated confidence intervals for A11 and A12 do not contain

1 and 0 respectively, which means that the geometric anisotropy in the data
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is statistically significant. As in the example of sea ice profile data, we may

consider the naive average of the four estimates as our final estimates which

results in (log ĉ, α̂, Â11, Â12) = (5.6874, 4.8491, 0.9316, 0.0364).

log c α A11 A12

M = 25
5.6115

(5.5084, 5.7145)

4.8313

(4.8152, 4.8474)

0.9286

(0.9263, 0.9309)

0.0365

(0.0310, 0.0420)

M = 50
5.6733

(5.5750, 5.7717)

4.8452

(4.8299, 4.8606)

0.9337

(0.9315, 0.9359)

0.0349

(0.0295, 0.0404)

M = 100
5.7307

(5.6330, 5.8283)

4.8595

(4.8443, 4.8748)

0.9319

(0.9298, 0.9340)

0.0374

(0.0320, 0.0429)

M = 200
5.7342

(5.6367, 5.8317)

4.8605

(4.8452, 4.8757)

0.9324

(0.9303, 0.9345)

0.0368

(0.0314, 0.0423)

Table 8.2 Tail parameter estimates for the monthly maximum temperature in

January 2021 over the selected area. Confidence intervals are denoted with

parentheses under the corresponding estimates.

We can also consider to apply the method locally as if the data is locally

stationary. Setting a local window on the data, we apply the method locally

by sliding the window. The size of the window is 5◦ × 5◦ so that it consists of

120× 120 grid points, and we slide the window by 2.5◦ along each direction so

that entirely 9 × 9 different local blocks are obtained. We choose τ = 2 based

on the previous estimation result and consider to include additional buffers

surrounding the window, which makes each block contain 124×124 data. After

applying the discrete Laplacian operator, we get N = 120. As same as before,

δ is set as 1
24 . Also in this analysis, we make use of the smoothed periodogram

67



with a multivariate biweight kernel and a bandwidth h = π
M where M = 25.

The number t > 0 involved in the construction of ΩM is chosen as 0.5 as

before. The estimated values on each block can be found at tables from Table

C.2 to Table C.5 in the appendix. We further calculate confidence intervals on

each block and investigate whether spatial variation observed in the estimated

parameters is statistically significant. Approximate 95% confidence intervals for

each blocks are drawn in Figure 8.3. The result implies that the spectral traits

of monthly maximum temperature in January 2021 on the selected area are

spatially varying.
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Figure 8.3 Blockwise tail parameter estimates and their approximated 95% con-

fidence intervals. Blue dots and red crosses are estimated values on each block

and vertical bars are corresponding confidence intervals. Assuming that the true

parameters are (log c, α,A11, A12) = (5.6874, 4.8491, 0.9316, 0.0364) which are

depicted by green dotted horizontal lines, we draw with blue color when the

corresponding confidence interval contains the true value while with red color

when it does not.
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Chapter 9

Conclusion and Discussion

In this paper, we developed a method to estimate spectral tail parameters in

stationary Gaussian random fields under fixed domain asymptotics with theo-

retical justifications. The method works on the spectral domain, which is dif-

ferent from the most preexisting methods in fixed domain asymptotic literature

to the best of our knowledge. Moreover, our method only assume tail behav-

ior of the spectral density so that it is not restricted to a specific parametric

model. Even under the parametric model assumption, our method is meaningful

in that it provides a solution to estimate a smoothness parameter and a mi-

croergodic parameter simultaneously and consistently which have been rarely

investigated. An exception would be Loh et al. (2021), however it only deals

with the isotropic Matérn class while ours can also be applied to other classes

such as the anisotropic Matérn class or the generalized Wendland class. Last

but not least, we derived the asymptotic order and normality of our estimator.
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We should admit that there are several limitations in our approach. The

one is that all the theories and methods are valid only for complete lattice

data. It is currently vague how to generalize our periodogram theories and

estimation method for irregular data. Motivated from several researches such as

Fuentes (2007), Matsuda and Yajima (2009) and Rao (2018) which investigated

periodograms for irregularly spaced data, we may also seek a way to extend

our theoretical results and the method for irregular data. Another is that the

order of Fejér kernel M or the bandwidth of a compactly supported kernel h

appears in the periodogram smoothing stage is considered to be fixed without

any criterion on how to choose them. Investigations into how to choose them

and what happens when it can vary depending on N can be another direction

to work on. Finally, as explained in Chapter 4, we should also admit that we

used a locally smoothed version of Whittle likelihood LN (θ) instead of LN (θ)

because it was not able to prove the validity of LN (θ) from Theorem 4.1. Even

so, we could observe from the simulation experiments not shown here that a

discretized version of LN given as

∑
ω∈ΩN

{
IN,δ(ω)

δα−dg(ω;θ)
+ log

(
δα−dg(ω;θ)

)}

where ΩN = {2πJ
N : J ∈ Zd

N} \ (−t, t)d for some small t > 0 also works well.

This version is much more convenient to implement than the current method,

but its theoretical validation would require extremely complicated calculations

so that we cannot currently guarantee that it is possible. Nonetheless, if it can

be done, it would be a worthwhile contribution for spectral analysis under fixed

domain asymptotics.
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As a final remark, we would like to mention a couple of future directions

that our work can be extended. One is to use different objective functions other

than Whittle-type likelihood on the tail parameter estimation stage. Since our

estimation method is based on the consistency of δd−α0 ÎN,δ,M to gN,M (·;θ0) and

the main idea for estimation is to make the ratio of ÎN,δ,M to δα−dgN,M (·;θ)

as close to 1 as possible, we can conjecture that any objective function that

operates in a similar way would work well. For example, we may consider so

called least square method which minimizes

∑
ω∈ΩM

(
ÎN,δ,M (ω)

δα−dgN,M (ω;θ)
− 1

)2

.

The properties of the estimator will of course differ by which objective function

is used. Various investigations focusing on different perspectives, such as on

which objective function the estimator achieves asymptotically minimal vari-

ance or becomes robust under contamination by measurement error or outliers,

would be additional possible directions.

Another is a multivariate extension. Although all the equations and nota-

tions will become more complicated and tedious, the extension of our smoothed

periodogram will be straightforward under mild conditions on cross spectral

densities motivated from Lim and Stein (2008). In this way, we expect to get

the consistency result for a smoothed periodogram matrix ÎN,δ,M after appro-

priate scaling involving δ and decaying rate of all the spectral densities and cross

spectral densities. For the tail parameter estimation, we can adopt the idea of

Whittle (1953) which involves the trace and determinant of matrix-valued func-

tions. Since there are few theoretical discoveries related to multivariate random
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fields under fixed domain asymptotics, this direction of extension would serve

a new contribution in the area.

The last is about the separate estimability of variance and scale parame-

ters in the Matérn covariance class when d ≥ 5 which had been investigated

in Anderes (2010). Although the scale parameter, a, is not a tail parame-

ter, we can use the approach in Chapter 6 to estimate σ2 and a separately.

From the sketch not included in this work, it can be derived for the isotropic

Matérn class that under some mild conditions, minimizing RN (c, α, a) with re-

spect to all three parameters gives consistent estimates (ĉ, α̂, â) with orders

ĉ − c0 = OP (N
− d

2 logN), α̂ − α0 = OP (N
− d

2 ) and â − a0 = OP (N
− d

2
+2) when

d ≥ 5. Rigorous organization about this informal statement as well as includ-

ing geometric anisotropy as in Anderes (2010) can be a straightforward but

complicated extension of this work.
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Appendix A

Proofs for Chapter 4

To show the limiting distribution becomes Gaussian in Theorem 4.1, we will

show that the second order cumulants converge to some limit values and all the

cumulants of order 3 and higher converge to zero. For this end, we first evaluate

cumulants. For p smoothed periodograms

∫
Td

ϕ1(ω)Iτ
N,δ(ω)dω, · · · ,

∫
Td

ϕp(ω)Iτ
N,δ(ω)dω,

their mth order joint cumulant can be any of the form

cum

(∫
Td

ϕk1(ω)Iτ
N,δ(ω)dω, · · · ,

∫
Td

ϕkm(ω)Iτ
N,δ(ω)dω

)

for k1, · · · , km ∈ {1, · · · , p}. The following lemmas are helpful.

74



Lemma A.1.

cum

(∫
Td

ϕk1(ω)Iτ
N,δ(ω)dω, · · · ,

∫
Td

ϕkm(ω)Iτ
N,δ(ω)dω

)
=
∑
(ι,e)

∫
T2md

ϕk1(ω1)ϕk2((−1)ē2ωι2) · · ·ϕkm((−1)ēmωιm)f̄
τ
δ (υ1) · · · f̄ τ

δ (υm)

× (2πN)−mdPN (ω1,υ1,ω2,υ2, · · · ,ωm,υm)dω1 · · ·dωmdυ1 · · ·dυm,

where (ι, e) = (ι1, · · · , ιm, e1, · · · , em) such that (ι1, · · · , ιm) is a permutation

of a number from 1 to m with ι1 = 1 and {ek, ēk} = {1, 2}, k = 1, · · · ,m with

e1 = 1 and

PN (ω1,υ1,ω2,υ2, · · · ,ωm,υm)

=
∑

J11,··· ,Jm2∈Zd
N

e−i⟨ω1−υ1,J11⟩e−i⟨υ1−ω2,J22⟩e−i⟨ω2−υ2,J21⟩e−i⟨υ2−ω3,J32⟩

× · · · × e−i⟨ωm−υm,Jm1⟩e−i⟨υm−ω1,J12⟩.

Proof. From

∫
Td

ϕ(ω)Iτ
N,δ(ω)dω = (2πN)−d

∑
J,K∈Zd

N

Y τ
δ (J)Y

τ
δ (K)

∫
Td

ϕ(ω)e−i⟨ω,J−K⟩dω,

the cumulant we are interested in is represented as (2πN)−md times

∑
J11,··· ,Jm2∈Zd

N

cum (Y τ
δ (J11)Y

τ
δ (J12), · · · , Y τ

δ (Jm1)Y
τ
δ (Jm2))

×
∫
Tmd

ϕk1(ω1) · · ·ϕkm(ωm)e−i⟨ω1,J11−J12⟩ · · · e−i⟨ωm,Jm1−Jm2⟩dω1 · · ·dωm.
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The cumulant term inside the sum is equal to

cum (Y τ
δ (J11)Y

τ
δ (J12), · · · , Y τ

δ (Jm1)Y
τ
δ (Jm2))

=
∑
(ι,e)

cum {Y τ
δ (Jι1e1), Y

τ
δ (Jι2ē2)} × cum {Y τ

δ (Jι2e2), Y
τ
δ (Jι3ē3)} × · · ·

× cum
{
Y τ
δ (Jιm−1em−1), Y

τ
δ (Jιmēm)

}
× cum {Y τ

δ (Jιmem), Y
τ
δ (Jι1ē1)}

where the sum runs over (ι, e) = (ι1, · · · , ιm, e1, · · · , em) such that (ι1, · · · , ιm)

is a permutation of a number from 1 to m with ι1 = 1 and {ek, ēk} = {1, 2}, k =

1, · · · ,m with e1 = 1. (See Theorem 7 of Lim and Stein (2008) or Theorem 2.3.2

of Brillinger (2001).) Since

cum
{
Y τ
δ (Jιkek), Y

τ
δ (Jιk+1ēk+1

)
}
=

∫
Td

f̄ τ
δ (υ)e

i⟨υ,Jιkek
−Jιk+1ēk+1

⟩dυ,

the entire cumulant is now (2πN)−md times

∑
(ι,e)

∫
T2md

ϕk1(ω1) · · ·ϕkm(ωm)f̄ τ
δ (υι1) · · · f̄ τ

δ (υιm)

×
∑

J11,··· ,Jm2∈Zd
N

e−i⟨ω1,J11−J12⟩−i⟨ω2,J21−J22⟩−···−i⟨ωm,Jm1−Jm2⟩

× ei⟨υι1 ,Jι1e1−Jι2ē2 ⟩+i⟨υι2 ,Jι2e2−Jι3ē3 ⟩+···+i⟨υιm ,Jιmem−Jι1ē1 ⟩

× dω1 · · ·dωmdυ1 · · ·dυm.
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This can be rewritten as

∑
(ι,e)

∫
T2md

ϕk1(ω1) · · ·ϕkm(ωm)f̄ τ
δ (υι1) · · · f̄ τ

δ (υιm)

×
∑

J11,··· ,Jm2∈Zd
N

ei⟨(−1)ē1ωι1 ,Jι1ē1−Jι1e1 ⟩+···+i⟨(−1)ēpωιm ,Jιmēm−Jιmem ⟩

× ei⟨υι1 ,Jι1e1−Jι2ē2 ⟩+i⟨υι2 ,Jι2e2−Jι3ē3 ⟩+···+i⟨υιm ,Jιmem−Jι1ē1 ⟩

× dω1 · · ·dωmdυ1 · · ·dυm

=
∑
(ι,e)

∫
T2md

ϕk1(ω1) · · ·ϕkm(ωm)f̄ τ
δ (υι1) · · · f̄ τ

δ (υιm)

×
∑

J11,··· ,Jm2∈Zd
N

ei⟨υι1−(−1)ē1ωι1 ,Jι1e1 ⟩ei⟨(−1)ē2ωι2−υι1 ,Jι2ē2 ⟩

× ei⟨υι2−(−1)ē2ωι2 ,Jι2e2 ⟩ei⟨(−1)ē3ωι3−υι2 ,Jι3ē3 ⟩

× · · ·

× ei⟨υιm−(−1)ēmωιm ,Jιmem ⟩ei⟨(−1)ē1ωι1−υιm ,Jι1ē1 ⟩

× dω1 · · ·dωmdυ1 · · ·dυm.

By change of variables and using that the sum is over (ι, e), the last sum on

the above becomes

∑
(ι,e)

∫
T2md

ϕk1(ω1)ϕk2((−1)ē2ωι2) · · ·ϕkm((−1)ēmωιm)f̄
τ
δ (υ1) · · · f̄ τ

δ (υm)

×
∑

J11,··· ,Jm2∈Zd
N

ei⟨υ1−ω1,J11⟩+i⟨ω2−υ1,J22⟩+i⟨υ2−ω2,J21⟩+···+i⟨υm−ωm,Jm1⟩+i⟨ω1−υm,J12⟩

× dω1 · · ·dωmdυ1 · · ·dυm.
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To calculate the limits of cumulants found in Lemma A.1, we need to inves-

tigate what happens on

∫
Tsd

h1(x1)h2(x2) · · ·hs(xs)PN (x1,x2, · · · ,xs)dx1 · · ·dxs

for some functions h1, · · · , hs when s = 2m. Note that we have to consider that

some of gj may depend on N , since we have f̄ τ
δ at the integrand in the cumulant

expression. Recall that PN is of form

PN (x1,x2, · · · ,xs)

=
∑

J1,··· ,Js∈Zd
N

e−i⟨x1−x2,J1⟩e−i⟨x2−x3,J2⟩ · · · e−i⟨xs−1−xs,Js−1⟩e−i⟨xs−x1,Js⟩

=
s∏

j=1

 ∑
Jj∈Zd

N

e−i⟨xj−xj+1,Jj⟩

 =
s∏

j=1

d∏
l=1

sin
(
N(xjl−x(j+1)l)

2

)
sin
(
xjl−x(j+1)l

2

)
where xj = (xjl)l=1,··· ,d and s + 1 is identified with 1. Observe that each term

in the right side is Dirichlet kernel of order N , from which integration with PN

can be thought as s-cyclic convolution of d-dimensional Dirichlet kernels. Based

on this observation, we can think intuitively that

∫
Td

h1(x1)PN (x1,x2, · · · ,xs)dx1 ≈ (2π)dh1(x2)PN (x2,x3, · · · ,xs)

and henceforth

∫
T2d

h1(x1)h2(x2)PN (x1,x2, · · · ,xs)dx1dx2

≈ (2π)d
∫
Td

h1(x2)h2(x2)PN (x2,x3, · · · ,xs)dx2

≈ (2π)2dh1(x3)h2(x3)PN (x3, · · · ,xs).
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After (s− 2) repetition, we get∫
Tsd

h1(x1) · · ·hs(xs)PN (x1, · · · ,xs)dx1 · · ·dxs

≈ (2π)(s−2)d

∫
T2d

h1(xs−1) · · ·hs−1(xs−1)hs(xs)PN (xs−1,xs)dxs−1dxs.

Now, observe that PN (xs−1,xs) is (2πN)d times Fejér kernel of order N . Hence

we can think of the right hand side similar as

(2π)(s−1)dNd

∫
Td

h1(xs) · · ·hs(xs)dxs.

Of course, this intuition will not always be true. Indeed, it is well known that

convolution of a function with Dirichlet kernel may fail to converge to the true

function value when the function is merely continuous. (See for instance Corol-

lary 1.10 of Muscalu and Schlag (2013).) Under the assumption of continuous

differentiability, we show that the above intuitive calculation holds.

Lemma A.2. For h1, · · · , hs ∈ C1(Td), we have

∣∣∣ 1
(2π)(s−1)dNd

∫
Tsd h1(x1) · · ·hs(xs)PN (x1, · · · ,xs)dx1 · · ·dxs −

∫
Td h1(x) · · ·hs(x)dx

∣∣∣
≲

s−1∑
j=1

∥∂hj∥L∞
∏
k ̸=j

∥hk∥L∞

× (logN)(s−2)d+1

N
,

where ∥∂h∥L∞ = sup
{∣∣∣ ∂h∂xl

(x)
∣∣∣ : l = 1, · · · , d,x ∈ Td

}
. Here h1, · · · , hs may de-

pend on N . In that case, the L∞ norm part on the bound becomes dependent to

N as well.

Proof. Since h1 ∈ C1(Td), we have

|h1(x1)− h1(x2)| ≤ ∥∂h1∥L∞

d∑
l=1

|x1l − x2l|.
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Thus∣∣∣∣∫
Tpd

{h1(x1)h2(x2) · · ·hs(xs)− h1(x2)h2(x2) · · ·hs(xs)}PN (x1, · · · ,xs)dx1 · · ·dxs

∣∣∣∣
≲ ∥∂h1∥L∞

s∏
j=2

∥hj∥L∞

d∑
l=1

∫
Tsd

|x1l − x2l||PN (x1, · · · ,xs)|dx1 · · ·dxs.

Moreover since

sin(Nx/2)

sin(x/2)
≲

1

N−1 + |x|
,

PN can be bounded as

|PN (x1, · · · ,xs)|

≲
∏d

l=1
1

(N−1+|x1l−x2l|)
1

(N−1+|x2l−x1l|)
· · · 1

(N−1+|x(s−1)l−xsl|)
1

(N−1+|xsl−x1l|)
.

Using ∫
T

1

(N−1 + |x− y|)
1

(N−1 + |y − z|)
dy ≲

logN

N−1 + |x− z|

and ∫
T

1

(N−1 + |y|)2
dy ≲ N,

we have

∫
Ts

1

(N−1 + |x1l − x2l|)
1

(N−1 + |x2l − x3l|)
· · · 1

(N−1 + |x(s−1)l − xsl|)
1

(N−1 + |xsl − x1l|)
dx1l · · · dxsl

≲
∫
Ts−1

logN
1

(N−1 + |x2l − x3l|)
· · · 1

(N−1 + |x(s−1)l − xsl|)
1

(N−1 + |xsl − x2l|)
dx2l · · · dxsl

≲ · · ·

≲
∫
T2

(logN)s−2 1

(N−1 + |x(s−1)l − xsl|)
1

(N−1 + |xsl − x(s−1)l|)
dx(s−1)ldxsl

≲ N(logN)s−2
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and∫
Ts

|x1l − x2l|
(N−1 + |x1l − x2l|)

1

(N−1 + |x2l − x3l|)
· · · 1

(N−1 + |xsl − x1l|)
dx1l · · · dxsl

≤
∫
Ts

1

(N−1 + |x2l − x3l|)
1

(N−1 + |x3l − x4l|)
· · · 1

(N−1 + |xsl − x1l|)
dx1l · · · dxsl

≲ (logN)p−1.

Combining these order estimates, we arrive at∫
Tsd

|x2l − x1l||PN (x1, · · · ,xs)|dx1 · · ·dxs

≲ Nd−1(logN)(s−2)(d−1) × (logN)s−1 = Nd−1(logN)(s−2)d+1.

We can repeat this for the remaining variables to get∣∣∣∣∫
Tsd

{h1(x1)h2(x2) · · ·hs(xs)− h1(xs)h2(xs) · · ·hs(xs)}PN (x1, · · · ,xs)dx1 · · ·dxs

∣∣∣∣
≲

(
∥∂h1∥L∞

s∏
j=2

∥hj∥L∞ + ∥∂(h1h2)∥L∞

d∏
j=3

∥hj∥L∞+

· · ·+ ∥∂(h1 · · ·hs−1)∥L∞∥hs∥L∞

)
×Nd−1(logN)(s−2)d+1

≲
s−1∑
j=1

∥∂hj∥L∞
∏
k ̸=j

∥hk∥L∞

×Nd−1(logN)(s−2)d+1.

The last bound is from chain rule. Now, by using another expression for PN ,

we get∫
Tsd

h1(xs)h2(xs) · · ·hs(xs)PN (x1, · · · ,xs)dx1 · · ·dxs

=
∑

J1,··· ,Js∈Zd
N

∫
Tsd

h1(xs)h2(xs) · · ·hs(xs)

× ei⟨x1,Js−J1⟩ei⟨x2,J1−J2⟩ · · · ei⟨xs−1,Js−2−Js−1⟩ei⟨xs,Js−1−Js⟩dx1 · · ·dxs.
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For each given J1 and Js, we can calculate the first (s−1)-integrals in the above

integration, i.e. with respect to dx1 · · ·dxs−1 so that∫
T(s−1)d

ei⟨x1,Js−J1⟩ei⟨x2,J1−J2⟩ · · · ei⟨xs−1,Js−2−Js−1⟩ei⟨xs,Js−1−Js⟩dx1 · · ·dxs−1

=


(2π)(s−1)d if J1 = J2 = · · · = Js−1 = Js,

0 otherwise.

Since J1 = · · · = Js is satisfied for Nd cases among J1, · · · ,Js ∈ Zd
N , we have∫

Tsd

h1(xs)h2(xs) · · ·hs(xs)PN (x1, · · · ,xs)dx1 · · ·dxs

= (2π)(s−1)dNd

∫
Td

h1(xs)h2(xs) · · ·hs(xs)dxs.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We will investigate the limits of all the joint cumulants

of

Nd/2δd−α

∫
Td

Φ(ω)
(
Iτ
N,δ(ω)− EIτ

N,δ(ω)
)
dω.

Since the first term is subtracted by its expectation, the first cumulant is ob-

viously zero. Second cumulant between k1th and k2th components are given

as

cum

(
Nd/2δd−α

∫
Td

ϕk1(ω)Iτ
N,δ(ω)dω, Nd/2δd−α

∫
Td

ϕk2(ω)Iτ
N,δ(ω)dω

)
= Nd × (2πN)−2d

∫
T4d

{ϕk1(ω1)ϕk2(ω2) + ϕk1(ω1)ϕk2(−ω2)}

× δ2(d−α)f̄ τ
δ (υ1)f̄

τ
δ (υ2)PN (ω1,υ1,ω2,υ2)dω1dω2dυ1dυ2
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for all k1, k2 ∈ {1, · · · , p} by Lemma A.1. We can apply Lemma A.2 with s = 4

which tells us the difference between the above and

(2π)d
∫
Td

{ϕk1(ω)ϕk2(ω) + ϕk1(ω)ϕk2(−ω)} δ2(d−α)
(
f̄ τ
δ (ω)

)2
dω

can be bounded by (logN)2d+1

N times the combinations of L∞ norm of ϕk1 , ϕk2 ,

δd−αf̄ τ
δ and their derivatives. Since we assume the uniform convergence of

δd−αf̄ τ
δ toward g(θ) with uniform convergence of its partial derivatives, we

know that all the L∞ norms are bounded. Hence the difference goes to zero.

Meanwhile from the uniform convergence, the above integral converges to

(2π)d
∫
Td

{ϕk1(ω)ϕk2(ω) + ϕk1(ω)ϕk2(−ω)} g2(ω;θ)dω.

Now consider the mth order joint cumulant

cum

(
Nd/2δd−α

∫
Td

ϕk1(ω)Iτ
N,δ(ω)dω, · · ·Nd/2δd−α

∫
Td

ϕkm(ω)Iτ
N,δ(ω)dω

)
for k1, · · · , km ∈ {1, · · · , p} and m ≥ 3. This is given as

Nmd/2 × (2πN)−md
∑
(ι,e)

∫
T2md

ϕk1(ω1)ϕk2((−1)ē2ωι2) · · ·ϕkm((−1)ēmωιm)

× δm(d−α)f̄ τ
δ (υ1) · · · f̄ τ

δ (υm)PN (ω1,υ1, · · · ,ωm,υm)dω1 · · ·dωmdυ1 · · ·dυm

by Lemma A.1. Again by means of Lemma A.2, the difference between

δm(d−α)

(2π)(2m−1)dNd

∫
T2md

ϕk1(ω1)ϕk2((−1)ē2ωι2) · · ·ϕkm((−1)ēmωιm)f̄
τ
δ (υ1) · · · f̄ τ

δ (υm)

× PN (ω1,υ1, · · · ,ωm,υm)dω1 · · ·dωmdυ1 · · ·dυm

and ∫
Td

ϕk1(ω)ϕk2((−1)ē2ω) · · ·ϕkm((−1)ēmω)
(
δd−αf̄ τ

δ (ω)
)m

dω.

83



is bounded by a constant multiple of (logN)(2m−2)d+1

N which goes to zero. Note

that the above converges to∫
Td

ϕk1(ω)ϕk2((−1)ē2ω) · · ·ϕkm((−1)ēmω) (g(ω;θ))m dω.

Meanwhile

Nmd/2 × (2πN)−md × (2π)(2m−1)dNd = (2π)(m−1)dN−(m/2−1)d → 0

as N → ∞ when m ≥ 3. Hence we conclude that all the third and higher order

cumulants goes to zero.

The claim for the expectation of fixed domain smoothed periodogram can

also be proved in exactly the same way, by Lemma A.1 and Lemma A.2 with

s = 2.
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Appendix B

Proofs for Chapter 5

Now we begin to prove Theorem 5.1. We first introduce the next two lemmas

which gives a quantitative bound on the difference between the value of the

function and its approximation by convolution with kernel functions.

Lemma B.1. Suppose h ∈ C1(Td). Kn represents the Fejér kernel of order n.

Then

sup
ω∈Td

∣∣∣∣h(ω)−
∫
Td

h(υ)Kn(ω − υ)dυ

∣∣∣∣ ≲ log n

n
∥∂h∥L∞

where

∥∂h∥L∞ = sup

{∣∣∣∣ ∂h∂ωj
(ω)

∣∣∣∣ : ω ∈ Td, j = 1, · · · , d
}
.

Proof. We can write the left side of the statement in lemma as

∫
Td

(h(ω)− h(ω − υ))Kn(υ)dυ.
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Since h ∈ C1(Td), we can bound

|h(ω − υ)− h(ω)| ≤ ∥∂h∥L∞

d∑
j=1

|υj |.

From∫
Td

|υ1|Kn(υ)dυ ≲
∫
T

1

n

|υ1|
(n−1 + |υ1|)2

dυ1 ×
d∏

j=2

∫
T

1

2πn

sin2
(nυj

2

)
sin2

(υj
2

) dυj
≲

log n

n
,

we get the desired result.

Lemma B.2. Suppose h ∈ C1(Td). K represents a kernel function satisfying

K ∈ C1(Td),K ≥ 0,K(x) = K(−x),
∫
K(x)dx = 1 and K(x) = 0 whenever

∥x∥∞ ≥ 1. Denote the bandwidth as b > 0. Then

sup
ω∈Td

∣∣∣∣h(ω)−
∫
Td

h(υ)
1

bd
K

(
ω − υ

b

)
dυ

∣∣∣∣ ≤ b∥∂h∥L∞

where ∥∂h∥L∞ is defined as same as in Lemma B.1.

Proof. The proof is essentially identical to that of Lemma B.1. All we need to

find is the bound for
∫
Td |υj | 1bdK

(
υ
b

)
dυ for each j. Since∫

Td

|υj |
1

bd
K
(υ
b

)
dυ =

∫
Td

b|υj |K(υ)dυ =

∫
[−1,1]d

b|υj |K(υ)dυ ≤ b

∫
[−1,1]d

K(υ)dυ

and the last term is equal to b, we get the desired result.

Before directly dealing with LN (θ), recall that smoothed periodograms need

to be scaled by δd−α to have a nondegenerate limit. This complicates theoretical

investigation of LN (θ) when the true value of α is unknown. Hence we choose a

detour that assumes scaled tapered periodogram δd−α0 Îτ
N,δ,M (ω) to be known
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when the true parameter is θ0 = (c0, α0,β0). Be aware that this requires α0

but we still estimate α together with the other tail parameters in the following

proposition. This seems unnatural but is needed to extend our method for the

case where α is unknown.

Proposition B.3. Assume the same as in Theorem 5.1 except Assumption 1.

Define

L0N (θ) =

(
2π

M

)d ∑
ω∈ΩM

{
δd−α0 Îτ

N,δ,M (ω)

gN,M (ω;θ)
+ log gN,M (ω;θ)

}

and assume (A1), (A2-weak), (A3)-(A5) where (A2-weak) is the weaker version

of (A2) which is

(A2-weak) δd−αf̄ τ
δ (ω) uniformly converges to g(ω;θ) ∈ C1(Td) with uniformly con-

verging first derivatives for each θ ∈ Θ.

Then there exists M0 ∈ N such that for all M ≥ M0, the minimizer θ̂ of L0N (θ)

converges to θ0 in probability as N → ∞.

Proof. Theorem 4.1 can be applied due to the assumption (A2-weak) so that

we have

δd−α0

(
Îτ
N,δ,M (ω)− f̄ τ

N,δ,M (ω)
)
= OP (N

−d/2)

for each ω ∈ Td under the true measure. Moreover since ∥Kn∥L1 = 1 for all

n ∈ N and
∥∥ 1
hdK

( ·
h

)∥∥
L1 = 1 for all h > 0, the assumption (A2-weak) and
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Young’s convolution inequality implies

sup
ω∈Td

∣∣∣δd−α0 f̄ τ
N,δ,M (ω)− gN,M (ω;θ0)

∣∣∣
= ∥δd−α0 f̄ τ

N,δ,M − gN,M (θ0)∥L∞

= ∥(δd−α0 f̄ τ
δ − g(θ0)) ∗KN ∗KM∥L∞

= ∥δd−α0 f̄ τ
δ − g(θ0)∥L∞∥KN∥L1∥KM∥L1 → 0

as N → ∞ and the same holds when KM is replaced by 1
hdK

( ·
h

)
. From now

on, we prove the result for the tapered periodogram. The proof is essentially

identical for the smoothed periodogram with a compactly supported kernel.

Recall that θ = (c, α,β) and gN,M (ω;θ) = c · gN,M (ω; 1, α,β). We will now

show that gN,M (ω; 1, α,β) → gM (ω; 1, α,β) for ω ∈ ΩM and (α,β) ∈ A × B

uniformly asN → ∞. Since gN,M (1, α,β) = gM (1, α,β)∗KN , we can consider to

apply Lemma B.1. Beforehand we need to check whether gM (·; 1, α,β) ∈ C1(Td)

is satisfied. From the expression

gM (ω; 1, α,β) =

∫
Td

g(ω − υ; 1, α,β)KM (υ)dυ,

we can see that gM (ω; 1, α,β) ∈ C1(Td) is implied by g(ω; 1, α,β) ∈ C1(Td)

and Leibniz rule which is allowed to be applied by means of the assumption

(A3). Hence we can apply Lemma B.1 to attain

|gN,M (ω; 1, α,β)− gM (ω; 1, α,β)| ≲ logN

N
∥∂ωgM (1, α,β)∥L∞

≤ logN

N
∥∂ωg(1, α,β)∥L∞ ,

where the meaning of ∥∂ωh∥L∞ is the same as that in Lemma B.1. Subscripted

notation clarifies the variable that derivatives are calculated. The last inequality
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is from convolution inequality. Since the assumption (A3) again gives a uniform

bound on ∥∂ωg(1, α,β)∥L∞ , we have

sup
{
|gN,M (ω; 1, α,β)− gM (ω; 1, α,β)| : ω ∈ Td, (α,β) ∈ A× B

}
≲

logN

N

(B.1)

which confirms our claim.

Observe that

L0N (θ) =

(
2π

M

)d ∑
ω∈ΩM

{
1

c

δd−α0 Îτ
N,δ,M (ω)

gN,M (ω; 1, α,β)
+ log c+ log gN,M (ω; 1, α,β)

}
.

Applying profiling approach, we can minimize L0N with respect to c for each

(α,β). The minimizer, denoting as ĉ(α,β), is given as

ĉ(α,β) =
1

|ΩM |
∑

ω∈ΩM

δd−α0 Îτ
N,δ,M (ω)

gN,M (ω; 1, α,β)

where |ΩM | is the cardinality of ΩM . From (B.1) with the assumptions (A3)

and (A4), we can take some closed interval C ∈ R+ such that

P (ĉ(α,β) ∈ C,∀(α,β) ∈ A× B) → 1

as N → ∞. This implies that

P
(
argmin

θ∈Θ
L0N (θ) ∈ C ×A× B

)
→ 1

as N → ∞. Henceforth it is enough to consider minimization of L0N (θ) over a

compact set Θ′ := C × A× B.

To show the consistency, observe that

P
(
|θ̂ − θ0| ≥ ϵ

)
≤ P

(
inf
{
L0N (θ)− L0N (θ0) : |θ − θ0| ≥ ϵ,θ ∈ Θ′} ≤ 0

)
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for large enough N . Hence it is enough to show the right hand side of the above

goes to zero. Define

L0(θ) =

(
2π

M

)d ∑
ω∈ΩM

{
gM (ω;θ0)

gM (ω;θ)
+ log gM (ω;θ)

}
.

We have

L0N (θ)− L0N (θ0) ≥ L0(θ)− L0(θ0)− 2 sup
θ∈Θ′

|L0N (θ)− L0(θ)|

on θ ∈ Θ′. Since (B.1) and the assumption (A4) implies

sup
θ∈Θ′

|L0N (θ)− L0(θ)|
p−−−−→

N→∞
0,

it is enough to show

inf
θ∈Θ′,|θ−θ0|≥ϵ

{L0(θ)− L0(θ0)} > 0 (B.2)

for every ϵ > 0. We have

L0(θ)− L0(θ0) =

(
2π

M

)d ∑
ω∈ΩM

{
gM (ω;θ0)

gM (ω;θ)
− 1− log

gM (ω;θ0)

gM (ω;θ)

}

=

(
2π

M

)d ∑
ω∈ΩM

φ

(
gM (ω;θ0)

gM (ω;θ)

)
where φ(x) = x−1−log x. Again using Lemma B.1 (Lemma B.2 for the compact

support kernel version) with the assumptions (A3) and (A4), we can say that

sup
ω∈Td\(−t,t)d,θ∈Θ

∣∣∣∣gM (ω;θ0)

gM (ω;θ)
− g(ω;θ0)

g(ω;θ)

∣∣∣∣ ≲ logM

M
.

The same conditions also implies that g(ω;θ0)
g(ω;θ) is bounded and away from zero

uniformly in ω ∈ Td \ (−t, t)d and θ ∈ Θ. Hence we can claim that∣∣∣∣∣∣
(
2π

M

)d ∑
ω∈ΩM

φ

(
gM (ω;θ0)

gM (ω;θ)

)
−
(
2π

M

)d ∑
ω∈ΩM

φ

(
g(ω;θ0)

g(ω;θ)

)∣∣∣∣∣∣ ≲ logM

M
.
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Moreover since ΩM is a subset of a regular grid whose neighboring distance is

2π
M , we can consider the above term as Riemann sum approximation so that

∣∣∣∣∣∣
(
2π

M

)d ∑
ω∈ΩM

φ

(
g(ω;θ0)

g(ω;θ)

)
−
∫
Td\(−t,t)d

φ

(
g(ω;θ0)

g(ω;θ)

)
dω

∣∣∣∣∣∣ ≲ 1

M
.

Define I(θ) as

I(θ) =

∫
Td\(−t,t)d

φ

(
g(ω;θ0)

g(ω;θ)

)
dω.

Since we can take C > 0 independently from any terms, especially M , satisfying

L0(θ)− L0(θ0) ≥ I(θ)− C logM
M , it is enough to show

inf
θ∈Θ′,|θ−θ0|≥ϵ

I(θ) > 0 (B.3)

to complete the proof. This is because (B.3) implies that (B.2) holds for all

M ≥ M0 by taking M0 to satisfy

inf
θ∈Θ′,|θ−θ0|≥ϵ

{I(θ)} − C logM0

M0
> 0.

Note that φ ≥ 0 and φ(x) = 0 if and only if x = 1, which means that I(θ) ≥ 0

where equality holds if and only if g(ω;θ0) = g(ω;θ) almost everywhere on

ω ∈ Td \ (−t, t)d. Now, if θ 7→ I(θ) is continuous, we can show (B.3). Indeed,

from the continuity of I(θ) with compactness of U = Θ′∩{θ : |θ−θ0| ≥ ϵ}, L(θ)

is guaranteed to achieve minimum on U so that there exists θ′ ∈ U satisfying

infθ∈U I(θ) = I(θ′). If I(θ′) = 0, it means g(ω;θ′) = g(ω;θ0) for almost every

ω ∈ Td \ (−t, t)d. Since θ′ cannot be θ0, it contradicts to the identifiabililty
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assumption (A1). The continuity of I(θ) can be shown by

|I(θ)− I(θ̃)| ≤
∫
Td\(−t,t)d

∣∣∣∣φ(g(ω;θ0)

g(ω;θ)

)
− φ

(
g(ω;θ0)

g(ω; θ̃)

)∣∣∣∣dω
≤ sup

s∈[cL,cU ]
|φ′(s)| ×

∫
Td\(−t,t)d

∣∣∣∣g(ω;θ0)

g(ω;θ)
− g(ω;θ0)

g(ω; θ̃)

∣∣∣∣dω
where 0 < cL ≤ g(ω;θ0)

g(ω;θ) ≤ cU < ∞ for all ω ∈ Td \ (−t, t)d and θ ∈ Θ′. This can

be done by the assumptions (A3) and (A4). The same conditions again implies

that the integrand in the right hand side is bounded. Now from the assumption

(A5), we can apply dominant convergence theorem so that the right hand side

goes to zero as |θ− θ̃| → 0. This shows the continuity of I(θ) which completes

the proof.

We have shown the consistency of θ̂ in Proposition B.3 when α0 is known.

If we assume (A2) which is stronger than (A2-weak), then we can also de-

rive convergence order of the estimator. Moreover, asymptotic normality of the

estimator can be derived as well when d
2 < γ where γ is the constant that char-

acterizes how fast δd−αf̄ τ
δ converges to g(θ) and is defined in the assumption

(A2). These results are stated formally in the next proposition.

Proposition B.4. Assume the same as in Proposition B.3 and additionally

assume Assumption 1. Then there exists M0 ∈ N such that for all M ≥ M0,

the minimizer θ̂ of L0N (θ) satisfies

θ̂ − θ0 = OP (N
−min{ d

2
,γ}).

If d
2 < γ and the tapered periodogram is used, then

Nd/2(θ̂ − θ0)
d−−−−→

N→∞
N(0, (2π)dJ −1ΣJ −1)
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where

J =

(
2π

M

)d ∑
ω∈ΩM

(
∂ log gM (ω;θ0)

∂θ

)(
∂ log gM (ω;θ0)

∂θ

)T

and

Σ =

∫
Td

{
ΦM (x)ΦT

M (x) +ΦM (x)ΦT
M (−x)

}
g2(x;θ0)dx

with

ΦM (x) =

(
2π

M

)d ∑
ω∈ΩM

∂ log gM (ω;θ0)

∂θ

KM (ω − x)

gM (ω;θ0)
.

When the smoothed periodogram with a compactly supported kernel is used,

then the same result holds but replacing KM with 1
hdK

( ·
h

)
and gM (θ0) with

gh(θ) = g(θ) ∗ 1
hdK

( ·
h

)
. In this case, Σ gets simplified as

Σ = (2h)2d
∑

ω∈ΩM

(
∂ log gh(ω;θ0)

∂θ

)(
∂ log gh(ω;θ0)

∂θ

)T 1

g2h(ω;θ0)

×
∫
Td

g2(x;θ0)

{
1

hd
K

(
ω − x

h

)}2

dx.

Proof. We write the proof for the tapered periodogram. The whole arguments

work identically for the smoothed periodogram with a compactly supported

kernel.

Classical argument using Taylor expansion gives

θ̂ − θ0 = −
(
∂2L0N (θ∗)

∂θ∂θT

)−1
∂L0N (θ0)

∂θ
,

where θ∗ is a stochastic vector lies between θ0 and θ̂ so that it converges to

θ0 in probability by means of Proposition B.3. This is actually an abuse of

notation because θ∗ should be differently chosen as θk∗ for each k = 1, · · · , l so
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that ∂L0N (θ̂)
∂θ = ∂L0N (θ0)

∂θ +
∑l

k=1
∂2L0N (θk∗)

∂θ∂θk
(θ̂k− θk0) should hold, however all of

these θk∗ converges to θ0 in probability and this property is all we need. Thus

we keep this abused notation below.

Direct calculation gives

∂L0N (θ0)

∂θ
=

(
2π

M

)d ∑
ω∈ΩM

−
∂ log gN,M (ω;θ0)

∂θ

{
δd−α0 Îτ

N,δ,M (ω)

gN,M (ω;θ0)
− 1

}

and

∂2L0N (θ∗)

∂θ∂θT
=

(
2π

M

)d ∑
ω∈ΩM

−
∂2 log gN,M (ω;θ∗)

∂θ∂θT

{
δd−α0 Îτ

N,δ,M (ω)

gN,M (ω;θ∗)
− 1

}

+

(
2π

M

)d ∑
ω∈ΩM

(
∂ log gN,M (ω;θ∗)

∂θ

)(
∂ log gN,M (ω;θ∗)

∂θ

)T δd−α0 Îτ
N,δ,M (ω)

gN,M (ω;θ∗)
.

Lemma B.1 implies

|gN,M (ω; 1, α∗,β∗)− gM (ω; 1, α∗,β∗)| ≲ logN

N
∥∂ωgM (1, α∗,β∗)∥L∞

≤ logN

N
∥∂ωg(1, α∗,β∗)∥L∞ ,

and the assmptions (A3), (A5) and consistency of θ∗ implies

gM (ω; 1, α∗,β∗) =

∫
Td

g(x; 1, α∗,β∗)KM (ω − x)dx

p−−−−→
N→∞

∫
Td

g(x; 1, α0,β0)KM (ω − x)dx = gM (ω; 1, α0,β0)

from dominant convergence theorem. Similar arguments for first and second

order derivatives for gN,M can be made because of the assumption (A6), from

which it can be shown that

∂2L0N (θ∗)

∂θ∂θT

p−−−−→
N→∞

(
2π

M

)d ∑
ω∈ΩM

(
∂ log gM (ω;θ0)

∂θ

)(
∂ log gM (ω;θ0)

∂θ

)T

.
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Meanwhile Theorem 4.1 implies that

Nd/2

(
2π

M

)d ∑
ω∈ΩM

−
∂ log gN,M (ω;θ0)

∂θ

δd−α0 Îτ
N,δ,M (ω)− δd−α0 f̄ τ

N,δ,M (ω)

gN,M (ω;θ0)

converges toward Gaussian distribution with mean zero and covariance matrix(
2π

M

)2d ∫
Td

∑
ω∈ΩM

∑
υ∈ΩM

∂ log gM (ω;θ0)

∂θ

∂ log gM (υ;θ0)

∂θT

KM (ω − x)KM (υ − x)

gM (ω;θ0)gM (υ;θ0)
g2(x;θ0)dx

+

(
2π

M

)2d ∫
Td

∑
ω∈ΩM

∑
υ∈ΩM

∂ log gM (ω;θ0)

∂θ

∂ log gM (υ;θ0)

∂θT

KM (ω − x)KM (υ + x)

gM (ω;θ0)gM (υ;θ0)
g2(x;θ0)dx.

The remaining term is(
2π

M

)d ∑
ω∈ΩM

−
∂ log gN,M (ω;θ0)

∂θ

δd−α0 f̄ τ
N,δ,M (ω)− gN,M (ω;θ0)

gN,M (ω;θ0)
= O(N−γ)

which follows from the assumption (A2). Combining two order equations, we

get the desired result.

Finally we are ready to prove Theorem 5.1, the version that α is unknown.

Proof of Theorem 5.1. Recall that θ = (c, α,β). We have

LN (θ) = L0N (cδα−α0 , α,β)−
(
2π

M

)d

|ΩM | log δd−α0 ,

where L0N is that in Proposition B.3. Hence by denoting the local minimizer of

L0N which is consistent to θ0 as θ̃ = (c̃, α̃, β̃), we have (ĉδα̂−α0 , α̂, β̂) = (c̃, α̃, β̃)

where θ̂ = (ĉ, α̂, β̂) is a local minimizer of LN . The result in Proposition B.4

then implies the desired result for α̂ and β̂. To derive the consistency result and

convergence order for ĉ, we use Nmin{ d
2
,γ}(ĉδα̂−α0 − c0) = OP (1) which comes

from the same proposition. Hence we have

log ĉ+ (α̂− α0) log δ − log c0 = OP (N
−min{ d

2
,γ}),

which gives us the desired results.

95



Appendix C

Tables for Chapter 8
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τ = 1 M = 25 M = 50 M = 100 M = 200 Naive Average

sc98drft.002
α = 2.35 α = 2.24 α = 2.19 α = 2.15 α = 2.23

D = 1.33 D = 1.38 D = 1.40 D = 1.42 D = 1.38

sc98drft.003
α = 2.50 α = 2.42 α = 2.36 α = 2.32 α = 2.40

D = 1.25 D = 1.29 D = 1.32 D = 1.34 D = 1.30

sc98drft.005
α = 2.44 α = 2.40 α = 2.37 α = 2.34 α = 2.39

D = 1.28 D = 1.30 D = 1.32 D = 1.33 D = 1.31

sc98drft.006
α = 2.32 α = 2.29 α = 2.27 α = 2.24 α = 2.28

D = 1.34 D = 1.35 D = 1.37 D = 1.38 D = 1.36

sc98drft.007
α = 2.35 α = 2.28 α = 2.20 α = 2.15 α = 2.24

D = 1.32 D = 1.36 D = 1.40 D = 1.43 D = 1.38

sc98drft.008
α = 2.74 α = 2.67 α = 2.59 α = 2.55 α = 2.64

D = 1.13 D = 1.17 D = 1.20 D = 1.23 D = 1.18

Table C.1 Estimated α and fractal dimension of 6 sea ice profiles based on tail

estimation method under τ = 1. The right most column is achieved by simple

average of four estimates.
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Moving window estimates for log c

60

7.907 6.333 5.442 4.951 4.735 3.955 3.182 2.918 2.823

55 5.519 6.802 6.132 4.228 3.169 2.485 3.776 4.220 3.353

3.090 2.327 5.457 4.402 2.704 0.390 3.741 4.691 3.858

50 4.058 3.480 5.656 4.365 4.011 3.005 1.846 1.864 0.659

5.878 6.616 6.784 5.870 4.895 4.479 3.101 0.000 -1.668

45 5.296 5.860 7.108 7.030 6.292 4.839 3.378 1.660 -1.270

6.319 5.590 6.840 7.196 7.005 5.755 0.911 -0.047 -1.947

40 8.455 7.334 7.208 6.783 6.530 6.584 0.849 -3.829 -3.627

9.086 8.451 7.842 7.387 6.886 6.929 1.842 -3.263 -3.449

35

lat

lon
-120 -115 -110 -105 -100 -95

Table C.2 Moving window estimation result of log c for monthly maximum

temperature data.
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Moving window estimates for α

60

5.416 5.132 4.965 4.829 4.746 4.606 4.480 4.459 4.443

55 4.686 5.161 5.088 4.724 4.520 4.354 4.598 4.701 4.552

3.907 3.880 4.953 4.768 4.432 3.924 4.610 4.795 4.656

50 4.136 4.112 4.921 4.733 4.675 4.471 4.252 4.253 4.000

4.799 4.979 5.084 4.953 4.791 4.724 4.459 3.862 3.522

45 4.768 4.840 5.127 5.079 4.977 4.771 4.490 4.192 3.593

5.083 4.871 5.102 5.132 5.128 4.961 4.011 3.841 3.447

40 5.451 5.306 5.198 5.042 4.851 4.929 4.037 3.072 3.094

5.321 5.300 5.182 5.139 4.907 4.961 4.183 3.163 3.110

35

lat

lon
-120 -115 -110 -105 -100 -95

Table C.3 Moving window estimation result of α for monthly maximum tem-

perature data.
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Moving window estimates for A11

60

0.812 0.852 0.850 0.825 0.816 0.840 0.889 0.876 0.831

55 0.834 0.844 0.847 0.851 0.873 0.877 0.894 0.893 0.860

0.915 0.901 0.858 0.844 0.854 0.847 0.886 0.903 0.906

50 0.969 0.981 0.925 0.840 0.853 0.865 0.900 0.927 0.937

0.941 0.946 0.937 0.908 0.886 0.851 0.856 0.926 0.929

45 0.910 0.927 0.938 0.905 0.890 0.897 0.871 0.910 0.921

0.964 0.959 0.971 0.913 0.903 0.949 0.900 0.891 0.880

40 0.965 1.033 1.008 0.929 0.922 0.937 0.903 0.788 0.823

0.970 1.022 0.988 0.928 0.951 0.962 0.890 0.820 0.847

35

lat

lon
-120 -115 -110 -105 -100 -95

Table C.4 Moving window estimation result of A11 for monthly maximum tem-

perature data.
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Moving window estimates for A12

60

0.016 -0.015 -0.026 -0.006 -0.018 -0.046 -0.009 -0.030 -0.041

55 0.035 0.017 0.038 0.068 0.032 -0.022 -0.006 -0.018 -0.037

0.107 0.264 0.145 0.144 0.130 0.070 0.031 0.027 0.012

50 0.052 0.188 0.156 0.118 0.028 0.073 0.148 0.123 0.099

0.029 0.069 0.064 -0.010 -0.032 0.049 0.190 0.194 0.111

45 -0.001 0.037 0.082 0.023 0.007 0.062 0.158 0.179 0.139

-0.046 0.031 0.112 0.049 0.020 0.033 0.094 0.148 0.166

40 -0.040 -0.073 -0.012 -0.008 0.062 0.077 0.027 0.242 0.202

0.055 -0.005 -0.064 -0.069 0.024 0.036 0.046 0.179 0.232

35

lat

lon
-120 -115 -110 -105 -100 -95

Table C.5 Moving window estimation result of A12 for monthly maximum tem-

perature data.
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초록

정상 가우스 무작위장에 대한 고정 도메인 점근론에서는 스펙트럼 밀도함수의 꼬

리행동의역할을강조하는결과가많다.무작위장의평활도,잘못지정된스펙트럴

밀도함수를 통한 점근적 최적 크리깅, 그리고 가우시안 척도 등이 그 예시이다. 본

논문은 스펙트럴 밀도함수에 대한 꼬리 행동 모수 모형을 가정하였을 때, 고정 도

메인 점근법 하에서 꼬리 행동 모수에 대한 일치추정량을 제안하는 것을 목표로

한다. 구체적으로, d차원 유클리드 공간의 유계 부분 집합 위의 정규 격자에서 수

집된 데이터에 초점을 맞추었으며, 스펙트럴 영역에서의 분석법을 개발하기 위해

피리오도그램을 기반으로 Whittle 가능도 함수와 유사한 목적함수를 구성하였다.

이 과정에서 평활화된 피리오도그램이 중요하게 등장하므로 고정 도메인 점근법

에서 평활화된 피리오도그램의 일치성과 점근정규성을 먼저 증명하였다. 다음으

로, 테이퍼드 피리오도그램과 옹골 지지 커널로 평활화된 피리오도그램이라는 두

종류의 평활화된 피리오도그램을 기반으로, Whittle 가능도 함수와 유사한 목적

함수를 구성하여 이를 최소로 만드는 해를 스펙트럴 꼬리 행동 모수의 추정량이

되도록하였다.추정량의일치성과수렴속도,그리고일부경우에서의점근정규성

을 증명하였다. 이 결과를 통해 추정량에 대한 통계적 추론이 가능해진다. 이론적

결과를 뒷받침하기 위한 시뮬레이션 실험을 진행하였으며, 현실 상황에서의 응용

예시로써 해빙 프로파일 데이터와 월간 최대 온도 데이터를 분석하여 제시하였다.

주요어: 고정 도메인 점근법, 가우시안 무작위장, 피리오도그램, 스펙트럴 밀도함

수

학번: 2016-20269
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