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ICA, internal carotid arteries; OA, ophthalmic arteries; ACHA, anterior choroidal arteries; VA, ver-tebral arteries; 
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artery; P7, branches of the right superior cerebellar artery, anterior inferior cerebellar artery, and posterior inferior 
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Abstract 

 

Identifying the cerebral arterial branches is essential for undertaking a computational ap-

proach to cerebrovascular imaging. However, the complexity and inter-individual differences in-

volved in this process have not been thoroughly studied. We used machine learning to examine the 

anatomical profile of the cerebral arterial tree. The method is less sensitive to inter-subject and 

cohort-wise anatomical variations and exhibits robust performance with an unprecedented in-depth 

vessel range. 

We applied machine learning algorithms to disease-free healthy control subjects (n = 42), 

patients with stroke with intracranial atherosclerosis (ICAS) (n = 46), and patients with stroke 

mixed with the existing controls (n = 69). We trained and tested 70% and 30% of each study cohort, 

respectively, incorporating spatial coordinates and geometric vessel feature vectors. Cerebral arte-

rial images were analyzed based on the ‘segmentation-stacking’ method using magnetic resonance 

angiography. We precisely classified the cerebral arteries across the exhaustive scope of vessel 

components using advanced geometric characterization, redefinition of vessel unit conception, and 

post-processing algorithms. We verified that the neural network ensemble, with multiple joint 

models as the combined predictor, classified all vessel component types independent of inter-sub-

ject variations in cerebral arterial anatomy. The validity of the categorization performance of the 

model was tested, considering the control, ICAS, and control-blended stroke cohorts, using the 

area under the receiver operating characteristic (ROC) curve and precision-recall curve. 

The classification accuracy rarely fell outside each image’s 90–99% scope, independent of 

cohort-dependent cerebrovascular structural variations. The classification ensemble was calibrated 

with high overall area rates under the ROC curve of 0.99–1.00 [0.97–1.00] in the test set across 

various study cohorts. Identifying an all-inclusive range of vessel components across controls, 

ICAS, and stroke patients, the accuracy rates of the prediction were: internal carotid arteries, 91–

100%; middle cerebral arteries, 82–98%; anterior cerebral arteries, 88–100%; posterior cerebral 

arteries, 87–100%; and collections of superior, anterior inferior, and posterior inferior cerebellar 

arteries, 90–99% in the chunk-level classification. Using a voting algorithm on the queued classi-

fied vessel factors and anatomically post-processing the automatically classified results intensified 

quantitative prediction performance. 

We employed stochastic clustering and deep neural network ensembles. Machine 
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intelligence-assisted prediction of vessel structure allowed us to personalize quantitative predic-

tions of various types of cerebral arterial structures, contributing to precise and efficient decisions 

regarding cerebrovascular disease. 

 

Keyword: cerebrovascular disorders, stroke, neuropathogenesis, computer reasoning, machine in-

telligence, patient-specific modeling, computational biology, early diagnosis, precision medicine 

 

Student Identification Number: 2021-20355 
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Chapter 1. Automated in-depth cerebral arterial labeling us-

ing cerebrovascular vasculature reframing and deep neural 

networks 
Automated cerebral arterial labeling 

 

 

1.1. Introduction 
 

Defining the morphological nature of cerebral circulation and providing quantified infor-

mation, so-called digitization, are the indispensable hallmark of identifying pathogenic mecha-

nisms, diagnosing disease, and determining the clinical relevance of cerebrovascular dysfunctions. 

Automated labeling of the major cerebral arterial branch is the first step for quantitatively analyz-

ing cerebral arterial morphology from cerebrovascular images. Previous progressions include at-

las-based artery identification and post-processing improvement using iterative region-growing 

territorial expansion.1-3 Characterising the considerable variations in complex intracranial vascular 

structures, half of which are usually located outside the Circle of Willis, has been challenging but 

is a crucial step in quantifying structural information of the cerebrovasculature.4 Previously sug-

gested methods of automated identification of major cerebral vascular territories have suffered 

from practical limitations attributable to complexities and inter-individual variabilities of the cer-

ebrovasculature. Therefore, these methods covered only the major branches of the Circle of Willis 

for automated labelling.1-3 

Here, we overcome the problems mentioned above, leveraging geometric features obtained 

from systematic time-of-flight magnetic resonance angiography (TOF MRA) with a deep neural 

network and advanced the performance of the models by reorganizing vascular units for clinically 

disparate personalized cerebral vessel modules. 

This study aimed to segment the cerebrovascular arterial branches in a fully automatic manner. 

We focused on cerebral arterial circuits, systematizing and validating neural network models to 

render them clinically pragmatic. 
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1.2. Materials and methods 
 

1.2.1. Study design and subjects 
 

The study subjectsd In accordance with the primary purpose of this study which was the de-

velopment of an automated cerebral arterial labeling algorithm, we used a pre-established cohort 

retrospectively. The study subjects were healthy controls, stroke patients, and stroke patients with 

intracranial atherosclerosis (ICAS) over 20 years (Figure 1). 

The control cohorts for the algorithm development were healthy subjects who visited the 

comprehensive health promotion centre at the Samsung Medical Center and who underwent MRA 

from January 1, 2013, to December 31, 2013, excluding those who had the following: (i) stroke 

including ischemic stroke, hemorrhagic stroke, and transient ischemic attack; (ii) coronary artery 

or heart disease; (iii) ICAS; (iv) intracranial arterial anomalies corresponding to pathological con-

ditions or variants of normal anatomy; (v) congenital morbidity including cerebral arterial hypo-

plasia; and (vi) miscellaneous abnormal cases diagnosed by angiography.  

Stroke patients for the external validation of the algorithm were selected from the Samsung 

Medical Center stroke registry (SMC stroke registry). This prospectively collected stroke registry 

recruited acute stroke patients seven days after stroke onset. Another specially selected stroke 

group was intended to provide clinical relevance to the algorithm from the patients who partici-

pated in The Intensive Statin Treatment in Acute Ischemic Stroke Patients with Intracranial Ather-

osclerosis - High-Resolution Magnetic Resonance Imaging (STAMINA-MRI) study5 with signif-

icant and symptomatic intracranial arterial stenosis of > 50% in the middle cerebral artery of the 

basilar artery.  

Demographic data and vascular risk factors were collected from the medical records for con-

trols and the stroke registry for the stroke cohort. 

The Samsung Medical Center Institutional Review Board approved the study design (SMC-

2021-04-072). This study was performed in accordance with the declaration of Helsinki. Informed 

consent was waived by the Samsung Medical Center Institutional Review Board for the control 

group because the study progressed in a retrospective manner, and we provided the clinical data 

and brain images in an anonymized form. Written informed consent was obtained from those en-

rolled in the SMC stroke registry. 
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Figure 1. Inclusion flow chart of study cohorts. 

Rationales of non-participation of study subjects excluded in each cohort. 
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1.2.2. Imaging preparation 

 

1.2.2.1. Magnetic resonance machine 

 

The intracranial arteries were imaged using a 3.0 T Philips Achieva magnetic resonance im-

aging scanner (Philips Medical Systems) equipped with a 32-element phased-array receiver head 

coil. 

 

1.2.2.2. Magnetic resonance sequence 

 

This study used whole-brain three-dimensional (3D) MRA images with a TOF protocol col-

lected from each participant. With an isotropic voxel size configured to 0.284 × 0.284 mm3, the 

parameters were as follows: echo time, 4.59 ms; repetition time, 22 ms; flip angle, 23°; RBW, 130 

Hz/pixel; GRAPPA factor, 3; 32 reference lines. 

 

1.2.2.3. Region growing 

 

We used the raw input data format DICOM, which employs a TOF modality. Preprocessing 

procedures included anonymization using DICOM Anonymizer Pro (Neologica, Montenotte, Italy) 

and region growing by an in-house vessel analyzer program that created segmented brain angi-

ography maps, converting them into the NII format. The internally developed vessel morphology 

pipelines then analyzed and extracted brain vessel features to examine the cerebrovascular struc-

ture. Figure 1 provides a schema of the intravascular feature vector extraction process. Intelligent 

morphological surface, centerline, bifurcation, and airway sectional processing algorithms were 

used to characterize vascular spots, segments, chunks, and branches. The procedures were final-

ized upon providing multifaceted systematic dimensions of the geometrically modeled features. 

 

1.2.2.4. Feature extraction 

 

To specify feature modeling, the dissection of isosurfaces for vessel surface model generation 
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was initially performed using the vascular modeling toolkit libraries.6-9 The z-axis voxels were 

tailored to the isovoxel image scale using bicubic interpolation to minimize artifacts and rough 

image resampling on a regular planar grid.10-12 A continuous 3D space was divided into myriad 

cells uniformly based on the respective vertices of their isosurfaces. The major arterial centerlines 

from the boundary surface of each cell were then extracted. At this stage, a set of spatial coordi-

nates, whose nearest vertex among the vertices of the isosurface is homogeneously distributed, 

works as a unit cell. The framework determines the starting point and skeleton of the centerlines 

of the significant brain arteries from a lower slice of the vascular region for extraction. Vessel 

skeleton refinement strengthens the determination of the endpoints of the centerline. Specifically, 

(i) skeletonizing the cerebrovascular region and surface, (ii) pruning the branch under a predeter-

mined threshold, (iii) generating a linked list of a tree structure based on the refined skeletal struc-

ture, and (iv) specifying leaf nodes from the linked list determine the endpoints. The centerlines 

were extracted by tracking the boundary surfaces of the cells connecting the start and end points. 

Finally, the pipelines characterized numerous blood vessel feature vectors of compartmentalized 

groups based on a branch point of a centerline. Quantified vessel characteristics include the cere-

bral blood vessel cross-sectional area, maximally inscribed sphere radius, minimized and maxim-

ized diameter, maximum-minimum radius ratio, surface circumference, distortion, curvature, and 

(hydraulic) luminal circularity (Table 1). 

Thus, the vascular morphological modeling pipelines precede the preprocessing. This leads 

to surface extraction and re-meshing, centerline and branch extraction, and centerline merging to 

obtain its derivative subfeatures. The finalized vessel features then support ensemble neural net-

works to detect structural brain anomalies. The feature vectors accompany subject-wise gold-

standard ground truth vascular labels established by two board-certified neurologists with exper-

tise in stroke imaging and angiography. 

 

1.2.3. Reframing hierarchical cerebrovasculature 
 

In contrast to the conventional nomenclature employed in the clinical neurology field, ap-

proximately 4,000 detailed minuscule cerebral arterial segments, subdivided by our algorithm, re-

quired a dimensional reduction of the feature data for utilization in neurovascular research. 
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Therefore, we restructured the conventional concepts of the vascular unit system into four hierar-

chical levels (Figure 2). ‘Spots’ are the most rudimentary units of cubic cells in the binarised 3D 

cerebral arterial tree with an interval of 0.2801 mm on the arterial centerline. Each spot, along with 

its morphological features, was reorganized and hybridized into segments according to continuity 

and ending between bifurcations. According to the vessel geometry upon bifurcation, feature vec-

tor extraction algorithms geometrically grouped segments into 62 branches. Branches corre-

sponded to the conventional cerebral arterial nomenclature. The vessel branches composed of the 

vascular segments could be reconstructed according to clinically practical criteria of symmetry: 

anterior or posterior, basal or pial, and MCA, ACA, or PCA. The cerebrovasculature consisted of 

20 types of vessel chunks. The appropriateness of this system was validated using uniform mani-

fold approximation and projection (UMAP).13,14 

We provide a new nomenclature for the cerebral arteries (Table 2 and Table 3). 

 

1.2.4. Classification method development 
 

1.2.4.1. Two-step modeling 

 

The primary objective of this study was the automatic segmentation and labeling of the cere-

bral vasculature using the conventional nomenclature (62 branches). To achieve this, we used a 

stepwise strategy: first allocating each spot of the whole brain to a specific chunk (step 1), and 

then allocating each spot of a single chunk to a specific branch (step 2). The supervised machine 

learning procedures initialized the allocation of each spot to a single chunk level using the multi-

layer perceptron neural network.15-18 Input features included the coordinates of each spot, cerebral 

blood vessel cross-sectional area, maximally inscribed sphere radius, minimized and maximized 

diameter, maximum-minimum radius ratio, surface circumference, distortion, curvature, and (hy-

draulic) luminal circularity. Subsequently, the final chunk assignment was performed by allocating 

each spot to a specific chunk (step 1). A similar process was repeated to allocate spots in a specific 

chunk to a single branch by supervised machine learning, and the subsequent voting process en-

hanced accuracy (step 2). The voting algorithm obtained profiles of classified vessel labels from 

spots and selected the most frequently appearing vessel label among vascular chunks and segments. 
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Figure 2. Flow schema describes the comprehensive preprocessing procedures and the geometric characteriza-

tion algorithms. 

Reconstruction encompasses vascular spots, segments, chunks, and branch units. Morphological and geometric char-

acterization algorithms were used to process the vascular units automatically. A1, horizontal pre-communicating ACA; 

M1, sphenoidal middle cerebral artery; BA, basilar artery; ICA, internal carotid artery. 
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1.2.4.2. Validation 

 

An area under the receiver operating characteristic (AUROC) test was used to assess the in-

ternal and external validity and the chunk- and branch-level accuracy. First, we tested the perfor-

mance of the algorithm in a set of independent stroke patients with ICAS. The structural dissimi-

larities in the cerebral arterial configuration between the healthy standard controls and those with 

stroke with ICAS were expected to indicate the clinical relevance of this algorithm in subjects with 

pathological conditions. 

 

1.2.4.3. Statistics 

 

We performed groupwise 𝑡-statistics and ANOVA from the standpoints of feature vectors and 

vascular chunks to interpret between-group differences for statistical significance, details available 

in the results section. We visualized each group’s similarity profiles in a two-dimensional plane, 

excluding t-values with p-values > 0.001 as insignificant. 

 

1.2.4.4. Data availability 

 

According to the Korean governmental policy and health security policy of the data sharing 

committee of the Samsung Medical Center, all clinical information and brain image data are lim-

itedly available through formal approval procedures upon requests to validated investigators. Fur-

ther requests and inquiries are available to corresponding author (W.-K. Seo). 

 

1.3. Results 
 

1.3.1. Subject characteristics 
 

Finally, we recruited 157 participants among the 203 screened subjects (42 / 50 controls, 46 / 

77 stroke patients with ICAS, and 69 / 80 stroke patients; Figure 1). 
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The training and test sets comprised 70% and 30%, respectively, of the healthy control group (n = 

42). The group had a mean age of 58 years (SD, 10.1 years; Table 4) and was predominantly male 

(73.8%). A stroke group was included to validate the algorithm. The same training–test ratio policy 

was used for the rest of the study cohorts. The stroke-with-ICAS group comprised 46 stroke pa-

tients (58.7% male), with a mean age of 64.2 years (SD, 13.3). No data were excluded for any of 

the variables used in the training or testing sets. Stroke patients were older and more likely to 

smoke cigarettes and have diabetes, hyperlipidemia, hypertension, or derivative coronary artery 

diseases than those in the control group. 

 

1.3.2. Vascular component characteristics 
 

Considering inter-subject hallmarks in the stepwise vessel identification process, the cerebro-

vascular images were evaluated under a vascular component profile containing 5016.4 ± 732.9 

spots, 42.5 ± 4.2 segments, and 18.3 ± 0.8 chunks in controls; 4393.6 ± 1906.3 spots, 33.6 ± 11.7 

segments, and 15.8 ± 4.3 chunks in patients with stroke with ICAS; and 4810.4 ± 1357.5 spots, 39 

± 7.6 segments, and 17.6 ± 1.9 chunks in patients with stroke. We considered the vessel unit dis-

tribution for each cohort to precisely analyze complex cerebral arterial trees (Figure 4). 

We mapped the distribution profile of spots across the control, stroke-with-ICAS, and stroke 

groups (Figure 3). Regardless of study cohorts, concerning the vessel chunks, the most frequently 

appearing components were the right and left anterior pial MCA. They were followed by the right 

and left ICA, right anterior pial ACA, left posterior VA, and right and left posterior basal PCA with 

cohort-wise subtle fluctuations. Concerning the vessel segments, independent of the study groups, 

the four most frequently appearing vascular elements were the ICA and MCA angular branches, 

including the right and left branches. The following most frequent vascular segments included the 

pericallosal branch of the ACA and the posterior temporal branch of the PCA across the study 

groups, including the right and left branches. 
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Figure 3. Results of stochastic chunk- and segment-based cerebrovascular clustering analysis. 

Clustering mapping results are presented by (A) chunks in the control group, (B) segments in the control group, (C) 

chunks in the ICAS group, (D) segments in the ICAS group, (E) chunks in TOAST levels 1–3, (F) segments in TOAST 

levels 1–3, (G) chunks in the stroke group, and (H) segments in the stroke group. 
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Figure 4. Cohort-wise vessel count profiles scaled in vascular chunk and segment. 

The results show the distribution of vessel components scaled in chunks and segments investigating dominant vessel 

components in each cohort. 
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1.3.3. Testing the appropriateness of the reframed vascular structure 
 

We evaluated the appropriateness of the reframed vascular elements by unsupervised dimensional 

reduction using the UMAP and visualized the cluster results in the planar space with color mapping 

according to the 20 types of vessel chunks (Figure 3-A, C, and E). The dimensionality reduction 

had nonlinear properties, and the global data structure was conserved. Each chunk’s lesional pro-

file precisely depicted the characteristics of each vessel, and the embedding algorithms efficiently 

captured high dimensions. The qualitative observations showed that the control, stroke, and stroke-

with-ICAS groups had similar overall accuracy in clustering.  

Figures 4-B, D, and F depict the unsupervised clustering of the spots visualizing each con-

ventional vascular branch. Unlike in the chunk-level mapping, the branch-level clustering was 

insufficient to discriminate each branch. 

 

1.3.4. Step 1 modeling: chunk 
 

The model ensemble identified 20 chunks with 87–99% accuracy (Figure 5), except in the 

left anterior basal ACA chunk in the stroke group (82%). The anterior communicating artery 

(ACOA; A0) showed cohort-wise fluctuating performance attributable to sample size constraints 

and significant anatomical variations (37–91%). The training and test sets included both epito-

mized and anomalous (Figure 5A) 3D vascular component coordinates and derivative features at 

each spot vector as inputs. The controls, stroke cohort, and stroke-with-ICAS cohort gave similar 

results in that, except for A0, most of the vessel chunks (between 90–99%) were successfully clas-

sifiable. In the chunk prediction results of the control group (Figure 5B), the majority of chunks 

showed 90–99% accuracy, except for the A0 (0.36) and P5 chunks (pial branches of the right pos-

terior cerebral artery; 0.87). In the stroke group, only A5, A6, A10, P5, and P6 (basal branches of 

the right and left anterior cerebral artery, pial branches of the left anterior cerebral artery, and pial 

branches of the right and left posterior cerebral artery; 0.82–0.89) with A0 (0.37) fell outside the 

90–99% range (Figure 5D). In patients with ICAS (Figure 5C), A5 and A6 (basal branches of the 

right and left anterior cerebral artery; 0.89) had an 89% accuracy and the rest of the branches, 

excluding ACOA, ranged within a 91–99% precision. 
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Figure 5. Prediction performance profiles of a 20-chunk macrovessel in the control, ICAS, and stroke group 

cohorts. 

(A) Examples of 3D cerebrovascular models of the disease-free healthy subjects, stroke-only patients, and stroke-

with-ICAS patients. Macrovessel chunk prediction results of (B) control cohorts, (C) ICAS cohorts, and (D) stroke 

cohorts are shown. 
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When training both controls and stroke patients as a general group in chunk predictions (Figure 

5D), except for ACOA, the right and left anterior basal ACA and right and left posterior pial PCA 

chunks had an 82–89% performance. The rest showed unexceptional performances (90–98%) be-

fore the post-processing procedures. 

With regard to sensitivity and specificity, the area under the curve (AUC) of the receiver 

operating characteristic (ROC) curve showed an overall value of 0.99–1.00 (0.97–1.00), and the 

precision-recall curve (PRC) was 0.992 (0.626–0.999) for the control, ICAS, and stroke cohorts. 

The algorithm’s AUC accuracy improved from 0.56–0.96 (95% CI 0.52–0.96; Table 5) to 0.62–

0.98 (95% CI 0.56–0.98; Table 5) after applying the voting procedure, with statistical significance 

(p < 0.001) observed in all cases except for A5 and P5. 

 

1.3.5. Step 2 modeling: branch 
 

With regard to the branch-level classification of 62 branches in the controls, each spot had 

the following accuracy, except for a few exceptions: A1-A2: 89–100%, A3–A8: 73-96%, A9–A10: 

86–98%, P5-P6: 89–100%, and P7-P8: 85–100% (Figure 6, Table 2, and Table 3). The control 

results showed that, except for A2.02, A3.02, A4.02, A7.01, A7.08, A7.09, A8.01, A8.08, A10.01, 

P5.05, and P7.02, the overall classification performance was roughly 90–99% (Table 2 and Table 

3). In the analysis of classification performance in the stroke cohorts, the following precision ca-

pacities were observed: A1-A2: 92–100%, A3-A8: 87–97%, A9-A10: 93–100%, P5-P6: 81–99%, 

and P7-P8: 93–99% (Figure 6, Table 2, and Table 3). Considering the deviations in the classifica-

tion performance of the A4.02, A7.08, and P6.03 segments in the stroke group, the categorization 

performance showed percentage values in the upper 90s (Table 2 and Table 3). Further details of 

the classification performance are presented in Table 2 and Table 3. For segment-wise categoriza-

tion in ICAS patients, each type of segment had the following performance: A1-A2: 94–100%, 

A3-A8: 89–99%, A9-A10: 93–99%, P5-P6: 95–100%, and P7-P8: 92–100% (Figure 6, Table 2 

and, Table 3). Except for segment A7.09, the overall accuracy profile rarely fell below 90% (Table 

2 and Table 3). 

Concerning sensitivity and specificity, the AUC-ROC showed an overall value of 0.99 (0.97–

1.00), and the PRC was 0.992 (0.483–0.975) for the control, ICAS, and stroke cohorts scaled to 

macro-average and micro-average values (Figure 8). 
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Figure 6. Prediction performance profiles of 62 major arterial branches in control, stroke-with-ICAS, and 

stroke group cohorts. 

The right and left posterior VA, BA, and ACOA chunks only include one significant type of arterial segment. The (A) 

control, (B) stroke, and (C) stroke-with-ICAS groups showed significant arterial segment classification capacity in 

the A0–A10 and P0–P8 chunks. 

 

 

A. Control 

C. Stroke with ICAS

B. Stroke
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Figure 7. Clinical cases of the control, stroke, and ICAS groups compared with predictively modeled vessel 

labels. 

Controls, stroke patients, and stroke-with-ICAS patients underwent color labeling and visualization according to the 

branch within the cerebrovasculature. The algorithm consistently showed good performance for cerebral arterial 

branch identification among healthy controls, stroke patients, and stroke patients with ICAS. The structural abnormal-

ities in patients with ICAS produced no significant adverse effects on identification performance.  
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Figure 8. Cohort-wise receiver operating characteristic and precision-recall curve scaled in vessel chunk. 

The results show the receiver operating characteristic and precision-recall curves of vessel components scaled in 

chunks investigating classification performance validation in each cohort.  (A/D), (B/E), and (C/F) figures refer to 

area  under receiver operation characteristic curve (AUC) and precision-recall curve (PRC) in disease free healthy 

subjects, stroke patients, and stroke-with-ICAS patients.
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1.3.6. Vascular morphological features according to the vascular risk factors 
 

Figure 9 presents differences in vascular morphological features among the control, stroke, and 

stroke-with-ICAS groups at each chunk. Notably, the phenomenon was conspicuous in the right 

ICA, left ICA, right anterior pial, and left anterior pial MCA chunks (Figure 7). The ICAS group 

had similar propensities concerning characterized geometric features. However, we also discov-

ered the following unforeseen heterogeneous chunks between the control-stroke-ICAS functional 

profiles (Figure 7): anterior basal MCA, right anterior basal ACA, left anterior basal, right anterior 

pial ACA, and left anterior pial ACA. 

 

1.3.7. The profiles of geometric feature vectors weighted on deep neural net-

works 
 

The sensitivity and specificity results summarised by the AUROC revealed an overall micro-

average performance of 0.97 and macro-average performance of 0.96 (Figure 10A and Figure 11) 

to discern stroke patients (n = 40) as external validation subjects, employing healthy subjects as 

the training set. When externally validated by the stroke-with-ICAS group (n = 46), the micro-

average and macro-average performance values were 0.95 and 0.92, respectively (Figure 10B and 

Figure 11). For the external stroke patients, the AUROC performance ranged beyond the threshold 

of 0.95 for the entire vascular chunks except for A0, A5-6, A9, and P1-2, which spanned the 0.91–

0.94 range. In contrast, in the external stroke-with-ICAS group, the AUROC scores of the vessel 

chunks A2, A4, A7-8, P2, and P7-8 exhibited values more extraordinary than the 0.95 capacity, 

leaving the rest of the chunks to bear performances between 0.90 and 0.94 (except for chunk A6 

[0.89] and chunk A0 [0.70]). 
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Figure 9. Results of ANOVA F-statistics with analysis of the vascular characterization vectors and macrovas-

cular chunks. 

The ANOVA values with p-values greater than 0.001 were considered insignificant and marginalized as zero. The 

results of the ANOVA compare the control, stroke, and stroke-with-ICAS groups. 
 

 

 

 

 

 

 

 

 

 

 

 

 

F-value

 



   

  33 

 
Figure 10. External validation via the receiver operating characteristic in the stroke-only and stroke-with-ICAS 

groups. 

We analyzed the area under the receiver operating characteristic curve for the external validation of each spot’s deep 

neural network ensemble to a specific chunk for stroke patients. The employed model ensemble received training only 

with a control group tested and validated by (A) the stroke group and (B) the stroke-with-ICAS group. 
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Figure 11. The contribution profiles of geometric feature vectors weighted when training and employing deep 

neural networks. 

The contribution of Cartesian coordinates and geometric features when using the model ensemble trained only by a 

control group tested and validated by a stroke-with-ICAS group with a hierarchy. 
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1.4. Discussion 
 

This study demonstrated that patient-specific cerebral arterial profiles aid in the quantitative 

and in-depth labeling of cerebral arterial branches that is clinically useful.19-24 We hypothesized 

that: (i) the appropriate combination of classical anatomical rules and computational prediction 

expedites the exhaustive classification of cerebral arteries; (ii) variations in vessel branches are 

detectable by employing neural networks. Accordingly, we designed a deep-learning algorithm 

that intelligently established in-depth vascular territories using strategies stemming from the sys-

tematic geometric characterization of MRA data. The preprocessing modules uniquely reframed 

the entire cerebrovasculature into clinically redefined compartments: spots, segments, chunks, and 

branches. 

A quantitative approach to investigating cerebrovasculature has shown limited success, and 

conventional approaches have used less precise quantitative methods to understand complex cer-

ebrovascular structures with limited clinical relevance.25-27 In previous attempts, vascular struc-

tures were overlooked, and distortion during thresholding was not adequately accounted for due 

to the shortage of appropriate geometric characterization algorithms for examining small vessels. 

Additionally, these methods inadequately assessed residual variation, leading to overfitting, and 

thus their conclusions must be considered with caution. Furthermore, the cerebrovascular coverage 

of previous studies is lacking,27-29 even excluding some vessel categories that were too complex to 

classify. The arterial geometry has also not been characterized; they are, therefore, vulnerable to 

normal variations.  

MRA is one of the most widely used tools for assessing cerebral arterial disease. Using its 

template alignment, attempts have been made to label cerebral arteries limited to variations of 

those underlying the anterior circulation and those in clinical datasets or by bifurcations of interest, 

covering only roughly eight territorial frameworks using typical angiography of healthy subjects. 
2,30-33 Therefore, we cannot claim to have included all of the components of the cerebrovasculature 

in our analysis. Several graph neural network studies have facilitated the construction of arterial 

morphometry, assuming that arterial traces are entirely intact and typically representative. In other 

words, their hypotheses are vulnerable to interpreting vascular abnormalities or variations such as 

vessel occlusion.3,25,26,34-36 Thus, conventional anatomical rules are less appropriate for quantita-

tively understanding the cerebrovasculature. 
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1.4.1. The role of neural networks in this study 
 

The deep neural networks employed 3D coordinates and geometric vessel feature vectors 

(Figure 7) derived from the reframed vascular fragments. We specifically tagged them into major 

arterial branches by employing segment-wise voting algorithms and orchestrated neural networks, 

creating 62 intelligently identifiable vessel territories. Implementing these algorithms does not re-

quire heavy graphics microprocessors, high resolution, advanced noise nullification, or a specific 

region of interest choice. 

By stochastically clustering the classified vascular regions, we identified blood vessels by 

exploiting the conventional neuroanatomical branch nomenclature. Finally, we propose that mor-

phological parameters such as diameter, roundness, and tortuosity strengthen characterization vec-

tors complementing variations under the Cartesian coordinates of angiographical categories. 

Therefore, reduced dependence on a Cartesian framework, owing to an overall uniform distribu-

tion of the contribution of geometric vascular features, lends this study a high level of robustness 

and reliability of performance.  

Cerebral arterial labeling is not only a function of accuracy; therefore, targeted vessel chunks 

and segment ranges of the ensemble classifier cover should be exhaustive to fulfil clinical potential. 

Usually, pathological variations in the cerebral vasculature are expected to lower labeling perfor-

mance. However, the multifaceted structural analysis among healthy controls, stroke patients, and 

stroke patients with ICAS revealed only a trivial difference in the performance of identifying each 

cerebral arterial branch (Figure 7). Considering the consistent labeling performance of this algo-

rithm, the distinct contribution of the weighting algorithm of each cubic cell consisting of a 3D 

vessel model is worthy of continued focus in future studies to improve accuracy. The prestructured 

models require an entire cerebral arterial label identification time of no more than a minute, unbri-

dled by manual visual inspection bias and observer variabilities.37-39 Therefore, this algorithm can 

be applied to investigate cerebrovascular morphological features in various settings, such as in a 

longitudinal study, assessment of drug effects, and between-group comparison. 

   

1.4.2. Paradigm-shifting vascular unit reframing 
 

A mainstream strength of this study is the vascular framing using ‘chunk’, a critical element 
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referring to a group of cerebrovascular elements sharing functional and anatomical similarities. As 

substantiated by the comparative analysis of UMAP assessment group-wise chunk-level feature 

vectors, chunk-level analysis is a rational categorization method for territorializing cerebrovascu-

lar regions. Chunk discernment is a salient approach in a fundamental unit framework dedicated 

to the quantitative analysis of the cerebrovasculature and as an intermediate stage of vessel classi-

fication. Furthermore, this reframing reduces data dimension from about 5,000 spots to 20 chunks 

level, providing a valuable way of analyzing and summarising the massive data into a valid format. 

 

1.4.3. Limitations and future directions 
 

Several limitations exist. First, the results of this study have a limitation of generalizability. 

This study included participants with only an ischemic stroke rather than a hemorrhagic stroke. 

Thus, there are some potential challenges in discerning the various subtypes of the stroke to im-

prove further the feasibility of the clinical application of neural network ensembles. In addition, 

all subjects were ethnically Korean. Considering the anatomical and pathological inter-racial dif-

ferences in the intracranial cerebral vasculature, the performance of the model should be validated 

in different populations. Bespeaking generalizability and inter-institutional compatibility require 

additional external validation using images outside the Samsung Medical Center. Second, we 

acknowledge that the sample size at present is not sufficiently large; however, based on patient-

specific profiles, we have provided the potential for finding additional novel brain frailty bi-

omarkers. Third, our results indicate that neural networks effectively identify the cerebral arterial 

segment. However, a few structure-ambiguous vascular segments suffer from unsatisfactory per-

formance complemented via segment-wise voting post-processing. We hypothesize that the enig-

matic nature of some small vessel segments predisposes them to idiosyncratic performances. The 

geometric features of the developed redefined vascular units provide groundbreaking opportunities 

to interpret mixed vascular territories intelligently. However, covering various subjects with repro-

ducible iterative measurements and theorizing optimized feature combinations remains an im-

portant scientific question. Another limitation of this study is that we only used TOF MR angio-

graphic images. MRA does not, per se, provide authentic structural images but includes hemody-

namic information. Therefore, modifications are mandatory if we apply the model developed in 

this study to other imaging modalities, such as digital subtraction angiography or computed 
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tomographic angiography.  

A strength of this study lies in the unconventional accuracy of in-depth labeling that can out-

perform board-certified experts. Our system utilizes segment-wise voting algorithms, anatomical 

post-processing, paradigm-shifting vascular unit reframing, and robust systematic geometric fea-

ture characterization for clinical usability. The model performance was further synchronized and 

engineered using anatomical rule-assisted post-processing complementation. Exhaustive categori-

zation resulted in segmenting the 20 vascular chunks, which were narrowed down and further 

classified into small vessel segment compartments composed of spot cells. The unlimited applica-

bility of orchestrated neural networks to non-matched feature vector data provides patient-specific 

profiles, facilitating successful clinical interpretations, the potential prognosis of brain debility 

progression, and post-stroke treatment management. 

 

1.5. Conclusions 
 

In conclusion, we have pioneered the in-depth labeling cerebral arterial segments by scruti-

nizing neural network ensembles via cerebrovascular structural reframing. By systematically ana-

lyzing diverse cohorts, our results demonstrate that this technique is feasible and robust in profiling 

vessel-specific labeling. 
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