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ABSTRACT 

A systematic study of molecular immune 

response based on RNA sequencing 

Kyuwon Shim  

Interdisciplinary Program in Bioinformatics  

College of Natural Sciences 

Seoul National University 

 

One of the major challenges of immunology is the intricate 

intertwining of different markers and cell types. Therefore, various attempts 

are being made to address these issues through RNA sequencing (RNA-seq) 

technology, which can effectively identify multiple markers and cell types. 

Though, many recent advances have been made based on single cell RNA seq 

(scRNA-seq) technology, but bulk RNA seq is still often required due to 

technical or cost issues. Here, we present a simple, yet robust and cost-

efficient immune response analysis pipeline based on bulk RNA-seq that 

leverages recent advances in scRNA-seq. We have successfully applied the 

proposed method to aging mouse kidneys and human periodontitis of varying 

severity, characterized various immune responses at the molecular level in 

both models and identified biomarker candidate genes to predict the 

periodontitis. The result in the current study presents a novel insight for the 

comprehensive understanding of the immune system. 
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Backgrounds 

Single cell RNA-sequencing in Immunology 

An organism's immune system, which consists of immune organs, 

immune cells, and immunological chemicals, controls a variety of 

pathophysiological processes, and preserves physiological equilibrium. 

Immunology is challenging to study, nevertheless, due to the immune system's 

diversity and the intricacy of the immunological response. The current 

exploratory approach, which is based on a single experiment, is ineffective 

and unstable (Furman & Davis, 2015), making it urgently necessary to 

simultaneously identify the whole immune system's structure and pathological 

changes tailored to different diseases. 

A single cell RNA sequencing (scRNA-seq) technology assesses the 

whole transcriptome at the single cell level. By identifying the homogeneity 

and heterogeneity of individual cells, scRNA-Seq overcomes the limitations 

of traditional approaches. It is valuable as a new tool for bioinformatics 

analysis since it can collect cellular data on each individual cell and recognize 

every type of cell in a sample without bias or prior knowledge, which is 

crucial for comprehending the variety of the immune system.  

Uncovering cellular heterogeneity, cell growth and differentiation, 

cell-cell interaction, hematopoiesis, and gene regulatory networks to predict 

immune activities have been the main uses of scRNA-seq in immunology.  (Y. 

Chen et al., 2022; Vegh & Haniffa, 2018).  
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Single cell deconvolution 

Most of the pertinent research is frequently hampered by changes in 

cell type proportions since only the average expression levels are represented 

by bulk samples of heterogeneous mixes. By understanding how the mix of 

cell types changes in diseases like cancer, researchers may be able to find 

specific cell populations that could be used to treat the disease (Elloumi et al., 

2011). For instance, immunotherapy may benefit from the latest findings 

about lymphocytes and other immune cells and their role in the tumor 

microenvironment (Hendry et al., 2017; Sharma et al., 2019).  

A thorough benchmark study (Avila Cobos et al., 2020) gives a 

quantitative analysis of the cumulative effects of deconvolution outcomes on 

data processing, scaling/normalization, marker selection, composition of cell 

types, and technique selection. They tested 20 deconvolution methods, 

including five that utilize scRNA-seq data as a baseline, to estimate cell type 

proportions. Then, a number of more deep learning algorithms were given 

(Molho et al., 2022; F. Yang et al., 2022). but many deep learning-based 

models frequently fail to be robust because they only tend to overfit the 

benchmark dataset. Tree-based classifiers can still be used robustly in those 

cases, with great interpretability of the results (X. Wang et al., 2019). 

 

Chronic inflammation 

Immune cells generate cytokines and enzymes during acute 

inflammation in order to eradicate the cause of the inflammation and begin 
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healing (Arango Duque & Descoteaux, 2014; Takeuchi & Akira, 2010). 

Cytokines are proteins produced by immune cells that govern immunological 

and inflammatory responses. Interleukin and tumor necrosis factor may 

stimulate the generation of inflammatory mediators and attract immune cells 

to the site of inflammation. 

Immune cells generate proteases and oxidases, which aid in the 

breakdown of injured tissue and the elimination of infections (Takeuchi & 

Akira, 2010). DAMPs are molecules that are produced during inflammation 

and help in tissue repair and regeneration (Vénéreau et al., 2015). HMGB1 

and ATP have the potential to move immune cells and stem cells to the site of 

inflammation, induce angiogenesis, and improve stem cell growth. 

Uncontrolled inflammation may progress to chronic inflammation, which is 

characterized by ongoing immune activity and the generation of inflammatory 

mediators (Gilroy & De Maeyer, 2015). Chronic inflammation has been 

related to cancer, diabetes, and heart disease (Roh & Sohn, 2018). It might be 

caused by chronic infections, autoimmune diseases, toxins, or cigarette smoke. 

Chronic inflammation often resolves in an imperfect manner, resulting in 

ongoing inflammation and tissue damage. 

 

Inflammaging 

Inflammaging is a word used to describe the ongoing, low-grade 

inflammation generated by the innate immune system's activity. Inflammation 

of this type has been linked to numerous age-related health issues, such as 

cardiovascular disease, diabetes, and neurological problems. The response of 
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the immune system to inflammation is based on macrophages, a kind of white 

blood cell. Immune system dysregulation, namely macrophage activation, has 

been associated with DNA damage, cellular senescence, reduced autophagy 

and mitophagy (cellular health-maintenance processes), and alterations in the 

microbiota (the collection of microorganisms that live in the body). Chronic 

inflammation of the immune system, resulting in elevated levels of pro-

inflammatory proteins such as IL-6 and TNF-alpha, is referred to as 

inflammaging (Franceschi et al., 2000). This chronic low-level inflammation 

has been linked to various age-related disorders including cardiovascular 

disease diabetes , and neurodegenerative diseases like Alzheimer's disease 

(Bradt et al., 2014).  

In addition, DNA damage has been recognized as a marker of 

inflammation (Vitale et al., 2013). It is thought that DNA damage contributes 

to the onset of age-related diseases by disrupting normal cellular processes 

and causing cellular senescence (a state of permanent cell cycle arrest) (J.-H. 

Chen et al., 2007). Autophagy and mitophagy are cellular health-maintenance 

processes that remove faulty or superfluous cellular components (Green et al., 

2011). 
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Introduction  

Kidney function tends to decline with age, which has been connected 

to an increased prevalence of end-stage renal disease that requires treatment 

through kidney replacement therapy. Acute kidney injury (AKI) occurs more 

frequently in older people (Baraldi, 1998) and this demographic has a worse 

prognosis for recovery from AKI (Paraskevas et al., 2010). 

It is beneficial to analyze the transcriptome of kidneys using a 

comprehensive technique such as RNA-seq to acquire a better knowledge of 

the shared and unique aspects of aging kidneys and renal disease. 

One study reported that inflammation-related pathways were 

considerably upregulated in aged kidneys, utilizing RNA-seq to assess the 

transcriptome of entire kidneys (D. Park et al., 2016)However, this method 

has limitations in that it does not account for differences in gene expression 

between different cell types within the kidney (Shalek & Benson, 2017), nor 

does it allow for the detection of changes in low-expression genes such as 

long non-coding RNA (lncRNA) and alternative splicing (Shalek & Benson, 

2017). 

The transcriptomes of 3 distinct areas within the kidneys of mice 

were studied using compartment-specific RNA-seq at 3 different stages of 

life: early (2 months), mid-life (12 months), and late (24 months). We also 

compared the transcriptomes of aged kidneys to those of kidneys with 

unilateral ureteral obstruction (UUO) to detect differences and similarities 

between the effects of aging and a well-known model of kidney fibrosis (D. 
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Park et al., 2016). We want to learn more about how the kidney ages and how 

aging and fibrosis are different by looking at the transcriptomes of the 

different parts of the kidney and comparing them to each other and to the 

UUO model. 
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Materials and Methods 

Animals 

C57BL/6 mice at the ages of 2, 12, and 24 months and CD11c YFP 

mice were obtained from the Korea Institute of Basic Science and the Jackson 

Laboratory, respectively. Each group consisted of 12 male mice. Serum 

creatinine and urea nitrogen levels were measured using the Vet Test 8008 kit 

from IDEX. Albuminuria and creatinine in urine were measured using ELISA 

and analysis kits from ALPCO and R&D Systems, respectively, and reported 

as the albumin-to-creatinine ratio in mg/gCr. A total of 3 mice underwent 

ureteral ligation surgery to induce UUO, and after 14 days, the left kidney was 

collected, and the mouse was euthanized. All animal experiments were 

conducted in accordance with the guidelines of the Animal Research Ethics 

Committee at Kyung Hee University. 

 

Isolation of glomerular and nonglomerular fraction 

Eighteen kidneys were collected from 9 mice per group to 

sufficiently extract the mRNAs of glomerular and nonglomerular fractions. 

The total RNA from the entire kidney was extracted from three mice per 

group. The extracted kidney was quickly frozen and cut with a cryotome to 

obtain a 10 m sample for the fraction of the entire kidney in the kidney's 

center. In the case of the glomerular compartment, mice were anesthetized, 

and diluted 8×107 Dynabeads were injected into 40 ml of phosphate buffered 

saline through the heart. The kidneys were removed, minced, and digested 
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with collagenase (Collagenase A 1 mg/ml in HBSS) while gently stirring at 

37°C for 35 minutes. Collagenase digestion tissue was able to gently pass a 

100 μm sized cell filter using a flat pestle and then clean the cell filter with 5 

ml of HBSS. The cell suspension was centrifuged at 200 × g for 5 minutes. 

Finally, glomeruli containing Dynabeads were collected in a magnetic particle 

concentrator and washed at least three times with HBSS. At this time, the 

supernatant (tube and epilepsy fraction) was carefully pipetted into a separate 

tube and stored on ice. Kidney tissue, excluding collagenase digestion at 37°C 

during the procedure, was maintained at 4°C. 

 

RNA extraction and RNA sequencing 

Samples for RNA-seq were chosen based on their meeting certain 

quality standards, including RNA mass above 1 μg and RNA integrity number 

above 6, as determined by the Agilent 2100 Bioanalyzer (Agilent 

Technologies, CA, USA). These samples were then processed according to the 

Illumina TruSeq protocol (Illumina Inc., CA, USA), which involves 

fragmenting, reverse transcribing, and amplifying the RNA with a random 

oligo-dT primer to create a cDNA library. The cDNA library was sequenced 

using the Illumina HiSeq platform (Illumina Inc., CA, USA), and the resulting 

raw data was converted to FASTQ format using the bcl2fastq package 

(Illumina Inc.).   

 

RNA sequencing data analysis 

The FASTQ data was then analyzed using STAR software (Dobin et 
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al., 2013), with unique, properly mapped reads being used for further analysis. 

Gene expression was measured using transcripts per million (TPM) (Wagner 

et al., 2012) and annotated using the GENCODE VM16 annotation (Ensembl 

release 91). Principal component analysis was performed using the sklearn 

package (Love et al., 2014), while hierarchical and k-means clustering were 

done with SciPy and the Morpheus tool 

(https://software.broadinstitute.org/morpheus). The MuSiC package (R-

packaged) was used to deconvolve 26 bulk RNA-seq samples and identify the 

proportions of various cell subtypes (GEO's open single-cell RNA-seq 

reference and GSE146912). Differential gene expression was analyzed using 

DESeq2 (Benjamini-Hochberg method), and genes with at least 2 or 4 times 

variation between samples at a false detection rate of 5% were considered 

differentially expressed. These differentially expressed genes were 

functionally annotated using Gene Ontology and KEGG pathways, as well as 

the Metascape tool (Y. Zhou et al., 2019), through the DAVID web portal 

(https://david.ncifcrf.gov/summary.jsp). A gene expression network was also 

established (Dennis et al., 2003), with Pearson correlation used to identify the 

top 100 correlated genes for each differentially expressed long non-coding 

RNA (lncRNA), and functional enrichment analysis performed using the GO 

term annotation from the Ensembl database. All heat maps were created using 

Morpheus (https://software.broadinstitute.org/morpheus). 

Data availability 

RNA sequencing data have been archived in NCBI GenBank in 

accordance with BioProject ID PRJNA672727 (BioSample SAMN16576419 - 
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SAMN1657647). Use the Personal Reviewer link to view the data.  

https://dataview.ncbi.nlm.nih.gov/object/PRJNA672727?reviewer=v3i8pmd9f

99jFPfehs3tdl8ds 

Results 

In this study, the transcriptome was extracted from 27 mice of 

varying ages (2 months, 12 months, and 24 months) and 3 distinct kidney 

compartments: glomerulus (G), nonglomerulus (NG), and whole kidney (WK). 

After generating and aligning a total of 22.9 million to 159 million sequences 

to the mm10 mouse genome, the data set was further analyzed by eliminating 

one of the biological replicates (specifically, the third replicate of 12M 

glomerular compartment) as determined by a PCA grid analysis (L. Chen et 

al. , 2021). Analysis of the glomerular compartments using Principal 

Component Analysis (PCA) revealed a distinct transcript composition, which 

was also supported by the results of hierarchical clustering (Figure 2.1B). 

Markers for specific cell subtypes were used to verify the separation strategy  

and cell identity (J. Park et al., 2018) (Figure 2.1C). 

The glomerular fractions displayed high levels of transcripts for 

vascular endothelial proteins (Nrp1 and Plat), glucose proteins (Podxl and 

Synpo), and mesenchymal proteins (Sfrp2 and Pdgfra). In contrast to the 

glomerular compartment, genes associated with different nonglomerular 

proteins and markers of water quality such as Slc6a12 and Ghr were 

expressed in  the nonglomerular and overall kidney compartments. 

Deconvolution analysis, using publicly available single-cell RNA-seq data 

https://dataview.ncbi.nlm.nih.gov/object/PRJNA672727?reviewer=v3i8pmd9f99jFPfehs3tdl8ds
https://dataview.ncbi.nlm.nih.gov/object/PRJNA672727?reviewer=v3i8pmd9f99jFPfehs3tdl8ds
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from the kidney (Chung et al., 2020; The Tabula Muris Consortium et al., 

2020), was performed to investigate the heterogeneity of cell subtypes and 

compare the ratios of different cell types. The results for the glomerular 

compartment samples indicated that podocytes were present in high 

proportions, while the proportion of mesangial cells increased with age 

(Figure 2.1D). However, when the single-cell data from the entire kidney was 

used in the deconvolution process, podocytes were not detected in the RNA-

seq samples (Figure 2.1E). No significant changes in cell subtypes with aging 

were observed in the nonglomerular or whole kidney compartments  

(Figure 2.1F and G).
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Figure 2.1 Design of experiment and global transcriptome expression patterns. 

(A) Schematic of 2 compartments and whole isolated mouse kidneys at 

various ages. (B) K-means clustering from all detected genes in log2(TPM 

+ 1) values. (C) Heatmap displaying expression of previously identified 

cell-specific gene markers. Proportions of cell types in the glomerular 
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compartment based on single-cell references shown in (D), while whole 

kidney reference in (E). (F) Proportions of cell types in the nonglomerular 

compartment (left) and whole kidney (right). podocyte; Podo, endothelial 

cell; Endo, proximal tubular epithelial cell; PT, loop of Henle; LOH, distal 

convolute tubular cell; DCT, collecting duct, principal cell; CD PC, 

collecting duct, intercalated cell; CD IC, fibroblast; Fib, natural killer cell; 

NK, macrophage; Macro, neutrophil; Neutro, lymphocyte; Lympho. 
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The results of the differential gene expression tests conducted on 

early (2M to 12M) and late (12M to 24M) phases showed that there were 

significant changes in gene expression (FDR ≤ 0.05) in the glomerular 

compartments. During the early phase, the upregulated genes were related to 

ion transfer and immune system processes, while the downregulated genes 

were involved in responses to lipopolysaccharides and positive regulation of 

transcription (Figure 2.2A). Some of the specifically upregulated genes in the 

early phase included Sost, Syp, C1q, and Gdf15, which were involved in cell 

adhesion and complement categories (Figure 2.2B). On the other hand, the 

downregulated genes during this phase included Plk2, Egr1, and Atf3, which 

play a role in normal cell division. During the later stages, several genes 

associated with chemical reactions and immune system processes were 

activated, while genes involved in ion transfer and transmembrane transport 

were suppressed (Figure 2.2C). During the later stage of the process, certain 

genetic factors linked to inflammation, such as Ifitim3 and Tnfrsf19, displayed 

heightened activity. Additionally, genes that play a role in fibrosis, including 

Spon2, Mmp3 and Angpt4 were seen to be more active during this phase. On 

the other hand, the activity of Kcnj1 and Pvalb, which are linked to potassium 

channels and calcium binding, went down at this stage.  (Figure 2.2D). 

In the nonglomerular compartment, the upregulated genes during the 

early phase were involved in immune system processes and inflammatory 

responses, including Aldh1a1, Igkc, Igha1, and Cyp2d12 which are associated 

with immunoglobulin production and fatty acid metabolism (Figure 2.2F). 

During the late phase, the main transcriptome features were immune system 
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processes and phagocytosis (Figure 2.2G), and several genes involved in 

tubular injury, inflammation, and fibrosis, such as Lcn2, Ltbp2, Grem1, and 

Trem2, were upregulated (Figure 2.2H). 

In the whole kidney compartment, a significant number of genes 

were highly upregulated during the late phase, particularly those involved in 

immune system processes, inflammatory responses, and chemotaxis (Figure 

2.2I, J). Some of the genes that showed the highest level of increased activity 

were those linked to B cells, which are a type of white blood cell responsible 

for producing immunoglobulins. These genes included IgKv, Ighv, and Fcgr1 

(Figure 2.2 K, L). 
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Figure 2.2 Genetic variations in the kidney over time in relation to aging 

(A, C, E, G, I, J) Bar charts displaying prevalent GO terms and KEGG 

pathways related to differentially expressed genes in early and late stages. (B, 

D, F, H, K, L) Graphs depicting gene expression differences, with red 
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showing genes that are more active in older mice and blue indicating genes 

that are more active in younger mice. 

Unique inflammatory gene signatures in the glomerular compartments in 

kidney aging  

Our glomerular compartment enables us to study the specific 

modifications in glomeruli during the aging process. By comparing the 

expression levels of genes linked to immune system functions, innate immune 

reactions, inflammatory responses, and chemical reactions, we can observe 

notable differences between 12 and 24 months of gestation (Figure 2.3A).  We 

concentrated on genes linked to innate immunity, complement pathways, and 

molecules involved in cell signaling (cytokines and chemokines). We 

specifically looked at Gdf15, Ccl2, and Cxcl13 which play a role in the aging 

process of the glomeruli. (Figure 2.3B, C). Genes involved in innate immune 

responses such as Ly86 and Spon2, were significantly upregulated in 24M, on 

the other hand, Irf1 was downregulated. One of the primary complement 

pathways that undergo changes during the aging process is the classical 

pathway. Specifically, components of this pathway known as C1q, including 

C1qa, C1qb, and C1qc, become more active. (Figure 2.3 F, G). Antigen 

presentation for immune response via major histocompatibility (MHC) class 

II and cytokine macrophage migration inhibitors (MIFs), i.e., cell surface 

receptors for Cd74, H2-Eb1, and cathepsin S (Cts), were also upregulated in 

glomerular compartments. Through scRNA-seq data, we observed distinct 

inflammatory gene expression patterns in podocytes, endothelial cells, and 

mesangial cells across the aging process (Figure 2.3H). 
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Figure 2.3 Inflammatory gene expression in the glomeruli upon aging 

(A) A visual representation of significantly prevalent inflammatory biological 

processes in the glomeruli, using -log2(adjusted P-value) for transparency and 

the number of genes for the size of the representation. (B, D, F) Genes with 
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notable increase in activity during the period between 2-24 months, 

represented in heatmaps and linked to specific GO terms. (B) Innate immunity. 

(D) Cytokine and chemokines. (F) Complement pathway. (C, E, G) Graphical 

representation of the RNA-seq expression levels of specific differentially 

expressed genes associated with each prevalent inflammatory biological 

process (H) A heatmap of genes associated with prevalent inflammatory 

biological processes using single-cell reference data. A one-way ANOVA was 

applied, followed by Tukey's test. 
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Investigating the potential functions of lncRNA in the aging of the kidney 

Studies conducted in recent times have demonstrated that long non-coding 

RNA(lncRNA), have a substantial impact on the management of gene 

expression, including transcription and translation regulation, genome 

imprinting, and epigenetic regulation (Statello et al., 2021). In the release of 

GENCODE VM16, over 12,000 long non-coding RNAs were identified and 

out of those, 9,146 were observed to be active in a group of samples. Among 

the 250 lncRNAs that displayed variations in expression across all 

compartments, 74 were found to have a strong association with protein-coding 

genes that also displayed variations in expression through co-expression 

network analysis. This analysis revealed that upregulated lncRNAs were 

functionally linked to the immune system, inflammation, blood coagulation, 

transport, and lipid metabolism (Figure 2.4A). In opposition, lncRNAs that 

had a decreased level of  expression were linked to the processes of 

transcribing genetic information and arranging the spindle fibers during cell 

division (Figure 2.4B). The expression patterns of individual lncRNAs 

(Figure 2.4C, E, G) were highly similar to those of the correlated neighboring 

genes, and many differentially  expressed genes (DEGs) were major 

c omp one n ts  of  th e co exp re s s ion  n e tw or k f or  ea ch  lnc R NA  

(Figure 2.4 D, F, H) (Shalek & Benson, 2017). 
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Figure 2.4 Long non-coding RNA in the aging process of the kidney 

(A) and (B), Rader plots are displayed, showcasing enriched GO terms 

linked to DEGs that are significantly correlated with lncRNAs that are 

either upregulated or downregulated, respectively. (C), (E), and (G) 
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showcase the coexpression patterns and networks of selected lncRNAs, 

with the core coexpression network depicted. The networks are shown for 

three compartments and three timepoints, specifically 2M, 12M and 24M, 

with red lines indicating the lncRNAs and grey lines representing the 

neighboring genes. (D), (F), and (H) also show the coexpression pattern of 

the lncRNAs. Coexpression networks of lncRNAs. Genes with high 

correlation in the network are represented as green edges, a correlation of 

0.9 or greater. lncRNAs are colored cyan in network representations. Red 

indicates DEGs in the network. 
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Comparison of gene expression changes in aging and UUO-induced 

fibrotic kidneys reveal both shared and unique alterations 

We have examined the concept of kidney aging as a precursor to 

chronic kidney disease (CKD). By analyzing the genetic makeup of both aged 

and injured kidneys, the study aimed to understand the similarities and 

differences in fibrosis, a condition that contributes to both aging- and injury-

related kidney damage. Largely, gene expression profiles in 24M kidneys 

were distinguished with the ones in the UUO kidneys (Figure 2.5A). The 

expression of cell subtype-specific markers significantly increased in immune 

cells, but decreased in tubular cells, and proportionally increased in 

glomerular cells in UUO kidneys compared to 24M kidneys (Figure 2.5B).  

Despite selecting genes that exhibited a fourfold increase in 

expression, a significantly greater number of genes were found to be either 

increased or decreased in the UUO group. (Figure 2.5C) Genetic Interactions 

were further analyzed to identify shared genes in healthy kidney aging and 

UUO-induced kidney fibrosis (Figure 2.5D). A group of 40 genes that play a 

significant role in controlling cell growth, differentiating cells, and supporting 

embryonic development have been identified. Among these genes are Nr2e3, 

Ak1c18, Wnt8, and Wnt11, which have been found to have a suppressing 

effect on cellular activity. By comparing GO term enrichment between 24M 

and UUO, we found features that distinguish kidney aging from injury-

induced kidney fibrosis (Figure 2.5E).  

Many ECM tissues and angiogenesis genes were highly upregulated 

in UUO while oxidative phosphorylation, immunoglobulin production, and 
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classical complement pathways were major upregulated GO terms at 24M. 

Adaptive immune cell regulation revealed the difference between healthy 

kidney aging and UUO. T cell-related genes were mostly upregulated from 

UUO (Figure 2.5F), while B cell-related genes were upregulated from 24M 

and UUO compared to 2M. A number of genes that are linked to B-cell 

activation were found to be significantly more active in the case of UUOs in 

response to unfolded proteins. Examples of such genes include Xbp1 and the 

Edem family of proteins, which are known to enhance degradation within the 

endoplasmic reticulum. These genes were only upregulated in UUOs, and not 

in other conditions (Figure 2.5G,H).  
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Figure 2.5. A comparison of inflammatory characteristics in aged and fibrotic 
kidneys resulting from UUO injury 

(A), a principal component analysis is conducted on the kidneys from three 

groups, UUO, 24M, and 2M. (B) illustrates the expression levels of known 

cell type-specific markers through a heatmap. The differentially expressed 

genes (DEGs) between UUO and 24M kidneys in comparison to 2M 

kidneys are illustrated in (C) through Venn diagrams. (D) Scatterplot 
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displays the log2FC values of all DEGs in the 24M and UUO groups 

compared to the 2M group, with the top 7 functional terms in relation to 

size presented in the legend. The circle size in the scatterplot represents the 

number of enriched functional terms compared to the 2M group. (E) 

presents a heatmap of significantly overrepresented functional annotations 

for DEGs between the UUO and 24M groups, while (F) and (G) depict 

heatmaps of DEGs for each overrepresented Gene Ontology term for T 

cells and B cells, respectively. (H) A heatmap and network of functional 

annotations were created for DEGs from UUO and 24M upregulation and 

DEGs specifically upregulated in UUO. These annotations were found to 

be highly overrepresented. podocyte; Podo, endothelial cell; Endo, 

proximal tubular epithelial cell; PT, loop of Henle; LOH, distal convolute 

tubular cell; DCT, collecting duct, principal cell; CD PC, collecting duct, 

intercalated cell; CD IC, fibroblast; Fib, natural killer cell; NK, 

macrophage; Macro, neutrophil; Neutro, lymphocyte; Lympho. 
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Discussion 

As we age, there are a plethora of molecular alterations that occur 

within the kidneys (Lim et al., 2012). Different parts of the kidney, such as the 

glomerular and tubulointerstitial sections, are known to work together to 

perform specific functions. However, the specific impact of aging on each part 

of the kidney has not yet been studied. 

Our study suggests that new methods are necessary to understand the 

specific effects of aging on the glomerular and tubulointerstitial parts of the 

kidney. We found a large number of genes that are differently expressed in 

each compartment, surpassing previous studies. (D. Park et al., 2016). By 

analyzing transcriptomic data from well-defined compartments at different 

time points, we were able to uncover various pathways related to renal aging. 

We also compared the gene expression levels between the glomerular fraction, 

nonglomerular fraction, and whole kidney to examine their distinct 

inflammatory characteristics. 

The analysis of long non-coding RNAs (lncRNAs) also revealed 

tissue-specific regulation and previously unreported genetic characteristics 

during kidney aging (Ignarski et al., 2019).  According to Wang et al. long 

non-coding RNAs (lncRNAs) play various roles in gene regulation and may 

be connected to the development of diseases (Y.-N. Wang et al., 2021). Also 

the study at 2021 found that several lncRNAs, such as H19, Pvt1, and Sng5, 

are associated with kidney disease (Moreno et al., 2021). Xie et al. discovered 

that the expression of H19 lncRNA was significantly increased in both in vitro 
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HK-2 cell fibrosis and in vivo UUO-induced fibrosis models, compared to the 

2M model (Xie et al., 2016). By analyzing the correlation between lncRNAs 

and differentially expressed genes, it is possible to infer the potential function 

of lncRNAs, even if the role is only tentative. For example, 5430416N02Rik 

lncRNA was downregulated in the glomerular compartment at the early stage 

and was related to transcription functions such as "positive regulation of 

transcription from RNA polymerase II promoter" and "transcription, DNA-

template" through coexpression with other genes (T. Zhao et al., 2020). 

Additionally, the gene 5430416N02Rik has been discovered to play a role in 

the growth and reproduction of embryonic stem cells through its involvement 

in interactions between different chromosomes. On the other hand, the 

AW112010 lncRNA was upregulated in the nonglomerular compartment at the 

early stage and in the whole kidney at the late stage (X. Yang et al., 2020). It 

was closely related to many immune-related genes and may be linked to 

immune system functions. Specifically, the expression of AW112010 was 

found to be connected to the inflammatory condition of T cells by decreasing 

IL-10 expression through histone demethylation. 

Upon aging, the transcriptome of glomeruli (Lai et al., 2019) 

undergoes significant changes compared to that of the nonglomerular 

compartment and whole kidneys. These changes often involve activation of 

inflammatory reactions and immune system processes, with cytokines, 

chemokines, and classical complement pathway activation being particularly 

prominent in aging glomeruli (Lähnemann et al., 2020). In contrast, in the 

whole kidney (which is made up of more than 90% nonglomerular tissue), we 
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see an increase in genes related to immunoglobulin production and plasma 

cell activation. It is worth noting that the transcriptomes of samples defined as 

nonglomerular compartments (such as tubules) and the whole kidney tend to 

differ, possibly due to the influence of glomerular signals or the loss of "gap" 

signals during nonglomerular sample collection. One possible explanation for 

these differences is that aging nephrotic cells may enhance anti-inflammatory 

properties and increase the recruitment of innate and adaptive immune cells. 

Previous research has also identified inflammation and fibrosis as major 

active pathological processes in the glomeruli of aged rats (Lai et al., 2019). 

The heightened activity of the complement system and increased presence of 

innate immune cells in the aged glomerulus may contribute to the higher 

incidence of rapid progressive glomerular nephritis seen in older patients 

(Lähnemann et al., 2020) 

In this study, we have shown that the immune response in the 

kidneys of the elderly undergoes changes over time. These changes can be 

observed in various functional compartments of the kidney and may 

contribute to the maintenance of homeostatic equilibrium in the elderly. Our 

findings suggest that the immune system in the elderly kidney is more 

complex than previously thought, particularly in the case of chronic kidney 

disease (CKD). This study makes a valuable contribution to our understanding 

of the immune system in the elderly kidney and its role in maintaining 

homeostasis. Future research should focus on further exploring the 

mechanisms underlying these changes in the immune response and their 

potential impact on health outcomes in the elderly population.
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RNA sequencing of gingival biopsies 
reveals molecular signatures reflecting 

periodontal health status 
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Introduction 

Periodontitis is a serious oral health problem that occurs when 

specific bacteria in the mouth cause destruction of the periodontal tissue and 

eventual tooth loss. These bacteria create an imbalanced microbial biofilm, 

which has traditionally been evaluated by dental professionals through various 

methods such as measuring plaque, gingival inflammation, bleeding during 

examination, loss of tooth attachment, and the depth of pockets around the 

teeth. However, these methods do not effectively identify the root causes of 

the disease (Socransky et al., 1998). Recent advances in next-generation 

sequencing have allowed researchers to identify additional periodontal 

pathogens and the concept of "polymicrobial synergy and dysbiosis" (Jeon et 

al., 2020), in which the collective activity of the microbiome, including 

keystone pathogens, disrupts the normal immune response and causes tissue 

destruction. It is worth noting that individual susceptibility to these pathogens 

varies and can impact the disease's progression. 

To better understand the molecular changes that occur in 

periodontitis, researchers have utilized transcriptome analysis through 

techniques such as microarrays and RNA sequencing (RNA-seq). In 2008, a 

study using microarray technology was conducted to identify genes that may 

be involved in the progression of periodontitis. However, the findings were 

inconclusive and varied, with some studies discovering notable differences in 

gene expression between healthy and diseased gingival tissues (Demmer et al., 

2008) and others not observing such differences (Papapanou et al., 2004). 
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RNA-seq, on the other hand, is an unbiased method with high accuracy in 

detecting gene expression (Y.-G. Kim et al., 2016) The present study utilized 

RNA-seq to identify molecular signatures, or biomarkers, that reflect 

periodontal health status and suggest that RNA-seq may be useful as a 

diagnostic and predictive tool for monitoring periodontal conditions.



36 
 

Materials and Methods 

 

Study population and clinical evaluation 

The research study, conducted by the Department of Periodontics at 

Pusan National University Dental Hospital in Yangsan, Korea, included 67 

participants. The control group consisted of individuals with clinically healthy 

periodontal tissues, as indicated by low bleeding scores on probing at 10% of 

sites and the absence of lesions with probing depths (PD) greater than 3 mm 

or clinical attachment loss (CAL). The periodontitis group was initially 

classified based on CAL greater than 3 mm and severe bone loss as seen on 

radiographic images. A full-mouth clinical examination, including 

assessments of PD, CAL, gingival index (GI), and plaque index (PI), was 

conducted by a single practitioner. A periodontal expert then classified the 

severity of periodontitis into either the moderate or severe category based on 

the findings of the full-mouth clinical exam. 

RNA extraction from gingival tissue and whole transcriptome sequencing 

(RNA-Seq) 

Gingival tissue samples were treated with phosphate-buffered saline 

and stored at -80°C until RNA isolation using the RNeasy Mini Kit (Qiagen 

Inc., Valencia, CA). cDNA libraries were constructed using the TruSeq 

Stranded mRNA LT Sample Prep Kit. The protocol included the extraction of 

polyA-selected RNA, fragmentation of the RNA, and reverse transcription 

with random hexamer priming. The libraries were quantified using qPCR and 
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evaluated with the Agilent Technologies 2100 Bioanalyzer. The prepared 

sequencing libraries were then sequenced on the Illumina Novaseq platform in 

paired-end mode with 2x100 base pair reads. 

  

RNA-Seq read data processing and deconvolution analysis 

Before conducting the mapping procedure, the sequencer's raw reads 

were preprocessed to eliminate low-quality and adapter sequence. The 

processed readings were aligned using HISAT v2.0.5 (D. Kim et al., 2015) to 

the human genome (hg19). The reference genome sequence of human genome 

(hg19) and gene annotation data were downloaded from the UCSC table 

browser (http://genome.uscs.edu). Transcript assembly and abundance 

estimation using StringTie (Pertea et al., 2015). After alignment, StringTie 

v1.3.3b and RefSeq gene annotations were used to assemble aligned reads 

into transcripts and to estimate their abundance. The normalized abundance of 

the annotated genes was estimated as FPKM (Fragments Per Kilobase of exon 

per Million fragments mapped) values in each sample and Principal 

component analysis (PCA) was performed in python via genes with top 1000 

variance through sklearn library (Pedregosa et al., 2011). RNA-Seq samples 

were deconvolved into each cell type proportion by the R package MuSiC 

with default parameters (X. Wang et al., 2019), via public single cell RNA-seq 

reference from GEO accession number GSE152042 (Transcriptomic profiling 

of human gingiva in health and disease) (Caetano et al., 2021). Cells with 

estimated proportions of zero were excluded from further analysis. The 

estimated proportion matrices of each RNA-seq samples were grouped by 
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each labeled disease phenotype for downstream analysis. 

 

Differential gene expression test and enrichment analysis 

DESeq2 R package(Love et al., 2014, p. 2) was used to identify 

differentially expressed genes between groups. At a false discovery rate 

(FDR) of 5%, genes with changes of at least 2-fold across samples were 

considered differentially expressed. All enrichment analysis and functional 

annotations were carried out using Metascape (Y. Zhou et al., 2019) and only 

the "GO Biological Processes" category has been used to perform functional 

annotation process to avoid semantic twin terms in other functional pathway 

databases. A “selective GO cluster” method was applied to choose top clusters 

as described in the metascape protocol. 

 

GO term cluster network analysis and visualizations 

GO term cluster networks were generated based on the metascape 

functional annotation results. Briefly, every GO term in each cluster was 

merged into a single node in the network and labeled as a representative GO 

term. A size of node in the network was based on the number of enriched 

genes for each GO term cluster. A pie-chart like inner circle in each GO term 

node was produced based on the proportion of gene count for each group. If a 

kappa score between GO term nodes was greater than 0.3, an edge connected 

those two nodes for the purpose of clear visualizations. The subnetwork of 

GO term cluster networks was defined as a functional “theme” based on a 

parent GO term, the proportion of shared genes between nodes, and semantic 
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definitions of GO terms.  

PCA and volcano plots were generated by python plotly library (v 

4.3.0) and venn diagrams were produced by python library matplotlib-venn 

and pyvenn. Heatmaps were generated using the online tool 

Morpheus(https://software.broadinstitute.org/morpheus). The GO term 

networks were plotted using cytoscape (v3.7.0) (Shannon et al., 2003). 

 

Correlation analysis of gene expression and the clinical parameters 

To assess the associations between the expression of gene in the 

gingival tissue and four clinical parameters, spearman correlation coefficient 

was calculated. If the p-value for the correlation was less than 0.01 and the 

correlation coefficient was greater than 0.45 for all clinical parameters, we 

defined that the gene was highly associated with the clinical parameters.  

 

Development of the clinical severity classifier from transcriptome and 

biomarker prioritization 

Input data consists of normalized counts of all genes as function 

variable and severity as target variable. Feature variables were scaled through 

scikit-learn’s StandardScaler module and target variable were encoded as 

ordinal (0: healthy,1: moderate,2: severe). The feature selection process was 

initially performed with python package ‘Minimum-redundancy-maximum-

relevance’(mRMR) (Z. Zhao et al., 2019) to extract top 100 feature that has 

minimum correlation between each gene expression but also have maximum 

strength(F-statistics) with severity. The input data, filtered by 100 features 

https://software.broadinstitute.org/morpheus
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from mRMR, was used as input to PyCaret’s AutoML pipeline. An additional 

feature selection (multicollinearity_threshold=0.8) was applied within 

PyCaret to remove high multicollinearity within features and reduce the 

number of features from 100 to 44. Train and test sets were split into 0.88 

ratio (train:58, test:9) due to the small size of dataset. Stratified cross 

validation with 10-fold were applied to train set within Pycaret. Different 

classifier models (Extra Trees, Random Forest, Logistic Regression, CatBoost, 

Light Gradient Boosting Machine, Gradient Boostin, Decision Tree) were 

applied and leader board of 7 evalucation metrics (Accuracy, Area under the 

receiver operating characteristic curve (AUC), Recall, Precision, F1, Kappa, 

Matthews correlation coefficient (MCC) were generated. SHapley Additive 

exPlanations(SHAP) values of the best model, Extra trees classifier, were 

used to sort the priorities of the features. Features with high SHAP values are 

considered as plausible biomarkers. 

 

Ethics Statement 

All donors gave written informed permission, and their rights were 

safeguarded in accordance with the procedure evaluated and approved by 

Pusan National University's Institutional Review Board (IRB No. PNUDH-

2017-023). This study was conducted in accordance with the Helsinki 

Declaration as revised in 2013. 
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Results 

Study group samples and RNA sequencing (RNA-Seq) profiles for the 

study groups 

 Sixty-seven study subjects; 17 healthy subjects and 50 periodontitis 

patients were recruited, and the gingival tissue samples were obtained. We 

divided the periodontitis patients into two different groups; moderate (32) and 

severe (18) groups based on the parameters from the full-mouth clinical 

examination (Table 1). The RNA was extracted from the gingival tissue 

samples and RNA-Seq has been performed to compare the transcriptional 

expression profiles among the four groups including a healthy group. The 

sequencing raw reads were preprocessed to evaluate the transcriptional 

expression. Briefly, the raw read alignment was performed using HISAT2 and 

hg19 human genome and StringTie and RefSeq gene annotations were used to 

estimate the gene expression. In total 24,843 genes were expressed in all 

samples. 

We conducted principal compartment analysis (PCA) to characterize 

the dimension that explains the most variance in the transcriptome expressions 

(Figure 3.1A). The PCA results shows that 88% of the total variance in gene 

expression is explained by the first two principal components (PCs). When we 

divided the PCA plot into two areas based on the second component (PC2), 

most of the healthy subjects were in the lower region. On the other hand, most 

patient samples in the severe group were in the upper region. We inferred that 

the healthy group and severe group could be clearly distinguished based on 
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the expression profiles. In case of moderate group, the samples were 

widespread. Therefore, based on the sample distributions and their associated 

clinical groups, the PC2 could reflect the periodontitis disease progress. 

Similarly, unsupervised hierarchical clustering analysis for all subjects 

revealed high correspondence between gene expression profiles and disease 

status (Figure 3.1B).  

Furthermore, to check the heterogeneity of the RNA-Seq samples 

and compare the cell-type proportions among groups, we conducted 

computational deconvolution analysis for all samples from individual 67 

subjects using recent single-cell expression datasets, 12,422 isolated live cells 

in human gingival tissues (Caetano et al., 2021). Interestingly, the results 

shows that the epithelial cell proportions were gradually decreased along with 

the disease progress from mild to severe (Figure 3.1C). Instead, the 

populations of endothelial, transit-amplifying, stromal and immune cells such 

as B and T cells, were increasing during the progression and persistence of 

disease as similarly shown in the previous study (Luo et al., 2021; Rangel-

Huerta & Maldonado, 2017; Williams et al., 2021).  
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Table 1. Participants' demographics and clinical parameters (mean ± 

standard deviation) 

Characteristic 
Healthy  

(n=17) 

Periodontitis (n=50) 

Moderate  

(n=32) 

Severe  

(n=18) 

Age (years) 32.82 ± 13.21 51.13 ± 11.28 51.22 ± 8.48 

Gender 1M: 9, 2F: 8 M: 13, F: 19 M: 7, F: 11 

Full mouth  

examination 
   

3PD (mm) 2.33 ± 0.28 3.57 ± 0.78 4.13 ± 1.23 

4CAL (mm) 2.34 ± 0.28 3.98 ± 0.95 4.65 ± 1.35 

5GI 0.12 ± 0.08 0.95 ± 0.68 0.95 ± 0.50 

6PI 17.07 ± 19.27 58.91 ± 24.71 71.51 ± 20.18 

1M: Male, 2F: Female, 3PD: probing depth, 4CAL: clinical attachment level, 

5GI: gingval index, 6PI: plaque index 
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Figure 3.1. Expression profiles of global transcriptome 

(A) Principal component analysis (PCA) based on log2(TPM +1) that 

describes global transcriptomic expression profile. The two shades (red and 

green color) represent the clusters of subject status and the grey shade 

region is the intermixed proportion of all subjects. (B) The hierarchical 

clustering of all samples. (C) The predicted cell type proportions based on 
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deconvolution analysis.  

Comparing gene expression between healthy individuals and those with 

periodontal disease 

To identify gene signatures and associated biological implications in 

the periodontal patient groups, we performed differential gene expression tests 

between each periodontal patient group and healthy subject group. To identify 

genes that are differentially expressed between two groups, we established the 

following criteria: a fold change of at least 1 in the log2 scale and a false 

discovery rate of no more than 0.05. Genes that meet these criteria are 

referred to as differentially expressed genes (DEGs). In both comparisons, 

healthy vs moderate and healthy vs severe, the number of upregulated genes 

in the periodontitis groups were greater than the number of downregulated 

genes (Table 2 and Figure 3.2A and 3.2B). We identified that the total number 

of DEGs in the comparison between the severe patient group and healthy 

subject group was greater than the total number of DEG in the comparison of 

healthy and moderate group, which agrees with the observation in the PCA 

analysis. For both pairwise comparisons, the number of upregulated genes for 

the patient group are about 2~3 times larger than the downregulated genes.  

Top 50 upregulated genes included immune related genes (CHIA, 

IFNK, ANKRD1, CCL7, CXCL5, IGLL1, MMP3, ORM1, ORM2, TNR, CCL25, 

INHBE, GH1, SST) and binding molecule genes (ACTN3, ACOXL, UGT2B17, 

UCP1, CRYBA4, OIT3, PCDHA2, PVALB). The 50 most downregulated genes 

included nucleotide metabolic process genes (EGF, NOS1, PLP1, FLG2, 

ELOVL4, H19, ST6GAL2, GAPDHS, MLXIPL, UGT1A8, RORC, HMGCS2, 
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PRKAA), signaling and transport related genes (CACNG4, COBL, MAP2, 

EXPH5, CTTNBP2, CDH19, CRLF1, IL12RB2, NPR3, PCSK2, ARC, 

SH3GL3, PKDREJ, TRPM1, PMEL, SLC24A5, EGF, NOS1, PLP1) and 

cornification related genes (COBL, MAP2, EXPH5, DCT, DSC1, EPB41L4B, 

CLDN20, SLITRK5, CDSN, KRTAP3-2, KRT40, KRT31, KRT3, ASPRV1, 

UPK1B, TRIM63, NEFM, PLP1, FLG2). Next, we assess the genetic changes 

in the functional aspects by Gene Ontology (GO) term enrichment test for 

each pairwise comparison. As shown in Figure 3.2C and 3.2D, there were 

common enriched functional pathways related to immune system processes 

such as inflammatory response, leucocyte migration, myeloid leucocyte 

activation and positive regulation of immune response. Meanwhile, the 

enriched pathways for the downregulated genes were peptide cross-linking 

and water homeostasis are signs of functional and structural decline in the 

tight-fitting gingival epithelium. Additionally, downregulated xenobiotic 

metabolic pathways suggest a lack of immunological response. 
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Figure 3.2. Differential gene expression analysis 

(A) A volcano plot showing the expression levels of various genes in healthy 

and moderate individuals, with significantly differentially expressed genes 

highlighted in green for healthy and yellow for moderate. (B) A visualization 

of gene expression differences between healthy and severe individuals, with 

significantly differentially expressed genes marked in green for healthy and 

red for severe. (C) A list of Gene Ontology terms enriched in the comparison 

of healthy and moderate individuals, with the circle size representing the 

number of genes in the term and the adjusted p-value displayed through a 
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color gradient. (D) A presentation of Gene Ontology terms enriched in the 

comparison between healthy and severe groups, with the size of the circle 

indicating the number of genes in the term and the adjusted p-value 

represented through color. 
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To delineate the detail gene regulations in the disease progression, 

we compared the up- and downregulated genes between both pairwise 

comparisons. In case of upregulated genes, 1,520 genes were common DEGs 

in both moderate and severe groups and 159 and 726 genes were group-

specific DEGs in moderate and severe groups respectively (Figure 3.3A). In 

case of the downregulate genes, a significant number of genes (905) 

specifically belong to severe group (Figure 3.3B). Functional annotation 

analysis for the group-specific upregulated genes showed that many GO terms 

associated with immune responses were enriched severe group specific genes, 

on the other hand, GO terms associated with regeneration processes such as 

“muscle structure development”, “extracellular matrix organization” and 

“tissue morphogenesis” were enriched in the moderate group specific genes 

(Figure 3.3C). In case of the group specific downregulated genes, there are 

many GO terms enriched in severe group specific genes because of high 

number of group specific genes and most of the GO terms are related in 

cellular homeostasis (Figure 3.3D). 
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Figure 3.3. Periodontist group specific DEGs 

(A) A Venn diagram of upregulated genes in moderate (yellow) and severe 

(red) periodontitis status. (B) A Venn diagram of downregulated genes in 

moderate (yellow) and severe periodontitis status. (C) Enriched GO terms 

for the periodontitis group specific upregulated genes. Yellow: Moderate 

group specific GO terms, Red: Severe group specific GO terms. (D) 

Enriched GO terms for the periodontitis group specific downregulated 

genes. Yellow: Moderate group specific GO terms, Red: Severe group 

specific GO terms. 
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Identification of genes significantly correlated with clinical parameters 

To identify the expressed genes in RNA-Seq data linked with four 

clinical measures (PD, CAL, GI, and PI), correlations were established 

between the normalized gene expression abundance and the clinical 

measurements using the spearman correlation technique. When we established 

the criteria for the strong relationship between gene and parameter according 

to the method, 2,035 genes were positively correlated and 534 were 

negatively associated with all four parameters. As the Venn diagram depicts 

(Figure 3.4), 459 genes were positively correlated with all 4 clinical 

parameters. Functional enrichment analysis shows typical immune system 

process such as lymphocyte activation, mature B cell differentiation, 

leukocyte activation.  And cell redox homeostasis (Morris et al., 2022). It's 

interesting to note that endoplasmic reticulum (ER) stress-related terms were 

also prevalent, which are known to be the cause and the effect of the chronic 

inflammation (Chipurupalli et al., 2021; Hasnain et al., 2012). N-linked 

glycosylation has also been investigated for its potential autoimmune 

associations. or causing ER stress with misfolded protein (Pandey et al., 2022; 

X. Zhou et al., 2021).  
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Figure 3.4. Highly correlated genes with clinical parameters 

A Spearman correlation analysis has been conducted to evaluate the 

connection between gene expression levels and certain variables (PD, CAL, 

GI and PI). (A) Venn diagrams of genes highly correlated (correlation 
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coefficient > 0.45 & adjusted P-value < 0.01) with the clinical parameters. (B) 

A heatmap of representative enriched GO terms for positively correlated 

genes. Right color bars show the representative parent GO terms for the 

individual enriched GO terms. (C) A graph of Gene Ontology (GO) terms was 

created based on the results of a cluster analysis. The size of the nodes in the 

graph represents the number of genes that were found to be enriched in each 

GO cluster. Edges were drawn between two GO terms if their kappa score was 

greater than 0.3 (Details in the methods section). 
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Identification of biomarkers from transcriptome derived clinical severity 

classifiers 

To identify biomarkers that can be used to diagnose and predict 

clinical severity, we applied different machine learning algorithms to classify 

the clinical severity based on the transcriptome data. After applying standard 

scaling on normalized count data, total of 100 genes were selected as initial 

features, retrieved based on mRMR algorithm (Z. Zhao et al., 2019). Figure 

3.5B illustrates that the majority of Gene Ontology terms associated with the 

100 potential biomarker genes pertain to B cell function, including the 

regulation of lymphocyte activation, the adaptive immune response, the B cell 

receptor signaling pathway, and the regulation of pattern recognition receptor 

signaling pathways. After additional feature selection by filtering genes with 

high multicollinearity, 44 genes were finally selected as feature variables. The 

research project utilized gene expression data from 67 individuals, which had 

been normalized and included 44 unique genes. This data was randomly 

rearranged and separated into two subsets: a training set with 58 subjects and 

a test set with 9 subjects. 7 different classifiers were applied with 10-fold 

stratified cross validation. The extra trees classifier was chosen as the clinical 

severity classifier since it scored the highest in all seven metrics (Table 2). A 

PCA plot based on 44 biomarker candidate gene expression profiles showed 

the samples were distinctively distributed in PC1 and PC2 among groups. 

SHAP values (Lundberg & Lee, 2017) were calculated on the best extra tree 

classifier to determine which genes has the greatest impact on the model 

output (Table 3, Figure 3.5 C).  
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Table 2. Evaluation metrics of different machine learning classifiers 

Model Accuracy AUC Recall Prec. F1 Kappa MCC 

Extra 
Trees 
Classifier 

0.8967 0.9824 0.8333 0.8575 0.8653 0.8066 0.838 

Random 
Forest 
Classifier 

0.8467 0.9672 0.75 0.7931 0.8017 0.717 0.7627 

Logistic 
Regression 0.8767 0.9444 0.8333 0.8203 0.8359 0.7795 0.8154 

CatBoost 
Classifier 0.83 0.9367 0.75 0.7783 0.7835 0.6852 0.7203 

Light 
Gradient 
Boosting 
Machine 

0.7433 0.8669 0.6833 0.6947 0.6985 0.5563 0.6067 

Gradient 
Boosting 
Classifier 

0.7267 0.8353 0.6556 0.6897 0.683 0.5354 0.5751 

Decision 
Tree 
Classifier 

0.6433 0.6892 0.5556 0.6264 0.6115 0.3847 0.4052 
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Table 3. SHAP value of each feature from the best clinical severity 
classifier 
 

Gene SHAP Gene SHAP 
CRYBA4 0.061921 HMHB1 0.020089 
CRACDL 0.049924 KRTAP4-12 0.020001 

BRD7 0.043643 C9orf50 0.019941 
COL4A3 0.038649 MIR6754 0.019914 

SNX3 0.037277 MIR4730 0.01894 
PNMT 0.036835 SNORA71E 0.018718 
LINC01694 0.036339 SNORA27 0.01824 

UBE2F-SCLY 0.032915 MIR6516 0.017799 
GTF2H2B 0.032909 HNRNPCL3 0.017103 

LOC101927727 0.031248 GTSCR1 0.01617 
CTXND1 0.030545 NUP210L 0.015702 
UOX 0.028447 UBE2MP1 0.014374 

CES2 0.027039 MIR6853 0.01382 
ADORA2A 0.026413 SNORA47 0.013767 

CLHC1 0.025285 SPATA31E1 0.012818 
SPART-AS1 0.025168 MIR3164 0.01025 
IGFL3 0.024453 ANKRD66 0.009412 

USP17L2 0.023053 SH2D7 0.009253 
FSTL5 0.022962 LOC100507387 0.006664 

GAPDHS 0.021512 LOC100506274 0.004594 
LOC105375545 0.021034 MIR4519 0.002755 
LINC01777 0.020775 ROS1 0.001331 
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Figure 3.5. Expression profiles and priorities of biomarker candidate genes and 
enriched GO terms 

(A) A heatmap of representative enriched GO terms for initially selected 

top 100 biomarker candidate genes. (B) A PCA based on the 44 biomarker 

candidate gene expression profiles.  

(C) Genes with higher SHAP values have a stronger effect on the classifier 

output performance.  
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Discussion 

As the periodontitis has an inherent complication that involves the 

close interaction of a complex microbiome and systemic immune responses, 

there have been numerous attempts to unravel its molecular mechanisms and 

identify diagnostic biomarkers for the state of periodontal disease. Early 

studies focused on the combination of clinical parameters, but it provided 

shallow insight into the disease's pathophysiology (Brägger, 2005; Demmer et 

al., 2008; Hefti, 1997; Meseli et al., 2017). Other branches of the research 

were dealing with the microorganisms to find key factors of periodontal 

diseases (Kwack et al., 2022, p. 20; Socransky et al., 1998). Recent 

developments in the sequencing technology and the idea of "polymicrobial 

synergy and dysbiosis" have successfully discovered the keystone pathogens 

associated with the host immune responses, causing the loss of periodontal 

tissues (Kwack et al., 2022; Lamont & Hajishengallis, 2015). But the each 

individual has a varied innate susceptibility to microbial species, therefore, the 

prognosis of periodontal diseases is different (Jeon et al., 2020).  

Transcriptome-based systemic immune response analysis was 

successfully used in this field to address these issues. Many attempts have 

been made to pinpoint the precise processes and elements involved in the 

onset of a disease, from microarray to single cell RNA-sequencing (Beikler et 

al., 2008; Y. Chen et al., 2022). In this study, in addition to identify the 

transcriptome-level systemic immune response signatures that differs between 

the different periodontitis severity groups, we also employed machine 
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learning approaches to construct classifiers and generate a prioritized list of 

possible biomarker gene candidates. 

PCA and hierarchical clustering analysis demonstrated that healthy 

subjects and periodontitis patients was distinguishable based on the gene 

expression profiles, although moderate and severe subjects are not clearly 

discernible. Interesting, the deconvolution analysis based on the scRNA-Seq 

data successfully assessed the proportional changes of the cell type upon the 

periodontitis progression. The loss of gingival epithelium could be inferred 

from a decrease of the epithelial cell proportion, and an increase in the 

fraction of transit amplifying cells. Therefore, we assumed that the  

regeneration processes was started from the fast tract differentiation 

accompanying with the  inflammation upon the destruction of gingival tissues 

(Rangel-Huerta & Maldonado, 2017).  Evidently, the increased proportion of 

immune cells (B cell, T cell, Macro) indicated that the immune cell infiltration  

occurs and the increase of endothelial cells (blood vessels) and stromal cells 

also was observed in which has already been shown in the previous studies 

(Luo et al., 2021; Williams et al., 2021).  

Differential gene expression analysis showed that the upregulated 

genes were dominant DEGs in both groups. The functional annotations of 

DEGs based on GO terms for the upregulated genes in both groups were 

similar and most GO terms were primarily related to immune response. When 

we looked closer into the group-specific DEGs, the majority of upregulated 

genes were common in both groups, on the other hand, the many 

downregulated genes were belong to the severe group. GO term enrichment 
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analysis showed that the many group-specific upregulated DEGs in the severe 

group were associated with the immune system response functions such as . 

While the moderate group-specific upregulated DEGs were related to the 

regeneration processes. Interestingly, Morris et al. reported that the oxygen 

levels is decreased upon the inflammation progress (Morris et al., 2022) and 

we observed the several moderate group-specific upregulated DEGs related to 

the response to decreased oxygen levels.  

To investigate the associations between molecular signatures and 

phenotype characteristics of periodontitis, we measured the correlation of 

gene expression profiles of the entire subjects and the clinical parameters. Of 

the 450+ genes analyzed, a positive correlation was identified with certain 

clinical measures and the functional enrichment analysis demonstrated that 

immune system processes including leukocyte activation, B cell 

differentiation, and lymphocyte activation were enriched functions in the 

correlated genes as expected. Previously, it has been showed that endoplasmic 

reticulum (ER) stress cause and effect to the chronic inflammation 

(Chipurupalli et al., 2021; Hasnain et al., 2012) and the autoimmune 

implications of N-linked glycosylation by misfolded protein stressing in the 

ER have been reported (Pandey et al., 2022; X. Zhou et al., 2021). 

Intriguingly, the functional annotation analysis detected several GO terms 

related to endoplasmic reticulum (ER) stress. Therefore, we inferred that the 

positively correlated genes closely linked to the phenotype of periodontitis.  

To validate the concept of the positive relationship between the 

molecular signatures and the phenotypic traits, we used the machine learning 
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techniques to develop the classifiers to predict the periodontal status based on 

the gene expression profiles. Although there were some trials on predicting 

periodontal diseases with machine learning or deep learning classifier using 

microarray datasets and medical images (E.-H. Kim et al., 2020; Rhee, 2019; 

Ning et al., 2021), they did not consider the severity of the periodontal 

diseases. In this study, we used the feature selection methods, mRMR 

technique, recursive feature extraction and addition methods. We did not use 

clinical information in our classifier because it was based only on 

transcriptome data. While the classifier's performance might improve if 

clinical information were included, it is unlikely to have a significant impact 

as the severity of periodontitis was already determined using clinical 

parameters. Initially, a selection of 100 potential biomarker genes was made 

that were closely related to immune processes, including the regulation of 

lymphocyte activation, the adaptive immune response, the B cell receptor 

signaling pathway, and the regulation of pattern recognition receptor signaling 

pathway which can be interpreted as the most important factors that 

segregates the severity of periodontitis could be contributed from B cell’s 

malfunction. Furthermore, we prioritized the initial biomarkers, set the final 

44 candidates and evaluated the candidates using machine learning algorithms. 

The evaluation results showed that the constructed classifiers using the 

candidates performed well to predict the periodontal disease status. Though it 

is not clear exactly what causes periodontitis to become severe, there are 

indications that it may be related to issues with the way the immune system's 

B cells recognize or respond to the infection. 
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In summary, we have profiled the transcriptome of gingival tissues in 

the periodontitis patients and corresponding healthy subjects and showed the 

distinct molecular signatures in different three groups. Further, the possible 

biomarker candidate genes were identified and evaluated. Therefore, the 

present study provides an important foundation for developing methods to 

dragonize and screen the periodontal diseases. 
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Conclusion 

Inflammaging, or the chronic low-grade inflammation that occurs 

during aging, has been linked to a number of age-related diseases. In this 

study, we used RNA sequencing to investigate the molecular basis of 

inflammaging in both mouse kidneys and human gingival tissue.  

In Chapter 2, we used compartment-specific RNA sequencing on 

aging mouse kidneys to test whether bulk RNA-seq could still capture similar 

inflammaging-related transcriptome profiles. The result showed compartment 

specific RNA sequencing can still capture the cell type proportional changes 

and compartment specific immune patterns. Upon aging, the immune system 

of their glomeruli, nonglomeruli, and whole kidneys exhibits unique 

molecular patterns. Additionally, this study analyzed the various expression 

levels of long non-coding RNA in each of these areas. Lastly, the study 

showed that the chronic inflammatory condition (UUO) is largely different 

form inflammaging. 

In Chapter 3, we scrutinized the chronic inflammation using the 

samples of human gingival tissue from individuals with periodontitis and 

corresponding healthy controls were subjected to RNA sequencing. We 

managed to tackle this chronic inflammatory problem by combining 

differential expression profiles between two groups, scRNA-seq 

deconvolution and the association of clinical parameters and molecular 

signatures. Finally, we successfully applied machine learning approaches to 

build plausible periodontitis severity classifier and prioritize gene candidates 
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for the biomarkers of periodontitis. 

In summary, this study used RNA sequencing to investigate the 

molecular basis of inflammaging in both mouse kidneys and human gingival 

tissue. Through analysis of compartment-specific RNA in mice and 

application of machine learning approaches to human tissue samples, the 

study identified unique molecular patterns and potential biomarkers for age-

related inflammation and chronic inflammation in the form of periodontitis. 

The study also found that chronic inflammatory conditions such as 

periodontitis have distinct molecular features compared to inflammaging. The 

contribution of this study is the identification of unique molecular patterns 

and potential biomarkers for age-related inflammation and chronic 

inflammation in periodontitis, as well as the development of a periodontitis 

severity classifier and identification of gene candidates for biomarkers of 

periodontitis. As future work, it would be interesting to further investigate the 

potential therapeutic applications of these findings, such as targeting specific 

molecular pathways to treat or prevent age-related inflammatory diseases and 

periodontitis. It would also be useful to replicate these findings in larger, more  

diverse populations to confirm their generalizability. 
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국문 초록 

면역학의 주요 어려움 중 하나는 서로 다른 마커와 세포 유형이 

복잡하게 얽혀 있다는 점이다. 따라서 이러한 문제점을 다양한 마커와 

세포 유형을 효과적으로 식별할 수 있는 RNA 시퀀싱 기술을 통해 

해결하기 위한 다양한 시도가 이루어지고 있다. 그러나 단일세포 RNA 

시퀀싱 기술을 통해 이뤄낸 많은 발전에도 불구하고 기술적 또는 비용적 

문제로 인해 여전히 bulk RNA 시퀀싱이 선호되기도 한다. 본 연구에서는 

bulk RNA 시퀀싱을 기반으로 하면서도, 단일세포 RNA 시퀀싱의 최근 

발전을 활용하여 간단하면서도 강력하고 비용 효율적인 면역 반응 분석 

파이프라인을 제시하였다. 신장 노화 마우스 모델과 다양한 중증도를 

가진 인간 치주염 환자군을 본 연구에서 제안하는 방법을 이용하여 분자 

레벨에서 분석하였으며, 다양한 면역 반응을 확인하고 치주염 질환을 

진단할 수 있는 유전자를 성공적으로 동정하였다. 본 연구의 결과는 

면역 체계를 이해하는데 포괄적이고 새로운 시야를 제공할 수 있을 

것이다. 

……………………………………………………………………………….. 

주요어: 만성염증, 면역반응, RNA 시퀀싱, 단일 세포 디컨볼루션, 

(염증노화, 치주염 
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