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ABSTRACT

A systematic study of molecular immune

response based on RNA sequencing

Kyuwon Shim
Interdisciplinary Program in Bioinformatics
College of Natural Sciences

Seoul National University

One of the major challenges of immunology is the intricate
intertwining of different markers and cell types. Therefore, various attempts
are being made to address these issues through RNA sequencing (RNA-seq)
technology, which can effectively identify multiple markers and cell types.
Though, many recent advances have been made based on single cell RNA seq
(scRNA-seq) technology, but bulk RNA seq is still often required due to
technical or cost issues. Here, we present a simple, yet robust and cost-
efficient immune response analysis pipeline based on bulk RNA-seq that
leverages recent advances in scRNA-seq. We have successfully applied the
proposed method to aging mouse kidneys and human periodontitis of varying
severity, characterized various immune responses at the molecular level in
both models and identified biomarker candidate genes to predict the
periodontitis. The result in the current study presents a novel insight for the

comprehensive understanding of the immune system.
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Chapter 1.

Introduction



Backgrounds

Single cell RNA-sequencing in Immunology

An organism's immune system, which consists of immune organs,
immune cells, and immunological chemicals, controls a variety of
pathophysiological processes, and preserves physiological equilibrium.
Immunology is challenging to study, nevertheless, due to the immune system's
diversity and the intricacy of the immunological response. The current
exploratory approach, which is based on a single experiment, is ineffective
and unstable (Furman & Davis, 2015), making it urgently necessary to
simultaneously identify the whole immune system's structure and pathological
changes tailored to different diseases.

A single cell RNA sequencing (scRNA-seq) technology assesses the
whole transcriptome at the single cell level. By identifying the homogeneity
and heterogeneity of individual cells, sScRNA-Seq overcomes the limitations
of traditional approaches. It is valuable as a new tool for bioinformatics
analysis since it can collect cellular data on each individual cell and recognize
every type of cell in a sample without bias or prior knowledge, which is
crucial for comprehending the variety of the immune system.

Uncovering cellular heterogeneity, cell growth and differentiation,
cell-cell interaction, hematopoiesis, and gene regulatory networks to predict

immune activities have been the main uses of scRNA-seq in immunology. (Y.

Chen etal., 2022; Vegh & Haniffa, 2018).



Single cell deconvolution

Most of the pertinent research is frequently hampered by changes in
cell type proportions since only the average expression levels are represented
by bulk samples of heterogeneous mixes. By understanding how the mix of
cell types changes in diseases like cancer, researchers may be able to find
specific cell populations that could be used to treat the disease (Elloumi et al.,
2011). For instance, immunotherapy may benefit from the latest findings
about lymphocytes and other immune cells and their role in the tumor
microenvironment (Hendry etal., 2017; Sharmaetal., 2019).

A thorough benchmark study (Avila Cobos et al., 2020) gives a
quantitative analysis of the cumulative effects of deconvolution outcomes on
data processing, scaling/normalization, marker selection, composition of cell
types, and technique selection. They tested 20 deconvolution methods,
including five that utilize scRNA-seq data as a baseline, to estimate cell type
proportions. Then, a number of more deep leaming algorithms were given
(Molho et al., 2022; F. Yang et al., 2022). but many deep leaming-based
models frequently fail to be robust because they only tend to overfit the
benchmark dataset. Tree-based classifiers can still be used robustly in those

cases, with great interpretability of the results (X. Wangetal., 2019).

Chronic inflammation
Immune cells generate cytokines and enzymes during acute

inflammation in order to eradicate the cause of the inflammation and begin
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healing (Arango Duque & Descoteaux, 2014; Takeuchi & Akira, 2010).
Cytokines are proteins produced by immune cells that govem immunological
and inflammatory responses. Interleukin and tumor necrosis factor may
stimulate the generation of inflammatory mediators and attract immune cells
to the site of inflammation.

Immune cells generate proteases and oxidases, which aid in the
breakdown of injured tissue and the elimination of infections (Takeuchi &
Akira, 2010). DAMPs are molecules that are produced during inflammation
and help in tissue repair and regeneration (Vénéreau et al., 2015). HMGBI
and ATP have the potential to move immune cells and stem cells to the site of
inflammation, induce angiogenesis, and improve stem cell growth.
Uncontrolled inflammation may progress to chronic inflammation, which is
characterized by ongoing immune activity and the generation of inflammatory
mediators (Gilroy & De Maeyer, 2015). Chronic inflammation has been
related to cancer, diabetes, and heart disease (Roh & Sohn, 2018). It might be
caused by chronic infections, autoimmune diseases, toxins, or cigarette smoke.
Chronic inflammation often resolves in an imperfect manner, resulting in

ongoing inflammation and tissue damage.

Inflammaging

Inflammaging is a word used to describe the ongoing, low-grade
inflammation generated by the innate immune system's activity. Inflammation
of this type has been linked to numerous age-related health issues, such as

cardiovascular disease, diabetes, and neurological problems. The response of
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the immune system to inflammation is based on macrophages, a kind of white
blood cell. Immune system dysregulation, namely macrophage activation, has
been associated with DNA damage, cellular senescence, reduced autophagy
and mitophagy (cellular health-maintenance processes), and alterations in the
microbiota (the collection of microorganisms that live in the body). Chronic
inflammation of the immune system, resulting in elevated levels of pro-
inflammatory proteins such as IL-6 and TNF-alpha, is referred to as
inflammaging (Franceschi et al., 2000). This chronic low-level inflammation
has been linked to various age-related disorders including cardiovascular
disease diabetes , and neurodegenerative diseases like Alzheimer's disease
(Bradtetal., 2014).

In addition, DNA damage has been recognized as a marker of
inflammation (Vitale et al., 2013). It is thought that DNA damage contributes
to the onset of age-related diseases by disrupting normal cellular processes
and causing cellular senescence (a state of permanent cell cycle arrest) (J.-H.
Chen et al., 2007). Autophagy and mitophagy are cellular health-maintenance
processes that remove faulty or superfluous cellular components (Green et al.,

2011).
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Introduction

Kidney function tends to decline with age, which has been connected
to an increased prevalence of end-stage renal disease that requires treatment
through kidney replacement therapy. Acute kidney injury (AKI) occurs more
frequently in older people (Baraldi, 1998) and this demographic has a worse
prognosis for recovery from AKI (Paraskevas et al., 2010).

It is beneficial to analyze the transcriptome of kidneys using a
comprehensive technique such as RNA-seq to acquire a better knowledge of
the shared and unique aspects of aging kidneys and renal disease.

One study reported that inflammation-related pathways were
considerably upregulated in aged kidneys, utilizing RNA-seq to assess the
transcriptome of entire kidneys (D. Park et al., 2016)However, this method
has limitations in that it does not account for differences in gene expression
between different cell types within the kidney (Shalek & Benson, 2017), nor
does it allow for the detection of changes in low-expression genes such as
long non-coding RNA (IncRNA) and altemative splicing (Shalek & Benson,
2017).

The transcriptomes of 3 distinct areas within the kidneys of mice
were studied using compartment-specific RNA-seq at 3 different stages of
life: early (2 months), mid-life (12 months), and late (24 months). We also
compared the transcriptomes of aged kidneys to those of kidneys with
unilateral ureteral obstruction (UUO) to detect differences and similarities

between the effects of aging and a well-known model of kidney fibrosis (D.



Park et al., 2016). We want to leam more about how the kidney ages and how
aging and fibrosis are different by looking at the transcriptomes of the
different parts of the kidney and comparing them to each other and to the

UUO model.
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Materials and Methods

Animals

C57BL/6 mice at the ages of 2, 12, and 24 months and CD1lc YFP
mice were obtained from the Korea Institute of Basic Science and the Jackson
Laboratory, respectively. Each group consisted of 12 male mice. Serum
creatinine and urea nitrogen levels were measured using the Vet Test 8008 kit
from IDEX. Albuminuria and creatinine in urine were measured using ELISA
and analysis kits from ALPCO and R&D Systems, respectively, and reported
as the albumin-to-creatinine ratio in mg/gCr. A total of 3 mice underwent
ureteral ligation surgery to induce UUOQ, and after 14 days, the left kidney was
collected, and the mouse was cuthanized. All animal experiments were
conducted in accordance with the guidelines of the Animal Research Ethics

Committee at Kyung Hee University.

Isolation of glomerular and nonglomerular fraction

Eighteen kidneys were collected from 9 mice per group to
sufficiently extract the mRNAs of glomerular and nonglomerular fractions.
The total RNA from the entire kidney was extracted from three mice per
group. The extracted kidney was quickly frozen and cut with a cryotome to
obtain a 10 m sample for the fraction of the entire kidney in the kidney's
center. In the case of the glomerular compartment, mice were anesthetized,
and diluted 8x107 Dynabeads were injected into 40 ml of phosphate buffered

saline through the heart. The kidneys were removed, minced, and digested



with collagenase (Collagenase A 1 mg/ml in HBSS) while gently stirring at
37°C for 35 minutes. Collagenase digestion tissue was able to gently pass a
100 um sized cell filter using a flat pestle and then clean the cell filter with 5
ml of HBSS. The cell suspension was centrifuged at 200 x g for 5 minutes.
Finally, glomeruli containing Dynabeads were collected in a magnetic particle
concentrator and washed at least three times with HBSS. At this time, the
supematant (tube and epilepsy fraction) was carefully pipetted into a separate
tube and stored on ice. Kidney tissue, excluding collagenase digestion at 37°C

during the procedure, was maintained at 4°C.

RNA extraction and RNA sequencing

Samples for RNA-seq were chosen based on their meeting certain
quality standards, including RN A mass above 1 pg and RNA integrity number
above 6, as determined by the Agilent 2100 Bioanalyzer (Agilent
Technologies, CA, USA). These samples were then processed according to the
llumina TruSeq protocol (Illumina Inc., CA, USA), which involves
fragmenting, reverse transcribing, and amplifying the RNA with a random
oligo-dT primer to create a cDNA library. The cDNA library was sequenced
using the [llumina HiSeq platform (Illumina Inc., CA, USA), and the resulting
raw data was converted to FASTQ format using the bcl2fastq package

(Illumina Inc.).

RNA sequencing data analysis

The FASTQ data was then analyzed using STAR software (Dobin et
10



al., 2013), with unique, properly mapped reads being used for further analysis.
Gene expression was measured using transcripts per million (TPM) (Wagner
et al., 2012) and annotated using the GENCODE VM16 annotation (Ensembl
release 91). Principal component analysis was performed using the skleam
package (Love et al., 2014), while hierarchical and k-means clustering were
done with SciPy and the Morpheus tool
(https://software. broadinstitute.org/morpheus). The MuSiC package (R-
packaged) was used to deconvolve 26 bulk RNA-seq samples and identify the
proportions of various cell subtypes (GEO's open single-cell RNA-seq
reference and GSE146912). Differential gene expression was analyzed using
DESeq2 (Benjamini-Hochberg method), and genes with at least 2 or 4 times
variation between samples at a false detection rate of 5% were considered
differentially expressed. These differentially expressed genes were
functionally annotated using Gene Ontology and KEGG pathways, as well as
the Metascape tool (Y. Zhou et al, 2019), through the DAVID web portal
(https://david ncifcrf.gov/summary.jsp). A gene expression network was also
established (Dennis et al., 2003), with Pearson correlation used to identify the
top 100 correlated genes for each differentially expressed long non-coding
RNA (IncRNA), and functional enrichment analysis performed using the GO
term annotation from the Ensembl database. All heat maps were created using
Morpheus (https://software.broadinstitute.org/morpheus).
Data availability

RNA sequencing data have been archived in NCBI GenBank in

accordance with BioProject ID PRINA672727 (BioSample SAMN16576419 -
11



SAMN1657647). Use the Personal Reviewer link to view the data.

https://dataview.ncbi.nlm.nih.gov/object/PRINA672727 ?reviewer=v318pmd 9f

991FPfehs3tdl8ds

Results

In this study, the transcriptome was extracted from 27 mice of
varying ages (2 months, 12 months, and 24 months) and 3 distinct kidney
compartments: glomerulus (G), nonglomerulus (NG), and whole kidney (WK).
After generating and aligning a total of 22.9 million to 159 million sequences
to the mm10 mouse genome, the data set was further analyzed by eliminating
one of the biological replicates (specifically, the third replicate of 12M
glomerular compartment) as determined by a PCA grid analysis (L. Chen et
al., 2021). Analysis of the glomerular compartments using Principal
Component Analysis (PCA) revealed a distinct transcript composition, which
was also supported by the results of hierarchical clustering (Figure 2.1B).
Markers for specific cell subtypes were used to verify the separation strategy
and cell identity (J. Park et al., 2018) (Figure 2.1C).

The glomerular fractions displayed high levels of transcripts for
vascular endothelial proteins (Nrp! and Plat), glucose proteins (Podx/ and
Synpo), and mesenchymal proteins (Sfrp2 and Pdgfra). In contrast to the
glomerular compartment, genes associated with different nonglomerular
proteins and markers of water quality such as Slc6al2 and Ghr were
expressed in the nonglomerular and overall kidney compartments.

Deconvolution analysis, using publicly available single-cell RNA-seq data

12
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from the kidney (Chung et al., 2020; The Tabula Muris Consortium et al.,
2020), was performed to investigate the heterogeneity of cell subtypes and
compare the ratios of different cell types. The results for the glomerular
compartment samples indicated that podocytes were present in high
proportions, while the proportion of mesangial cells increased with age
(Figure 2.1D). However, when the single-cell data from the entire kidney was
used in the deconvolution process, podocytes were not detected in the RNA-
seq samples (Figure 2.1E). No significant changes in cell subtypes with aging
were observed in the nonglomerular or whole kidney compartments

(Figure 2.1F and G).

13
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Figure 2.1 Design of experiment and global transcriptome expression patterns.
(A) Schematic of 2 compartments and whole isolated mouse kidneys at
various ages. (B) K-means clustering from all detected genes in log2(TPM
+ 1) values. (C) Heatmap displaying expression of previously identified

cell-specific gene markers. Proportions of cell types in the glomerular
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compartment based on single-cell references shown in (D), while whole
kidney reference in (E). (F) Proportions of cell types in the nonglomerular
compartment (left) and whole kidney (right). podocyte; Podo, endothelial
cell; Endo, proximal tubular epithelial cell; PT, loop of Henle; LOH, distal
convolute tubular cell; DCT, collecting duct, principal cell; CD PC,
collecting duct, intercalated cell; CD IC, fibroblast; Fib, natural killer cell;

NK, macrophage; Macro, neutrophil; Neutro, lymphocyte; Lympho.
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The results of the differential gene expression tests conducted on

early (2M to 12M) and late (12M to 24M) phases showed that there were

significant changes in gene expression (FDR = 0.05) in the glomerular

compartments. During the early phase, the upregulated genes were related to
ion transfer and immune system processes, while the downregulated genes
were involved in responses to lipopolysaccharides and positive regulation of
transcription (Figure 2.2A). Some of the specifically upregulated genes in the
early phase included Sost, Syp, Clg, and Gdfl 5, which were involved in cell
adhesion and complement categories (Figure 2.2B). On the other hand, the
downregulated genes during this phase included Plk2, Egrl, and A#f3, which
play a role in nommal cell division. During the later stages, several genes
associated with chemical reactions and immune system processes were
activated, while genes involved in ion transfer and transmembrane transport
were suppressed (Figure 2.2C). During the later stage of the process, certain
genetic factors linked to inflammation, such as Ifitim3 and Tnfrsf19, displayed
heightened activity. Additionally, genes that play a role in fibrosis, including
Spon2, Mmp3 and Angpt4 were seen to be more active during this phase. On
the other hand, the activity of Kcnjl and Pvalb, which are linked to potassium
channels and calcium binding, went down at this stage. (Figure 2.2D).

In the nonglomerular compartment, the upregulated genes during the
early phase were involved in immune system processes and inflammatory
responses, including Aldhlal, Igke, Ighal, and Cyp2d 12 which are associated
with immunoglobulin production and fatty acid metabolism (Figure 2.2F).

During the late phase, the main transcriptome features were immune system
16



processes and phagocytosis (Figure 2.2G), and several genes involved in
tubular injury, inflammation, and fibrosis, such as Len2, Ltbp2, Greml, and
Trem2, were upregulated (Figure 2.2H).

In the whole kidney compartment, a significant number of genes
were highly upregulated during the late phase, particularly those involved in
immune system processes, inflammatory responses, and chemotaxis (Figure
221, J). Some of the genes that showed the highest level of increased activity
were those linked to B cells, which are a type of white blood cell responsible
for producing immunoglobulins. These genes included IgKv, Ighv, and Fcgrl

(Figure 2.2 K, L).
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Figure 2.2 Genetic variationsin the kidney over time in relation to aging
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D, E H, K, L) Graphs depicting gene expression differences, with red
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showing genes that are more active in older mice and blue indicating genes
that are more active in younger mice.
Unique inflammatory gene signatures in the glomerular compartments in
kidney aging

Our glomerular compartment enables us to study the specific
modifications in glomeruli during the aging process. By comparing the
expression levels of genes linked to immune system functions, innate immune
reactions, inflammatory responses, and chemical reactions, we can observe
notable differences between 12 and 24 months of gestation (Figure 2.3A). We
concentrated on genes linked to innate immunity, complement pathways, and
molecules involved in cell signaling (cytokines and chemokines). We
specifically looked at Gdf15, Ccl2, and Cxcll 3 which play a role in the aging
process of the glomeruli. (Figure 2.3B, C). Genes involved in innate immune
responses such as Ly86 and Spon2, were significantly upregulated in 24M, on
the other hand, IrfI was downregulated. One of the primary complement
pathways that undergo changes during the aging process is the classical
pathway. Specifically, components of this pathway known as Clg, including
Clga, Clgb, and Clgc, become more active. (Figure 2.3 F, G). Antigen
presentation for immune response via major histocompatibility (MHC) class
IT and cytokine macrophage migration inhibitors (MIFs), i.e., cell surface
receptors for Cd74, H2-Eb1, and cathepsin S (Cts), were also upregulated in
glomerular compartments. Through scRNA-seq data, we observed distinct
inflammatory gene expression pattems in podocytes, endothelial cells, and

mesangial cells across the aging process (Figure 2.3H).
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(A) A visual representation of significantly prevalent inflammatory biological
processes in the glomeruli, using -log2(adjusted P-value) for transparency and

the number of genes for the size of the representation. (B, D, F) Genes with
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notable increase in activity during the period between 2-24 months,
represented in heatmaps and linked to specific GO terms. (B) Innate immunity.
(D) Cytokine and chemokines. (F) Complement pathway. (C, E, G) Graphical
representation of the RNA-seq expression levels of specific differentially
expressed genes associated with each prevalent inflammatory biological
process (H) A heatmap of genes associated with prevalent inflammatory
biological processes using single-cell reference data. A one-way ANOVA was

applied, followed by Tukey's test.
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Investigating the potential functions of IncRNA in the aging of the kidney
Studies conducted in recent times have demonstrated that long non-coding
RNA(IncRNA), have a substantial impact on the management of gene
expression, including transcription and translation regulation, genome
imprinting, and epigenetic regulation (Statello et al, 2021). In the release of
GENCODE VMI16, over 12,000 long non-coding RNAs were identified and
out of those, 9,146 were observed to be active in a group of samples. Among
the 250 IncRNAs that displayed variations in expression across all
compartments, 74 were found to have a strong association with protein-coding
genes that also displayed variations in expression through co-expression
network analysis. This analysis revealed that upregulated IncRNAs were
functionally linked to the immune system, inflammation, blood coagulation,
transport, and lipid metabolism (Figure 2.4A). In opposition, IncRNAs that
had a decreased level of expression were linked to the processes of
transcribing genetic information and arranging the spindle fibers during cell
division (Figure 2.4B). The expression patterns of individual IncRNAs
(Figure 2.4C, E, G) were highly similar to those of the correlated neighboring
genes, and many differentially expressed genes (DEGs) were major

components of the coexpression network for each IncRNA

(Figure 2.4 D, F, H) (Shalek & Benson, 2017).
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Figure 2.4 Long non-coding RNA in the aging process of the kidney
(A) and (B), Rader plots are displayed, showcasing enriched GO terms
linked to DEGs that are significantly correlated with IncRNAs that are

either upregulated or downregulated, respectively. (C), (E), and (G)
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showcase the coexpression patterns and networks of selected IncRNAs,
with the core coexpression network depicted. The networks are shown for
three compartments and three timepoints, specifically 2M, 12M and 24M,
with red lines indicating the ncRNAs and grey lines representing the
neighboring genes. (D), (F), and (H) also show the coexpression pattem of
the IncRNAs. Coexpression networks of IncRNAs. Genes with high
correlation in the network are represented as green edges, a correlation of
0.9 or greater. IncRNAs are colored cyan in network representations. Red

indicates DEGs in the network.
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Comparison of gene expression changes in aging and UUOQO-induced
fibrotic kidneys reveal both shared and unique alterations

We have examined the concept of kidney aging as a precursor to
chronic kidney disease (CKD). By analyzing the genetic makeup of both aged
and mjured kidneys, the study aimed to understand the similarities and
differences in fibrosis, a condition that contributes to both aging- and injury-
related kidney damage. Largely, gene expression profiles in 24M kidneys
were distinguished with the ones in the UUO kidneys (Figure 2.5A). The
expression of cell subtype-specific markers significantly increased in immune
cells, but decreased in tubular cells, and proportionally increased in
glomerular cells in UUO kidneys compared to 24M kidneys (Figure 2.5B).

Despite selecting genes that exhibited a fourfold increase in
expression, a significantly greater number of genes were found to be either
increased or decreased in the UUO group. (Figure 2.5C) Genetic Interactions
were further analyzed to identify shared genes in healthy kidney aging and
UUO-induced kidney fibrosis (Figure 2.5D). A group of 40 genes that play a
significant role in controlling cell growth, differentiating cells, and supporting
embryonic development have been identified. Among these genes are Nr2e3,
Aklcl8, Wnt8, and Wntll, which have been found to have a suppressing
effect on cellular activity. By comparing GO term enrichment between 24M
and UUO, we found features that distinguish kidney aging from injury-
induced kidney fibrosis (Figure 2.5E).

Many ECM tissues and angiogenesis genes were highly upregulated

in UUO while oxidative phosphorylation, immunoglobulin production, and
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classical complement pathways were major upregulated GO terms at 24M.
Adaptive immune cell regulation revealed the difference between healthy
kidney aging and UUO. T cell-related genes were mostly upregulated from
UUO (Figure 2.5F), while B cell-related genes were upregulated from 24M
and UUO compared to 2M. A number of genes that are linked to B-cell
activation were found to be significantly more active in the case of UUOs in
response to unfolded proteins. Examples of such genes include Xbp/ and the
Edem family of proteins, which are known to enhance degradation within the
endoplasmic reticulum. These genes were only upregulated in UUOs, and not

in other conditions (Figure 2.5G,H).
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Figure 2.5. A comparison of inflammatory characteristics in aged and fibrotic
kidneys resulting from UUO injury

(A), aprincipal component analysis is conducted on the kidneys from three
groups, UUO, 24M, and 2M. (B) illustrates the expression levels of known
cell type-specific markers through a heatmap. The differentially expressed
genes (DEGs) between UUO and 24M kidneys in comparison to 2M
kidneys are illustrated in (C) through Venn diagrams. (D) Scatterplot
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displays the 1og2FC values of all DEGs in the 24M and UUO groups
compared to the 2M group, with the top 7 functional terms in relation to
size presented in the legend. The circle size in the scatterplot represents the
number of enriched functional terms compared to the 2M group. (E)
presents a heatmap of significantly overrepresented functional annotations
for DEGs between the UUO and 24M groups, while (F) and (G) depict
heatmaps of DEGs for each overrepresented Gene Ontology term for T
cells and B cells, respectively. (H) A heatmap and network of functional
annotations were created for DEGs from UUO and 24M upregulation and
DEGs specifically upregulated in UUO. These annotations were found to
be highly overrepresented. podocyte; Podo, endothelial cell; Endo,
proximal tubular epithelial cell; PT, loop of Henle; LOH, distal convolute
tubular cell; DCT, collecting duct, principal cell; CD PC, collecting duct,
intercalated cell; CD IC, fibroblast; Fib, natural killer cell; NK,

macrophage; Macro, neutrophil; Neutro, lymphocyte; Lympho.
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Discussion

As we age, there are a plethora of molecular alterations that occur
within the kidneys (Lim et al., 2012). Different parts of the kidney, such as the
glomerular and tubulointerstitial sections, are known to work together to
perform specific functions. However, the specific impact of aging on each part
of the kidney has not yet been studied.

Our study suggests that new methods are necessary to understand the
specific effects of aging on the glomerular and tubulointerstitial parts of the
kidney. We found a large number of genes that are differently expressed in
each compartment, surpassing previous studies. (D. Park et al, 2016). By
analyzing transcriptomic data from well-defined compartments at different
time points, we were able to uncover various pathways related to renal aging.
We also compared the gene expression levels between the glomerular fraction,
nonglomerular fraction, and whole kidney to examine their distinct
inflammatory characteristics.

The analysis of long non-coding RNAs (IncRNAs) also revealed
tissue-specific regulation and previously unreported genetic characteristics
during kidney aging (Ignarski et al., 2019). According to Wang et al. long
non-coding RNAs (IncRNAs) play various roles in gene regulation and may
be connected to the development of diseases (Y.-N. Wang et al., 2021). Also
the study at 2021 found that several IncRNAs, such as H19, Pvtl, and Sng5,
are associated with kidney disease (Moreno et al., 2021). Xie et al. discovered

that the expression of H/9 IncRNA was significantly increased in both in vitro
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HK-2 cell fibrosis and in vivo UUO-induced fibrosis models, compared to the
2M model (Xie et al., 2016). By analyzing the correlation between ncRNAs
and differentially expressed genes, it is possible to infer the potential function
of IncRNAs, even if the role is only tentative. For example, 5430416 NO2Rik
IncRNA was downregulated in the glomerular compartment at the early stage
and was related to transcription functions such as "positive regulation of
transcription from RNA polymerase II promoter" and "transcription, DNA-
template" through coexpression with other genes (T. Zhao et al, 2020).
Additionally, the gene 5430416N02Rik has been discovered to play a role in
the growth and reproduction of embryonic stem cells through its involvement
in interactions between different chromosomes. On the other hand, the
AW112010 mncRNA was upregulated in the nonglomerular compartment at the
early stage and in the whole kidney at the late stage (X. Yang et al., 2020). It
was closely related to many immune-related genes and may be linked to
immune system functions. Specifically, the expression of AWI112010 was
found to be connected to the inflammatory condition of T cells by decreasing
IL-10 expression through histone demethylation.

Upon aging, the transcriptome of glomeruli (Lai et al, 2019)
undergoes significant changes compared to that of the nonglomerular
compartment and whole kidneys. These changes often involve activation of
inflammatory reactions and immune system processes, with cytokines,
chemokines, and classical complement pathway activation being particularly
prominent in aging glomeruli (Lihnemann et al., 2020). In contrast, in the

whole kidney (which is made up of more than 90% nonglomerular tissue), we
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see an increase in genes related to immunoglobulin production and plasma
cell activation. It is worth noting that the transcriptomes of samples defined as
nonglomerular compartments (such as tubules) and the whole kidney tend to
differ, possibly due to the influence of glomerular signals or the loss of "gap"
signals during nonglomerular sample collection. One possible explanation for
these differences is that aging nephrotic cells may enhance anti-inflammatory
properties and increase the recruitment of innate and adaptive immune cells.
Previous research has also identified inflammation and fibrosis as major
active pathological processes in the glomeruli of aged rats (Lai et al., 2019).
The heightened activity of the complement system and increased presence of
innate immune cells in the aged glomerlus may contribute to the higher
incidence of rapid progressive glomerular nephritis seen in older patients
(Lahnemann et al., 2020)

In this study, we have shown that the immune response in the
kidneys of the elderly undergoes changes over time. These changes can be
observed in various functional compartments of the kidney and may
contribute to the maintenance of homeostatic equilibrium in the elderly. Our
findings suggest that the immune system in the elderly kidney is more
complex than previously thought, particularly in the case of chronic kidney
disease (CKD). This study makes a valuable contribution to our understanding
of the immune system in the elderly kidney and its role in maintaining
homeostasis. Future research should focus on further exploring the
mechanisms underlying these changes in the immune response and their

potential impact on health outcomes in the elderly population.
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Chapter III.

RNA sequencing of gingival biopsies
reveals molecular signatures reflecting
periodontal health status
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Introduction

Periodontitis is a serious oral health problem that occurs when
specific bacteria in the mouth cause destruction of the periodontal tissue and
eventual tooth loss. These bacteria create an imbalanced microbial biofilm,
which has traditionally been evaluated by dental professionals through various
methods such as measuring plaque, gingival inflammation, bleeding during
examination, loss of tooth attachment, and the depth of pockets around the
teeth. However, these methods do not effectively identify the root causes of
the disease (Socransky et al, 1998). Recent advances in next-generation
sequencing have allowed researchers to identify additional periodontal
pathogens and the concept of "polymicrobial synergy and dysbiosis" (Jeon et
al., 2020), n which the collective activity of the microbiome, including
keystone pathogens, distupts the normal immune response and causes tissue
destruction. It is worth noting that individual susceptibility to these pathogens
varies and can impact the disease's progression.

To better understand the molecular changes that occur in
periodontitis, researchers have utilized transcriptome analysis through
techniques such as microarrays and RNA sequencing (RNA-seq). In 2008, a
study using microarray technology was conducted to identify genes that may
be involved in the progression of periodontitis. However, the findings were
inconclusive and varied, with some studies discovering notable differences in
gene expression between healthy and diseased gingival tissues (Demmer et al.,

2008) and others not observing such differences (Papapanou et al., 2004).
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RNA-seq, on the other hand, is an unbiased method with high accuracy in
detecting gene expression (Y.-G. Kim et al., 2016) The present study utilized
RNA-seq to identify molecular signatures, or biomarkers, that reflect
periodontal health status and suggest that RNA-seq may be useful as a

diagnostic and predictive tool for monitoring periodontal conditions.
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Materials and Methods

Study population and clinical evaluation

The research study, conducted by the Department of Periodontics at
Pusan National University Dental Hospital in Yangsan, Korea, included 67
participants. The control group consisted of individuals with clinically healthy
periodontal tissues, as indicated by low bleeding scores on probing at 10% of
sites and the absence of lesions with probing depths (PD) greater than 3 mm
or clinical attachment loss (CAL). The periodontitis group was initially
classified based on CAL greater than 3 mm and severe bone loss as seen on
radiographic images. A full-mouth clinical examination, including
assessments of PD, CAL, gingival index (GI), and plaque index (PI), was
conducted by a single practitioner. A periodontal expert then classified the
severity of periodontitis into either the moderate or severe category based on
the findings of the full-mouth clinical exam.

RNA extraction from gingival tissue and whole transcriptome sequencing
(RNA-Seq)

Gingival tissue samples were treated with phosphate-buffered saline
and stored at -80°C until RNA isolation using the RNeasy Mini Kit (Qiagen
Inc., Valencia, CA). cDNA libraries were constructed using the TmuSeq
Stranded mRNA LT Sample Prep Kit. The protocol included the extraction of
polyA-selected RNA, fragmentation of the RNA, and reverse transcription

with random hexamer priming, The libraries were quantified using qPCR and
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evaluated with the Agilent Technologies 2100 Bioanalyzer. The prepared
sequencing libraries were then sequenced on the Illumina Novaseq platform in

paired-end mode with 2x100 base pair reads.

RNA-Seq read data processing and deconvolution analysis

Before conducting the mapping procedure, the sequencer's raw reads
were preprocessed to eliminate low-quality and adapter sequence. The
processed readings were aligned using HISAT v2.0.5 (D. Kim et al., 2015) to
the human genome (hgl9). The reference genome sequence of human genome
(hgl9) and gene annotation data were downloaded from the UCSC table
browser (http://genome.uscs.edu). Transcript assembly and abundance
estimation using StringTie (Pertea et al., 2015). After alignment, StringTie
v1.3.3b and RefSeq gene annotations were used to assemble aligned reads
into transcripts and to estimate their abundance. The normalized abundance of
the annotated genes was estimated as FPKM (Fragments Per Kilobase of exon
per Million fragments mapped) values in each sample and Principal
component analysis (PCA) was performed in python via genes with top 1000
variance through skleam library (Pedregosa et al., 2011). RNA-Seq samples
were deconvolved into each cell type proportion by the R package MuSiC
with default parameters (X. Wanget al., 2019), via public single cell RNA-seq
reference from GEO accession number GSE152042 (Transcriptomic profiling
of human gingiva in health and disease) (Caetano et al., 2021). Cells with
estimated proportions of zero were excluded from further analysis. The

estimated proportion matrices of each RNA-seq samples were grouped by
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each labeled disease phenotype for downstream analysis.

Differential gene expression test and enrichment analysis

DESeq2 R package(Love et al.,, 2014, p. 2) was used to identify
differentially expressed genes between groups. At a false discovery rate
(FDR) of 5%, genes with changes of at least 2-fold across samples were
considered differentially expressed. All enrichment analysis and functional
annotations were carried out using Metascape (Y. Zhou et al., 2019) and only
the "GO Biological Processes" category has been used to perform functional
annotation process to avoid semantic twin terms in other functional pathway
databases. A “selective GO cluster” method was applied to choose top clusters

as described in the metascape protocol.

GO term cluster network analysis and visualizations

GO term cluster networks were generated based on the metascape
functional annotation results. Briefly, every GO term in each cluster was
merged into a single node in the network and labeled as a representative GO
term. A size of node in the network was based on the number of enriched
genes for each GO term cluster. A pie-chart like mner circle in each GO term
node was produced based on the proportion of gene count for each group. If a
kappa score between GO term nodes was greater than 0.3, an edge connected
those two nodes for the purpose of clear visualizations. The subnetwork of
GO tem cluster networks was defined as a functional “theme” based on a

parent GO term, the proportion of shared genes between nodes, and semantic
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definitions of GO terms.

PCA and volcano plots were generated by python plotly library (v
4.3.0) and venn diagrams were produced by python library matplotlib-venn
and pyvenn. Heatmaps were generated using the online tool

Morpheus(https://software.broadinstitute.org/morpheus). The GO tem

networks were plotted using cytoscape (v3.7.0) (Shannon et al., 2003).

Correlation analysis of gene expression and the clinical parameters

To assess the associations between the expression of gene in the
gingival tissue and four clinical parameters, spearman correlation coefficient
was calculated. If the p-value for the correlation was less than 0.01 and the
correlation coefficient was greater than 0.45 for all clinical parameters, we

defined that the gene was highly associated with the clinical parameters.

Development of the clinical severity classifier from transcriptome and
biomarker prioritization

Input data consists of nommalized counts of all genes as function
variable and severity as target variable. Feature variables were scaled through
scikit-leam’s StandardScaler module and target variable were encoded as
ordinal (0: healthy,1: moderate,2: severe). The feature selection process was
initially performed with python package ‘Minimum-redundancy-maximum-
relevance’(mRMR) (Z. Zhao et al., 2019) to extract top 100 feature that has
minimum correlation between each gene expression but also have maximum

strength(F-statistics) with severity. The input data, filtered by 100 features
39


https://software.broadinstitute.org/morpheus

from mRMR, was used as input to PyCaret’s AutoML pipeline. An additional
feature selection (multicollinearity threshold=0.8) was applied within
PyCaret to remove high multicollinearity within features and reduce the
number of features from 100 to 44. Train and test sets were split into 0.88
ratio (train:58, test:9) due to the small size of dataset. Stratified cross
validation with 10-fold were applied to train set within Pycaret. Different
classifier models (Extra Trees, Random Forest, Logistic Regression, CatBoost,
Light Gradient Boosting Machine, Gradient Boostin, Decision Tree) were
applied and leader board of 7 evalucation metrics (Accuracy, Area under the
receiver operating characteristic curve (AUC), Recall, Precision, F1, Kappa,
Matthews correlation coefficient (MCC) were generated. SHapley Additive
exPlanations(SHAP) values of the best model, Extra trees classifier, were
used to sort the priorities of the features. Features with high SHAP values are

considered as plausible biomarkers.

Ethics Statement

All donors gave written informed permission, and their rights were
safeguarded in accordance with the procedure evaluated and approved by
Pusan National University's Institutional Review Board (IRB No. PNUDH-
2017-023). This study was conducted in accordance with the Helsinki

Declaration as revised in 2013.
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Results

Study group samples and RNA sequencing (RNA-Seq) profiles for the
study groups

Sixty-seven study subjects; 17 healthy subjects and 50 periodontitis
patients were recruited, and the gingival tissue samples were obtained. We
divided the periodontitis patients into two different groups; moderate (32) and
severe (18) groups based on the parameters from the full-mouth clinical
examination (Table 1). The RNA was extracted from the gingival tissue
samples and RNA-Seq has been performed to compare the transcriptional
expression profiles among the four groups including a healthy group. The
sequencing raw reads were preprocessed to evaluate the transcriptional
expression. Briefly, the raw read alignment was performed using HISAT2 and
hgl19 human genome and StringTie and RefSeq gene annotations were used to
estimate the gene expression. In total 24,843 genes were expressed in all
samples.

We conducted principal compartment analysis (PCA) to characterize
the dimension that explains the most variance in the transcriptome expressions
(Figure 3.1A). The PCA results shows that 88% of the total variance in gene
expression is explained by the first two principal components (PCs). When we
divided the PCA plot into two areas based on the second component (PC2),
most of the healthy subjects were in the lower region. On the other hand, most
patient samples in the severe group were in the upper region. We inferred that

the healthy group and severe group could be clearly distinguished based on
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the expression profiles. In case of moderate group, the samples were
widespread. Therefore, based on the sample distributions and their associated
clinical groups, the PC2 could reflect the periodontitis disease progress.
Similarly, unsupervised hierarchical clustering analysis for all subjects
revealed high correspondence between gene expression profiles and disease
status (Figure 3.1B).

Furthermore, to check the heterogeneity of the RNA-Seq samples
and compare the cell-type proportions among groups, we conducted
computational deconvolution analysis for all samples from individual 67
subjects using recent single-cell expression datasets, 12,422 isolated live cells
in human gingival tissues (Caetano et al., 2021). Interestingly, the results
shows that the epithelial cell proportions were gradually decreased along with
the disease progress from mild to severe (Figure 3.1C). Instead, the
populations of endothelial, transit-amplifying, stromal and immune cells such
as B and T cells, were increasing during the progression and persistence of
disease as similarly shown in the previous study (Luo et al., 2021; Rangel-

Huerta & Maldonado, 2017; Williams et al., 2021).
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Table 1. Participants' demographics and clinical parameters (mean +

standard deviation)
Periodontitis (n=50)
Healthy
Characteristic Moderate Severe
(n=17)
(n=32) (n=18)
Age (years) 32.82+13.21 51.13 £ 11.28 51.22 £ 8.48
Gender 'M: 9, %F: 8 M:13,F: 19 M:7,F: 11
Full mouth
examination
3PD (mm) 2.33+0.28 3.57+0.78 4.13+1.23
4CAL (mm) 2.34+0.28 3.98+0.95 4.65+1.35
5GI 0.12+0.08 0.95+0.68 0.95+0.50
PI 17.07 £19.27 58.91 £24.71 7151 £ 20.18

'M: Male, *F: Female, *PD: probing depth, ‘CAL: clinical attachment level,

SGI: gingval index, °PI: plaque index

43



Q
s
i3
2=
°
°
° 09 o 4
° LY
0e® c o o
i 00®
° o o ©°
. >4
" 4
s s Fos
(%80°01) 2od

@ Severe

0.12 0.13 0.14

PC1 (77.92%)

0.11

Severe.269
Severe.198
Moderate. 154
W severe 314
Moderate.310
Moderate. 197
Moderate. 194
W severe.422
Moderate. 367
M severe.163
Moderate. 288
Moderate 56
Moderate. 134
M severe.102
Moderate 211

Severe.175
Severe.103
Severe.109
Moderate.23

Moderate.415

Moderate.305
W severe. 143

Moderate. 11

Severe.170
Severe.432
Severe.303
Severe.111

Healthy.334
Moderate.9
W severe.79
Moderate.252
Moderate.82
Severe.254
Healthy.318
Moderate.121
Moderate.45
Moderate.75
Moderate.95
Moderate.273
Moderate.92
W Healthy.338
Moderate.202
Moderate.93
Moderate.65
M severe 368
Moderate.13
W severe 20
Moderate.38

Moderate.62
Moderate.300
Healthy.373
Healthy.362
Healthy.313
Moderate.204
Moderate.257
Healthy.295
Healthy.377
Healthy.292
Healthy.311
Healthy.347
Healthy.127
Moderate.247

Healthy.36
Healthy.31
Healthy.35

Healthy.29
Healthy.30

e
o
<
=
=%
w

Stromal

Transit-amplifying cells

Endothelial

B cells

sample
B Healthy

Macrophage

Moderate

HEl Severe

T Cells

Cell type proportion (%)

Figure 3.1. Expression profiles of global transcriptome

(A) Principal component analysis (PCA) based on log, TPM +1) that

describes global transcriptomic expression profile. The two shades (red and

green color) represent the clusters of subject status and the grey shade

region is the intermixed proportion of all subjects. (B) The hierarchical

clustering of all samples. (C) The predicted cell type proportions based on

]
F

) &} &

a
Ly

i
1

- SE

44



deconvolution analysis.
Comparing gene expression between healthy individuals and those with
periodontal disease

To identify gene signatures and associated biological implications in
the periodontal patient groups, we performed differential gene expression tests
between each periodontal patient group and healthy subject group. To identify
genes that are differentially expressed between two groups, we established the
following criteria: a fold change of at least 1 in the log2 scale and a false
discovery rate of no more than 0.05. Genes that meet these criteria are
referred to as differentially expressed genes (DEGs). In both comparisons,
healthy vs moderate and healthy vs severe, the number of upregulated genes
in the periodontitis groups were greater than the number of downregulated
genes (Table 2 and Figure 3.2A and 3.2B). We identified that the total number
of DEGs in the comparison between the severe patient group and healthy
subject group was greater than the total number of DEG in the comparison of
healthy and moderate group, which agrees with the observation in the PCA
analysis. For both pairwise comparisons, the number of upregulated genes for
the patient group are about 2~3 times larger than the downregulated genes.

Top 50 upregulated genes included immune related genes (CHIA,
IFNK, ANKRDI, CCL7, CXCLS5, IGLLI, MMP3, ORMI, ORM2, TNR, CCL25,
INHBE, GHI, SST) and binding molecule genes (ACTN3, ACOXL, UGT2B17,
UCPI, CRYBA4, OIT3, PCDHA2, PVALB). The 50 most downregulated genes
included nucleotide metabolic process genes (EGF NOSI, PLPI, FLG2,

ELOVLA4, H19, ST6GAL2, GAPDHS, MLXIPL, UGTIAS8, RORC, HMGC(CS2,
45



PRKAA), signaling and transport related genes (CACNG4, COBL, MAP2,
EXPHS5, CTTNBP2, CDHI9, CRLFI, ILI2RB2, NPR3, PCSK2, ARC,
SH3GL3, PKDREJ, TRPMI, PMEL, SLC24A45, EGF NOSI, PLPI) and
comification related genes (COBL, MAP2, EXPHS5, DCT DSCI, EPB4114B,
CLDN20, SLITRK5, CDSN, KRTAP3-2, KRT40, KRT31, KRT3, ASPRVI,
UPKIB, TRIM63, NEFM, PLPI1, FLG?2). Next, we assess the genetic changes
in the functional aspects by Gene Ontology (GO) term enrichment test for
each pairwise comparison. As shown in Figure 3.2C and 3.2D, there were
common enriched functional pathways related to immune system processes
such as inflammatory response, leucocyte migration, myeloid leucocyte
activation and positive regulation of immune response. Meanwhile, the
enriched pathways for the downregulated genes were peptide cross-linking
and water homeostasis are signs of functional and structural decline in the
tight-fittng gingival epithelium. Additionally, downregulated xenobiotic

metabolic pathways suggest a lack of immunological response.
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color gradient. (D) A presentation of Gene Ontology terms enriched in the
comparison between healthy and severe groups, with the size of the circle
indicating the number of genes in the term and the adjusted p-value

represented through color.
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To delineate the detail gene regulations in the disease progression,
we compared the up- and downregulated genes between both pairwise
comparisons. In case of upregulated genes, 1,520 genes were common DEGs
in both moderate and severe groups and 159 and 726 genes were group-
specific DEGs in moderate and severe groups respectively (Figure 3.3A). In
case of the downregulate genes, a significant number of genes (905)
specifically belong to severe group (Figure 3.3B). Functional annotation
analysis for the group-specific upregulated genes showed that many GO terms
associated with immune responses were enriched severe group specific genes,
on the other hand, GO terms associated with regeneration processes such as
“muscle structure development”, “extracellular matrix organization” and
“tissue morphogenesis” were enriched in the moderate group specific genes
(Figure 3.3C). In case of the group specific downregulated genes, there are
many GO terms enriched in severe group specific genes because of high
number of group specific genes and most of the GO terms are related in

cellular homeostasis (Figure 3.3D).
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Figure 3.3. Periodontist group specific DEGs

(A) A Venn diagram of upregulated genes in moderate (yellow) and severe
(red) periodontitis status. (B) A Venn diagram of downregulated genes in
moderate (yellow) and severe periodontitis status. (C) Enriched GO terms
for the periodontitis group specific upregulated genes. Yellow: Moderate
group specific GO terms, Red: Severe group specific GO terms. (D)
Enriched GO terms for the periodontitis group specific downregulated

genes. Yellow: Moderate group specific GO terms, Red: Severe group

specific GO terms.
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Identification of genes significantly correlated with clinical parameters
To identify the expressed genes in RNA-Seq data linked with four
clinical measures (PD, CAL, GI, and PI), correlations were established
between the nommalized gene expression abundance and the clinical
measurements using the spearman correlation technique. When we established
the criteria for the strong relationship between gene and parameter according
to the method, 2,035 genes were positively correlated and 534 were
negatively associated with all four parameters. As the Venn diagram depicts
(Figure 3.4), 459 genes were positively correlated with all 4 clinical
parameters. Functional enrichment analysis shows typical immune system
process such as lymphocyte activation, mature B cell differentiation,
leukocyte activation. And cell redox homeostasis (Morris et al., 2022). It's
interesting to note that endoplasmic reticulum (ER) stress-related terms were
also prevalent, which are known to be the cause and the effect of the chronic
inflammation (Chipurupalli et al., 2021; Hasnain et al., 2012). N-linked
glycosylation has also been investigated for its potential autoimmune
associations. or causing ER stress with misfolded protein (Pandey et al., 2022;

X. Zhou etal., 2021).
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A Speamman correlation analysis has been conducted to evaluate the
connection between gene expression levels and certain variables (PD, CAL,

GI and PI). (A) Venn diagrams of genes highly correlated (comrelation
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coefficient > 0.45 & adjusted P-value <0.01) with the clinical parameters. (B)
A heatmap of representative enriched GO terms for positively correlated
genes. Right color bars show the representative parent GO terms for the
individual enriched GO terms. (C) A graph of Gene Ontology (GO) terms was
created based on the results of a cluster analysis. The size of the nodes in the
graph represents the number of genes that were found to be enriched in each
GO cluster. Edges were drawn between two GO terms if their kappa score was

greater than 0.3 (Details in the methods section).
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Identification of biomarkers from transcriptome derived clinical severity
classifiers

To identify biomarkers that can be used to diagnose and predict
clinical severity, we applied different machine learning algorithms to classify
the clinical severity based on the transcriptome data. After applying standard
scaling on normalized count data, total of 100 genes were selected as initial
features, retrieved based on mRMR algoritim (Z. Zhao et al., 2019). Figure
3.5B illustrates that the majority of Gene Ontology terms associated with the
100 potential biomarker genes pertain to B cell function, including the
regulation of lymphocyte activation, the adaptive immune response, the B cell
receptor signaling pathway, and the regulation of pattem recognition receptor
signaling pathways. After additional feature selection by filtering genes with
high multicollinearity, 44 genes were finally selected as feature variables. The
research project utilized gene expression data from 67 individuals, which had
been nomalized and included 44 unique genes. This data was randomly
rearranged and separated into two subsets: a training set with 58 subjects and
a test set with 9 subjects. 7 different classifiers were applied with 10-fold
stratified cross validation. The extra trees classifier was chosen as the clinical
severity classifier since it scored the highest in all seven metrics (Table 2). A
PCA plot based on 44 biomarker candidate gene expression profiles showed
the samples were distinctively distributed in PCl and PC2 among groups.
SHAP values (Lundberg & Lee, 2017) were calculated on the best extra tree
classifier to determine which genes has the greatest impact on the model

output (Table 3, Figure 3.5 C).
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Table 2. Evaluation metrics of different machine learning classifiers

Model

Accuracy AUC Recall Prec.

F1

Kappa

MCC

Extra
Trees
Classifier

Random
Forest
Classifier

Logistic
Regression

CatBoost
Classifier

Light

Gradient
Boosting
Machine

Gradient
Boosting
Classifier

Decision
Tree
Classifier

0.8967

0.8467

0.8767

0.83

0.7433

0.7267

0.6433

0.9824

0.9672

0.9444

0.9367

0.8669

0.8353

0.6892

0.8333

0.75

0.8333

0.75

0.6833

0.6556

0.5556

0.8575

0.7931

0.8203

0.7783

0.6947

0.6897

0.6264

0.8653

0.8017

0.8359

0.7835

0.6985

0.683

0.6115

0.8066

0.717

0.7795

0.6852

0.5563

0.5354

0.3847

0.838

0.7627

0.8154

0.7203

0.6067

0.5751

0.4052

00



Table 3. SHAP value of each feature from the best clinical severity

classifier

Gene SHAP | Gene SHAP
CRYBA4 0.061921 HMHBI1 0.020089
CRACDL 0.049924 KRTAP4-12 0.020001
BRD7 0.043643 C9orf50 0.019941
COL4A3 0.038649 MIR6754 0.019914
SNX3 0.037277 MIR4730 0.0189%4
PNMT 0.036835 SNORA71E 0.018718
LINC01694 0.036339 SNORA27 0.01824
UBE2F-SCLY 0.032915 MIR6516 0.017799
GTF2H2B 0.032909 HNRNPCL3 0.017103
LOC101927727 0.031248 GTSCR1 0.01617
CTXND1 0.030545 NUP210L 0.015702
UoXx 0.028447 UBE2MP1 0.014374
CES2 0.027039 MIR6853 0.01382
ADORA2A 0.026413 SNORA47 0.013767
CLHC1 0.025285 SPATA31E1 0.012818
SPART-ASI 0.025168 MIR3164 0.01025
IGFL3 0.024453 ANKRD66 0.009412
USP17L2 0.023053 SH2D7 0.009253
FSTL5 0.022962 LOC100507387 0.006664
GAPDHS 0.021512 LOC100506274 0.004594
LOC105375545 0.021034 MIR4519 0.002755
LINCO1777 0.020775 ROSI1 0.001331
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Figure 3.5. Expression profiles and priorities of biomarker candidate genes and
enriched GO terms

(A) A heatmap of representative enriched GO terms for initially selected

top 100 biomarker candidate genes. (B) A PCA based on the 44 biomarker

candidate gene expression profiles.

(C) Genes with higher SHAP values have a stronger effect on the classifier

output performance.
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Discussion

As the periodontitis has an inherent complication that involves the
close interaction of a complex microbiome and systemic immune responses,
there have been numerous attempts to unravel its molecular mechanisms and
identify diagnostic biomarkers for the state of periodontal disease. Early
studies focused on the combination of clinical parameters, but it provided
shallow nsight into the disease's pathophysiology (Briagger, 2005; Demmer et
al., 2008; Hefti, 1997; Meseli et al., 2017). Other branches of the research
were dealing with the microorganisms to find key factors of periodontal
diseases (Kwack et al, 2022, p. 20; Socransky et al., 1998). Recent
developments in the sequencing technology and the idea of "polymicrobial
synergy and dysbiosis" have successfully discovered the keystone pathogens
associated with the host immune responses, causing the loss of periodontal
tissues (Kwack et al., 2022; Lamont & Hajishengallis, 2015). But the each
individual has a varied innate susceptibility to microbial species, therefore, the
prognosis of periodontal diseases is different (Jeon et al., 2020).

Transcriptome-based systemic immune response analysis was
successfully used in this field to address these issues. Many attempts have
been made to pinpoint the precise processes and elements involved in the
onset of a disease, from microarray to single cell RNA-sequencing (Beikler et
al., 2008; Y. Chen et al, 2022). In this study, in addition to identify the
transcriptome-level systemic immune response signatures that differs between

the different periodontitis severity groups, we also employed machine
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leaming approaches to construct classifiers and generate a prioritized list of
possible biomarker gene candidates.

PCA and hierarchical clustering analysis demonstrated that healthy
subjects and periodontitis patients was distinguishable based on the gene
expression profiles, although moderate and severe subjects are not clearly
discemible. Interesting, the deconvolution analysis based on the scRNA-Seq
data successfully assessed the proportional changes of the cell type upon the
periodontitis progression. The loss of gingival epithelium could be inferred
from a decrease of the epithelial cell proportion, and an increase in the
fraction of transit amplifying cells. Therefore, we assumed that the
regeneration processes was started from the fast tract differentiation
accompanying with the inflammation upon the destruction of gingival tissues
(Rangel-Huerta & Maldonado, 2017). Evidently, the increased proportion of
immune cells (B cell, T cell, Macro) indicated that the immune cell infiltration
occurs and the increase of endothelial cells (blood vessels) and stromal cells
also was observed in which has already been shown in the previous studies
(Luo etal., 2021; Williams et al., 2021).

Differential gene expression analysis showed that the upregulated
genes were dominant DEGs in both groups. The functional annotations of
DEGs based on GO terms for the upregulated genes in both groups were
similar and most GO terms were primarily related to immune response. When
we looked closer into the group-specific DEGs, the majority of upregulated
genes were common in both groups, on the other hand, the many

downregulated genes were belong to the severe group. GO term enrichment
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analysis showed that the many group-specific upregulated DEGs in the severe
group were associated with the immune system response functions such as .
While the moderate group-specific upregulated DEGs were related to the
regeneration processes. Interestingly, Morris et al. reported that the oxygen
levels is decreased upon the inflammation progress (Morris et al., 2022) and
we observed the several moderate group-specific upregulated DEGs related to
the response to decreased oxygen levels.

To investigate the associations between molecular signatures and
phenotype characteristics of periodontitis, we measured the correlation of
gene expression profiles of the entire subjects and the clinical parameters. Of
the 450+ genes analyzed, a positive correlation was identified with certain
clinical measures and the functional enrichment analysis demonstrated that
immune system processes including leukocyte activation, B cell
differentiation, and lymphocyte activation were enriched functions in the
correlated genes as expected. Previously, it has been showed that endoplasmic
reticulum (ER) stress cause and effect to the chronic inflammation
(Chipurupalli et al, 2021; Hasnain et al., 2012) and the autoimmune
implications of N-linked glycosylation by misfolded protein stressing in the
ER have been reported (Pandey et al, 2022; X. Zhou et al., 2021).
Intriguingly, the functional annotation analysis detected several GO terms
related to endoplasmic reticulum (ER) stress. Therefore, we inferred that the
positively correlated genes closely linked to the phenotype of periodontitis.

To validate the concept of the positive relationship between the

molecular signatures and the phenotypic traits, we used the machine learning
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techniques to develop the classifiers to predict the periodontal status based on
the gene expression profiles. Although there were some trials on predicting
periodontal diseases with machine leaming or deep learning classifier using
microarray datasets and medical images (E.-H. Kim et al., 2020; Rhee, 2019;
Ning et al, 2021), they did not consider the severity of the periodontal
diseases. In this study, we used the feature selection methods, mRMR
technique, recursive feature extraction and addition methods. We did not use
clinical information in our classifier because it was based only on
transcriptome data. While the classifier's performance might improve if
clinical information were included, it is unlikely to have a significant impact
as the severity of periodontitis was already determined using clinical
parameters. Initially, a selection of 100 potential biomarker genes was made
that were closely related to immune processes, including the regulation of
lymphocyte activation, the adaptive immune response, the B cell receptor
signaling pathway, and the regulation of pattem recognition receptor signaling
pathway which can be interpreted as the most important factors that
segregates the severity of periodontitis could be contributed from B cell’s
malfunction. Furthermore, we prioritized the initial biomarkers, set the final
44 candidates and evaluated the candidates using machine leaming algorithms.
The evaluation results showed that the constructed classifiers using the
candidates performed well to predict the periodontal disease status. Though it
is not clear exactly what causes periodontitis to become severe, there are
indications that it may be related to issues with the way the immune system's

B cells recognize or respond to the infection.
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In summary, we have profiled the transcriptome of gingival tissues in
the periodontitis patients and corresponding healthy subjects and showed the
distinct molecular signatures in different three groups. Further, the possible
biomarker candidate genes were identified and evaluated. Therefore, the
present study provides an important foundation for developing methods to

dragonize and screen the periodontal diseases.
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Chapter IV.

Conclusion
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Conclusion

Inflammaging, or the chronic low-grade inflammation that occurs
during aging, has been linked to a number of age-related diseases. In this
study, we used RNA sequencing to investigate the molecular basis of
inflammaging in both mouse kidneys and human gingival tissue.

In Chapter 2, we used compartment-specific RNA sequencing on
aging mouse kidneys to test whether bulk RNA-seq could still capture similar
inflammaging-related transcriptome profiles. The result showed compartment
specific RNA sequencing can still capture the cell type proportional changes
and compartment specific immune pattems. Upon aging, the immune system
of their glomeruli, nonglomeruli, and whole kidneys exhibits unique
molecular pattems. Additionally, this study analyzed the various expression
levels of long non-coding RNA in each of these areas. Lastly, the study
showed that the chronic inflammatory condition (UUO) is largely different
form inflammaging.

In Chapter 3, we scrutinized the chronic inflammation using the
samples of human gingival tissue from individuals with periodontitis and
corresponding healthy controls were subjected to RNA sequencing. We
managed to tackle this chronic inflammatory problem by combining
differential expression profiles between two groups, scRNA-seq
deconvolution and the association of clinical parameters and molecular
signatures. Finally, we successfully applied machine learning approaches to

build plausible periodontitis severity classifier and prioritize gene candidates
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for the biomarkers of periodontitis.

In summary, this study used RNA sequencing to investigate the
molecular basis of inflammaging in both mouse kidneys and human gingival
tissue. Through analysis of compartment-specific RNA in mice and
application of machine learning approaches to human tissue samples, the
study identified unique molecular pattemns and potential biomarkers for age-
related inflammation and chronic inflammation in the form of periodontitis.
The study also found that chronic inflammatory conditions such as
periodontitis have distinct molecular features compared to inflammaging. The
contribution of this study is the identification of unique molecular patterns
and potential biomarkers for age-related inflammation and chronic
inflammation in periodontitis, as well as the development of a periodontitis
severity classifier and identification of gene candidates for biomarkers of
periodontitis. As future work, it would be interesting to further investigate the
potential therapeutic applications of these findings, such as targeting specific
molecular pathways to treat or prevent age-related inflammatory diseases and
periodontitis. It would also be useful to replicate these findings in larger, more

diverse populations to confirm their generalizability.
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