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ABSTRACT

Genetic interactions occur when two or more gene mutations combine to
generate a phenotype such as cell lethality. Several anticancer therapies have
exploited genetic interactions by targeting somatic mutations and the overexpression
of oncogenes; these therapies target tumor pathways for survival without affecting
normal cell. Because this concept of genetic interactions utilizes cell lethality as a
phenotype, numerous bottlenecks exist in the discovery of new genetic interactions
using computational methods. To overcome this limitation, I defined the phenotype
of genetic interactions at the patient level and not at the cell level. In this study, I
propose synthetic dosage cancer survival (SDCS), a modified concept of synthetic
dosage lethality, in which a combination of a mutation and an overexpressed gene
causes cell lethality. SDCS involves a pair of genes, in which a combination of a
mutation and overexpression of a gene leads to significant differences in patient
survival. A gene combination that improved patient survival was defined as a
positive SDCS pair, whereas one that worsened prognosis was defined as a negative
SDCS pair. SDCS pairs were identified and validated using two databases: The
Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium
(ICGC). The genotype-tissue expression (GTEx) database was used as a control. To
confirm the possibility of the over-expressed genes of SDCS as druggable targets,
the Genomics of Drug Sensitivity in Cancer (GDSC) database was used to validate
the SDCS pairs. Twenty-two positive and 35 negative SDCS pairs were identified
and validated. These SDCS pairs comprised 18 gene disruptions and 52
overexpressed genes. The combination of PIK3CA disruption and MTOR

overexpression, which is a negative SDCS pair, is a potential drug target that has
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recently attracted interest as a dual inhibitor for breast cancer and was validated
through drug sensitivity analysis. Breast cancer cell line samples with PIK3CA
mutations and MTOR overexpression were significantly sensitive to omipalisib and
OSI-027, which are MTOR inhibitors. This observation suggests that the genes
included in the SDCS pairs could be potential candidates for developing new drugs
for cancer therapy. Thus, SDCS analysis can help to identify novel therapeutic and

prognostic targets.
Keywords: Negative genetic interaction, Synthetic dosage lethality, Gene

expression analysis, Drug sensitivity, Target discovery, Prognosis marker
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CHAPTER 1. Introduction

1.1. Genetic interaction

Genetic interactions occur when two or more genetic events combine to
generate an unexpected phenotype such as cell lethality (Brough et al., 2011; Kaelin,
2005; Kuzmin et al., 2018; O’Neil et al., 2017; Typas et al., 2008). This is a type of
targeted therapy enables individualized treatment based on the characteristics of
cancer cells in each patient. With recent advances in genome sequencing, changes in
a patient’s genomics can be identified rapidly to characterize the biological functions
of cancer cells and to identify vulnerabilities that can be exploited to selectively kill
cancer cells using therapeutics(Katti et al., 2022; Molina et al., 2018). Therefore, if
we uncover genetic interactions, more personalized therapeutics for cancer patients

could be developed, thereby improving patient prognosis.

Genetic interactions can be categorized into two types: negative and positive
(Dixon et al., 2009; Kuzmin et al., 2018; O’Neil et al., 2017; Tong et al., 2004). In a
negative genetic interaction, two or more genetic events contribute to a more serious
fitness defect in a cell than expected for each genetic event. Representative examples
include synthetic lethality (SL) and synthetic dosage lethality (SDL) (Figure 1)(Paul
et al., 2014). SL occurs when two combinatory genetic alterations generate a lethal
phenotype in a cell, but individual genetic alterations do not. The most representative
drug developed using SL is the PARP inhibitor (Hodgson et al., 2018; Lord &

Ashworth, 2017; Tutt et al., 2009). Two genes, BRCA and PARP, were representative
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Figure 1. Negative genetic interactions, SL and SDL. Two examples of digenic

interactions that negatively affect cell fitness: SL in which cell lethality occurs

because of a simultaneous event involving two genes; SDL in which the combination

of a genetic event with overexpression of another gene causes lethality.



SL pairs, and the PARP gene can be exploited in patients with breast cancer, where
genetic alterations in BRCA are common. SDL refers to cases in which gene
mutations and overexpression cause cell death but not individually (Kroll et al., 1996;
Measday & Hieter, 2002; Megchelenbrink et al., 2015). Unlike normal cells, cancer
cells have somatic mutations and exhibit gene overexpression; thus, by exploiting
the concepts of SL and SDL, cancer cells can be specifically treated. Alternatively,
positive genetic interactions occur when a combination of genetic alterations results

in greater fitness than expected.

Negative  genetic interactions change the cell phenotype to
lethality(Baryshnikova et al., 2013; Vizeacoumar et al., 2013). This can be the
underlying concept for developing cancer therapies to selectively kill cancer cells
without significantly affecting the normal cells of cancer patients by utilizing the
characteristics of cancer cells that have somatic mutations(Han et al., 2019).
Similarly, cancer-cell-specific death can be induced by utilizing SDL because
numerous oncogenes are overexpressed in cancer cells (O’Neil et al., 2017). Figure
2 shows a method for developing cancer-cell-specific anticancer drugs using
negative genetic interactions. Cancer cells with a disruption in gene A can induce SL
using an inhibitor of gene B, as if the cells had a combination of genetic alterations
in both genes A and B. The inhibitor of gene B did not have a significant effect on
normal cells without genetic alterations to gene A. This is also applicable to SDL.
An inhibitor of gene B, a partner of SDL, can be applied for cancer therapy by

exploiting the overexpression of gene A, which is specific to cancer cells.
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The degree of genetic interaction is calculated mainly based on the growth rate
or colony size of cells as a phenotype (Tong et al., 2004). This was performed to
evaluate the effects of combining different genetic interactions. Multiplicative
models have previously been used to measure genetic interactions (Mani et al., 2008;
van Leeuwen et al., 2017). By measuring the change in the phenotype of cells
according to the genetic events of genes A/B, the genetic interactions of the A/B gene
pair can be categorized (Figure 3). If the effects of the event associated with gene A
and those associated with gene B are cumulative, the two genes are defined as having
no genetic interactions. However, if the events associated with the two genes
negatively affect the phenotype of the cell, it is called synthetic sick, and the case in
which most cells die, it is called synthetic lethal, which is a negative genetic
interaction. In contrast, when the events of two genes occur simultaneously, and if
they affect the phenotype to a lesser extent than the cumulative sum of each effect,
the process is called masking. If this leads to a better phenotype than the effect of
each event, this is a suppression. Digenetic interactions, masking, and suppression

are defined as positive genetic interactions.

With the advent of screening methods, including yeast, drug, RNA interference
(RNAI), and clustered regularly interspaced short palindromic repeat (CRISPR)
screening, a profound increase in the number of candidate genetic interactions has
been observed, and drugs targeting many of these interactions are currently in the
developmental stages (Castells-Roca et al., 2021; Katti et al., 2022; Luo et al., 2009;
McDonald III et al., 2017; C. Wang et al., 2019). Synthetic genetic array (SGA)
analysis was used to successfully combine double mutants in the yeast genome to
identify candidate synthetic lethal pairs comprising ~550,000 negative genetic

¥ 3
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interactions and ~350,000 positive interactions among ~18 million double mutant
pairs (Ooi et al., 2006; Yan Tong & Boone, 2006). Despite numerous experiments
based on the attractive concept of SL-based target therapy, only PARPi has entered
the clinic to date(Mateo et al., 2019). Because of the large number of combinatorial
explosions, it is very expensive and time-consuming screening for all possible

genetic interactions is expensive and time consuming.

1.2. Computational approach for genetic interactions

Computational approaches can reduce the candidate SL gene pairs that need to
be screened. Computational methods can be divided into four categories: statistical-,
network-, classical machine-learning—based methods, and deep-learning-based
methods (J. Wang et al., 2022). Data mining synthetic lethality identification pipeline
(DAISY) is a representative statistical-based method that is based on the assumption
that SL pairs tend to be co-expressed but not inactivated simultaneously (Jerby-
Arnon et al., 2014; Lee et al., 2021; Srihari et al., 2015). Network-based approaches
are based on protein—protein interactions, co-expression networks, signaling
networks, or metabolism networks that describe biological interactions. Machine
learning and deep-learning—based methods have also recently attracted attention for
identifying genetic interactions (Li et al., 2019; Madhukar et al., 2015; Wan et al.,
2020). In particular, graph neural networks (GNNs) can efficiently utilize graph-
structured data (Cai et al., 2020; S. Wang et al., 2021). SL and SDL can be structured
in a graph format, numerous methods to identify new genetic interactions using
GNNs have been proposed.
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Although computational approaches can complement experimental methods, there
are limitations to predicting genetic interactions based on data (J. Wang et al., 2022).
Negative genetic interactions causing strong lethality cannot be confirmed in patients
with cancer because the cells are dead and cannot be observed in the patient, which
is a characteristic property of SL and SDL. In other words, analysis is possible only
at the cellular level, which limits its clinical use. Therefore, a computational
approach can be used to suggest candidates only at the molecular or cellular level,

which makes verification at the clinical level challenging.

1.3. Overview of thesis

This study aimed to identify extended genetic interactions using the concept of
synthetic dosage cancer survival (SDCS). The proposed SDCS analysis involves
identifying genetic interactions using the patient’s prognosis and not cell death as a
phenotype. Similar to genetic interactions, SDCS can be divided into two categories:
positive SDCS pairs that improve a patient’s survival and negative SDCS pairs that
worsen a patient’s survival. Both cases can be used as prognostic markers for patients

and as important information for the development of anticancer drugs.

SDCS analysis deviates from genetic interactions at the cellular level, and
investigates genetic interactions at the patient level. Through the genetic interactions
identified by SDCS analysis, novel therapies utilizing the relationships between
genetic interactions can be developed. For example, inhibiting the over-expressed
gene of SDCS or investigating the role of the overexpressed gene could provide
candidates for druggable targets in cancer cells.

b i i
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CHAPTER 2. MATERIALS AND METHODS

2.1. Overview of the TCGA and ICGC database

The Cancer Genome Atlas (TCGA) is a multi-omics project to create a
comprehensive “atlas” of the multi-omics cancer genome profiles to catalog and
identify causes of cancer(Tomczak et al., 2015; Weinstein et al., 2013). The
International Cancer Genome Consortium (ICGC) is a large-scale cancer genome
study based on multiomics cancer genome profiles (Zhang et al., 2011, 2019). Both
databases provide DNA and RNA sequencing (RNA-Seq) data acquired from the
same patient with clinical information. The UCSC Xena platform
(https://https://xenabrowser.net/) provides public multi-omics data and clinical
datasets from large-scale genome studies, including TCGA, ICGC, and the Cancer
Cell Line Encyclopedia (CCLE) (Barretina et al., 2012; Goldman et al., 2017, 2019).
These multi-omics databases include whole-exome sequencing (WXS), RNA-Seq
mRNA expression, and copy number variation (CNV). All the data provided by
TCGA, ICGC, and the genotype-tissue expression (GTEx) were downloaded from
the UCSC Xena platform(Consortium et al., 2015). The Catalog of Somatic
Mutations in Cancer (COSMIC) and Genomics of Drug Sensitivity in Cancer (GDSC)
data were downloaded from official websites (Bamford et al., 2004; Tate et al., 2019;

Yang et al., 2012).
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2.2. Clinical information

Clinical information on 19 types of cancer was collected from TCGA and ICGC
databases. Important clinical variables were collected for each cancer type, and
progression-free survival (PFS) was used as the dependent variable. The clinical
variables included age, sex, stage, microsatellite instability (MSI), smoking status,
alcohol consumption, grade, necrosis percentage, residual cancer, and focality.
Because the important clinical variables differed for each cancer type, they were
assigned differently according to cancer type and used as input variables for analysis.
Table 1 shows a list of the 19 cancer types included in this analysis and a list of
clinical variables used. Survival was used as the dependent variable and PFS was
calculated. The variable most commonly used for all cancers was age. For urogenital
cancer types that occur predominantly in a specific gender, such as breast, cervical,
prostate, and uterine cancers, the gender variable was not used as an input. In the
ICGC database used for validation, only the dependent variables PFS and age were
used. The types of clinical variables were different, and there were numerous missing
values; therefore, it was not possible to compose data identical to TCGA data.

In this study, normal samples were used for comparison with cancer samples.
Normal RNA-seq samples included paired-normal samples obtained from TCGA
database and data from the Genotype-Tissue Expression (GTEx) database. When
using normal RNA-seq data, arbitrarily generated clinical information was used
because the clinical variables of the samples were normal. Because cells in the
normal sample did not die due to cancer, all survival events were assigned as
censored, and longer follow-up times than those of the cancer patients with the

longest follow-up time for each cancer type were arbitrarily assigned to all samples.
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17 A0 — T H



Table 1. List of cancer types and clinical variables used in the TCGA database.

Cancer Type

Clinical variables

Bladder urothelial carcinoma (BLCA)
Breast invasive carcinoma (BRCA)
Cervical and endocervical cancers (CESC)
Colon adenocarcinoma (COAD)
Glioblastoma multiforme (GBM)

Head and Neck squamous cell carcinoma (HNSC)

Kidney renal clear cell carcinoma (KIRC)
Kidney renal papillary cell carcinoma (KIRP)
Brain Lower Grade Glioma (LGG)

Liver hepatocellular carcinoma (LIHC)

Lung adenocarcinoma (LUAD)

Lung squamous cell carcinoma (LUSC)
Ovarian serous cystadenocarcinoma (OV)
Pancreatic adenocarcinoma (PAAD)

Prostate adenocarcinoma (PRAD)

Skin Cutaneous Melanoma (SKCM)
Stomach adenocarcinoma (STAD)

Thyroid carcinoma (THCA)

Uterine Corpus Endometrial Carcinoma (UCEC)

Survival, age, gender and stage

Survival, age and stage

Survival, age and stage

Survival, age, gender, stage and microsatellite instability
Survival, age, gender

Survival, age, gender, smoking status and alcohol
Survival, age, gender, stage, tumour grade and tumor necrosis percent
Survival, age, gender, stage and tumor necrosis percent
Survival, age, gender and tumour grade

Survival, age, gender, residual and tumour grade
Survival, age, gender, stage and smoking status
Survival, age, gender, stage and smoking status
Survival, age, gender, stage and tumour grade

Survival, age, gender and stage

Survival, age and stage and residual

Survival, age, gender and stage

Survival, age, gender and stage

Survival, age, gender, stage and focality

Survival, age and stage
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Table 2. GTEXx tissue matched based on the organ for the TCGA/ICGC cancer

type.

TCGA  TCGA Full Name GTEXx Database
BLCA Bladder urothelial carcinoma Bladder
BRCA Breast invasive carcinoma Breast
CESC Cervical and endocervical cancers Cervix Uteri
COAD  Colon adenocarcinoma Colon

GBM Glioblastoma multiforme Brain
HNSC Head and Neck squamous cell carcinoma Salivary Gland
KIRC Kidney renal clear cell carcinoma Kidney
KIRP Kidney renal papillary cell carcinoma Kidney
LGG Brain Lower Grade Glioma Brain

LIHC Liver hepatocellular carcinoma Liver
LUAD Lung adenocarcinoma Lung

LUSC Lung squamous cell carcinoma Lung

oV Ovarian serous cystadenocarcinoma Ovary
PAAD Pancreatic adenocarcinoma Pancreas
PRAD Prostate adenocarcinoma Prostate
SKCM  Skin Cutaneous Melanoma Skin

STAD Stomach adenocarcinoma Stomach
THCA Thyroid carcinoma Thyroid
UCEC Uterine Corpus Endometrial Carcinoma Uterus

19
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To match the RNA-Seq samples from the GTEx database to the same cancer tissue
samples, data derived from the same organ for each cancer type in the TCGA

database were matched (Table 2).

2.3. Whole exome sequencing

2.3.1. Next generation sequencing

For DNA sequencing data, multicenter mutation calling multiple cancer (MC3)
project data were used (Ellrott et al., 2018). This project enables robust cross-tumor-
type analysis of variance and batch effects introduced by DNA extraction,
hybridization capture, and sequencing. This project provides refined DNA
sequencing data, including pipelines: Alignment, The Genome Analysis Toolkit,
MuTect, and Indelocator, as well as Pindel, MuSE, Radia, Varscan, and Somatic
Sniper (Benjamin et al., 2019; Koboldt et al., 2012; Larson et al., 2012; McKenna et

al., 2010; Ye et al., 2009).
2.3.2. Variant annotation

For all TCGA/ICGC DNA sequence samples, variants, insertions, and deletions
(INDELs) were annotated using the ensemble variant effect predictor
(VEP)(McLaren et al., 2016). Annotation includes the Sorting Intolerant from
Tolerant (SIFT) algorithm, which predicts the effect of coding variants on protein
function, and PolyPhen v2 (Polymorphism Phenotyping v2), which predicts the
impact of an amino acid substitution on the structure and function of a human protein
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(Adzhubei et al., 2013; Sim et al., 2012). The combined annotation-dependent
depletion (CADD), which predicts the deleteriousness of variants and INDELSs, was
included(Kircher et al., 2014). LoFtool, which measures gene intolerance and
susceptibility using the frequency of loss-of-function (LoF) mutations, was also
included (Fadista et al., 2017). After using VEP, the variant with the most severe
consequence was used for multiple annotated variants and INDELs. LoF
consequences included transcript ablation, splice acceptor variant, splice donor
variant, stop gained, frameshift variant, stop lost, start lost, and transcript
amplification (Table 3). These eight consequences are cases that have high impacts,
as predicted by SNPEff and SNPSift (Cingolani, 2022; Cingolani, Patel, et al., 2012;
Cingolani, Platts, et al., 2012). If copy number variation (CNV) leads to a complete
loss, the gene is disrupted. Finally, if a variant or INDEL was classified as a
pathogenic variant in the ClinVar database, this gene was considered a disrupted gene
(Landrum et al., 2016). If none of the above conditions were satisfied, the gene was

not considered to be disrupted.

2.3.3. Genetic disruption

In this SDCS analysis, genetic interactions were investigated at the gene level,
but not at the variant and INDEL levels. Therefore, variants and INDELs were
aggregated into units of genes to construct a binary matrix according to the presence
or absence of gene disruption. When any one of the variants, INDELs, or CNV
requirements were satisfied, it was determined that a gene disruption was determined.
If one condition was unsatisfactory, it was considered that there was no gene

disruption. First, if at least one loss-of-function variant exists in a gene, the gene is

b i 211
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considered a disruption gene. The consequences of the loss-of-function variants were
as follows: transcript ablation, splice acceptor variant, splice donor variant, stop
gained, frame-shift variant, stop lost, and start lost. Second, a disruption gene is a
gene containing variants with a deleterious score for pathogenicity prediction. For
the pathogenicity prediction algorithm, the SIFT, PolyPhen-v2, and CADD scores
were used. The threshold of each deleterious score was 0.05 or less for SIFT, 0.85 or
more for PolyPhen-v2, and 30 or more for CADD score. Third, using the CNV
change at the gene level, GISTIC2 created a threshold of the data provided by TCGA,
and genes with completely lost copy numbers with a value of-2 were defined as
disruption genes. Finally, genes with mutations classified as pathogenic variants in
the ClinVar database were defined as disruption genes. Genes that did not satisfy all
the above four conditions were considered wild-type genes. We excluded 2086 genes
with a LoFtool score of 0.85 or higher from this analysis because they were disrupted

genes that occur frequently in normal samples.
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Table 3. The consequences of the variants and INDELSs in order of severity estimated by Ensembl.

Sequence ontology

Description

Transcript ablation
Splice acceptor variant
Splice donor variant
Stop gained
Frame-shift variant
Stop lost

Start lost

Transcript amplification
Inframe insertion
Inframe deletion

Missense variant

A feature ablation whereby the deleted region includes a transcript feature
A splice variant that changes the 2 base region at the 3' end of an intron

A splice variant that changes the 2 base region at the 5' end of an intron

A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading
to a shortened transcript

A sequence variant that disrupts the translational reading frame, because the number of nucleotides inserted or
deleted is not a multiple of three

A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated
transcript

A codon variant that changes at least one base of the canonical start codon
A feature amplification of a region containing a transcript
An inframe nonsynonymous variant that inserts bases into the coding sequence

An inframe nonsynonymous variant that deletes bases from the coding sequence

A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but where the
length is preserved
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2.4. RNA-Seq
2.4.1. Pre-processing of RNA-Seq data

TCGA provides RNA-Seq data for cancer cells and some normal cells, and the
GTEXx database provides RNA-Seq data for normal tissues. The RNA-Seq samples
from these two databases differ in terms of the type of sample, cancer, and normal
but are also provided by different sources. Therefore, combining the two datasets not
only considers the difference between cancer and normal tissues but also considers
that they come from different sources. The goal of the Toil recomputing project is to
unify the RNA-Seq pipeline between databases(Vivian et al., 2017). However, the
Toil RNA-Seq Recompute Compendium using a uniform pipeline cannot solve the
batch effect caused by two different databases. Therefore, RNA-seq data processed
considering the batch effect of TCGA and GTEx were used in this study (Figure 4)
(Leek, 2014; Q. Wang et al., 2018).

Using the example of bladder cancer, the distribution of the two databases from
the unified RNA-Seq pipeline samples provided by the Toil recompute project and
batch-effect-corrected samples were visualized by dimensional reduction using the
uniform manifold approximation and projection for dimension reduction (UMAP)
algorithm (Figure 5) (Mclnnes et al., 2018). When only ICGC data were used, Data
provided by the Toil recompute project were used when only ICGC data were used.
Table 4 describes the number of cancer and normal samples according to the database

used and cancer type.
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Table 4. The consequences of the variants and INDELs in order of severity

estimated by Ensembl.

Number of cancer samples  Number of normal samples

Cancer type
TCGA ICGC TCGA GTEx
BLCA 398 294 19 9
BRCA 736 970 83 179
CESC 291 241 3 10
COAD 209 390 18 308
GBM 138 155 0 1141
HNSC 489 461 43 55
KIRC 327 345 67 28
KIRP 276 216 31 28
LGG 489 431 0 1141
LIHC 352 281 50 110
LUAD 490 475 58 288
LUSC 478 411 46 288
oV 204 186 0 88
PAAD 175 130 4 167
PRAD 479 370 52 100
SKCM 462 426 1 556
STAD 409 414 33 174
THCA 487 480 58 279
UCEC 150 494 6 78
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2.4.2. Normalization

To remove genes with low expression from the RNA-Seq data, we transformed
the read counts to counts per million (CPM) on a log scale. The function ‘cpm’ is
provided in the R package edgeR to compare the relative mRNA expression levels
among the different samples by adjusting the library size of whole read counts
(Robinson et al., 2010). Genes with a CPM value > 1 in less than half of all samples
were considered as lowly expressed genes and filtered out. This process was
performed independently for each cancer type.

Then, trimmed mean of M-value (TMM) normalization was used to
simultaneously adjust the library size and composition of the RNA population to
estimate the appropriate relative regularization factor unaffected by
outliers(Robinson & Oshlack, 2010). Using the voom function provided in R
package 'limma’', RNA-Seq mRNA expression data were transformed into logCPM
data (Law et al., 2014; Ritchie et al., 2015). TCGA and GTEx data were normalized,
and ICGC data were processed independently. Of the normalized mRNA expressions,
only genes belonging to the cancer gene consensus (CGC) were used for analysis

(Bamford et al., 2004; Tate et al., 2019).
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Figure 4. Integration of cancer and normal RNA sequencing data from the

TCGA/GTEXx database.
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2.5. Cell line data

Cell line samples from the COSMIC database included DNA sequences from
WXS and RNA-Seq mRNA expression and copy number analysis data quantified by
the Affymetrix SNP6.0 array. Cancer variants through expectation maximization
(CaVEMan) and Pindel were used on the tumor and normal paired samples, and copy
number variations were quantified using the predicting integral copy numbers in
cancer (PICNIC) algorithm (Greenman et al., 2010; Stephens et al., 2012; Ye et al.,
2009). The frequency of variants > 0.0014 in the 1000 Genomes database
(http://browser.1000genomes.org/) and frequency of variants > 0.00025 in ESP6500
(https://evs.gs.washington.edu/) were removed (Siva, 2008). Variants with minor
allele frequencies were removed from the database. Variants found in in-house
COSMIC normal samples were excluded. Variants and INDELSs not present in the

cDNA region were excluded from the study.

2.6. Drug sensitivity

The GDSC database provides drug sensitivity data in the form of half-maximal
inhibitory concentration (ICso) by screening drugs on cancer cell line samples (Yang
et al., 2012). DNA sequence and mRNA expression of the cell line samples were
obtained from the COSMIC database, which allowed the analysis of the effects of
genomic alterations on drug sensitivity (Bamford et al., 2004; Tate et al., 2019). The
GDSC database contains DNA sequences and mRNA expression data for 982 cell

lines, with ICso values of 449 drugs for these cell lines.
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2.7. Synthetic Dosage Cancer Survival (SDCS)

2.7.1. SDCS analysis

An overview of the concept of SDCS analysis is presented in Figure 6. The
SDCS pair is a combination of two genetic modifications, one gene disruption and
one overexpression, significantly affecting cancer patient’s survival. Although
disruption of each gene or overexpression of one gene alone does not affect patient
survival alone, if the simultaneous occurrence of disruption of one gene and
overexpression of another significantly affects the patient’s prognosis, it is the SDCS
gene pair. To find the SDCS pair, two different genes were selected individually from
the gene disruption matrix and the expression matrix. Then, an analysis was
performed to identify candidate SDCS pairs based on the TCGA database for the 19
cancer types. The workflow scheme for discovering SDCS pairs from the TCGA
database is illustrated in Figure 6.

A gene combination that improved patient survival was defined as a positive
SDCS, and a gene combination that worsened prognosis was defined as a negative
SDCS. SDCS was identified and validated using TCGA and ICGC databases. The
SDCS pairs found in TCGA database were verified using the ICGC database. Only
gene pairs that were reconfirmed to be SDCS pairs during verification were defined

as SDCS pairs.
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Figure 6. The concept of SDCS analysis and the example of two type of SDCS pairs. A combination of two genetic modifications, one gene disruption and
one overexpression, significantly affects prognosis in a patient. When survival improves, this is called a positive SDCS pair, and when survival significantly
deteriorates, it is called a negative SDCS.
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2.7.2. Statistical analysis

To identify SDCS pairs using the gene disruption matrix, gene expression
matrix, and clinical variables, three survival analyses were performed for the two
selected genes. First, in the patient group without gene disruption, the expression
level of one gene should not be significant for survival when fitting a Cox
proportional hazards model with clinical covariates. Expression data from TCGA
normal samples and GTEx normal tissues were also added during survival analysis
for expression. As there were no clinical variables in the normal sample, random data
were generated and used. Among the dependent variables of the normal sample, all
events were censored, and for follow-up time, the highest value was arbitrarily
assigned to all patients. As for the clinical variables of normal samples used as
covariates in survival analysis, clinical variables (shown in Table 1) were randomly
generated for each cancer type. Among the clinical variables, age and sex were
randomly selected from the available samples. In addition, pathological staging,
tumor grade, and focality were assigned to stage 0, grade 0, and no lesions,
respectively, which do not exist in cancer patients. MSI variables for the normal
sample were all assigned as microsatellite stability, no smoking, and no alcohol
intake. Because there were no lesions in the normal sample, the necrosis percentage
was assigned as 0% and residual was assigned as non-existent. In the group without
gene disruption, the expression levels of these normal samples were not significant
for survival when fitted using the Cox proportional hazards model (p > 0.05). Second,
in the group with gene disruption, the expression level, including that of the normal
sample, should be significant when fitted with the Cox proportional hazards model
for survival (p < 0.05). Thirdly, among samples with gene disruption, the group with
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a high expression level through two-means clustering should show a significant
difference in survival compared to all samples without gene disruption. At this time,
the direction, positive or negative, of the coefficient in the survival analysis of the
entire first gene disruption group and the third analysis should be same as that of the
SDCS pair. In the Cox proportional-hazards model, if the direction of coefficient of
expression was negative, it was defined as a positive SDCS, and if the coefficient
was positive, it was defined as a negative SDCS.

The workflow scheme for deriving the gene disruption matrix and generating
the gene expression profile from the raw data to infer the SDCS pair is shown in

Figure 7.

2.7.3. Positive SDCS and negative SDCS

Positive SDCS refers to patients with a significantly improved prognosis as the
expression level increases in the gene disruption group. In contrast, negative SDCS
refers to patients with a significantly worse prognosis, as the expression level
increases in the gene disruption group. Figure 8 shows the positive and negative
SDCS values.

In the case of positive SDCS, gene expression complements gene disruption to
improve patient survival; therefore, analysis of the mechanism of gene B may be an
important mechanism for drug development. For example, if the disruption gene of
a positive SDCS is a tumor suppressor gene, the gene expression can be considered
to complement the loss of function of the tumor suppressor. Therefore, if the
regulation mechanism of the over-expressed gene is studied, hints on whether it

suppresses cancer progression can be obtained. In the case of negative SDCS, gene
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expression deteriorates the survival of patients with gene disruption; thus, the over-
expressed gene may be related to cancer progression, and it may be meaningful to

analyze the mechanism and study drugs to suppress it.

CHAPTER 3. RESULTS

3.1. Inferred SDCS pairs

Table 5 lists the numbers of SDCS pairs derived in this study. The p-value cut-
off was used to compare the highest p-value between TCGA and ICGC databases. If
one of the p-values from the two databases did not satisfy the p-value cut-off, the
gene pair was not included in the SDCS pair. Based on p < 0.05, 138 SDCS pairs

were derived, of which 71 were positive and 59 were negative SDCS pairs.

To focus on more significant SDCS pairs, 57 SDCS pairs were included in the
subsequent analysis with a cut-off of p < 0.01. In all SDCS pairs, the number of
disrupted and overexpressed genes was 18 and 52, respectively. The disrupted gene
most frequently included in the SDCS pair was TP53, which was included in a total
of 12 SDCS pairs. Among them, two were included in the positive SDCS and 10
were included in the negative SDCS pairs. The PIK3CA gene was included nine
times in SDCS pairs, KRAS gene six times, and /DHI gene six times. In contrast,
genes that are overexpressed in SDCS pairs are less likely to be included repeatedly
than disrupted genes. Only ERBB3, GMPS, KRAS, MET, and ZRSR2 were included
in the SDCS pairs twice, and the remaining genes formed only one SDCS pair.

Therefore, centered on disrupted genes, a network is formed in which over_g:xprgessedI 3
> _ LI ol |
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genes form leaf nodes.

Table 6 shows the composition of genes belonging to positive SDCS pairs, the
results of survival analysis according to the expression of disrupted genes from
TCGA and ICGC databases, and the results of survival analysis according to the
expression of genes of patients not included in the disrupted gene group. As indicated
by the SDCS analysis, gene expression had a significant prognostic effect on survival
only in the group of disrupted genes. In the absence of a disrupted gene, even if the
expression level of the expressed gene was changed, survival was not affected at all.
In contrast, negative SDCS pairs have a significant effect on survival, such as
positive SDCS, but because the coefficient for expression in the Cox proportional-
hazards model is positive, higher expression worsens the patients’ prognoses (Table

7).
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Table 5. The number of SDCS pairs according to the threshold for the maximum

value among the p-values from both TCGA and ICGC databases.

Threshold of p.value
nSDCS (P/R)
Minimum TCGA and ICGC

p <0.05 130 (71/59)
p<0.01 57 (35/22)
p <0.001 19 (12/7)

p <0.0001 6 (5/1)

p <0.00001 2 (1/1)
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Table 6. The positive SDCS pairs and analysis results in TCGA/ICGC database.

TCGA database ICGC database
Disrupted ~ Expressed Disrupted group Wildtype group Disrupted group Wildtype group
CancerType
gene gene Coef. P.value Coef.  P.alue | Coef. P.value Coef. P.value

BLCA TTN ZRSR2 -1.213 <0.001 0.012 0.960 -2.215 <0.001 -0.184 0.424
BLCA TP53 ZRSR2 -1.359 <0.001 0.197 0.349 -1.214 <0.001 -0.311 0.240
BLCA PIK3CA CDH1 -0.232 <0.001 -0.063 0.130 -0.331 <0.001 -0.065 0.485
BLCA PIK3CA ERBB3 -0.285 <0.001 -0.021 0.677 -0.408 <0.001 -0.069 0.417
LGG IDH1 PTPRD -0.401 <0.001 -0.099 0.480 -0.660 <0.001 -0.254 0.247
LUAD KEAP1 AXIN2 -0.740 <0.001 0.083 0.332 -0.647 <0.001 0.063 0.534
BRCA PIK3CA CBLC -0.777 <0.001 -0.193 0.065 -0.329 <0.001 -0.005 0.955
PAAD KRAS RNF43 -0.659 <0.001 -0.225 0.468 -0.805 0.001 0.118 0.738
LUSC TTN EIF1IAX -0.555 <0.001 0.085 0.597 -0.846 0.001 -0.333 0.122
STAD SYNE1 MSI2 -1.284 <0.001 -0.110 0.503 -1.188 0.002 -0.258 0.216
BLCA KMT2D IKBKB -0.549 <0.001 -0.226 0.158 -1.331 0.002 -0.349 0.110
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BLCA
BLCA
LUAD
LUSC

LUAD
LUSC

LUAD
COAD
BLCA
LUAD
BLCA

TP53
KMT2D
KEAP1
Sl
USH2A
ZFHX4
USH2A
PIK3CA
PIK3CA
FAM135B
PIK3CA

COX6C
MYD88
WIF1
LEF1
KDR
VTI1A
NFIB
SETDB1
GATA3
ELN
TRIM24

-0.435
-0.533
-0.435
-1.075
-0.684
-1.131
-0.441
-9.101
-0.447
-0.320
-0.691

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

0.187
-0.161
0.000
-0.059
0.029
0.272
0.018
-0.043
-0.044
0.003
0.024

0.159
0.273
0.991
0.327
0.692
0.196
0.850
0.903
0.228
0.953
0.747

-0.644
-1.064
-0.287
-0.716
-0.500
-1.407
-0.503
-2.471
-0.294
-0.437
-0.771

0.002
0.003
0.003
0.003
0.003
0.006
0.006
0.007
0.008
0.008
0.010

0.063
-0.153
0.018
-0.071
0.003
0.001
-0.132
0.135
-0.089
0.007
-0.037

0.810
0.490
0.665
0.429
0.970
0.998
0.296
0.786
0.076
0.913
0.761
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Table 7. The positive SDCS pairs and analysis results in TCGA/ICGC database.

Disrupted

Expressed

TCGA database

Disrupted group

Wildtype group

ICGC database

Disrupted group

Wildtype group

CancerType Gene gene Coef. P.value Coef. P.value | Coef. P.value Coef. P.value
LGG TP53 CDK4 0.443 <0.001 -0.114 0.424 0.954 <0.001 0.189 0.209
LGG IDH1 MAP3K1 0.721 <0.001 -0.066 0.633 0.876 <0.001 0.350 0.083
LGG IDH1 CBFB 0.723 <0.001 0.084 0.773 1.203 <0.001 0.368 0.321
LGG TP53 DDIT3 0.408 <0.001 -0.083 0.609 0.853 <0.001 -0.061 0.784
LUSC CNTNAPS N4BP2 1.008 <0.001 -0.025 0.843 2.047 <0.001 0.099 0.547
PAAD KRAS SND1 1.122 <0.001 -1.158 0.062 2,515 <0.001 -0.956 0.352
BLCA PIK3CA ABL2 1.158 <0.001 0.127 0.234 1.601 <0.001 0.326 0.066
PAAD TP53 GMPS 1.600 <0.001 0.539 0.287 1.904 <0.001 1.137 0.086
PAAD KRAS CNBP 1.981 <0.001 -0.157 0.871 2.409 <0.001 1.344 0.348
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LGG

BRCA

BLCA

LGG

LUAD

PAAD

BLCA

BLCA

HNSC

PAAD

BLCA

LUAD

LGG

PAAD

IDH1

PIK3CA

TP53

IDH1

KEAP1

TP53

TTN

TP53

TP53

KRAS

TP53

NRXN1

IDH1

TP53

ERBB3

MTOR

SMAD4

MEN1

BIRC3

NPM1

SETBP1

NCOR1

MAP2K1

GMPS

SNX29

KRAS

BCORL1

MET

0.259

1.499

0.602

0.924

0.442

1.365

0.422

0.512

0.463

1.388

0.572

1.171

1.164

0.814

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

0.003

0.013

0.358

0.083

0.052

0.241

0.043

0.047

0.134

0.171

0.005

0.129

0.203

0.382

0.972

0.942

0.057

0.865

0.464

0.652

0.617

0.780

0.603

0.767

0.974

0.310

0.289

0.054

0.437

2.279

0.902

1.413

0.414

2.105

0.588

0.893

0.644

1.469

0.518

0.746

1.143

0.751

<0.001

<0.001

<0.001

0.001

0.001

0.001

0.001

0.002

0.002

0.002

0.003

0.003

0.004

0.004

-0.004

-0.248

0.564

1.015

0.155

0.804

0.144

-0.025

0.174

1.321

0.146

0.242

0.143

0.635

0.976

0.441

0.079

0.112

0.072

0.211

0.306

0.941

0.614

0.144

0.553

0.160

0.589

0.052
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LUAD

BLCA

PAAD

PAAD

STAD

LUAD

PAAD

BLCA

UCEC

KIRC

LUAD

LUAD

PTPRD

PIK3CA

TP53

KRAS

SYNE1

ANK2

KRAS

MACF1

KIF1B

TTN

ZFHX4

NRXN1

HNRNPA2B1

WWTR1

HSP90AB1

POT1

TNC

ID3

MET

PBRM1

SMC1A

TPM3

KRAS

ETNK1

1.530

0.555

0.862

1.120

0.459

0.594

0.825

1.146

355.544

0.993

0.442

1.080

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

0.034

0.099

-0.579

-2.003

-0.023

0.006

0.619

-0.013

-0.290

0.406

0.236

0.130

0.858

0.143

0.360

0.103

0.705

0.935

0.060

0.916

0.592

0.196

0.131

0.261

1.547

0.711

1.251

1.799

0.394

0.860

0.709

1.472

2.276

2.325

0.504

0.936

0.004

0.004

0.005

0.005

0.005

0.005

0.005

0.006

0.007

0.007

0.008

0.010

0.106

0.119

-1.007

-1.547

0.035

0.075

0.701

-0.057

0.345

0.555

0.203

-0.052

0.667

0.319

0.181

0.319

0.640

0.397

0.093

0.799

0.231

0.094

0.285

0.757
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3.2. Validation of SDCS pairs

3.2.1. Positive SDCS

Among the positive SDCS pairs, the most significant SDCS pairs were two
pairs formed by TTN and TP53 gene disruption with ZRSR?2 expression in bladder
cancer. Among patients with bladder cancer, 208 out of TP53 mutant patients were
identified in TCGA and 127 out of 294 in the ICGC database. Tenascin-N (TNN) is
predicted to be involved in several processes such as the generation of neurons and
regulation of osteoblast differentiation. 7P53 encodes a tumor suppressor protein
that regulates cell cycle arrest, apoptosis, and DNA repair. ZRSR2 encodes an
essential splicing factor that is predicted to be involved in network interactions
during spliceosome assembly. The pair of 7NN gene disruption and ZRSR2
expression is an SDCS pair, and the survival of bladder cancer patients from TCGA
database based on the status of both genes is shown in Figure 9. Among patients with
TNN disruption, the expression level of ZRSR2 was significant when normal samples
were included (p < 0.001), and patients divided into two means clustering also
showed a significant survival difference in cancer samples (p < 0.001). However, in
patients without TNN disruption, ZRSR2 expression was not significantly different
in terms of survival (p > 0.05). The PFS according to the status of this SDCS pair
showed the same pattern in patients with bladder cancer in the ICGC database
(Figure 10). Similarly, in the two-mean clustering of the ZRSR2 gene in the TNN-
disrupted group, the two groups showed a significant difference in survival (p <

0.001), but not in the TNN wild-type group.

In all positive SDCS, 22 SDCS pairs comprising 12 disrupted genes and 21
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overexpressed genes were visualized (Figure 11). Blue nodes are disrupted genes,
and yellow nodes are overexpressed genes. The colors of the edges indicate the type
of cancer. Bladder cancer had the most SDCS pairs with nine SDCS pairs, followed
by lung adenocarcinoma with five, and lung squamous cell carcinoma with three.
Edge width is the negative log of the p-value, which indicates the significance of the

survival analysis.

3.2.2. Negative SDCS

In negative SDCS, the combination of disruption and overexpression of the two
genes worsened the patient’s prognosis, and 35 negative SDCS pairs were found in
this study. Among these, the most significant negative SDCS pair was TP53
disruption and CDK4 overexpression in patients with low-grade glioma. Among
patients with low-grade glioma in the TCGA database, 253 of 499 patients had 7P53
mutations, while 186 of 431 patients in the ICGC database had mutations in the gene.
In TP53 mutants, the higher the expression level of the CDK4 gene, the worse the
prognosis in both TCGA and ICGC databases (p < 0.001), and there was no

significant difference in survival in patients with the 7P53 wild-type allele.

In all negative SDCS, 35 SDCS pairs comprising 14 disrupted genes and 32
overexpressed genes were visualized (Figure 12). In the network with positive SDCS
pairs, blue nodes are disrupted genes, and yellow nodes are overexpressed genes.
The colors of the edges indicate the type of cancer. Prostate cancer had the most
SDCS pairs at 9, followed by low-grade glioma at 7, bladder cancer at 7, and lung

adenocarcinoma at 6. Edge width is a negative log of the p-value, which indicates

b i 211 5
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the significance of the survival analysis.

3.2.3. Biological interactions of SDCS

Among the SDCS pairs, physically interacting proteins in humans, as reported
in the BioGRID database, were selected to analyze the relationship between
disrupted and overexpressed genes(Stark et al., 2006). There were 33 experimental
reports that the disrupted gene and overexpressed gene physically interacted with
each other, and there were 12 unique SDCS pairs (Table 8). Among them, two pairs
were positive SDCS pairs and 10 were negative SDCS pairs. Among the types of
experimental systems are SL and negative genetics, there are three SDCS pairs, all
of which are negative SDCS pairs: TP53 disruption and CDK4 overexpression in
low-grade glioma, and KRAS disruption, GMPS overexpression, KRAS disruption,

and POT1 overexpression in prostate cancer.
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Figure 9. Survival analysis of overexpression of ZRSR?2 in two groups according to 7NN gene disruption in TCGA bladder cancer patients.

ZRSR?2 overexpression in patients with 7NN disruption is a positive SDCS pair that improves patient prognosis.
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Figure 10. Survival analysis of overexpression of ZRSR2 gene in two groups according to 7NN gene disruption in ICGC bladder cancer

patients. ZRSR2 overexpression in patients with TNN disruption is a positive SDCS pair that improves patient prognosis.
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Figure 11. Visualization of the positive SDCS pair as a network. Blue nodes are disrupted genes, and yellow nodes are over-expressed genes.

The color of the edge indicates the cancer type. The edge width is the negative log of p. value, which indicates the significance of survival analysis.
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survival analysis.
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Table 8. Physically interacting protein SDCS pairs in humans from the

BioGRID database.
Gene_A Gene_B Experimental system Pubmed ID SDCS
PIK3CA ERBB3 Affinity Capture-MS 24189400 Prognostic
Affinity Capture-Western 11546794  Prognostic
TP53 ZRSR2 Affinity Capture-MS 32807901  Prognostic
TP53 CDK4 Negative Genetic 30762338 Negative
GMPS TP53 Affinity Capture-Western ~ 24462112 Negative
Affinity Capture-Western ~ 33742136 Negative
KRAS GMPS Synthetic Lethality =~ 28700943 Negative
Negative Genetic 34373451 Negative
KRAS MET Proximity Label-MS 34079125  Negative
KRAS POT1 Synthetic Lethality 28700943 Negative
TP53 NPM1 Affinity Capture-Western 15144954  Negative
Reconstituted Complex 16376884 Negative
Reconstituted Complex 12080348 Negative
Affinity Capture-Western 12080348 Negative
Affinity Capture-Western 15964625 Negative
Affinity Capture-Western 15310764 ~ Negative
TP53 CDK4 Affinity Capture-Western ~ 28218424  Negative
FRET 28205554 Negative
TP53 GMPS Affinity Capture-Western 24462112 Negative
TP53 HSP90AB1 Affinity Capture-MS 23443559 Negative
Affinity Capture-MS 32807901 Negative
TP53 MET FRET 28205554 Negative
TP53 NCOR1 Affinity Capture-Western 19011633 Negative
Co-localization 24157709 Negative
Proximity Label-MS 34795231 Negative
TP53 NPM1 Affinity Capture-Western 16740634  Negative
Affinity Capture-Western 15144954 Negative
Affinity Capture-Western 12080348  Negative
Affinity Capture-MS 23443559 Negative
Affinity Capture-MS 31152661 Negative
Affinity Capture-MS 32807901 Negative
Reconstituted Complex 15082766 Negative

;
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Table 9. A list of drugs that act as inhibitor of overexpression gene of negative

SDCS pairs.

Drug Gene Interaction
OMIPALISIB MTOR inhibitor (inhibitory)
OSI-027 MTOR inhibitor (inhibitory)
PI-103 MTOR inhibitor (inhibitory)

DACTOLISIB MTOR inhibitor (inhibitory)
TEMSIROLIMUS MTOR inhibitor (inhibitory)

CABOZANTINIB MET inhibitor (inhibitory), antagonist (inhibitory)
AMUVATINIB MET inhibitor (inhibitory)
PHA-665752 MET inhibitor (inhibitory)
CRIZOTINIB MET inhibitor (inhibitory)

SELUMETINIB MAP2K1  allosteric modulator, inhibitor (inhibitory)
TRAMETINIB MAP2K1  inhibitor (inhibitory), antagonist (inhibitory)

CI-1040 MAP2K1  inhibitor (inhibitory), allosteric modulator
SELUMETINIB  KRAS inhibitor (inhibitory)
TANESPIMYCIN HSP90ABI1 inhibitor (inhibitory)
PHA-793887 CDK4 inhibitor (inhibitory)
AT-7519 CDK4 inhibitor (inhibitory)
PALBOCICLIB CDK4 inhibitor (inhibitory)
TOZASERTIB ABL2 inhibitor (inhibitory)
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3.3. Drug sensitivity analysis

To validate the positive and negative effects of the SDCS pairs, genomic data
of the COSMIC cell lines and response data of GDSC drugs were utilized. Among
the obtained SDCS pairs, in the case of genes inhibiting gene expression, it was
assumed that cell-line drug sensitivity would differ according to the status of the
disrupted gene and expressed gene. Among the available drugs with ICsy values in
the GDSC database, drugs that inhibit over-expressed genes in the SDCS pairs were
investigated using the DGIdb (Figure 13)(Griffith et al., 2013). Among them, 11
drugs inhibited the expressed genes of positive SDCS pairs and 20 drugs inhibited
the expression of negative SDCS pairs (Table 9). The target gene of the drugs was
one KDR gene, which formed a positive SDCS pair. The KDR gene forms a pair with
the USH2A disruption, which is found in patients with lung adenocarcinoma. In
negative SDCS, there were 18 drug-gene-inhibiting relationships with MTOR, MET,

MAP2K1, KRAS, HSP90AB1, CDK4, and ABL2 genes.

Among the negative SDCS pairs, it was assumed that cell lines with high
overexpression levels and gene disruption of the SDCS pairs were sensitive to drug
reactivity. By matching the tissue of the cell line for each SDCS cancer type, I
attempted to identify a drug that showed a significant difference in terms of the
expression level of the drug among the cell lines with gene disruption, but there was
no significant difference among the cell lines without gene disruption. Among them,
the most significant drugs were omipalisib and OSI-027, which inhibit MTOR.
Because MTOR inhibitors have recently attracted attention as a potential treatment

for breast cancer, this analysis was performed on breast cancer cell lines(Bhagwat et
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al., 2011; Lukey et al., 2019). I compared the sensitivity of omipalisib and OSI-027
to the expression level of MTOR in breast cancer cell lines (Figure 14). For
omipalisib, the p-value was 0.94 by the Wilcoxon signed-rank results comparing
both groups according to MTOR expression. As for the sensitivity of OSI-027, the p-
value obtained by the Wilcoxon signed-rank test comparing the two groups
according to the expression of MTOR was 0.23. However, mutation of the PIK3CA
gene constituting the SDCS pair with MTOR expression significantly increased the
sensitivity of the two drugs according to MTOR expression. Omipalisib was only
highly sensitive to the PIK3CA mutant group in breast cancer cell with MTOR
overexpression (p = 0.005) (Figure 15). OSI-027 was also highly sensitive only to
PIK3CA mutant samples with MTOR overexpression in breast cancer cell lines (p =
0.015) (Figure 16). MTOR inhibiting drugs could be used to create the SDCS pair

by inhibiting MTOR within PICK3CA disrupted breast cancer cell lines.
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Figure 13. List of drugs capable of inhibiting over-expressed genes among SDCS pairs. The color of the edge indicates the cancer type. The

edge width is the negative log of the p value, which indicates the significance of survival analysis.

55 ’ ﬁr} —.3— Eﬂ .?']'



- Drug: Omipalisib (GSK2126458) - Drug: 0SI-027 (ASP4786)
potent dual inhibitor of mTORC1 and mTORC2
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Figure 14. In breast cancer cell-lines, the mRNA expression level of MTOR gene was not significantly associated to the reactivity of two
MTOR inhibitors, Omipalisib and OSI-027.
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Figure 15. Among samples with over-expression of MTOR gene in breast cancer cell-line, PIK3CA mutant cell-line is significantly sensitive

to the MTOR inhibitor Omipalisib.
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Figure 16. Among samples with over-expression of MTOR gene in breast cancer cell-line, PIK3CA mutant cell-line is significantly sensitive

to the MTOR inhibitor OSI-027 drug.
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Figure 17. The cumulative effect of the two positive SDCS gene disruption of two gene, 7P53 and 7NNaccording to expression of

ZRSR2 in TCGA database.
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CHAPTER 4. DISCUSSION AND CONCLUSION

1. DISCUSSION

In this study for SDCS analysis, to identify the genetic interaction with patient’s
survival as the phenotype, 57 SDCS pairs that satisfied data from both TCGA and
ICGC multi-omics databases were identified. SDCS disruption genes are all
frequently disrupted genes in cancer patients, and expression genes are composed of
cancer gene consensus; therefore, they will be useful and important candidates for
the development of cancer therapy. Among these genes, interestingly, 14 genes out
of 57 pairs of two genes that make up a pair showed physical interactions (Stark et
al., 2006). With respect to the number of combinations of all genes used in the
analysis, the odds ratio for physically interacting SDCS pairs was 4.295. Therefore,
it can be seen that the genes in the SDCS pairs physically influence each other in a

large proportion of genome.

An interesting pair in this study was the PIC3CA disruption and CDK4
overexpression. Recently, dual inhibitors of MTOR and PIK3CA have been in the
spotlight as therapies for breast cancer. Numerous studies have demonstrated that the
dual inhibition of both genes can kill cancer cells. Among the 35 negative SDCS
pairs found in this study, one was a combination of PIK3CA disruption and MTOR
overexpression. We found that among the PIK3CA disrupted cell lines, MTOR
overexpressing cells were very sensitive to two MTOR inhibitors, omipalisib and
OSI-027 (Bhagwat et al., 2011; Lukey et al., 2019). Furthermore, we found that the
MTOR over-expressing breast cancer cell lines overexpressing MTOR with PIK3CA

disruption were highly sensitive to two MTOR inhibitors, omipalisib andﬁOSI_—027.|_
> _ LI ol |
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Therefore, dual inhibitors of PIK3CA and MTOR re-verified that there was a negative
genetic interaction in the SDCS pairs found in our study. In addition, among patients
with TP53 disruption in low-grade glioma, CDK4 overexpression was found to lead
to very poor survival. The CDK4/6 inhibitor PD0332991 is a therapeutic agent that
has attracted attention for the treatment of glioblastoma, suggesting that the
inhibition of CDK4 overexpression, which was found to be an overexpressed gene
in an SDCS pair in our study, could be a new therapeutic technique (Barton et al.,
2013; Cen et al., 2012; Liu et al., 2018). This means that the remaining SDCS pairs
are worth testing as new candidate drug targets. Based on the gene-drug relationship
provided by DGIdb, 211 drugs inhibited the 52 overexpressed genes. Further studies

targeting the overexpression of genes would be a suitable line of research.

Two disruption genes, 7P53 and 7NN, which form pairs with ZRSR2
overexpression, forming positive SDCS pairs, are notable. In patients overexpressing
ZRSR2, the higher the disruption burden of 7P53 and 7NN, the better the survival
using TCGA database (Figure 17). However, in patients that did not overexpress
ZRSR2, disruption of 7NN and TP53 showed no relationship with survival. The
SDCS pairs that we found were considered to have a cumulative effect on survival,
which was found in the same cancer type. Furthermore, the survival effect could be
demonstrated by the validity in the ICGC database (Figure 18). This suggests that,
in complex biological networks, targeting multiple genes may play a positive role in

patient survival.

A representative contribution of this study is the discovery of new biomarkers
that cannot be identified as single biomarkers by combining survival and genetic

interactions. In particular, 17 drugs inhibited the overexpression of genes in negative
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SDCS pairs, which worsened the patient's prognosis. This can help in the
development of personalized anticancer drugs based on the genomic status of
patients. Currently, among drugs developed based on genetic interactions, PARP
inhibitors targeting BRCA mutant patients are the only ones used clinically.
Therefore, the development of drugs based on gene disruptions that occur frequently
in cancer patients is very important. Therefore, future research on the overexpression
of genes in SDCS pairs will aid in the development of anticancer drugs based on

genetic interactions.

However, this study had some limitations. First, although the results were
validated using TCGA and ICGC databases, drug sensitivity could not be
investigated for all SDCS pairs because of the lack of samples for each cancer type
using cell-line data. Nevertheless, it was confirmed that the PIK3CA/MTOR SDCS
pair acted as a dual inhibitor in breast cancer cell-lines. Among SDCS pairs, drug
experiments based on interesting target SDCS over-expressed genes must be
performed. In addition, since the mortality and censored rates are different for each
cancer type, there is a problem in terms of selecting the same statistical threshold for
all cancer types. Even a single SDCS pair cannot be found in some cancer types.
However, it is expected that many meaningful pairs can be identified by adjusting

this threshold.
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2. CONCLUSION

Using SDCS analysis, which identified genetic interactions using survival as a
phenotype, we identified novel genetic interactions that could not be derived from
previous computational methods. Centering on frequently mutated cancer-related
genes, overexpression of major cancer-related genes included in the cancer gene
consensus formed a bipartite network. The SDCS pairs in this network were
independent prognostic markers and were verified using both TCGA and ICGC
databases. These gene pairs were also significantly enriched in physical interaction
databases. Moreover, the PIK3CA/MTOR gene pair is a negative SDCS pair that has
recently attracted attention as a potential target for dual inhibitors. Therefore, the
SDCS pairs derived in our study will help in the development of anticancer drugs

and personalized medicine.
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