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ABSTRACT 

 
    Genetic interactions occur when two or more gene mutations combine to 

generate a phenotype such as cell lethality. Several anticancer therapies have 

exploited genetic interactions by targeting somatic mutations and the overexpression 

of oncogenes; these therapies target tumor pathways for survival without affecting 

normal cell. Because this concept of genetic interactions utilizes cell lethality as a 

phenotype, numerous bottlenecks exist in the discovery of new genetic interactions 

using computational methods. To overcome this limitation, I defined the phenotype 

of genetic interactions at the patient level and not at the cell level. In this study, I 

propose synthetic dosage cancer survival (SDCS), a modified concept of synthetic 

dosage lethality, in which a combination of a mutation and an overexpressed gene 

causes cell lethality. SDCS involves a pair of genes, in which a combination of a 

mutation and overexpression of a gene leads to significant differences in patient 

survival. A gene combination that improved patient survival was defined as a 

positive SDCS pair, whereas one that worsened prognosis was defined as a negative 

SDCS pair. SDCS pairs were identified and validated using two databases: The 

Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium 

(ICGC). The genotype-tissue expression (GTEx) database was used as a control. To 

confirm the possibility of the over-expressed genes of SDCS as druggable targets, 

the Genomics of Drug Sensitivity in Cancer (GDSC) database was used to validate 

the SDCS pairs. Twenty-two positive and 35 negative SDCS pairs were identified 

and validated. These SDCS pairs comprised 18 gene disruptions and 52 

overexpressed genes. The combination of PIK3CA disruption and MTOR 

overexpression, which is a negative SDCS pair, is a potential drug target that has 
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recently attracted interest as a dual inhibitor for breast cancer and was validated 

through drug sensitivity analysis. Breast cancer cell line samples with PIK3CA 

mutations and MTOR overexpression were significantly sensitive to omipalisib and 

OSI-027, which are MTOR inhibitors. This observation suggests that the genes 

included in the SDCS pairs could be potential candidates for developing new drugs 

for cancer therapy. Thus, SDCS analysis can help to identify novel therapeutic and 

prognostic targets. 

 

Keywords: Negative genetic interaction, Synthetic dosage lethality, Gene 

expression analysis, Drug sensitivity, Target discovery, Prognosis marker 

Student Number: 2015-20509 
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CHAPTER 1. Introduction 

1.1. Genetic interaction 

Genetic interactions occur when two or more genetic events combine to 

generate an unexpected phenotype such as cell lethality (Brough et al., 2011; Kaelin, 

2005; Kuzmin et al., 2018; O’Neil et al., 2017; Typas et al., 2008). This is a type of 

targeted therapy enables individualized treatment based on the characteristics of 

cancer cells in each patient. With recent advances in genome sequencing, changes in 

a patient’s genomics can be identified rapidly to characterize the biological functions 

of cancer cells and to identify vulnerabilities that can be exploited to selectively kill 

cancer cells using therapeutics(Katti et al., 2022; Molina et al., 2018). Therefore, if 

we uncover genetic interactions, more personalized therapeutics for cancer patients 

could be developed, thereby improving patient prognosis. 

    Genetic interactions can be categorized into two types: negative and positive 

(Dixon et al., 2009; Kuzmin et al., 2018; O’Neil et al., 2017; Tong et al., 2004). In a 

negative genetic interaction, two or more genetic events contribute to a more serious 

fitness defect in a cell than expected for each genetic event. Representative examples 

include synthetic lethality (SL) and synthetic dosage lethality (SDL) (Figure 1)(Paul 

et al., 2014). SL occurs when two combinatory genetic alterations generate a lethal 

phenotype in a cell, but individual genetic alterations do not. The most representative 

drug developed using SL is the PARP inhibitor (Hodgson et al., 2018; Lord & 

Ashworth, 2017; Tutt et al., 2009). Two genes, BRCA and PARP, were representative  

 



 

 ９ 

 

 

 

 

Figure 1. Negative genetic interactions, SL and SDL. Two examples of digenic 

interactions that negatively affect cell fitness: SL in which cell lethality occurs 

because of a simultaneous event involving two genes; SDL in which the combination 

of a genetic event with overexpression of another gene causes lethality. 
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SL pairs, and the PARP gene can be exploited in patients with breast cancer, where 

genetic alterations in BRCA are common. SDL refers to cases in which gene 

mutations and overexpression cause cell death but not individually (Kroll et al., 1996; 

Measday & Hieter, 2002; Megchelenbrink et al., 2015). Unlike normal cells, cancer 

cells have somatic mutations and exhibit gene overexpression; thus, by exploiting 

the concepts of SL and SDL, cancer cells can be specifically treated. Alternatively, 

positive genetic interactions occur when a combination of genetic alterations results 

in greater fitness than expected. 

Negative genetic interactions change the cell phenotype to 

lethality(Baryshnikova et al., 2013; Vizeacoumar et al., 2013). This can be the 

underlying concept for developing cancer therapies to selectively kill cancer cells 

without significantly affecting the normal cells of cancer patients by utilizing the 

characteristics of cancer cells that have somatic mutations(Han et al., 2019). 

Similarly, cancer-cell-specific death can be induced by utilizing SDL because 

numerous oncogenes are overexpressed in cancer cells (O’Neil et al., 2017). Figure 

2 shows a method for developing cancer-cell–specific anticancer drugs using 

negative genetic interactions. Cancer cells with a disruption in gene A can induce SL 

using an inhibitor of gene B, as if the cells had a combination of genetic alterations 

in both genes A and B. The inhibitor of gene B did not have a significant effect on 

normal cells without genetic alterations to gene A. This is also applicable to SDL. 

An inhibitor of gene B, a partner of SDL, can be applied for cancer therapy by 

exploiting the overexpression of gene A, which is specific to cancer cells. 
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Figure 2. Application of negative genetic interactions. Drug-derived SL can 

be induced using an inhibitor of the partner gene. SDL can also exploit cancer cells 

using inhibitors. 
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Figure 3. Digenic interaction types classified by genetic interaction score with 

multiplicative models suggested by Mani et al. (2008).  
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The degree of genetic interaction is calculated mainly based on the growth rate 

or colony size of cells as a phenotype (Tong et al., 2004). This was performed to 

evaluate the effects of combining different genetic interactions. Multiplicative 

models have previously been used to measure genetic interactions (Mani et al., 2008; 

van Leeuwen et al., 2017). By measuring the change in the phenotype of cells 

according to the genetic events of genes A/B, the genetic interactions of the A/B gene 

pair can be categorized (Figure 3). If the effects of the event associated with gene A 

and those associated with gene B are cumulative, the two genes are defined as having 

no genetic interactions. However, if the events associated with the two genes 

negatively affect the phenotype of the cell, it is called synthetic sick, and the case in 

which most cells die, it is called synthetic lethal, which is a negative genetic 

interaction. In contrast, when the events of two genes occur simultaneously, and if 

they affect the phenotype to a lesser extent than the cumulative sum of each effect, 

the process is called masking. If this leads to a better phenotype than the effect of 

each event, this is a suppression. Digenetic interactions, masking, and suppression 

are defined as positive genetic interactions. 

With the advent of screening methods, including yeast, drug, RNA interference 

(RNAi), and clustered regularly interspaced short palindromic repeat (CRISPR) 

screening, a profound increase in the number of candidate genetic interactions has 

been observed, and drugs targeting many of these interactions are currently in the 

developmental stages (Castells-Roca et al., 2021; Katti et al., 2022; Luo et al., 2009; 

McDonald III et al., 2017; C. Wang et al., 2019). Synthetic genetic array (SGA) 

analysis was used to successfully combine double mutants in the yeast genome to 

identify candidate synthetic lethal pairs comprising ~550,000 negative genetic 
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interactions and ~350,000 positive interactions among ~18 million double mutant 

pairs (Ooi et al., 2006; Yan Tong & Boone, 2006). Despite numerous experiments 

based on the attractive concept of SL-based target therapy, only PARPi has entered 

the clinic to date(Mateo et al., 2019). Because of the large number of combinatorial 

explosions, it is very expensive and time-consuming screening for all possible 

genetic interactions is expensive and time consuming. 

 

1.2. Computational approach for genetic interactions 

    Computational approaches can reduce the candidate SL gene pairs that need to 

be screened. Computational methods can be divided into four categories: statistical-, 

network-, classical machine-learning–based methods, and deep-learning-based 

methods (J. Wang et al., 2022). Data mining synthetic lethality identification pipeline 

(DAISY) is a representative statistical-based method that is based on the assumption 

that SL pairs tend to be co-expressed but not inactivated simultaneously (Jerby-

Arnon et al., 2014; Lee et al., 2021; Srihari et al., 2015). Network-based approaches 

are based on protein–protein interactions, co-expression networks, signaling 

networks, or metabolism networks that describe biological interactions. Machine 

learning and deep-learning–based methods have also recently attracted attention for 

identifying genetic interactions (Li et al., 2019; Madhukar et al., 2015; Wan et al., 

2020). In particular, graph neural networks (GNNs) can efficiently utilize graph-

structured data (Cai et al., 2020; S. Wang et al., 2021). SL and SDL can be structured 

in a graph format, numerous methods to identify new genetic interactions using 

GNNs have been proposed. 
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Although computational approaches can complement experimental methods, there 

are limitations to predicting genetic interactions based on data (J. Wang et al., 2022). 

Negative genetic interactions causing strong lethality cannot be confirmed in patients 

with cancer because the cells are dead and cannot be observed in the patient, which 

is a characteristic property of SL and SDL. In other words, analysis is possible only 

at the cellular level, which limits its clinical use. Therefore, a computational 

approach can be used to suggest candidates only at the molecular or cellular level, 

which makes verification at the clinical level challenging. 

 

1.3. Overview of thesis 

This study aimed to identify extended genetic interactions using the concept of 

synthetic dosage cancer survival (SDCS). The proposed SDCS analysis involves 

identifying genetic interactions using the patient’s prognosis and not cell death as a 

phenotype. Similar to genetic interactions, SDCS can be divided into two categories: 

positive SDCS pairs that improve a patient’s survival and negative SDCS pairs that 

worsen a patient’s survival. Both cases can be used as prognostic markers for patients 

and as important information for the development of anticancer drugs.  

SDCS analysis deviates from genetic interactions at the cellular level, and 

investigates genetic interactions at the patient level. Through the genetic interactions 

identified by SDCS analysis, novel therapies utilizing the relationships between 

genetic interactions can be developed. For example, inhibiting the over-expressed 

gene of SDCS or investigating the role of the overexpressed gene could provide 

candidates for druggable targets in cancer cells. 
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CHAPTER 2. MATERIALS AND METHODS 

    2.1. Overview of the TCGA and ICGC database 

The Cancer Genome Atlas (TCGA) is a multi-omics project to create a 

comprehensive “atlas” of the multi-omics cancer genome profiles to catalog and 

identify causes of cancer(Tomczak et al., 2015; Weinstein et al., 2013). The 

International Cancer Genome Consortium (ICGC) is a large-scale cancer genome 

study based on multiomics cancer genome profiles (Zhang et al., 2011, 2019). Both 

databases provide DNA and RNA sequencing (RNA-Seq) data acquired from the 

same patient with clinical information. The UCSC Xena platform 

(https://https://xenabrowser.net/) provides public multi-omics data and clinical 

datasets from large-scale genome studies, including TCGA, ICGC, and the Cancer 

Cell Line Encyclopedia (CCLE) (Barretina et al., 2012; Goldman et al., 2017, 2019). 

These multi-omics databases include whole-exome sequencing (WXS), RNA-Seq 

mRNA expression, and copy number variation (CNV). All the data provided by 

TCGA, ICGC, and the genotype-tissue expression (GTEx) were downloaded from 

the UCSC Xena platform(Consortium et al., 2015). The Catalog of Somatic 

Mutations in Cancer (COSMIC) and Genomics of Drug Sensitivity in Cancer (GDSC) 

data were downloaded from official websites (Bamford et al., 2004; Tate et al., 2019; 

Yang et al., 2012). 
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    2.2. Clinical information 

    Clinical information on 19 types of cancer was collected from TCGA and ICGC 

databases. Important clinical variables were collected for each cancer type, and 

progression-free survival (PFS) was used as the dependent variable. The clinical 

variables included age, sex, stage, microsatellite instability (MSI), smoking status, 

alcohol consumption, grade, necrosis percentage, residual cancer, and focality. 

Because the important clinical variables differed for each cancer type, they were 

assigned differently according to cancer type and used as input variables for analysis. 

Table 1 shows a list of the 19 cancer types included in this analysis and a list of 

clinical variables used. Survival was used as the dependent variable and PFS was 

calculated. The variable most commonly used for all cancers was age. For urogenital 

cancer types that occur predominantly in a specific gender, such as breast, cervical, 

prostate, and uterine cancers, the gender variable was not used as an input. In the 

ICGC database used for validation, only the dependent variables PFS and age were 

used. The types of clinical variables were different, and there were numerous missing 

values; therefore, it was not possible to compose data identical to TCGA data. 

In this study, normal samples were used for comparison with cancer samples. 

Normal RNA-seq samples included paired-normal samples obtained from TCGA 

database and data from the Genotype-Tissue Expression (GTEx) database. When 

using normal RNA-seq data, arbitrarily generated clinical information was used 

because the clinical variables of the samples were normal. Because cells in the 

normal sample did not die due to cancer, all survival events were assigned as 

censored, and longer follow-up times than those of the cancer patients with the 

longest follow-up time for each cancer type were arbitrarily assigned to all samples.  
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Table 1. List of cancer types and clinical variables used in the TCGA database. 

Cancer Type Clinical variables 

Bladder urothelial carcinoma (BLCA) Survival, age, gender and stage 

Breast invasive carcinoma (BRCA) Survival, age and stage 

Cervical and endocervical cancers (CESC) Survival, age and stage 

Colon adenocarcinoma (COAD) Survival, age, gender, stage and microsatellite instability 

Glioblastoma multiforme (GBM) Survival, age, gender 

Head and Neck squamous cell carcinoma (HNSC) Survival, age, gender, smoking status and alcohol 

Kidney renal clear cell carcinoma (KIRC) Survival, age, gender, stage, tumour grade and tumor necrosis percent 

Kidney renal papillary cell carcinoma (KIRP) Survival, age, gender, stage and tumor necrosis percent 

Brain Lower Grade Glioma (LGG) Survival, age, gender and tumour grade 

Liver hepatocellular carcinoma (LIHC) Survival, age, gender, residual and tumour grade 

Lung adenocarcinoma (LUAD) Survival, age, gender, stage and smoking status 

Lung squamous cell carcinoma (LUSC) Survival, age, gender, stage and smoking status 

Ovarian serous cystadenocarcinoma (OV) Survival, age, gender, stage and tumour grade 

Pancreatic adenocarcinoma (PAAD) Survival, age, gender and stage 

Prostate adenocarcinoma (PRAD) Survival, age and stage and residual  

Skin Cutaneous Melanoma (SKCM) Survival, age, gender and stage 

Stomach adenocarcinoma (STAD) Survival, age, gender and stage 

Thyroid carcinoma (THCA) Survival, age, gender, stage and focality 

Uterine Corpus Endometrial Carcinoma (UCEC) Survival, age and stage 
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Table 2. GTEx tissue matched based on the organ for the TCGA/ICGC cancer 

type. 

TCGA TCGA Full Name GTEx Database 

BLCA Bladder urothelial carcinoma Bladder 

BRCA Breast invasive carcinoma Breast  

CESC Cervical and endocervical cancers Cervix Uteri 

COAD Colon adenocarcinoma Colon 

GBM Glioblastoma multiforme Brain 

HNSC Head and Neck squamous cell carcinoma Salivary Gland 

KIRC Kidney renal clear cell carcinoma Kidney 

KIRP Kidney renal papillary cell carcinoma Kidney 

LGG Brain Lower Grade Glioma Brain 

LIHC Liver hepatocellular carcinoma Liver 

LUAD Lung adenocarcinoma Lung 

LUSC Lung squamous cell carcinoma Lung 

OV Ovarian serous cystadenocarcinoma Ovary 

PAAD Pancreatic adenocarcinoma Pancreas 

PRAD Prostate adenocarcinoma Prostate 

SKCM Skin Cutaneous Melanoma Skin 

STAD Stomach adenocarcinoma Stomach 

THCA Thyroid carcinoma Thyroid 

UCEC Uterine Corpus Endometrial Carcinoma Uterus 
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To match the RNA-Seq samples from the GTEx database to the same cancer tissue 

samples, data derived from the same organ for each cancer type in the TCGA 

database were matched (Table 2). 

 

2.3. Whole exome sequencing 

   2.3.1. Next generation sequencing 

For DNA sequencing data, multicenter mutation calling multiple cancer (MC3) 

project data were used (Ellrott et al., 2018). This project enables robust cross-tumor-

type analysis of variance and batch effects introduced by DNA extraction, 

hybridization capture, and sequencing. This project provides refined DNA 

sequencing data, including pipelines: Alignment, The Genome Analysis Toolkit, 

MuTect, and Indelocator, as well as Pindel, MuSE, Radia, Varscan, and Somatic 

Sniper (Benjamin et al., 2019; Koboldt et al., 2012; Larson et al., 2012; McKenna et 

al., 2010; Ye et al., 2009). 

   2.3.2. Variant annotation 

    For all TCGA/ICGC DNA sequence samples, variants, insertions, and deletions 

(INDELs) were annotated using the ensemble variant effect predictor 

(VEP)(McLaren et al., 2016). Annotation includes the Sorting Intolerant from 

Tolerant (SIFT) algorithm, which predicts the effect of coding variants on protein 

function, and PolyPhen v2 (Polymorphism Phenotyping v2), which predicts the 

impact of an amino acid substitution on the structure and function of a human protein 
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(Adzhubei et al., 2013; Sim et al., 2012). The combined annotation-dependent 

depletion (CADD), which predicts the deleteriousness of variants and INDELs, was 

included(Kircher et al., 2014). LoFtool, which measures gene intolerance and 

susceptibility using the frequency of loss-of-function (LoF) mutations, was also 

included (Fadista et al., 2017). After using VEP, the variant with the most severe 

consequence was used for multiple annotated variants and INDELs. LoF 

consequences included transcript ablation, splice acceptor variant, splice donor 

variant, stop gained, frameshift variant, stop lost, start lost, and transcript 

amplification (Table 3). These eight consequences are cases that have high impacts, 

as predicted by SNPEff and SNPSift (Cingolani, 2022; Cingolani, Patel, et al., 2012; 

Cingolani, Platts, et al., 2012). If copy number variation (CNV) leads to a complete 

loss, the gene is disrupted. Finally, if a variant or INDEL was classified as a 

pathogenic variant in the ClinVar database, this gene was considered a disrupted gene 

(Landrum et al., 2016). If none of the above conditions were satisfied, the gene was 

not considered to be disrupted.  

 

2.3.3. Genetic disruption 

    In this SDCS analysis, genetic interactions were investigated at the gene level, 

but not at the variant and INDEL levels. Therefore, variants and INDELs were 

aggregated into units of genes to construct a binary matrix according to the presence 

or absence of gene disruption. When any one of the variants, INDELs, or CNV 

requirements were satisfied, it was determined that a gene disruption was determined. 

If one condition was unsatisfactory, it was considered that there was no gene 

disruption. First, if at least one loss-of-function variant exists in a gene, the gene is 
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considered a disruption gene. The consequences of the loss-of-function variants were 

as follows: transcript ablation, splice acceptor variant, splice donor variant, stop 

gained, frame-shift variant, stop lost, and start lost. Second, a disruption gene is a 

gene containing variants with a deleterious score for pathogenicity prediction. For 

the pathogenicity prediction algorithm, the SIFT, PolyPhen-v2, and CADD scores 

were used. The threshold of each deleterious score was 0.05 or less for SIFT, 0.85 or 

more for PolyPhen-v2, and 30 or more for CADD score. Third, using the CNV 

change at the gene level, GISTIC2 created a threshold of the data provided by TCGA, 

and genes with completely lost copy numbers with a value of-2 were defined as 

disruption genes. Finally, genes with mutations classified as pathogenic variants in 

the ClinVar database were defined as disruption genes. Genes that did not satisfy all 

the above four conditions were considered wild-type genes. We excluded 2086 genes 

with a LoFtool score of 0.85 or higher from this analysis because they were disrupted 

genes that occur frequently in normal samples. 
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Table 3. The consequences of the variants and INDELs in order of severity estimated by Ensembl. 

Sequence ontology Description 

Transcript ablation A feature ablation whereby the deleted region includes a transcript feature 

Splice acceptor variant A splice variant that changes the 2 base region at the 3' end of an intron 

Splice donor variant A splice variant that changes the 2 base region at the 5' end of an intron 

Stop gained 
A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading 

to a shortened transcript 

Frame-shift variant 
A sequence variant that disrupts the translational reading frame, because the number of nucleotides inserted or 

deleted is not a multiple of three 

Stop lost 
A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated 

transcript 

Start lost A codon variant that changes at least one base of the canonical start codon 

Transcript amplification A feature amplification of a region containing a transcript 

Inframe insertion An inframe nonsynonymous variant that inserts bases into the coding sequence 

Inframe deletion An inframe nonsynonymous variant that deletes bases from the coding sequence 

Missense variant 
A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but where the 

length is preserved 
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2.4. RNA-Seq 

 

2.4.1. Pre-processing of RNA-Seq data 

    TCGA provides RNA-Seq data for cancer cells and some normal cells, and the 

GTEx database provides RNA-Seq data for normal tissues. The RNA-Seq samples 

from these two databases differ in terms of the type of sample, cancer, and normal 

but are also provided by different sources. Therefore, combining the two datasets not 

only considers the difference between cancer and normal tissues but also considers 

that they come from different sources. The goal of the Toil recomputing project is to 

unify the RNA-Seq pipeline between databases(Vivian et al., 2017). However, the 

Toil RNA-Seq Recompute Compendium using a uniform pipeline cannot solve the 

batch effect caused by two different databases. Therefore, RNA-seq data processed 

considering the batch effect of TCGA and GTEx were used in this study (Figure 4) 

(Leek, 2014; Q. Wang et al., 2018). 

    Using the example of bladder cancer, the distribution of the two databases from 

the unified RNA-Seq pipeline samples provided by the Toil recompute project and 

batch-effect-corrected samples were visualized by dimensional reduction using the 

uniform manifold approximation and projection for dimension reduction (UMAP) 

algorithm (Figure 5) (McInnes et al., 2018). When only ICGC data were used, Data 

provided by the Toil recompute project were used when only ICGC data were used. 

Table 4 describes the number of cancer and normal samples according to the database 

used and cancer type. 
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Table 4. The consequences of the variants and INDELs in order of severity 

estimated by Ensembl. 

 

Cancer type 
Number of cancer samples Number of normal samples 

TCGA ICGC TCGA GTEx 

BLCA 398 294 19 9 

BRCA 736 970 83 179 

CESC 291 241 3 10 

COAD 209 390 18 308 

GBM 138 155 0 1141 

HNSC 489 461 43 55 

KIRC 327 345 67 28 

KIRP 276 216 31 28 

LGG 489 431 0 1141 

LIHC 352 281 50 110 

LUAD 490 475 58 288 

LUSC 478 411 46 288 

OV 204 186 0 88 

PAAD 175 130 4 167 

PRAD 479 370 52 100 

SKCM 462 426 1 556 

STAD 409 414 33 174 

THCA 487 480 58 279 

UCEC 150 494 6 78 
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2.4.2. Normalization 

    To remove genes with low expression from the RNA-Seq data, we transformed 

the read counts to counts per million (CPM) on a log scale. The function ‘cpm’ is 

provided in the R package edgeR to compare the relative mRNA expression levels 

among the different samples by adjusting the library size of whole read counts 

(Robinson et al., 2010). Genes with a CPM value > 1 in less than half of all samples 

were considered as lowly expressed genes and filtered out. This process was 

performed independently for each cancer type. 

    Then, trimmed mean of M-value (TMM) normalization was used to 

simultaneously adjust the library size and composition of the RNA population to 

estimate the appropriate relative regularization factor unaffected by 

outliers(Robinson & Oshlack, 2010). Using the voom function provided in R 

package 'limma', RNA-Seq mRNA expression data were transformed into logCPM 

data (Law et al., 2014; Ritchie et al., 2015). TCGA and GTEx data were normalized, 

and ICGC data were processed independently. Of the normalized mRNA expressions, 

only genes belonging to the cancer gene consensus (CGC) were used for analysis 

(Bamford et al., 2004; Tate et al., 2019). 
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Figure 4. Integration of cancer and normal RNA sequencing data from the 

TCGA/GTEx database. 
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Figure 5. The distribution of bladder mRNA expression levels visualized by UMAP. (A) Unified RNA-Seq pipeline samples provided by the 

Toil recompute project. (B) Batch-effect corrected samples. 
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2.5. Cell line data 

    Cell line samples from the COSMIC database included DNA sequences from 

WXS and RNA-Seq mRNA expression and copy number analysis data quantified by 

the Affymetrix SNP6.0 array. Cancer variants through expectation maximization 

(CaVEMan) and Pindel were used on the tumor and normal paired samples, and copy 

number variations were quantified using the predicting integral copy numbers in 

cancer (PICNIC) algorithm (Greenman et al., 2010; Stephens et al., 2012; Ye et al., 

2009). The frequency of variants > 0.0014 in the 1000 Genomes database 

(http://browser.1000genomes.org/) and frequency of variants > 0.00025 in ESP6500 

(https://evs.gs.washington.edu/) were removed (Siva, 2008). Variants with minor 

allele frequencies were removed from the database. Variants found in in-house 

COSMIC normal samples were excluded. Variants and INDELs not present in the 

cDNA region were excluded from the study. 

 

2.6. Drug sensitivity 

The GDSC database provides drug sensitivity data in the form of half-maximal 

inhibitory concentration (IC50) by screening drugs on cancer cell line samples (Yang 

et al., 2012). DNA sequence and mRNA expression of the cell line samples were 

obtained from the COSMIC database, which allowed the analysis of the effects of 

genomic alterations on drug sensitivity (Bamford et al., 2004; Tate et al., 2019). The 

GDSC database contains DNA sequences and mRNA expression data for 982 cell 

lines, with IC50 values of 449 drugs for these cell lines. 
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2.7. Synthetic Dosage Cancer Survival (SDCS) 

2.7.1. SDCS analysis 

    An overview of the concept of SDCS analysis is presented in Figure 6. The 

SDCS pair is a combination of two genetic modifications, one gene disruption and 

one overexpression, significantly affecting cancer patient’s survival. Although 

disruption of each gene or overexpression of one gene alone does not affect patient 

survival alone, if the simultaneous occurrence of disruption of one gene and 

overexpression of another significantly affects the patient’s prognosis, it is the SDCS 

gene pair. To find the SDCS pair, two different genes were selected individually from 

the gene disruption matrix and the expression matrix. Then, an analysis was 

performed to identify candidate SDCS pairs based on the TCGA database for the 19 

cancer types. The workflow scheme for discovering SDCS pairs from the TCGA 

database is illustrated in Figure 6.  

    A gene combination that improved patient survival was defined as a positive 

SDCS, and a gene combination that worsened prognosis was defined as a negative 

SDCS. SDCS was identified and validated using TCGA and ICGC databases. The 

SDCS pairs found in TCGA database were verified using the ICGC database. Only 

gene pairs that were reconfirmed to be SDCS pairs during verification were defined 

as SDCS pairs. 
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Figure 6. The concept of SDCS analysis and the example of two type of SDCS pairs. A combination of two genetic modifications, one gene disruption and 

one overexpression, significantly affects prognosis in a patient. When survival improves, this is called a positive SDCS pair, and when survival significantly 

deteriorates, it is called a negative SDCS.
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2.7.2. Statistical analysis 

    To identify SDCS pairs using the gene disruption matrix, gene expression 

matrix, and clinical variables, three survival analyses were performed for the two 

selected genes. First, in the patient group without gene disruption, the expression 

level of one gene should not be significant for survival when fitting a Cox 

proportional hazards model with clinical covariates. Expression data from TCGA 

normal samples and GTEx normal tissues were also added during survival analysis 

for expression. As there were no clinical variables in the normal sample, random data 

were generated and used. Among the dependent variables of the normal sample, all 

events were censored, and for follow-up time, the highest value was arbitrarily 

assigned to all patients. As for the clinical variables of normal samples used as 

covariates in survival analysis, clinical variables (shown in Table 1) were randomly 

generated for each cancer type. Among the clinical variables, age and sex were 

randomly selected from the available samples. In addition, pathological staging, 

tumor grade, and focality were assigned to stage 0, grade 0, and no lesions, 

respectively, which do not exist in cancer patients. MSI variables for the normal 

sample were all assigned as microsatellite stability, no smoking, and no alcohol 

intake. Because there were no lesions in the normal sample, the necrosis percentage 

was assigned as 0% and residual was assigned as non-existent. In the group without 

gene disruption, the expression levels of these normal samples were not significant 

for survival when fitted using the Cox proportional hazards model (p > 0.05). Second, 

in the group with gene disruption, the expression level, including that of the normal 

sample, should be significant when fitted with the Cox proportional hazards model 

for survival (p < 0.05). Thirdly, among samples with gene disruption, the group with 
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a high expression level through two-means clustering should show a significant 

difference in survival compared to all samples without gene disruption. At this time, 

the direction, positive or negative, of the coefficient in the survival analysis of the 

entire first gene disruption group and the third analysis should be same as that of the 

SDCS pair. In the Cox proportional-hazards model, if the direction of coefficient of 

expression was negative, it was defined as a positive SDCS, and if the coefficient 

was positive, it was defined as a negative SDCS. 

    The workflow scheme for deriving the gene disruption matrix and generating 

the gene expression profile from the raw data to infer the SDCS pair is shown in 

Figure 7. 

 

2.7.3. Positive SDCS and negative SDCS 

    Positive SDCS refers to patients with a significantly improved prognosis as the 

expression level increases in the gene disruption group. In contrast, negative SDCS 

refers to patients with a significantly worse prognosis, as the expression level 

increases in the gene disruption group. Figure 8 shows the positive and negative 

SDCS values. 

    In the case of positive SDCS, gene expression complements gene disruption to 

improve patient survival; therefore, analysis of the mechanism of gene B may be an 

important mechanism for drug development. For example, if the disruption gene of 

a positive SDCS is a tumor suppressor gene, the gene expression can be considered 

to complement the loss of function of the tumor suppressor. Therefore, if the 

regulation mechanism of the over-expressed gene is studied, hints on whether it 

suppresses cancer progression can be obtained. In the case of negative SDCS, gene 
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Figure 7. The workflow scheme from the derivation of the gene disruption matrix and the gene expression profile to the inference of the SDCS 

pair.



 

 ３５ 

 

Figure 8. Illustration of application of drug therapy according to positive SDCS and negative SDCS. In the case of positive SDCS, since 

expression complements gene disruption, analysis of the mechanism of the B gene may be an important mechanism for drug development. In the 

case of negative SDCS, the expression deteriorates the survival of the patient, so studies on inhibition of this gene are warranted.
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expression deteriorates the survival of patients with gene disruption; thus, the over-

expressed gene may be related to cancer progression, and it may be meaningful to 

analyze the mechanism and study drugs to suppress it. 

 

 

CHAPTER 3. RESULTS 

3.1. Inferred SDCS pairs 

Table 5 lists the numbers of SDCS pairs derived in this study. The p-value cut-

off was used to compare the highest p-value between TCGA and ICGC databases. If 

one of the p-values from the two databases did not satisfy the p-value cut-off, the 

gene pair was not included in the SDCS pair. Based on p < 0.05, 138 SDCS pairs 

were derived, of which 71 were positive and 59 were negative SDCS pairs. 

To focus on more significant SDCS pairs, 57 SDCS pairs were included in the 

subsequent analysis with a cut-off of p < 0.01. In all SDCS pairs, the number of 

disrupted and overexpressed genes was 18 and 52, respectively. The disrupted gene 

most frequently included in the SDCS pair was TP53, which was included in a total 

of 12 SDCS pairs. Among them, two were included in the positive SDCS and 10 

were included in the negative SDCS pairs. The PIK3CA gene was included nine 

times in SDCS pairs, KRAS gene six times, and IDH1 gene six times. In contrast, 

genes that are overexpressed in SDCS pairs are less likely to be included repeatedly 

than disrupted genes. Only ERBB3, GMPS, KRAS, MET, and ZRSR2 were included 

in the SDCS pairs twice, and the remaining genes formed only one SDCS pair. 

Therefore, centered on disrupted genes, a network is formed in which overexpressed 
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genes form leaf nodes. 

Table 6 shows the composition of genes belonging to positive SDCS pairs, the 

results of survival analysis according to the expression of disrupted genes from 

TCGA and ICGC databases, and the results of survival analysis according to the 

expression of genes of patients not included in the disrupted gene group. As indicated 

by the SDCS analysis, gene expression had a significant prognostic effect on survival 

only in the group of disrupted genes. In the absence of a disrupted gene, even if the 

expression level of the expressed gene was changed, survival was not affected at all. 

In contrast, negative SDCS pairs have a significant effect on survival, such as 

positive SDCS, but because the coefficient for expression in the Cox proportional-

hazards model is positive, higher expression worsens the patients’ prognoses (Table 

7). 
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Table 5. The number of SDCS pairs according to the threshold for the maximum 

value among the p-values from both TCGA and ICGC databases. 

Threshold of p.value 

Minimum TCGA and ICGC 

nSDCS (P/R) 

p < 0.05 130 (71/59) 

p < 0.01 57 (35/22) 

p < 0.001 19 (12/7) 

p < 0.0001 6 (5/1) 

p < 0.00001 2 (1/1) 
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Table 6. The positive SDCS pairs and analysis results in TCGA/ICGC database. 

   TCGA database ICGC database 

CancerType 
Disrupted 

gene 

Expressed 

gene 

Disrupted group Wildtype group Disrupted group Wildtype group 

Coef. P.value Coef. P.value Coef. P.value Coef. P.value 

BLCA TTN ZRSR2 -1.213 <0.001 0.012 0.960 -2.215 <0.001 -0.184 0.424 

BLCA TP53 ZRSR2 -1.359 <0.001 0.197 0.349 -1.214 <0.001 -0.311 0.240 

BLCA PIK3CA CDH1 -0.232 <0.001 -0.063 0.130 -0.331 <0.001 -0.065 0.485 

BLCA PIK3CA ERBB3 -0.285 <0.001 -0.021 0.677 -0.408 <0.001 -0.069 0.417 

LGG IDH1 PTPRD -0.401 <0.001 -0.099 0.480 -0.660 <0.001 -0.254 0.247 

LUAD KEAP1 AXIN2 -0.740 <0.001 0.083 0.332 -0.647 <0.001 0.063 0.534 

BRCA PIK3CA CBLC -0.777 <0.001 -0.193 0.065 -0.329 <0.001 -0.005 0.955 

PAAD KRAS RNF43 -0.659 <0.001 -0.225 0.468 -0.805 0.001 0.118 0.738 

LUSC TTN EIF1AX -0.555 <0.001 0.085 0.597 -0.846 0.001 -0.333 0.122 

STAD SYNE1 MSI2 -1.284 <0.001 -0.110 0.503 -1.188 0.002 -0.258 0.216 

BLCA KMT2D IKBKB -0.549 <0.001 -0.226 0.158 -1.331 0.002 -0.349 0.110 
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BLCA TP53 COX6C -0.435 <0.001 0.187 0.159 -0.644 0.002 0.063 0.810 

BLCA KMT2D MYD88 -0.533 <0.001 -0.161 0.273 -1.064 0.003 -0.153 0.490 

LUAD KEAP1 WIF1 -0.435 <0.001 0.000 0.991 -0.287 0.003 0.018 0.665 

LUSC SI LEF1 -1.075 <0.001 -0.059 0.327 -0.716 0.003 -0.071 0.429 

LUAD USH2A KDR -0.684 <0.001 0.029 0.692 -0.500 0.003 0.003 0.970 

LUSC ZFHX4 VTI1A -1.131 <0.001 0.272 0.196 -1.407 0.006 0.001 0.998 

LUAD USH2A NFIB -0.441 <0.001 0.018 0.850 -0.503 0.006 -0.132 0.296 

COAD PIK3CA SETDB1 -9.191 <0.001 -0.043 0.903 -2.471 0.007 0.135 0.786 

BLCA PIK3CA GATA3 -0.447 <0.001 -0.044 0.228 -0.294 0.008 -0.089 0.076 

LUAD FAM135B ELN -0.320 <0.001 0.003 0.953 -0.437 0.008 0.007 0.913 

BLCA PIK3CA TRIM24 -0.691 <0.001 0.024 0.747 -0.771 0.010 -0.037 0.761 
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Table 7. The positive SDCS pairs and analysis results in TCGA/ICGC database. 

    TCGA database ICGC database 

   Disrupted group Wildtype group Disrupted group Wildtype group 

CancerType 
Disrupted 

Gene 

Expressed 

gene 
Coef. P.value Coef. P.value Coef. P.value Coef. P.value 

LGG TP53 CDK4 0.443 <0.001 -0.114 0.424 0.954 <0.001 0.189 0.209 

LGG IDH1 MAP3K1 0.721 <0.001 -0.066 0.633 0.876 <0.001 0.350 0.083 

LGG IDH1 CBFB 0.723 <0.001 0.084 0.773 1.203 <0.001 0.368 0.321 

LGG TP53 DDIT3 0.408 <0.001 -0.083 0.609 0.853 <0.001 -0.061 0.784 

LUSC CNTNAP5 N4BP2 1.008 <0.001 -0.025 0.843 2.047 <0.001 0.099 0.547 

PAAD KRAS SND1 1.122 <0.001 -1.158 0.062 2.515 <0.001 -0.956 0.352 

BLCA PIK3CA ABL2 1.158 <0.001 0.127 0.234 1.601 <0.001 0.326 0.066 

PAAD TP53 GMPS 1.600 <0.001 0.539 0.287 1.904 <0.001 1.137 0.086 

PAAD KRAS CNBP 1.981 <0.001 -0.157 0.871 2.409 <0.001 1.344 0.348 
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LGG IDH1 ERBB3 0.259 <0.001 0.003 0.972 0.437 <0.001 -0.004 0.976 

BRCA PIK3CA MTOR 1.499 <0.001 0.013 0.942 2.279 <0.001 -0.248 0.441 

BLCA TP53 SMAD4 0.602 <0.001 0.358 0.057 0.902 <0.001 0.564 0.079 

LGG IDH1 MEN1 0.924 <0.001 0.083 0.865 1.413 0.001 1.015 0.112 

LUAD KEAP1 BIRC3 0.442 <0.001 0.052 0.464 0.414 0.001 0.155 0.072 

PAAD TP53 NPM1 1.365 <0.001 0.241 0.652 2.105 0.001 0.804 0.211 

BLCA TTN SETBP1 0.422 <0.001 0.043 0.617 0.588 0.001 0.144 0.306 

BLCA TP53 NCOR1 0.512 <0.001 0.047 0.780 0.893 0.002 -0.025 0.941 

HNSC TP53 MAP2K1 0.463 <0.001 0.134 0.603 0.644 0.002 0.174 0.614 

PAAD KRAS GMPS 1.388 <0.001 0.171 0.767 1.469 0.002 1.321 0.144 

BLCA TP53 SNX29 0.572 <0.001 0.005 0.974 0.518 0.003 0.146 0.553 

LUAD NRXN1 KRAS 1.171 <0.001 0.129 0.310 0.746 0.003 0.242 0.160 

LGG IDH1 BCORL1 1.164 <0.001 0.203 0.289 1.143 0.004 0.143 0.589 

PAAD TP53 MET 0.814 <0.001 0.382 0.054 0.751 0.004 0.635 0.052 
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LUAD PTPRD HNRNPA2B1 1.530 <0.001 0.034 0.858 1.547 0.004 0.106 0.667 

BLCA PIK3CA WWTR1 0.555 <0.001 0.099 0.143 0.711 0.004 0.119 0.319 

PAAD TP53 HSP90AB1 0.862 <0.001 -0.579 0.360 1.251 0.005 -1.007 0.181 

PAAD KRAS POT1 1.120 <0.001 -2.003 0.103 1.799 0.005 -1.547 0.319 

STAD SYNE1 TNC 0.459 <0.001 -0.023 0.705 0.394 0.005 0.035 0.640 

LUAD ANK2 ID3 0.594 <0.001 0.006 0.935 0.860 0.005 0.075 0.397 

PAAD KRAS MET 0.825 <0.001 0.619 0.060 0.709 0.005 0.701 0.093 

BLCA MACF1 PBRM1 1.146 <0.001 -0.013 0.916 1.472 0.006 -0.057 0.799 

UCEC KIF1B SMC1A 355.544 <0.001 -0.290 0.592 2.276 0.007 0.345 0.231 

KIRC TTN TPM3 0.993 <0.001 0.406 0.196 2.325 0.007 0.555 0.094 

LUAD ZFHX4 KRAS 0.442 <0.001 0.236 0.131 0.504 0.008 0.203 0.285 

LUAD NRXN1 ETNK1 1.080 <0.001 0.130 0.261 0.936 0.010 -0.052 0.757 
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3.2. Validation of SDCS pairs 

3.2.1. Positive SDCS 

Among the positive SDCS pairs, the most significant SDCS pairs were two 

pairs formed by TTN and TP53 gene disruption with ZRSR2 expression in bladder 

cancer. Among patients with bladder cancer, 208 out of TP53 mutant patients were 

identified in TCGA and 127 out of 294 in the ICGC database. Tenascin-N (TNN) is 

predicted to be involved in several processes such as the generation of neurons and 

regulation of osteoblast differentiation. TP53 encodes a tumor suppressor protein 

that regulates cell cycle arrest, apoptosis, and DNA repair. ZRSR2 encodes an 

essential splicing factor that is predicted to be involved in network interactions 

during spliceosome assembly. The pair of TNN gene disruption and ZRSR2 

expression is an SDCS pair, and the survival of bladder cancer patients from TCGA 

database based on the status of both genes is shown in Figure 9. Among patients with 

TNN disruption, the expression level of ZRSR2 was significant when normal samples 

were included (p < 0.001), and patients divided into two means clustering also 

showed a significant survival difference in cancer samples (p < 0.001). However, in 

patients without TNN disruption, ZRSR2 expression was not significantly different 

in terms of survival (p > 0.05). The PFS according to the status of this SDCS pair 

showed the same pattern in patients with bladder cancer in the ICGC database 

(Figure 10). Similarly, in the two-mean clustering of the ZRSR2 gene in the TNN-

disrupted group, the two groups showed a significant difference in survival (p < 

0.001), but not in the TNN wild-type group. 

In all positive SDCS, 22 SDCS pairs comprising 12 disrupted genes and 21 
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overexpressed genes were visualized (Figure 11). Blue nodes are disrupted genes, 

and yellow nodes are overexpressed genes. The colors of the edges indicate the type 

of cancer. Bladder cancer had the most SDCS pairs with nine SDCS pairs, followed 

by lung adenocarcinoma with five, and lung squamous cell carcinoma with three. 

Edge width is the negative log of the p-value, which indicates the significance of the 

survival analysis. 

 

3.2.2. Negative SDCS 

In negative SDCS, the combination of disruption and overexpression of the two 

genes worsened the patient’s prognosis, and 35 negative SDCS pairs were found in 

this study. Among these, the most significant negative SDCS pair was TP53 

disruption and CDK4 overexpression in patients with low-grade glioma. Among 

patients with low-grade glioma in the TCGA database, 253 of 499 patients had TP53 

mutations, while 186 of 431 patients in the ICGC database had mutations in the gene. 

In TP53 mutants, the higher the expression level of the CDK4 gene, the worse the 

prognosis in both TCGA and ICGC databases (p < 0.001), and there was no 

significant difference in survival in patients with the TP53 wild-type allele. 

In all negative SDCS, 35 SDCS pairs comprising 14 disrupted genes and 32 

overexpressed genes were visualized (Figure 12). In the network with positive SDCS 

pairs, blue nodes are disrupted genes, and yellow nodes are overexpressed genes. 

The colors of the edges indicate the type of cancer. Prostate cancer had the most 

SDCS pairs at 9, followed by low-grade glioma at 7, bladder cancer at 7, and lung 

adenocarcinoma at 6. Edge width is a negative log of the p-value, which indicates 
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the significance of the survival analysis. 

 

3.2.3. Biological interactions of SDCS 

Among the SDCS pairs, physically interacting proteins in humans, as reported 

in the BioGRID database, were selected to analyze the relationship between 

disrupted and overexpressed genes(Stark et al., 2006). There were 33 experimental 

reports that the disrupted gene and overexpressed gene physically interacted with 

each other, and there were 12 unique SDCS pairs (Table 8). Among them, two pairs 

were positive SDCS pairs and 10 were negative SDCS pairs. Among the types of 

experimental systems are SL and negative genetics, there are three SDCS pairs, all 

of which are negative SDCS pairs: TP53 disruption and CDK4 overexpression in 

low-grade glioma, and KRAS disruption, GMPS overexpression, KRAS disruption, 

and POT1 overexpression in prostate cancer. 
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Figure 9. Survival analysis of overexpression of ZRSR2 in two groups according to TNN gene disruption in TCGA bladder cancer patients. 

ZRSR2 overexpression in patients with TNN disruption is a positive SDCS pair that improves patient prognosis.
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Figure 10. Survival analysis of overexpression of ZRSR2 gene in two groups according to TNN gene disruption in ICGC bladder cancer 

patients. ZRSR2 overexpression in patients with TNN disruption is a positive SDCS pair that improves patient prognosis.
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Figure 11. Visualization of the positive SDCS pair as a network. Blue nodes are disrupted genes, and yellow nodes are over-expressed genes. 

The color of the edge indicates the cancer type. The edge width is the negative log of p. value, which indicates the significance of survival analysis. 
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Figure 12. Visualization of the Negative SDCS pair as a network. Blue nodes are disrupted genes, and yellow nodes are over-expression 

genes. The color of the edge indicates the cancer type. The edge width is the negative log of the p value, which indicates the significance of 

survival analysis. 
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Table 8. Physically interacting protein SDCS pairs in humans from the 

BioGRID database.  

Gene_A Gene_B Experimental system Pubmed ID SDCS 

PIK3CA ERBB3 Affinity Capture-MS 24189400 Prognostic 

  Affinity Capture-Western 11546794 Prognostic 

TP53 ZRSR2 Affinity Capture-MS 32807901 Prognostic 

TP53 CDK4 Negative Genetic 30762338 Negative 

GMPS TP53 Affinity Capture-Western 24462112 Negative 

  Affinity Capture-Western 33742136 Negative 

KRAS GMPS Synthetic Lethality 28700943 Negative 

  Negative Genetic 34373451 Negative 

KRAS MET Proximity Label-MS 34079125 Negative 

KRAS POT1 Synthetic Lethality 28700943 Negative 

TP53 NPM1 Affinity Capture-Western 15144954 Negative 

  Reconstituted Complex 16376884 Negative 

  Reconstituted Complex 12080348 Negative 

  Affinity Capture-Western 12080348 Negative 

  Affinity Capture-Western 15964625 Negative 

  Affinity Capture-Western 15310764 Negative 

TP53 CDK4 Affinity Capture-Western 28218424 Negative 

  FRET 28205554 Negative 

TP53 GMPS Affinity Capture-Western 24462112 Negative 

TP53 HSP90AB1 Affinity Capture-MS 23443559 Negative 

  Affinity Capture-MS 32807901 Negative 

TP53 MET FRET 28205554 Negative 

TP53 NCOR1 Affinity Capture-Western 19011633 Negative 

  Co-localization 24157709 Negative 

  Proximity Label-MS 34795231 Negative 

TP53 NPM1 Affinity Capture-Western 16740634 Negative 
  Affinity Capture-Western 15144954 Negative 
  Affinity Capture-Western 12080348 Negative 
  Affinity Capture-MS 23443559 Negative 
  Affinity Capture-MS 31152661 Negative 
  Affinity Capture-MS 32807901 Negative 
  Reconstituted Complex 15082766 Negative 

 

  



 

 ５２ 

 

 

 

 

 

Table 9. A list of drugs that act as inhibitor of overexpression gene of negative 

SDCS pairs. 

Drug Gene Interaction 

OMIPALISIB MTOR inhibitor (inhibitory) 

OSI-027 MTOR inhibitor (inhibitory) 

PI-103 MTOR inhibitor (inhibitory) 

DACTOLISIB MTOR inhibitor (inhibitory) 

TEMSIROLIMUS MTOR inhibitor (inhibitory) 

CABOZANTINIB MET inhibitor (inhibitory), antagonist (inhibitory) 

AMUVATINIB MET inhibitor (inhibitory) 

PHA-665752 MET inhibitor (inhibitory) 

CRIZOTINIB MET inhibitor (inhibitory) 

SELUMETINIB MAP2K1 allosteric modulator, inhibitor (inhibitory) 

TRAMETINIB MAP2K1 inhibitor (inhibitory), antagonist (inhibitory) 

CI-1040 MAP2K1 inhibitor (inhibitory), allosteric modulator 

SELUMETINIB KRAS inhibitor (inhibitory) 

TANESPIMYCIN HSP90AB1 inhibitor (inhibitory) 

PHA-793887 CDK4 inhibitor (inhibitory) 

AT-7519 CDK4 inhibitor (inhibitory) 

PALBOCICLIB CDK4 inhibitor (inhibitory) 

TOZASERTIB ABL2 inhibitor (inhibitory) 
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3.3. Drug sensitivity analysis 

To validate the positive and negative effects of the SDCS pairs, genomic data 

of the COSMIC cell lines and response data of GDSC drugs were utilized. Among 

the obtained SDCS pairs, in the case of genes inhibiting gene expression, it was 

assumed that cell-line drug sensitivity would differ according to the status of the 

disrupted gene and expressed gene. Among the available drugs with IC50 values in 

the GDSC database, drugs that inhibit over-expressed genes in the SDCS pairs were 

investigated using the DGIdb (Figure 13)(Griffith et al., 2013). Among them, 11 

drugs inhibited the expressed genes of positive SDCS pairs and 20 drugs inhibited 

the expression of negative SDCS pairs (Table 9). The target gene of the drugs was 

one KDR gene, which formed a positive SDCS pair. The KDR gene forms a pair with 

the USH2A disruption, which is found in patients with lung adenocarcinoma. In 

negative SDCS, there were 18 drug-gene-inhibiting relationships with MTOR, MET, 

MAP2K1, KRAS, HSP90AB1, CDK4, and ABL2 genes. 

Among the negative SDCS pairs, it was assumed that cell lines with high 

overexpression levels and gene disruption of the SDCS pairs were sensitive to drug 

reactivity. By matching the tissue of the cell line for each SDCS cancer type, I 

attempted to identify a drug that showed a significant difference in terms of the 

expression level of the drug among the cell lines with gene disruption, but there was 

no significant difference among the cell lines without gene disruption. Among them, 

the most significant drugs were omipalisib and OSI-027, which inhibit MTOR. 

Because MTOR inhibitors have recently attracted attention as a potential treatment 

for breast cancer, this analysis was performed on breast cancer cell lines(Bhagwat et 
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al., 2011; Lukey et al., 2019). I compared the sensitivity of omipalisib and OSI-027 

to the expression level of MTOR in breast cancer cell lines (Figure 14). For 

omipalisib, the p-value was 0.94 by the Wilcoxon signed-rank results comparing 

both groups according to MTOR expression. As for the sensitivity of OSI-027, the p-

value obtained by the Wilcoxon signed-rank test comparing the two groups 

according to the expression of MTOR was 0.23. However, mutation of the PIK3CA 

gene constituting the SDCS pair with MTOR expression significantly increased the 

sensitivity of the two drugs according to MTOR expression. Omipalisib was only 

highly sensitive to the PIK3CA mutant group in breast cancer cell with MTOR 

overexpression (p = 0.005) (Figure 15). OSI-027 was also highly sensitive only to 

PIK3CA mutant samples with MTOR overexpression in breast cancer cell lines (p = 

0.015) (Figure 16). MTOR inhibiting drugs could be used to create the SDCS pair 

by inhibiting MTOR within PICK3CA disrupted breast cancer cell lines.
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Figure 13. List of drugs capable of inhibiting over-expressed genes among SDCS pairs. The color of the edge indicates the cancer type. The 

edge width is the negative log of the p value, which indicates the significance of survival analysis. 
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Figure 14. In breast cancer cell-lines, the mRNA expression level of MTOR gene was not significantly associated to the reactivity of two 

MTOR inhibitors, Omipalisib and OSI-027. 
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Figure 15. Among samples with over-expression of MTOR gene in breast cancer cell-line, PIK3CA mutant cell-line is significantly sensitive 

to the MTOR inhibitor Omipalisib. 
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Figure 16. Among samples with over-expression of MTOR gene in breast cancer cell-line, PIK3CA mutant cell-line is significantly sensitive 

to the MTOR inhibitor OSI-027 drug. 
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Figure 17. The cumulative effect of the two positive SDCS gene disruption of two gene, TP53 and TNNaccording to expression of 

ZRSR2 in TCGA database. 
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Figure 18. The cumulative effect of the two positive SDCS gene disruption of two gene, TP53 and TNNaccording to expression of 

ZRSR2 in TCGA database. 
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CHAPTER 4. DISCUSSION AND CONCLUSION 

1. DISCUSSION 

In this study for SDCS analysis, to identify the genetic interaction with patient’s 

survival as the phenotype, 57 SDCS pairs that satisfied data from both TCGA and 

ICGC multi-omics databases were identified. SDCS disruption genes are all 

frequently disrupted genes in cancer patients, and expression genes are composed of 

cancer gene consensus; therefore, they will be useful and important candidates for 

the development of cancer therapy. Among these genes, interestingly, 14 genes out 

of 57 pairs of two genes that make up a pair showed physical interactions (Stark et 

al., 2006). With respect to the number of combinations of all genes used in the 

analysis, the odds ratio for physically interacting SDCS pairs was 4.295. Therefore, 

it can be seen that the genes in the SDCS pairs physically influence each other in a 

large proportion of genome. 

An interesting pair in this study was the PIC3CA disruption and CDK4 

overexpression. Recently, dual inhibitors of MTOR and PIK3CA have been in the 

spotlight as therapies for breast cancer. Numerous studies have demonstrated that the 

dual inhibition of both genes can kill cancer cells. Among the 35 negative SDCS 

pairs found in this study, one was a combination of PIK3CA disruption and MTOR 

overexpression. We found that among the PIK3CA disrupted cell lines, MTOR 

overexpressing cells were very sensitive to two MTOR inhibitors, omipalisib and 

OSI-027 (Bhagwat et al., 2011; Lukey et al., 2019). Furthermore, we found that the 

MTOR over-expressing breast cancer cell lines overexpressing MTOR with PIK3CA 

disruption were highly sensitive to two MTOR inhibitors, omipalisib and OSI-027. 
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Therefore, dual inhibitors of PIK3CA and MTOR re-verified that there was a negative 

genetic interaction in the SDCS pairs found in our study. In addition, among patients 

with TP53 disruption in low-grade glioma, CDK4 overexpression was found to lead 

to very poor survival. The CDK4/6 inhibitor PD0332991 is a therapeutic agent that 

has attracted attention for the treatment of glioblastoma, suggesting that the 

inhibition of CDK4 overexpression, which was found to be an overexpressed gene 

in an SDCS pair in our study, could be a new therapeutic technique (Barton et al., 

2013; Cen et al., 2012; Liu et al., 2018). This means that the remaining SDCS pairs 

are worth testing as new candidate drug targets. Based on the gene-drug relationship 

provided by DGIdb, 211 drugs inhibited the 52 overexpressed genes. Further studies 

targeting the overexpression of genes would be a suitable line of research. 

Two disruption genes, TP53 and TNN, which form pairs with ZRSR2 

overexpression, forming positive SDCS pairs, are notable. In patients overexpressing 

ZRSR2, the higher the disruption burden of TP53 and TNN, the better the survival 

using TCGA database (Figure 17). However, in patients that did not overexpress 

ZRSR2, disruption of TNN and TP53 showed no relationship with survival. The 

SDCS pairs that we found were considered to have a cumulative effect on survival, 

which was found in the same cancer type. Furthermore, the survival effect could be 

demonstrated by the validity in the ICGC database (Figure 18). This suggests that, 

in complex biological networks, targeting multiple genes may play a positive role in 

patient survival. 

A representative contribution of this study is the discovery of new biomarkers 

that cannot be identified as single biomarkers by combining survival and genetic 

interactions. In particular, 17 drugs inhibited the overexpression of genes in negative 
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SDCS pairs, which worsened the patient's prognosis. This can help in the 

development of personalized anticancer drugs based on the genomic status of 

patients. Currently, among drugs developed based on genetic interactions, PARP 

inhibitors targeting BRCA mutant patients are the only ones used clinically. 

Therefore, the development of drugs based on gene disruptions that occur frequently 

in cancer patients is very important. Therefore, future research on the overexpression 

of genes in SDCS pairs will aid in the development of anticancer drugs based on 

genetic interactions. 

However, this study had some limitations. First, although the results were 

validated using TCGA and ICGC databases, drug sensitivity could not be 

investigated for all SDCS pairs because of the lack of samples for each cancer type 

using cell-line data. Nevertheless, it was confirmed that the PIK3CA/MTOR SDCS 

pair acted as a dual inhibitor in breast cancer cell-lines. Among SDCS pairs, drug 

experiments based on interesting target SDCS over-expressed genes must be 

performed. In addition, since the mortality and censored rates are different for each 

cancer type, there is a problem in terms of selecting the same statistical threshold for 

all cancer types. Even a single SDCS pair cannot be found in some cancer types. 

However, it is expected that many meaningful pairs can be identified by adjusting 

this threshold.
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2. CONCLUSION 

Using SDCS analysis, which identified genetic interactions using survival as a 

phenotype, we identified novel genetic interactions that could not be derived from 

previous computational methods. Centering on frequently mutated cancer-related 

genes, overexpression of major cancer-related genes included in the cancer gene 

consensus formed a bipartite network. The SDCS pairs in this network were 

independent prognostic markers and were verified using both TCGA and ICGC 

databases. These gene pairs were also significantly enriched in physical interaction 

databases. Moreover, the PIK3CA/MTOR gene pair is a negative SDCS pair that has 

recently attracted attention as a potential target for dual inhibitors. Therefore, the 

SDCS pairs derived in our study will help in the development of anticancer drugs 

and personalized medicine. 
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ABSTRACT IN KOREAN 

   유전자의 상호작용은 두개 이상의 유전자에 동시적으로 문제가 발생했을 

때, 세포의 사멸, 성장 등 세포에 표현형을 나타내는 것을 말한다. 많은 

항암치료제들이 암세포의 특이적인 DNA 돌연변이, 혹은 RNA의 과발현을 

타겟하여, 유전자 상호작용을 인위적으로 발생시켜 정상세포에는 영향을 주지 

않고 암세포를 효율적으로 사멸시키는 것을 목표로 한다. 하지만 그럼에도 

불구하고 지금까지의 유전자 상호작용을 밝혀내는 연구들은 사멸이라는 세포의 

표현형에 초점을 맞춰왔기 때문에, 새로운 유전자 상호작용을 밝혀내기 쉽지 

않았다. 왜냐하면, 세포의 상호작용이 존재하는 순간 세포가 사멸하기 때문에 

환자에서 관찰을 할 수 없었기 때문이다. 이러한 한계를 극복하기 위해서, 이 

연구에서는 유전자 상호작용을 세포단위가 아닌 환자단위에서 분석하였다. 이 

연구에서, 나는 정량 합성 암 생존 (Synthetic Dosage Cancer Survival; SDCS) 

분석이라는 방법을 제안한다. 이는 한 유전자의 돌연변이와 한 유전자의 

과발현의 조합이 세포를 사멸시키는 정량 합성 치사 (Synthetic dosage lethality) 

개념을 기반으로 한다. SDCS는 한 유전자의 돌연변이와 한 유전자의 과발현이 

환자의 생존에 유의한 변화를 이끌어내는 유전자 상호작용을 말한다. SDCS 

조합이 환자의 예후를 증진시킨다면 positive SDCS로 정의하였으며, 만약 환자의 

예후를 악화시킨다면 negative SDCS로 정의하였다. SDCS 조합은 The Cancer 

Genome Atlas (TCGA) 데이터베이스와 International Cancer Genome Consortium (ICGC) 

두가지 데이터베이스를 기반으로 검증하였다. Genotype-Tissue Expression (GTEx) 

데이터베이스를 활용하여 대조군의 보충적 데이터로 활용하였다. SDCS 조합에 

포함되는 과발현 유전자를 타겟하는 약물들의 민감성을 통해 SDCS의 중요성을 

검증하기 위하여, Genomics of Drug Sensitivity in Cancer (GDSC) 데이터베이스를 
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활용하였다. 22개의 positive SDCS 조합과 35개의 negative SDCS 조합을 TCGA와 

ICGC 데이터베이스에서 동시적으로 검증하였다. SDCS 조합을 이루는 유전자들 

중, 돌연변이에 해당되는 유전자는 18개가 포함되었으며 과발현 유전자는 

52개가 포함되었다. PIK3CA 유전자의 돌연변이와 MTOR 유전자 과발현은 

negative SDCS 조합 중 하나로 이 연구에서 검증되었으며, 이는 현재 이중 

억제제로 각광받는 유전자 조합으로 유방암의 치료제로 개발되고 있는 유전자 

조합이다. GDSC 데이터베이스에서 MTOR의 과발현과 PIK3CA 돌연변이가 

동시적으로 있는 세포주는, MTOR를 억제하는 Omipalsib 약물과 OSI-027약물에 

유의하게 민감한 것이 확인되었다. 이러한 관찰은 SDCS 조합이 새로운 항암 

치료제를 개발하는데 있어서 중요한 후보 타겟 유전자라는 것을 시사한다. 

따라서 SDCS 분석은 새로운 항암제를 개발하는 것에 중요한 방법론으로서 

도움을 줄 것이다. 

주요어: 유전자 상호작용, 정량 합성 치사, 유전자 발현분석, 약물 

민감도 분석, 유전자 타겟 발굴, 예후 마커 발굴 

학번: 2015-20509 
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