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Abstract
Background Information on electrocardiogram (ECG) has not been quantified in obstructive coronary artery 
disease (ObCAD), despite the deep learning (DL) algorithm being proposed as an effective diagnostic tool for acute 
myocardial infarction (AMI). Therefore, this study adopted a DL algorithm to suggest the screening of ObCAD from 
ECG.

Methods ECG voltage-time traces within a week from coronary angiography (CAG) were extracted for the patients 
who received CAG for suspected CAD in a single tertiary hospital from 2008 to 2020. After separating the AMI group, 
those were classified into ObCAD and non-ObCAD groups based on the CAG results. A DL-based model adopting 
ResNet was built to extract information from ECG data in the patients with ObCAD relative to those with non-ObCAD, 
and compared the performance with AMI. Moreover, subgroup analysis was conducted using ECG patterns of 
computer-assisted ECG interpretation.

Results The DL model demonstrated modest performance in suggesting the probability of ObCAD but excellent 
performance in detecting AMI. The AUC of the ObCAD model adopting 1D ResNet was 0.693 and 0.923 in detecting 
AMI. The accuracy, sensitivity, specificity, and F1 score of the DL model for screening ObCAD were 0.638, 0.639, 0.636, 
and 0.634, respectively, while the figures were up to 0.885, 0.769, 0.921, and 0.758 for detecting AMI, respectively. 
Subgroup analysis showed that the difference between normal and abnormal/borderline ECG groups was not 
notable.

Conclusions ECG-based DL model showed fair performance for assessing ObCAD and it may serve as an adjunct to 
the pre-test probability in patients with suspected ObCAD during the initial evaluation. With further refinement and 
evaluation, ECG coupled with the DL algorithm may provide potential front-line screening support in the resource-
intensive diagnostic pathways.
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Introduction
Electrocardiogram (ECG) is a mainstay in the diagnosis 
of acute myocardial infarction (AMI) with biomarkers: 
a rise in troponin with at least one value > 99th percent 
upper reference limit [1–3]. In emergency departments, 
an AMI is classified into an ST-segment elevation myo-
cardial infarction (STEMI), which requires emergent 
reperfusion treatment, and non-STEMI, which needs 
early intervention or conservative management, accord-
ing to the ECG manifestation [4]. It also provides infor-
mation, including the duration, extent, and location of 
the myocardial infarction, although initial ECG is often 
not diagnostic and serial ECG is required [5, 6].

On the other hand, the resting 12-lead ECG has not 
been critical for screening and diagnosing coronary 
artery disease (CAD) in patients with stable chest pain 
and suspected angina pectoris, but it remains an indis-
pensable component of an initial evaluation [2, 3]. 
According to the JACC guidelines, the probability of 
obstructive CAD (ObCAD) should be considered when 
providing diagnostic tests to those with stable chest pain 
[2]. Basic tests (laboratory biochemical testing, a resting 
ECG, echocardiography, and possible ambulatory ECG 
monitoring) in patients with suspected CAD were used 
to determine who should be screened or may be deferred, 
after the pre-test probability was estimated using the age, 
sex, and symptoms, according to the ESC guidelines [3]. 
On the other hand, the probability of ObCAD could not 
be quantified after acquiring the resting ECG and it has 
been undetermined how much information from a rest-
ing ECG could contribute to the clinical decision to pro-
ceed with ObCAD diagnostic tests.

Recently, deep learning (DL) algorithms have demon-
strated good to excellent performance in detecting AMI 
using ECG signals. A review study revealed the accu-
racy ranged from 80.6 to 99.9% for normal versus AMI 
detection in 11 DL-based models, and the other review 
study showed it from 83 to 99.9% in six DL models [7, 
8]. Although previous studies showed the potential of 
DL approaches in detecting AMI and other cardiovascu-
lar diseases [7–10], few studies have used DL algorithms 
to utilize the information on ECG in patient screening 
of ObCAD [11, 12]. It may be due to differences in the 
pathophysiology and ECG changes between ObCAD and 
AMI although both belong to the CAD category. ObCAD 
is the progressive narrowing of coronary arteries, usually 
caused by atherosclerosis with no ECG characteristics 
or subtle, whereas AMI resulted from acute obstruction 
of coronary artery commonly by thrombosis, resulting 
in myocardial necrosis and more obvious ECG change. 
Therefore, in a previous study, the common DL model 
showed completely different discrimination (0.973 and 
0.566 in AUC) between two subgroups separated by AMI 
and ischemia at diagnosis [13].

Therefore, a DL-based model was developed using ECG 
to suggest the need for further investigation for ObCAD 
in patients with chest pain and suspected ObCAD. More-
over, the performance of the model was evaluated to test 
the validity for screening ObCAD and compare it with 
that of AMI.

Materials and methods
Data sources and study population
This investigation was a retrospective observational study 
of consecutive patients who received coronary angiogra-
phy (CAG) for suspected CAD in a single tertiary hospi-
tal. The patients were eligible if they were aged 18 years 
or older and underwent CAG due to suspected ObCAD 
from October 27, 2008, to August 21, 2020, at the Inha 
University Hospital, which was a university teaching hos-
pital in Incheon, which had a population of 2,922,121 
inhabitants in 2020, in South Korea. It has Regional 
Cardiocerebrovascular Centers (RCCVCs), established 
by the Ministry of Health and Welfare in the Incheon 
district.

Data generation
The digital, standard 10-second, 12-lead ECG was 
acquired in the supine position during the study period. 
ECG was acquired at a sampling rate of 500 Hz using a 
GE-Marquette ECG machine (Marquette, WI, USA), and 
the raw data on ECG were extracted from the MUSE data 
management system (GE Healthcare, USA).

The ECG was selected in a window of interest for each 
participant for analysis because most of the study partici-
pants had multiple ECG records over the study period. 
The index date and time were defined as the date and 
time when CAG started, and the window of interest was 
defined as the preceding seven days before the index 
date. The ECG within a week before CAG was selected 
for analysis. This window of interest was chosen under 
the assumption that the ECG within a week would have 
clues on the quantitative coronary angiography (QCA) 
stenosis in patients with ObCAD. Any patient who did 
not have an ECG in the window of interest was excluded. 
If patients had multiple ECGs in the preceding seven 
days, the most recent ECG, for which physicians decided 
whether to provide diagnostic CAG, was selected. Fig-
ure  1 illustrated the timeline and time window of the 
ECG and CAG data. Sensitivity analysis was conducted 
with the earliest ECG in the window period.

For the comparison of data distribution among the 
non-ObCAD, ObCAD, and AMI groups, 31 electro-
cardiographic patterns and eight quantitative ECG 
measurements were extracted from the ECG data and 
summarized for each group [14]. The eight ECG mea-
surements included the QRS duration, QT, QTc, PR 
interval, ventricular rate, and the P-, Q- and T-wave axes. 
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The ECG patterns were parsed and classified from the 
structured statements of computer-assisted ECG inter-
pretation based on the standard key phrases in the MUSE 
data management system; the 31 patterns are listed in 
Table 1. An ECG was classified into two groups: normal 
and abnormal/borderline. The ECG was labeled as ‘nor-
mal’ if there was no abnormality in the interpretation 
and ‘abnormal’ or ‘borderline’ if the pattern included at 
least one diagnostic abnormality. Sex and age were also 
extracted from the electronic medical record and merged 
with CAG reports.

Classification
The CAG reports were extracted from the electronic 
medical system. The dataset was divided into acute 
myocardial infarction and suspected angina pectoris to 
compare the performances between the DL models of 
ObCAD and AMI. After excluding the patients finally 
diagnosed with AMI, ObCAD was defined as the steno-
sis ≥ 50% luminal narrowing of any major vessel in QCA, 
and non-ObCAD as < 50%; it was defined to identify 
patients whose QCA showed significant stenosis more 
than 50% and those who could have benefited from fur-
ther non-invasive diagnostic tests and CAG [15–17].

ECG-based DL algorithm
1D ResNet was suggested as a useful architecture for 
classifying ECG [18–20]. The model was implemented 
using Keras (version 2.0) with Tensorflow (Google; 
Mountain View, CA, USA). The proposed architecture of 
the ECG DL model using ResNet (ECGNET) was illus-
trated in Fig. 2. The performance of the proposed model 
was compared with those of four other models adopt-
ing machine learning (ML) and DL algorithms (logistic 

regression [LR], random forest [RF], long short term 
memory [LSTM], and transformer).

Models comparison
A resting ECG consists of 12 vectors with 5,000 dimen-
sions per sample, which is a very large input dimension 
compared to the number of training samples. Therefore, 
raw ECG signal is not suitable for use in traditional ML 
classifiers such as LR and RF. We used a fast Fourier trans-
form (FFT) to extract the 10–100  Hz range from each 
lead in 10 Hz intervals to transform it into a dimension-
ality suitable for use with traditional ML classifiers. This 
was finally transformed into a vector with a total of 120 
dimensions for the 12 leads. Then, ECG transformed by 
FFT was used as input for LR and RF. Using grid search, 
we set the hyperparameters of the RF model: number 
of estimators, minimum number of samples required to 
split, and minimum number of samples required to be at 
a leaf node to 100, 2, and 2, respectively. Bi-LSTM used 
L2 kernel regularizer, dropout 0.2, and ReLU activation 
function. In this study, we did not use the Transformer 
Encoder immediately before the Fully Connected (FC) 
Layer as in the study for ECG Arrhythmia Classifica-
tion to identify the ECG pattern of ObCAD, but adopted 
the method of analyzing the time series with LSTM by 
determining and weighting the importance through self-
attention to the extracted convolutional neural network 
(CNN) features. The ECG signal is compressed to a size 
of (256,64) through 1D CNN, and the same size (256,64) 
data is extracted through MultiHeadAttention. Finally, it 
was classified by sequentially passing the LSTM layer, FC 
layer, and sigmoid function.

The eight physical leads (lead I, II, and V1-6) were used 
in the 12-lead ECG because the four augmented leads 

Fig. 1 Timeline and time window of the electrocardiogram and coronary angiography data
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(lead III, aVR, aVL, and aVF) were produced by a linear 
function of leads I and II. The horizontal long axis (10 s 
at 500  Hz) was denoted as the temporal axis to extract 
the morphological and temporal features, while the short 
axis (eight physical leads) represented the spatial axis to 
use layers from all the leads.

The ECG DL models were cross-validated using strati-
fied 5-fold to estimate the average predictive perfor-
mance. The validation set was randomly selected from 
the train set and the dataset was divided into train, valida-
tion, and test sets with an 3:1:1 ratio. The training dataset 
was used to train the DL model and optimize the hyper-
parameters with a validation dataset. The test dataset 
containing the remaining patients not used in the train-
ing or validation was used to evaluate the performance 
of the ECG-based DL algorithm. A diagnostic threshold 
was selected using the area under the curve (AUC) of the 
receiving operating characteristic (ROC) curve for the 
validation set. The threshold was then applied to the test 
dataset to calculate the precision, recall, accuracy, and F1 
score.

The hyperparameters were compared among the fol-
lowing options: ResNet with the residual blocks (2, 4, 
and 8), kernel size (16, 32, and 64), batch size (4, 8, 16, 32, 
and 64), initial learning rate (0.1, 0.01, 0.001, and 0.0001), 
optimization algorithms (SGD, ADAM), and dropout 
rate (0, 0.3, and 0.8). The best hyperparameters achiev-
ing the highest F1-score in the validation set were 4, 16, 
8, 0.001, and 0.3, respectively, for residual blocks, kernel 
size, batch size, initial learning rate, and dropout rate 
with optimization algorithms of the Adam optimizer.

Subgroup analysis was performed to get insight into 
whether the performance depended on the ECG diagnos-
tic abnormalities in the interpretation which were pro-
vided by the GE-Marquette ECG machine.

Results
After excluding the CAG unmatched with ECG and 
duplicated reports, 14,080 CAG reports were included 
with matched 41,355 ECG data (Fig. 3). Among all CAG 
reports, 1,689 patients diagnosed with AMI were finally 
selected for the DL-based model in detecting AMI. 
After excluding the ECG records with less than 10 s and 
ECGs recorded before a time window, the latest 9,592 
ECG records were selected for 9,592 CAGs. A single 
CAG per patient was selected, and the most recent ECG 
was sampled, while the previous ECGs were excluded; 
it was assumed that the cardiologist decided the provi-
sion of CAG depending on the last ECG. Among the 
9,592 ECGs, 1,064 ECG was excluded due to the patients 
who underwent multiple CAGs and 57 ECG records 
were of poor quality and were removed from the cor-
responding number of subjects. Of the remaining 8,471 
patients, 4,293 and 4,178 patients were classified in the 

Fig. 2 Proposed architecture of the deep learning-based electrocardio-
gram model
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Fig. 3 Flowchart of the data used in the study
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non-ObCAD group and ObCAD group, respectively, 
based on the findings from CAG reports.

Those in the ObCAD group were likely to be older than 
those in the non-ObCAD group (Table  1). Moreover, 
those with stenosis more than 50% were more likely to 

be male than those with stenosis less than 50%, but the 
majority of those enrolled were male in both groups. 
The traditional computer-assisted measurements and 
interpretations of ECG were suggested for each group in 
Table 1. The QRS duration and QT, QTc interval tended 

Table 1 Characteristics of the study population and data distribution
All participants Nonobstructive coro-

nary artery disease 
(stenosis < 50%)

Obstructive coronary 
artery disease 
(stenosis ≥ 50%)

Acute myocar-
dial infarction

p-
value

N = 10,160  N = 4,293  N = 4,178  N = 1,689
Demographic characteristics
Age (years) 63.6 (12.7) 60.9 (13.0) 66.7 (11.4) 62.2 (13.5) < 0.001

Female (%) 29.3% 44.9% 31.5% 20.4% < 0.001

Measurement of Electrocardiographic features
QRS duration (ms) 97.6 (18.6) 95.9 (18.2) 97.2 (18.4) 98.6 (20.0) < 0.001

QT (ms) 406 (45) 402 (43) 405 (45) 409 (50) < 0.001

QTc (ms) 446 (39) 439 (38) 442 (39) 451 (39) < 0.001

PR interval (ms) 168 (28) 165 (27) 169 (28) 168 (30) < 0.001

Ventricular rate (bpm) 75.1 (17.9) 74.1 (17.2) 74.1 (17.9) 76.0 (19.6) < 0.001

P axis (˚) 52 (36–64) 52 (35–64) 52 (36–63) 53 (37–66) 0.009

R axis (˚) 31 (2–58) 35 (8–60) 27 (-1-55) 34 (-2-63) < 0.001

T axis (˚) 49 (25–76) 44 (24–63) 51 (26–79) 65 (29–93) < 0.001

Computer-assisted interpretation
Normal 15.8% 31.7% 20.6% 5.6% < 0.001

Left bundle branch block 1.6% 2.2% 1.6% 1.3% 0.029

Incomplete left bundle branch block 0.3% 0.3% 0.2% 0.4% 0.517

Right bundle branch block 7.0% 5.4% 6.9% 7.9% < 0.001

Incomplete right bundle branch block 2.0% 1.3% 1.9% 2.5% 0.003

Complete heart block 0.2% 0.2% 0.1% 0.4% 0.046

Atrial fibrillation 5.5% 6.8% 5.1% 5.1% 0.001

Atrial flutter 0.3% 0.5% 0.4% 0.2% 0.390

Acute myocardial infarction 23.5% 2.4% 4.6% 43.5% < 0.001

Left ventricular hypertrophy 8.3% 9.0% 11.7% 6.3% < 0.001

Premature ventricular contractions 4.5% 3.7% 3.9% 5.2% 0.021

Premature atrial contractions 2.5% 2.3% 2.5% 2.6% 0.737

First-degree atrioventricular block 6.0% 4.5% 6.3% 6.6% < 0.001

 s-degree atrioventricular block 0.3% 0.1% 0.1% 0.5% < 0.001

Fascicular block 2.0% 1.6% 1.7% 2.4% 0.099

Sinus bradycardia 15.5% 15.4% 17.1% 14.8% 0.031

Other bradycardia 0.6% 0.2% 0.2% 0.9% < 0.001

Sinus tachycardia 7.4% 5.1% 5.5% 9.5% < 0.001

Ventricular tachycardia 0.2% 0.0% 0.2% 0.2% 0.038

Supraventricular tachycardia 0.1% 0.0% 0.1% 0.1% 0.390

Prolonged QT 8.2% 7.7% 7.2% 8.9% 0.084

Pacemaker 0.5% 0.5% 0.5% 0.5% 0.995

Ischemia 15.1% 11.1% 15.0% 17.2% < 0.001

Low QRS voltage 2.9% 1.5% 2.1% 4.0% < 0.001

Intraventricular block 2.2% 0.6% 0.9% 3.6% < 0.001

Prior infarct 24.6% 9.0% 21.9% 33.9% < 0.001

Nonspecific T-wave abnormality 5.6% 8.2% 8.0% 3.0% < 0.001

Nonspecific ST abnormality 3.9% 3.7% 5.0% 3.4% 0.003

Left axis deviation 7.5% 5.2% 6.7% 9.0% < 0.001

Right axis deviation 0.5% 0.3% 0.2% 0.7% 0.012

Early repolarization 1.3% 2.0% 1.0% 1.1% < 0.001
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to be longer in the ObCAD group and AMI group than 
the non-ObCAD group. Traditional computer-assisted 
interpretation was ‘normal’ in 31.7% of the non-ObCAD 
group, while 20.6% in the ObCAD group. Moreover, it 
showed findings suggestive of AMI in 43.5% of patients 
finally diagnosed with AMI, while only in 2.4% of patients 
in the non-ObCAD group. On the other hand, traditional 
interpretation could not find the characteristics sug-
gestive of ischemia as much as AMI, and the difference 
between the ObCAD and non-ObCAD group was not 
as definite as the difference between the AMI group and 

non-ObCAD group: 11.1% in the non-ObCAD group vs. 
15.0% in the ObCAD group.

Table 2 lists the performances of the model for ObCAD 
and AMI. The AUC of the DL model in the test dataset 
was 0.693 for ObCAD, while it was 0.923 in detecting 
AMI. The accuracy, sensitivity, specificity, and F1 score 
of the proposed ECGNET model for screening ObCAD 
from ECGs were 0.638, 0.639, 0.636, and 0.634, respec-
tively, in the test set. On the other hand, the figures were 
up to 0.885, 0.769, 0.921, and 0.758 for detecting AMI, 
respectively. By contrast, the performance was not nota-
ble between two subgroups classified by the traditional 
automated interpretation when the ObCAD dataset was 
divided into normal and abnormal/borderline ECG. The 
AUC was 0.716 and 0.728 for normal and abnormal/bor-
derline ECG, respectively. When the model for ObCAD 
was built with the earliest ECG in the window period, the 
performance did not change significantly from that of 
the current model with the most recent ECG (data not 
shown).

Figure 4 presents the ROC curve of the model for 
ObCAD and AMI.

Discussion
A DL-based model adopting ResNet was constructed to 
extract information from ECG voltage-time traces in the 
patients with ObCAD relative to those with non-ObCAD. 
The model demonstrated fair performance in suggesting 
the probability of ObCAD, while it showed good to excel-
lent performance in detecting AMI. Whereas the good 
performance similar to previous research for detect-
ing AMI was achieved by the current study, the model 
for screening ObCAD which had been little attempted 
showed that it was more complex and daunting task 

Table 2 Performance of the prediction models. Bold values denotes the best performance across the different algorithms for 
predicting ObCAD and AMI.

AUC Accuracy Sensitivity Specificity Precision F1-score
Obstructive coronary artery disease
Logistic Regression 0.528 0.522 0.499 0.545 0.516 0.506

Bi-LSTM 0.515 0.515 0.490 0.539 0.508 0.498

Random Forest 0.523 0.524 0.497 0.550 0.518 0.507

Transformer 0.647 0.612 0.596 0.627 0.609 0.602

ECGNET 0.693 0.638 0.639 0.636 0.632 0.634
Acute myocardial infarction
Logistic Regression 0.620 0.599 0.598 0.600 0.310 0.408

LSTM 0.692 0.690 0.604 0.715 0.398 0.475

Random Forest 0.515 0.770 0.038 0.991 0.575 0.072

Transformer 0.871 0.816 0.758 0.834 0.582 0.657

ECGNET 0.923 0.885 0.769 0.921 0.749 0.758
Coronary artery disease subset by traditional computer-assisted ECG interpretation
Normal ECG 0.716 0.646 0.729 0.592 0.564 0.645

Abnormal/borderline ECG 0.728 0.679 0.728 0.622 0.689 0.675
LSTM, long short term memory; ECGNET, ECG 1D ResNet model

Fig. 4 ROC curves for the developed model of obstructive coronary artery 
disease and acute myocardial infarction on the testing dataset
ROC: receiver operating characteristic, AUC: area under the curve
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compared to AMI. Interestingly, the performance did 
not depend on whether it has pre-defined ECG features 
by the traditional computerized interpretation; the per-
formance did not deteriorate in the normal ECG groups 
where the defined profiles of the ECG abnormality were 
not found.

Previous studies reported that DL algorithms were 
effective in detecting AMI. They reported excellent 
performance using various DL algorithms. A previous 
study revealed an AUC of 0.997 and 0.877 in STEMI and 
NSTEMI [21], respectively, and another suggested an 
AUC of 0.951 and 0.901 in STEMI and AMI, respectively 
[22]. Moreover, a review study suggested that DL-based 
models on the diagnosis of AMI have an accuracy above 
95% [8]. On the other hand, most of the studies included 
were based on a small sample from the same open-source 
database (PTB-XL database) and focused on the experi-
mental application of new algorithms [8, 23]; some stud-
ies showed good performance when CNN was adopted, 
and others suggested that the performance may be 
enhanced when other algorithms were added or applied: 
multi-lead residual neural network, fusion of features, 
multi-lead attention, bidirectional gated recurrent unit, 
variational autoencoder, and CNN coupled with LSTM/
BLSTM network [7, 8, 21–25]. Therefore, a recent study 
reported that residual controversies or gaps in evidence 
exist on the value of ECG to identify acute coronary syn-
drome and has been conducted on the issues of valida-
tion in patients without ST-elevation, the role of ECG in 
identifying culprit lesions, P-wave abnormalities, Q-wave 
regression, and ST-deviation and resolution [26].

In contrast, the performance of the DL model for 
assessing stable ischemic heart disease has been rarely 
evaluated and only a few experiments have been 
attempted based on a small number of subjects. Recently, 
a systematic review suggested that it found two DL mod-
els for stable ischemic heart disease (IHD) in the review, 
which performed as well as six models for detecting 
AMI [7]. However, both studies on stable IHD used the 
same data from the PhysioNet database: seven CAD sub-
jects from St. Petersburg Institute of Cardiology Tech-
nics 12-lead arrhythmia data [11, 12]. The analysis was 
based on only seven subjects diagnosed with CAD with 
hypertension. Moreover, among them, four patients had 
ECGs consistent with left ventricular hypertrophy (LVH), 
while the other five patients diagnosed with angina pec-
toris in the dataset were not included in their analysis 
[27]. Therefore, although the previous research suggested 
that the application of DL algorithms might be promis-
ing for detecting ObCAD, the performance might be 
over-estimated due to the distinct ECG characteristics of 
seven subjects with hypertension or LVH. Furthermore, 
the other studies also used relatively small sample sizes 
which limited generalization. They were conducted in the 

different settings: Gokhan Altan extracted the 21–24  h 
long-term ECGs of 60 subjects diagnosed with CAD 
from the Long-Term ST Database [28, 29] and Monappa 
Gundappa Poddar gathered ECG data of 64 male patients 
in the age group of 35–60 years who were previously 
healthy in India [30]. Therefore, a small sample size 
yielded less variation in the ECG data. The models should 
be evaluated on larger datasets with diversity to confirm 
the robustness in a real-world setting.

In this study, the performance of the DL model for 
screening ObCAD was modest compared to that of the 
model for diagnosing AMI. The ECG findings of AMI 
were more remarkable because AMI causes more irre-
versible tissue damage to the myocardium than ObCAD 
with stable chest pain. In contrast, the ECG perturba-
tions tend to be subtle and have difficulty classifying 
ObCAD [8]. Although normal ECG does not exclude the 
possibility of angina pectoris, ECG could provide useful 
information on the screening of ObCAD [31, 32]. In the 
European Society of Cardiology guidelines, a resting ECG 
was first-line tested in patients with suspected CAD. The 
signs of myocardial ischemia were based mainly on the 
detection of repolarization abnormalities and indirectly 
on previous infarction or conduction abnormalities 
[3]. On the other hand, the findings varied significantly, 
depending on the duration, extent, and topography of 
ischemia and the presence of other underlying arrhyth-
mias [33]. Furthermore, false-positive results were 
reported more commonly in the patients with LVH, elec-
trolyte imbalance, use of digitalis, and intraventricular 
conduction abnormalities [33]. Therefore, it is more dif-
ficult to use ECG characteristics in an DL-based model to 
estimate the clinical probability of chronic CAD.

Current practice depends on the clinician’s interpreta-
tion on ECG when the patient with stable chest pain and 
suspected ObCAD is evaluated. Therefore, it is subjec-
tive according to the knowledge and experience of the 
clinician and requires time and effort in the field. It also 
could not be quantified and integrated into any quanti-
tative estimation of risk stratification. In contrast, the 
DL-based ECG model could contribute to automated 
ECG interpretation and risk quantification. Furthermore, 
while ECG may be a poor predictor from the perspective 
of the human eye and computer-assisted ECG features 
provided by GE machine, ECG characteristics have been 
demonstrated to be related to the prediction of ObCAD 
[31, 32, 34–36]. Previous literature reported that the rest-
ing ECG could not properly predict ObCAD based on the 
cardiologist’s interpretation of the ST segment, T and Q 
wave: 51.5% of sensitivity and 66.1% of specificity [37]. 
Similarly, the ECG interpretation provided by GE showed 
lower sensitivity in this study; it found myocardial isch-
emia in only 15% of 4,178 patients with QCA stenosis, 
whereas 11% of the patients without QCA stenosis had 
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ischemia in the interpretation (15.0% of sensitivity and 
88.9% of specificity). However, other studies have sug-
gested that multiple ECG variables in the transformed 
and multiadjusted models could be important predictors 
of ObCAD detection and mortality, and another recent 
studies suggested that heart rate variability and the Hil-
bert–Huang transformation of ECG may reveal the hid-
den information on the myocardial ischemia [32, 34, 35]. 
Therefore, if the DL-based ECG models are enhanced in 
sophisticated and innovative ways, they may help clini-
cians make better discrimination and decision for further 
diagnostic methods.

In this study, the proposed model adopting 1D ResNet 
was superior to other ML and DL models. It may be 
because LR and RF cannot reflect time series features 
when learning ECG signals. In particular, although 
RF improves generalization performance by prevent-
ing overfitting of decision trees through ensembles, we 
experimentally confirmed that it still tends to overfit 
in high-dimensional data [38]. To prevent this, we con-
verted ECG signals to FFT, but the loss of frequency 
resolution and information and the loss of time series 
characteristics could not be completely solved [39]. 
Bi-LSTM considers time series characteristics, but its 
strength lies in learning long-term dependencies, mak-
ing it less suitable for finding fine features with short-
term periods [40]. Transformer Encoder’s Self-Attention 
was primarily used to learn global dependencies, which 
limited the 1D CNN’s ability to detect local patterns. In 
addition, the model complexity increases due to more 
parameters compared to the 1D CNN, which could lead 
to overfitting problems.

The main strength of this study was the inclusion of a 
contemporary population with suspected ObCAD and 
who received CAG. Therefore, there is little risk of mis-
classification because the classification was based on the 
CAG reports. Moreover, the number of the subjects was 
higher than those of previous experiments, which offers 
more variation in the ECG data and is close to the real 
world. Furthermore, the DL-based model could help 
more people receive an earlier diagnosis and treatment 
compared to traditional ECG interpretation and help to 
reduce unnecessary diagnostic tests in the current prac-
tice. Compared to traditional ECG interpretations, the 
DL-based model could lead to the earlier diagnosis of 
58% more people with CAG and the earlier treatment of 
patients with stable chest pain and suspected ObCAD: 
646 (15%) of the traditional interpretation vs. 3,050 (73%) 
of the DL model in 4,178 patients with QCA stenosis. 
Furthermore, 62% of the 4,293 patients with a low prob-
ability of ObCAD by the DL model could be excluded 
from unnecessary non-invasive diagnostic tests and 
CAG.

This study had some limitations. This was a retrospec-
tive study based on subjects who were not all comers 
with chest pain but had received CAG. Therefore, the 
enrolled subjects were the selected patients considered 
high-risk by a physician, which may limit generaliza-
tion. Second, these results need to be transformed into 
applications in the future, such as being implemented in 
a prospective study, to confirm the performance. Third, 
although the DL algorithm showed good performance in 
automatically detecting AMI, it still showed fair accuracy 
and sensitivity in screening for ObCAD. Therefore, the 
results of this study should be interpreted with caution 
in clinical practice, and the DL-based ECG model should 
be innovatively improved for practical use in the future. 
Fourth, the characteristics of symptoms, which were crit-
ical in clinical practice, could not be covered by a better 
ECG interpretation. Finally, it is important to explore fur-
ther the ECG components that contribute to the classifi-
cation. Recently, efforts have been made to develop new 
technologies that could make machine-learning models 
interpretable or explainable.

Conclusion
This study examined the possibility of adopting a DL 
algorithm to ECG for screening ObCAD and compared 
the performance of the ObCAD model with that of the 
AMI model. Although the model showed good to excel-
lent performance in detecting AMI, it demonstrated only 
modest performance in suggesting the probability of 
ObCAD and required further enhancement. Neverthe-
less, information from ECG extracted by the DL algo-
rithm may serve as an adjunct to an initial assessment 
by clinicians in addition to the pre-test probability. With 
further refinement and evaluation, ECG coupled with the 
DL algorithm may provide potential front-line screening 
support to assist clinicians in the resource-intensive diag-
nostic pathways.
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