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Abstract 

Background Low body mass index (BMI) or underweight status in late life is associated with an increased risk of 
dementia or Alzheimer’s disease (AD). However, the relationship between late‑life BMI and prospective longitudinal 
changes of in‑vivo AD pathology has not been investigated.

Methods This prospective longitudinal study was conducted as part of the Korean Brain Aging Study for Early Diag‑
nosis and Prediction of Alzheimer’s Disease (KBASE). A total of 194 cognitive normal older adults were included in the 
analysis. BMI at baseline was measured, and two‑year changes in brain Aβ and tau deposition on PET imaging were 
used as the main outcomes. Linear mixed‑effects (LME) models were used to examine the relationships between late‑
life BMI and longitudinal change in AD neuropathological biomarkers.

Results A lower BMI at baseline was significantly associated with a greater increase in tau deposition in AD‑signature 
region over 2 years (β, ‑0.018; 95% CI, ‑0.028 to ‑0.004; p = .008), In contrast, BMI was not related to two‑year changes 
in global Aβ deposition (β, 0.0002; 95% CI, ‑0.003 to 0.002, p = .671). An additional exploratory analysis for each sex 
showed lower baseline BMI was associated with greater increases in tau deposition in males (β, ‑0.027; 95% CI, ‑0.046 
to ‑0.009; p = 0.007), but not in females.

Discussion The findings suggest that lower BMI in late‑life may predict or contribute to the progression of tau 
pathology over the subsequent years in cognitively unimpaired older adults.
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Introduction
A large amount of evidence indicates that body mass 
index (BMI) is related to the risk of Alzheimer’s disease 
(AD) dementia [1–3]. Several studies have shown that 
being overweight or obese in midlife increases the risk 
of AD dementia or cerebral beta-amyloid (Aβ) deposi-
tion [4–6]. However, multiple studies have also reported 
that low BMI or being underweight in late life was asso-
ciated with an increased risk of dementia [1, 3, 7] and 
that higher BMI in late life was a protective factor for AD 
dementia [3, 8].

Several amyloid positron emission topography (PET) 
studies with cross-sectional design demonstrated that 
lower BMI in late life was associated with increased brain 
Aβ burden in cognitive normal(CN) elderly individu-
als [9–12]. Other cross-sectional studies also reported 
a correlation between lower late-life BMI and increased 
CSF total tau or phosphorylated-tau [9, 13, 14]. A study 
has reported that there is a correlation between frailty 
and brain atrophy as measured by MR imaging, with 
greater frailty being associated with greater brain atro-
phy in community dwelling older adults [15]. All these 
findings are consistent with the association between 
low BMI in late life and a higher risk of AD dementia. In 
regard of longitudinal approach, some prospective stud-
ies have reported that brain Aβ is associated with future 
decreased of BMI, suggesting that weight loss, as well as 
cognitive decline, may be a clinical manifestation of AD 
process [16, 17]. However, the relationship between late-
life BMI and prospective longitudinal changes of in-vivo 
AD pathology has not yet been investigated. Understand-
ing such relationship of current BMI and future prospec-
tive changes of AD pathological biomarkers in cognitively 
unimpaired older adults could make it clearer whether 
lower BMI can predict or contribute to the progression 
of AD pathology and subsequently to AD dementia risk.

In this context, we tested the hypothesis that a lower 
late-life BMI is related to a greater prospective increase 
in in-vivo AD pathology, including Aβ and tau deposi-
tion, in cognitively healthy individuals. Additionally, as 
several previous studies showed prominent sex-related 
differences for the relationship between BMI and AD 
dementia risk [18, 19] and brain Aβ deposition [11, 20], 
we explored the same relationship for each sex separately.

Methods
Participants
This study was performed as part of the Korean Brain 
Aging Study for Early Diagnosis and Prediction of Alzhei-
mer’s Disease (KBASE), an ongoing prospective cohort 
study conducted from 2014 [21]. As of 2018, 297 CN 
adults between 55 and 90  years old were recruited and 

received a baseline evaluation, including a comprehen-
sive clinical assessment and BMI measurement. Among 
them, 194 participants who had completed both baseline 
and two-year follow-up neuroimaging scans for brain 
Aβ deposition were included in the current study. The 
inclusion criteria were as follows: (a) age 55–90  years, 
(b) Clinical Dementia Rating score of 0, and (c) no diag-
nosis of mild cognitive impairment or dementia. The 
exclusion criteria were as follows: (a) any serious medi-
cal, psychiatric, or neurological disorder that could affect 
mental function; (b) any severe communication problem 
that would render clinical examination or brain scanning 
difficult; (c) contraindications to magnetic resonance 
imaging (MRI), such as a pacemaker or claustrophobia; 
(d) absence of a reliable informant; (e) illiteracy defined 
as a lack of the ability to read; and (f ) participation in 
another clinical trial or treatment with an investigational 
product. Research clinicians determined the presence of 
any exclusion criteria by referring to the results of labo-
ratory examinations and MRI scans. They also evalu-
ated the clinical data collected by trained nurses during 
systematic interviews of participants and their reliable 
informants during the screening period. More detailed 
information on the recruitment of the KBASE cohort has 
been presented in a previous report [21]. The study was 
approved by the Institutional Review Board of the Seoul 
National University Hospital and SNU-SMG Boramae 
Medical Center, South Korea. All participants provided 
written informed consent.

Clinical assessment
The participants underwent comprehensive baseline 
clinical assessments based on the KBASE protocol [21] 
by trained psychiatrists. The assessments incorporated 
the Korean version of the Consortium to Establish a Reg-
istry for Alzheimer`s Disease Assessment (CERAD-K) 
[22, 23]. The presence of vascular risk factors (VRFs), 
including diabetes, hypertension, dyslipidemia, coronary 
heart disease, transient ischemic attack, and stroke, was 
assessed from data collected during systematic interviews 
by trained nurses with participants and their informants. 
Based on the number of VRFs, the vascular risk score 
(VRS) was calculated [24] and treated as a continuous 
variable for analyses. The Geriatric Depression Scale 
(GDS) [25] was used to measure the severity of depres-
sive symptoms. Smoking status (never/former/smoker), 
alcohol intake status (never/former/drinker), and lifetime 
physical activity were evaluated through interviews with 
nurses. The Lifetime Total Physical Activity Question-
naire [26] was used to assess lifetime physical activity. A 
metabolic equivalent (MET) value was assigned to the 
intensity of activity based on the compendium of physical 
activities [27].
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BMI measurement
BMI was calculated as weight in kilograms divided by the 
square of the height in meters. It was measured at the 
baseline visit. Trained research nurses measured the par-
ticipants’ height and body weight using standard anthro-
pometric methods.

Measurement of Aβ biomarker
All participants underwent  [11C] Pittsburgh compound B 
(PiB)-positron emission tomography (PET) scans using 
a 3.0  T Biograph mMR (PET-MR) scanner (Siemens, 
Washington DC, USA). These scans were conducted 
according to the manufacturer’s protocols at baseline 
and two-year follow-up visit. We described the details 
of PiB-PET image acquisition and preprocessing previ-
ously [28]. The automatic anatomic labeling algorithm 
and the region combination method [29] were used to 
determine regions of interest (ROIs) and to characterize 
PiB retention in the frontal, lateral parietal, posterior cin-
gulate-precuneus, and lateral temporal regions. A global 
cortical ROI (consisting of the four smaller ROIs) was 
also defined. The global Aβ retention value, the stand-
ardized uptake value ratio (SUVR) for the global corti-
cal ROI, was calculated by dividing the mean values for 
all voxels of the global cortical ROI by a mean reference 
region. For the analysis of baseline data, the inferior cer-
ebellar gray matter in the spatially unbiased infratentorial 
template for the cerebellum (SUIT) atlas [30] was used 
as the reference region. A participant was classified as 
Aβ positive if the SUVR was > 1.21 [31]. For longitudinal 
analysis, the reference region included the inferior cer-
ebellar grey matter, cerebellar white matter (thresholded 
at 50%), pons, and cerebrum white matter (thresholded at 
95% and eroded by three voxels) [32, 33].

Measurement of cerebral tau deposition
A subset of subjects (n = 45) underwent two  [18F] 
AV-1451 PET scans using a Biograph True Point 40 PET/
CT platform (Siemens, USA) per the manufacturer’s 
guidelines at a two-year time interval. While the first PiB-
PET imaging was performed during the baseline visit, the 
first AV-1451 PET imaging was performed at an aver-
age of 2.55 (standard deviation = 0.26) years after that 
visit. The details of AV-1451 PET imaging acquisition 
and preprocessing have been described previously [28]. 
We quantified the AV-1451 SUVR of a priori ROI of the 
“AD-signature region” of tau accumulation to estimate 
cerebral tau deposition. This was a size-weighted average 
of the partial volume-corrected uptake by the entorhinal, 
amygdala, parahippocampal, fusiform, inferior temporal, 
and middle temporal ROIs [34, 35]. It was done using the 
cerebral hemispheric white matter ROI from FreeSurfer 

in the partial volume code [36] as a reference region. The 
literature recommends using cerebral white matter as the 
reference region for intensity normalization in longitudi-
nal AV-1451 PET data analysis [37].

Statistical analyses
We tested linear mixed-effects (LME) models with ran-
dom intercepts to examine the relationships between 
late-life BMI and longitudinal change in AD neuro-
pathological biomarkers. All models included Aβ or tau 
deposition values as dependent variables on the first and 
second PET scan. Model 1 included baseline BMI, age, 
sex, APOE4, baseline Aβ or Tau and their interactions 
with time. In Model 2, we additionally controlled for 
VRS and its interaction with time to adjust for the con-
founding effects of vascular risk factors, considering the 
well perceived role of vascular risk factors in AD devel-
opment [38, 39]. A random intercept was included for 
each subject, and time was calculated as the number of 
years from baseline. For exploratory purposes, the LME 
model including baseline BMI, age, APOE4, baseline Aβ 
or tau and their interactions with time was analyzed for 
each sex. Statistical analyses were performed using R 
version 4.0, and jamovi version 2.2.1 (The jamovi pro-
ject, www. jamovi. org). In all analyses, p < 0.05 was con-
sidered as statistical significance.

Availability of data and materials
The datasets generated and analyzed during the present 
study are not publicly available, owing to ethics consid-
erations and privacy restrictions. Data might be obtained 
from the corresponding author after approval by the 
Institutional Review Board of the Seoul National Univer-
sity Hospital, South Korea.

Results
Participant characteristics
The demographic and clinical characteristics of all sub-
jects are presented in Table 1.

Association of BMI at baseline with cerebral Aβ and tau 
deposition change over two years
Baseline BMI was not significantly associated with global 
Aβ deposition change during the two-year follow-up 
period for models 1 and 2. In contrast, a lower baseline 
BMI was significantly associated with a greater increase 
in tau deposition in the AD-signature region over two 
years (Table  2). When we conducted the same analyses 
including three BMI strata (below -1 SD, median BMI, 
above 1SD) instead of BMI as a continuous variable for 
the purpose of demonstration, the results were similar 
(Fig. 1 and Table 3). We also performed sensitivity anal-
yses, including the GDS score, smoking status, alcohol 

http://www.jamovi.org
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intake status, and lifetime physical activity as additional 
covariates, which showed similar findings (Table 4).

Association of BMI with cerebral Aβ and tau deposition 
change over two years stratified based on sex
A lower baseline BMI was associated with increased tau 
deposition over two years in men, but not in women 
(Table  5). As for Aβ changes, neither women nor men 
showed significant association between baseline BMI and 
cerebral Aβ changes over two years.

Discussion
The present study found that a lower BMI was associated 
with greater increase of brain tau deposition over two 
years in cognitively healthy older adults. Further explora-
tory analyses showed that this association was significant 
in men, but not in women. In contrast, baseline BMI was 
not significantly associated with the change in cerebral 
Aβ deposition.

Our findings on the relationship between lower base-
line BMI and greater increase in brain tau deposition are 
in agreement with previous reports of a cross-sectional 
association between lower BMI and higher CSF tau lev-
els in older individuals [9, 13, 14, 40]. Although it is not 
easy to clearly explain the mechanisms underlying the 
relationship between lower BMI and greater increase in 
brain tau deposition, some possible explanations can be 
provided. First, the association between lower BMI and 
increased tau in the brain may be mediated by decreased 
leptin levels, a hormone synthesized from body fat that 
regulates appetite and energy metabolism [41]. Several 
laboratory studies have demonstrated that leptin reduces 
phosphorylated tau in in  vivo and in  vitro experiments 
[42–44]. This possibility of leptin mediation may further 
explain why the association is more prominent in males 
than females. As leptin expression is higher in subcutane-
ous than visceral fat [41, 45], it is more likely to be lower 
in thin males than thin females. Even at the same BMI, 
males have less subcutaneous fat than females [41, 46]. 
Second, alterations in insulin regulation may influence 
brain tau pathology [47]. Insulin inhibits tau hyperphos-
phorylation [48, 49], and plasma insulin can be trans-
ported via the blood–brain barrier into the cerebrospinal 
fluid [50]. Given people with low BMI have lower plasma 
insulin levels than those with higher BMI [51], decreased 
insulin levels in thin individuals may accelerate the brain 
deposition of pathological tau protein by ameliorating 
the insulin function to inhibit tau phosphorylation.

Additional exploratory analyses demonstrated male-
specific association between lower baseline BMI and 
increased tau deposition over two years. The finding is 
generally in line with our previous report which showed 
a male-specific association between mid-life lower BMI 

Table 1 Participant characteristics

Abbreviations: Aβ β-amyloid protein, IQR Interquartile range, MET metabolic 
equivalent, SD standard deviation, SUVR standardized uptake value ratio, VRS 
vascular risk score

Variable Total Tau PET

No. of individuals 194 45

Age at baseline, year (mean ± SD) 68.4 ± 8.1 70.3 ± 7.3

Female, No. (%) 102 (53) 25 (55.6)

Education, year, median (IQR) 12 (7) 12(4)

APOE ε4 carriers, No. (%) 35 (18.0) 8 (17.8)

Baseline BMI, kg/m2 (mean ± SD) 24.20 ± 3.01 24.5 ± 2.55

Vascular risk factor, No. (%)

 Diabetes mellitus 35 (18.0) 10 (22.2)

 Hypertension 87 (44.8) 21 (46.7)

 Hyperlipidemia 69 (35.6) 15 (33.3)

 Coronary heart disease 11 (5.7) 3 (6.7)

 Stroke 0 0

 TIA 1 (0.5) 1 (2.2)

VRS, median (IQR) 1 (0–2) 1 (0–2)

Alcohol use, No. (%)

 Never 98 (50.5) 25(55.6)

 Former 23 (11.9) 7 (15.6)

 Drinker 73 (37.6) 13 (28.9)

Smoking status, No. (%)

 Never 125 (64.4) 30 (66.7)

 Former 57 (29.4) 13 (28.9)

 Drinker 12 (6.2) 2 (4.4)

Lifetime physical activity, MET, median (IQR) 68.7 (57.2) 64.5 (42.1)

Cerebral Aβ deposition, SUVR

 Baseline global Aβ retention, median (IQR) 1.12 (0.11) 1.13 (0.11)

 Baseline Aβ positive (> 1.20), No, (%) 43 (22) 13 (28.9)

Global Tau deposition, SUVR

 Baseline Tau retention, median (IQR) 1.02 (0.14) 1.00 (0.16)

Table 2 Association of the baseline BMI with neuroimaging 
biomarker changes for 2‑year

Abbreviations: Aβ β-amyloid protein, BMI body mass index, CI confidence interval
a Adjusted for age, sex, APOE4, baseline Aβ or Tau and their interactions with 
time
b Adjusted for age, sex, APOE4, baseline Aβ a or Tau, vascular risk score, and their 
interactions with time

Estimate 95% CI t value p value

Dependent variable: Aβ deposition
 Model  1a

  Baseline BMI x time 0.000 ‑0.003 to 0.002 ‑0.359 .720

 Model  2b

  Baseline BMI x time 0.000 ‑0.003 to 0.002 ‑0.426 .671

Dependent variable: Tau deposition
 Model  1a

  Baseline BMI x time ‑0.018 ‑0.030 to ‑0.006 ‑3.027 .003

 Model  2b

  Baseline BMI x time ‑0.016 ‑0.028 to ‑0.004 ‑2.703 .008



Page 5 of 7Lee et al. Alzheimer’s Research & Therapy          (2023) 15:108  

and reduced AD-signature region cortical thickness [11]. 
Both findings may explain the neuropathological links 
underlying sex-specific association between BMI and AD 
dementia risk repeatedly shown by epidemiological stud-
ies [18, 19, 52].

We did not find a significant relationship between 
baseline BMI and longitudinal brain Aβ changes for all 
participants. This disagrees with previous cross-sectional 

findings for the association between lower BMI and 
higher Aβ deposition in cognitively healthy older indi-
viduals [9–12]. Given very gradual accumulation of Aβ 
in the brain [53], the two-year follow-up period may 
be relatively short to assess changes in Aβ deposition. 
Such short-term observations may affect the null find-
ing for the association between BMI and changes in Aβ 
deposition.

Our finding for the relationship between lower late-life 
BMI and prospective increase in in  vivo tau pathology 
is a novel one. Nevertheless, the present study had sev-
eral potential limitations that should be addressed. First, 
as the proportion of participants with obesity (BMI over 
30  mg/kg2) and underweight (BMI below 18.5  mg/kg2) 
was very small in our sample [3.1% (n = 6) and 1% (n = 2) 
of overall participants, respectively], it might be difficult 
to investigate the influence of higher BMI, obesity or very 
low BMI on the change in AD pathologies. Second, the 
first tau PET was performed at an average of 2.55 years 
(standard deviation 0.26  years) after BMI measurement 
at baseline, whereas the first amyloid PET was performed 
at baseline. This temporal gap may have influenced the 
results. However, when we controlled for the temporal 
gap as an additional covariate, the results did not change. 
Third, only a subset of participants (n = 45) underwent 
two tau PET scans, whereas all participants underwent 
two amyloid PET scans. Despite the smaller sample size 
for tau, we found a statistically significant relationship 
between BMI and change in tau deposition. This indi-
cates that a small sample size may not be a critical issue. 
Nevertheless, a study with a larger sample size is required 
to confirm the sex-specific association between BMI and 
pathological changes in AD patients. Finally, mood sta-
tus and various lifestyle factors may confound the asso-
ciation between BMI and changes in AD biomarkers. To 
minimize this possibility, we performed additional sensi-
tivity analyses including smoking status, alcohol status, 

Fig. 1 Changes of Global Amyloid and tau deposition over 2 years according to the baseline BMI strata. Estimates are from a linear mixed model 
predicting change in Aβ deposition (A) and in tau deposition (B). Controlling for age, sex, APOE4, baseline tau or Aβ and their interactions with 
time. Error bars represent standard error

Table 3 Association of the baseline BMI strata with 
neuroimaging biomarker changes for 2 years

Abbreviations: Aβ β-amyloid protein, APOE apolipoprotein e, BMI body mass 
index, CI confidence interval

Adjusted for age, sex, APOE e4, baseline Aβ or Tau and their interactions with 
time

Estimate 95% CI t value p value

Dependent variable: Aβ retention
 Baseline BMI strata 
x time

‑0.004 ‑0.016 to 0.008 ‑0.653 .514

Dependent variable: Tau deposition
 Baseline BMI strata 
x time

‑0.067 ‑0.118 to ‑0.017 ‑2.606 .011

Table 4 Results from sensitivity analyses for the association 
of the baseline BMI with neuroimaging biomarker changes for 
2 years

Abbreviations: Aβ β-amyloid protein, APOE apolipoprotein e, BMI body mass 
index, CI confidence interval

Adjusted for smoking status, alcohol intake status, and lifetime physical activity 
as well as age, sex, apolipoprotein e4, vascular risk score, baseline Aβ or tau and 
their interactions with time

Estimate 95% CI t value p value

Dependent variable: Aβ retention
 Baseline BMI x time 0.0003 ‑0.003 to 0.002 ‑0.232 .817

Dependent variable: Tau deposition
 Baseline BMI x time ‑0.016 ‑0.028 to ‑0.004 ‑2.551 .012
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lifetime physical activity, and GDS as additional covari-
ates and still obtained similar results. However, we could 
not control for food intake or dietary quality due to the 
lack of information.

Conclusion
The present findings suggest that lower BMI in late 
life may predict or contribute to the progression of tau 
pathology over subsequent years in cognitively unim-
paired older adults. Concerning the prevention of AD 
dementia or related cognitive decline, more attention 
needs to be paid to avoid being underweight in late life, 
particularly in men.
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