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Abstract 

Background Genome‑wide dysregulation of CpG methylation accompanies tumor progression and characteristic 
states of cancer cells, prompting a rationale for biomarker development. Understanding how the archetypic epige‑
netic modification determines systemic contributions of immune cell types is the key to further clinical benefits.

Results In this study, we characterized the differential DNA methylome landscapes of peripheral blood mononu‑
clear cells (PBMCs) from 76 canines using methylated CpG‑binding domain sequencing (MBD‑seq). Through gene 
set enrichment analysis, we discovered that genes involved in the growth and differentiation of T‑ and B‑cells are 
highly methylated in tumor PBMCs. We also revealed the increased methylation at single CpG resolution and reversed 
expression in representative marker genes regulating immune cell proliferation (BACH2, SH2D1A, TXK, UHRF1). 
Furthermore, we utilized the PBMC methylome to effectively differentiate between benign and malignant tumors 
and the presence of mammary gland tumors through a machine‑learning approach.

Conclusions This research contributes to a better knowledge of the comprehensive epigenetic regulation of circulat‑
ing immune cells responding to tumors and suggests a new framework for identifying benign and malignant cancers 
using genome‑wide methylome.
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Background
Immune cells interact with the tumor and are involved 
in tumor invasion, metastasis, and systemic immune cell 
exhaustion in the tumor environment [1]. Accordingly, 
cancer treatments have been developed using immune 
checkpoint inhibitor (ICI) that interferes with the signal 
between immunity and tumor and adoptive cell ther-
apy that allows immune cells to attack tumor cells (e.g., 
CAR-T, TILs, etc.). In numerous clinical trials, the effec-
tiveness of immunotherapy on tumors depends on the 
cancer type and the cancer patient’s immune status [2]. 
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Peripheral mononuclear cells (PBMCs) containing a vari-
ety of cell types such as T- and B- lymphocytes, natural 
killer cells (NK cells), dendritic cells (DCs), and mono-
cytes actively respond to tumor cells [3]. Though PBMC 
is a valuable source for monitoring immune-relevant 
tumor mechanisms and diagnosing tumor status [3], a 
comprehensive omics analysis in PBMCs from tumor 
patients has not been performed. Here, we generated a 
primary dataset suitable for understanding epigenetic 
regulation circulating immune cells respond to tumors 
using PBMCs derived from dog mammary gland tumors.

Epigenetic modification is an essential factor that 
enhances the effectiveness of cancer treatment by 
immune cells [4]. Recently, clinical trials have been 
underway on the combination therapy of ICI with epi-
genetic drugs such as HDAC inhibitors (HDACi), 
5-aza-2-deoxycytidine (5-Aza), and decitabine [5]. DNA 
methylation is a reversible change and a valuable target 
that can be modulated and quickly detected [6]. Promoter 
methylation of checkpoints such as CTLA-4, PD-1, and 
CD28 has been reported to be associated with systemic 
suppression of immune cells in the tumor microenviron-
ment (TME) [7]. In addition, methylation of peripheral 
blood immune cells is a strong candidate for diagnosing 
solid tumors such as head and neck squamous cell carci-
noma [8], liver cancer [9], bladder cancer [10], and ovar-
ian cancer [11]. Understanding epigenetic regulation in 
circulating immune cells provides valuable information 
to diagnose tumor type, grade, and prognosis and treat 
tumors with immune remodeling therapy (e.g., CAR-T 
therapy) [12]. Nevertheless, many studies in human 
cancer methylome have focused on tumor-infiltrating 
immune cells and immune checkpoints. Epigenetic infor-
mation of PBMC has advantages in providing diagnostic, 
prognostic, and therapeutic information based on easily 
accessible liquid biopsy modality.

Since epigenetic responses to environmental factors 
occur actively in dogs as in humans, comparative medi-
cal studies using dogs have been conducted on aging, 
tumor biogenesis, and inflammatory diseases [13]. It 
has been reported that dogs might be helpful animal 
models for immunotherapy studies because they are 
immune-competent, and their tumor biology is similar to 
that of humans [14]. Indeed, several recent studies have 

evaluated the cross-reactivity of immunotherapy against 
human and canine cancers [15].

We identified epigenetic signatures in circulating 
immune cells of CMT through a genome-wide meth-
ylation study of PBMCs in normal, benign tumors and 
malignant tumors (carcinoma). We found aberrant meth-
ylation of immune regulatory genes involved in various 
immune cell’s proliferation and normal differentiation. 
This result suggests that immune cell activity is affected 
by CpG methylation not only in the tumor microenvi-
ronment but also in peripheral blood. Furthermore, we 
modeled a two-step classifier that can distinguish benign 
and malignant tumors from normal through machine 
learning (ML) algorithms using the PBMC methylome 
datasets.

Results
Profiling differential methylation of peripheral blood 
mononuclear cells in canine mammary gland tumor
We first made genome-wide differential methylation pro-
files of PBMCs in CMT. To evaluate the genome-wide 
effects of mammary tumors on PBMC DNA methylation, 
PBMCs were collected from 15 healthy dogs (Normal; 
N), 31 dogs with mammary adenoma (Benign; B), and 30 
dogs with mammary carcinoma (Carcinoma; C) (Fig. 1A). 
The donor’s information is listed in Table S1. The healthy 
samples consist of six dog breeds, aged 1 to 12, and 13 
females, including eight spayed females and two neutered 
males. Patient specimens comprise 16 dog breeds aged 
5 to 16 and six significant subtypes of canine mammary 
tumors (ductal, simple, complex, mixed, inflammatory, 
and comedo). All patient dogs were females or spayed 
females.

Global CpG methylomes have enriched and analyzed 
by methyl-CpG-binding domain sequencing (MBD-seq) 
that has high coverage in highly methylated CpG and 
CpG-rich regions (Fig.  1A). The quality check for NGS 
data has also been performed (Table S2). Sequencing 
reads more than 5X depth (considered as signal peaks) 
show about 50% CpG coverage, indicating that the MBD-
seq data was successfully produced and informative (Fig-
ure S1A). The R Bioconductor MEDIPS (v.1.46.0) [16] 
was mainly employed to calculate methylation levels and 
identify differentially methylated regions (DMRs) (Figure 

(See figure on next page.)
Fig. 1 Pair‑wise comparison for genome‑wide PBMC methylome datasets from benign, carcinoma, and normal dogs. A Synopsis of genome‑wide 
PBMC methylome study. B A Venn diagram shows the number of common and unique DMRs identified in each comparison (FDR‑adjusted 
p‑value < 0.1 and  log2FC ≥  ± 0.585). C‑E The distributions of genomic features in Total bins, Bins_used, and each DMR to see pronounced regions. 
‘Bins_used’ regarded signal peaks used for DMR analysis, excluding noise bins (both low signal bins and zero CpG bins) from ‘Total bins’. F Volcano 
plots and 100%‑scaled stacked bar plots with the frequency and genomic profile of hypo‑ and hyper‑ methylated bins. The x‑axis is the ‘log2 
methylation fold change’, and the y‑axis means the statistical significance. Hypermethylated in ‘N’ is expressed as blue, ‘T’ as purple, ‘B’ as orange, 
and ‘C’ as red. G Heatmap Clustering of ‘N and T with NT_DMR (2840 DMRs)’, ‘N and B with NB_DMR (3373 DMRs)’, ‘N and C with NC_DMR (1876 
DMRs)’, ‘B and C with BC DMRs (168 DMRs)’. The clustering distance between samples (columns) followed Pearson’s correlation, and the ‘complete’ 
method was used
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Fig. 1 (See legend on previous page.)
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S1B). DMRs were further subjected to ML for modeling 
an immune classifier for CMT. Of the total, 4,655,287 
bins (referred to as ‘Total bins’ in Fig.  1C-E) were gen-
erated at 500 bp size, and 1,220,164 bins (referred to as 
‘Bins_used’ in Fig.  1C-E) with reading counts of 25 or 
more were used for further analysis.

Together with pair-wise comparisons (Normal vs. 
Benign (NB), Normal vs. Carcinoma (NC), and Benign vs. 
Carcinoma (BC)), we also compared Normal vs. Tumor 
(NT), in which tumor includes benign and carcinoma. 
From each comparison, 2840, 3373, 1876, and 168 DMRs 
were identified with significance  (log2FC ≥  ± 0.585 (|Fold 
Change|≥ 1.5), adjusted p-value (FDR) < 0.1) for NT, NB, 
NC, BC, respectively (Fig. 1B). The statistics and genomic 
features of each DMR group are listed in Table S3-S6 for 
NT_DMR, NB_DMR, NC_DMR, and BC_DMR, respec-
tively. Interestingly, the NB comparison shows the high-
est number of DMRs, followed by NT. As expected, NT 
comparison shares more than half of DMRs (1514) with 
NB and NC comparisons. Of note, DMRs from NB and 
NC comparisons share 636 DMRs and methylation direc-
tions (that is, B-hyper = C-hyper, B-hypo = C-hypo), indi-
cating the methylation status of immune cells against 
tumors are similar in benign and carcinoma (Figure S2). 
Most of all, we focused if DMR profiles of PBMC can 
distinguish corresponding tumor types (benign or carci-
noma) as well as Normal. However, only a small number 
of DMRs were identified from BC, and most BC_DMRs 
were unique across all DMRs, indicating that they are not 
explicitly associated with tumor states.

The uniqueness of BC_DMRs was shown in the 
genomic and CpG regional distribution and gene types 
linked to DMRs (Fig.  1C-E). Total bins consist of five 
genomic regions. Compared with the ‘Total bins’, the 
intron region was increased when the intergenic region 
was decreased in the ‘Bins used’. Moreover, more num-
bers of the CpG island, Shore, and Shelf regions were 
enriched in the ‘Bins used’ compared to the ‘Total bins’. 
Interestingly, BC_DMRs were enriched in the promoter 
and exon regions and the CpG island regions, which are 
more associated with the protein-coding region.

We then analyzed the direction of DMRs using vol-
cano plots and 100% stacked bar charts in eight genomic 
regions (Fig.  1F). Overall, methylation increased in 
tumors compared to Normal. In BC, the Carcinoma 
group was more methylated than the Benign group. 
Regionally, changes in methylation status were highly 
dynamic according to the comparison group. In the NB 
comparison, there were more hypomethylated DMRs 
in CpG islands, promoter, and exon compared to other 
regions. Although these characteristics were simi-
larly shown in the NT comparison, hypermethylated 

DMRs are prominent across all eight regions in the NC 
comparison.

Nevertheless, exon, promoter, and CpG island regions 
were highly hypomethylated in the BC comparison. Most 
of BC_DMRs, indeed, were hypermethylated in carci-
noma. It is an essential feature because hypermethylation 
of certain groups of genes and DMRs might be a cancer-
specific signature.

We then tested if DMRs separate each comparison 
group. The pair-wise hierarchical clustering separated the 
Normal group from the Benign, Carcinoma, and Tumors 
groups (Fig.  1G, Figure S3A-B). However, the Benign 
and Carcinoma groups were not entirely separated from 
each other, suggesting a new clustering algorithm for 
PBMC methylome classification for these group differ-
entiation. The PBMC samples used in this study were 
obtained from dogs with diverse characteristics, includ-
ing age, gender (neutered or not), tumor subtype, hos-
pital where the blood was collected, and tumor features, 
among others. To investigate the potential effects of these 
variables, we performed hierarchical clustering using the 
NT_DMRs that we identified, to examine their influence 
(Figure S3C). Our results show that the clustering of nor-
mal PBMC and tumor PBMC samples using NT_DMRs 
was not influenced by the diverse variables between the 
samples.

Differential methylation accompanies changes in immune 
cell populations and proliferation in malignant tumor 
patients
Several studies have investigated the methylation patterns 
of blood immune cells, limited to specific target genes 
and not on a genome-wide scale [17–20]. Since PBMC 
is a mixture of a wide variety of immune cells, there is a 
limit to the regulation or role of various immune cells. To 
this end, single-cell bisulfite sequencing technology has 
been attempted, but several limitations exist in diagnos-
ing cancer or defining the immune status. We analyzed 
the whole genome-wide methylation profile obtained 
from bulk PBMC samples and attempted to confirm vari-
ous immune status changes in different tumors.

We defined DMGs using DMRs existing in promotor, 
exon, intron, and TTS and performed gene set enforce-
ment analysis (Fig. 2, Figure S4, and Table S7). Figure 2 
shows that the immunocyte-related terms are signifi-
cantly enriched in Gene Ontology (GO), Mammalian 
Phenotype Ontology in Mouse Genome Informatics 
(MGI), and Human Gene Atlas (HGA) databases [21–
23]. In all comparative groups, genes involved in signal 
pathways directly related to cell activity, receptor activ-
ity, and cytokine modulation are hypomethylated in 
tumors (both benign and carcinoma), whereas there is no 
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Fig. 2 Gene enrichment analysis for DMGs shows differential immune signatures between tumor and normal PBMCs. Immune‑related terms 
significantly enriched in the Gene Ontology (blue box), the MGI Mammalian Phenotype (pink box), the KEGG pathway (yellow box), and the Human 
Gene Atlas (purple box) are shown. The color of dots means which group is hypermethylated (‘N‑hyper’ is expressed as blue, ‘T‑hyper’ as purple, 
‘B‑hyper’ as orange, and ‘C‑hyper’ as red. The size of the dots indicates the statistical importance (according to ‑log10 adjusted p‑value). The table 
corresponding to this figure shows the genes included in each term, which is in Table S7
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significant term or pathway found in hypermethylated in 
carcinoma (Part of ‘GO’ and ‘KEGG’ in Fig. 2).

The MGI and HGA databases, which focus on the func-
tion of immune cells, provide clues to infer the immune 
status in the blood (Part of ‘MGI Mammalian Phenotype’ 
and ‘Human Gene Atlas’ in Fig. 2). Comparing the nor-
mal with the overall tumor, the terms associated with the 
increase or abnormal function of T-cells, B-cells, and NK 
cells were high. The comparison between normal and 
cancer showed that the gene group with higher meth-
ylation in cancer PBMC was involved in the increasing 
or decreasing of B-cells or T-cells. Among T-cell types, 
the genes associated with the increase in CD8 + T-cells 
were most highly associated. On the other hand, com-
pared with benign and normal the highly methylated 
genes in the benign group showed abnormalities in NK 
and B-cells. The primary immune cell types responding 
to benign and carcinoma differ. As for the DMR of BC 
comparison, there was no significant difference in the 
gene enrichment analysis, as the number was minimal, as 
shown in Fig. 1B. Through the PBMC DMRs associated 
with immune responses to tumors, it is expected to find 
methylation biomarkers that can distinguish the presence 
or absence of tumors and the malignancy of tumors.

Immune cell markers functionally involved in cell 
proliferation and activation of B, T, and NK cells are 
hypermethylated in tumor PBMCs
Through gene enrichment analysis (Fig.  2), we could 
expect that methylation of immune cells in tumor patient 
dogs is involved in the population or activity of specific 
cell types. The gene enrichment analysis mapped the 
highest terms. Using text mining for meaningful GO 
terms in adj. p < 0.1, words containing ‘receptor’, ‘signal’, 
‘activity’, ‘pathway’, ‘T cell’, and ‘B cell’ were prominent in 
all comparisons (Fig. 3A). These enrichments suggest that 
hypermethylation occurs in immune cells responding to 
tumors and is involved in signal transduction of immune 
cells. To confirm whether the methylation change in 
PBMC is due to the alteration of immune cell populations 
and or the cell activity, we investigated the DMR distribu-
tion on the immune cell type marker genes in PanglaoDB 
(Fig.  3B). DMGs included in 11 types of immune cell 
markers are listed in Table S8. First, NB_DMRs was 
found increasingly on the marker genes of naive B-cells, 
T-cells, and T helper (Th) cells. Instead, NC_DMRs were 
found more in B-cells, NK cells, and many subtypes of 
T-cells. NT_DMRs were found more in naive B-cells, NK 
cells, and T, Th, and T memory cells, combined with NB 
and NC. On the contrary, it is of note that myeloid line-
age cells, such as monocytes are decreased in tumors.

We then identified the most influenced genes by altered 
methylation among the cell type markers. Figure  3C 

shows the cell type marker genes highly enriched in the 
immune-related GO terms considering the gene expres-
sion levels. IL4 was most frequently altered in the GO 
terms, and the expression decreased significantly. The list 
of genes, including TBX21, BCL11B, UHRF1, BACH2, 
SH2D1A, COL4A6, PRDM11, LBH, and TXK, showed 
tumor-associated hypermethylation and a significant 
negative correlation to gene expression. The fold-change 
of methylation and expression and correlation coeffi-
cient calculated for every immune-related DMGs are 
also listed with corresponding DMRs’ genomic features 
in Table S9. We integrated RNA-seq data to show an 
association between methylation and gene expression 
in representative marker genes (Fig.  3D). Among them, 
BACH2, a B-cell marker; SH2D1A, a T-cell marker; TXK, 
an NK cell marker; and UHRF1, known to be related 
to NK cell number, showed a significant negative cor-
relation between the RNA expression and overall gene 
methylation. These results showed that the well-enriched 
immune cell markers in the genome-wide methylation 
changes are closely linked to gene expression and affect 
overall tumor immune cell activity.

Bisulfite‑sequencing validated the tumor‑associated 
differential methylation in immune cell marker genes
We showed that hypermethylation and gene expression 
of cell-specific gene markers are inversely correlated with 
integration analysis of MBD-seq and RNA-seq (Fig.  3C 
& D). Representative DMRs, which have a reverse cor-
relation with the gene expression, verified the methyla-
tion status in  vitro by the targeted bisulfite-sequencing 
(BS-seq). BACH2, an active marker gene of B cells, has 
hypermethylated DMRs consisting of 11 CpGs on the 
second intron out of six introns in tumors (benign and 
carcinoma). The SH2D1A gene, a T-cell activity-related 
marker, has a hypermethylated DMR consisting of seven 
CpGs in the TTS region in tumors. A representative 
carcinoma-related hypermethylated DMR was identified 
from the CpG shore location, consisting of nine CpG pro-
motor-TSS regions of the TXK gene. A DMR harboring 
22 CpGs, which were hypermethylated in carcinoma, was 
identified from the CpG shore region located in the sec-
ond exon among 17 exons of the UHRF1 gene (Fig. 4A). 
The four pairs of primers targeting the flanking regions of 
DMRs used for BS-seq are described in Table S10.

Overall, the DMRs from the MBD-seq analysis were 
confirmed in the targeted BS-seq. However, the meth-
ylation frequency varied from each CpG (Fig.  4B). The 
targeted DMR of BACH2 was the most hypermethyl-
ated in benign, followed by carcinoma. DMR on the 
UHRF1 was most highly methylated in carcinoma, fol-
lowed by benign. The methylation levels of TXK were 
similarly high in benign and carcinoma. In the case of 
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SH2D1A gene sites, only the 5th CpG site was a differ-
entially methylated CpG in tumors. This can still be suf-
ficiently meaningful because studies have reported that 
even the presence or absence of methylation of a single 
CpG can affect transcription level and cell type specificity 

[24]. Figure  4C shows the distribution of methylation 
percentage across samples calculated as the number of 
methylated CpGs/total number of clones * 100 (%). The 
RNA-sequencing results performed on PBMCs of CMTs 
and normal dogs showed a significant decrease in the 

Fig. 3 Immune cell markers involved in normal proliferation and activation of B‑cells, T‑cells, and NK cells are hypermethylated in tumor 
PBMCs. A Text clouds intuitively show the frequency of words enriched in immune‑related terms. The color of the text indicates which group 
is hypermethylated (‘N‑hyper’ is expressed as blue, ‘T‑hyper’ as purple, ‘B‑hyper’ as orange, and ‘C‑hyper’ as red). The meaning of the four colors (blue, 
purple, orange, and red) was applied equally to the following graphs in this figure. B The number of hypermethylated genes included in immune 
cell type markers is expressed as a percentage (%) of total genes in the corresponding cell type. The number of matched genes is displayed 
on the top of each bar. The list of marker genes for 11 types of immune cells was downloaded from Panglao DB. C Among genes enriched 
in significant immune‑associated terms, hypermethylated DMGs that reversely correlate with expression are shown. The y‑axis of the bar graph 
on top means  log2 fold change of methylation values, and that of the middle one means  log2 fold change calculated using TPM values derived 
from RNA‑seq. The y‑axis of the bottom one shows the degree of inverse correlation between methylation and expression by Pearson’s correlation. 
Hypermethylated genes included in Panglao DB and its genomic features are listed in Table S8. D The scatter plots with linear regression (red line) 
in 4 representative genes among 49 genes listed in (C). The Pearson correlation coefficient, expression (fold‑change), and methylation (fold‑change) 
for every immune‑related DMGs are also described in Table S9



Page 8 of 16Nam et al. BMC Genomics          (2023) 24:403 

expression of these four genes (Fig. 4D). When compared 
between the methylation (Fig.  4C) and gene expres-
sion (Fig. 4D), overall methylation levels on the targeted 
regions by BS-seq were significantly opposite to RNA 
expression data. Our targeted BS-seq results confirmed 
that the high-throughput sequencing analysis after meth-
ylated CpG enrichment showed relevant genome-wide 
methylation status in PBMC samples. It then identi-
fied DMRs that may directly link to gene expressions 
that have crucial roles in cell activity and populations in 
PBMCs. Validation of MBD-seq results through BS-seq 
increases the likelihood that they can be developed for 
clinical tumor diagnosis.

Computational modeling of a PBMC methylome‑based 
two‑step classifier distinguishes benign and malignant 
as well as healthy conditions
Methylome-based classification is a potential diagnos-
tic method that reflects the stage or subtype of tumors. 
Previous studies have reported the usefulness of tissue 
methylation-based classifiers in diagnosing CNS tumors 
[25], bone sarcoma [26], and renal cell carcinoma [27]. 
Recently, a model using DNA methylation for discrimi-
nating cancer from para-cancerous tissue has been devel-
oped [28]. To develop a liquid biopsy-based diagnosis, we 
attempted to establish a model for diagnosing mammary 
gland tumors using our genome-wide methylome data. 
Our results thus far showed immune methylome dynam-
ics between normal and tumor PBMCs. However, it was 
difficult to define specific DMRs or functional terms 
that differentiate between benign and malignant tumors 
by PBMC DMRs. For efficient modeling, we devised a 
method to classify normal and tumor in step 1 (NT clas-
sifier), then classify benign and carcinoma in step 2 (BC 
classifier) and named it a two-step classifier (Fig.  5A). 
The process for modeling and performance evaluation is 
depicted in Fig. 5B.

First, NT classifier modeling was performed using 636 
common DMRs with FDR-adjusted p-value < 0.1 and 
 log2FC ≥  ± 0.585 in NB DMR and NC DMR (Fig. 5C-E). 
To overcome the problem that arising from the limited 
number of samples, tenfold cross-validation (tenfold 
CV) was applied. The classifiers were modeled with five 

ML algorithms (Support Vector Machine with the linear 
kernel (SVM_L) or the radial kernel (SVM_R), Random 
Forest (RF), K-Nearest Neighbor (KNN), Gradient Boost-
ing Machines (GBM), and Logistic Regression), and the 
performance of each was evaluated with the ROC curve 
(Fig.  5C). NT classifier shows strong performance with 
AUC = 1 in SVM_L, SVM_R, GBM, and KNN mod-
els except for RF (AUC = 0.99) and logistic regression 
(AUC = 0.7). In both the representative SVM_L confu-
sion matrix and the tenfold validation result, it is con-
firmed that benign and carcinoma are classified as T 
(Tumor) and normal as N (Normal) (Fig. 5D). The accu-
racy of each model is shown in Figure S5A. The high 
accuracy and AUC values of NT classifiers remind us that 
the PBMC methylome profile in tumors is entirely differ-
ent from normal. To evaluate the predictive ability of the 
NT classifiers, PBMC MBD-seq data from 6 dogs with 
mammary gland tumors that were not used for methyl-
ome profiling due to uncertain diagnosis were validated 
in the five NT classifier models (Fig. 5E, the information 
of 6 unknown donors is listed in Table S11). All of the five 
NT classifiers exactly diagnosed total six PBMC samples 
derived from unknown MGT dogs as T (Tumor).

Next, a BC classifier was developed using sig-
nificant DMRs with FDR-adjusted p-value < 0.1 and 
 log2FC ≥  ± 0.585 only in NB_DMR and NC_DMR 
and additional BC_DMR (NB only + NC only + BC 
DMR = total of 4,122 DMRs). Since the original BC_
DMRs with FDR-adjusted p-value < 0.1 failed to clus-
ter benign and carcinoma (Fig.  1G), the same modeling 
process was performed using 2,911 DMRs with FDR-
adjusted p-value < 0.05 (Fig.  5F-H, Figure S5D-E). The 
BC classifier trained with the 2,911 DMRs showed the 
highest performance when using SVM_L (AUC = 0.95), 
followed by GBM (AUC = 0.92). However, the accuracy 
of SVM_L and GBM was 0.867 and 0.886, respectively, 
lower than that of the NT classifier (Fig. 5F). The accu-
racy was about 0.85, which was inferior to that of the 
NT classifier (Figure S5B). To improve the performance 
of the BC classifier, the modeling process was repeated 
one more time with DMRs of high importance in the 
initially selected model to increase the discrimination 
between benign and carcinoma (depicted in Fig.  5B). 

Fig. 4 Targeted CpG methylation and expression analysis in representative hypermethylated genes related to immune cell activation. A 
Methylation peaks in four interesting gene regions are shown. Pink dumbbells also express the loci where primers have been designed. The 
DMR in the BACH2 gene is located in the second intron of 6 introns, the DMR in the SH2D1A gene is located in TTS, DMR in TXK is located CpG 
shore promoter, and the DMR in UHRF1 is located in the second exon of 17 exons overlapped with CpG shore. B The methylation validation 
for 12 CpGs in BACH2 DMR, 7 CpGs in SH2D1A and TXK DMR, and 22 CpGs in UHRF1 DMR by performing targeted bisulfite sequencing using 
primers listed in Table S10. Methylated CGs are indicated by black circles, and unmethylated CGs are expressed by empty (white) circles. C Violin 
plots show the distribution of methylated CG (%) between groups. The total percentages of methylated CG were calculated as ‘(The number 
of methylated CG / The number of total CG in the amplified region) * 100 (%)’ in each CG for every sample. D In contrast to Violin plots in (C), 
Box plots show the expression levels are significantly down‑regulated in Benign and Carcinoma PBMCs versus Normal PBMCs. The y‑axis means 
the  log2‑transformed (TPM + 1) quantified using RNA‑seq

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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The performance of the models was measured using 
127 DMRs, which showed high relative importance in 
GBM and the highest accuracy in the primary BC clas-
sifier (see the bar graph in Fig.  5F). The degree of fea-
ture importance and genomic features of 127 DMRs are 
shown in Table S12. It shows improved accuracy and 
performance than the first-order classifier using 2,911 
DMRs (Fig.  5G-H, Figure S5B-C). As mentioned above, 
a parallel analysis was also executed with 4,122 DMRs 
with an FDR-adjusted p-value < 0.1 (Figure S5D-E). The 
performance of the primary classifier was similar to that 
using 2,911 DMRs. However, the remodeled classifier 
using 102 DMRs of high importance in GBM showed 
slightly lower accuracy than the previous classifier in 
the confusion matrix of Supplementary Fig.  6E. Both 
BC classifiers developed with important DMRs have the 
highest AUC values and accuracy in the SVM_L model. 
BC_DMR did not differentiate between benign and carci-
noma (Fig. 1G). We performed PCA analysis to evaluate 
whether the DMRs selected for the classifier modeling 
discriminate between benign and carcinoma (Figure S6). 
DMRs with higher importance divide the two groups bet-
ter, indicating that the GBM-based feature importance is 
relevant. We designed an optimal two-step classifier by 
utilizing various ML methods and comparing the per-
formance of predictive models. Our result suggests a 
new diagnostic strategy using the PBMC methylome that 
can differentiate between normal, benign, and malignant 
tumors by liquid biopsy.

We constructed a machine-learning-based classifier 
for diagnosing malignant tumors using PBMC Methy-
lome. To ensure reliability of methylome classifiers, we 
also modeled the two-step classifier using transcriptome 
data with the same parameters (Figure S7). The NT clas-
sifier demonstrated the highest performance, with an 
AUC of 0.99 in the GBM model, followed by SVM_R with 
an AUC of 0.97, which showed a similar performance to 
the methylome-based NT classifier. The initial BC classi-
fier showed the highest predictive performance, with an 

AUC of 0.66 in SVM_R. To improve the diagnostic accu-
racy, we conducted secondary modeling of the BC classi-
fier using features with high relative importance, similar 
to what was done in the methylome-based BC classifier. 
However, despite these efforts, the re-modeled BC classi-
fier did not demonstrate improved performance, as indi-
cated by an AUC of only 0.68 in SVM_L. This suggests 
that methylome data provides more informative and 
suitable data for discriminating malignant tumors using 
PBMCs compared to transcriptome data.

Discussion
This study provides a better understanding of genome-
wide epigenomic alteration, presenting a new platform 
for diagnosing malignant tumors from both normal and 
benign tumors based on liquid biopsy and DNA meth-
ylation sequencing. In several studies, blood-based 
DNA methylation has been profiled to develop a robust 
diagnostic marker for cancer. The blood-based methyla-
tion studies are broadly divided into investigating global 
DNA methylation [29] and gene-specific targeted DNA 
methylation [18]. In addition, according to the source of 
DNA, these studies mainly targeted circulating tumor 
cells (CTCs) and cell-free DNA in serum or plasma [30]. 
In the meantime, methylation of repetitive elements 
was generally investigated as surrogates for genome-
wide DNA methylation measurement [31]. There have 
been consistent attempts to diagnose breast cancer (BC) 
patients using peripheral blood. BC is the most common 
malignant tumor in women worldwide. The prognosis of 
BC mainly depends on early detection; to this day, it pri-
marily relies on mammography. CA15-3 or CA27.29 [32], 
approved by the FDA as blood-based protein biomarkers 
for BC, are recommended only for monitoring disease 
recurrence and therapeutic efficacy rather than diag-
nosis. Recently, several studies have reported genome-
wide blood DNA hypomethylation in BC patients [33]. 
Hypermethylation of the BRCA1 gene in the blood cells 
and the RASSF1A gene in cfDNA has been reported in 

(See figure on next page.)
Fig. 5 A machine learning‑based diagnostic two‑step classifier discriminating tumor from normal PBMCs followed by carcinoma from benign 
PBMCs. A The concept of a two‑step classifier for precisely distinguishing three groups (Normal, Benign, and Carcinoma). B Schematic diagram 
of the diagnostic methylome‑based classifier modeling. To generate the best predictive model, tenfold cross‑validation with multiple ML algorithms 
were employed, and then the performance of each model was evaluated. C The ROC curves of the NT classifiers were established by SVM_L, SVM_R, 
RF, GBM, KNN, and logistic regression. AUC values are shown in the right‑bottom area under the curves. D Heatmap of the confusion matrix (left) 
for tumor detection by the SVM_L‑based NT classifier, which has the best AUC value (AUC = 1) and accuracy (Accuracy = 1). The confusion matrix 
for tenfold cross‑validation (right) shows the prediction results for seven to nine test samples in each fold. E Validation of the predictive performance 
in multiple NT classifiers. PBMC MBD‑seq data from six dogs with CMT were used as the validation set. Except for the logistic classifier, which 
incorrectly predicted three out of six, the SVM_L, SVM_R, RF, GBM, and KNN classifiers predict tumors. F The ROC curves (left) for the BC classifier 
modeled with 2911 DMRs containing ‘BC_DMR’ and DMRs identified ‘only in NB_DMR’ or ‘only in NC_DMR’. BC classifiers show lower AUC values 
compared to NT classifiers. The bar graph (right) exhibits the highest accuracy in GBM. 127 DMRs extracted by GBM‑based feature importance are 
used for BC classifier re‑modeling. This iterative process is illustrated in the center of (B). G The ROC curves of re‑modeled BC classifiers using 127 
DMRs, which show enhanced performance compared to previous BC classifiers. H The improved performance was confirmed via both a heatmap 
of the confusion matrix (left) and the tenfold confusion matrix (right) for the final BC classifier (SVM_L) generated using 127 DMRs
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BC patients [19]. On the contrary, some studies have 
also reported an association between low methylation of 
immune cells and increased BC risk. Thus, the evidence 
still needs to be more conclusive. It suggests that reliable 
epigenomic information based on PBMC for diagnosing 
BC and predicting therapeutic efficacy are needed to be 
studied in detail and cross-species approaches. There-
fore, we performed genome-wide methylome analysis in 
the canine PBMC with CMT as an alternative approach 
for BC.

Recently, many studies have revealed that methylation, 
not only in the promoters but also in gene body regions 
such as exon, intron, and TTS regulates transcription 
[34]. For this reason, methylation profiling on a genome-
wide scale has been steadily attempted to confirm the 
distribution of DMR at various locations targeting only 
specific genes. Since the CpG region is also an area in 
which epigenetic dynamics are actively occurring due to 
the recovery of methyltransferase and histone modifiers, 
it is also imperative to understand the DMR distribution 
from CpG islands and their surroundings (shore and shelf 
regions). Although CpG islands account for only 4 to 5% 
of the genome, approximately 70% of promoters are asso-
ciated with CpG islands affecting directly annotated gene 
regulation [35]. Recently, the ± 2 kb region on both sides 
of CpG islands (called ‘CpG shore’) has been reported to 
be associated with cell type specificity and highly corre-
lated with gene expression [36]. Therefore, these methyl-
ation changes in various regions of the blood cell genome 
in cancer patient dogs can affect gene expressions in can-
cer immunity. In this study, we observed the increased 
methylation of CpG shore in TXK and UHRF1 strongly 
anti-correlated with gene expression. Although hyper-
methylation of CpG islands was prominent in PBMCs 
with carcinoma, DMRs in the CpG shore region showed 
a significant inverse correlation with gene expression. 
However, since PBMC methylome has more variables 
depending on the cell type and composition, our study 
has limitations in elucidating the epigenetic regulation 
dependent on the CpG region.

PBMC has been used in various blood target studies 
conducted in clinical use. However, a recent study raised 
the question of whether PBMC transcriptome can reflect 
the actual state of the blood [37]. It is because PBMC 
contains a wide range of cells that may vary in number 
from patient to patient rather than a homogeneous cell 
population. Fortunately, projects such as the ENCODE 
Project and Roadmap Epigenomics have shown wide-
spread commonality in these different cell types of tran-
scription, but there are still distinct differences among 
cell types. It means that a significant difference may not 
be detected in PBMC if different cell types are oppo-
sitely methylated comparing two groups of DMRs. For 

instance, if DMRs have high methylation in T-cells but 
low methylation in other cells, those differences may be 
offset and undetected. To overcome this limitation, tri-
als to understand PBMC data in single-cell levels via 
computational deconvolution or perform single-cell 
epigenomics are required; however, studies on PBMC 
methylation in single-cell resolution have not been 
widely conducted yet.

T-cells are vital immune mediators, differentiating into 
multiple subtypes in response to cancer. For this reason, 
T-cells have been regarded as valuable immunotherapeu-
tic targets, and studies on tumor-infiltrating lymphocytes 
(TILs), immune checkpoints, chimeric antigen recep-
tor-engineered T cells (CAR-T), and TCR-engineered T 
cells (TCR-T) have been reported [38]. T-cells are pro-
grammed to attack tumors by recognizing tumor-derived 
antigens and secreting anti-tumorigenic cytokines [39]. 
Our gene enrichment analysis confirmed the aberrant 
methylation of genes associated with abnormal T cell dif-
ferentiation as well as decreased CD8 + T cell number in 
cancer PBMCs. This suggests that DNA methylation is 
an essential key to improving the effectiveness of cancer 
immunotherapy in ameliorating the systemic disorder of 
T cells in tumors.

Hypomethylated promoters with the upregulated gene 
expressions of PD-1, CTLA4, and TIM3 are reported 
in primary breast cancer tissues [17], and CTLA4 and 
TIGIT promoters in colorectal cancer tissues [40]. Unlike 
these epigenetic characteristics shown in tumor tissues, it 
has been reported that methylation and expression pat-
terns of immune checkpoints are different in peripheral 
blood immune cells [18]. This indicates that genome-
wide scale studies on the methylome of circulating 
immune cells are essential to depict T-cell dysfunction 
and abnormal differentiation. Our PBMC methylome 
profiling of canine mammary tumors showed that genes 
involved in the differentiation and proliferation of T-cells, 
B-cells, and NK cells are abnormally hypermethylated. 
We observed increased methylation and downregulation 
of four representative genes (BACH2, SH2D1A, TXK, 
and UHRF1). BACH2 and SH2D1A are closely related to 
the proliferation and activation of T cells and B cells [41, 
42]. TXK is involved in the significant kinase signaling 
pathway regulating TCR signaling along with Tec fam-
ily kinases ltk and Rlk [43]. The evidence that UHRF1 is 
directly related to immune cell activity is insufficient. A 
study described that tumor-derived exosomal circulating 
UHRF1 promotes NK cell exhaustion in hepatocellular 
carcinoma [44]. Since UHRF1 is known to interact with 
methyltransferase to regulate the expression of other 
genes, it is required to study further whether methylation 
and expression of UHRF1 in cancer immunity are related 
to T-cell dysfunction.
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Overall, our study highlights the unexpected epigenetic 
regulatory layer in silencing the activation of select circu-
lating immune cells via hypermethylation which further 
associates tumor malignant states.

This hints at the possibility that the mechanism of 
immune exhaustion in the circulation differs from that in 
local TMEs. This is probably because circulating immune 
cells are less educated by tumors. Immune exhaustion 
in the peripheral blood can be explained through the 
expression of cell type-specific genes or kinetic pathways 
involved in cell activation rather than immune check-
points. Although these assumptions require experimen-
tal validations, we exploited these genome-wide PBMC 
methylome profiles to develop a classification framework 
for biomarker discovery.

Conclusions
In this study, we first profiled the genome-wide methyl-
ome in PBMCs of canine mammary gland tumors using 
MBD-seq. By comparing the PBMC methylomes in nor-
mal, benign, and malignant tumors, we found that benign 
and cancer PBMCs had distinct methylome profiles from 
those of normal PBMCs. We identified four hypermeth-
ylated genes (BACH2, SH2D1A, TXK, and UHRF1) 
involved in T-, B-, and NK cell activity and inversely cor-
related with gene expression by RNA-seq. Furthermore, 
we developed the PBMC methylome-based diagnostic 
classifier that distinguishes between normal and tumor 
and benign and malignant tumors through ML technol-
ogy. Our study provides an understanding of comprehen-
sive epigenetic regulation of circulating immune cells in 
response to the tumor environment. Furthermore, we 
present a new paradigm for diagnosing benign and malig-
nant tumors based on liquid biopsy PBMC DNA meth-
ylation. Our results also deliver valuable information on 
immune cell DNA methylation for immunotherapy in 
terms of therapeutic decision-making and prediction of 
therapeutic efficacy.

Methods
Clinical samples
The protocol was approved by the Institutional Review 
Board (IRB) of Seoul National University (IACUC SNU-
170602–1) and the Institutional Animal Care and Use 
Committee (IACUC). Blood samples from healthy dogs 
and dogs with clinically diagnosed mammary tumors 
were collected in EDTA tubes. For PBMC isolation, 
1-2  ml of blood was carefully transferred to a 2X vol-
ume of Ficoll-Paque PLUS (GE Healthcare, 17144002) 
and centrifuge at 400  g. After washing with phosphate-
buffered saline (PBS), obtained PBMCs were fresh-frozen 
for storage or used for following MBD sequencing, tar-
get BS sequencing, and total RNA sequencing. Clinical 

information for normal and mammary tumor dogs is pre-
sented in Table S1.

Methyl‑binding domain (MBD) sequencing
MBD sequencing was performed as previously reported 
by our group [45]. Briefly, genomic DNA has been iso-
lated from dog-derived PBMCs using the DNeasy DNA 
Extraction Kit (QIAGEN, 69504). After 3 μg of genomic 
DNA was sonicated, MBD-biotin was incubated with 
Dynabeads-streptavidin and bound to 500 ng of dsDNA. 
MBD-enriched DNA was obtained from 600 and 800 mM 
elutes which contain highly methylated DNA fragments. 
MBD-enriched DNA was subjected to library construc-
tion and sequenced by Illumina Hiseq 4000 next-genera-
tion sequencing platform (Illumina, CA, USA).

Genome‑wide methylome profiling
Quality check, trimming, alignment, and quantitation 
processes for MBD-seq data were executed as detailed in 
our previous methylome study [45]. We calculated raw 
counts   for bins (called ‘Bins_used’ in Fig. 1C-E) excluding 
low signal bins and zero CpG bins using the ‘MEDIPS.
createROIset’ function of MEDIPS R Bioconductor [16]. 
We performed pairwise DMR analysis for the Bins_used 
by applying the ‘MEDIPS.meth’ function of MEDIPS. We 
set specific parameters (p.adj = “fdr”, diff.method = “edge 
R”, minRowSum = 1000, diffnorm = “quantile”), the bins 
with FDR-adjusted p-value < 0.1 and  log2FC ≥  ± 0.585 
(same as fold change upper 1.5) were defined as sig-
nificant DMRs. Quantile normalized counts and  log2 
transformed CPM values   were used for plotting and 
quantitative analysis. In addition, we counted reads in 
every 50  bp across the whole genome using the source 
code of MethylAction (https:// github. com/ jeffb hasin/ 
methy lacti on) to generate high-resolution ‘bigwig’ files 
for visualizing methylation peaks in the Integrative 
Genome Viewer (IGV v.2.8.0) [46].

Annotation of methylation peaks
Information on genomic features of CanFam3.1 (v99), 
a dog reference genome, was obtained in a GTF for-
mat from Ensembl Genome Browser (release 104, May 
2021). `Promoter-TSS` means extended regions around 
TSS from -1000  bp to + 100  bp, while `TTS` indicates 
extended regions around TTS from -100 bp to + 1000 bp. 
We downloaded the genomic location of CpG islands 
from the UCSC Genome Browser and named the region 
extending ± 2  kb from the CpG island as ‘CpG shore’ 
and the region extending from ± 2  kb to ± 4  kb from 
the CpG island as ‘CpG shelf ’. Total bins, Bins_used, and 
DMRs were annotated to the prepared genomic informa-
tion using the ‘annotatePeaks.pl’ function provided in 
HOMER v4.11.1.

https://github.com/jeffbhasin/methylaction
https://github.com/jeffbhasin/methylaction
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Functional enrichment analysis
We investigated the enriched terms for DMGs using 
EnrichR (a web server for the comprehensive gene set 
enrichment analysis: maayanlab.cloud/Enrichr/) [47] 
to elucidate the function of genes undergoing aberrant 
methylation. Because most functional terms are derived 
from human and mouse, we converted dog Ensembl IDs 
into human orthologous gene symbols using multiple 
species datasets downloaded from the Ensembl BioMart 
(Ensembl Genes 104). Finally, we found significant func-
tional terms in various libraries such as Gene Ontology 
(GO), KEGG pathway (2021), MGI Mammalian Pheno-
type (Level 4, 2021), and Human Gene Atlas (see Fig. 2). 
Panglao DB is a web database that shares single-cell 
RNA sequencing data conducted on human and mouse 
[48]. We extracted a list of marker genes for 11 immune 
cell types corresponding to the composition of PBMC 
included in the immune system from the Panglao DB. 
This list was used to identify methylation changes in cell 
marker genes (Fig. 3B).

Targeted Bisulfite‑sequencing (BS‑seq)
Targeted BS-seq was performed using genomic DNA 
from 9 PBMC samples, including PBMCs used for MBD-
seq (n = 3 in normal (N), benign (B), and carcinoma (C), 
respectively). We designed bisulfite primers using the 
Bisulfite Primer Seeker (https:// www. zymor esear ch. com/ 
pages/ bisul fite- primer- seeker). The overall process of 
targeted BS-seq was conducted as previously described 
[49]. The primer sequences are listed in Table S10). Sub-
sequently, the sequences were aligned to the reference 
sequence in the amplified region using MEGA v11.0.11 
[50]. The methylation (%) for the whole CpGs in each 
region was calculated and visualized as violin plots. To 
compare the methylation levels between different groups 
each other, the t-test was employed.

Classifier modeling and evaluation
We calculated the log (CPM + 1) values for the entire 
bins to generate the methylome-based classifiers, while 
log (TPM + 1) was used for modeling transcriptome-
based classifiers. Five ML algorithms; 1) Support vec-
tor machine (SVM) with linear kernel, 2) SVM with the 
radial kernel, 3) Random Forest (RF), 4) Gradient Boost-
ing Machines (GBM), and 5) K-Nearest Neighbor (KNN) 
were compared to construct an optimal classifier. We esti-
mated the performance of the ML algorithms through 
the tenfold cross-validation (tenfold CV) to reduce the 
overfitting of models. In this process, the hyperparam-
eters in each model were selected by default because we 
chose an ML algorithm to find DMRs that generally clas-
sified the groups well using R package caret (v6.0.85) [51]. 
The two-step classifier consists of an NT classifier that 

distinguishes tumors from normal and a BC classifier that 
distinguishes carcinoma from benign tumors using PBMC 
methylome. Although both classifiers were constructed 
through the same computational modeling process, there 
was an additional modeling step based on feature impor-
tance to enhance the performance of the BC classifier. The 
optimal BC classifier was designed with 127 DMRs, which 
had high feature importance from the GBM classifier with 
the highest accuracy among the primary models (Table 
S12). Feature importance was calculated based on nested 
cross-validation using the R package gbm (v2.1.8). We 
evaluate multiple classifiers using the prediction accuracy 
and area under the ROC curve (AUC) using the R package 
pROC (v1.18.0) [52].

Statistics
Statistics and statistical tools for each analysis have been 
described above. The correlation coefficient between 
DMR methylation and gene expression was calculated by 
Pearson correlation and regression analysis. Comparison 
for the expression between The t-test was implemented 
to compare gene expression between groups. The num-
ber of asterisks between the two groups indicates the 
degree of statistical significance. If there was no statisti-
cal difference between the two groups, it was expressed 
as ‘ns (not significant)’ without an asterisk. We exploited 
Rex (v3.6.1) [53] and R (v4.0.2) in NGS data quantifica-
tion, statistical analyses, and classifier modeling.
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