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HIGHLIGHTS

• The Li-mediated artificial synapses with a vertical two-terminal configuration capable of various synaptic behaviors, including bio-
plausible synaptic plasticity, were successfully demonstrated for the first time and thoroughly explored

• Synaptic characteristics based on the progressive dearth of Li in  LixCo2 films are precisely controlled over the weight control spike, 
achieving extraordinary weight control functionality.

• In artificial neural network simulation,  LixCoO2-based neuromorphic system showed excellent accuracy comparable to the theoretical 
maximum due to the low nonlinearity and programming error, suggesting feasibility of hardware neural network implementation.

ABSTRACT Recently, artificial 
synapses involving an electro-
chemical reaction of Li-ion have 
been attributed to have remarkable 
synaptic properties. Three-termi-
nal synaptic transistors utilizing 
Li-ion intercalation exhibits reli-
able synaptic characteristics by 
exploiting the advantage of non-
distributed weight updates owing 
to stable ion migrations. However, 
the three-terminal configurations 
with large and complex structures 
impede the crossbar array imple-
mentation required for hardware neuromorphic systems. Meanwhile, achieving adequate synaptic performances through effective Li-ion 
intercalation in vertical two-terminal synaptic devices for array integration remains challenging. Here, two-terminal Au/LixCoO2/Pt 
artificial synapses are proposed with the potential for practical implementation of hardware neural networks. The Au/LixCoO2/Pt devices 
demonstrated extraordinary neuromorphic behaviors based on a progressive dearth of Li in  LixCoO2 films. The intercalation and deinter-
calation of Li-ion inside the films are precisely controlled over the weight control spike, resulting in improved weight control functionality. 
Various types of synaptic plasticity were imitated and assessed in terms of key factors such as nonlinearity, symmetricity, and dynamic 
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range. Notably, the  LixCoO2-based neuromorphic system outperformed three-terminal synaptic transistors in simulations of convolutional 
neural networks and multilayer perceptrons due to the high linearity and low programming error. These impressive performances suggest 
the vertical two-terminal Au/LixCoO2/Pt artificial synapses as promising candidates for hardware neural networks

KEYWORDS Artificial synapse; Neuromorphic; Li-based; Two-terminal; Synaptic plasticity

1 Introduction

With the advent of the machine learning era, human-generated 
unstructured data such as text, images, and audio are explod-
ing. Processing vast amounts of data with a conventional com-
puting system based on the von Neumann architecture has 
reached its limits [1, 2]. The challenges for modern computing 
systems originate from the reduced efficiency of energy and 
throughput caused by constant data transfer between mem-
ory and processing units, well known as the von Neumann 
bottleneck [3, 4]. Neuromorphic computing inspired by the 
functionality of the human brain has received considerable 
attention as one of the ways to achieve technical requirements 
to overcome von Neumann bottlenecks [5–8]. Computing 
technology that executes massively parallel processing in an 
energy-efficient manner can handle such unstructured data 
productively. The brain-inspired computing system can be 
realized as a hardware implementation of a neural network 
platform made up of combinations of numerous artificial 
neurons and synapses [9, 10]. In neuroscience, a synapse is a 
functional junction between two neurons that transmits sig-
nals from the pre-synaptic neuron to the post-synaptic neuron. 
Synaptic weight, also known as synaptic connection and syn-
aptic efficacy, stands for the amount of influence one neuron 
has on another. The majority of the development, memory, 
and learning in neural networks are attributed to synaptic 
plasticity, which refers to activity-dependent modifications of 
synaptic weights [11–13]. In a neuromorphic system, synaptic 
weight can correspond to the amplitude or strength of a con-
nection between two nodes, in other words, the conductance 
of artificial synaptic elements [14].

Artificial synaptic devices associated with various materi-
als and working mechanisms have been extensively studied 
in recent years [15–18]. In particular, vertical two-terminal 
memristive devices including electrochemical metallization 
memory (ECM) [19, 20], valence change memory (VCM) 
[21, 22], and phase-change memory (PCM) [23, 24] are 
regarded as probable candidates for artificial synapses 

owing to their simplicity of fabrication and extensibility 
of structural integration as crossbar arrays [25–27]. Nev-
ertheless, these conventional memristive synaptic devices 
have intrinsic difficulties in precise weight control due to 
their random nature, resulting in nonlinear and asymmetric 
weight updates that significantly degrade the performance 
of artificial neural networks. Hence, their practical applica-
tion as synaptic elements in hardware neuromorphic sys-
tems is severely restricted. Whereas, three-terminal synaptic 
transistors have attracted substantial interest due to reliable 
and notable synaptic characteristics [28–31]. Employing 
completely independent terminals for programming (gate) 
and reading (drain) facilitates linear and less distributed 
weight control operation. Recently, three-terminal synaptic 
devices associated with the electrochemical reactions of Li 
ions have been discovered to have improved synaptic prop-
erties [32–36]. Li ions diffuse gradually from the matrix in 
response to external stimuli, ensuring high controllability 
in plasticity modification. In addition, the migrations of  Li+ 
ions do not induce considerable structural deformation upon 
intercalation and deintercalation, allowing stable and revers-
ible operation. Synaptic transistors, despite their remark-
able ability to perform linear and noise-free weight updates, 
have fundamental limitations in the realization of hardware 
neuromorphic systems. The three-terminal configurations 
with large and complex structures impede the crossbar array 
implementation required for high-density integration. There 
are some studies have reported synaptic operation involving 
ionic diffusion of Li cations in vertical two-terminal configu-
ration [37–40]. Still, their capabilities as artificial synaptic 
devices remained unsatisfactory. Major synaptic function-
alities including basic plasticity were absent, and weight 
updates were nonlinear, asymmetric, and fairly scattered. 
Furthermore, since neural networks incorporating synaptic 
devices had not been modeled, the effectiveness of hardware 
neuromorphic systems was not investigated. To be consid-
ered a viable synaptic device, thorough evaluations of the 
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overall synaptic properties and performance simulation on 
artificial neural networks should be accomplished.

In this work, we propose a novel vertical Au/LixCoO2/Pt 
device with excellent synaptic performance, demonstrating 
the feasibility of artificial synapses based on Li-ion interca-
lation. The synaptic behaviors were successfully attained by 
gradually depleting the Li ions in the  LixCoO2 thin film via 
controlled migration of Li ions within the film. The amount 
of Li ions inserted and extracted upon the matrix could be 
exactly regulated by the weight control spike, allowing for 
enhanced weight controllability over conventional two-
terminal memristors. The reversible synaptic operation 
enables stable and linear weight updates. Bio-plausible 
synaptic characteristics such as short-term plasticity (STP) 
and long-term plasticity (LTP), paired-pulse facilitation 
(PPF), and spike-timing-dependent-plasticity (STDP) 
have been successfully imitated. The obtained long-term 
potentiation (LTP) and long-term depression (LTD) curves 
are discussed in symmetricity, nonlinearity, and dynamic 
range, which have a significant impact on the performance 
of the artificial neural networks. Moreover, investigations 
on Li ion migrations in Au/LixCoO2/Pt artificial synapses 
clearly revealed the weight control mechanism. Finally, 
several types of artificial neural networks were grafted to 
simulate the performance of  LixCoO2-based neuromorphic 
systems. The deep convolutional neural networks (CNNs) 
were introduced to evaluate the reliability of analog com-
puting which harnessed the synaptic weights of  LixCoO2 
artificial synapses. The image inference reflecting the pro-
gramming noise of the weight updates was executed based 
on the experimental LTP/LTD data. Likewise, the learning 
capabilities of a crossbar array constructed of  LixCoO2 arti-
ficial synapses were estimated through deep neural networks 
(DNNs). Consequently, the  LixCoO2-based neural networks 
outperformed three-terminal synaptic transistors in infer-
ence accuracy, demonstrating the potential of dependable 
hardware operations for neuromorphic computing.

2  Experimental Section

2.1  Target Preparation

The Li excess  Li1+xCoO2 targets were prepared by sinter-
ing a mixture of high purity  LiCoO2 (Sigma-Aldrich) and 

10% excess  Li2O (Alfa Aesar) powders to compensate for 
Li loss during deposition. The mixed powders were ball 
milled for 72 h and dried at 80 °C for 2 h. The targets 
pressed into 1-inch diameter were sintered at 400 °C for 
2 h and 1000 °C for 10 h.

2.2  Device Fabrication

The 80 nm Pt bottom electrodes were coted on  SiO2/Si sub-
strates with a Ti adhesive layer of 20 nm via electron beam 
evaporation. The Pt/Ti/SiO2/Si substrates were cleaned 
successively in acetone, isopropanol, and deionized water 
under ultrasonication.  LiCoO2 thin film was deposited on 
Pt/Ti/SiO2/Si substrates by The Pulsed laser deposition 
(PLD) technique. The  Li1+xCoO2 target and substrate were 
placed inside a vacuum chamber of the PLD with a pres-
sure of 1 ×  10−6 Torr. The target–substrate distance was 
kept at 50 mm. A KrF excimer laser (COMPLEX PRO 
201F, COHERENT) with wavelength of 248  nm was 
used for the deposition. Laser fluence was controlled at 
2.5 J  cm−2 and a repetition rate at 5 Hz. Film deposition 
was carried out with 200 mTorr oxygen partial pressure at 
300 °C. As a final procedure, Au top electrodes with a size 
of 50 μm × 50 μm were deposited on the  LiCoO2 film by 
electron beam evaporation using a shadow mask under a 
pressure of 1 ×  10−6 Torr at room temperature.

2.3  Device Characterization

The X-ray diffraction (XRD) measurements were con-
ducted using an X-ray diffractometer (Bruker Miller Co., 
D8-Advance) with Cu Kα radiation (λ = 1.54056 Å). XRD 
data were measured at room temperature in the 2θ range 
of 10°–80° with a step size of 0.02° and a scan speed of 3° 
 min−1. The  LiCoO2 thin film surface and cross sectional 
images of the device were obtained using a field emission 
scanning electron microscope (ZEISS, MERLIN Com-
pact) with an in-lens secondary electron detector at a 5 kV 
accelerating voltage. The topography of  LiCoO2 films 
deposited on an Pt/Ti/SiO2/Si substrates were estimated 
using an AFM (Park systems, XE-100). The elemental 
depth profile analysis was performed using ToF–SIMS 
(ToF.SIMS-5, IONTOF) with  Bi+ primary source and 
 Cs+ etching source. The etching area is 200 μm× 200 μm 
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and the analysis area is 50 μm × 50 μm. The XPS (PHI, 
Versaprobe III) was used to analyze the chemical bond-
ing of  LixCoO2 film. The Raman spectra were obtained 
by Laboratory RAM HR (Horiba Jobin Yvon, Japan) with 
excitation wavelength of 532 nm. The electrical proper-
ties of the device were measured using a Keithley 2636A.

3  Results and Discussion

3.1  Artificial Two‑Terminal Ionic Synapse

It has been proved that  LiCoO2, one of the most tradi-
tional cathode materials for secondary lithium-ion batter-
ies, provides stable intercalation and deintercalation of Li 
ions with high reversibility [41–44]. In the non-stoichio-
metric  LixCoO2 (x < 1), the electrical conductivity tends 
to increase as Li is deficient [45–47]. The conductance 

tunability with respect to the Li content in matrix allows its 
application as a weight control layer for artificial synapses. 
Here, vertically stacked Au/LixCoO2/Pt artificial synapses 
were fabricated with the advantages of process simplic-
ity and structural effectiveness as well as reliable synap-
tic operation. Figure 1a displays the schematic structure 
and optical microscope image of a two-terminal Au (TE)/
LiCoO2/Pt (BE) artificial synapse. Pulsed laser deposition 
(PLD) was used to deposit a stoichiometric  LiCoO2 film of 
100 nm thickness on the Pt bottom electrode. More infor-
mation on device fabrication can be found in the materials 
and methods section. The scanning electron microscope 
(SEM) image in Fig. 1b showed the columnar growth of 
hexagonal-faceted  LiCoO2 grains with an average size of 
20 nm.  LiCoO2 belonging to space group R3m has a lay-
ered structure with hexagonal symmetry. As illustrated 
in Fig. 1c, a hexagonal lattice consists of close-packed 
arrangements of oxygen ions with alternating layers of 

Fig. 1  Device structure and characterization of  LiCoO2 thin film. a Schematic structure and optical microscope image of an Au (TE)/LiCoO2/
Pt (BE) vertical two-terminal artificial synapse. b Color-coded SEM image of vertically stacked Au (TE)/LiCoO2/Pt (BE)/SiO2/Si device. The 
top-view and cross sectional SEM image of (001) textured  LiCoO2 thin film. c Crystal structure of  LiCoO2. d XRD patterns of (001)-oriented 
 LiCoO2 thin film. e AFM image of the  LiCoO2 thin film. (RMS = 2.2 nm)
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lithium and cobalt ions occupying octahedral sites. The 
 CoO6 octahedra share edges to form  CoO2 slabs, and ani-
sotropic diffusion of lithium ions within the grains occurs 
transversely along the slabs perpendicular to the c-axis 
[48, 49]. The vertical transport of Li ions parallel to the 
c-axis is carried out via grain boundaries and does not 
penetrate the  CoO2 slabs [50, 51]. Therefore, the highly 
(0 0 3) oriented  LiCoO2 thin film with fine grain size, as 
confirmed in the SEM image (Fig. 1b) and X-ray diffrac-
tion patterns (Fig. 1d), minimized the diffusion path of 
Li ions. As a result, rapid intercalation and deintercala-
tion of lithium ions with low energy consumption were 
effectively achieved [52–54]. Further, the  CoO2 textured 
out-of-plane surface of  LiCoO2 prevented spontaneous 
re-insertion of extracted Li ions into the  LiCoO2 matrix, 
thus, nonvolatile characteristics can be secured. The atomic 
force microscopy (AFM) analysis in Fig. 1e revealed that 
the PLD-deposited  LiCoO2 thin film had a uniform and 
smooth surface, with a root mean square (RMS) roughness 
of 2.2 nm. Figure 2a depicts an artificial synapse in mim-
icking a biological synapse. Biological synapses transmit 
specific information-bearing neuronal spikes from pre-
synaptic neurons to post-synaptic neurons depending on 
the strength of the synaptic connection. In the Au/LixCoO2/
Pt artificial synapse, the  LixCoO2 weight control layer 
changed the device conductance in response to external 
stimuli, imitating synaptic plasticity, a modification in syn-
aptic connections. Structurally, the Au top electrode served 
as the pre-synaptic interface to the axon terminal, the Pt 
bottom electrode served as the post-synaptic interface to 
the dendrite, and the  LixCoO2 film served as the synap-
tic cleft, the junction gap between the axon terminal and 
dendrite. The synaptic characteristics were estimated by 
applying a pre-synaptic voltage to the Au top electrode 
while grounding the Pt bottom electrode. Figure 2b shows 
modification in synaptic efficacy along with successive 
DC voltage sweeps. During the potentiation process, the 
synaptic connection was gradually strengthened accord-
ing to the consecutive 10 negative DC voltage sweeps in 
clockwise (0 V →  −1 V → 0 V). Contrary, it was reduced 
back after 10 positive DC voltage sweeps in counterclock-
wise (0 V → 1 V → 0 V), exhibiting synaptic depression 
behavior. The peak conductance of each sweep implies that 
the device conductance increased and decreased by a fac-
tor of 5, respectively, as the sweep progressed. The DC 
sweeps were conducted at a rate of 0.5 V  s−1 throughout 

the synaptic modulation. Figure 2c displays a schematic 
illustration of the weight control mechanism of the Au/
LixCoO2/Pt artificial synapses. When the negative voltage 
was applied to the top electrode, Li cations were deinter-
calated from  LixCoO2 lattice and inserted into the Au film 
[55, 56], increasing the conductance of the delithiated 
 LixCoO2 layer. Conversely, the applied positive voltage 
led the Li cations to be extracted back from the lithiated 
Au electrode and reintercalated into the  LixCoO2, restor-
ing the film conductance. Hence, with appropriate weight 
control activity regulating the Li content in  LixCoO2 films, 
it is possible to emulate synaptic properties based on syn-
aptic weight potentiation and depression. During the lithia-
tion–delithiation process, the Au film underwent solid solu-
tion reactions with Li to form  LiAux, with little structural 
change [55, 57]. Figure S1 depicts the analog and spike-
induced synaptic properties of  LixCoO2-based artificial 
synapses with different top electrodes. In a high dynamic 
range of linear weight modulation, the Au electrode pro-
vides the most stable and reversible insertion and extrac-
tion of large amounts of Li. Figure S2 displays the sweep 
rate dependency related to ion dynamics in analog weight 
modification of Au/LixCoO2/Pt artificial synapse. As the 
sweep rate was lowered from 20 to 0.5 V   s−1, more Li 
ions migrated causing larger hysteresis. The spike-induced 
synaptic potentiation and depression were demonstrated, as 
shown in Fig. 2d. To adjust the synaptic connections, 25 
negative spikes of − 1.5 V with 10 ms and positive spikes 
of 1.1 V with 10 ms were sequentially input per cycle. 
Following each active pulse, 0.1 V read pulses were used 
to measure the synaptic connectivity. A series of negative 
voltage spikes resulted in four-fold weight potentiation and 
following positive voltage spikes caused weight depres-
sion to its original state. Figure S3 shows the endurance 
of the  LixCoO2 artificial synapses to spike-induced weight 
modulation. For 350 cycles, updates of synaptic weights 
were accomplished by sequential input of 25 negative and 
positive spikes per cycle. During 17,500 times of weight 
updates, the device exhibited outstanding cyclability and 
endurance. After 350 cycles, it is about 5% more conduct-
ing than the initial state. This is presumed to be owing to 
a little quantity of residual Li accumulating inside the Au 
film, while the weight updates were repeated. The endur-
ance constraints become apparent when the devices are 
employed for in situ training, hence a substantial improve-
ment in endurance is necessary for workable neuromorphic 
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applications. Table S1 lists the weight modulation parame-
ters of artificial synaptic devices with various materials and 
mechanisms. The Au/LixCoO2/Pt artificial synapse showed 
a relatively low operation voltage and fast response speed 
due to the facile Li-ion migration. The excellent linearity 
of the lithium-mediated devices on weight updates suggests 
their suitability for artificial synapses. The estimation of 
nonlinearity is covered in further detail in the following 
section.

3.2  Activity‑Dependent Synaptic Plasticity

Synaptic plasticity is a phenomenon in which a specific 
pattern of synaptic activity results in a change in synaptic 
weight [11]. Synaptic plasticity can be classified into two 
types in terms of memory retention: short-term plastic-
ity (STP) and long-term plasticity (LTP) [12]. Short-term 
plasticity refers to a transient deformation in synaptic effi-
cacy that leads to the loss of neuronal information within 

Fig. 2  The fundament of synaptic weight modulation of the Au/LixCoO2/Pt artificial synapse. a A graphic depicting the artificial synapse that 
imitates biological synapses. b The potentiation (depression) of synaptic weights according to 10 successive negative (positive) DC voltage 
sweeps and the increase (decrease) ratio in peak conductance. c Schematic illustration of the weight control mechanism in Au/LixCoO2/Pt synap-
tic device. d Spike-induced synaptic potentiation and depression with sequential input of 25 negative and positive spikes each per cycle
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seconds in general. STP is normally triggered by brief 
bursts of stimulus, whereas LTP is elicited by rapid rep-
etition of stimuli. Long-term plasticity is a long-lasting 
change in synaptic connectivity where high-frequency 
stimulation affects the efficacy of subsequent synaptic 
transmission, exceeding the temporal limitation of STP. 
In Fig. 3a, a demonstration of STP showed momentary 
reinforcement in synaptic weight that promptly dissipated 
afterward. A single stimulus (− 2 V, 50 ms) applied with 
an interval of 10 s provoked a short-lasting potentiation. 
The synaptic weight returned to its initial state within 3 s, 
having no effect on the ensuing synaptic weight. In con-
trast, as seen in Fig. 3b, repetitive activation by frequent 
stimuli led to long-term potentiation in synaptic weight 
that was maintained over 70 s. Spikes with the identi-
cal conditions as in STP (− 2 V, 50 ms) but with a much 
shorter interval of 0.33 s were utilized for LTP modula-
tion. After 20 activations, the synaptic weight enhanced 
9.8 times compared to the pristine, and after a slight decay, 
the potentiation ratio converged to 3.5 times. These activi-
ties are analogous to human memory control procedures 
hypothesized by Atkinson and Shiffrin [58]. The transition 
from STP to LTP is thought to be caused by a sufficient 
supply of energy from multiple stimuli. In the case of a 
sporadic stimulus, Li ions accumulated and then dispersed 
at the interface between the  LixCoO2 film and the Au elec-
trode rather than penetrating the Au film. Repeated stimuli, 
on the other hand, allowed the accumulated Li ions to be 
injected into the Au electrode, facilitating nonvolatile 
weight adaptation. Figures S4 and S5 display multistate 
LTP retention and temperature-dependent retention char-
acteristics for 1000 s. The spike-rate-dependent-plasticity 
(SRDP) characteristic in Fig. 3c implied that the higher 
the frequency of the weight control spikes, the stronger the 
synaptic potentiation. Ten weight control spikes of − 2 V 
and 30 ms were delivered at five different frequencies 
ranging from 1 to 0.06 s/spike. The conductance change 
ratios for 10 spikes rise exponentially with shorter input 
signal intervals, as seen in Fig. 3d. Paired-pulse facilita-
tion (PPF), a form of STP, is a neurological phenomenon 
observed when two close spikes are triggered rapidly [59]. 
The transmission of the second neural signal is ampli-
fied since the immediately preceding impulse induces an 
increase in the synaptic connection [60]. Figure 3e depicts 
the PPF index expressed as a function of the spike interval 

Δt. The PPF index is defined as the ratio of the amplitude 
of the second response (A2) to the first response (A1):

A pair of stimuli of − 2 V and 5 ms were supplied at inter-
vals ranging from 10 to 100 ms. The PPF ratio peaked at 
170% when Δt was 10 ms and declined exponentially toward 
100% with a time constant of 9.91 ms as the inter-spike 
delay grew. Spike-timing-dependent plasticity (STDP) is a 
weight specialization based on a firing order provoked by 
close temporal interactions between the spiking of pre-and 
post-synaptic neurons [13]. The STDP characteristic was 
successfully demonstrated by supplying weight control 
spikes to the top and bottom electrodes with a chronological 
difference. Figure 3f represents a Hebbian STDP in which 
pairs of pre-leading-post and post-leading-pre spikes with 
intervals of tens of milliseconds result in long-term poten-
tiation (LTP) and long-term depression (LTD), respectively 
[61–63]. LTP is induced when pre-synaptic spikes fire before 
postsynaptic spikes and the spiking time difference Δt is 
positive. Likewise, LTD occurs in the reverse order, with 
post-synaptic spikes preceding pre-synaptic spikes, with 
a negative Δt. The degree of synaptic potentiation tended 
to diminish as ∆t receded in a positive direction, and vice 
versa for depression. The plotted ∆w, the change in synaptic 
weight, can be expressed as an exponential decay function 
for ∆t as follows:

The extracted time constants of τ+ and τ− were 8.01 and 
7.27 ms, respectively, implying millisecond response rates 
comparable with biological synapses [61–64]. Both PPF 
and STDP characteristics were obtained statistically for 5 
devices. In Li-based artificial two-terminal ionic synapses, 
bio-plausible synaptic behaviors were successfully imple-
mented by applying spikes at different intervals.

The activity-dependent LTP/LTD properties of Au/
LixCoO2/Pt artificial synapses were further explored under 
different weight control regimes. The evaluations of non-
linearity, symmetricity, and dynamic range, which have a 
substantial impact on the performance of neuromorphic 
computing, were also accompanied [7, 10]. Nonlinearity 
refers to the deviation from the ideal update of synaptic 
weights where the step size remains constant. The weight 
update relations with nonlinearity parameters were cov-
ered in Note S1. Figure S6 depicts LTP/LTD curves with 

(1)PPF ratio =
(
A2 − A1

)
∕A1

(2)G(Δt) =

⎧
⎪⎨⎪⎩

A+ exp
�
−

Δt

𝜏+

�
ifΔt ≥ 0

−A− exp
�
−

Δt

𝜏−

�
ifΔt < 0
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varying curvatures depending on nonlinearity. Symmetric-
ity stands for the degree to which the traces of individual 
weight levels coincide in the weight change trajectories of 

potentiation and depression. Note S2 and Fig. S7 contains 
details of symmetricity determination in LTP/LTD curves. 
Dynamic range is defined as the scope of available device 

Fig. 3  Synaptic plasticity for various spike intervals. a Short-term plasticity (STP) with spike intervals of 10 s. b Long-term plasticity (LTP) 
with spike intervals of 0.33 s. c Spike-rate-dependent-plasticity (SRDP) characteristics depending on different spiking rate and d conductance 
change ratio over 10 spikes. e Paired-pulse facilitation (PPF) index as a function of interval time between two spikes. f Spike-timing-dependent-
plasticity (STDP) in the form of asymmetric Hebbian learning rule
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conductance where the distinct synaptic weights can be 
assigned during computation in neural networks, i.e., 
(Gmax − Gmin). Figure 4a exhibits spike-number-dependent-
plasticity (SNDP). Weight control spikes (∓ 2 V, 20 ms) 
were administered 50 to 500 times for potentiation and 
depression, respectively. The nonlinearity and symme-
tricity values were derived from the LTP/LTD profiles. 
The LTP curves of SNDP offered excellent nonlinearity 
(βP) of fairly low values, which tended to increase some-
what as the number of conductance states grew. Besides, 
the weight updates of 100 or less showed reliable sym-
metricity with high extracted values. Figure S8 provides 
extra estimations of the nonlinearity of LTD curves (βD) 
and dynamic range. In addition to the number of spikes, 
other activity patterns related to spike amplitude and spike 
duration were also introduced. In Fig. 4b, the spike-volt-
age-dependent-plasticity (SVDP) was validated in 0.2 V 
increments from − 1 to − 2 V for 50 ms duration. Likewise, 
spike-width-dependent-plasticity (SWDP) was examined 
at 20 ms intervals from 10 to 90 ms at − 1.5 V, as pre-
sented in Fig. 4c. In both SVDP and SWDP, the greater the 
energy of the weight control spikes, the worse the linearity 
and the drastic expansion of the dynamic ranges. This is 
because the weight updates for relatively low energy stim-
uli strengthened the synaptic weights in a narrow dynamic 
range where saturation of Li in the Au electrode did not 
occur. Moreover, the spike-voltage-width-dependent-plas-
ticity (SVWDP), a combination of amplitude and duration 
modulation, was presented in Fig. 4d. At a given voltage, 
the spike duration steadily rose from 10 to 90 ms, boost-
ing the energy of the weight control spikes in progression. 
Thus, the weights can be updated linearly without satura-
tion by continuously supplying adequate activation energy. 
Figure S9 displays the ratio of the minimum conductance 
measured in the initial state to the maximum conductance 
obtained after potentiation in SVDP, SWDP, and SVWDP. 
The stronger the energy of the spikes, the greater the on/
off ratio of the devices. Lithium-mediated artificial ionic 
synapses elaborately alter the synaptic connections into 
certain forms in response to external stimuli. The superb 
weight  tunability of Au/LixCoO2/Pt artificial synapses 
was demonstrated by customizing the weight update pro-
files via spike pattern tailoring. Figure 4e displays custom 
LTP/LTD curves of five different shapes. Depending on 
the specific activity pattern of the weight control spikes, 
the weights change abruptly or slightly and determine the 

morphology of the entire curves. Figure S10 and Table S2 
present the custom patterns of spike trains used for LTP/
LTD tailoring. Selecting an appropriate spike condition 
can afford acceptable weight updates practically usable 
in neuromorphic computing with reasonable nonlinearity, 
symmetricity, and dynamic range. Table 1 compares the 
overall synaptic performance of Li-based artificial syn-
aptic devices and two-terminal  LixCoO2-based artificial 
synapses. The Au/LixCoO2/Pt devices showed improved 
nonlinearity (α) and asymmetry ratio owing to the revers-
ible synaptic operation obtained by structural optimization 
of the weight control layer. Furthermore, various types of 
synaptic plasticity were demonstrated for the first time in 
Li ion-based synaptic devices, and each synaptic behavior 
was intensively explored. The analysis of nonlinearity (α) 
and asymmetric ratio for LTP/LTD curves are provided in 
Note S1 and Note S3.

3.3  Li ion Transfer Investigation

Next, Li ion transfer in Au/LixCoO2/Pt artificial syn-
apses was investigated to provide the rationales for the 
aforementioned weight control mechanism. Each analysis 
was carried out at several distinct synaptic weight states: 
pristine, after 10/20/30 potentiations, and after 30 depres-
sions following 30 potentiations. The I–V characteristics 
of analog voltage sweep-induced synaptic potentiation and 
depression performed for the analyses below are shown 
in Fig. S11. The time-of-flight secondary ion mass spec-
trometry (ToF–SIMS) proposed definite insight into the 
Li-ion insertion in the Au electrode. The 3D mapping 
images of Li ions in Au/LixCoO2/Pt structure for the four 
synaptic activities are illustrated in Fig. 5a. In the initial 
state, the Li ions, depicted as red dots, resided only within 
the  LixCoO2 film, indicating a clear separation from the 
electrodes. As the negative sweeps were repeated up to 
30 times during the potentiation process, the Li ions were 
gradually implanted into the Au top electrode to strengthen 
the synaptic weight. They were subsequently intercalated 
back into the  LixCoO2 lattice over the span of 30 positive 
sweeps, resulting in long-term depression. No residual Li 
in the Au top electrode after depression implies that the 
Li migration between the  LiCoO2 matrix and Au thin film 
is a highly reversible process. The depth profiles of Li 
ions in Fig. 5b exhibited that the amount of Li reserved 
in the Au electrode sequentially increased and decreased 
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Fig. 4  Synaptic plasticity under various spike conditions. Diverse LTP/LTD curves and extracted symmetricities, nonlinearities, and dynamic 
ranges obtained under different weight control regimes. a Spike-number-dependent-plasticity (SNDP) characteristics depending on different 
numbers of weight control spikes. b Spike-voltage-dependent-plasticity (SVDP) characteristics depending on different amplitudes of weight 
control spikes. c Spike-width-dependent-plasticity (SWDP) characteristics depending on different durations of weight control spikes. d Spike-
voltage-width-dependent-plasticity (SVWDP) characteristics depending on different amplitudes and durations of weight control spikes. e LTP/
LTD curves customized in different shapes using spike tailoring
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as the process progressed. Figure S12 indicates that the 
 LixCoO2 framework was securely maintained throughout 
weight modulation. The X-ray photoelectron spectroscopy 
(XPS) was adopted to discover the intercalation and dein-
tercalation of Li ions inside  LixCoO2. Figure 5c, d is XPS 
spectra of the Co 2p region for  LixCoO2 film in a pristine 
state and after 30 times potentiation, respectively. The 
Co 2p spectrum split into Co 2p1/2 and Co 2p3/2 peaks, 
each observed at 778.2 and 793.4 eV [65, 66]. The ratio 
of  Co4+ to  Co3+ grew since the Co cations were partially 
oxidized from trivalent to tetravalent as the  Li+ cations 
were deintercalated from  LixCoO2 lattice [43, 44, 66]. 
The additional Co 2p profiles for after 10 potentiations, 
20 potentiations, and 30 depressions are provided in Fig. 
S13. Besides, the area ratios of  Co4+/Co3+ redox couple 
to five different weight control operations are available, 

where the fraction of the tetravalent varied in proportion to 
synaptic weight. The synaptic potentiation and depression 
were indirectly confirmed through Raman spectroscopy on 
the  LixCoO2 layer. As displayed in Fig. 5e,  LixCoO2 film 
exhibited two Raman-active A1g and Eg modes at 596 and 
497  cm−1, respectively [67, 68]. The Raman scattering 
intensity declined as the  LixCoO2 became Li-deficient due 
to the deintercalation of Li ions, and recovered again with 
the re-intercalation of Li ions. The decrease in relative 
intensity occurred due to an increase in electrical conduc-
tivity that lowers the optical skin depth of the incoming 
laser beam [68]. Therefore, the changes in Raman inten-
sity can be qualitatively interpreted as a result of synaptic 
plasticity. The intercalation and deintercalation of Li ions 
proceeded reversibly without phase change of  LixCoO2 
which generates extra peaks in the Raman band.

Table 1  Performance comparison of synaptic properties of recently reported  Li+ ion based artificial synapse device

j543[{1The nonlinearity (α) is explained in Fig. S6 and Note S1
2 The asymmetric ratio is described in Note S3
3 The error represents the difference between the theoretical accuracy and the simulated accuracy of the device

Device Type Structure Non linearity [α]1 Asymmetric 
 ratio2

Implemented synaptic 
plasticity

Learning 
accuracy 
(error)3

Refs.

Channel Electrolyte

3T Synaptic 
 Transistor

WSe2 LiClO4 1.7/0.4 0.19 Pulse PnD, STP/LTP, 
PPF, SWDP, SRDP

N/A [32]

MoO3 LiClO4 2.6/− 0.4 0.31 Pulse PnD, PPF SVDP, 
SWDP

87.3% (10%) [33]

LiCoO2 LiPON 0.7/0.8 0.17 Pulse PnD 97.8% (0.4%) [34]
LiCoO2 Li3POxSex 1.33/− 0.34 0.12 Pulse PnD 91.0% (6.1%) [35]
WO3 LiClO4 0.96/-0.11 0.26 Pulse PnD, SVDP 93.3%(3.7%) [36]

2T Vertical 
 Memristor

Au/LixCoO2/SiO2/TiO2/p++-Si N/A N/A Analog PnD, Pulse 
PnD, STDP, SRDP

N/A [37]

Ni/LixCoO2/a-Si N/A N/A Analog PnD, Pulse 
PnD, STDP

N/A [38]

Cr/LiCoO2/a-Si/TiN N/A N/A Pulse PnD, LTP N/A [39]
Pt/LiSiOx/TiN N/A N/A Analog PnD, STP/LTP, 

STDP, PPF
N/A [40]

Au/LixCoO2/Pt 0.83/0.46 0.09 Analog PnD, Pulse 
PnD, STP/LTP, 
SRDP, PPF, STDP, 
SVDP, SWDP, 
SVWDP

95.36% 
(0.14%)

This 
work
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3.4  Image Inference in  LixCoO2‑Based Neuromorphic 
Systems

All preceding investigations verified the exceptional synaptic 
properties of the Li-ion-mediated artificial synapses. To further 
verify the feasibility of the  LixCoO2-based synaptic array for 
hardware neuromorphic systems, image recognition employing 
artificial neural networks was conducted. Figure 6a presents 
a schematic illustration of a crossbar array structure that har-
nesses allocated synaptic connections to perform analog vec-
tor–matrix multiplication. The synaptic weights in the synaptic 
array are defined as the device conductance programmed by 
the input voltage signal supplied to the input neurons. The cur-
rents collected from the output neurons were processed through 
matrix multiplication with the input signal. The performance of 
artificial neural networks can be optimized through the learning 
process that programming synaptic devices to specific weights 
best suited for the data processing of a given algorithm. Since 

synaptic parameters such as nonlinearity, symmetry, and 
dynamic range are major determinants of weight targeting 
precision, obtaining desirable device properties is essential to 
achieving high neural network performance. Figure 6b shows 
superimposed 30 cycles of weight updates of  LixCoO2 artifi-
cial synapses acquired from the LTP/LTD data in Fig. 2d. The 
reliable synaptic operation was proven by low noise and fine 
nonlinearity of 0.3 for potentiation (βP) and 1.3 for depres-
sion (βD). The heat maps of ΔG versus G response during 
potentiation and depression are displayed in Fig. S14. The 
programming error characteristic of the device conductance is 
presented in Fig. 6c. The standard deviations were calculated 
for 60 weight programming for each target conductance of a 
total of 25 states. The low nonlinearity and programming error 
imply that the performance degradation caused by the physical 
limitations of the devices is not significant. Still, the weight 
relaxation over time, which might degrade performance in 
actual neural network applications, was not taken into account 

Fig. 5  Intercalation and deintercalation of Li ions in Au/LixCoO2/Pt artificial synapse. a, b ToF–SIMS 3D mappings and depth profiles of Li 
ions in Au/LixCoO2/Pt structure at four different synaptic weight states. The amount of Li ions in the Au top electrode increased as negative 
sweeps (potentiation) were performed from the initial state to 30 times, and decreased after 30 times of positive sweeps (depression). c, d XPS 
spectra of the Co 2p region for  LixCoO2 film in a pristine state and after 30 times potentiation. The ratio of  Co4+/Co3+ grew since the Co cations 
were oxidized from  Co3+ to  Co4+ as the  Li+ cations were deintercalated from the  LixCoO2 framework. e Raman spectra for  LixCoO2 thin film. 
The relative intensity reduced as the  LixCoO2 became Li-deficient due to deintercalation of Li ions, and recovered with the re-intercalation of Li 
ions
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with programming error parameters. A non-negligible influ-
ence on learning outcomes is expected when relaxation effect is 
considered. The effects of programming errors in  LixCoO2 arti-
ficial synapses on computational achievement were examined 

through object classification based on convolutional neural net-
works (CNNs). A detailed description of the CNNs is covered 
in Note S4 and Fig. S15. The accuracy of image inference was 
compared between the floating-point (FP)-based CNNs and 

Fig. 6  Image recognition of  LixCoO2-based neuromorphic systems. a Schematic illustration of the crossbar array structure for the neuromorphic 
circuit. b Cycle-to-cycle synaptic conductance for 30 cycles with fine nonlinearity. c Programming error characteristic of weight updates of 
 LixCoO2 artificial synapses over 30 cycles. d Inference accuracies on four types of datasets in floating-point and  LixCoO2-based CNNs. e–g Rec-
ognition accuracies of floating-point and  LixCoO2-based DNNs on the assigned training sets for File types, large MNIST, and fashion MNIST, 
respectively
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the  LixCoO2-based CNNs that have flaws in weight updates 
such as nonlinearity and noise. The  LixCoO2-based CNNs 
were operated by incorporating the device programming error 
σ = 0.0161G + 0.08264 into the weight allocation of the CNNs. 
Figure 6d schematizes the inference accuracies on four types of 
visual databases in FP-based CNNs and  LixCoO2-based CNNs. 
The entire inference processes for the MNIST [69], CIFAR-10 
[70], CIFAR-100 [71], and ImageNet [72] databases were car-
ried out using Crossbar Simulator provided by Sandia National 
Laboratories [73]. Table S3 tabulates the architecture of the 
CNN models used for image recognition, as well as the number 
of classes and input dimensions of the visual datasets. Utiliz-
ing floating-point as the synaptic weights to compute means 
that the attained accuracy is the theoretical maximum for the 
corresponding network architecture. In  LixCoO2-based CNNs, 
inferences on relatively small-dimensional datasets MNIST, 
CIFAR-10, and CIFAR-100 achieved high accuracy close to 
the theoretical performance of the networks. These impressive 
results are due to the low programming errors of  LixCoO2 arti-
ficial synapses.

Furthermore, multi-layer perceptrons (MLPs)-assisted 
learning simulation was implemented to assess the learning 
ability of  LixCoO2-based neuromorphic systems. The multi-
state weights measured in Fig. 2d were used as the source 
of synaptic connections for assignment to MLPs throughout 
the learning process. Figure S16 depicts the data processing 
flow in the MLPs [74]. Based on the given data, the DNN 
model was trained for up to 40 epochs, with each epoch 
exploring an optimal inferred model by training and testing 
on allocated training sets at random. In the training phase, 
stochastic gradient descent was used to optimize the synaptic 
connections of neural networks through a backpropagation-
supervised learning algorithm [75]. The detailed structure 
and learning process of MLPs are covered in Note S5. As 
shown in Fig. 6d,  LixCoO2-based MLP performed admira-
bly in file type identification, with only a 0.5% difference 
from FP. Figure 6f reveals that recognition accuracy on the 
MNIST datasets even rivaled FP after 40 epoch training with 
10,000 training sets. Similarly, training on fashion MNIST 
achieved an accuracy of up to 84.5% for a theoretical maxi-
mum of 86.2% in Fig. 6g. Table 1 presents the inference 
accuracies on the MNIST datasets in MLPs simulations for 
the recently reported Li ion-based artificial synapses. Nota-
bly, the  LixCoO2-based artificial synapses outperformed the 
three-terminal synaptic transistors in terms of learning abil-
ity, with the least performance degradation for FP accuracy. 

These exceptional performances are owing to the highly 
linear and noise-free weight updates that enable precise and 
effective weight allocation during algorithmic learning.

4  Conclusions

In this study, we implemented an artificial two-terminal ionic 
synapse utilizing intercalation and deintercalation of Li ions 
in  LixCoO2 film. The Au/LixCoO2/Pt artificial synapses dem-
onstrated synaptic potentiation and depression via weight 
control spikes associated with the progressive dearth of Li 
ions in  LixCoO2 films. The modification of synaptic connec-
tions was highly linear and uniform owing to the reversible 
 Li+ migrations. Various synaptic behaviors, including bio-
plausible synaptic plasticity, were successfully imitated for 
the first time in Li ion-based synaptic devices, accompanied 
by in-depth investigations. The  LixCoO2-based artificial 
synapses, in particular, exhibited impressive weight tunabil-
ity based on activity-dependent synaptic plasticity. Under 
different weight control regimes, synaptic weights can be 
varied dynamically according to specific activity patterns 
to facilitate the control of synaptic properties. The evalua-
tions of symmetricity, nonlinearity, and dynamic range of 
the LTP/LTD curves, which have a significant impact on the 
performance of neuromorphic computing, were also accom-
panied. High plasticity dependence on the activity patterns 
allows customization of the LTP/LTD profiles by tailoring 
weight control spikes. In addition, investigations on Li-ion 
migrations in Au/LixCoO2/Pt artificial synapses provided the 
rationales for the weight control mechanism of the device. 
Lastly, the feasibility of the  LixCoO2-based neuromorphic 
system was demonstrated through performance evaluation 
in artificial neural networks. CNNs were employed to assess 
the reliability of analog computing utilizing measured multi-
state synaptic weights of  LixCoO2 artificial synapses. The 
low programming errors of the synaptic devices reported 
impressive results of excellent computing performance. 
Besides, the deep neural network-assisted crossbar array 
learning simulation was introduced to estimate the learning 
ability of  LixCoO2-based hardware neural networks. In the 
image recognition on the MNIST and Fashion MNIST data 
sets, the  LixCoO2-based artificial synapses achieved superior 
accuracy, surpassing to three-terminal synaptic transistors 
owing to fine nonlinearity and low noise. We believe that this 
study will not only contribute to the development of artificial 
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two-terminal ionic synapses with the potential for structural 
integration and reliable performance but also pave the way 
toward hardware implementation of neuromorphic systems.
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