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Abstract
Background Heterogeneity in clinical manifestation and underlying neuro-biological mechanisms are major 
obstacles to providing personalized interventions for individuals with autism spectrum disorder (ASD). Despite various 
efforts to unify disparate data modalities and machine learning techniques for subclassification, replicable ASD 
clusters remain elusive. Our study aims to introduce a novel method, utilizing the objective behavioral biomarker of 
gaze patterns during joint attention, to subclassify ASD. We will assess whether behavior-based subgrouping yields 
clinically, genetically, and neurologically distinct ASD groups.

Methods We propose a study involving 60 individuals with ASD recruited from a specialized psychiatric clinic 
to perform joint attention tasks. Through the examination of gaze patterns in social contexts, we will conduct 
a semi-supervised clustering analysis, yielding two primary clusters: good gaze response group and poor gaze 
response group. Subsequent comparison will occur across these clusters, scrutinizing neuroanatomical structure 
and connectivity using structural as well as functional brain imaging studies, genetic predisposition through single 
nucleotide polymorphism data, and assorted socio-demographic and clinical information.

Conclusions The aim of the study is to investigate the discriminative properties and the validity of the joint 
attention-based subclassification of ASD using multi-modality data.

Trial registration Clinical trial, KCT0008530, Registered 16 June 2023, https://cris.nih.go.kr/cris/index/index.do.
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Background
The early onset [1], diverse clinical and neurobiologi-
cal features [2–4], and rising prevalence of autism spec-
trum disorder (ASD) [5, 6] highlight the urgent need and 
associated challenges for its subclassification. Recent 
advancements in genomics [7–9] and neurobiology 
[10–13] underscore the disorder’s complexity, revealing 
various etiological pathways. This wide spectrum of ASD 
symptoms poses both a hurdle and incentive for subclas-
sification. Subclassification methodologies are distin-
guished by the type of data analyzed and the algorithms 
used for grouping [12]. The data can be behavior-based 
or biology-based, each indirectly indicating variations in 
the other [14, 15]. Moreover, subclassification algorithms 
range from supervised and unsupervised to hybrid mod-
els, each using univariate or multivariate statistics, with 
their respective pros and cons [16].

Genomic subclassification of ASD
Genetic factors are the primary risk contributors to ASD, 
encompassing a range of both rare and common genetic 
variants. This includes rare de novo mutations, copy 
number variants, protein-truncating single nucleotide 
polymorphisms (SNPs), indels, and even non-coding de 
novo mutations in chromatin interactions [17, 18]. Pre-
vious studies have linked these genetic elements to the 
wide-ranging clinical manifestations of ASD. The genetic 
origins of ASD are complex and multifactorial; however, 
our grasp of how these genetic elements functionally 
influence ASD is still limited. Additionally, the way these 
genetic factors interact with each other and non-genetic 
factors to shape risk remains uncertain. However, con-
sidering the enormous number of variants implicated 
in ASD, coupling these genetic data with other types of 
data obtained through different modalities may help us 
discern specific genetic vulnerabilities and their corre-
sponding functional consequences in ASD [19].

Neuro-subclassification of ASD
A few studies have explored neuroanatomical differences 
between individuals with ASD and neurotypical individ-
uals, as well as within the ASD group itself [11–13, 20]. 
A significant portion of this research has been conducted 
using the Autism Brain Imaging Data Exchange (ABIDE) 
dataset, an open-source compilation of brain imaging 
data from ASD and neurotypical individuals [21, 22]. 
Using this resource, Hong et al. identified three distinct 
ASD subclasses with varying clinical outcomes, based on 
cortical thickness, intensity contrast, surface area, and 
geodesic distance [20]. Choi et al., applying an unsuper-
vised clustering approach to ABIDE’s resting state fMRI 
(rsfMRI) data and utilizing ‘connectome-based gradient’ 
and ‘functional random forest’ methodologies, were able 
to differentiate various forms of ASD [12]. However, their 

results lacked complete replicability as the clinical scores 
of the subgroups identified through cluster analysis in 
a follow-up dataset deviated from those in the original 
dataset. Additionally, these ASD clusters failed to show 
significant differences in neural connectivity [12, 20]. 
These outcomes imply that purely unsupervised cluster-
ing using intricate data like fMRI might not yield clini-
cally meaningful ASD subtypes.

Clinical score-driven subclassification of ASD
A research team adopted a top-down approach in their 
pursuit of developing a new ASD subclassification 
method, using a clinical-score based clustering method 
and multimodality data [23]. While this approach allowed 
for the identification of distinct ASD subgroups based on 
balance between social-communicative and restricted 
repetitive behaviors – the two main symptom domains 
of ASD), these ASD subgroups showed no evident differ-
ences in neural circuitry and genetic components [23].

Limitations of previous studies
Previous attempts at cluster analysis using unsupervised 
learning on intricate data such as fMRI did not yield con-
sistent or replicable subclassifications; even with identi-
cal experimental parameters, the replication dataset did 
not reproduce the same ASD subgroups as the original 
discovery dataset [11–13]. Without any labels to guide 
the clustering, individuals were grouped into distinct 
subclusters based on non-linear data patterns that lacked 
clinical significance. Meanwhile, studies using supervised 
learning methods for cluster analysis also fell short, fail-
ing to identify subgroups with unique clinical phenotypes 
and neurobiological mechanisms [23]. It is worth noting 
that these studies used human-rated autism-related scale 
sub-scores as labels for supervised learning. Although 
these scores are clinically valid and frequently used, they 
may not adequately capture objective and qualitative dif-
ferences in ASD phenotypes.

Possible objective behavioral biomarker for 
subclassification of ASD
Joint attention, as indicated by prior research, may serve 
as an objective behavioral biomarker for ASD subclas-
sification [24, 25]. This term refers to the sharing of 
attentional focus with others on objects or events and is 
believed to aid social learning [26, 27]. We have estab-
lished a digitized method to assess joint attention, imple-
menting a novel protocol to prompt three types of joint 
attention - initiation of joint attention (IJA), low-level 
and high-level response to joint attention (RJAlow and 
RJAhigh) - as defined in the Early Social Communication 
Scales (ESCS) [28]. This method uses video-recorded 
task-related behaviors [26, 27], which are then utilized to 
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train a deep learning model to identify ASD and evaluate 
its symptom severity [25].

Identifying the most affected level—biological, neu-
ral, or behavioral—in an individual with Autism Spec-
trum Disorder (ASD) to determine the suitable targeted 
intervention is a significant challenge. To address this, 
we have initiated the development of the Yonsei-Seoul 
Multi-modal Subclassification (YSMS) protocol, which 
was designed to streamline data collection from newly 
diagnosed ASD patients. Specifically, the focus is on the 
patterns of joint attention gaze demonstrated during 
behavioral tasks, with the aim to discern whether these 
patterns can differentiate various ASD subtypes, each 
unique in their biological and neurological attributes. 
We intend to implement a pilot version of this protocol 
in an exploratory study involving 60 individuals diag-
nosed with ASD from June 2023 to May 2024 to compare 
objective behavioral biomarker-based ASD subgroups 
using multimodality data. Such endeavor is expected to 
drive the creation of a novel ASD subclassification sys-
tem, considering each individual’s biological, neural, and 
behavioral characteristics.

Methods
Recruitment
We have designed a single center, prospective, non-ran-
domized experimental study, where individuals with ASD 
diagnosis will be recruited from June 2023 – May 2024. A 
group of 60 ASD individuals will be recruited from outpa-
tient clinic at the Child and Adolescent Psychiatry Division 
of Seoul National University Hospital (SNUH). Enrollment 
criteria are: (1) age of 30 ~ 71 months, (2) children diagnosed 
with ASD by a psychiatrist and confirmed by Autism Diag-
nostic Observation Schedule II (ADOS2). Exclusion criteria 
are: (1) history of organic brain injury, (2) having visual or 
auditory deficit, (3) having neurological (motor/musculo-
skeletal) conditions, (4) history of adverse reaction to seda-
tion anesthesia. A schematic showing the flow of patients is 
depicted in Fig. 1.

Multi-modal Data Collection – different types of data
Socio-demographics and family history
We gather information about each participant’s socio-
demographics and family history to consider for environ-
mental risk factors that may have contributed to different 
social gaze patterns during joint attention tasks. Patient 
information such as sex and age at time of assessment 
will be gathered. Family information such as parental age, 
parental education level as well as socio-economic status 
will be gathered from parent interviews. Moreover, num-
ber of siblings as well as neuropsychiatric history of sib-
lings will also be obtained.

Clinical assessments - neuropsychiatric tests
The diagnosis of ASD is confirmed using ADOS-2, the 
gold standard diagnostic tool for ASD diagnosis [29]. 
Autistic tendencies are measured using the Korean ver-
sions of the Social Responsiveness Scale (K-SRS) as 
well as Social Communication Questionnaire (K-SCQ) 
[30]. The Social Responsiveness Scale (SRS) is a 65-item 
questionnaire, scored from zero to three based on the 
frequency of the described behavior, that evaluates the 
social interactions of children over the past six months, 
with higher scores indicating lower social capability [30]. 
The SCQ is a 40-item screening instrument that is based 
on Autism Diagnostic Interview-Revised (ADI-R), a tool 
for more in-depth assessment of ASD symptoms, and 
selects key items that deviate from normal development 
[30, 31].

Child behavioral problems will be checked with Child 
Behavior Checklist (CBCL) as well as Vineland Adaptive 
Behavior Scale (VABS) [32]. The child’s motor functions 
will be assessed through Developmental Coordination 
Disorder Questionnaire (DCDQ) [32]. To assess the cog-
nitive levels of participants, the Korean Wechsler Pre-
school and Primary Scale of Intelligence–Fourth Edition 
(K-WPPSI-IV) will be used [33].

Joint attention tasks and Video Data
We will conduct three types of joint attention tasks in the 
order of initiation of joint attention, low-level response to 
joint attention, and high-level response to joint attention 
according to the Yonsei Seoul Multi-modal Subclassifi-
cation (YSMS) Joint Attention Task Standard Operat-
ing Procedure. Development and validation of AI model 
trained on video data collected using this protocol has 
been published elsewhere [24, 25]. Supplementary Fig. 1 
shows setup for joint attention experiments based on 
our proposed protocol. Initiation of joint attention task 
requires use of only toy 1, while low level response to 
joint attention task requiring use of toy 1 and toy 2 (dis-
traction) and high-level response to joint attention task 
requiring use of four picture prompts.

Video (RGB or RGB-D)-based Gaze Estimation during Joint 
attention situations
Following the YSMS Social Gaze-Based Clustering Stan-
dard Operating Procedure, we will gather joint attention 
videoclips for purpose of determining gaze patterns of 
each participant during joint attention tasks. Joint atten-
tion tasks were slightly modified from previous study [24, 
25], whereby picture prompts are placed on the same 
plane as the examiner and toy objects so that all gaze 
points will fall on the same imaginary vertical hyper-
plane parallel to the participant’s head/eyes, as shown in 
Supplementary Fig. 8. With such videorecording set-up, 
RGB-D information (if using RGB-D device) as well as 
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head’s yaw, pitch, and roll may be computed via computer 
vision techniques such as algorithm for estimating 3D 
position of the head and face-tracker [34]. Head position 
and orientation is tracked through the frame sequence 
and at every time point this information is stored for later 
analyzing different patterns of social (joint attention situ-
ations) gaze among participants.

Magnetic resonance imaging Acquisition and Processing
We use magnetic resonance imaging (MRI) to study 
differences in brain structure [35], function, and con-
nectivity [36–38]. These methods are important for 
determining whether different clusters or subgroups of 
ASD based on social gaze patterns differ at systems-level, 
providing the underlying neurological mechanisms of 

different types of ASD. We will be gathering all MRI data 
from a single center—SNUH.

Structural MRI (sMRI) and Diffusion Tensor Imaging (DTI)
MRI scans are acquired on 3T scanners from Siemens 
(https://www.siemens-healthineers.com/). We will carry 
out several procedures to optimize structural and func-
tional sequences for the best Siemens-specific options 
and to address challenges related to standardization and 
quality assurance of image-acquisition.

Global descriptors of brain anatomy can be elucidated 
through measures of total grey and white matter volume 
[35]. Alongside these metrics, we will probe into distinctions 
in cortical thickness, intensity contrast, geodesic distance, 
and cortical surface areas. These anatomical indices possess 

Fig. 1 Recruitment and Overall Study Schema
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unique genetic determinants, phylogeny, and developmental 
trajectories [35, 36]. Furthermore, we will calculate struc-
tural connectivity indices utilizing both structural MRI 
scans and Diffusion Tensor Imaging (DTI). Variations in 
intrinsic grey matter connectivity can be inferred by exam-
ining the disparities in both local and global wiring costs 
[37]. Concurrently, distinctions in short and long-range 
white matter tracts can be evaluated using tractography 
analysis of particular pathways [38].

Resting state functional magnetic resonance imaging 
(rsfMRI)
Standard gradient-echo echo planar imaging paradigm 
will be utilized for the acquisition of resting state fMRI 
scans [39]. We will carry out several procedures to find 
optimal parameters such as field of view, repetition time, 
echo time, flip angle, etc. During the resting state scan, 
participants will be sedated with their eyes closed. The 
Configurable Pipeline for the Analysis of Connectomes 
(CPAC, http://fcp-indi.github.com) preprocessing pipe-
line will be employed for fMRI data processing to remove 
non-neural noise, such as motion artifacts, from the 
BOLD-signal [12, 20]. Multiple functional networks have 
been identified that are characterized by coherent pat-
terns of intrinsic activity between ‘nodes’ that resemble 
patterns of activity that are engaged during specific cog-
nitive functions [12]. We aim to identify whether social 
gaze-based subgroups differ in (hyper/hypo-) connectiv-
ity within and across these networks [10, 11, 13].

Whole genome sequencing (WGS)
We acquire blood samples from the participant for 
genomic analyses—we specifically wish to identify all 
variants associated with ASD and calculate polygenic risk 
scores for each participant. These methods are important 
for determining whether different clusters or subgroups 
of ASD based on social gaze patterns differ at the genetic, 
blueprint-level; ASD individuals may show varying social 
gaze patterns based on their entire mutation profile.

Collection and Processing of Peripheral Whole Blood 
Samples: Each participant will contribute a 3ml sample 
of peripheral whole blood. These samples will be sub-
jected to genomic DNA extraction and whole genome 
sequencing, performed with the NextSeq 550Dx System 
(Illumina, San Diego, CA, USA). The procedure for whole 
genome sequencing will adhere to an industry standard 
quality-controlled sequence analysis pipeline and utilize 
a current reference sequence for the purposes of map-
ping and variant calling [40].

Identification of single nucleotide polymorphisms 
(SNPs) and insertions and deletions (indels) will be con-
ducted with HaplotypeCaller and MuTect2 from the 
GATK package (3.8-0, https://github.com/broadinstitute/
gatk/releases), as well as with VarScan2 (2.4.0, https://

github.com/dkoboldt/varscan/releases). A variety of 
databases will be used for the analysis and annotation of 
variants, including but not limited to, the Online Men-
delian Inheritance in Man (OMIM), the Human Gene 
Mutation Database (HGMD), Clinvar, dbSNP, 1000 
Genomes, the Exome Aggregation Consortium (ExAC), 
the Exome Sequencing Project (ESP), the Korean Ref-
erence Genome Database (KRGDB), Autism Speaks 
MSSNG resource, and the Simons Simplex Collection 
(SSC). Variants will be classified following the standards 
and guidelines set forth by the American College of Med-
ical Genetics (ACMG) [41]. Following annotation, the 
sequencing data will undergo additional processing to 
compute polygenic risk scores for ASD of the top SNPs 
after thresholding the SNP component [42]. Such com-
putation aims to aid in differentiating between individu-
als with Autism Spectrum Disorder (ASD) based on their 
distinct genetic susceptibility or polygenic risk variability.

The different types of data for comparison between 
subgroups of ASD are listed in Table 1.

Considerations related to the statistical analysis
Statistical models and analyses
Social Gaze-based semi-supervised clustering analysis
From our previous study, we explored certain relation-
ships between individuals with ASD and clinical scores as 
well as their performance on joint attention tasks, namely 
initiation of joint attention and response to joint atten-
tion [24, 25]. Such analyses revealed that variables that 
explain for the variance within group of ASD individuals 
is their performance in joint attention tasks. Hence forth, 
we will use join attention success rate for the three dif-
ferent joint attention tasks and perform principal com-
ponent analysis followed by semi-supervised k-means 
clustering analysis [43] - using good and poor gaze 
response head-pose values as labels - to obtain two ASD 
subgroups, one with decreased joint attention and the 
other with intact joint attention. An alternative method 
would be to use a range of threshold value k to divide the 
group of ASD individuals in two sub-groups where one 
group shows relatively better joint attention abilities.

Comparison between good gaze response group and poor 
gaze response group
Concerning group comparison between two subgroups 
of ASD based on gaze response during joint attention 
tasks, several elements will be investigated. These include 
socio-demographic and clinical characteristics, social 
gaze patterns (gaze frequency towards or away from foci 
of attention). Furthermore, structural MRI profiles com-
prising of cortical thickness and surface area, intensity 
contrast, and geodesic distance, as well as rsfMRI profiles 
detailing stepwise functional connectivity difference, will 
be assessed.

http://fcp-indi.github.com
https://github.com/broadinstitute/gatk/releases
https://github.com/broadinstitute/gatk/releases
https://github.com/dkoboldt/varscan/releases
https://github.com/dkoboldt/varscan/releases
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Continuous variables will be represented using means, 
standard deviations, medians, and ranges. To compare 
categorical variables, the chi-squared test will be utilized. 
All statistical analyses and computations of the valida-
tion measures will be conducted using Python 3.6.8, in 
conjunction with SciPy version 1.4.1 (https://docs.scipy.
org/doc/scipy-1.4.1/) and Statsmodels 0.11.1 (https://
www.statsmodels.org/dev/release/version0.11.1.html). A 
p-value < 0.05 will be used as the threshold for statistical 
significance.

Power calculation – sample size estimation
For this exploratory study, the lack of preceding data pre-
cludes the establishment of a definitive sample size. Nev-
ertheless, referencing guidelines for comparable studies, 
we advocate a minimum sample size of 12, considering 
the study’s feasibility, precision of means and variances, 
and compliance with regulatory requirements [44]. 
Reflecting on a previous investigation that effectively 
classified three distinct severity subclasses of ASD with 
a cohort of 45 individuals [25], our study plans to recruit 
60 participants. This number takes into consideration 
potential participant dropouts or missing data essential 
for statistical analysis.

Ethical considerations
This study, adhering to the Helsinki Declaration and 
its subsequent amendments, mandates informed con-
sent from participants and their legal guardians based 
on verbal and written details provided. Participants and 
their legal guardians reserve the right to withdraw at any 
point, with no obligation to justify their decision and no 
impact on future treatment. Approval for the study has 
been granted by the Seoul National University Hospi-
tal IRB Review Board (IRB No. H-2210-137-1374). The 
investigators anticipate no discomfort for the subjects 
from the tests and tasks involved, with no short- or long-
term risks identified in relation to this study.

Outcome
We posit that ASD individuals with decreased joint atten-
tion, characterized by atypical social gaze patterns, will 
exhibit unique genetic, structural, and functional neural 
patterns distinct from ASD individuals with mostly intact 
joint attention, who demonstrate appropriate social gaze 
patterns. The differentiation is likely rooted in the connec-
tivity within the visual and social brain pathways. It is antici-
pated that ASD individuals with decreased joint attention 
will possess SNPs associated with the visual pathway. Fur-
thermore, individuals with greater RRB than SC impairment 
are expected to exhibit less impairment in social gaze abil-
ity. Conversely, participants with a higher SC impairment 
relative to RRB are predicted to demonstrate a pronounced 
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deficiency in social gaze ability. A layout of expected out-
come table is depicted in Table 2.

Discussion
Prompted by a clinical demand for ASD subclassification 
based on distinct neurobiological and behavioral traits, 
this study is the first to prospectively gather multi-modal 
data of ASD individuals, utilizing objective behavioral 
biomarkers for group clustering. Greater comprehension 
of ASD types, characterized by their unique behavioral 
anomalies and underlying mechanisms, is essential for 
devising patient-specific treatments. Ignoring the inter-
play of patient-specific needs, overt impairments (social-
communication or attentiveness to social cues), genetic 
susceptibilities, and biological-neurological conditions 
can result in inefficiencies and parental frustration. Our 
methodology seeks to mitigate these issues by facilitating 
successful ASD subclassification based on unique behav-
ioral-neurological-genetic patterns.
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