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Abstract 

Background Computational drug repurposing is crucial for identifying candidate therapeutic medications to 
address the urgent need for developing treatments for newly emerging infectious diseases. The recent COVID‑19 
pandemic has taught us the importance of rapidly discovering candidate drugs and providing them to medical and 
pharmaceutical experts for further investigation. Network‑based approaches can provide repurposable drugs quickly 
by leveraging comprehensive relationships among biological components. However, in a case of newly emerging 
disease, applying a repurposing methods with only pre‑existing knowledge networks may prove inadequate due to 
the insufficiency of information flow caused by the novel nature of the disease.

Methods We proposed a network‑based complementary linkage method for drug repurposing to solve the lack of 
incoming new disease‑specific information in knowledge networks. We simulate our method under the controlled 
repurposing scenario that we faced in the early stage of the COVID‑19 pandemic. First, the disease‑gene‑drug multi‑
layered network was constructed as the backbone network by fusing comprehensive knowledge database. Then, 
complementary information for COVID‑19, containing data on 18 comorbid diseases and 17 relevant proteins, was 
collected from publications or preprint servers as of May 2020. We estimated connections between the novel COVID‑
19 node and the backbone network to construct a complemented network. Network‑based drug scoring for COVID‑
19 was performed by applying graph‑based semi‑supervised learning, and the resulting scores were used to validate 
prioritized drugs for population‑scale electronic health records‑based medication analyses.

Results The backbone networks consisted of 591 diseases, 26,681 proteins, and 2,173 drug nodes based on pre‑
pandemic knowledge. After incorporating the 35 entities comprised of complemented information into the back‑
bone network, drug scoring screened top 30 potential repurposable drugs for COVID‑19. The prioritized drugs were 
subsequently analyzed in electronic health records obtained from patients in the Penn Medicine COVID‑19 Registry as 
of October 2021 and 8 of these were found to be statistically associated with a COVID‑19 phenotype.
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Conclusion We found that 8 of the 30 drugs identified by graph‑based scoring on complemented networks as 
potential candidates for COVID‑19 repurposing were additionally supported by real‑world patient data in follow‑up 
analyses. These results show that our network‑based complementary linkage method and drug scoring algorithm are 
promising strategies for identifying candidate repurposable drugs when new emerging disease outbreaks.

Keywords Drug repurposing, Network medicine, Graph‑based semi‑supervised learning, COVID‑19

Introduction
During the recent COVID-19 pandemic caused by the 
severe acute respiratory syndrome coronavirus-2 (SARS-
CoV-2), many researchers and pharmaceutical compa-
nies have conducted numerous studies for developing 
treatments and vaccines. In particular, many research-
ers attempt to repurpose known drugs to treat patients 
with SARS-CoV-2 infection because drug repurposing is 
cheaper and quicker than conventional drug discovery. 
Drug repurposing aims to find new indicators in already-
approved drugs that could be used for other diseases 
[1–3]. Several drugs have been successfully repositioned 
for COVID-19, such as remdesivir (initially developed to 
treat the Ebola virus) and dexamethasone (used in con-
ditions for anti-inflammatory and immunosuppressant 
effects) [4–6]. Although the global COVID-19 pandemic is 
gradually shifting to an endemic stage thanks to the devel-
opment of vaccines and treatments, the spread of coro-
navirus is still ongoing as of September 2022. One of the 
lessons we have learned from the recent pandemic is that 
it is important to rapidly discover a list of candidate drugs 
and provide it to experts in the medical or pharmaceutical 
field can investigate the potential of the candidate drugs 
for use in new indications [7].

As knowledge of biological mechanisms advances and 
biomedical knowledge is well collected, more accurate and 
precise computational drug repurposing based on well-
curated data has become possible [8]. One computational 
repurposing framework is a network-based approach that 
can recommend candidate drugs by observing the com-
plex relationships among biological entities such as drugs, 
genes, and diseases. Their complex and heterogeneous 
interactions can be represented by topological structures 
among nodes and edges in a graph [9–11].

Even though biomedical/pharmaceutical data sources 
are more readily available than ever, what if a new infec-
tious disease emerges and there is no information about 
the new disease in the previously accumulated database? 
This is the scenario the scientific and medical communi-
ties faced in the early stages of the COVID-19 pandemic 
(urgent need for discovering therapeutic treatment for 
COVID-19). In a network-based approach, the new disease 
node, i.e. COVID-19, could be introduced in an existing 
biological network to apply network-based drug repur-
posing. However, if the new disease is disconnected with 
the existing network, meaning COVID-19 is undefined in 
terms of interactions with other components, the discon-
nected node cannot provide sufficient pharmaceutical 
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can discover by researchers over time, the final network for drug repurposing can differ depending on the selected dataset. c We developed a new 
method of updating the network instantly with the complementary dataset (discovered findings from studies) to find candidate repurposable 
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evidence or inferences (Fig.  1a). As COVID-19-related 
research progressed gradually, relational information (such 
as pathogenesis of COVID-19 and related target genes/
proteins) were discovered over time (Fig. 1b). To connect 
the COVID-19 node to the previously constructed net-
work, the network needs to be rebuilt or updated by incor-
porating the newly found information. As the information 
related to COVID-19 discovered, various networks includ-
ing latest information can be built or updated depending 
on which association information is used (Fig. 1b). How-
ever, it is inefficient to repeat the entire process of building 
an up-to-date network every time new data sources come 
in when much new information is revealed and reported 
from the researchers continuously. Obviously, a more 
sophisticated network will help predict repurposable drugs 
with more therapeutic potential [12, 13]. However, in a 
public health emergency as we have experienced, it is also 
crucial to provide even potential evidences for candidate 
drugs to allow pharmaceutical experts to conduct early-
stage trials, even if the candidate drugs were predicted 
from a relatively less elaborate networks. Inspired by this, 
we propose a network-based method for rapid screening 
of repurposable drugs that enables to efficiently incorpo-
rate the complementary information for a new entity into 
existing networks (Fig. 1c).

In this study, we assumed that we faced the initial/early 
stage of the COVID-19 pandemic. We collected the rela-
tionship information for COVID-19 reported as of May 
2020. Through this paper, we showed the simulation of 
how to overcome the lack of information related to new 
infectious diseases and how to validate the candidate 
repurposable drugs from the proposed complementary 
network. First, a backbone network without COVID-19 
related information was created. The backbone network 
consisted of heterogeneous components such as diseases, 
genes, and drugs which connected with each other based 
on calculated proximity. The backbone network was pro-
cessed as a multi-layered network that consists of three 
different single networks including a disease-disease net-
work, a protein–protein interaction network and a drug-
drug network. To introduce the novel disease into the 
constructed backbone network, a network-based comple-
mentary linkage method was developed to estimate the 
auxiliary connections between the new disease node and 
the heterogeneous multi-layered network. In our previous 
study, we already developed complementary method for 
enhancing a single disease network or a single drug net-
work to improve their connectivity, but there was a limi-
tation in the previous method of not being able to make 
estimating multiple connections at once—the previous 
method can only connect one edge per iteration, and thus 
the overall quality of estimated complementary edges is 
dependent on the order of connected edges [14, 15]. We 

improved the complementary linkage method to enable 
estimating a batch of multiple connections at once by 
applying the enhanced multi-layered network with het-
erogeneous or homogenous data. Next, with the comple-
mented network complemented by the novel disease node 
and its estimated connections, repurposable drug were 
screened via graph-based semi-supervised learning, which 
propagates label information along with the multi-layered 
topological structure. The label propagation algorithm can 
produce a ranked list of prioritized candidate drugs with 
normalized scores. We then took the candidate drugs with 
the highest scores and looked for evidence of associations 
with patient medication orders and COVID-19 related 
phenotypes using electronic health record information 
from the Penn Medicine health system.

Methods
Overview of proposed network‑based drug repurposing 
method
We propose a network-based drug repurposing method 
for rapid screening to respond to the situation of an 
emerging new disease. The proposed method can quickly 
update and augment a knowledge-driven comprehen-
sive multi-layered network with novel disease relation-
ship data and then prioritize the candidate repurposable 
drugs based on the complemented network. First, we 
constructed the multi-layered network as a backbone by 
collecting data from publicly available databases (Addi-
tional file 2: Table. S1). As described above, we assumed 
that COVID-19 emerged as a new disease node that was 
not connected to the multi-layered backbone network. 
Additional relational information about COVID-19 to 
be augmented to the backbone network was collected 
from papers published or shared on preprint servers 
(medRxiv and bioRxiv) before May 2020 and contains 
diseases comorbid with and genes relevant to COVID-19 
[16]. A network-based complementary linkage method 
was developed to estimate connections between the 
novel COVID-19 disease node and the backbone net-
work (Fig.  2a). The complementary linkage method can 
determine whether the additional relational informa-
tion can harm the backbone network when the arbitrary 
edges provided by users are connected. Then, graph-
based semi-supervised learning (SSL) was applied to 
prioritize the repurposable candidate drugs for COVID-
19 (Fig. 2b). The graph-based SSL can predict candidate 
drugs by leveraging the underlying structure of comple-
mented network when only one label information was 
given [17–19]. The prioritized list of candidate drugs 
was validated with electronic health records at Penn 
Medicine.
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Construction of backbone network
The Disease-Gene-Drug Network was constructed as a 
backbone network to represent relationships between 
different biological components. The backbone network 
is a multi-layered heterogeneous graph,G = (V ,W , S) , 
where the set of nodes V  represents diseases, genes, 
and drugs according to the set of layers S = {D,G,Dr} 
respectively, and the similarity matrix W  represents the 
relationships within and across layers (Fig. 3a). Since the 

network is multi-layered, we defined intra-layer relations 
and inter-layer relations by decomposing the similarity 
matrix W  as W {intra} and W {inter} . The intra-layer rela-
tion depicts a single network such as a disease-disease 
network, a protein–protein interaction network, or a 
drug-drug network. The similarity for single network 
was quantified by calculating the cosine similarity using 
the respective association vectors. For example, similar-
ity between diseases were calculated by disease-gene 
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association vectors. The inter-layer relation represents 
the connections between different single networks (dif-
ferent layers), which consist of disease-gene association, 
disease-drug association, and drug-gene associations 
[20]. More details about constructing network are 
described in Additional file  1: Extended method, and 
Additional file 2: Table S1.

Network‑wise complementary linkage method 
for multi‑layered network
The network-based complementary linkage method can 
estimate connections between a single disease node of 
COVID-19 and the backbone network. The strategies 
of the proposed linkage method are as follows: (a) add-
ing initial information provided by users for estimating 
auxiliary connections (estimated edges), (b) prediction 
tasks are defined within the backbone network to learn 
how to estimate new edges between backbone network 
and novel node, (c) the properties of backbone network 
are defined as a loss function, and (d) user-provided 
auxiliary connections are allowed in a complementary 
process, provided it does not compromise the pre-
defined properties of the backbone network (stopping 
rule).

The proposed steps were used to augment the novel 
COVID-19 node into the backbone network. (a) 18 comor-
bid diseases and 17 related genes were collected from the 
literature and used initial information (Additional file  2: 
Table  S2). (b) The prediction task was defined as predict-
ing disease-drug associations in the backbone network. 
The original tripartite multi-layered backbone network was 
transformed into the hierarchical layered network to facili-
tate these disease-drug association predictions, ordered by 
disease, gene, and drug layer (Fig. 3b). When transforming 
into a hierarchical network, connections between disease 
and drug layers were deleted and used as the ground truth 
for the prediction task during complementary process. Nota-
bly, we predict the list of drugs when a single disease node 
is given as a label. The number of iterations is the same as 
the number of nodes in the disease-disease network. (c) 
The measuring property of the transformed backbone net-
work was defined as the area under the receiver operating 
characteristic (AUC) for an index disease of interest. (d) 35 
user-provided auxiliary connections were allowed when the 
average AUC was not decreased. The connection strength 
increased the search range by 0.1 units (Fig. 3c).

Drug scoring algorithm with complemented network
A graph-based SSL was employed to prioritize candidate 
repurposable drugs with the complemented network. 
Semi-supervised approaches can be used even if the label 
information is insufficient compared to the conventional 

supervised approaches that always require a lot of label 
information [19]. The scoring algorithm propagates the 
given label information to the underlying structure of 
the complemented network. It is a more suitable case for 
employing graph-based SSL when a new disease such as 
COVID-19 in the previously assumed situation has no 
therapeutic agent.

The formulation of the scoring algorithm is as follows. 
Consider we have m diseases, n proteins, and k drugs in 
complemented network,G = (V ,W ) , with set of nodes 
V (= VD ∪ VG ∪ VDr) corresponding to the 
|V |(= m+ n+ k) nodes. Let y =

(
y1, . . . , y|V |

)T denote 

the initial label set of nodes, and f =

[
f D, f G , f Dr

]T

=

(
f
D
1
, . . . , f Dm , f G

1
, . . . , f Gn , f Dr

1
, . . . , f Dr

k

)T denote the set of 
resulting scores. Unlike the general classification prob-
lem where the target variable has a binary label (‘ + 1’ or 
‘-1’), the problem setting of scoring in a semi-supervised 
approach has a unary label (‘ + 1’) only. More specifically, 
a disease node of COVID-19 ( vDCOVID ) is set to a unary 
label yCOVID ∈ {+1}, and the other nodes set to zero 
( y\yCOVID ∈ {0}) . In graph-based SSL, there are two 
assumptions: (a) a loss function that predicted scores in 
unlabeled nodes should be close to the given label of yi in 
labeled nodes and (b) a smoothness condition that pre-
dicted scores in adjacent unlabeled nodes should be close 
to each other. These assumptions are reflected by the 
quadratic objective function in Eq.  (1) where the graph 
Laplacian L is defined as L = D −W  , D = diag

(∑
jwij

)
 

is diagonal degree matrix ofW  , and the user-specified 
parameter µ trades off loss and smoothness (to reduce 
computational complexity, µ is set to 1/‖L‖1 in this 
study).

By minimizing objective function in Eq. (1), the closed-
form solution becomes f =

(
I + L

�L�1

)−1
y . The pre-

dicted score f  is produced for all three single layers, but 
since we are only interested in repurposable drugs in the 
drug layer, the value of f Dr is transformed to range from 
0 to 1 as f̂

Dr
=

f Dr−min(f Dr )

max
(
f Dr

)
−min(f Dr )

 . All drugs are sorted in 

descending order according to the transformed scores 
f̂
Dr

 to prioritize the repurposable drugs for the index 
disease of interest [15, 17].

Validation of prediction results with candidate 
repurposable drugs
The predicted results from the scoring algorithm can 
provide the prioritized scores of each drug, but it is hard 
to validate the potential of each candidate drug since 

(1)min (f − y)T(f − y)+ µf TLf
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there is no pharmacological evidence related to the novel 
disease COVID-19. Although the listed candidate drugs 
for the COVID-19 have already been approved to treat 
other illnesses, it is unreasonable to conclude predict 
these drugs’ efficacy to treat COVID-19 as these drugs 
have not yet undergone clinical trials for the COVID-19. 
However, during global health emergencies such as the 
COVID-19 pandemic, there is not enough time for clini-
cal trials so an effective indirect verification method is 
needed. Therefore, candidate drugs were statistically vali-
dated using electronic health record (EHR) data.

First, we extracted the clinical records from the Penn 
Medicine COVID-19 Registry and assigned case/con-
trol phenotypes for COVID-19 susceptibility, hospi-
talization, and severity based on the COVID-19 Host 
Genetics Initiative phenotype definitions [21]. Then, 
we built logistic regression models for the effects of the 
candidate medications from the complemented net-
work on phenotypes ( y ) related to the index disease 
using each medication ( f̂

Dr
) as a predictor and adjust-

ing for age, gender, and self-reported race as covariates: 
yphenotype ∼ f̂

Dr

[i] + age+ gender + race , where pheno-
type was one of the EHR-derived COVID-19 phenotypes 
(i.e., susceptibility, hospitalization, severity, and mortal-
ity), and f̂

Dr

[i]  is the [i] th ranked candidate drug obtained 
from the complemented network.

The full study protocol for Penn Medicine EHR analy-
sis was approved by the University of Pennsylvania Insti-
tutional Review Board (IRB) under the protocol for the 
study titled “Clinical, social, and genetic risk stratification 
for COVID-19 outcomes” (Protocol #844,360).

Results
Complementing backbone Disease‑Gene‑Drug network 
with COVID‑19 information
The backbone network was constructed with 591 diseases, 
26,681 genes (proteins), and 2,173 drugs by collecting a list 
of components and relational data from public databases 
including the Comparative Toxicogenomics Database 
(CTD), the Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING), and DrugBank [22–24]. The 
backbone disease-gene-drug network had three different 
single networks: disease-disease network, protein–protein 
interaction network, and drug-drug network. These sin-
gle networks were then connected based on the relational 
data. Intra-layer relationships contained 22,855 disease-
disease associations among 591 diseases, 841,068 inter-
actions among 26,681 proteins, and 577,040 drug-drug 
associations among 2,173 drugs. There were 31,991 dis-
ease-gene associations, 76,889 disease-drug associations, 
9,540 drug-gene associations in inter-layer relationships.

In order to incorporate the COVID-19 dis-
ease node into the backbone network, we collected 
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initial information for auxiliary connections from the 
literatures: 18 diseases had been reported as comorbid 
with COVID-19 (e.g., diseases related to chronic hepa-
titis, HIV infections, obstructive sleep apnea, hyperten-
sion, obesity, diabetes mellitus, kidney diseases, common 
variable immunodeficiency, liver cirrhosis, coronary 
artery disease, chronic obstructive pulmonary disease, 
Alzheimer’s disease, asthma, cardiovascular disease, and 
cerebrovascular disorders) [16, 25, 26]. Also, we found 
17 related genes for a biomarker of therapeutic evidence 
reported as of May 2020 (e.g., CCL2, TNF, IL10, CXCL8, 
IL6, IL1B, AGT, IL2, CXCL10, CCL3, TMPRSS2, IL7, 
IL2RA, CSF3, TMPRSS4, ACE2, and BSG). The connec-
tion strength (edge weights) for complementing edges 
was initially taken at a constant value of 0.1, and 0.1 
units increased until the overall AUC decreased. In this 
analysis, the 35 complemented connections between 
COVID-19 and other nodes were estimated. Finally, the 
complemented disease disease-gene-drug network had 
1,440,998 (= overall edges in backbone network + 35 
complemented edges) associations among 29,446 nodes. 
Figure  4 shows the complemented disease-gene-drug 
network with COVID-19. For easier visualization, we 
decomposed the entire network: the complemented 
disease-disease network (Fig.  3a) and the subset of the 
protein–protein interaction network (Fig.  4b).  Note 
that there are no actual and complemented connections 
between COVID-19 and any drugs due to the defined 
problematic situations in this study.

Internal quality check of the complemented network
Before applying the drug scoring algorithm to prioritize 
candidate repurposable drugs, we conducted internal val-
idation of the estimated connection between COVID-19 
and other diseases. Although the reliability of the com-
plemented network was verified by complementary pro-
cess, we performed further quality check of connectivity 
between COVID-19 and other diseases/genes. To vali-
date the connections focusing on COVID-19, a connec-
tivity check within a single network was performed. First, 
to detect the community connected with COVID-19 
node, the Louvain method for community detection was 
applied in the complemented single disease-disease net-
work [27]. 33 diseases were belonging to same cluster 
with COVID-19. Notably, 18 directly- connected comor-
bidities (used for seed initial information) were included 
and the remaining 15 diseases were two-hop neighbors 
with COVID-19 in the cluster (Fig.  5a). Next, quality 
check for multi-layered network was performed. Scoring 
algorithms was applied to disease-gene complemented 
network for predicting COVID-19 related genes. Similar 
to method in drug scoring, the initial label was set to 
yCOVID ∈ {+1} and the others were set to {0} and applied 
graph-based SSL. We substituted the gene scores f G 
from the entire predicted results f =

[
f D, f G

]T
 . The 

value of f G is transformed to range from 0 to 1 via 

f̂
G
=

f G−min(f G)

max
(
f G

)
−min(f G)
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of regulatory T lymphocytes (Tregs)

Peptide ligand-binding receptors

Interleukin-2 family signaling

Senescence-Associated Secretory Phenotype
(SASP)

found

26 / 86

24 / 211

42 / 658

42 / 1107

45 / 2698

9 / 57

6 / 17

10 / 203

6 / 47

6 / 91

ratio

0.006

0.014

0.043

0.073

0.178

0.004

0.001

0.013

0.003

0.006

p-value

1.11E-16

1.11E-16

1.11E-16

1.11E-16

1.11E-16

1.34E-12

7.59E-11

5.30E-09

3.10E-08

1.44E-06

FDR

4.33E-15

4.33E-15

4.33E-15

4.33E-15

4.33E-15

4.41E-11

2.21E-09

1.27E-07

6.83E-07

2.73E-05

found

15 / 15

39 / 47

204 / 505

248 / 726

255 / 1645

4 / 19

9 / 20

7 / 83

42 / 59

8 / 22

ratio

0.001

0.003

0.036

0.052

0.117

0.001

0.001

0.006

0.004

0.002

Fig. 5 Internal quality check for complemented network: a Sub disease‑disease network in community with COVID‑19, b Top 10 significantly 
enriched pathways with selected 30 gene sets from scoring results
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ing order according to the transformed scores f̂
G

 . The 
overall gene scores were reported in Additional file 3. The 
top 30 of 26,681 genes sorted by gene score were 
TMPRSS4, TMPRSS2, ACE2, BSG, IL7, CSF3, CCL3, 
IL2RA, IL2, IL10, CXCL10, CCL2, IL1B, AGT, CXCL8, 
IL6, TNF, IFNG, VEGFA, IL4, ICAM1, STAT3, IL13, IL5, 
IL17A, CSF2, CRP, IL15, CXCL2, and MMP9 in descend-
ing order. The pathway enrichment tests were performed 
with selected gene sets by using an over-representation 
analysis approach [28]. The 10 most relevant pathways 
were sorted by p-value (Fig.  5b). The most significant 
enriched pathways were related to anti-inflammatory 
phenotypes and/or the human immune system.

Drug scoring results for prioritizing repurposable drugs
We performed a scoring algorithm to predict candi-
date repurposable drugs for COVID-19 with the com-
plemented disease-gene-drug network. The initial 
label of graph-based SSL was set to COVID-19 only 
( yCOVID ∈ {+1} ). COVID-19 was connected with 18 dis-
eases and 17 genes directly after complementation, but 
none of the drugs were directly connected with COVID-
19. Even though COVID-19 was not directly connected 
with any drugs, the candidate drugs can be predicted 
indirectly by considering the proximities between intra-
layer relations and inter-layer relations. The scoring algo-
rithms propagates the one positive label from COVID-19 
node to remaining unlabeled node with the underlying 
structure of network. Since there were no approved ther-
apeutic treatments for COVID-19 as of May 2020, there 
are no ground truths for the predicted results making it 
difficult to evaluate their accuracy in this study.

The entirety of the drugs as shown in the scoring curves 
could be candidates for repurposable drugs for COVID-
19 (Fig.  6a). The dark to light colors in scoring curves 
and networks’ nodes represent the normalized scores. 
In order to provide a list of candidate drugs with data-
driven evidence, we recommended the top-30 candidate 
repurposable drugs from the scoring curve (normalized 
scores > 0.5). Figure 6b depicts the sub-network with the 
recommended candidates and Fig. 6c shows the detailed 
predicted scores. Steroids such as dexamethasone, pred-
nisolone, and hydrocortisone were recommended as 
top candidates. Among them, dexamethasone, an anti-
inflammatory drug, had the highest scores. Dexametha-
sone is a low cost steroid that reduces inflammation by 
mimicking anti-inflammatory hormones produced by the 
body. COVID-19 treatment guidelines recommend using 
6 mg per day dose of dexamethasone for up to 10 days for 
hospitalized patients with COVID-19.

In addition, we were able to find 17 cases preparing 
study protocols or recruiting for clinical trials with rec-
ommended drugs as of the end of May 2020 (regardless 

of whether or not they were discontinued as of Septem-
ber 2022, reported in https:// clini caltr ials. gov). In addi-
tion, we searched the literature for evidence or possible 
relationships between the list of drugs and COVID-19 in 
order to investigate the potential of repositioning in the 
recent studies. Since the 30 candidate repurposable drugs 
were prioritized in the complemented network based on 
past time study points. Relevant studies identified for 
determining possible therapeutic candidate in COVID-19 
can be found in the additent. (Additional file 2: Table S2).

Associations of prioritized repurposable drugs 
with COVID‑19 phenotypes using electronic health records
To provide additional evidence for the utility of network-
based drug repurposing with complemented network, 
we conducted an EHR-based medication analysis using 
the prioritized candidate drugs and several COVID-19 
phenotypes. Among ~ 160 K patients in the Penn Medi-
cine COVID-19 registry, which includes all COVID-19 
RT-PCR test results within the health system, as of Octo-
ber 2021, we extracted medication order data to inves-
tigate associations with the candidate drugs and various 
COVID-19 outcome phenotypes. To perform these sta-
tistical analyses, we assigned case and control status for 
each of three COVID-19 outcomes: (a) COVID-19 sus-
ceptibility, (b) COVID-19 positive hospital admission, 
and (c) COVID-19 severity.

(a) COVID-19 susceptibility was determined by a posi-
tive RT-PCR test whereas patients who had only ever had 
a COVID-19 negative RT-PCR test in the registry were 
labeled as a control. (b) A COVID-19 positive hospital 
admission was determined by an inpatient hospitaliza-
tion with a primary diagnosis ICD-10 code U07.1 used 
for COVID-19 diagnosis and a positive RT-PCR test or a 
primary diagnosis of an ICD code indicative of a COVID-
19 related symptoms, a positive RT-PCR test, and a cli-
nician chart review for admissions dated prior to the 
usage of U07.1.  Remaining cases from the COVID-19 
susceptibility phenotype were considered as controls. (c) 
COVID-19 severity was determined by use of ventilator 
and/or an intensive care unit stay during an inpatient 
hospitalization as defined previously in (b) while remain-
ing cases from the COVID-19 hospitalization phenotype 
were considered as controls.

We ran logistic regressions for each outcome, using a 
selected candidate drug as a predictor and adjusting for 
age, gender, and the self-reported race as described in 
Methods. We only included patients with four or more 
encounters within the Penn Medicine hospital system 
prior to their COVID-19 RT-PCR test to reduce bias, i.e. 
patients who may have received COVID-19 related care 
at Penn Medicine but were not regular patients and thus 
would not have historical medication order data.

https://clinicaltrials.gov
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a Drug scoring curves and network for 2,713 drugs
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c Predicted scores of top 30 candidate repurposable drugs for COVID-19

Drug
(Compound)

Predicted
Scores

Normalized predicted scores fDr Pharmaceutical
Categories

Clinical Trial
(As of May 2020)

Resveratrol

Methotrexate

Dexamethasone

Indomethacin

Quercetin

Bisphenol A

Zinc

Prednisolone

Simvastatin

Doxorubicin

Cyclosporine

Ascorbic Acid

Estradiol

Acetaminophen

Progesterone

Rosiglitazone

Enalapril

Dinoprostone

Ibuprofen

Tretinoin

Curcumin

Troglitazone

Hydrocortisone

Diclofenac

Nitric Oxide

Acetylcysteine

Theophylline

Valproic Acid

Azathioprine

Atorvastatin

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1.000

0.728

0.727

0.722

0.708

0.691

0.678

0.674

0.645

0.629

0.608

0.604

0.600

0.591

0.585

0.576

0.569

0.565

0.560

0.556

0.550

0.549

0.548

0.543

0.537

0.532

0.528

0.517

0.515

0.514

1.0 0.9 0.8 0.7 0.6 0.5

Miscellaneous

Cytotoxic medication (chemotherapy)

Steroids

Analgesics

Miscellaneous

Miscellaneous

Element / Vitamin / Chemical compound

Steroids

Lipid lowering medication

Cytotoxic medication (chemotherapy)

Immunosuppressant

Element / Vitamin / Chemical compound

Miscellaneous

Analgesics

Hormonal medication

Antidiabetic drug

ACE inhibitor

Prostaglandin

Analgesics

Element / Vitamin / Chemical compound

Miscellaneous

Antidiabetic drug

Steroids

Analgesics

Element / Vitamin / Chemical compound

Respiratory symptomatic treatment

Respiratory symptomatic treatment

Cytotoxic medication (chemotherapy)

Immunosuppressant

Miscellaneous

Fig. 6 Candidate repurposable drugs with drug scoring curves
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We were able to conduct this analysis for 23 out of 30 
medications using the EHR data. 8 candidate drugs were 
found to be statistically significantly associated with at 
least one of the COVID-19 phenotypes (Fig.  7, Bonfer-
roni p-value < 0.05). The most significant association was 
between a COVID-19 positive hospital admission and 
the NSAID acetaminophen (p-value < 1e-100, OR = 4.5, 
95% CI = [4.1, 4.9]). As acetaminophen is a commonly 
taken drug, the higher odds of hospital admission could 
be confounded by sicker patients taking acetaminophen 
for symptoms of COVID-19 at higher rates prior to their 
hospital admissions. In contrast, though not significant 
at the Bonferroni threshold, the association between 
acetaminophen and the COVID-19 severity pheno-
type showed a negative direction of effect (OR = 0.81, 
95% CI = [0.66, 0.99], unadjusted p-value = 0.04). Ibu-
profen, another NSAID, showed a similar trend with an 
increased odds of a positive hospital admission (OR = 1.6, 
95% CI = [1.3, 2.0], p-value = 7.6e-06), but decreased 
odds of having the COVID-19 susceptibility (OR = 0.62, 

95% CI = [0.58, 0.66], p-value = 4.9e-52) and severity 
(0.74, 95% CI = [0.49, 1.12], p-value = 0.15) phenotypes, 
though the latter was not significantly different from 1. 
Several other drugs associated with reduced odds of the 
COVID-19 susceptibility phenotype included the steroid 
analogue prednisolone and the lipid lowering medication 
atorvastatin.

Discussion
As the current COVID-19 pandemic transitions into an 
endemic, it is necessary to reflect on the lessons learned 
to prepare for emerging pandemic risks that may arise in 
the future. Most significant findings will come from well-
designed data and analyses, but at a time when infor-
mation is insufficient, such as in the early stages of the 
COVID-19 pandemic, it is also very important to quickly 
provide information that can help in a public health 
emergency.

Network-based drug repurposing can provide can-
didate drugs by comprehensively leveraging complex 

Phenotype Medication Ranking Total [Case / Control] p-value Odds ratio
[95%con dence interval] 0 1 2 3 4 5 6 7 ... 15

Susceptibility

Positive Admission

Severity

Dexamethasone 3
38046

4176

2150

[3691 / 34355]

[1471 / 2705]

[569 / 1581]

1.352

5.485

1.462

[1.261, 1.448]

[4.724, 6.368]

[1.204, 1.775]

1.42E-17

1.89E-110

1.26E-04

Susceptibility

Positive Admission

Severity

Methotrexate 2
1516

122

44

[138 / 1378]

[32 / 90]

[12 / 32]

0.737

5.161

0.933

[0.515, 1.054]

[1.851, 14.390]

[0.218, 3.998]

9.41E-02

1.71E-03

9.25E-01

Susceptibility

Positive Admission

Severity

Prednisolone 8
3618

182

58

[265 / 3353]

[59 / 123]

[11 / 47]

0.476

1.118

0.403

[0.365, 0.621]

[0.573, 2.182]

[0.085, 1.911]

4.42E-08

7.43E-01

2.53E-01

Susceptibility

Positive Admission

Severity

Simvastatin 9
8654

776

306

[695 / 7959]

[267 / 509]

[78 / 228]

1.293

1.632

1.335

[1.105, 1.514]

[1.194, 2.232]

[0.788, 2.264]

1.39E-03

2.14E-03

2.83E-01

Susceptibility

Positive Admission

Severity

Ibuprofen 19
51740

3782

566

[4782 / 46958]

[484 / 3298]

[118 / 448]

0.622

1.592

0.742

[0.585, 0.661]

[1.299, 1.951]

[0.491, 1.119]

4.85E-52

7.60E-06

1.55E-01

Susceptibility

Positive Admission

Severity

Acetaminophen 14
158328

15220

2172

[15559 / 142769]

[3238 / 11982]

[535 / 1637]

0.967

4.452

0.813

[0.935, 1.000]

[4.058, 4.883]

[0.667, 0.991]

4.80E-02

1.24E-219

4.05E-02

Susceptibility

Positive Admission

Severity

Hydrocortisone 23
10568

836

230

[904 / 9664]

[197 / 639]

[64 / 166]

0.848

1.664

2.128

[0.739, 0.973]

[1.176, 2.354]

[1.151, 3.933]

1.91E-02

4.00E-03

1.60E-02

Susceptibility

Positive Admission

Severity

Atorvastatin 30
4244

52574

1622

[1364 / 2880]

[4451 / 48123]

[419 / 1203]

1.842

0.884

1.040

[1.609, 2.109]

[0.830, 0.940]

[0.832, 1.301]

8.64E-19

9.15E-05

7.30E-01

Fig. 7 List of statistically significant medications
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connectivity among heterogeneous biological entities. 
However, in the case of a situation where there is no 
information about the new disease in the previously accu-
mulated database when a new infectious disease emerges, 
it is challenging to obtain inference until a new disease 
node like COVID-19 has a connection with other com-
ponents from network-based approaches. To solve this 
connectivity problem, we developed the network-based 
complementary linkage method to overcome the defi-
ciency of disconnections between new emerging diseases 
and an already-constructed network. One of the objec-
tives of this study is to quickly provide medical or phar-
maceutical experts with a curated catalog of potentially 
repurposable drugs, serving as a prompt for investigat-
ing their potential during a public health emergency. It 
is unreasonable to immediately use the results of com-
putational drug repurposing as alternatives to existing 
therapeutics without any clinical verification, but the 
provision of prioritized candidate drugs based on evi-
dence of knowledge can reduce the number of failures in 
early-stage trials.

From this point of view, it is more important to pro-
vide evidence for utilization through medication associa-
tion analysis with EHR, rather than simply providing a 
list of candidates. However, the EHR analysis highlighted 
several challenges of searching for associations between 
medication use and clinical outcomes in observational 
medical records data. First, it is difficult to determine a 
direct cause of a particular medication towards an out-
come; for example, a drug could show a strong associa-
tion with a negative disease outcome simply because it 
is more frequently prescribed to patients with severe 
disease and not due to a negative effect of the drug itself. 
Similarly, patients can, and often are, taking multiple 
drugs simultaneously making it difficult to control for 
potential drug interaction effects. Lastly, using medica-
tion orders data relies on the assumption that patients 
filled the order and took the medication as prescribed. 
This assumption has more potential impact on infer-
ences that require some knowledge of the patient outside 
of the healthcare system, such as for the COVID-19 sus-
ceptibility phenotype which looks prior to the patient’s 
positive test, and is less of a concern for hospital admis-
sion outcomes where detailed, structured electronic 
health record data provide more certainty of the timing 
and administration of the drug. Despite these limita-
tions, EHR remains an invaluable resource for identifying 
potential candidates for drug repositioning, particularly 
in the context of emerging new disease, and this method 
could further be expanded upon allowing for more 
sophisticated emulated clinical trials in large diverse 
patient populations.

Several prioritized drugs may be considered for the 
management of severe COVID-19 symptoms. First, dexa-
methasone, prednisolone, and hydrocortisone are steroid 
analogues, which affect immune and inflammatory func-
tions. There have been reports suggesting that steroids 
may be effective in the control of systemic inflammation 
or ‘cytokine storm’ in severe COVID-19 cases [29], and 
there are several on-going trials on the effectiveness of 
steroid treatment [30]. The current study also supports 
the possibility of steroid therapy in patients with COVID-
19. Until now, there has been controversy regarding the 
use of NSAIDs in COVID-19 patients. With the inclusion 
of acetaminophen as one of the highlighted drugs in our 
study, we wish to bring attention to the role NSAIDs may 
play in helping an individual with COVID-19. Given the 
body’s inflammatory response to the virus, researchers 
have been studying the effects of some immune-modulat-
ing drugs including methotrexate and cyclosporine [31, 
32], although there is a paucity of information on other 
immune-modulating medications or cytotoxic drugs 
including azathioprine, doxorubicin, valproic acid, and 
arsenic trioxide.

Based on the current study, further studies are needed 
to evaluate the possibility of immune-modulating drugs 
in the context of COVID-19. Several drugs also require 
attention, such as ACE inhibitors (enalapril), lipid low-
ering medications (simvastatin), hormonal medications 
(estradiol, progesterone) and antidiabetic drugs (rosigli-
tazone, troglitazone). These medications may be more 
effective in populations with specific comorbidities such 
as kidney disease, diabetes, or coronary/cardiovascu-
lar disease there is need to evaluate the efficacy of these 
medications in these populations. However, of course, 
before any of these potential treatments are given to help 
patients suffering from COVID-19, rigorous clinical trials 
are required.

Conclusion
In this study, we developed a network-based drug repur-
posing method for rapid screening to respond to the situ-
ation of a new emerging disease, to present solutions and 
new methodologies to address the lessons learned from 
the COVID-19 pandemic in terms of network-based drug 
repurposing. We proposed the network-based comple-
mentary linkage method to overcome the deficiency of 
disconnections between new emerging diseases and an 
already-constructed network. To simulate and test our 
proposed method, we assumed situation as an early stage 
of the pandemic with insufficient information related to 
COVID-19. We constructed a backbone network using 
publicly available biomedical and pharmaceutical data 
and fragmented COVID-19-related information was 
reinforced into the backbone network by applying the 
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proposed complementary linkage method. To translate 
the complemented network for finding candidate treat-
ments, network-based label propagations were applied 
and we validated the prioritized candidate drugs with 
EHR-based medication analysis.

There are several limitations of our studies. From the 
point of view of the biomedical networks, this study only 
investigated the heterogeneous relationships between 
disease, genes and drugs. However, to develop more 
sophisticated repurposable drugs, complex relationship 
information can be utilized in the network. For exam-
ple, single-nucleotide polymorphisms obtained through 
phenome-wide association studies, or green nanoma-
terials targeting specific cells or mitochondria can be 
utilized [33, 34]. Another particular limitation of our 
study is the relatively small sample size of the few data-
bases we utilized; however, this concern is quickly allevi-
ated as the robust yet flexible nature of a network-based 
approach allows us to very easily supplement and correct 
our current model. As we receive the newest information 
regarding the novel coronavirus, we can easily update 
the candidate drug/gene components of our networks, 
perform a set of updated calculations and generate an 
updated gene and drug candidate list almost instantly. 
With this in mind, we hope our approach may help clini-
cians and scientists make the difficult decisions regarding 
which drugs or gene targets to test first in this global race 
for a cure.
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