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Abstract 

Background The Rey Complex Figure Test (RCFT) has been widely used to evaluate the neurocognitive functions 
in various clinical groups with a broad range of ages. However, despite its usefulness, the scoring method is as com‑
plex as the figure. Such a complicated scoring system can lead to the risk of reducing the extent of agreement 
among raters. Although several attempts have been made to use RCFT in clinical settings in a digitalized format, little 
attention has been given to develop direct automatic scoring that is comparable to experienced psychologists. There‑
fore, we aimed to develop an artificial intelligence (AI) scoring system for RCFT using a deep learning (DL) algorithm 
and confirmed its validity.

Methods A total of 6680 subjects were enrolled in the Gwangju Alzheimer’s and Related Dementia cohort registry, 
Korea, from January 2015 to June 2021. We obtained 20,040 scanned images using three images per subject (copy, 
immediate recall, and delayed recall) and scores rated by 32 experienced psychologists. We trained the automated 
scoring system using the DenseNet architecture. To increase the model performance, we improved the quality 
of training data by re‑examining some images with poor results (mean absolute error (MAE) ≥ 5 [points]) and re‑
trained our model. Finally, we conducted an external validation with 150 images scored by five experienced 
psychologists.

Results For fivefold cross‑validation, our first model obtained MAE = 1.24 [points] and R‑squared ( R2) = 0.977. How‑
ever, after evaluating and updating the model, the performance of the final model was improved (MAE = 0.95 [points], 
R
2 = 0.986). Predicted scores among cognitively normal, mild cognitive impairment, and dementia were significantly 

different. For the 150 independent test sets, the MAE and R2 between AI and average scores by five human experts 
were 0.64 [points] and 0.994, respectively.

Conclusion We concluded that there was no fundamental difference between the rating scores of experienced psy‑
chologists and those of our AI scoring system. We expect that our AI psychologist will be able to contribute to screen 
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the early stages of Alzheimer’s disease pathology in medical checkup centers or large‑scale community‑based 
research institutes in a faster and cost‑effective way.

Keywords Alzheimer’s disease, Rey Complex Figure Test, Scoring, Artificial intelligence, Deep learning, Convolutional 
neural network

Background
The Rey Complex Figure Test (RCFT) was originally 
developed to evaluate the perceptual organization and 
visual memory [1]. It is valuable and practical in that the 
test is relatively simple and clear to administer, and it 
assesses multiple cognitive domains, including executive 
function and visuospatial ability or memory [1, 2]. The 
RCFT has been widely used to evaluate the neurocog-
nitive functions in various clinical groups with a broad 
range of ages [3, 4]. Visuospatial modality of episodic 
memory has been suggested as having a significant asso-
ciation with tau pathology in Alzheimer’s disease (AD) 
[5–8]. Particularly, previous studies on Alzheimer’s con-
tinuum have demonstrated that RCFT scores can be an 
early marker of clinical progression [9] or tau pathology 
[5]. In addition, the RCFT sensitively captures organi-
zational strategies in healthy young adults [10] and in 
patients with brain damage [11, 12].

Several quantitative and qualitative scoring systems 
have been proposed [3]. The most broadly used method is 
the 18-item and 36-point scoring system standardized by 
Osterrieth [13]. However, despite its usefulness, the scor-
ing method is as complex as the figure. Complex scor-
ing system could lead to the risk of reducing the extent 
of agreement among raters [14]. Therefore, it is essential 
to acquire scoring skills before the administration of the 
RCFT. Raters for the RCFT need to be trained intensively 
to score reliably. Consequently, conducting the RCFT in 
large-scale community-based studies is difficult. How-
ever, the demand for digital-based cognitive assessments 
has increased. The digitalization of cognitive assessment 
has developed rapidly with technological advancements 
[15]. Traditional cognitive measures such as the RCFT 
are reliable candidates for digitalization. Establishing an 
automatic scoring system for the RCFT could be an una-
voidable initial step in the evolution of digital cognitive 
assessments.

Recently, as deep learning (DL) has undergone 
remarkable improvements in health care [16], there 
have been some efforts toward automating the assess-
ment of digitalized drawing tests such as the pentagon 
drawing test (PDT) and the clock drawing test (CDT). 
In particular, convolutional neural networks (CNN) 
that can extract important features automatically from 
raw data have been widely used and shown excellent 
performance. Several automatic scoring systems for 

PDT were developed using CNN [17–19]. Previous 
studies on digitalized CDT have shown that CNN could 
distinguish subjects with cognitive impairment from 
cognitively normal (CN) subjects [4, 20, 21].

Meanwhile, for digitalized RCFT, many studies using 
computer vision technology have been proposed. For 
instance, digital tablets and pens have been widely used 
to generate images and extract distinctive features from 
digitalized images. Hyun et  al. [22] showed the differ-
ences between adolescents with attention-deficit hyper-
activity disorder and healthy adolescents by comparing 
the pixel mean between a template image and images 
drawn using a digital tablet. Also, the pen stroke data 
and spatial information from images drawn by a digi-
tal tablet and pen were also used to distinguish subjects 
with AD from CN subjects [23]. Furthermore, several 
DL methods were proposed, recently for the digitalized 
RCFT. CNN methods using raw RCFT images have 
been applied to differentiate individuals with cogni-
tive impairment from those with CN [24–26]. Those 
studies have focused on identifying the different pat-
terns between clinical diagnostic groups and healthy 
controls.

However, methods for directly predicting RCFT 
scores based on the 36-point scoring system, which is 
widely used in clinical fields, have been very limited. 
A method to score the RCFT was firstly developed by 
segmenting six relevant scoring sections [27]. However, 
it offered only six of the 18 scoring sections, so could 
not be applied to the 36-point scoring system. A DL 
method for scoring the RCFT was proposed [28]. How-
ever, they not only did not report detailed information 
such as sample size and training architecture but also 
did not have the performance comparable to human 
experts ( r = 0.88).

If the RCFT scores based on 36 points could be 
obtained automatically, reliably, and validly, they would 
be much more flexible to use in various clinical and 
research settings including AD research. Therefore, 
we aimed to develop an automated RCFT scoring sys-
tem based on 36 points using CNN. We selected more 
than 20,000 drawn RCFT images scored by experi-
enced psychologists and trained the model to predict 
these scores. To increase the model performance, we 
improved the quality of the training data by re-exam-
ining some images with poor results and developed our 
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final model. Finally, the validity of the predicted scores 
from our artificial intelligence (AI) system was tested 
on an independent 150 dataset provided by five experi-
enced psychologists.

Methods
Study participants
We included participants enrolled in the Gwangju Alz-
heimer’s and Related Dementia (GARD) cohort registry 
at Chosun University in Gwangju, Korea, from January 
2015 to June 2021. The overall procedure of the GARD 
database has been previously described [9]. We selected 
as many images as possible that had been scored by expe-
rienced psychologists.

In total, 6680 subjects, consisting of 4057 CN subjects, 
2331 subjects with mild cognitive impairment (MCI), and 
292 subjects with dementia, were included in our anal-
yses. We selected all the RCFT scores, including RCFT 
copy, immediate recall, and delayed recall, and scanned 
all drawings onto A4 size papers. Finally, we obtained 
20,040 scanned images using three images per subject 
(copy, immediate recall, and delayed recall).

The Institutional Review Boards of Chosun University 
Hospital and Chonnam National University approved 
this study. All the participants or their legal guardians 
provided written informed consent.

RCFT procedure
The RCFT was administered as one of neuropsychologi-
cal full batteries to assess visuospatial ability and episodic 
memory. Full neuropsychological test batteries were 
introduced in a previous study using the GARD database 
[5]. The RCFT consists of a copy trial of the complex fig-
ure, followed by immediate and delayed recall trials. We 
selected all three images from the RCFT tests: RCFT 
copy, immediate recall, and delayed recall. For the RCFT 
copy, participants were asked to copy the figure on paper 
without allowing them to rotate either the design or the 
paper. Erasers were permitted to be used. During the 
RCFT copy, participants were not given instructions that 
they would be asked to reproduce the figure from mem-
ory. The RCFT immediate recalls were performed imme-
diately after the RCFT copy. RCFT delayed recalls were 
performed after a 20-min delay. In both cases, partici-
pants were asked to draw the figure from memory. There 
was no time limit to copy or recall the figure. Verbal 
neuropsychological tests were administered during the 
delay interval. The scoring method in the present study 
was applied using the method standardized by Osterri-
eth [13]. Figures for the RCFT were divided into 18 units, 
and each unit was scored separately based on the correct 
place (1 point) and accurate copy (1 point). The sum of 

the scores for 18 units ranged from 0 to 36. Trained psy-
chologists performed the scoring.

RCFT image pre‑processing
RCFT image pre-processing was conducted in three dif-
ferent steps. First, the median filters were applied to 
smoothen the images. Red–green–blue (RGB) images 
were converted to grayscale images, and each pixel was 
dichotomized into either black or white pixels through 
adaptive thresholding (step 1). Second, the scanned 
images were rotated at different angles and harmonized. 
Thus, the projection profile method [29] was applied 
to minimize the effect of image rotation, and all unre-
lated background images, such as the subject’s name or 
the number of pages, were removed (step 2). Third, we 
obtained the contours of each image, and FindContours 
was used to crop the images’ bounding rectangles so that 
all images were resized to 512× 512 pixels, and we finally 
converted all pre-processed images to RGB scale images 
to utilize the pre-trained model from the ImageNet Data-
base (step 3). The analyses were conducted using the 
OpenCV library (version 4.5.5) in Python 3.8. Each pre-
processing step is illustrated in Fig. 1.

DL model
A DL model was developed to score the figures. The pro-
posed model comprised two parts: (1) extracting image 
features and (2) predicting scores from the extracted fea-
tures. Spatial information was captured from the images 
using DenseNet based on the CNN architecture.

The DenseNet [30] architecture was used as the back-
bone model. Figure  2 shows the overall architecture of 
the DenseNet model used. It consisted of an initial con-
volutional block, four dense blocks, three transition lay-
ers, a global average pooling (GAP) layer, and three fully 
connected (FC) layers. Before the first dense block, a 
convolution block consisted of a convolution layer with 
a 7× 7 kernel size, batch normalization, rectified linear 
unit (RELU) activation function, and a 2× 2 average 
pooling layer. Each dense block had several convolution 
networks composed of convolutional layers with 1× 1 
and 3 ×3 kernel sizes. All convolution networks within 
each dense block were densely channel-wise concat-
enated, which improved the information flow. The tran-
sition layers were located between dense blocks and 
consisted of batch normalization, a convolutional layer 
with a 1× 1 kernel size, and a 2× 2 average pooling layer, 
which reduced the dimensions of the features. After the 
last dense block, the GAP and three FC layers (FC1, FC2, 
and FC3) were applied. FC1–3 were dense layers of sizes 
1000, 128, and 1, respectively, followed by a linear activa-
tion function that performed scoring.
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Parameter estimation was conducted with the smooth 
L1 loss function because it was less sensitive to outliers 
than L2 loss. We let n and w be the batch size and param-
eter vector of the DL model, respectively. The input 
image and ground truth of the ith subject were denoted 
as xi and yi , respectively. If we let f (xi;w) be the pre-
dicted result from our DL model, the smooth L1 loss was 
defined by:

Experiments
The performance of the proposed model was evaluated 
using nested 5-fold cross-validation (CV). In each fold, 

Lsmooth L1 =

1
n

i

0.5 f (xi;w)− yi
2
, if f (xi;w)− yi < 1,

1
n

i

f (xi;w)− yi − 0.5, otherwise

the training data were split into sub-training and sub-
validation data. The ratio of the sub-training and sub-
validation data was set to 8:2. Sub-training data were 
used to optimize the parameters for the proposed model, 
and the Adam optimizer was adopted to minimize the 
loss function. We set the base learning rate as 0.001 and 
decayed the learning rate by multiplying it by 0.1 every 
five epochs. The initial weights for the CNN were set 
with pre-trained DenseNet weights in torchvision.model 
from the Pytorch library obtained from the ImageNet 
database. Early stopping was performed. If the valida-
tion loss did not improve in 30 epochs, the training was 
stopped early to avoid overfitting, and then, the weights 
with the lowest validation error were selected. Data aug-
mentation was performed by rotating the images at ran-
dom angles. The rotation degrees were between − 90 and 
90° with equal probabilities. Prediction models were built 

Fig. 1 RCFT images pre‑processing. First, noise filtering and binarization were applied (step 1). Second, we rotated the images to correct skewness 
in the process of scanning correction and removed all unrelated background images such as the subject’s name or the number of page (step 2). 
Third, we obtained the contours of each image to crop the images’ bounding rectangles, and finally, all images were resized to 512× 512 pixels 
(step 3)

Fig. 2 The overall structure of our model. Our model consists of a convolutional block, four dense blocks, three transition layers, a global average 
pooling layer, and three fully connected layers
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using different folds as training data five times, and the 
performance was evaluated by concatenating all results 
of 5-fold. The metrics were mean absolute error (MAE) 
and R-squared ( R2 ). All experiments were conducted 
using the Pytorch library (v 1.8.1) in Python (v 3.8) using 
NVIDIA 1080ti GPUs with 48 GB of memory per GPU.

Evaluating and updating model
The model training consisted of evaluating and updating 
the model. For the model evaluation step, the prediction 
model (1st model) with the proposed method was devel-
oped, and we evaluated the performance by comparing 
the ground truths (scores rated by psychologists) and 
predicted scores (scores that our model rated). The next 
step was to re-examine some data with errors and update 
the model using the corrected data. Images with absolute 
differences larger than five points between the ground 
truths and predicted scores were checked again and re-
examined by experienced psychologists. These were cat-
egorized into four different types of errors: image quality 
error, scoring error, digitalization error, and model bias. 
Image quality error indicated errors that occurred dur-
ing the drawing and scanning of images of A4 papers (i.e., 
eraser trace or damaged papers). Scoring errors indicated 
inaccurate scoring by psychologists. Errors in the process 
of digitalizing scores on the computer were called digital-
ization errors (i.e., typos when digitalizing), and the rest 
of the errors were considered model biases.

Datasets with errors excepted for model bias were 
modified to increase the quality of the data. Images with 
image quality errors were removed from our dataset, 
and for images with scoring and digitalization errors, we 
replaced previously ground truths with corrected scores. 
Finally, we re-trained our final model with the modified 
dataset under the same experimental conditions as the 
1st model.

Validating final model
We tested the validity of the final model by (1) comparing 
20,040 predicted scores among diagnostic groups and (2) 
using an independent dataset of 50 participants. ANO-
VAs were conducted to confirm the differences among 
the diagnostic groups. For external validation, a total of 
150 images (RCFT images from copy, immediate recall, 
and delayed recall) were scored separately by five expe-
rienced psychologists and our model. We designated the 
average scores of five human experts as the gold standard 
and compared the performance of six experts, including 
AI, with the gold standard.

Results
Characteristics of study participants
Table 1 shows the demographic characteristics and brief 
clinical information. In each clinical group, the relative 
proportions of females were 56.4%, 58.9%, and 47.6% for 
CN, MCI, and dementia, respectively. Dementia subjects 
had the highest mean ages (75.3), followed by MCI sub-
jects (72.7) and CN subjects (71.9). Regarding education 
level, there was no significant difference between the CN 
and MCI groups (p > 0.05), but the dementia group had 
significantly lower educational levels (p < 0.01). Global 
cognition, measured by Mini-Mental Status Examination 
(MMSE), and RCFT scores differed significantly, and the 
lowest means were observed for the dementia group.

Model performance
First model performance
Figure  3a shows the accuracy of the RCFT scores pre-
dicted using the proposed model. Fivefold CV was con-
ducted, and the predicted RCFT scores were compared 
with the ground truths. The MAE of the predicted 
scores was 1.24 points, and the correlation between 
the ground truths and predicted scores was R2

= 0.977 
( r = 0.988 ). The MAEs of the predicted scores for the 

Table 1 Demographic and clinical characteristics of study participants

Data are presented as mean (standard deviation (SD)) for continuous variables and N (%) for the sex variable

CN Cognitive normal, MCI Mild cognitive impairment, MMSE Mini-Mental Status Examination

Total CN MCI Dementia

No. of participants 6680 4057 2331 292

Sex 3767 (56.4%) 2388 (58.9%) 1240 (53.2%) 139 (47.6%)

Age 72.3 (6.6) 71.9 (6.5) 72.7 (6.7) 75.3 (7.0)

Education 10.3 (4.6) 10.3 (4.5) 10.4 (4.6) 8.9 (5.0)

MMSE 26.4 (3.1) 27.2 (2.3) 25.7 (3.0) 20.3 (5.1)

RCFT [min, max]

 Copy 32.6 (4.5) [0, 36] 33.5 (3.2) [2.5, 36] 31.3 (5.4) [2.5, 36] 24.6 (9.6) [1, 36]

 Immediate 13.7 (7.1) [0, 35.5] 15.5 (6.8) [0, 35.5] 10.4 (6.1) [0, 30] 4.5 (3.6) [0, 21]

 Delayed 13.7 (6.7) [0, 34] 15.5 (6.3) [0, 34] 10.5 (5.8) [0, 32] 3.6 (3.7) [0, 17.5]
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copy, immediate recall, and delayed recall images were 
1.18, 1.21, and 1.30, respectively.

Model evaluation
We considered 20,040 images as the test set and com-
pared their ground truths and predicted scores to validate 
the 1st model. We found that the differences between the 
ground truths and predicted RCFT scores were larger 
than five points for 188 images (0.9% of the total images). 
Among them, only 13 images had absolute differences of 
10 or more points (0.06% of the total images) and abso-
lute differences of the other 175 images (0.9% of the total 
images) belonged to 5 or more and 10 or less.

We grouped 188 images into four categories: one for 
quality error, 61 for scoring errors, 18 for digitalization 
errors, and 108 for model bias (Table 2). There were 175 
images with absolute differences of more than five points 

and less than 10 points and consisted of one image qual-
ity error, 60 scoring errors, six digitalization errors, and 
108 model biases. Thirteen images with absolute differ-
ences of 10 points or more were found and categorized 
into 12 digitalization errors and one scoring error.

Final model performance
We removed one image in the image error and re-entered 
the corrected scores for 79 images in the scoring and dig-
italization errors. But the images categorized into model 
bias were not modified. Figure  3b shows the prediction 
results of the final model. The model obtained MAE 
= 0.95 (points) and R2

= 0.986 ( r = 0.993 ), which sug-
gested that the performance of the model improved after 
updating the model. Also, the results for each test were 
also consistent and slightly improved compared with the 
1st model (MAE = 0.88, 1.12, and 0.85 for copy, immedi-
ate recall, and delayed recall, respectively).

Validation of final model
Diagnostic validity
Predicted RCFT scores were compared among the CN, 
MCI, and dementia groups to test diagnostic valid-
ity. Predicted copy, immediate recall, and delayed recall 
scores were significantly different between all the pairs of 
the CN, MCI, and dementia groups (p < 0.01) (Table 3).

Fig. 3 Scatter plots for 5‑fold cross‑validation. The results were considered by concatenating all results of 5‑fold. For each scatter plot, the x‑axis 
is the scores rated by psychologists, and the y‑axis is the predicted scores from our model. The blue dot line is the line y = x , and the red dot lines 
are the lines y = x ± 5 . a A scatter plot for the 1st model. R2 : 0.977; mean absolute error (MAE): 1.24 (points). b A scatter plot for the final model. R2 : 
0.986; MAE: 0.95

Table 2 The error categorization for images with poor results

5 ≤ absolute 
difference

10 ≤ absolute 
difference

5 ≤ absolute 
difference < 10

Total 188 (100%) 13 (100%) 175 (100%)

Image quality 1 (0.5%) 0 (0%) 1 (0.6%)

Scoring 61 (32.4%) 1 (7.7%) 60 (34.3%)

Digitalization 18 (9.6%) 12 (92.3%) 6 (3.4%)

Model bias 108 (57.5%) 0 (0%) 108 (62.7%)
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External validity using independent sample
We compared the scores of six experts, including AI, 
with the gold standard (Fig. 4). The correlations between 
experts and the gold standard were almost the same ( R2 
for AI = 0.994; expert 1 = 0.993, expert 2 = 0.994, expert 
3 = 0.992, expert 4 = 0.992, and expert 5 = 0.993). The 
MAEs of AI and five human experts with the gold stand-
ard were 0.64, 0.54, 0.52, 0.67, 0.68, and 0.59, respectively. 
Furthermore, the average of R2 between scores by two 
different human experts was 0.983, but the average of R2 
between scores by AI and each expert was 0.988.

Figure  5 shows the differences between the scores 
of each expert, including the AI and the gold standard. 
For example, for expert 1, we calculated the score differ-
ences between the scores of expert 1 and the gold stand-
ard. The mean score differences were − 0.06, − 0.21, 0.21, 
0.11, − 0.15, and 0.05 for AI and five human experts, and 
their standard deviations were 0.87, 0.86, 0.82, 1.00, 0.94, 
and 0.91, respectively. The accuracy of the scores pre-
dicted by AI was comparable to that of human experts.

Discussion
The RCFT has been one of the useful neuropsychological 
tests in clinical and research settings. Here, we developed 
an automatic scoring system of 36 points using the DL 
model for the RCFT and confirmed its validity.

The proposed model had several distinctive features 
compared with previous studies. First, we firstly devel-
oped the automatic RCFT scoring system based on 36 
points that was equivalent to the performance of human 
experts using the DL method. It takes only 10 s to score 
RCFT performance from the preprocessing to scoring. 
Rapid automation is one of the most significant benefits 

Table 3 Predicted RCFT scores in clinical groups

Predicted 20,040 RCFT scores are presented as mean (standard deviation (SD))

CN Cognitive normal, MCI Mild cognitive impairment

CN MCI Dementia

No. of participants 4057 2331 292

Copy 33.3 (3.0) 31.3 (5.3) 24.8 (9.6)

Immediate 15.5 (6.7) 10.4 (6.1) 4.6 (3.6)

Delayed 15.4 (6.2) 10.6 (5.7) 3.7 (3.7)

Fig. 4 Scatter plots for comparisons of AI and 5 human experts. There were 150 RCFT drawings not used for prediction model building, and testing 
was scored by five human experts and AI. Scores of six experts including AI were compared with the gold standard (the average scores of five 
human experts). For each scatter plot, the x‑axis represents the scores of each expert, the y‑axis is the gold standard, and the red line is the line 
y = x
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of this system in real-world clinical settings as well as 
research settings. Several studies have mainly focused 
on identifying the different patterns between cogni-
tive impairment and normal cognition using digitalized 
RCFT images. However, little attention has been given to 
direct automatic scoring that was comparable to human 
experts’ scoring. Although several attempts have been 
made to develop the RCFT scoring systems, none of the 
studies has been reported scoring systems comparable to 
human experts and sufficiently validated [27, 28]. Gener-
ally, DL methods have been proven to outperform other 
methods in terms of prediction and improve generali-
zation if a sufficiently large dataset was guaranteed [20, 
31]. We utilized more than 20,000 images to train our DL 
model, which enabled the model to have a deeper archi-
tecture and capture the complex relationships between 
drawings and scorings of the RCFT.

Second, we tried to obtain data with good quality and 
further improve the quality of data as possible. All of our 
RCFT images were scored by 32 experienced psycholo-
gists. The psychologists in our study had specialized in 

neuropsychological assessment for dementia. Therefore, 
their scoring could be believed to be sufficient to serve 
as a gold standard for RCFT scoring. However, despite 
their delicate efforts, it was inevitable to encounter some 
noisy data (i.e., typos when digitalizing scores on the 
computer) for such a large dataset, which decreased the 
robustness of DL models [32, 33]. So, we improved the 
quality of the training data by re-examining some images 
so that we could increase the performance of our model. 
We developed the idea of active learning [34]. The initial 
model (1st model) built with the original data, including 
noisy data, was evaluated, and images with poor results 
(MAE ≥ 5 points) were re-examined. We updated our 
model by using the revised dataset and substantially 
improved the accuracy of the proposed method. Nota-
bly, these processes make our model more robust and 
reliable.

Third, applying AI systems in the medical field requires 
rigorous evaluation [35, 36]. Therefore, the validity of 
predicted RCFT scores using our model was verified 
in two ways. Diagnostic validity was confirmed that 

Fig. 5 The boxplots of differences between scores by each expert including AI and the gold standard. Each boxplot is the boxplot of the score 
differences between each expert and the gold standard (the average scores of five human experts). For example, the boxplot for ‑(AI) (red boxplot) 
is the distribution of the score differences between AI and the gold standard, and ‑(E1) is the distribution of the score differences between expert 1 
and the gold standard. AI: predicted scores of our model; E1: scores of expert 1; E2: scores of expert 2; E3: scores of expert 3; E4: scores of expert 4; 
E5: scores of expert 5
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predicted scores differed between all pairs of the CN, 
MCI, and dementia groups. The result suggests that 
our automatic RCFT scoring might serve as one of the 
screening tools for cognitive impairment in the old popu-
lation. Furthermore, we conducted an external valida-
tion with 150 images scored by five human experts. The 
average scores from five experts, not a single expert, were 
deemed to be the gold standard to increase the reliability 
of the evaluation. Our results revealed that the accuracy 
of AI was better than or like that of other experts based 
on the gold standard, even though the scores of each 
expert were included when calculating the gold stand-
ard. Furthermore, we confirmed that the average of R2 
between scores by AI and each human expert was bet-
ter than the average of R2 between scores by two differ-
ent human experts, which indicated that our AI might be 
more accurate than experts on average. This external vali-
dation proved that our proposed model could be applied 
to the general population.

The validated automatic scoring system for the RCFT 
in the current study might increase the feasibility of the 
RCFT in a wide range of research and clinical fields. Also, 
it provided the first step toward the digital version of the 
traditional paper-and-pencil RCFT. Adapting traditional 
RCFT to tablet-based platforms might promote identify-
ing individuals with very early stages of AD undetected in 
their communities. In particular, the RCFT delayed recall 
score showed significant predictability for tau pathology 
on the AD continuum [5]. Consequently, the RCFT using 
our automatic scoring system had the potential to allow 
community-based screening studies for AD pathology in 
a faster and more cost-effective way.

It is also worth noting that our automatic scoring sys-
tem on the RCFT could be applied not only to AD or 
the elderly population but also to various clinical patient 
populations. Because we developed the automatic scor-
ing system based on a wide range of scores (min–max 
score 0–36), it could cover diverse RCFT performances 
from neurological patients with different etiologies and 
ages. Moreover, the nonverbal nature of the test might 
make our automatic scoring system globally available.

Our study had some limitations and future directions 
for discussion. First, our model outputs only scores that 
did not represent the evidence for the predicted scores 
owing to the end-to-end nature of DL models. We plan 
to develop our model by separately predicting 18 scor-
ing sections and summing the predicted scores of the 18 
scoring sections. This approach makes it more human-
like and increases the explainability of our model. Sec-
ond, in the process of evaluating and updating the model, 
we only validated the images with absolute differences 
larger than five points between the ground truths and 
predicted scores. However, under limited resource, we 

tried to validate our training data and finally improved 
the performance. Third, we need to further evaluate the 
digital RCFT images using a digital pen. We are develop-
ing an application which examines RCFT with a tablet 
and outputs scores with our model. The tablet will enable 
a completely automated system from testing to scoring. 
However, to apply our model to digital images drawn by 
a digital pen that has quite different pen strokes from 
scanned images with a pencil, the additional test set with 
digital images will be further validated in our model. 
Moreover, digital pens can capture rich behavioral infor-
mation such as organization patterns, pressure, veloc-
ity, and time in air and surface. As a result, this leads to 
the gathering hundreds of datapoints, and some of them 
could provide clinical significance. In the future, our 
product could be utilized for screening purposes for AD 
in medical checkup centers or in large-scale community-
based research institutes.

Conclusions
In conclusion, we developed an AI automatic scoring sys-
tem for the RCFT based on the DL model with 20,040 
images. We validated our model not only with a 5-fold 
CV but also with an independent test set. Our results 
suggested no fundamental difference between the rat-
ing scores of experienced psychologists and those of 
our automatic scoring system. We expected that our AI 
psychologist would be able to contribute to screen the 
early stage of AD pathology in medical checkup centers 
or large-scale community-based research institutes in a 
faster and cost-effective way.
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