Shin et al. Advances in Continuous and Discrete Models (2023) 2023:35 Advances in Continuous

https://doi.org/10.1186/s13662-023-03781-5 .
P 9 and Discrete Models

RESEARCH Open Access

Check for
updates

Stability regions of discrete linear periodic
systems with delayed feedback controls

Jong Son Shin', Rinko Miyazaki'? and Dohan Kim?*’

“Correspondence: dhkim@snu.ac kr

3Department of Mathematics, Seoul Abstract

National University, Gwanak-gu, . . L .

Seoul 08826 Kore: g We propose a geometric method to determine the stability region of the zero

Full list of author information is solution of a linear periodic difference equation via the delayed feedback control
available at the end of the article (briefly, DFC) with the commuting feedback gain. For the equation, our method is

more effective than the Jury criterion. First, we give a relationship, named the C-map
theorem, between the characteristic multipliers of an original equation and those of
the equation via DFC. Next, we show the existence and m-starlike property, defined in
this paper, of an m-closed curve induced from the C-map. Using this result, we prove
that the region enclosed by the m-closed curve is the stability region of the zero
solution of the equation via DFC.

Mathematics Subject Classification: Primary 39A06; 39A30; secondary 93852

Keywords: Stability region; Periodic linear difference equation; Delayed feedback;
C-map theorem; m-closed curve; m-starlike curve

1 Introduction and preliminaries
1.1 Introduction
The delayed feedback control (DFC) is an important method for stabilizing the unstable

periodic orbit ¢(£) with period w > 0 to a differential equation
X(t)=f(x), xeQCRY, (E)

embedded within a chaotic attractor. As DFCs, Pyragas [11] has firstly used a perturbation
u(t) = K(x(t — w) — x(¢£)) to Equation (E), that is,

& () =f (%(8)) + K (x(t — w) — x(2)), (DF)

where a d x d real constant matrix K is the so-called feedback gain, and he numerically
determined the feedback gain K so that the periodic solution of Equation (DF) is sta-
ble.

To stabilize theoretically the unstable periodic orbit, Miyazaki, Naito, and Shin [8] have

used the method of linearization under the commuting condition for the gain K. Then,
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the linear variational equations around the orbit ¢(¢) for Equation (DF) becomes
Y () = Ay () + K (y(t — w) — (), (LDF)

where A(f) = Df (¢(¢t)) is the Jacobian of f(x).
A discrete version of Equation (DF) is given by the form

x(n+1) :f(x(n)) +u(n), uln)= K(x(n —w) —x(n)),n €Z:={0,£1,+£2,...},

where w € Z° :={1,2,...}.

This type of feedback scheme has certain inherent limitations [12]. On the other hand,
Buchner and Zebrowski [1] considered a perturbation of the echo-type formulated as
u(n) = K(x(n — w + 1) — A(n)x(n)) to study the stability and the bifurcation for the logistic
map. This method is considered as a prediction-based feedback control [13] or nonlinear
feedback control [14]. For other types of u(n) see [15—17]. Furthermore, Ohta, Takahashi,
and Miyazaki [9] made a remark that DFC of the echo type is more effective than Pyragas
type for one-dimensional case.

As the first step of the study, we are interested in the problem of stabilizing the unstable
zero solution to linear periodic difference equations of the form

x(n+1)=Am)x(n), neZ, (L)

apart from nonlinear difference equations x(n + 1) = f(x(n)).

Here we assume that A(#) is a d x d complex matrix with period @ and x(r) belongs to
the d dimensional complex Euclidean space C?.

In this paper, we adopt the perturbation of the echo type and consider the following
equation with DFC

y(n+1)=An)y(n) + K(y(n -—w+1)- A(n)y(n)). (LF)

The goal of the paper is to describe the stability region, containing all the characteristic
multipliers of Equation (L), of the zero solution to Equation (LF) for general period w > 3
(refer to [7] for w = 2). We develop a geometric method to characterize the stability region.
As a next step, for periodic solutions with period w, we will investigate the stability region
in the forthcoming paper [5], whose main results rely strongly on this paper.

In general, the stability of the zero (or periodic) solution of Equation (LF) is determined
by the absolute values of these characteristic multipliers, i.e., the roots of its characteristic
polynomial. However, for the characteristic polynomial of Equation (LF), it is very difficult
to apply the classical criteria of Schur—Cohn or Jury in [4] as well as to determine the
stability region, since they are based on algebraic methods. Indeed, the order of the inner
matrix becomes very large as the dimension d and the period w increase. For example,
according to our experimental calculation, the criteria of Schur—Cohn or Jury are very
complicated even for the case when w = 4 and d = 1. This is a motivation for this paper.

To solve such a difficulty, we introduce a new geometric method. As a main result, we
can theoretically determine the stability region in general when K = kE. In particular, when
o =4 and all the characteristic multipliers of Equation (L) are real, our method can give a
more concrete and precise stability region (Fig. 2).
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Our geometric method is developed as follows.

First, we establish a relationship, named the C-map theorem (Theorem 2.5 and Corol-
lary 2.6), between characteristic multipliers of Equation (L) and Equation (LF). To carry
out this, we introduce a C-map under the commuting condition: KA(n) = A(n)K for all
ne{0,1,2,...,w— 1}, which is motivated by the paper [8] for a continuous system. For ex-
ample, for a characteristic multiplier © of Equation (L) and for a characteristic multiplier
v of Equation (LF) with K = kE, k a real number and E the identity matrix, the C-map is
given by = C,i(v) = v(ﬁ)‘”.

Next, we give geometric properties of the image B, x(6) := C,,x(¢?), 0 € (—7, 7] by the C-
map of the unit circle in the complex plane. In general, the above image is not geometrically
simple. We show the existence and the m-starlike property (Theorem 6.4) of an m-closed
curve (Definition 6.3) as a part of the image B, «(6).

Finally, using this result, we prove that if all the characteristic multipliers of Equation
(L) are in the interior of the (stability) region enclosed by an m-closed curve, then the zero
solution to Equation (LF) is asymptotically stable (Theorem 7.2). Furthermore, we give
necessary and sufficient conditions for all the characteristic multipliers of Equation (L) to
be in the interior of the region. Our method is illustrated for the cases when w = 3,4 and
all the characteristic multipliers of Equation (L) are real.

The paper is organized as follows.

Section 1. Introduction and preliminaries

Section 2. Characteristic multipliers for Equation (LF)

Section 3. Properties of the function B, «(0)

Section 4. Existence of solutions of Equation JB,,(0) =0

Section 5. Equation IB,, () =0

Section 6. Geometric properties of the function B, «(0)

Section 7. Stability regions

1.2 Preliminaries

In this subsection, we give some basic properties of the characteristic multipliers for Equa-
tion (L) and Equation (LF). Let X be a Banach space with dimX <ocoand L: X — X a
bounded linear operator. We denote by /(L) the null space of L, and by W,,(L) and G, (L)
the eigenspace and the generalized eigenspace for 1 € (L), respectively, where o (L) stands
for the set of all eigenvalues of L. Let Z;° = {p,p + 1,...} for p € Z. For any m, n € Z with
m<nwesetZ: ={mym+1,...,n-1,n}.

First, we consider Equation (L), which has the matrix coefficient A(n) with period w.
Throughout this paper we assume that

(A): A(n) is nonsingular for all n € Z&!.

Then the unique solution x(1; m,x°) of Equation (L) through the initial point (m,x°) €
7 x C* is given by x(1; m,x°) = T(n,m)x°, where T (n,m), n,m € Z stands for the solution
operator of Equation (L). Set T'(n) = T(n + w, n), n € Z. Then T(0) is called the periodic
operator of Equation (L). Then T'(n, m) (m,n € Z) and T(0) are given by

n-1 w-1

T(n,m)=[[AG@n=m) and T =]]AG)

i=m i=0
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respectively, where

ﬁA(i): An-1)An-2)---A(m) (n>m),
i=m E (n=m).

Thus T'(n,m), n,m € Z has following properties (refer to [2, 10]):
(T1) T(n,n)=E,neZ.
(T2) T(n,m)T(m,r)=T(n,r), m e Z..
(T3) T(n+w,m+w)=T(n,m), m <n.

Note that using w—periodicity of A(n),
T(1) = A(0)T(0)A(0) . 1

A complete study of (L) is carried out by the so-called Floquet theory (see, for example,
C. Potzsche [10]) Note that o (T (n)) = 0(7(0)) and T(0) is nonsingular by Condition (A).
Thus 0 ¢ 0 (7(0)). From now on, i € o (7(0)) is called the Floquet’s multiplier or character-
istic multiplier of Equation (L) (refer to [2, 10]). We recall that the location of eigenvalues
of T'(0) determines the stability properties of Equation (L).

Next, we consider Equation (LF). Let C,_; be the set of all maps from Z° ,; into C,
which is the Banach space equipped with the norm |¢|¢c, , = SUPgez0 lo(s)]. It is obvious
that dimC,_; = wd. Let m € Z be fixed. For any function y: Z%°  , — C% and any n €

m-w+
0
—-w+1°

72, we define a function y, : Z°,,; — C% by y,(s) = y(n +5), s € Z For any n € Z
the unique solution y,(m, ¢) € C,_1 of Equation (LF) through the initial point (m,¢) €
Z x Cy-q is given by y,(m, @) = Ux(n, m)e, where Ux(n,m) : C,,-1 — C,_1 stands for the
solution operator of Equation (LF). Set Uk (n) = Uk (n + w, n), n € Z. Then U (0) is called
the periodic operator of Equation (LF). Hereafter, if K = kE, then we denote by Uy (1, m)
and Uy (0) the operators Uy (1, m) and Uk(0), respectively.

The following result can be proved by a similar argument as in the proof of [3, p. 237,

Lemma 1.1].

Proposition 1.1 v is a characteristic multiplier of Equation (LF) if and only if there is a
nontrivial solution y,, n € Z3 of Equation (LF) of the form

y(n+w)=vyn), nel,,. 2)

Hereafter, we assume the following condition (K) for the feedback gain K:

(K-1) 0(K) C R,

(K-2) 0< |k| < 1forall k € o(K),

(K-3) o (Uk(0)) N o (K) = 0.

If k € R with 0 < |k| < 1, then K = kE satisfies the condition (K) (see Lemma 1.3 for a
proof). However, the condition (K-3) does not hold for a general matrix K, while it can be
replaced by other conditions (see [6]).

Now, we introduce the commuting condition (C).

(C) KA(n) = An)K, (n € Z).

The proof of the following lemma is easy.
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Lemma 1.2 For Equation (L) the following statements are equivalent:
(1) A(n)K = KA(n), n € Z.
(2) T(n,m)K = KT (n,m), n,m € Z.
(3) T(n,0)K = KT (n,0), n € Z.

For the case K = kE, the following result holds.

Lemma 1.3 Let K = kE,0 < |k| < 1,and k € R. If Condition (A) is satisfied, then Conditions
(C) and (K) are satisfied.

Proof Since K = kE, we obtain that the condition (C) is clearly satisfied. Moreover, o (K) =
{k} and W;(K) = C?. Now, we show by contradiction that the condition (K-3) is satisfied.
Suppose k € o (Ui(0)). Then there exists a nontrivial solution y(n) of Equation (LF) such
that y(n + w) = ky(n), n € Z_,1 by Proposition 1.1. Hence y(n + 1 —w) = k*y(n + 1), n € Z.
Substituting this relation into Equation (LF), we have y(n + 1) = A(n)y(n) + k[k1y(n + 1) -
A(n)y(n)], which implies that (1 — k)A(n)y(n) = 0. Since k # 1 and A(n) is nonsingular, we
have y(n) = 0. This leads to a contradiction, since y(#) is a nontrivial solution. Hence, the
condition (K-3) is satisfied. O

Hereafter, we always assume Conditions (A), (K), and (C) in this paper.
We note that under the condition (2), Equation (LF) becomes

y(n+1) = K@) A(n)y(n),
where

K@) =v ' (vE-K)E-K)™ (3)

Finally, we will transform Equation (LF) to the extended linear periodic difference equa-
tion. By transforming

y(n—(w-1)) =2(1;n), y(n-(@-2)=22n), ..., yn) =zwn)

in Equation (LF) and setting z(n) = /(*z(1; n), *z(2; n), ..., 'z(w; n)), Equation (LF) becomes

z(n + 1) = Bi(n)z(n), (BE)
where
0 E 0 0 0
0 0 E - 0 0
0 0 0 0 0
Bi(n)=| . . . . . ) (4)
: : : : : 0
: : : : 0
0 -+ v o 0 E
K 0 0 0 (E-K)A(n)

which is called the extended feedback equation of Equation (LF).
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Then the following result is easy to prove.
Lemma 1.4 det By (n) = (-1)“ V¥ detK for all n e 7.

Proof An easy calculation yields

0 0 0 0

0 0 0 0

detBx(n) = (<1) @ V4det | = - : : :
o 0 --- E 0 0

o o0 --- 0 E 0

0 0 --- 0 (E-K)A(n) K

:(—1)(‘”1)ddet( E 0)
(E-K)A(n) K

= (1)@ D detK.
This completes the proof. d

It follows from Lemma 1.4 that if 0 ¢ o (K), then the existence and uniqueness of solu-
tions to Equation (BE) is guaranteed. We denote by T(n, m) and T5(0) the solution oper-
ator and the periodic operator of Equation (BE), respectively. Let C := C! and R stand for
the set of all the real numbers.

Now, we give a relationship between the operators U (0) and T’3(0).

Define a mapping S,,_; from C,_; into C*%:= C? x C? x --- x C? by
% € Cw—l = t(t‘/’(—w + 1): t‘ﬂ(—w + 2)) IR t§0(—1), t‘/’(o)) € (de'

Then S,_; is bijective. Hence, we have S,,_1 Uk (n, m)¢ = Tp(n, m)S,_1¢.

Indeed, we have

Sa)—luK(nr Wl)QD = Sw—lyn(mr <ﬂ)

Page 6 of 28
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o(-w+1)
o(-w +2)

= Tp(n,m) :
@(-1)
»(0)

= Tp(n,m)Se-19.
So Uk (n, m) is uniquely extended to n < m as follows:
Uy (n,m) = S;l_l Tg(n,m)S,_1, n<m.
From this we have
So1Ux(n,m) = Tg(n,m)S,.1 (m,n€Z), Su-1Uk(0) = Tg(0)S,_1.
Since Uy (0) and Tg(0) are similar, the following relations hold:
UkOgp=vp <= S 1Uk(0)¢=vSy19 <= T5(0)Su-1¢ =vSu-19.
Therefore, we obtain the following result.

Lemma 1.5 o (Ug(0)) = o(T(0)) and 0 ¢ o (Ux(0)).

Proof Combining Lemma 1.4 and the condition (K-2), we have det Bx (1) # 0. Since Uk (0)
and T'3(0) are similar, o (Ux(0)) = o (T3(0)) and hence 0 ¢ o (Ux(0)). O

2 Characteristic multipliers for Equation (LF)

In this section, we determine the spectrum o (U (0)) of the periodic operator of Equation
(LF) and establish the C-map theorem.

2.1 Spectrum of the periodic operator Uk(0)
Set

H, =(E-K)""T(n,m), n=>m.
Then H); has the following properties:
Hf=E,  H!H‘=H", (E - K)A(n)H" = H". (5)

Indeed, using the commuting condition (C) and Lemma 1.2, we have

(E - K)A(mH!, = (E = K)"""™A(n) T (n, m)

=(E-K)"'""T(n+1,m)=H,".
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Inductively, we can obtain a representation of T5(0) as follows:

K 0 0 0 H}
KH? K 0 0 H}

Tp(0) = : : : : :
KH¢™'  KHy™' KHY™' ... K Hy™!
KHP  KHY KHY -+ KH®, HY+K

Now, we will calculate det(T3(0) — vE).
Proposition 2.1 The characteristic polynomial of Tg(0) is given as follows:
det(T3(0) - vE) = det[(-1)*v*~H(E - K)*] det[vK (v)” - T(0)].

In particular, det(T5(0) — vE) = 0 if and only if det(vK(v)® — T(0)) = 0.

Proof Set
E
-H? E 0
-H} E
M:
0 “H) E

-HY , E
Then det M = 1. Under the condition (C), by Schur’s formula, we have
det(TB(O) - vE) = det[M(TB(O) — vE)]
— det (Mu Mu)
My My

= detMZQ det(Mu - M12M521M21),

where
K —-vE H(%
le2 K -vE 0
vH; K -VE 0 .
My = ) My =
0
VHO) K- vE 0

Page 8 of 28
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My=(0 0 - o 0 WHZ,),  Mp=K-vE,

Here, we have used the condition (K-3) and the formula for the determinant of a block
matrix with four submatrices. Thus we have

det( Ts(0) — vE)

= det(K — vE)
K —vE —v(K - vE)"'HIH® |
vH?  K-vE
vHy K-vE 0
x det
K -vE 0
vHY K -vE

K-vE (-v)*2{(K-vE) ) 2HIHY
= det(K — vE)*~2 det z =) vE)") 072 ),
VH; K-vE

It follows from (6) that

det(T5(0) — vE)
= det(K — vE)*~" det[K — vE + (—v)* (K = vE) '} HYHY ]
=det[(K = vE)” + (-v)* " HyH{ |
= det[(K - vE)” + (-v)* " ME - K)*T(1,0)T(w,1)]
= det[(K = VE)* + (—v)*"(E-K)*T(1)] (by the property (T3))

Since T(1) = A(0)T(0)A~1(0) and A(0)K = KA(0) hold, we have
det(T3(0) — vE)
= det[(K — vE)” + (-v)*"{(E - K)*T(1)]
= det[(K — vE)*A(0)A(0)™" + (-v)”"(E - K)“A(0)T(0)A(0)""](by(1))

[(

= det{A(0)[(K = vE)” + (-v)*"M(E - K)*T(0)]A(0)"}

= det[(-1)*v*HE - K)*{v (v HE - K) ) (vE-K)” - T(0)}]
[

= det[(-1)*v* "1 (E - K)*] det[vK (v)” - T(0)].

Since v # 0 by Lemma 1.5 and 1 ¢ o(K), we obtain that if det(T5(0) — vE) = 0, then
det(vK(v)® — T(0)) = 0, and vice versa. O

Combining Proposition 2.1 and Lemma 1.5, we obtain the following equivalence.
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Proposition 2.2 The following statements are equivalent:
(1) v € o (Uk(0)).
(2) det(Ts(0) — vE) = 0.
(3) det(vK(v)® — T(0)) = 0.

Theorem 2.3 The following statements hold.
(1) Let v € o (Uk(0)). Then € W, (Ux(0)) <= S,_1¥ € W, (T5(0)).
(2) The characteristic equation det(Ts(0) — vE) = 0 has wd roots.

Proof We prove only the assertion (1). Assume ¥ € W,,(Uk(0)). Since Uk (0)yr = vy, we
have Sw—l UK(O)W = Sw—lvw' Since Sw—l UK(O)W = TB(O)Sw_llp, we obtain TB(O)Sw_llp =
S,_1v, that is, S,,_1¥ € W, (T5(0)), and vice versa. O

Combining Theorem 2.3 with Lemma 1.4, we obtain the following result.

Proposition 2.4 Let v1,..., vy, counted with multiplicity, be all the characteristic multi-
pliers of Equation (LF). Then vy - - - v,y = (det K)®.

Proof Combining Theorem 2.3 with Lemma 1.4, we obtain

w-1

V] - Vg = det T(0) = HdetBK(n)
n=0

= ((-1) D detK)”

= (-1)”“"V?(det K)°.
Since w(w — 1)d is an even number, the proof is complete. d

It follows from Proposition 2.4 that
(1) if K = kE, then

ViV - Vod = (k)wd;

(2)if k1, ko, ..., kg, counted with multiplicity, are eigenvalues of the matrix K, then det K =
kiky - - - k; and

V1 Vg = (detK)? = (kiky - - - kg)“.

This implies that if det K > 1, then there exists a v; € o (Uk(0)) such that |v;| > 1. In other
words, the zero solution of Equation (LF) is unstable if detK > 1. Note that detK > 1 if
K =kE and |k| > 1.

2.2 C-map theorems

In this subsection, we introduce the C-map Theorems, which give the relationship be-
tween the characteristic multipliers of Equations (L) and (LF) and play the crucial role
throughout this paper. For commuting matrices A and B we set

o[AB] = {(a, B) € 6(A) x o (B)|ap € 6 (AB)},

where 0 (AB) = {af|a € 0 (A), B € 0(B), Wu(A) N Wp(B) #0}.
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For a function f(x, y), we denote by f;(y) and f,(x) the function f(x, y) of y for each fixed
x, and the function f(x,y) of x for each fixed y, respectively.
In view of K(v)® in Proposition 2.1, we introduce
(k,2) (7"'_'( )w IxD—C\{0} and Cyx(2)=zg(k,2)
, = M a ) = 14)»
§ (1-K)z L=
where I =R\ {1} and D = C\ R. The function C, (z) is called the characteristic multiplier
map (briefly, C-map) for Equation (LF). Note that g(K,z) is well defined and zg(K, z) is
nonsingular for all z € D, since g(k, z) is analytic in k for all z € D.
We are now in a position to state and prove the C-map theorem for Equation (LF).

Theorem 2.5 (C-map Theorem) v € o(Ux(0)) if and only if there exists a (k,u) €
o [KT(0)] such that u = Cyx(v).

Proof 1t follows from Proposition 2.2 that v € o(Ug(0)) if and only if det(vK(v)® —
T(0)) =0, that is, 0 € o (vg(K,v) — T(0)). According to the spectral mapping theorem, we
have o (vg(K,v)) = {vg(k,v)|k € o (K)}. Moreover, it follows from Condition (C) and [8,
Lemma 4.1] that vg(K,v) and T(0) commute. Therefore, by [8, Lemma A.1], the condi-
tion 0 € o (vg(K,v) — T(0)) implies that v € o (Uk(0)) if and only if there exist ky € o (K)
and u € o(7T(0)) such that

M= Vg(kOr V)r Gvg(K,v) (Vg(ko» V)) N GT(O)(/'L) 7! {O} (7)

For such a ko € o(K), we denote by {ko, k1,...,k,}, p < d — 1 the set of k € o(K) such that
vg(k,v) = vg(ko, v). Using the spectral mapping theorem again, we have G,4(x,v)(vg(ko, v)) =
@f:o G (k;). Therefore, we see that G,y (vg(ko,v)) N Gr)(n) # {0} if and only if
Groy(n) N DY, Gr(k;) # {0}. Then x € Gr)(n) N P, Gk(k), x # 0 can be expressed
asx = Zliio Pix, Pix € Gg(k;), where P; : C? — Gg(k;) is the projection. Since T'(0) and K
commute, we have T(0)P;x = P;T(0)x = P;ux = uPix, i = 0,..., p. Since there is at least one
i such that Pix # 0, we have

Gk (k;) N Gry(p) #{0}. (8)

It follows from [8, Lemma A.2] that the condition (8) is reduced to the condition Wx (k;) N
W) () #{0}. Hence the condition (7) is replaced by the condition

w=Coui,(v), Wik N Wr@y(u) #{0}.
Thus we have (k;, ) € o [KT(0)]. This proves the theorem. O
Corollary 2.6 Let K = kE. Then v € o (Ui(0)) if and only if C, x(v) € o (T(0)).
The C-map u = C, «(2z) can be reformulated as
Poi(zp) = (2= k) = p(1 = k)2 = 0. )

Using (9) and Corollary 2.6, we obtain the following result.
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Corollary 2.7 Let K = kE. Then for every u € o(T(0)) the equation p = Cyx(v) has o
solutions, counted with multiplicity, which belong to o (U (0)).

3 Properties of the function B, x(6)
In this section we consider several properties of the image

1—ke ™
1-k

Box(0) := Coi(e”) = ( ) e, —m<b<m (10)
by the C-map C,x(2) of the unit circle. Clearly, we have:

(1) B,x(0)=1€R.

(2) Bus(r) = ()0 e R,

(3) B, x(0) is differentiable on [0, ].

Note that limy_, 1 |B,x(7)| = 00.

Hereafter, we assume that o € Z3°

We denote by C the closed unit disc, i.e., C = {z||z| < 1}, and denote by n(dC, C,) the
winding number of C,x(v) when v rotates along the unit circle dC centered at the origin
in the positive direction.

Lemma 3.1 The following statements hold.
(1) B,x(0) #0 forall 0 € (—m,x].
(2) Byx(6 + 2nm) = B, x(0)andB,x(0) = m, neZ,-m <0 <m).
(3) Bui(-7) :=limg_, _r B, x(0) = —(15)” € R.
(4) Cw,k(l) =1 and Cw,k(v) = Cwyk(i).
(5) n(dC, Cpi) = 1.

Proof (1), (2), (3), and (4) are obvious. (5) By the argument principle, we have

1 c (v 1 w l-w
»Cwk) = S ’ T i -
n(dC, Cpi) i /M Cor(v) dv i [/dc v—k v+ /ac v dv]

as required. O

To obtain a representation of B, x(0), for any k, 0 < |k| < 1 and any 0 € (-, ], we define
B(k,0) as
ksinf

tan B(k,0) = -

T

Now, we give elementary properties of S(k,0).

Lemma 3.2 For 0 € (0, ) the following statements hold:
(1) 0<k < 1ifand only if 0 < B(k,0) < 5 for all 6 € (0, 7).
(2) -1 <k <0 ifand only if -7 < B(k,0) <0 for all 6 € (0, 7).
(3) Forany 0 € (0,1) B(k,0) is increasing in k, 0 < |k| < 1.

The assertions (1) and (2) in Lemma 3.2 imply that g(k,0) # 0 for all 6 € (0, 7). Since

sinB(k,0) _  ksin®
cospRd) = TZeosg’ (11) can be replaced by

ksin(B(k,0) + 0) = sin B(k,0). (12)
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Next, we give two representations of B, x(6). We need the following identity often
1-ke™ =+/1-2kcos + k2eP&9), (13)
Now, the following representation of B, x(6) is given by (13).

Proposition 3.3 B, (0) can be reformulated as

(1-2kcos6 + k%)%

B,x(6) = =0 e, 6 e (-m,m),
where
o(0) =wBk,0)+60, -m<O<m. (14)

Corollary 3.4 The following results hold.
(1) B(k,0) = 0 and ¢i(0) =0 for all k (0 < |k| < 1).
(2) Bk, ) =0 and g() = 7 forall k (0 < |k| < 1).
(3) B(k,0) #0 forall k (0< |k| <1) and 0 (0<|0] < 7).

Using Proposition 3.3, we have

1-2kcosf + k%)%
Bu(®)] = if ) (15)

and |gx(0)| < (% + 1)7. Thus the following result holds.

Lemma 3.5 Let 0 € [0,77]. Then the following statements hold.
(1) If0< k < 1, then |B,x(0)| > 1 and |B,, ()| is strictly increasing in 6.
(2) If -1 <k <0, then |B,x(0)| <1 and |B,«(0)| is strictly decreasing in 6.

Corollary 3.6 The following statements hold.
(1) If0 <k <1, then ming<p < |Buk(0)| = Buk(0) = 1 and maxo<p<x [Bu,k(0)| = [Bux ()| =

(1+k )a)
(2) If -1 < k < 0, then ming<p=x |Bux(0)] = |Bux()| = (2X) and maxo<o<x |Bux(0)| =
B, x(0)=1.
Since
2 2k
|Bui(®)] =1+ ———(1-cosb), (16)

ke
we have the following lemma.
Lemma 3.7 LetO< |k| <1and 6 € (0,7]. Then |B,q (k)| is strictly increasing in k.

Proof Set b(k) := |B,,0 (k)| & In view of (16), we have b'(k) = (IHk) (1-cos#) > 0, and hence

b(k) is strictly increasing in k. d

Page 13 of 28
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4 Existence of solutions of equation 3B, (0) =0

In this section, we give the criteria for the existence of solutions of Equation JIB,«(6) = 0,
i.e., B,x(0) € R on [0,7]. In other words, sing(0) = 0. Since B(k,0) = B(k, ) = 0 for any
k, 0 < |k| <1 by Corollary 3.4, 6 = 0, w are the solutions of Equation JB,,(0) = 0. Thus we

consider the case 6 € (0, ). To discuss this problem, we investigate separately two cases

0< |kl < —and—<|k|<1
First, we need the following properties of ¢i(6). Since ¢x(6) = wp(k,0) + 6, we have
L or(0) = 5222 where ¢ (k,0) = k(w — 2)cos 6 — (& — 1k + 1.

Proposition 4.1 The following statements hold for 6 € [0, 7].
(1) g(6) = 0 <= k(6) = 0, i.e., cos = DL,
(2) 9(6) >0 = 2i(8) > 0; ¢ (0) < 0 > 51 (9) < 0.
(3) ¢.(0) is continuous on [0, ].

(4)—<|/<|<1<=>|‘“k -1 <1

Corollary 4.2 The following statements hold.
1) k= —ﬁ if and only if ;. (0) = 0.
(2) k= ﬁ ifand only if o\ () = 0.

The following result is easily derived from the above argument and Proposition 4.1.

Corollary 4.3 For 6 =0, v the following statements hold.
(1) The case 6 = 0.
(1-1) If -5 <k < 1, then ¢},(0) > 0.
(1-2) If -1 <k < -1, then ¢(0) <0.
(2) The case 6 = .
(-1 If-1<k< = 1, then ¢ () > 0.
(2-2) Ifﬁ <k <1, then () <O0.

-1’

Next, we show that solutions of Equation JB,, () = 0 on [0, 7] for the case 0 < |k| < ﬁ
are 6 = 0 and 7 only.

We are now in a position to state and prove the first main theorem in this section.

Theorem 4.4 Let 6 € [0,7]. Suppose 0 < |k| < ﬁ Then 3B, x(0) = 0 if and only if
0=0,m.

Proof The proof is based on Proposition 4.1 and Corollary 4.3.
(1) If0 < k < =, then ¢ () > 0 by Corollary 4.2 and Corollary 4.3. Moreover, Propo-

2
sition 4.1 1mphes the inequality cosmw = -1 > % On the other hand, we have the

mequahty cosf > cos > & T )kz) on [0,7). Thus ¢;(6) > 0 on [0,7) and ¢} () > 0.

(2) If _E < k <0, then it follows that (pk (0) > 0 by Corollary 4.3. Thus Proposition 4.1

(w-1)k

C=
cos6 <cos0 < % on (0,7]. Thus <pk(9) >0 on (0, 71] and ¢;(0) > 0.

Summing up these cases, we obtain that if 0 < |k| < then ¢; (6) > 0 on (0, ). Thus,
in view of Corollary 3.4, we see that ¢ : [0, 7] — [0, 7] is bijective. Therefore, sin gx(0) = 0
ifand only if6 =0, . O

implies the inequality cos0 =1 < . On the other hand, we have the inequality

a)l’
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Remark 4.5 1f0< |k| < ﬁ in Theorem 4.4, then ¢ () > 0 on [0, 7] and ¢x(6) >0 (0 < 6 <
), 9x(0) = 0, i(mr) = .

Finally, we discuss the existence of solutions of Equation IB,,(6) = 0 on (0, 7) for the
case ﬁ < k] <1.

(1) Properties of the sets 7.,.(0) and 7._(0).

We turn to the existence of solutions in (0,7) of Equation JIB,;(0) = 0. Clearly,
sin g (0) = 0 is reduced to

mm = wpB(k,0) + 6,

meZ. (17)
Thus m = m(9, k,w) on [0, ]. To obtain such an m, we introduce the function
-0
Bu@)="""2, 0<6<m.
10)

Then (17) is equivalent to B(k,6) = B,,(6). Clearly, since |B,,(9)| < 7, we define the set of
all m = m(0, w) € Z satisfying | 8,,(0)| < 5.

The following statements are obvious.

Lemma 4.6 Let ﬁ < |k| < 1. Then the following statements are equivalent.
(1) For any k, equation IB,x(0) = 0 has a solution in (0, 7).

(2) For any k, equation sin i(0) = 0 has a solution in (0, 7).
(3) For any k, there exists an m € Z and a 0 € (0, ) satisfying ox(0) = mm.
(4) For any k there exists an m € Z and a 0 € (0, 1) satisfying B(k,0) = B,,(0).

For a € R, the symbol [4] stands for the maximum integer not greater than a. We set
w
Wo = [5

1, O={2n+ 1|n € Z} and E = {2n|n € Z}. Then we note that if ® € O, then wy =
5 - %; if w € [, then wy = 3. Since |B,,(0)| < 7, it follows that -2 + % <M< G+ %. For
0 €(0,7) and w € Z$°, we define

0 6
Z+(9):{m€Z|1§m<§+—}, Z_(Q):{meZ|—g+—<m§O},
T

and Z(0) = Z,.(0) UZ_(0). For 0 = 0, =, we define

7Z(0)=7_(0)={0} and Z(r)=7,(m)={1}. (18)
Next, by easy calculation, we can determine the sets Z, (0) and Z_(0) as follows.
Lemma 4.7 Let 0 € (0,7).

(1) Ifw € O, then

0<o<Z
7..(6) = meZ’lfmf @  0<6=3)

wo+1 (F<0<m)

—wo(0<0<7)
Z._(0) = meZ‘ }§m§0

I-wo(5 <60 <m)



Shin et al. Advances in Continuous and Discrete Models (2023) 2023:35 Page 16 of 28

(2) Ifw € E, then
Z.0)={meZ|1 <m<wy}, Z_0)={meZ|1l -—wy<m=<0}.
Now, we give a relationship between the set Z, (0) (or Z_(0)) and B,,(0).

Corollary 4.8 The following statements hold.:
(1) m € Z,(9) if and only if 0 < B,,(0) < 7.
(2) m € Z_(9) if and only if -7 < Bu(0) < 0.

The following lemma easily follows from Lemma 3.2 and Lemma 4.7.

Lemma 4.9 The following statements hold.
(1) If 0 < k < 1, then there exists an m € Z,(0) such that 0 < B,,(0) < 5 for all 0 € (0, 7).
(2) If -1 < k < O, then there exists an m € Z_(9) such that -7 < p,,(9) < 0 forall 6 < (0, 7).

(2) The function g,,(0).

In general, if there exist a k,, 0 < |k,| < 1, a0, € [0,7] and an m, € Z such that (k,,6,) =
B, (6:), then sin gy, (0,) = sinm,r = 0. It follows from Corollary 4.8 that m, € Z can be
replaced by m, € Z(0,). So, we have m = 0 and m = 1 in (17) for the solutions 6 = 0 and
0 = 7 of the equation sin g (0) = 0.

First, we discuss the existence of solutions of Equation IB,x(0) = 0, i.e., singi(0) = 0.
We define

2n(0) := g1 (0) = sin B,,(0) — ksin(ﬂm(Q) + 9), 6 €(0,7), (19)

where m € Z(0). It follows from Corollary 4.8 and Lemma 4.9 that if 0 < k < 1, then m €
7Z..(0); if -1 < k <0, then m € Z_(6). We define

. . omr
Zmi(0):= lim g,x(0) = (1 — k)sin —,
9—0* w

-1
Gnk():= lim () = (1 + k) sin (=

Then g, x(0) is well defined on [0, 7r].

Lemma 4.10 If for any k, - < |k| < 1, there exist a 0, € (0,7) and an m, € 7.(6,) such

w-1

that g, x(0,) = 0, then sin gx(6,) = 0, and vice versa.

Proof Since g, «(6:) = 0, i.e., sin By, (0x) = ksin(B,,, (6x) + 6,), (12) yields tan B, (6,) =
ll_‘;ic‘;(:*;)* . This means B(k,0,) = B, (6x). Thus sin ¢ (6,) = 0 by Lemma 4.6.

Conversely, let for any &, ﬁ < |k| < 1, there exist a 0, € (0,7) such that sin ¢ (6,) = 0.
Then there exists an m, € Z(0) such that ¢i(6,) = m, 7. Therefore, B(k,0,) = B, (6x) by

Lemma 4.6. Thus B, (0.) satisfies the equation g, «(6,) = 0. O

The derivative of g,,(0) becomes

2,0) = —é[cos Bin(0) + k(w — 1) cos(B(6) + 9)], 0<6<m.
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We define

cos(B,,(0) +6)

onO) = = s (@)

, 0<0<m,melZ@®).

Note that |8,,(9)| < 5 for all m € Z(0) by Corollary 4.8 and (18). Thus we obtain

(1) /1,,(0) = ho(0) = -1, h,y () = () = 1 and

(2) cos Bu(0) >0, m € Z(0) on [0, ].

Therefore, the function #,,(0) is well defined on [0, 7] and g/,(9) on [0, 7] is expressed
as

2,0) = 1 [1-k(w - 1)1u(0)] cos Bu(0). (20)

w

The proof of the following result easily follows from (20).

Proposition 4.11 If6 € [0, 7] and m € 7(0), then

1) g,0)<0 <= klo-1)h,0)<1,
2 g£,0)=0 < klo-1h,0)=1,
B) g,0)>0 < kiw-1)hy,0)>1.

(3) The existence of solutions of Equation IB,, x(6) = 0 on (0, ) for the case ﬁ < k] <1.
We are now in a position to state and prove the second main theorem in this section.

Theorem 4.12 Let 6 € (0, 7). Then the following statements hold.
(1) Ifﬁ <k <1, then the equation g1 x(0) = 0 has a solution in (0, 7).
(2) If -1 < k < =L, then the equation gy (0) = 0 has a solution in (0, 7).

w-1’

Proof We consider the equations gy x(0) = 0 and gy «(f) = 0 using Lemma 4.10.
Now, we note that $,,(0) #0 on (0, ) by Corollary 4.8 for m = 0 or m = 1. Clearly, it is
easy to see that g, x(0) is well defined on [0, 7] and

@ = (1= Rsin 25, g i) = (14 Rysin DT,
@ w

(1) First, we claim that for any k satisfying ﬁ < k < 1 the equation g14(f) =0 has a
solution 0, € (0, ). Clearly, we have

.o
g14(0) = (1 — k) sin > >0, () =0.

By Proposition 4.11 we obtain that if ﬁ <k <1,then g () > 0. Thus there exists a § > 0
such that g; ,(0) > 0 for all § € [3, 7]. Hence there exists an 7 € (§, ) such that

&ux() — g14(8) = —g1.4(8) = g1 1 (n)( - 8) > O,

which implies that g x(§) < 0. Therefore, by the intermediate value theorem, the equation
g14(0) = 0 has a solution in (0, §).
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(2) Secondly, we claim that for any k satisfying —1 < k < —ﬁ, the equation gyx(6) =0
has a solution 6, € (0, ). Clearly, we obtain

N
£0x(0) =0, Gox(m) = —=(1 + k) sin —< 0.

It follows from Proposition 4.11 that if -1 < k < —ﬁ, then gy ,(0) > 0. Thus there exists

a § > 0 such that g;,(6) > 0 for all 6 € [0,5]. Hence there exists an 1 € (0,6) such that
80k(8) — g0k (0) = gox(8) = gy, (18 > 0, which implies that go«(5) > 0. Also, the equation
20x(0) =0 has a solution on (8, ). O

The following theorem is an immediate result of Theorem 4.12 and Lemma 4.10

Theorem 4.13 Suppose ﬁ < |k| < 1. Then equation IB,,x(0) = 0 has at least one solution
in (0,7).

5 Equation 3B, x(0)=0

In this section, we solve equation JB,,(0) = 0 for the case ﬁ < |k] < 1 and consider the
number of solutions in (0, 7). Now, we transform this equation to an algebraic equation
of order w — 2. Since, in general,

[(n-1)/2] n-1-p
sinz6 = sin@ Z (—1)"( )(2 cosf) 1%, (21)
p
p=0

we have the following result.

Proposition 5.1 Let 6 € (0,7) and ﬁ < |k| < 1. Then equation IB,,(0) = 0 is equivalent
to the equation

ol 1G-D72] Po1-p\
1+ky (,,+ 1)(—k)1 > (_1)1’( p )X/‘ ) (22)
j=1 p=0

of order w — 2, where X = 2cos0.

Proof Since ﬁ < |k| < 1, equation IB,, «(#) = 0 has a solution in (0,77) by Theorem 4.13.
Using the definition of B, x(0) and the binomial theorem, we have

(1= k)”B,(0) = (€7 — k) e =1’

-> (“’) (~kyeli 7
=0
w-1 o
= —wk L'Q_k _k‘—L'jQ'
wk + € FZI <i+ 1)( Ye
Therefore, Euler’s formula yields that

w-1
IBui(0)=0 <= sinf + kZ Q w1>(—k)j sinj6 = 0.
+
j=1

Therefore, the proof follows from (21). O
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The following result is an immediate consequence of Proposition 5.1.
Corollary 5.2 The number of solutions in (0, ) of equation IB,x(0) = 0 is at most @ — 2.

We can solve equation IB,, «(f) = 0 by the equation g, «(0) = 0 in (19). This equation is
transformed as follows.

Lemma 5.3 For 0 € (0, 1) the following statements hold.
(1) If m € ONZ(O), then the equation g,,x(0) = 0 is equivalent to the equation

sin B8,,(0) = ksin((a) - 1),3,,,(9)).
(2) If m e ENZ(B), then the equation g,,x(0) = 0 is equivalent to the equation
sin B,,(0) = —k sin((a) — 1),3,,,(9)).

Proof The assertions are easily obtained from

(= 1)P(0) = mm — TEF @10

w

which means 8,,(0) + 6 = mm — (0 — 1) Bu(0). Therefore, the proof easily follows. (]
Based on this fact, we obtain the following result.

Proposition 5.4 Suppose that = < k| <1, 60 € (0,7) and set X =2c0s B,u(6).
(1) Let m € ONZ(O). Then g,,x(0) = 0 if and only if

wo—1

1-k) -1y (“’ _; 7 )X“"Z‘ZP -o. (23)

p=0
(2) Let m e ENZ(O). Then g,k (0) = 0 if and only if

wo—1

14k (-1 (‘” _13 i )X‘““P —0. (24)

p=0

Proof (1) Let m € Q. Then it follows from Lemma 5.3 that g,,«(6) = 0 is equivalent to
sin B,,,(0) = ksin[(w — 1) B,,(0)]. By (21) we have

wp—-1

sin((@ — 1)Bu(6)) = sin B, (0) Z(_l)p <CU —; —P> (2cos ﬂm(e))“"z‘zf’,

p=0

Therefore, we obtain (23), since sin 3,,(6) #0.
(2) Let m € E. Then, by the same argument as above, we obtain (24). O

Applying the above two methods in Proposition 5.1 and Proposition 5.4, we can obtain
the solutions of Equation JIB,,x(8) = 0 for the period w = 4.
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Example 5.5 Let w = 4. Then the solutions y4 € (0,7) of equation IByx(0) = 0 are given
as follows:
(1) If% <k <1, then

K +2k-1
s = arccos| ——7— ). (25)
) If-1<k< —%, then
—k*+2k+1
y_ = arccos e ) (26)

First, we verify this result by Proposition 5.1. Indeed, it follows from (22) that 1 — 6k% +
k* + 4k3X — k*X? = 0. Thus the solutions of Equation (22) are given by X = 2cosy =
%12_18)' If% < |k| <1, then 2|cosy| < 2, i.e., |cosy| = |%§;k2)| < 1. Then the solutions
y € (0, ) of Equation JB,(f) = 0 are given by (25) and (26).

Next, we verify the above result applying Theorem 5.4. Since w = 4, wy = 2, we have
Uoco<r Z2(0) = {1,2} and Uppr Z2(0) = {-1,0}.

(1) Let % <k <1and m =1. Then (23) becomes 1 — k(X?> — 1) = 0, i.e.,cos $;,(6) = \/%.

70 _ [k+l _ K242k-1
=y o we have cosé = e

If m =2 € E, then (23) becomes 1 + k(X% — 1) = 0 and 2 cos B(0) = X. Thus X? = % <0,
which means that no solution exists.
(2)Let-1<k< —% and m = 0. Then (24) becomes 1 + k(X?>—1) = 0, i.e.,cos Bo(6) = ,/ ](4;](1.

Since cos

-6 _ k=1 _ —k%42k+1
T =+ o we have cos@ = e

If m = -1 € O, then (23) becomes 1 — k(X% - 1) =0and 2cos B_1() = X. Thus X2 = % <
0, which means that no solution exists.

Since cos

Therefore, we obtain Example 5.5.
Using the same argument as above, we can obtain the following result for the case w = 3.

Example 5.6 Let w =3 and ﬁ = % < |k| < 1. Then the unique solution y € (0, ) of equa-
3k2-1

tion IB3x(0) = 0 is given by y = arccos( T

(1)If% <k<1,thenO<y<7.
(2)If%<k§%,then%§y<n.
(B)If—%§k<—%,then0<y§%.
(4)If—1<k<—ﬁ,then%<y<n.

). In particular, we have:

6 Geometric properties of the function B, «(6)

In this section, we deal with geometric properties of the function B, x(6), 6 € (—m,7]. We
denote by 92 the boundary of a bounded domain Q2. Moreover, if €2 is a simply closed
curve, then 2 means the domain enclosed by 2. We denote by int 2 and ext 2 the interior

and the exterior of €2, respectively. Define a positive number y € (0,7] as

T, 0< Ikl < L,
V= m1n{9 € (O)ﬂ)|SBw,k(9) = O}: ﬁ <k< 1,
max{0 € (0,7)|IB,x(0) =0}, -1l<k< _ﬁ‘

Page 20 of 28
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and
)y =7 0<Ikl<y,
Ily)=310,y],y #m, ﬁ<k<1, (27)
ly,zl,y #m, —1<k<—ﬁ

Clearly, B, x(y) € R. We denote by B’a’)lk(O) the domain enclosed by the line R and the re-
striction of the curve B, (0) to I(y). Moreover, We denote by DZ)’k(O) the union of the
domain Bz,k(O) and its symmetric domain on the line R. The curve BDZ), (0) is called the
minimal and closed curve around the origin (briefly, m-closed curve). Then it has the fol-
lowing properties:

(1) 0 € intD} (0).

(2) D), (0) Z R on intI(y).

(3) DZ),k(O) is a simply connected domain.

Note that if 0 < |k| < ﬁ, then 8D2;k(0) = dD} ,(0). We denote by C, and C_ the up-
per half plane {z € C|3Jz > 0} and the lower half plane {z € C|3Jz < 0}, respectively. Then
aBZ)Yk(O) lies inside either C, or C_. Each shaded region in Fig. 1 below for = 3 shows
DY ,(0).

Lemma 6.1 |B,(0)| is bijective, continuous, and strictly monotone on I(y).

Proof Set g = |Byx(0)|. Since |B,«(0)] is strictly monotone on /(y) by Lemma 3.5, we
see that if 0 < k < 1, then the function |B,x(6)] : [0, ¥] = [to, 1y ] is bijective. Similarly, if
-1 <k <0,then |B,x(0)|: [y,m] = [ix, 1, ] is also bijective. Thus the function |B,,«(6)] is
also bijective on I(y). O

Lemma 6.2 aBZ),k(O) C C, and ¢, (y) = 0. Moreover, ¢r(y) = 7 if - <k<1 (k+#0)

w-1 —
o(y)=0if-1<k< —ﬁ.

Proof (i) Let ﬁ < k < 1. Then I(y) = [0,y]. Corollaries 3.4 and 4.3 imply ¢;(0) = 0
and ¢;(0) > 0. Now we claim ¢(y) = 7. Indeed, ¢x(y) = 0 or m. If ¢i(y) = O, then
Bk, y) = —% < 0, which contradicts the assertion of Lemma 3.2. Therefore, BBZ)J{(O) lies
onC,.

Next, we claim ¢ (y) > 0. Indeed, for a contradiction, we assume ¢; () < 0. Since ¢; (0) is

continuous on [0, y|, there exists a § > 0 such that ¢, (9) <0 on [y -4, y] and g (y —8) < 2.

0.5 1
0.1

= k=1/2 T

*;U‘ ’ o7 V%

Figure 1 The graphs of B3 (@) and ng(O) on the complex plane
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Thus there exists an n € (y — 8, y) such that ¢i(y) — gr(y — 8) = ¢ (n)8 < 0, and hence,
oi(y) =1 < @r(y —8) < 2m. This means B, x(y — 8) ¢ C,, which yields a contradiction.

(ii) Let -1 < k < —ﬁ. Then I(y) = [y, n]. Corollaries 3.4 and 4.3 implies ¢, () > 0. Now
we claim @ (y) = 0. Indeed, if ¢i(y) = 7, then B(k,¥) = ==X > 0, which contradicts the
assertion of Lemma 3.2. Therefore, BBZ)J((O) lies on C,. Then ¢ (y) > 0 is obtained by the
same argument as above.

(iii) Let 0 < |k| < ﬁ Then I(y) = [0,7]. Corollary 3.4 implies ¢;(0) = 0 and () = 7.
Moreover, it follows from Theorem 4.4 and Remark 4.5 that ¢4 (6) > 0 on (0, 7) and ¢, (y) >
0(y=0,m).

Therefore, the proof is complete. g

Note that Lemma 6.1 and Lemma 6.2 imply that |B,(0)| and ¢x(6) are monotone on
I(y). We denote by L,, or £, the half line connecting a point u = |u|e® € C, u # 0 from the

origin.

Definition 6.3 Let 92 be a closed curve around the origin. If 92 N L,, has a unique el-
ement for every u € C\ {0}, then 9% is called the monotone starlike curve (briefly, m-
starlike curve).

For example, circles and ellipses whose center is the origin are m-starlike curves. Also

the boundary of a convex domain containing the origin is an m-starlike curve.
Theorem 6.4 The m-closed curve BDZ)J((O) is an m-starlike curve.

Proof Tt suffices to prove the uniqueness of elements in dB;, ,(0) N L, for any u € C such
that 0 < Argu < . It follows from Lemma 6.2 that BBZ;,((O) N L, is contained in C,. For
a contradiction, we assume that there exist u := |u|e® and 81,8, (|81] < |82]) satisfying
BBZ)',((O) N L, ={61,82}. Then there are 6,0, € I(y) such that §; = B, «(6;) and ¢ = ¢ (6;),
i = 1,2 by using Lemma 6.1 and Proposition 3.3. Since |51] < |82, it follows from Lemma 3.5
that 0; <0, if 0 <k < 1; 05 < 0; if -1 < k < 0. Define

v = sup{q) > <p|8DZ)'k(O) N £ is not unique}.

Since ¥ < 7, there is a unique 6y € I(y) such that ¥ = ¢x(6y) holds.

Note that the tangent line of B, x(#) at 6 coincides with that of Ls,, 8¢ = B,,x(6). Since
%Bw,k(é’) = % [kw — k + €], and since the slope of the half line Ly, is expressed as
B, x(6o), we have

Bw,k(Go)i[eie‘) + k(w — 1)] = B,,),/((Qo)(e"&0 - k),
that is, i[e/® + k(w — 1)] = (% — k). This means

lkaw — k + cos By — sinfy = 0,

k —cosfp +sinfy = 0,

. kw k(w—2)
sinfy = - and cosfp=— R
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and hence

tan6y = — <0.

Thus —% < 6y < 0. This is a contradiction.
Therefore, 9B}, (0) N L,, is unique. O

7 Stability regions: general case
In this section, we consider the criteria on the stabilization via DFC for the case K = kE,
which are main results in this paper. For K = kE and u € o (T(0)) we denote by o, (Ux(0))
the set of all v € o (Uk(0)) such that p = C, 1 (v).

Now, we are in a position to state and prove two main theorems of this paper.

Theorem 7.1 Suppose K = kE and p € o (T(0)).
(1) If u € int D}, (0), then |v| < 1 for all v € 6,,(Ux(0)).
) Ifne extDZ}yk(O), then |v| > 1 for all v € o, (U(0)).

Proof Let i = |u|e® € o(T(0)). Then Corollary 2.7 implies that all the solutions of the
equation pu = C, x(v) belong to o, (Ux(0)).

(1) Let u € intDZ)‘k(O). Then we prove that the inequality |v| < 1 holds for all v €
0, (Ux(0)). For a contradiction, we assume that |v| > 1 holds for some v € o, (Ux(0)). If
[v| =1, then u € 3D ,(0) or u € ext D}, ,(0). This is a contradiction.

Now we consider the case [v| > 1. We denote by C the closed unit disc centered at the
origin. Then we can take a vy € R such that vy € int C and po := Cyi(vo) € intDZ)’k(O).
Moreover, let L be the line segment connecting with vy and v. Then there exists a unique
n € L such that n € dC. In other words, 5 is the intersection of the line segment L and
the unit circle C. Hence || = 1. Since the mapping C,(-) is an analytic function on a

neighborhood of the point 1, we have

d v—k \“v+(@-1k
ﬁCw,k(Vﬂv:n = ((1_k)v> -k

v=n

Note that SCok(n) = 0 if and only if n = —(w—1)k. Thus |n] =1 = (w - 1)|4].

(1-1) The case |k| ;1 . Since - 4 C,x(n) #0, it is a conformal mapping at 7, that is,
the angle between two curves L and dC coincides with the angle between two curves
Cox(L) and 8DZ) (0). Thus, there exists a point in extD’ .« (0), which belongs to C,«(L).
On the other hand, since p and po are connected via C, (L) and since x and po belong
to intD” .« (0), there exists another point & € L such that C,«(§) € ap” ok (0) N Cyi(L). Since
£e€dC,a contradlctlon follows from the uniqueness of 7.

(1-2) The case |k| = — . It follows that D’ vk (0) = D7 ,(0) by Theorem 4.4 and = Cok(n) =
0. Thus n = 1. Slnce neRIifvelR, wehave L C R and Cyx(L) C R. In partlcular,
Co(1) =1 and Cypp(-1) = ~(Lkye,

Let k= —ﬁ. Then n = 1. Since Cw,—ﬁ(x) = x(%)w we have 2 #Cor 1, (1) =0 and
%C&_ﬁ (1) > 0, so that Cw,—ﬁ (1) = 1 is the minimal value on L. This means that yu =
Cw,—ﬁ( v) € (1,00), i.e, u eextD”_ . (0), which leads to a contradiction.

Letk = —1 Then we can apply the 51m1lar method to get the result.
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(2) Let u € extDZ)’k(O). For a contradiction, we assume that there exists a v € o, (U (0))
such that |[v| <1 and u = C,x(v). Let L be the line segment connecting v and k (k # v).
Then L C int C. Since C, (k) = 0, there exists an n € C, (L) N BDZ),,{(O) # (. Thus there
exists a & € L such that n = C,,x(&), which is a contradiction. O

The following result is an immediate consequence of Theorem 7.1.

Theorem 7.2 Let K = kE.
(1) If u € int D}, (0) for all € o (T(0)), then |v| < 1 for all v € o (Ux(0)).

(2) Ifthere existsa jr € o (T(0)) such that u € extDZ)’k(O), then |v| > 1 forallv € o, (Ui(0)),
and hence there exists a v € o (Uy(0)) such that |v| > 1.

Remark 7.3 (1) Theorem 7.2 can be extended to more general commuting matrix K (see
(6]).
(2) Combining Theorem 7.2 with nondegenerate properties, we can obtain a stability

region for a periodic solution (see [5]).

Next, we give necessary and sufficient conditions for p € int DZ),,((O). In relation to (15),

we define a function of k € (-1, 1) as follows:

fw(k;ﬁ, |M|) = |pc|%(1 —k)? -1+ 2kcost — k>

= (Il = 1)K = 2|l ® — cos 0)k + (Il 1), (28)

where —7 < 6 < m. Then f,(k;0,|u]) < 0 if and only if || < |By,x(0)|. Since 8D(};,k(0) n
L, =1{8,} for every u € C is unique by Theorem 6.4, there exists a unique 6,, such that
8, = B, x(6,). Hereafter, such an argument 6, is called the argument associated with
(1,0D, ,(0)).

Now, we give necessary and sufficient conditions for u € intDZ)Yk(O). The proof is easy.

Theorem 7.4 Suppose K = kE and p € C. If 6, is the argument associated with (i,
BDZJ,k(O)), then the following statements are equivalent:

(1) u € int D}, ,(0).

(2) [ul < 1Box(6,)]-

(3) fo(k; 0,0, [p]) < O

Using Theorem 7.4, we can easily obtain the following result.

Corollary 7.5 Suppose K = kE and . € C. If 6, is the argument associated with (u,
aDz;k(O)), then the following statements are equivalent:

(1) u € extD], (0).

(2) |l > Bk (6,1

(B)fw(lCew [ul) > 0.

Finally, we illustrate our method (Theorem 7.2) for the case @ = 4 to compare with the
Jury criterion, provided that all i € o (7(0)) are real. Set og(7(0)) = 0 (7T(0)) NR. Then the
following lemmas are obtained by using Example 5.5.
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Lemma 7.6 If yy. € (0,7) are given by (25) and (26) in Example 5.5, then Byy(y-) and
By (y,) are given as follows:

4
) If -1 <k < -1, then Byx(y-) = %

2
@1} <k<1, then Buy(y,) = -2,

Proof Since (1 — k)*Byx(0) = € — 4k + 6k2e™ — 4k3e % + k*e™3, we obtain

(1-k)*Ba(y)

= (4-cos3 y —3cos 7/)k4 —4(20082 y - 1)k3 +(6¢0s y)k* — 4k + cos y. (29)

Now, we substitute y, and y_ in Example 5.5 into (29).
(1) Let-1<k < —%. Then we obtain (1 — k)*By(y) = U“”;{#
(2) Let % < k < 1. Then we obtain (1 — k)*By(y) = —(1”1)]2(#. O

The following lemma gives properties of By (y-) and Bai(y,).

Lemma 7.7 The following statements hold.:
+k)4 . .
(1) Byx(y-) = %, -1<k< —% has the following properties:
(1) B, 1 () =1.
(1-2) limy_, _; Bax(y-) = 0.
(1-3) By (y-) is increasing in k € (—1,—%).
(2) Byx(yy) = —(1]*(—5)2, (% < k < 1) has the following properties:
(2'1) B4,% (V+) =42,
(2-2) limg_1 By (ys) = =22

(2-3) Byx(y,) is decreasing in k € (%, 1).
The following result (see Fig. 2) illustrates Theorem 7.2.

Proposition 7.8 Suppose w =4 and n € or(7T(0)).
(1) If o is in the following regions, then |v| < 1 for all v € o, (U(0)).
(1-1)0<pu< kgl(;f’:)z and -1 <k <-1.
(1-2)0<p<land -3 <k<1,k#0

Figure 2 The region of (k, i) where |v| < 1 forall v (1+k)?* n

€ (U(0) FTRI-0
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(1-3) (k+1)4<,u<0and l<k<i,k+0.

(1-4) - “k </L<0611’ld <k<1.

(I-S)M——land0<k<1.

(2) If 1 is in the following regions, then |v| > 1 for all v € o, (U(0)).
(2- 1)u>1and—%<k<1,k7’0.

(2-2) kzll'kk2<uand 1<k<—%
(2-3) < (k+1)4and l<k<2,k#0.
(2-4) < - “k and—<k<1

(2- S)M——land 1<k<0.

Proof We will verify the conditions in Proposition 7.4 and Corollary 7.5 to apply Theo-
rem 7.1. Let 6, be the argument associated with (u, 8D£k(0)).

(A) The case u > 0.

(A-1) Let1<pand -1 <k < —%. Then I(y) = I(y-) = [y, 7] by using the definition of
I(y) and Example 5.5. Thus 6,, = y_. By Lemma 7.6 and Lemma 3.5 we have 0 < |B4x(6,,)| =
[Bax(y )| = kzlfkk ;<1< ;1, By Corollary 7.5, we obtain 1 € extD} (0).

(A-2) Let 1 < pand —3 <k <1,k #0. Then I(y) = [0,y] and 6, = 0. Hence we see that
fa(k; 0, |u]) = (|u|7 - 1)(k —1)2 > 0 if and only if 0 < [k| < 1. Thus f4(k; 0, |11]) > 0 for all
k € [-3,1) \ {0}, and hence p € ext D}, (0).

(A-3) LetO<pu<land -1<k< —%. Then I(y) = [y-, 7] and 6, = y_. Thus it follows
from (A-1) that if u < Byx(y_) for all k € (—1,—%), then u € intDZ;((O); if 1> p>Bai(y-)
forall k € (-1,-1), then ,u € extD}(0).

(A-4) Let0<p <land -3 <k <1, k#0. Then 6, = 0. Hence we see that f4(k; 0, |u|) <
forall k € [—— 1)\ {0}. Thus M €intD} ik (0)-

(A-5) Letu=1.If-1<k<-z then 0, = y_. Since By (y-) is increasing in k € (—1,—%)
by Lemma 7.7 and Byi(y-) < B4 é(V ) =1, we have |Byx(y-)| <1 =|u|, and hence pu €
exth;‘k(O) If - <k<1,k#0,then6, =0, so that fu(k; 0, |u|) = 0.

(B) The case it < 0. Set b = |/,L|%. Then (28) with 6,, = w becomes

fallst, nl) = (B2 = 1)K —2(6% + 1)k + (B~ 1).

b +1§c«/ﬂ

- .

If b # 1, then two solutions k_(7) and k, (77) of the equation fi(k; 7, |u|) = O are given by
k_(m) = i&,k (m) =33 b+1 If0<b< 1 thenk (m)<-1<k_(mr)<0;if b>1, then 0 < k_(7) <

_k b+1§§b—

Thus we have k() :=

Hlor|u| = (k"l)4 and k =
k*l orlul = (k”) . Then the following statements hold:

(B 1) Let -1 <k < l Then 6, = 7. Let—1<,u<0 Since0<b<1 we obtain that
falk; 7, |]) < 0 if and only ifk_(m) <k < 3, ie., 2& <k< So, it follows that if — (k+1)4
u <0, then fa(k; 7, |ul) < 0.

Let wu < —1. Since b > 1, we obtain that fi(k; 7, |]) < 0 if and only if k_(7) < k < 1, i.e,,

?-1 <k < 1. So it follows that if — (k”)4 < u <0, then fy(k; 7, |u|) < 0. Thus € int D (0).

(B-2) Let & 3 <k<1.Then 6, = y,. Since Byi(y:) = mk) -1+ k)2 < 0, we have 0 <

[Bar(y:) =1+ %)2 <1l6.If - “k < <0, then |u| <B4k(y+) Thus u € 1ntD4,k( ).
(B-3) The case u = —-1.If -1 < k < é, then 6, = 7. Since fi(k; 7w, |u]) = —4k, we see that if
—-1<k<0,then fylk;m,|u]) >0;if0< k < g, then fu(k; 7w, |i]) < 0. If % <k<1,thenf, =y..

1 < k. (7r). Moreover, we have k = b+1 b=
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Thus we have |B4x(0,)] = |Bai(y:)| = /”1 > 1 = |u|. Thus p € intDY 2x(0). Summing up
these cases, we obtain the proposition. d

Our new method works fine to determine the stability region for this case, but it is very
complicated to check the Jury criterion.
The following result illustrates Theorem 7.2 for @ = 3 and og(7(0)), which is proved by

the same argument as above.

Proposition 7.9 Suppose = 3 and n € or(7T(0)).
(1) If w is in the following regions, then |v| < 1 for all v € o, (Ux(0)).
(1-1)0<p< _(M)s and -1<k<-1.
(1-2)0< < 1 and — <k<1 k#O
(1-3) (k+1)3<,u<0and l<k<3,k#0.
(1-4) (“k) </L<06ll’ld <k<1.
(1-5)u=-1land0<k<1.
(2) If w is in the following regions, then |v| > 1 for all v € o, (Ux(0)).
(2-1)M>1dﬂd—% <k<1,k#0.
(2-2) ~(2£)% < pand -1 <k < -1.
2-3) u<— k“) and — 1<k< k#O
24 n<—-()Y and L <k < 1.
(2—5)/L=1and—1<k<—%;u=—1¢md—1<k<0.

The result of Proposition 7.9 just coincides with the one obtained from the Jury criterion.
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