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Abstract 

The purpose of this study was to automatically classify the three‑dimensional (3D) positional relationship 
between an impacted mandibular third molar (M3) and the inferior alveolar canal (MC) using a distance‑aware 
network in cone‑beam CT (CBCT) images. We developed a network consisting of cascaded stages of segmenta‑
tion and classification for the buccal‑lingual relationship between the M3 and the MC. The M3 and the MC were 
simultaneously segmented using Dense121 U‑Net in the segmentation stage, and their buccal‑lingual relation‑
ship was automatically classified using a 3D distance‑aware network with the multichannel inputs of the original 
CBCT image and the signed distance map (SDM) generated from the segmentation in the classification stage. The 
Dense121 U‑Net achieved the highest average precision of 0.87, 0.96, and 0.94 in the segmentation of the M3, the MC, 
and both together, respectively. The 3D distance‑aware classification network of the Dense121 U‑Net with the input 
of both the CBCT image and the SDM showed the highest performance of accuracy, sensitivity, specificity, and area 
under the receiver operating characteristic curve, each of which had a value of 1.00. The SDM generated from the seg‑
mentation mask significantly contributed to increasing the accuracy of the classification network. The proposed 
distance‑aware network demonstrated high accuracy in the automatic classification of the 3D positional relationship 
between the M3 and the MC by learning anatomical and geometrical information from the CBCT images.
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Introduction
Extraction of the mandibular third molar (M3) is one of 
the most common surgeries in the oral and maxillofa-
cial field [1–3]. Inferior alveolar nerve injury, an impor-
tant surgical complication, occurs in about 0.35–8.4% 
of impacted M3 extractions [4]. The positional relation-
ship between an impacted M3 and the inferior alveolar 
canal (MC) is the main factor that determines the risk of 
inferior alveolar nerve injury [5]. Panoramic radiographs 
have been used for preoperative imaging to predict and 
minimize such complications [2, 6, 7]. To predict the 
relationship between the M3 and the MC in panoramic 
radiographs, clinicians have to infer specific radiologi-
cal signs (e.g., darkening or narrowing of the root, bifid 
apex, and interruption or diversion of the cortical out-
line of the MC) [8]. However, the anatomical position of 
the impacted M3 in relation to the MC cannot be deter-
mined easily because of superimposition and distortion 
of the surrounding anatomical structures in the two-
dimensional (2D) panoramic radiographs [5, 9].

Cone-beam CT (CBCT) has been widely used to over-
come the limitations of 2D panoramic radiographs in the 
oral and maxillofacial field [10]. CBCT has the advan-
tages of lower radiation dose and cost compared with 
multi-detector CT, and shows three-dimensional (3D) 
information of anatomical structures including the teeth, 
jaw bone, and inferior alveolar nerve [9, 11, 12]. The 3D 
positional relationship between the MC and the M3 in 
the buccolingual direction can be determined using the 
cross-sectional images of CBCT. In this respect, six types 
of relationships were established based on the distance 
between the M3 and the MC, the level of contact, and 
the 3D positional relationship in the CBCT images [7]. 
The relationships were classified quantitatively based on 
the presence of the contact, periarticular, interradicular, 
buccal, and inferior positions [13]. In a previous analysis 
of risk factors for nerve damage with paresthesia after 
extraction of the M3, Wang et  al. stated that the direct 
contact relationships between the inferior alveolar nerve 
and the root of the M3 as well as the buccal or lingual 
positions observed in preoperative CBCT images were 
important factors [13, 14]. Additionally, a previous study 
reported that the possibility of damage to the inferior 
alveolar nerve was higher if it was located lingually [12]. 
The rate of MC passage to the lingual side of the M3 root 
was high when the MC and the M3 were in contact [15]. 
Therefore, confirming the relative buccal or lingual rela-
tionship of the MC with the M3 is an essential procedure 
for accurate risk assessment and treatment planning to 
avoid or reduce inferior alveolar nerve damage during an 
M3 extraction.

Anatomic segmentation of the MC and M3 structures 
is essential when making an appropriate surgical plan 

based on their positional relationship to avoid or reduce 
nerve damage. However, segmentation of the MC and 
M3 and determination of the 3D positional relationship 
between them in relevant multiple slices of CBCT images 
is time-consuming and labor-intensive. Automatic seg-
mentation methods have been proposed including level-
set methods [16–20], template-based fitting methods 
[21], and statistical shape models [22, 23]. However, these 
methods have some limitations, such as initialization 
problems, transformation vulnerability, and additional 
manual annotation, which need improvement for fully 
automatic segmentation. Recently, many studies based on 
deep learning have been performed on the segmentation 
and classification of anatomical structures or lesions in 
medical or dental images [24–26], and they have shown 
impressive performance improvement in terms of over-
coming limitations [27–33]. Several studies for detecting 
and segmenting the MC in CBCT images have also been 
performed using deep learning [27, 29]. The proximity 
and contact relationship between the M3 and the MC 
were classified in CBCT images using a ResNet-based 
deep learning model [34]. To the best of our knowledge, 
no previous studies have attempted to apply deep learn-
ing to the classification of the relative buccal or lingual 
relationships between the M3 and the MC. Thus, in this 
study, we focused on developing an end-to-end automatic 
method based on deep learning to replace the time- and 
labor-consuming process of determining the relative buc-
cal or lingual relationship between the M3 and the MC.

We hypothesized that a deep learning model could 
automatically determine the relative buccal or lingual 
relationship between the M3 and the MC using distance 
information in CBCT images. Therefore, the purpose 
of this study was to automatically classify the 3D posi-
tional relationship between an impacted M3 and the MC 
using a 3D distance-aware network that consisted of cas-
caded stages of segmentation and classification of CBCT 
images. Our main contributions were that we proposed a 
distance-aware network for automatic and accurate clas-
sification of the 3D positional relationship between the 
M3 and the MC by learning anatomical and geometrical 
information. In addition, we applied the signed distance 
map (SDM) generated from the segmentation mask as a 
multichannel volumetric input in the 3D distance-aware 
classification network to guide the position and distance 
relationships between the M3 and the MC.

Materials and methods
Data acquisition and preparation
This study was performed with approval from the Insti-
tutional Review Board (IRB) of Seoul National Univer-
sity Dental Hospital (ERI18001). The ethics committee 
approved the waiver for informed consent because this 
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was a retrospective study. The study was performed in 
accordance with the Declaration of Helsinki. CBCT 
images were obtained from 50 patients (27 females and 
23 males; mean age 25.56 ± 6.73  years) who underwent 
dental implant surgery or extraction of the M3 at Seoul 
National University Dental Hospital in 2019–2020. The 
images had dimensions of 841 × 841 × 289 pixels, voxel 
sizes of 0.2 × 0.2 × 0.2  mm3, and 16-bit depth and were 
obtained at 80 kVp and 8  mA using a CBCT (CS9300; 
Carestream Health, New York, USA).

The anatomical structures of the M3 and the MC in the 
CBCT images were manually annotated by an oral and 
maxillofacial radiologist using the 3D Slicer for Windows 
10 (Version 4.10.2; MIT, Massachusetts, USA) [35]. The 
ground truth of the MC was established by annotation of 
both the inferior alveolar nerve and the cortical bone. For 
multiclass segmentation of the M3 and the MC by deep 
learning, we prepared 64 volumes (32 patients) for the 

training dataset and 36 volumes (18 patients) for the test 
dataset from all CBCT images (50 patients), where the 
right mandible volume was horizontally flipped to match 
the left (Table 1). The training and test datasets used for 
segmentation comprised 3546 and 1804 axial images, 
respectively (Table 1). The 2D axial images were automat-
ically cropped into images of 512 × 512 pixels centered at 
the region of the mandible as an input of the segmenta-
tion network.

The buccolingual relationship of the M3 and the MC 
was determined by analysis of successive slices in multi-
planar CBCT images by an oral and maxillofacial radi-
ologist. The passing direction and path of the MC were 
evaluated based on the lamina dura of the M3. If the MC 
directly contacted or passed in close proximity to the 
inner surface of the M3 root, it was considered a lingual 
class, but if it directly contacted or passed in close prox-
imity to the outer surface of the M3 root, it was classified 
as a buccal class (Fig. 1). We excluded the CBCT images 
in which it was difficult to determine the positional rela-
tionship between the MC and M3 for classification data-
set. In our study, the radiologist annotating the images 
was unaware of critical information that could bias their 
assessments. This information included the patient’s 
dental history, the patient’s clinical symptoms, or demo-
graphic information. When the interpreter was not aware 
of the patient’s clinical information, they were less likely 
to make assumptions about the patient’s condition based 

Table 1 The dataset configuration of CBCT images used for 
deep learning

Patients Volumes Axial 
sections

Buccal 
cases

Lingual 
cases

Train, Valida‑
tion

32 64 3546 43 8

Test 18 36 1804 20 11

Total 50 100 5350 63 19

Fig. 1 Visualization of mandibular canals running along the buccal side of the impacted mandibular third molar (a, b) and of mandibular canals 
running along the lingual side of the impacted mandibular third molar (c, d) in 3D and 2D axial slices of a CBCT image and the ground truth 
of segmentation
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on that information. This could lead to a more accurate 
interpretation of the image.

For classification by deep learning, we prepared 43 
buccal and 8 lingual cases for the training dataset and 
20 buccal and 11 lingual cases for the test dataset from 
the whole dataset of 63 buccal and 19 lingual cases. The 
CBCT images for the input of the classification network 
were cropped from the segmentation results into a vol-
ume of 256 × 256 × 32 pixels. We estimated the minimum 
required sample size to detect significant differences in 
the accuracy between the distance-aware network and 
the other networks when both assessed the same sub-
jects. Based on an effect size of 0.50, a significance level 
of 0.05, and a statistical power of 0.80, we obtained a 
sample size of N = 128 (G* Power for Windows 10, Ver-
sion 3.1.9.7; Universität Düsseldorf, Germany). There-
fore, we split all CBCT images into 3546 and 1804 axial 
images for the training and test datasets, respectively.

Overall architecture of the distance‑aware network
We designed a distance-aware network consisting of cas-
caded stages of segmentation and classification (Fig.  2). 
In the segmentation stage, a U-Net of DenseNet121 
[36] backbone with the input of 2D axial images (S-Net) 
was used for multiclass segmentation of the M3 and the 
MC, simultaneously. In the classification stage, a 3D dis-
tance-aware classification network with input of multiple 
volumes (C-Net) was designed for classifying the buccal-
lingual relationship of the M3 and the MC by learning 
their 3D anatomical and geometrical information.

For multiclass segmentation of the M3 and the MC, 
we used a pre-trained DenseNet121 backbone as the 
encoder of the U-Net, which consisted of multiple 
densely connected layers and transition layers to improve 
feature propagation and alleviate the vanishing gradi-
ent problem (Fig.  2). The decoder was composed of a 
five-level structure where each level consisted of a 2 × 2 

Fig. 2 The 3D distance‑aware network consisting of segmentation and classification stages for classifying the positional relationship 
between the third molar and the mandibular canal. In the segmentation stage, the third molar and the mandibular canal were simultaneously 
segmented using Dense121 U‑Net. In the classification stage, the 3D distance‑aware network with inputs of CBCT volume and the distance map 
classified the buccal‑lingual positional relationship between the third molar and the mandibular canal
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up-sampling layer, a skip connection, and two convolu-
tional blocks. Each convolutional block consisted of a 
3 × 3 convolutional filter, a batch-normalization layer, 
and a rectified linear unit (ReLU) activation function. 
The SoftMax activation function was applied to the last 
activation layer for outputting multiclass segmentation 
of both the M3 and the MC. Several U-shaped networks 
such as SegNet [37], simple U-Net [38], and Attention 
U-Net [39] were also used as segmentation networks for 
performance comparison.

For classification of the positional relationship between 
the M3 and the MC, we designed a 3D distance-aware 
network (C-Net) consisting of a five-level structure 
where each level consisted of a 3 × 3 × 3 convolutional 
layer, a batch-normalization layer, the ReLU activation 
function, and a 2 × 2 × 2 max-pooling layer (Fig.  2). The 
original CBCT volume, binary segmentation mask from 
predictions, and corresponding SDM were used as mul-
tichannel inputs for the C-Net. The input volumes were 
centered at the point where the M3 and the MC were 
closest. In the output layer, the class probability for the 
relative buccal-lingual position of the MC was calcu-
lated using the SoftMax activation function following the 
global average pooling layer and the dense layer. The pre-
dictions by the segmentation networks of SegNet, sim-
ple U-Net, Attention U-Net, and Dense U-Net were also 
used as the input of the classification network for perfor-
mance comparison.

The segmentation networks were trained using the Dice 
similarity coefficient loss and the Adam optimizer with 
a learning rate of 0.00025 that was reduced on a plateau 
by a factor of 0.5 every 25 epochs over 300 epochs with 
a batch size of 8. The classification network was trained 
using binary cross-entropy and the Adam optimizer with 
a learning rate of 0.001 that was reduced on a plateau by 
a factor of 0.5 every 25 epochs over 100 epochs with a 
batch size of 1. Analyses were implemented with Python3 
based on Keras with a Tensorflow backend using a single 
NVIDIA Titan RTX GPU 24 GB.

Signed distance map (SDM) for positional information
In the classification process, the network learned the 
3D anatomical and geometrical information from the 
multichannel volume inputs simultaneously. The SDM 
calculated from the mask result of the segmentation pre-
diction was used as an input for learning the geometrical 
information, while the original CBCT image was used 
for learning the 3D anatomical information (Fig. 3). The 
geometric SDM between the M3 and the MC from the 
segmentation prediction was calculated as the signed dis-
tance transform (SDT) [40]. The SDT was defined as the 
Euclidean distance from the nearest background point:

where x is the metric space, M is the metric space of the 
M3 and the MC, and ∂M is the boundary of M [41, 42]. 
For any ∈ X , (x, ∂M) := inf

y∈∂M
d(x, y) , where inf denotes 

the infimum.
The SDM was derived from the 3D SDT considering 

the internal shape of the object and the external rela-
tionship (Eq.  2), where B denoted the binary segmenta-
tion mask of the M3 and the MC. When calculating the 
SDM, the inside and outside of a boundary of an object 
had a negative and a positive value, respectively. In the 
SDM from the predicted M3 and MC segmentations, 
the values between the boundaries of the two objects 
formed a line that had a constant value. This information 
helped the networks to learn the geometrical relationship 
between the M3 and the MC.

(1)SDT (x) =
d(x, ∂M)ifx ∈ M

−d(x, ∂M)ifx ∈ Mc

(2)
SDM = (1− B) ∗ SDT (1− B)− B ∗ (SDT (B)− 1)

Fig. 3 Examples of axial image (left), segmentation mask (middle), 
and SDM (right) of the mandibular third molar and the canal. The 
demarcation line was observed radially in the signed distance map, 
and the difference in direction was observed when the mandibular 
canals traveled along the lingual side or buccal side of the M3
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where B denotes the binary segmentation mask of the M3 
and the MC.

Performance evaluation for segmentation and classification
The decision-making process of the networks for buc-
colingual classification was visualized and verified in the 
attentional area of the classification networks with mul-
tichannel inputs using gradient-weighted class activation 
mappings (Grad-CAMs). Grad-CAM is a powerful tool 
for interpreting the decision-making process of a deep 
learning network by visualizing the learning results of the 
network in terms of heat maps [43]. Therefore, a qualita-
tive evaluation was performed by confirming the differ-
ences in the attentional areas of the Grad-CAM among 
the classification methods based on the segmentation 
network and multichannel inputs.

The segmentation performance of the Dense121 U-Net 
was compared with those of other networks from SegNet 
[37], simple U-Net [38], and Attention U-Net [39]. The 
evaluation matrix included precision, recall, Dice similar-
ity coefficient (DSC), intersection over union (IoU), 3D 
volumetric overlap error (VOE), and relative volume dif-
ference (RVD). All matrices were calculated as volume 
levels. Precision ( TP

TP+FP ) was the rate of correctly pre-
dicted positive predictions, recall ( TP

TP+FN  ) was the rate of 
correctly predicted ground truths, and DSC ( 2TP

2TP+FN+FP ) 
was a harmonic mean of precision and recall, where  
TP, FP, and FN denoted true positive, false positive,  
and false negative, respectively. VOE (1− Vgt∩Vpred

Vgt∪Vpred
 ) is  

the rate between intersection and union of two sets of 
segmentations, and RVD ( |Vgt−Vpred |

Vgt
 ) is the absolute volu-

metric size difference of the regions, where Vgt and Vpred 
represent the number of voxels for the ground truth and 
the predicted volumes, respectively. Higher values of 
DSC, precision, recall, and IoU and lower values of VOE 

and RVD indicate better segmentation performance. The 
precision-recall curve was also computed from the net-
work’s segmentation output by varying the IoU thresh-
old. Average precision (AP) was calculated as that across 
all recall values.

The classification performance of the Dense121 U-Net 
with a variety of configurations of volume inputs was 
compared with other networks with the same volume 
inputs. The classification performance was evaluated 
using sensitivity, specificity, accuracy, and the area under 
the receiver operating characteristic curve (AUC). Sen-
sitivity ( TP

TP+FN  ) correctly identified the positive result 
for the actual class, specificity ( TN

TN+FP ) correctly identi-
fied the negative result for the actual class, and accuracy 
( TP+TN
TP+TN+FP+FN  ) provided the proportion of correct pre-

dictions for all classes, where TP, FP, TN, and FN denoted 
true positive, false positive, true negative, and false nega-
tive, respectively. The receiver operating characteristic 
curve (ROC) was also computed from the network clas-
sification output by varying the class probability for each 
network.

Results
Table  2 shows the quantitative results of the segmen-
tation performance of IoU, DSC, precision, recall, 
RVD, and VOE by U-Net models. The performance of 
Dense121 U-Net, Attention U-Net, Simple U-Net, and 
SegNet was compared over the 36 volumes of the test 
dataset. The Dense121 U-Net achieved segmentation 
performances of IoU, DSC of precision, recall, RVD, 
and VOE of 0.872, 0.920, 0.946, 0.918, 0.038, and 0.088, 
respectively, for the M3, and of 0.766, 0.861, 0.911, 0.830, 
0.135, and 0.248, respectively, for the MC. The Attention 
U-Net showed similar or better performance in some 
parameters. Generally, the Dense121 U-Net showed the 

Table 2 Segmentation performances (Mean (SD)) of intersection over union (IoU), Dice similarity coefficient score (DSC), precision 
(PR), recall (RC), relative volume difference (RVD), and volume of error (VOE) by Dense121 U‑Net, Attention U‑Net, simple U‑Net, and 
SegNet for the mandibular third molar and the mandibular canal

Mandibular third molar
Segmentation models IoU DSC Precision Recall RVD VOE

SegNet 0.841 ± 0.183 0.898 ± 0.156 0.939 ± 0.093 0.888 ± 0.176 0.049 ± 0.031 0.111 ± 0.027

simple U‑Net 0.846 ± 0.181 0.902 ± 0.147 0.944 ± 0.092 0.889 ± 0.177 0.056 ± 0.034 0.105 ± 0.034

Attention U‑Net 0.863 ± 0.161 0.916 ± 0.125 0.940 ± 0.086 0.911 ± 0.151 0.038 ± 0.021 0.093 ± 0.027

Dense121 U‑Net 0.872 ± 0.161 0.920 ± 0.131 0.946 ± 0.091 0.918 ± 0.148 0.038 ± 0.025 0.088 ± 0.024

Mandibular canal
Segmentation models IoU DSC Precision Recall RVD VOE

SegNet 0.659 ± 0.212 0.770 ± 0.194 0.837 ± 0.171 0.741 ± 0.226 0.162 ± 0.104 0.357 ± 0.146

simple U‑Net 0.721 ± 0.162 0.825 ± 0.133 0.899 ± 0.106 0.785 ± 0.176 0.192 ± 0.106 0.303 ± 0.114

Attention U‑Net 0.770 ± 0.132 0.863 ± 0.102 0.898 ± 0.093 0.846 ± 0.143 0.131 ± 0.074 0.249 ± 0.077

Dense121 U‑Net 0.766 ± 0.125 0.861 ± 0.096 0.911 ± 0.085 0.830 ± 0.136 0.135 ± 0.071 0.248 ± 0.075
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highest scores in the segmentation performances for the 
M3 and the MC among the U-Net models.

Figure  4 presents the precision-recall curves of the 
segmentation performance for the M3 and the MC by 
SegNet, simple U-Net, Attention U-Net, and Dense121 
U-Net. Of the tested networks, the Dense121 U-Net 
achieved the highest AP of 0.87, 0.96, and 0.94 for the 
M3, the MC, and both combined, respectively (Fig.  4). 
Figure 5 shows the line plots for the means of DSC and 
Hausdorff distance values calculated from the inferior 
axial slice to the superior one for the M3 and the MC vol-
umes by the U-Net models. The Dense121 U-Net usually 
predicted the M3 and the MC volumes more accurately 
with smaller fluctuations in performance.

Figures 6 and 7 present the segmentation results for 
the M3 and the MC in 2D and 3D by the U-Net models. 
The predicted segmentations for the M3 and the MC by 
the networks and the ground truth are superimposed 
on the axial CBCT image (Fig. 6). The 2D segmentation 
results from the Dense121 U-Net show more true posi-
tives (yellow) and fewer false negatives (green) and false 
positives (red) in the MC and M3 areas compared to 
the other networks (Fig. 6). Particularly, the Dense121 
U-Net successfully segmented the areas where the cor-
tical bone of the MC was not clearly visible due to com-
pression or obstruction by the root of the M3, while 
the other networks failed to segment these areas in the 
CBCT images (Fig. 6c–e). As a result, 3D segmentation 
by Dense121 U-Net exhibited better prediction results 
with improved structural continuity and boundary 
details for the MC and M3 volumes compared with the 
other networks (Fig. 7).

The results in Table 3 show the classification perfor-
mances for the buccal-lingual relationship between the 
M3 and the MC by the 3D distance-aware networks 
with different configurations of input volumes from 
the original CBCT volume and the binary segmenta-
tion mask and SDM from Dense121 U-Net, Attention 

U-Net, simple U-Net, and SegNet. The classification 
performances by the 3D classification networks with 
the input of the original CBCT volume and/or the seg-
mentation mask showed lower accuracy, sensitivity, 
specificity, and AUC. In contrast, higher classification 
performances were achieved by the 3D classification 
networks with the input of the SDM volume. The 3D 
classification network by Dense121 U-Net with the 
input of both the CBCT image and the SDM showed 
the highest performance, with accuracy, sensitivity, 
specificity, and AUC all having values of 1.00, whereas 
Attention U-Net had accuracy, sensitivity, specificity, 
and AUC values of 0.90, 0.90, 0.91, and 0.98, respec-
tively. The ROC curve of classification performance 
by Dense121 U-Net and Attention U-Net using the 
CBCT image and the SDM is closest to the upper left, 
with AUC values of 1.00 and 0.98, respectively (Fig. 8). 
A lower segmentation accuracy of the segmentation 
networks represented with SDM caused by discon-
tinuous, fragmented, and scattered structures led to a 
lower classification accuracy of the 3D distance aware 
networks. This showed difficulty in learning the proper 
relationships between the M3 and the MC. The classifi-
cation performance was influenced by the performance 
of the segmentation network as the SDM input of the 
classification network was directly derived from the 
segmentation mask.

Figure 9 shows activation heatmaps of the Grad-CAM 
superimposed on the CBCT images according to the seg-
mentation networks and the input configuration of the 
classification network. The classification networks using 
the inputs of the original CBCT image and segmentation 
mask did not emphasize properly the anatomical regions 
related to the classification because the networks identi-
fied the entire mandible and M3 or external regions that 
were not relevant to the classification. However, the clas-
sification networks using the inputs of the CBCT image 
and SDM returned reasonable areas for classification. 

Fig. 4 Precision‑recall curves from segmentation results for M3 (a), MC (b), and both together (c)
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The areas of the M3 root and the medullary space sur-
rounding the cortical layer of the MC were identified well 
in cases where the network predicted the lingual relation-
ship, and the marginal area of the M3 and the medullary 
space near the cortical layer of the MC was identified well 
in cases with a buccal relationship.

Discussion
Accurate segmentation of the inferior alveolar nerve 
is an essential step in oral and maxillofacial surgery, 
such as implant placement in the mandible, extraction 
of an impacted M3, and orthognathic surgery [1–3, 
44]. The incidence of inferior alveolar nerve injuries 
in M3 extraction surgery increases if the MC and the 
root of the M3 are closely located [4]. In addition, the 
positional relationship of the MC with the M3 in the 

buccolingual aspect is a risk factor as important as 
proximity and is identified routinely in the clinical field 
[14, 45]. Therefore, diagnosis based on preoperative 
imaging is essential for accurate prediction of and suf-
ficient preparation for this risk. CBCT images, which 
overcome the limitations of distortion and superim-
position of structures in 2D panoramic images [5, 9], 
have been widely used in dental clinics [10]. However, 
accurate identification of the path of the MC and its 
3D relationship with the M3 on cross-sections of the 
CBCT image is labor- and time-consuming due to the 
low contrast and high noise [46].

The application of deep learning for segmentation or 
classification of the M3 or the MC has been performed 
in 2D panoramic radiographs, 3D CT, and CBCT images 
[27, 29, 31, 47–50]. Another study has segmented the M3 

Fig. 5 The line plots of Dice similarity coefficient (a, c) and Hausdorff distance (b, d) by Dense121 U‑Net, Attention U‑Net, simple U‑Net, and SegNet 
for the M3 (a, b) and MC (c, d). The metric values were calculated from the inferior axial slice to the superior slice in the volume
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and the MC in CBCT images and classified them into 
three types according to proximity and contact between 
the two structures [34]. However, no previous stud-
ies have been performed on the automatic classification 
of the buccal-lingual positional relationship between 
the M3 and the MC using deep learning. In this study, a 
distance-aware CNN was proposed to segment the M3 
and the MC and to classify the positional relationship 
between them in CBCT images, automatically. In the seg-
mentation stage, pre-trained Dense121 U-Net was used 
for multiclass segmentation of the M3 and the MC. In the 
classification stage, a 3D classification network simulta-
neously learned anatomical and geometrical information 
from the CBCT image and the distance map generated 
from the segmentation prediction of the M3 and the MC.

The M3 and MC segmentation by Dense121 U-Net 
showed the highest performance among all segmen-
tation networks, indicating that the network had bal-
anced precision and recall. The results of the Dense121 

U-Net showed a significant reduction in the number of 
discontinuous areas where the cortical bone of the MC 
was not clearly visible and was compressed or obstructed 
by the root of the M3 in CBCT images. Those of other 
networks showed a larger number of areas of disconti-
nuity for the MC. The plots representing the segmenta-
tion performance of DSC and Hausdorff distances for the 
M3 and the MC by Dense121 U-Net demonstrated this 
quantitatively with higher values and smaller fluctuations 
compared to those of the other networks. These results 
showed that the Dense121 U-Net is the most effective 
network for segmenting small target objects with consist-
ent accuracy. Therefore, 3D segmentation by Dense121 
U-Net demonstrated the best performance with 
improved structural continuity and boundary details for 
segmentation of the MC and the M3.

The 3D distance-aware network was designed to auto-
matically classify the buccal-lingual relationship between 
the M3 and the MC, and it incorporated the SDM as an 

Fig. 6 Segmentation results for the M3 and the MC by SegNet, simple U‑Net, Attention U‑Net, and Dense121 U‑Net. The predicted segmentation 
masks of the M3 and the MC were superimposed on the ground truth in CBCT images. The yellow, green, and red regions represent true positive, 
false negative, and false positive, respectively
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Fig. 7 The 3D visualization of the ground truth and segmentation results from SegNet, simple U‑Net, Attention U‑Net, and Dense121 U‑Net 
from left to right with buccal relationships between M3 and MC (a‑c) and with lingual relationships (d‑f). The red line passing through the M3, 
the main axis of the M3, shows the buccal‑lingual relationship between the M3 and the MC on the ground truth

Table 3 Classification performances of accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve 
(AUC) by the 3D distance‑aware networks with different configurations of input volumes of the original CBCT image, segmentation 
mask, and SDM by Dense121 U‑Net, Attention U‑Net, simple U‑Net, and SegNet. SDM: signed distance map

Segmentation Model CBCT image Segmentation mask SDM Accuracy Sensitivity Specificity AUC 

✔ 0.32 0.10 0.73 0.34

SegNet ✔ ✔ 0.48 0.25 0.91 0.69

simple U‑Net ✔ ✔ 0.77 0.80 0.73 0.83

Attention U‑Net ✔ ✔ 0.52 0.40 0.73 0.62

Dense U‑Net ✔ ✔ 0.71 1.00 0.18 0.69

SegNet ✔ 0.77 0.65 1.00 0.91

simple U‑Net ✔ 0.84 0.80 0.91 0.96

Attention U‑Net ✔ 0.71 0.85 0.45 0.85

Dense U‑Net ✔ 0.84 0.90 0.73 0.92

SegNet ✔ ✔ 0.65 0.65 0.64 0.76

simple U‑Net ✔ ✔ 0.68 1.00 0.09 0.92

Attention U‑Net ✔ ✔ 0.90 0.90 0.91 0.98

Dense U‑Net ✔ ✔ 1.00 1.00 1.00 1.00



Page 11 of 14Chun et al. BMC Oral Health          (2023) 23:794  

input to learn additional 3D geometrical information 
between them. Using both the 3D CBCT image and the 
SDM as multichannel inputs of the network, the net-
work achieved better classification performance com-
pared to other input combinations. The performance of 
the classification network was highest, reaching 0.90 or 
more when using an SDM generated from the segmen-
tation outcomes of Attention U-Net or Dense121 U-Net 
with higher segmentation performance. These results 
demonstrated that the classification network using both 
the original CBCT image and the SDM as multichannel 
inputs learned the 3D positional information more effec-
tively to analyze the relationship between the M3 and 
the MC.

We utilized Grad-CAM visualization to create visual 
interpretations for the decision-making process in the 
buccolingual classification of the M3 and the MC by 
the classification network. The heat maps generated by 
the networks using inputs of the CBCT image and SDM 
focused specifically on the root of the M3 and the periph-
ery of the MC, while those using other inputs empha-
sized regions that were not relevant to classification. As 
a result, the SDM provided geometrical guidance that 
provided precise information on the position and dis-
tance relationships between the M3 and the MC during 
classification. In addition to the information on the ana-
tomical regions for the M3 and the MC, the geometrical 

information for the position and shape of adjacent ana-
tomical structures was important for better classification 
performance.

The purpose of including a control group in a study is 
to provide a baseline for comparison. In studies like ours, 
the control group can be used to compare the results of 
the group which uses the developed network in classifi-
cation for the buccal-lingual relationship in order to see 
if there is a statistically significant difference. As there 
was no control group in this study, it was difficult to say 
whether the group using the developed network dem-
onstrated better performance in the classification than 
the control group not using the network. However, deep 
learning models in medical and dental image interpre-
tation can be advantageous in the following ways [24, 
30, 51, 52]. Deep learning models can interpret medical 
images much faster than human interpreters, which can 
lead to a faster diagnosis for patients [30]. Deep learning 
models can automate the process of medical image inter-
pretation, which can free up human interpreters to focus 
on other tasks [30, 51]. Deep learning models can help to 
improve the efficiency of medical image interpretation by 
reducing the time and labor required [24, 52].

Our study did have some limitations. First, due to the 
insufficient availability of the CBCT images, only the 
relative buccal or lingual relationship between the M3 
and the MC was considered as a criterion for classifica-
tion, although the MC could appear in a greater variety of 
positions and orientations with respect to the M3, such 
as through, beneath, or between the roots. Future stud-
ies should include more diverse criteria for detailed clas-
sification. Second, our study had a potential limitation 
of generalization ability due to the use of CBCT images 
from a single organization. Overfitting of training of a 
deep learning model, which results in the model learn-
ing statistical regularity specific to the training dataset, 
could negatively impact the ability of the model to gener-
alize to a new dataset [53]. Therefore, in future studies, it 
is important to improve and evaluate the performance of 
the network on CBCT images of a variety of relationships 
of the M3 and the MC and those obtained from different 
devices.

Conclusions
In this study, the proposed distance-aware network 
demonstrated high accuracy in automatic classification 
of the 3D positional relationship between the M3 and 
the MC by learning anatomical and geometrical infor-
mation from CBCT images. The distance map generated 
using the segmentation mask as one of the multichan-
nel inputs in the classification network significantly con-
tributed to increasing the accuracy in the classification 

Fig. 8 The classification performance of the 3D distance‑aware 
networks based on the receiver operating characteristic (ROC) curves. 
The ROC curves and AUCs from the networks with segmentation 
networks of SegNet, simple U‑Net, Attention U‑Net, and Dense121 
U‑Net
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of the 3D buccal-lingual relationship between the M3 
and the MC. The network could contribute to the auto-
matic, accurate, and efficient classification of the 3D 
positional relationship between the M3 and the MC for 
preoperative planning of M3 extraction surgery to avoid 
surgical complications. This research could be a corner-
stone for the automatic and accurate classification of 
more diverse relationships between the M3 and the MC.
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