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Abstract: Kerr-AdSd+1 black holes for d ≥ 3 suffer from classical superradiant instabilities
over a range of masses above extremality. We conjecture that these instabilities settle down
into Grey Galaxies (GGs) — a new class of coarse-grained solutions to Einstein’s equations
which we construct in d = 3. Grey Galaxies are made up of a black hole with critical
angular velocity ω = 1 in the ‘centre’ of AdS, surrounded by a large flat disk of thermal bulk
gas that revolves around the centre of AdS at the speed of light. The gas carries a finite
fraction of the total energy, as its parametrically low energy density and large radius are
inversely related. GGs exist at masses that extend all the way down to the unitarity bound.
Their thermodynamics is that of a weakly interacting mix of Kerr-AdS black holes and the
bulk gas. Their boundary stress tensor is the sum of a smooth ‘black hole’ contribution
and a peaked gas contribution that is delta function localized around the equator of the
boundary sphere in the large N limit. We also construct another class of solutions with the
same charges; ‘Revolving Black Holes (RBHs)’. RBHs are macroscopically charged SO(d, 2)
descendants of AdS-Kerr solutions, and consist of ω = 1 black holes revolving around the
centre of AdS at a fixed radial location but in a quantum wave function in the angular
directions. RBH solutions are marginally entropically subdominant to GG solutions and
do not constitute the endpoint of the superradiant instability. Nonetheless, we argue that
supersymmetric versions of these solutions have interesting implications for the spectrum of
supersymmetric states in, e.g. N = 4 Yang-Mills theory.
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1 Introduction

It was observed almost 20 years ago [1] that Kerr-AdSd+1 black holes in d ≥ 3 suffer from
classical super-radiant instabilities [2] over a range of energies above the extremality bound.
In this paper, we present a proposal for the endpoint of this instability.

The rest of this introductory section is structured as follows. In subsection 1.1 we
first elaborate on the question addressed in this paper and emphasize its importance for
understanding the spectrum of operators in CFTs with a bulk gravity dual description. We
then proceed, in subsections 1.2–1.5, to outline our proposal. In the interests of concreteness,
we focus, through this paper, mainly on the special case d = 3, though we expect the
generalization of our analysis to arbitrary d > 3 to be relatively straightforward.

1.1 The question

The basis of local operators in any CFT3 may be chosen to have definite values of the
scaling dimension ∆ and z component of angular momentum, Jz. n(∆, Jz), the number of
operators with dimension ∆ and angular momentum Jz, is one of the most fundamental
CFT observables. When ∆ and Jz are large, it is also natural to define an ‘entropy of
operators’, S(∆, Jz) via

n(∆, Jz) = eS(∆,Jz) . (1.1)

– 1 –
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The operator spectrum of the CFT may equivalently be characterized by the partition
function Z defined by

Z =
∑
∆,Jz

n(∆, Jz)e−β(∆−ωJz) . (1.2)

In an appropriate thermodynamical limit (of either the large N or high-temperature variety),
the partition function and the entropy function are Legendre transforms of each other.

The state operator map allows us to interpret Z and S in thermodynamical terms. Z
is the thermal partition function over the Hilbert Space of the CFT3 on S2

Z = Tre−β(E−ωJz) , (1.3)

while S(E, Jz) is the thermodynamical entropy of this system.1
The partition function Z and entropy S are effectively computable in large N CFT s

that admit a two-derivative AdS bulk dual. A standard entry in the AdS/CFT dictionary
asserts that S(E, J) equals the entropy of the dominant bulk black hole that carries the
same charges.2 One might thus guess that the entropy function, SBH(E, J), of the explicitly
known Kerr-AdS black holes [4] computes the entropy of the dual field theory. While
this guess is believed to be correct at large values of E, it cannot hold at all energies, as
Kerr-AdS black holes are unstable at low energies, as we now review.

At any given value of J , Kerr-AdS black holes exist only for energies E ≥ Eext(J),3
where Eext(J),4 is the energy of an extremal Kerr-AdS black hole with angular momentum
J . Eext(J) is a complicated known function of J (see subsection 2.5). It turns out that
Eext(J) ≥ J at all values of J ,5 as expected on general grounds.6

It is easily verified that the angular velocity, ω, of Kerr-AdS black holes is a monotonically
decreasing function of energy at fixed J . It is also easily verified that the angular velocity of
extremal Kerr Black holes exceeds unity at every value of J . It follows from these facts that

1Through this paper we use the term ‘angular velocity’ for ω, the chemical potential dual to angular
momentum Jz in (1.3).

2This rule applies at leading order in N and at energies and angular momenta of order Nα ∼ G−1 with a
suitable constant α > 0, where G is the Newton constant of the AdSd+1. (For instance, α = 2 for d = 4
maximal super-Yang-Mills theory and α = 3

2 for d = 3 ABJM theory [3].) If more than one black holes exist
at any given charges then S(E, J) is given by the largest of the black hole entropies.

3Solutions of the negative cosmological constant Einstein equations formally exist even at E < Eext(J).
However these solutions have naked singularities, and so are, presumably, unphysical.

4Although Kerr-AdS black holes do not exist at energies smaller than Eext(J), previous attempts to
determine the endpoint of the superradiant instability have already led to the construction of new — although
still unstable — solutions of general relativity called black resonators [5–9]. Black resonators are the angular
momentum analogs of the hairy black hole solutions of [10–12], and exist down to energies smaller than
Eext(J), though not all the way to the unitarity bound.

5The equality holds only at J = 0.
6All states in a CFT obey the inequality E ≥ J . This inequality is saturated only by a vacuum state. If

we work with a normalization in which derivative operator ∂z carries E = 1 and Jz = 1, then primaries with
Jz = 0 and Jz = 1

2 (and hence also their descendants) obey E ≥ Jz + 1
2 . Primaries at all higher Jz (and

hence also their descendants) obey the still tighter inequality E ≥ Jz + 1. At the parametrically large values
of E and J of interest to this paper, however, all these fine distinctions are washed away, and the unitarity
bound is effectively simply E ≥ J .

– 2 –
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Figure 1. The ‘phase diagram’ of Kerr-AdS black holes in E-J space(ϵ = GE and j = GJ are the
rescaled energy and angular momentum). Black holes are stable in the red region that is bounded
from below by the bold red line, E = ESR(J). Black holes are unstable in the blue region bounded
from above by the bold red line and from below by the bold blue line: the latter is the curve
E = Eext(J). Kerr-AdS black holes do not exist in the unitarity allowed region between the dark
blue curve and the green line, E = J .

there exists a unique energy ESR(J), at every value of J , at which the black hole angular
velocity, ω, equals unity. Clearly

ESR(J) ≥ Eext(J) > J . (1.4)

ESR(J) is a known but complicated function of J . Kerr-AdS black holes with energy larger
than ESR(J) have ω < 1, while black holes with energies in the range

Eext(J) ≤ E < ESR(J) (1.5)

have ω > 1.
ESR(J) marks an important dividing line in the phase space of Kerr-AdS black holes,

because black holes in AdSD space with ω > 1 are always unstable [1, 13] (see also [5–9, 14–
18]). This instability is superradiant in nature. See appendix A for an intuitive explanation
of this fact, and a comparison with the superradiant phenomenon in charged black holes.

The existence of Kerr-AdS black holes in the energy range (1.5) tells us that the dual
CFT possesses a large entropy (order 1

G) of states at these energies. Since these black holes
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are unstable they cannot represent the dual of CFT thermal equilibrium. There must, thus,
exist a new bulk black hole solution (one with a larger horizon area — hence larger entropy

— as compared to the Kerr-AdS solution with the same charges) that describes the true
thermal equilibrium of the CFT at these charges. The nature of this new solution is the
topic of this paper.

1.2 New solutions involving the quantum gas

In the steady state, a black hole in AdS is in equilibrium with a thermal gas (made up of
its own Hawking radiation). As the black hole and the gas are in equilibrium with each
other they have the same value of the temperature and ω.7 Generically, the order unity
energy and angular momentum of the gas are negligible compared to their order 1

G black
hole counterparts. As ω approaches unity, however, the gas energy can easily be shown
to diverge (see subsection 3.1). This divergence has its origin in gas modes that of large
angular momentum. These modes live at very large radial locations (see appendix E), and
so effectively in global AdS space. Now the Hilbert Space of a gas made out of a bulk field
in AdS4 is the Fock Space over a single particle Hilbert space, whose states are in one-to-one
correspondence with dual operators. The ω → 1 divergence arises from the contribution of
infinite sequences of operators of increasing angular momentum, such as

∂l
zO, l = 1 . . .∞

where O is the operator dual to the scalar field. The contribution of this sequence to
the gas partition function diverges because the ratio of Boltzmann suppression factor for
successive terms, e−β(1−ω)l, becomes unity when ω = 1. At ω = 1 the partition function
diverges because all terms in the sequence contribute equally to it. It follows that all
thermodynamical formulae blow up as ω → 1 from below, and we find (see (3.11))

E = J ∝ 1
(1− ω)2 , S ∝ 1

1− ω
.8 (1.6)

where E J and S are the angular momentum and entropy of the gas.
It follows from (1.6) that when 1 − ω ∼ O(

√
G), the energy carried in the gas is of

order 1/G. For such black holes — i.e. those that lie an order G distance to the left of the
solid red curve in figure 1 — the classical formulae of black hole thermodynamics must be
corrected, even at leading order, to account for the contribution of the gas.

7Through this subsection we work in the micro-canonical ensemble. The temperature and angular
velocities should be thought of as derived quantities defined by

1
TBH

= ∂EBHSBH ,
1
Tgas

= ∂EgasSgas,
ωBH

TBH
= −∂JBHSBH ,

ωgas

Tgas
= −∂JgasSgas.

From this viewpoint, the conditions

TBH = Tgas, ωBH = ωgas

are derived from the maximization of total system entropy. The same principle also implies that occupation
numbers of the gas follow the Boltzmann distribution, (see e.g. appendix I of [19]).

8The energy and angular momentum of the gas are equal because the dominant contribution is from
very high angular momenta, i.e. the gas is effectively chiral. The entropy of this gas is ∝

√
E because the

divergent contribution to the gas is effectively 1 + 1 dimensional. See (3.11) for details.

– 4 –



J
H
E
P
1
1
(
2
0
2
3
)
0
2
4

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. The Phase diagram in the microcanonical ensemble. The x and y axes are the scaled
angular momentum and energy defined in (2.12). The green, blue, and red curves respectively,
denote the unitarity bound, extremality, and the edge of the superradiant instability. Kerr-AdS
black holes are the dominant saddle above the red curve. Grey Galaxy saddles dominate between
the red and green curves. Their entropy equals that of the ω = 1 Kerr-AdS black hole located at
the intersection of the dotted line that passes through the point of interest and the dark red curve.

The corrected thermodynamical formulae are9

E = EBH + C ′

J = JBH + C ′

S = SBH

(1.7)

where EBH, JBH and SBH represent the classical energy, angular momentum, and entropy
of ω = 1 Kerr-AdS black holes and the positive number C ′ is the energy and angular
momentum of the Hawking gas.

It follows from (1.7) that the values of (E, J) of our new gas-corrected black holes (we
will later call these Grey Galaxies) are obtained as follows. We start with any point on the
red curve of figure 1, and then move to the right along a 45-degree line for an arbitrary
distance. The two parameters for this new family of solutions can be taken to be

9As 1 − ω ∝
√
G is parametrically small, and as thermodynamical relations of classical black holes are

analytic in the neighborhood of the red curve in figure 1, this small deviation of ω from unity may be ignored,
to leading order, when evaluating the classical thermodynamics of these black holes.
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• Where on the red curve we start. This parameter completely determines the entropy
(and also the temperature) of the new saddle.

• How far along the 45-degree line we go. This parameter determines the shift in energy
and angular momentum, C ′, of the new saddles.

This discussion is illustrated in figure 2.
It may be shown that the slope of the red curve in figure 1 is everywhere greater than

unity (see e.g. subsection 2.8). It follows that our new saddles always lie below the red
curve in figure 2. Note also that our new saddles exist at every point in figure 2 that lies
below the red curve but also lies above the unitarity bound, E = J .

As the entropy of the gas is parametrically sub-leading compared to that of the black
hole (see (1.6)) the entropy of any of our new saddles may be obtained as follows. Given any
point under the red line of the E, J plane, we follow one of the 45-degree lines in figure 2
backward, until we hit a point on the red curve. To leading order in G, the entropy of our
new saddle simply equals the classical entropy of this ω = 1 Kerr-AdS black hole.

Our new solutions may be thought of as a very weakly interacting mix of the black
hole (at the centre) and the gas (which lives far towards the boundary of AdS). The
thermodynamical charges of this mix are simply a sum of the different components because
they interact so weakly. Energy (and angular momentum) can be exchanged between the
two components: the final equilibrium configuration is the one that maximizes entropy at
fixed E and J . In section 3.2 we demonstrate that this maximum is attained precisely when
the black hole part of the mix has ω = 1. The discussion, in this regard, is very similar to
that presented in [10] for small charged black holes. While the noninteracting mix picture
of [10] is precise only for a very small black hole, however, the weakly interacting model is
exact for rotating black holes, even when they are large.

We have just seen that one of our new solutions exists at every point between the red
and unitarity curves in figure 1. As Kerr-AdS black holes are stable at every point above
the red curve in figure 1, It follows that every point above the unitarity bound in the E, J
plane hosts exactly one of either a stable classical black hole (above the red curve) or one
of the new saddle points (below the red curve but above the unitarity bound), leading
to the micro-canonical phase diagram depicted in figure 7. As we know how to compute
the entropy of the new solutions, we now have a formula for S(E, J) for every value of
E and J that satisfies the unitarity inequality E ≥ J . We conjecture that this formula
correctly captures the entropy (at O( 1

G)) of states (and operators) of every large N CFT3
that admits a two-derivative gravity dual description, at energies and angular momenta of
order 1

G .
One obtains several additional insights into the nature of the new gas-corrected black

holes described above by approaching their thermodynamics from a canonical viewpoint,
explored in subsection 3.3.10

10Throughout this paper we refer to this ensemble defined by the partition function (1.3) as the canonical
ensemble. Note that our canonical ensemble involves a trace over states of all angular momenta.
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1.3 Grey Galaxies

Our discussion of the gas-corrected black holes has proceeded by accounting for the energy
and angular momentum of the gas but ignoring its backreaction on the metric, and all other
interactions. The skeptical reader may wonder how this is consistent, given that the gas
energy is of order 1

G . The answer to this question lies in the fact that our gas is spread over
a parametrically large spatial region in AdS, and so carries a parametrically small energy
density. The low energy density of this gas ensures that its backreaction is parametrically
small in an appropriate sense. We now explain how this works in some detail.

Consider a mode of angular momentum l, with l ≫ 1, propagating in the unit radius
global AdS4

ds2 = dr2

1 + r2 − (1 + r2)dt2 + r2
(
dθ2 + sin2 θdϕ2

)
(1.8)

As a consequence of the centrifugal force, the wave function for such a mode is concentrated
at values of r of order

√
l (see appendix E). If the mode also carries Jz = l, its wave function

is also sharply localized about the equator, θ = π
2 , with an angular spread δθ of order 1√

l
.

The proper thickness of this mode in the angular direction is of order rδθ ∼
√
l× 1√

l
and so

is of order unity. It turns out that the range of l that contributes dominantly to our bulk
gas ensemble is l = 1 . . . ∼ 1

β(1−ω) ∼ 1 . . . 1√
G

(see under (1.6)). Our bulk gas thus lives in
a region that may be visualized as a large but uniformly flat pancake that lives at θ = π

2 .
The parametrically large radius of this pancake is of order ∼ 1

G
1
4

.
The large radius of our bulk gas pancake ensures that its energy density of the gas is

parametrically low. It is this fact that allows for the backreaction of the gas to be computed
in perturbation theory.

In sections 4 and 5 we have performed a detailed study of the backreaction of the AdS
sourced by the gas modes of a bulk scalar field dual to a scalar operator of dimension ∆.
Our final bulk solution is given by patching together two metrics, which are individually
valid in distinct but overlapping spatial regions.

• Over radial distances of order unity (i.e. distances that are not parametrically scaled
in power of 1

G), the leading order metric for our new saddle point is simply that of
the ω = 1 black hole that lives at its core.11

• Over radial distances of order r ∼ 1
(1−ω)

1
2
∼ 1

G
1
4

, i.e. the size of the gas pancake, we
work with the following scaled coordinates

x = r(1− ω)
1
2 , ζ =

θ − π
2

(1− ω) 1
2
, t′ = t

(1− ω) 1
2
, ϕ′ = ϕ

(1− ω) 1
2

(1.9)

The scaling of r and θ are chosen to ensure that the bulk gas varies over a scale of
order unity in the new coordinates. The scaling of t and ϕ is chosen to ensure that
the background AdS metric, in the new coordinates, is independent of G. It turns
out that the black hole tail — the difference between the black hole and the AdS

11Deviations away from this solution, caused by the gas, are parametrically suppressed in G because of
the smallness of the energy density of the gas.
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metric in the scaled coordinates — is of order G 3
4 — and so is very small — in these

coordinates. Moreover, the magnitude of Newton’s constant times the bulk stress
tensor of the gas is of order G 1

2 , and so is also parametrically small in this new scaling.
To leading order, as a consequence, the deviation of our spacetime metric away from
that of the background AdS metric is simply the sum of the black hole tail and the
linearized gravitational response to the stress tensor of the gas (contributions that
are individually of order G 3

4 and G 1
2 ). The gas contribution is computed in full detail

in section 5.

• The final boundary stress tensor of our solution is the sum of two terms: the boundary
stress tensor of the original ω = 1 black hole (reviewed in subsection 2.10) and the
boundary stress tensor resulting from the metric response to the bulk gas (see in
subsection 5.3.2). The black hole contribution to the boundary stress tensor is smooth
on the sphere, and is, of course, of the classical order 1

G . On the other hand, the
gas contribution to the boundary stress tensor turns out to be of order 1

G
5
4

(and
so larger than classical). However, this contribution is peaked around the equator
over a boundary angular distance of order G 1

4 , and so its integral over the sphere
is of the expected classical order 1

G . In other words, the gas contribution to the
boundary stress tensor localized to an angular width of order G 1

4 at the equator
of the boundary sphere. In the classical small G limit this distribution becomes a
δ-function (of classical strength). This new contribution to the boundary stress tensor
is rightmoving, and so is similar to the contribution of a chiral 1 + 1 dimensional gas
localized at the equator.

Our new bulk solution resembles a galaxy, with a big central black hole surrounded by
a large flat disk of gas rotating at the speed of light. For this reason, we call these solutions
‘Grey Galaxies.’ We use the word grey rather than black because part of the bulk energy
in our solution is ‘black’ (shielded behind an event horizon) while the rest of it is ‘white’
(visible in the form of a gas).

We emphasize that the bulk gas in our ‘Grey Galaxy’ solutions is an ensemble over field
configurations rather than a particular field configuration. In particular, we compute the
bulk stress tensor of this gas using thermodynamics. How reliable is this approximation?
One way of addressing this question is to estimate the fluctuations in the ensemble average.
Our bulk gas is made up of a collection of bulk fluctuation modes, each of which is thermally
occupied. The occupation number of any given mode is of order unity (see e.g. (3.6)), and
so fluctuations in individual mode occupation numbers are also of order unity. However
typical individual modes only carry energies only of 1

G
1
2

. We obtain classical energies only
by summing over 1

G
1
2

such modes. This is precisely the number of modes that contributes to
the stress tensor of an interval of order unity in the scaled coordinate x. This fact explains
why we have a new classical solution only in scaled coordinates. The law of large numbers
thus tells us that the fractional fluctuations value of the (scaled coordinate) bulk stress
tensor is of order G 1

4 . As fluctuations are parametrically suppressed in comparison to the
mean, fluctuations in the bulk stress tensor (and hence our final bulk metric) are negligible

– 8 –
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when we work in scaled coordinates. It follows that the classical (scaled coordinate) metric
presented in this paper — and in particular the boundary stress tensor it is dual to — is
parametrically reliable.

As we have mentioned above, in section 4 we have only derived detailed mathematical
formulae for the bulk stress tensor for the gas made up of a scalar field. Any given bulk
theory of interest will, in general, have several other bulk fields (including, in particular, the
graviton). The full bulk gas stress tensor will be the sum of the stress tensors associated
with each bulk field. Although we have not computed the bulk stress tensor for higher spin
fields in this paper, it seems clear that the result of this computation will be very similar
to that of a scalar with a similar dimension (see (3.8) for a hint of the final answer). This
stress tensor, once available, can be plugged into the general formulae of subsection 5, to
obtain the final formula of the backreacted metric. Structural aspects of the analysis of
sections 4 and 5 make it clear that the gas contribution to the final boundary stress tensor
will be a delta function localized around the equator of the boundary sphere in the large N
limit. The coefficient of this delta function is given by the total energy of the gas, which
we have computed, for fields of every spin, in subsection 3.1. While it is, thus, certainly of
interest to fill the computational gap of this paper, by obtaining explicit expressions for the
bulk stress tensor of the gas coming from higher spin fields, and in particular fermions,12

we believe that the analysis of this paper already uncovers all qualitative aspects of the
solutions that these gases will source.

We note that super-radiant instabilities of Kerr-AdS black holes from scalar fields
are studied, for instance, in [20, 21]. Spin-2 super-radiant instabilities are also studied
in [16, 22].13

Although not addressed in this paper, it may prove technically possible to study
subleading corrections to the classical Grey Galaxy solutions constructed in this paper. In
order to do this we would have to account for the backreaction of the black hole metric to
the matter. For instance, the back-reacted stress-energy tensor may be computed from the
Euclidean 2-point function in the black hole background, instead of the thermal AdS as
we did in section 4.3. Although the effect of this stress tensor on the black hole metric is
parametrically, small, its effects will have to be accounted for in computing the corrections
to our solution in a power series expansion in G. This should prove technically possible,
precisely because the corrections are small. We leave further discussion of this fascinating
possibility to future work.

1.4 Revolving Black Holes

The Grey Galaxy solution consists of an ω = 1 black hole in the centre of AdS, in equilibrium
with a chiral gas whose ‘equation of state’ is E ≈ J .

In appendix C we note that every black hole has a fluctuation mode with E = J (the
equality is precise). This is the mode that sets the black hole revolving around the centre of

12For charged hairy black holes in AdS, one finds condensation of one bosonic mode with a macroscopic
occupation number [10–12]. On the other hand, fermions can equally contribute to the hair in our solution
since each mode has O(1) average occupation number. We thank Kimyeong Lee for pointing this out.

13Thanks to the reviewer for pointing out these references.
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AdS. From the point of view of the dual CFT, populating this mode corresponds to taking
∂z descendants of the primaries that make up the classical black hole at the centre of AdS.

In figure 2 we have explained that an ω > 1 black hole increases its entropy by
transferring some of its E = J energy into the chiral gas that makes up Grey Galaxies.
Similarly, an ω > 1 black hole can also raise its entropy by transferring a significant fraction
of its energy and angular momentum into the descendent mode described in the previous
paragraph. The physical interpretation of such a state is explored in appendix C, where we
explain that the state obtained by the macroscopic occupation of descendents is a quantum
wave function for a spinning black hole that is also revolving around the centre of AdS
(the wave function describes the orbital motion of the black hole). We call these new
configurations Revolving Black Holes (RBH)s (see appendix C).

As we explain at the end of subsection 3.2, RBH solutions are marginally entropically
subdominant compared to Grey Galaxy Solutions. For this (and other) reasons we do not
expect these solutions to represent the endpoint of the super-radiant instability. Nonetheless,
these solutions are of interest for several reasons. First, they are both elegant and precise.
As we explain in appendix B, these solutions are constructed entirely out of the action
of the symmetry group SO(3, 2). Second, had we not known about the existence of Grey
Galaxy solutions, we could anyway have used the (easily constructed) RBH solutions to
put a lower bound on the entropy function S(E, J).14

The last point may prove practically useful in situations where the entropy function is
not yet clearly known. In section 7 we argue that supersymmetric versions of RBH solutions
allow us to place lower bounds on the five charge entropy of supersymmetric states in N = 4
Yang-Mills theory.

To end this subsection we reiterate that an RBH is a quantum wave function over
classical geometries. In this respect, it differs qualitatively from classical Kerr-AdS black
holes and also from Grey Galaxies (which are also described by classical metrics, albeit in a
coarse grained sense). In contrast, the RBH is a quantum state that is time independent
over classical time scales. We expect, of course, that RBHs eventually decay into Grey
Galaxies; see section 8 for some discussion on this point.

1.5 End point of the superradiant instability

Consider a Kerr-AdS black hole with ω > 1. As we have reviewed above, such black holes
are unstable; when perturbed they evolve to new solutions. What is the endpoint of this
instability? The results of this paper suggest the following scenario.

Any particular perturbation will seed a time-dependent solution of General Relativity.
At the level of differential equations, we expect that this solution will continue to evolve
without ever reaching a terminal endpoint. In the purely classical theory, we expect this
evolution to drive the solution to ever smaller angular scales (i.e. ever larger values of l) and
for this process to continue without stopping (this scenario was first suggested in [20]).15

14As the leading order construction of S(E, J) (see figure 2) is identical for RBHs and GGs, this would
actually have given us the correct (i.e. GG) answer at leading order.

15This is a manifestation of the ultraviolet catastrophe that classical field theories always suffer from, and
that led to the discovery of quantum mechanics.
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Once quantum effects are accounted for, on the other hand, we expect the cascade to
ever smaller angular scales to stop at l ∼ 1

β(1−ω) . The main quantum effect that is relevant
here is the quantization of modes: the fact that field configurations at a given frequency ν

admit excitations only in packets of energy hν. It is this quantum effect that effectively
cuts off the summation over l in (3.6) at l ∼ 1

β(1−ω) .16

Even though the (now quantized) configuration will stop evolving to smaller angular
scales, we do not expect it to settle down to any particular microscopic state. We expect
that the quantum state will continue to evolve in time within the phase space of the bulk
‘gas’ that we have described in this paper. However coarse-grained observables — like the
leading order term in the metric in scaled variables x and ζ — should settle down into
the Grey Galaxy metric presented in this paper, with fluctuations that are parametrically
suppressed (see above). The scenario we have sketched above is similar, in many respects,
to the picture of [17].

In the sense described in the paragraphs above, we conjecture that the Grey Galaxy
solutions are the end-point of the superradiant instability of an ω > 1 Kerr-AdS black hole.

In more detail, we expect the evolution of the superradiant instability to proceed as
follows. As the emission time of a quasinormal mode with angular momentum l scales like
ebl at large l,17 the early emission will be almost entirely into modes with small l. For a
while the solutions might look a little bit like the black resonator solutions of [5] at the
given small values of l.18 As time passes, the largest accessible value of l, lm, increases. As
long as lm is not too large — specifically, when lm ≪ 1√

G
— (see (J.10) for a more precise

formula) it seems plausible to us that the time-dependent configuration will continue to
resemble a black resonator with the condensate in the mode with l ≈ lm. At still later times,
when lm first becomes comparable to 1√

G
(see (J.10) for a more accurate condition) we

expect the nature of our configuration to undergo a transition. While a significant fraction
of the energy outside the black hole will continue to lie in the Bose condensate at l ∼ lm, an
increasingly large fraction of the energy will be spread out among a much larger number of
large l modes, i.e. into the bulk gas described extensively above. At even later times, when
lm is large in units of 1

β(1−ω) , the cut-off is irrelevant, and we expect the configuration to
begin to closely resemble the Grey Galaxy constructed in this paper. At this point, almost
all of the energy of the solution is carried by the gas, and Bose condensates play no role.

Note that the time scale for the formation of a Grey Galaxy solution is extremely
long, likely of order e

1√
G (recall 1√

G
is the order of the largest angular momentum that is

significantly occupied in Grey Galaxy solutions). Note this is much larger than the time

16In equation, the cutoff on l follows from the Boltzmann factor in (3.4).
17This nonperturbatively long time scale has its origin in the fact that modes at large l need to ‘tunnel’

through the centrifugal barrier before making it out to infinity. Note that at any fixed r of order unity, the

modes presented in (4.10) decay with l like e−l
(

1
2 ln 1+r2

r2

)
. A very rough estimate of the order of the constant

b is thus b ∼ ln 1+r2
0

r2
0

, where r0 is the value of r beyond which the black hole metric starts approximating
global AdS.

18Recall that a black resonator is an ω > 1 black hole in equilibrium with a Bose condensate of a mode at
a given particular value of l.
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scale for thermal equilibration of our bulk gas.19 This explains why our treatment of the
bulk gas as thermalized is consistent over the relevant time scales, even though the gas is
parametrically weakly coupled.

The discussion presented here appears to us to be qualitatively consistent with the
results of the numerical simulations [9], which we discuss in more detail in section 6, as well
as the fact that the entropy of Grey Galaxy solutions is always larger than that of Black
Resonators (see section 6).

2 Kerr-AdS4 black holes

In this section, we review the Kerr-AdS4 solution and its thermodynamics.
Consider Einstein’s equation with a negative cosmological constant,

Rµν = −3gµν (2.1)

We have chosen the value of the cosmological constant so that the ‘unit radius’ AdS4
space (1.8), is a solution to these equations.

2.1 Kerr-AdS black hole solutions

Another set of exact solutions to these equations are the Kerr-AdS black holes given by [4]

ds2 = −∆
ρ2

(
dt− a

1− a2 sin2 θdϕ

)2
+∆θ sin2 θ

ρ2

(
r2 + a2

1− a2 dϕ− adt

)2

+ρ
2

∆ dr2+ ρ2

∆θ
dθ2 (2.2)

The functions ∆, ∆θ and ρ which appear in (2.2) are given by

∆ = (r2 + a2)
(
1 + r2

)
− 2mr , ∆θ = 1− a2 cos2 θ

ρ2 = r2 + a2 cos2 θ . (2.3)

The numbers a and m, that occur in (2.2) and (2.3) are constants. These two constant
parameters determine the mass and angular momentum (as well as the temperature and
angular velocity) of the black hole, according to the formulae we will report below.

2.2 Parametric ranges of variation

The parameter a lies in the range20

a ∈ [−1, 1] . (2.4)

We will now determine the range of variation of the parameter m.
19This thermalization time scales like an inverse power of G, perhaps like 1

G2 .
20This can be seen from the fact that ∆θ changes sign as a function of θ when a lies outside this range,

causing — for instance — the coordinate θ to switch signature, resulting in a singular metric (presumably
the curvature also blows up at the value of θ where ∆θ switches sign).
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The outer horizon of the black hole (2.2) is located at r = r+, where r+ is the largest
root of the equation ∆(r+) = 0, i.e. the largest root of the equation

2m = (r2
+ + a2)

(
1 + r2

+
)

r+
. (2.5)

Black hole solutions only exist for m ≥ mext, where mext is the value of m at which (2.5)
has a double root, i.e. the value of m at which r2

+ solves the equation

1 + a2 + 3(r+)2
ext −

a2

(r+)2
ext

= 0 (2.6)

((2.6) is obtained by differentiating (2.5), and setting the result to zero, as is appropriate
for a double root). The black hole with m = mext is extremal. Upon solving (2.6) we find

(r+)2
ext = −1

6
(
1 + a2

)
+

√
1
36 (1 + a2)2 + a2

3 (2.7)

Plugging (2.7) into (2.5) and squaring we find and

4m2
ext =

2
27

[
−1 + 33a2 + 33a4 − a6 +

(
1 + 14a2 + a4) 3

2

]
. (2.8)

It follows that, for all allowed black holes, the parameter m obeys the inequality

4m2 ≥ 2
27

[
−1 + 33a2 + 33a4 − a6 +

(
1 + 14a2 + a4) 3

2

]
. (2.9)

2.3 The function r+(m, a)

As we have explained above, the outer radius of the black hole (2.2) is given by r+, the
largest root of (2.5). As (2.5) determines r+ only implicitly, in this subsection we pause to
review some important qualitative properties of r+(m, a).

For values of m that obey (2.9), r+ is an increasing function of m at fixed a. This
plot looks as follows. The minimum allowed value of m (at fixed a) is given by (2.8). At
this minimum value, r+ takes the value (2.7). As we further increase m, r+ increases,
asymptoting to r+ = (2m) 1

3 at large m.
We can also plot r+ as a function of a at fixed m; we find that r+ is a decreasing

function of a, reaching the smallest allowed value at a = 1 (at this value r+ is such that
it obeys the equation (1 + r2

+)2 = 2mr+). Note, in particular, that r+ does not increase
without bound in the large mass limit a→ 1.

2.4 Thermodynamical charges as functions of m and a

The energy E, angular momentum J and the entropy S are given by [23]

E = 1
G

m

(1− a2)2 , J = 1
G

ma

(1− a2)2 , S = π(r2
+ + a2)

G(1− a2) . (2.10)

The inverse temperature β and angular velocity ω are given by

β = 4π(r2
+ + a2)

r+
(
1 + a2 + 3r2

+ − a2r−2
+

) , ω = a
(
1 + r2

+
)

r2
+ + a2 , (2.11)
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where ω is the angular velocity of the event horizon with respect to the non-rotating observer
at infinity. (See section 2.9 for the definition of this observer.)

Note that the extremality condition (2.6) is simply the condition that T = 0 (i.e. that
β diverges). Notice E and J both diverge in the limit a→ 1,21 and so a→ 1 (at fixed m)
is the large mass and large angular momentum limit.

It is convenient to define the scaled energy, angular momentum and entropy, ϵ, j and s
by the expressions

ϵ = GE, j = GJ, s = GS

π
. (2.12)

The expressions for the scaled charges are given by

ϵ = m

(1− a2)2 , j = ma

(1− a2)2 , s = r2
+ + a2

1− a2 (2.13)

2.5 Thermodynamical charges at extremality

The thermodynamical charges for extremal black holes can be obtained by plugging (2.8)
into (2.13). The resultant expressions are messy in general, but simplify when a is small
and when a→ 1.

2.5.1 Small a

At leading order the small a expansion (2.7) simplifies to

(r+)ext = a. (2.14)

(2.8) reduces to
m2 = a2 .22 (2.15)

The thermodynamical charges of this small extremal black hole are given by

ϵ = a , j = a2 , s = 2a2, ω = 1
2a, β = 2π

a
(2.16)

Note, in particular, that
j = ϵ2 (2.17)

2.5.2 a → 1

As we have mentioned above, E and J become large when a is taken to unity (at a value
of m that is large enough to obey the extremal bound, but is otherwise arbitrary). Let
a = 1− α and then take the limit α→ 0. To first order we find

(r+)2
ext =

1− α

3 . (2.18)

(2.8) reduces to
m2 = 64

27 − 64α
9 (2.19)

21Note that the inequality (2.9) makes it impossible to take m→ 0 while simultaneously scaling a→ 1.
22Comparing with (2.22) and (2.24) we see that these black holes are superradiant unstable.
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(2.13) becomes

ϵ = 2
3
√
3α2 , j = 2

3
√
3α2 ,

j

ϵ
= 1− α so ϵ− j = 2

3
√
3α
, ω = 1 + α

2 (2.20)

Note that the deviation from extremality, ϵ− j, scales like
√
j in this limit. So while

the deviation grows in absolute terms, it decreases as a fraction of j.

2.6 a and m as functions of E and J

We can invert the expressions for E and J to express m, a as functions of E, J . We find

a = J

E
, m = GE

(
1− J2

E2

)2

. (2.21)

(2.21) gives us a new perspective on the bound |a| ≤ 1; this is simply a restatement of the
unitarity bound |E| ≥ |J |.

2.7 The superradiant instability curve in the m, a plane

As we have reviewed in the introduction, the black hole suffers from superradiant instabilities
when ω > 1. Using (2.11), this condition can be rewritten as

r2
+ < a (2.22)

When ω = 1, r2
+ = a,23 and it follows from (2.5) that

2m =
√
a (1 + a)2 . (2.23)

Using the fact that m is an increasing function of r2
+ at fixed a, it follows that the instability

condition can equivalently be written as

2m <
√
a (1 + a)2 . (2.24)

In the limit a→ 1, a = 1− α with α small, (2.24) reduces to

m < 2− 3α . (2.25)

Note that the condition (2.25) is met by extremal black holes.
Plotting the values of m, (2.24) and (2.8) simultaneously as a function of a, one obtains

the curve plotted in figure 3
Notice that extremal black holes lie under the Super-radiant instability curve, hence

are always unstable as we saw above.
23Since a < 1, it follows that on this curve r+ < 1. In the limit that where a→ 1, black holes become big,

in other words, r+ → 1.
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Figure 3. Plots of m vs a for the extremal black hole (in blue) and the black hole at ω = 1 (in red).
Black holes in the shaded blue region are unstable. Black holes in the shaded pink region are stable.
Black holes do not exist below the blue curve or at values of a > 1.

2.8 Thermodynamical charges as a function of a on the super-radiant
instability curve

As we have reviewed above, ω = 1 along the curve (2.23). Along this curve, the scaled
thermodynamical charges of the black hole are given by

ϵ =
√
a

2(1− a)2 , j = a
3
2

2(1− a)2 , s = a

1− a
, (2.26)

The inverse temperature and angular velocity of these black holes are given by

β = 4π
√
a

1 + a
, ω = 1 (2.27)

As a varies from 0 to 1, β varies from 0 to 2π. It follows that the temperature of ω = 1
black holes is always greater than or equal to 1

2π . In other words, the ω = 1 black holes
never come close enough to their extremal counterparts to go to zero temperature.

The energy versus angular momentum curve is easily obtained at small and large values
of a. At leading order in the small a expansion, one obtains

ϵ = 2
−2
3 j

1
3 . (2.28)
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In the limit a→ 1, on the other hand, we set a = 1− α and obtain

ϵ =
1− α

2
2α2 , j =

1− 3α
2

2α2 , ϵ− j =
√
j

2 (2.29)

The free energy on the ω = 1 line takes the following form:

G = E − TS − ωJ

= 1
G

(ϵ− j − πT )

=
√
a

4G.

(2.30)

Note that the (Grand) Free energy of these black holes is positive for all values of a. It
follows that these solutions are always subdominant compared to the thermal gas.24

It is easy to check that, on the ω = 1, the energy of Kerr-AdS black holes is given in
terms of their temperature by

GE =
√
4π2T 2 − 1− 2πT

2
(
4πT

(√
4π2T 2 − 1− 2πT

)
+ 2

)2 . (2.31)

As T → ∞ (when the ω = 1 black hole is small)

E ≈ 1
8πGT (2.32)

the same expression as that for Schwarzschild black holes in flat space.
In the other limit, when T = 1

2π , the energy diverges as

E ≈ 1
32πG

(
T − 1

2π

) (2.33)

We can now compute the derivative of E with respect to T (holding ω fixed at unity)
to obtain a specific heat. We get:

C = −
π

√
4πT

(
2πT −

√
4π2T 2 − 1

)
− 1

(
8π2

(√
4π2T 2 − 1 + 2πT

)
T 2 +

√
4π2T 2 − 1

)
4 (1− 4π2T 2)2

(2.34)
Note that the specific heat defined in (2.34) is everywhere negative. In the limit T → 1

2π ,
the specific heat diverges as

C ≈ − 1

32Gπ
(
T − 1

2π

)2 . (2.35)

On the other hand, when T is very large, the specific heat is very small (but still negative)

C = − 1
8GπT 2 (2.36)

24As we will see later in this paper, in units of 1/G, the thermal gas has zero grand free energy as ω → 1,
even though it’s energy and angular momentum are order 1/G, as the energy in this gas-phase equals the
angular momentum to leading order, see (3.11) and (3.8).
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The fact that their specific heat is always negative, suggests that Kerr-AdS black holes
at ω = 1 are locally unstable saddles of the canonical ensemble. This fact is also suggested
by the fact that ω = 1 black holes with a given temperature are unique, and have grand
free energy larger than that of the corresponding thermal AdS solution, and so should
presumably be thought of as local maxima that flow directly into a local minimum in a
Landau Ginzburg-type diagram of the sort constructed in [24–29].

2.9 Large r behaviour of the solution in a non rotating frame

The metric of pure AdS space takes the form

ds2
AdS = −

(
1 + y2

)
dT 2 + dy2

1 + y2 + y2
(
dΘ2 + sin2 ΘdΦ2

)
, 25 (2.37)

which transforms to (2.2) with m = 0 using the coordinate transform

T = t

Φ = ϕ+ at

y cosΘ = r cos θ

y2 = r2∆θ + a2 sin2 θ

1− a2 .

(2.38)

In these coordinates, the black hole metric has the following form at large y,

ds2 = ds2
AdS + 2m

y

(
dT − a sin2 Θ dΦ

)2
∆5/2

θ

+O
( 1
y2

)
. (2.39)

At large y, the metric takes the following form:

ds2 = dy2

y2 + y2gmndh
mdhn (2.40)

where hm are the boundary coordinates (T,Θ,Φ). Note that the first correction to gmn

relative to pure AdS4 metric is of the order 1
y3 , and so is a normalizable deformation of the

metric. The coefficient of this deformation encodes the stress tensor.

2.10 Boundary stress tensor
As shown in appendix C of [30], the components of boundary stress tensor dual to the
general Kerr-AdS black hole are given by:

8πGT tt = m
(
a2 sin2 θ + 2

)(
1− a2 sin2 θ

)5/2

8πGT ϕϕ = m
(
csc2 θ + 2a2)(

1− a2 sin2 θ
)5/2

8πGT tϕ = 3ma(
1− a2 sin2 θ

)5/2

8πGT θθ = m(
1− a2 sin2 θ

)3/2 .

(2.41)

25Note, in section 2.8 we used T for temperature but here in section 2.9 we use the same notation T but
for Lorentzian time.
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Figure 4. Plots of the normalized boundary differential energy density, ρ(θ), as a function of θ for
three different values of a.

The stress tensor of ω = 1 black holes may then be obtained as a function of a by plugging
in m =

√
a(1+a)2

2 (see (2.24)). If desired, the stress tensor may then be obtained as a function
of j or ϵ by using (2.26) to solve for a in terms of j or ϵ.

For generic values of a the stress tensor above is smoothly distributed all over the sphere.
As a→ 1 (i.e. in the large black hole limit), on the other hand, the stress tensor becomes
increasingly peaked about the equator of the sphere. For instance, the total boundary
energy is given by

E =
∫
d2ΩT 0

0 = m

4G

∫ π

0
dθ

sin θ
(
a2 sin2 θ + 2

)(
1− a2 sin2 θ

)5/2 =
√
a

2G(1− a)2 ≡ E(a) (2.42)

as expected from the first of (2.26). The point of interest here is the shape of the energy
density function. Let us define ρ(θ) to be the differential energy density, dE

dθ , normalized
so that ∫

dθρ(θ) = 1.

Clearly

ρ(θ) = 1
E(a) ×

(
m

4G
sin θ

(
a2 sin2 θ + 2

)(
1− a2 sin2 θ

)5/2

)
= (1− a2)2 sin θ

(
a2 sin2 θ + 2

)
4
(
1− a2 sin2 θ

)5/2 . (2.43)

Note that m drops out of the expression for ρ(θ). In figure 4 we have plotted ρ(θ) versus θ
at three different values of a. As we see from the figure, at a = 0.7, ρ(θ) is smoothly spread
all over the sphere, even though its maximum value occurs at θ = π

2 . At a = 0.9, ρ(θ) is
more distinctly peaked at θ = π

2 , and this peak is even more prominent at a = 0.99.
In the limit a→ 1, ρ(θ) tends to delta function localized about θ = π

2 . Setting a = 1−ε,
and θ = π

2 − δθ, and expanding for small ε and small δθ, one obtains

ρε(θ) =
3ε2

(2ε+ (δθ)2)5/2 . (2.44)

It is easily directly verified that the integral of ρε(θ) over the real line, is unity. In the limit
ε→ 0 ρε(θ) vanishes away from π

2 so it follows that

lim
ε→0

ρε(θ) = δ(δθ) .
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Continuing to work in the small ε limit and the neighborhood of the equator, and
retaining only terms at leading order, the various components of the boundary stress tensor
simplify to

T tt = T ϕϕ = T tϕ = 3m
8πG(2ε+ (δθ)2)5/2 ≈ 1

4πGε2 δ

(
θ − π

2

)
T θθ = 0 .

(2.45)

Moving to the left and right moving coordinates σ+ = t + ϕ and σ− = t − ϕ, we see
that (2.45) can be rewritten as

T++ = T−− ≈ 1
πGε2 δ

(
θ − π

2

)
T−− = T+− = T−+ = T θθ = 0 .

(2.46)

Let us summarize. At generic values of a, the boundary stress tensor to the rotating
black hole is spread all over the sphere. In the large mass limit, a→ 1, on the other hand,
the stress tensor becomes highly peaked on the equator, and reduces, in fact, to the stress
tensor of a two-dimensional left moving chiral gas localized at the equator.

2.11 Comparison with the stress tensor of a free field theory in the limit ω → 1

In the previous section, we have studied the boundary stress tensor dual to Kerr-AdS black
holes. Recall that this stress tensor is generically smoothly distributed on the S2, but
gets increasingly peaked around the equator in the limit that the energy and the angular
momentum of the black hole go to infinity, with their ratio tending to unity.

In order to have a point of comparison for this result, in appendix F, we have presented
the computation of the stress tensor of a CFT composed of N2 free bosonic fields on S2, at
inverse temperature β and angular velocity (chemical potential dual to angular momentum)
ω. We have performed this computation using two different methods: first by taking the
coincident limit of an (easily evaluated) Euclidean thermal two-point function of the free
scalars, and second by explicitly constructing the thermal density matrix and evaluating
the expectation value of the bulk stress tensor in this field theory state.26 Unsurprisingly,
the result for the field theory boundary stress tensor, in this case, is qualitatively similar to
that of the black hole.27 The stress tensor is smooth on the sphere when E/N2 and L/N2

are of unit order, but becomes increasingly localized near the equator of the S2 when E/N2

and L/N2 become large.
26Apart from providing the point of comparison described above, these two computations also turn out to

be a useful warm-up for a similar computation we perform in the bulk of AdS4 in section 4 below.
27While the spatial distribution of the energy density in the boundary stress tensor dual to classical

Kerr-AdS black holes is qualitatively similar to the distribution of energy density in free theories with similar
energies and angular momenta, the entropy as a function of energy and angular momenta differ qualitatively
in these two cases. As a consequence, the angular velocity (as a function of energy and angular momentum)
is such that the classical black hole stress tensor reaches ω = 1 at finite energy and angular momentum (see
figure 1) while the free CFT only attains ω = 1 at asymptotically large values of the energy and angular
momentum. One of the main points of this paper is that this difference is less stark when considering
quantum corrections around the black hole background, which diverge in the limit ω → 1.
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We have spent so much discussing the distribution of the energy density on S2, both
for black holes and free boundary theories, because this distribution will turn out to be
qualitatively different in the boundary stress tensor dual to the new Grey Galaxy saddles
we study in this paper. We turn to a study of these new solutions in the next section.

3 Thermodynamics

In the previous section, we have presented a detailed review of the thermodynamics of the
classical black hole. In this section, we first work out the thermodynamics of the gas in
the canonical ensemble (see subsection 3.1 below). In subsection 3.2 we then work out the
thermodynamics of Grey Galaxy solutions (and briefly compare the same to Revolving
Black Hole solutions) in the microcanonical ensemble. Finally, in subsection 3.3, we also
work out the thermodynamics of Grey Galaxy solutions in the ‘canonical ensemble’.

3.1 Thermodynamics of the gas in the canonical ensemble

The space of finite energy solutions of any bulk field in AdS4 transforms in an irreducible
representation of SO(3, 2). Consider a spin s field whose mass is such that its solutions
correspond to the representation (∆, s) (where we label representations by the dimension
and spin of the primary). Via the state operator map, the (single particle) state space of
this representation is in one-to-one correspondence with the set of operators we can make
by acting on the spin s primary with derivatives.

3.1.1 State content of long representations

Let us first assume that ∆ > s + 1, so that the representation is generic (long) (see
e.g. [31]). In this case, there are no null states (or conservation equations) so the derivatives
act on the primary in an unconstrained manner. Consider acting on the primary with
Cµ1...µj∂µ1 . . . ∂µj , where Cµ1...µj is any traceless symmetric tensor. Note that the linear
space of j index traceless symmetric tensors transform in the spin j representation of SO(3).
As a consequence, the action of these derivatives yields the representations with scaling
dimension ∆+ j, and angular momenta l that lie in the Clebsh Gordon decomposition of
the tensor product of j and s irreps, i.e. angular momenta

(|j − s|, |j − s|+ 1, . . . j + s) .

In other words, this set of operators carries angular momenta l with l given by
s∑

α=|j−s|−j

(j + α) . (3.1)

This decomposition holds for all values of j. In addition, we can dress each of the operators
listed above with (∇2)n. It follows that the full operator content of this representation is
given by

∞∑
n=0

∞∑
j=0

s∑
α=|j−s|−j

(∆ + j + 2n, j + α) (3.2)
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where we have denoted SO(3) representations with spin l and scaling dimension ∆ as (δ, l).
We denote the Jz quantum number by l − a, where a runs from 0 to 2a.

In the specially simple case of a scalar of dimension ∆, the operators in the representation
take the form

(∇2)nCµ1...µl∂µ1 . . . ∂µl
O

for all n and l. These multiplets carry dimension = ∆+ 2n+ l and angular momentum l

and so constitute the sum of representations

∞∑
n=0

∞∑
l=0

(∆ + l + 2n, l) (3.3)

which is a special case of (3.2) with s = 0.

3.1.2 Partition function over Fock Space

It follows from (3.2) that the multi-particle partition function over the single-particle Hilbert
space (3.2) is given by

lnZ =
∞∑

n=0

∞∑
l=0

l−|l−s|∑
α=−s

2l∑
a=0

− ln
(
1− e−β(∆+2n−α+ωa)−βl(1−ω)

)
. (3.4)

In the limit ω → 1, the sum over l in (3.4) is effectively cut off at the parametrically large
value l = 1

β(1−ω) . As the typical value of l that occurs in the summation is of order 1
β(1−ω) ,

at leading order in 1− ω we can replace the summation with an integral28 and obtain

lnZ ≈ − 1
β(1− ω)

s∑
α=−s

∞∑
n=0

∞∑
a=0

∫ ∞

0
dx ln

(
1− e−β(∆−α+2n+a)−x

)
(3.5)

In the special case of a scalar of dimension ∆, the Fock Space partition function is
given by

lnZ =
∞∑

n,l=0

2l∑
a=0

− ln
(
1− e−β(∆+2n+ωa)−β(1−ω)l

)

≈ − 1
β(1− ω)

∞∑
n,a=0

∫ ∞

0
dx ln

(
1− e−β(∆+2n+a)−x

)
≡ − C∆(β)

β(1− ω) ,

(3.6)

where we have defined

C∆(β) =
∞∑

n,a=0

∫
dx ln

(
1− e−β(∆+2n+a)−x

)
(3.7)

28More precisely, the contribution to the sum of terms from l = 0 to M , where M is any finite number, is
subleading in the limit ω → 1.
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(3.5) can be rewritten in terms of C∆ as

lnZ ≈ − 1
β(1− ω)

(
s∑

α=−s

C∆−α(β)
)

(3.8)

In the limit ω → 1, in other words, the contribution of a single long spin s representation to
the partition function is the same as the contribution of 2s+ 1 scalars, whose dimensions
are ∆− s,∆− s+ 1 . . .∆+ s.

3.1.3 Contribution of short representations

A short spin s representation has ∆ = s+1. The state content of this representation is that
of the long representation (s+ 1, s) minus the state content of the null state representation,
i.e. the long representation with quantum numbers (s+2, s− 1). Using (3.8) and taking the
difference, we see that the partition function of the short spin s representation is given by

lnZ = − 1
β(1− ω) (C1(β) + C2(β)) (3.9)

The fact that we receive contributions from only two series of modes (independent of
s) reflects the fact that particles of all spin have only two polarizations in the four-
dimensional bulk.

3.1.4 The full partition function of the gas

In the limit, ω → 1, the logarithm of the full partition function of the determinant (the gas)
equals the sum of contributions from each bulk field, i.e. the sum of contributions of the
form (3.8) and (3.9). It follows that the full partition function is given by

lnZ = − C(β)
β(1− ω) (3.10)

where C(β) is a summation over C factors for each bulk field. Recall long spin s field of
dimension ∆ contributes a C factor equal to

(∑s
α=−sC∆−α(β)

)
, while each short spin s

field contributes a factor of C1(β) + C2(β).
The thermodynamical charges that follow from (3.10) are

J = − C(β)
β2(1− ω)2

E = − C(β)
β2(1− ω)2 + C ′(β)

β(1− ω)

S = C ′(β)
(1− ω) −

2C(β)
β(1− ω)

(3.11)

Note that C(β) < 0 and C ′(β) > 0, so the entropy is a positive number, and the energy is
always larger than the angular momentum. At the leading order, we can drop the second
term in the r.h.s. of the expression for energy in (3.11), so E = J . Note also that the entropy
is proportional to 1

(1−ω) and so is of order 1√
G

when the energy and angular momentum are
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of order 1
G . It follows that the entropy of the gas is parametrically smaller than that of the

black hole, and so can be ignored for thermodynamical purposes.
The formulae of this section compute the thermodynamics (in the microcanonical

ensemble) of the thermal gas phase in AdS4 in the limit ω → 1.29 As explained in the
introduction, however, they also determine the thermodynamics of the gas component
of Grey Galaxy solutions. Indeed, for thermodynamical purposes, Grey Galaxies can be
thought of as a non-interacting mix of the Kerr-Ads black hole and the thermal AdS phases.

3.2 Microcanonical ensemble

As we have explained in the introduction, our new solution describes a weakly interacting mix
of the black hole and the gas. In this subsection, we analyze this mix in the microcanonical
ensemble. In this ensemble, the energy and angular momentum of the full system is fixed.
However, the system is free to exchange energy and angular momentum between the gas
and the black hole. Recall that (always working at leading order in 1/G) the entropy of the
gas is negligible compared to the entropy of a black hole with similar energy and angular
momentum as that of the gas.

Within the microcanonical ensemble, we maximize the entropy of our system. The
thermodynamical relation

T∆S = ∆E − ω∆J (3.12)

helps us understand the nature of this maximum. Let us first imagine that all of the
system’s energy and angular momentum is in the black hole, and none of it is in the gas.
Now let this black hole emit some energy and angular momentum to the gas. Let the change
in the black hole energy and angular momentum, respectively, be denoted by ∆E and ∆J .
Note that ∆E and ∆J are both negative. (|∆E| and |∆J | > 0 are the energy and angular
momentum gained by the gas). Applying the unitarity bound to the gas, we conclude that

|∆E| ≥ |∆J |. (3.13)

If the core black hole has ω < 1, then (3.12) implies

T∆S ≤ ∆J(1− ω) < 0 . (3.14)

(the first inequality uses (3.13) and the last inequality follows because ∆J is negative; recall
that the entropy of the gas is negligible compared to that of the black hole). So the emission
of energy and angular momentum (to the gas) from an ω < 1 black hole can only decrease
its entropy. In this situation, the black hole we started with is the maximum entropy
configuration, and so is the dominant saddle point. This saddle point lies above the red
curve in figure 1.

Let us now suppose the charges are such that the starting black hole (which contains all
of the angular momentum and energy of our system) has ω > 1. It is now possible for the
black hole to increase its entropy by losing energy and charge. From (3.14) and (3.13), it is

29When the energy and angular momentum are of order 1
G

(and so of leading order) in this phase, the
grand free energy and entropy are both of order 1√

G
(and so are subleading).
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clear that the entropy gain for the black hole is largest when it loses energy and angular
momentum to modes of gas with |∆E| = |∆J |. It is precisely modes of this nature that
make up the gas studied in the previous subsection. In this situation

T∆S = ∆J(1− ω) > 0 . (3.15)

(where we have used ω > 1 and the fact that ∆J is negative). So the black hole increases
its entropy by emitting modes with |∆E| = |∆J | to the gas.

Since the black hole under study has ω > 1, it lies in the region depicted in blue in
figure 1. As the black hole emits the gas, the charges carried by the black hole itself move
along the 45-degree line toward the bottom left. The black hole continues to emit gas as
long as this increases its entropy, and so its charges keep moving to the bottom left till we
reach the ω = 1 curve. Once we reach this curve, any further emission results in a black
hole with ω < 1, and emission into the gas reduces (rather than increases) the entropy of
the black hole. It follows that the endpoint of the superradiant emission should involve a
black hole whose charge, EBH and JBH , are such that ω = 1 (i.e. are at the intersection of
the 45-degree line and the red curve).

Hence in equilibrium, we have a non-interacting mix of a black hole with entropy
corresponding to the entropy of a black hole with charges EBH and JBH . The entropy of
these black holes on ω = 1 line is listed in section 2.8.30

From the viewpoint of the microcanonical ensemble, it is the entropy in the gas (see
the last line of (3.11)) that explains why the Grey Galaxy solutions dominate over the
Revolving Black Holes (RBH)s (see appendices B and C). The comparison goes as follows.
Consider the Grey Galaxy and RBH solutions at the same value of E and J . The entropy
of the Grey Galaxy solution is that of its central black hole plus that of its gas, while the
entropy of the RBH solution is just that of the black hole (the condensate of derivatives in
the RBH solution carries no entropy). The two black holes are not identical. The central
black hole of the Grey Galaxy solution lies along the dotted line, to the left of the red curve
in figure 2 by an amount δj = O

(√
G
)
. The RBH solution, on the other hand, also lies

along the same dotted line, to the left of the red curve by an amount δj = O (G). Now
recall that ω equals unity on the solid red curve. It follows that the derivative of the entropy
(for motion along the dotted line) vanishes on the solid red curve (see (3.12)). Consequently,
the entropy of the black hole at the centre of the Grey Galaxy/RBH is smaller than the
entropy of the black hole at the intersection of the solid red curve and dotted lines by order

30Let us say this in equations. Using the fact that the energy and the angular momentum of the gas are
equal to each other, the full entropy of our system equals

S(E, J) = SBH(E − x, J − x) (3.16)

where x is the energy and angular momentum of the gas, and E − x and J − x, respectively, are the energy
and angular momentum of the black hole. x in (3.16) must be chosen to ensure that

∂x (SBH(E − x, J − x)) = −∂ES(E − x, J − x) − ∂JS(E − x, J − x) = 0 (3.17)

(3.12) allows us to recast (3.17) as −β (1 − ω) = 0. (3.17) is satisfied — hence our entropy has an extremum
— when ω = 1.
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1
G × (δj)2.31 This quantity is of order unity for Grey Galaxies but of order G for RBHs. In
other words, the entropy of the black hole in the RBH solution is larger than the entropy of
the black hole in the centre of the Grey Galaxy by a number of order unity. On the other
hand, the entropy of the gas in the Grey Galaxy solution is of order 1√

G
, and so overwhelms

the relatively small difference in black hole entropies, explaining the entropic dominance of
Grey Galaxies over RBH solutions.

3.3 Thermodynamics of Grey Galaxies and Revolving Black Holes in the
‘canonical ensemble’

Our interest, in this paper, is in solutions at fixed conserved energy and angular momentum,
i.e. solutions in the micro-canonical ensemble.32 It is often useful, however, as a technical
device to first work in the canonical ensemble, and then reconstruct the entropy as a
function of angular momenta by performing the relevant inverse Laplace transforms. In this
subsection, we will employ this strategy to study Grey Galaxy solutions. As we will see
below, the use of this strategy is complicated by the fact that Grey Galaxies correspond to
unstable saddles in the canonical ensemble. In this subsection, we first propose a strategy
to deal with this complication, and then proceed with the analysis proper.

While the discussion below will deepen our intuitive appreciation for Grey Galaxy
saddles, it is not needed for the logical development of this paper. The conservative reader
who finds herself uncomfortable with adventurous manipulations involving unstable saddle
points can safely skip this subsection.

3.3.1 Black Hole Saddles and determinants

Consider the canonical partition function

Z = Tre−βH+βωJz . (3.18)

In the bulk description, the partition function (3.18) is computed by evaluating the (appro-
priately twisted) Euclidean gravitational path integral in the saddle point approximation.
The relevant saddle points are

• Thermal AdS with temperature 1/β, and twisted boundary conditions determined
by ω.

• The Euclidean continuation of Kerr-AdS black holes that have temperature β and
horizon angular velocity ω.

• The black resonators with temperature β and angular velocity ω.
31We have expanded to second order in the Taylor expansion and used the fact that the entropy function

is 1/G times a function of ϵ and j.
32While the Grey Galaxy solutions we construct in this paper will (we conjecture) dominate the micro-

canonical ensemble of the theory over a range of angular momenta and energies, they will never dominate
the canonical ensemble.
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The contribution of each of these saddle points equals e−S (where S is the Euclidean action
of the saddle point), multiplied by a one-loop determinant and other subleading quantum
corrections.

In general, the saddle points that contribute to (3.18) include both those that are locally
stable and those that are locally unstable. An example of a locally unstable saddle [32]33

is the small Schwarzschild Black hole in AdS4 and AdS5 [28, 29]. As we are interested in
the canonical ensemble to eventually perform the inverse Laplace transform back to the
microcanonical ensemble, it is clear that our analysis should include unstable saddles such
as those described above, as the small Schwarschild black hole dominates the microcanonical
ensemble in the appropriate energy range. The practical question we are faced with is the
following: how do we meaningfully compute quantum corrections around an unstable saddle
point?34 This question, which is of relevance to us (as ω = 1 Kerr-AdS black holes all have
negative specific heat) has generated some recent discussion (see e.g. [33]). We proceed
as follows.

As large black holes have positive specific heat, their determinants are well-defined.
In a paper written some time ago, Denef, Hartnoll, and Sachdev (DHS) [34, 35] derived a
beautiful formula for the Euclidean determinant around any such black hole in asymptotically
AdS space. The DHS formula for the black hole determinant is presented as an infinite
product over a set of factors. Each factor in this product is associated with a quasinormal
mode in the black hole background and is determined by the corresponding quasi-normal
mode frequency. The final one-loop contribution to the microcanonical ensemble, for such
black holes, is thus given by the inverse Laplace Transform of the product of the saddle
point partition function and the DHS formula for the determinant.

In the micro-canonical ensemble, we expect the (loop-corrected) entropy of black holes
to be an analytic function of their mass and angular momentum.35 It follows that the
one-loop contribution to the micro-canonical entropy at small masses can be obtained from
the analytic continuation of the large mass result. The DHS formula gives us an easy way
to perform the required analytic continuation. It seems reasonable to expect that black hole
quasinormal modes frequencies (which, after all, are micro-canonical data) are themselves
analytic functions of the black hole mass and angular momentum. It follows that the
analytic continuation of the one-loop contribution to the entropy can be obtained by simply
applying the DHS formula even for black holes of small mass, and then proceeding to take
the inverse Laplace transform. As the resultant expression is presumably analytic in the
mass and angular momentum and gives the correct answer at large masses, it should yield
the correct one-loop contribution to the microcanonical entropy at every value of the black
hole mass and angular momentum.36

33The instability of this saddle can be intuitively understood from the viewpoint of the boundary theory
as the small black hole is expected to correspond to a maximum rather than a minimum in the ‘Landau
Ginzburg effective action for holonomies [24–27].

34We thank J. Santos and T. Ishii for highlighting this question.
35Recall that specific heat does not determine the stability of small black holes in a micro-canonical

ensemble, and so we expect the entropy to be everywhere analytic.
36We thank J. Santos and T. Ishii for extremely useful probing questions on this point. We also thank

F. Denef and S. Hartnoll for discussions on this point.
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The net upshot of this discussion is simple. The DHS formula effectively provides
a definition of the determinant about negative specific heat black holes, one that seems
guaranteed to correctly reproduce micro-canonical physics.37

Armed with this prescription, we return to the sum over saddles. At large N (i.e. small
G), and at generic values of ω and β, the order unity determinant is negligible compared
to the classical contribution and can be ignored. We will now explain that the neglect
of quantum corrections fails as ω → 1, as the formally subleading determinant actually
diverges in this limit.

As we have explained above, the logarithm of the determinant around a Euclidean
Kerr-AdS black hole is a sum of an infinite number of terms, one associated with each of
the black hole quasi-normal modes. There are two ways in which this determinant might
diverge in the limit ω → 1. First, the contribution of one or more of the quasi-normal
modes may individually diverge in this limit. Second, the sum over the contributions of an
infinite family of modes may diverge, even though the contribution of any member of this
family stays finite. We examine each of these possibilities in turn.

3.3.2 Divergent contributions from ‘centre of mass’ motion

The unitarity bound assures us that it is impossible for the contribution of any single mode
to diverge about the thermal AdS saddle. Consider a fluctuation mode of frequency f and
angular momentum j. The Boltzmann suppression factor for this mode is e−β(f−ωj). At
ω = 1 this factor simplifies to e−β(f−j). It follows that the contribution of this fluctuation
to the determinant diverges if — and only if — j ≥ f , a condition that is inconsistent with
the unitarity inequality that all fluctuation modes around AdS are constrained to satisfy,
namely f ≥ j + 1

2 . Consequently, the contribution of any single mode to the determinant
around the thermal AdS saddle is always finite at ω = 1.

The result of the previous paragraph, however, does not apply to the black hole saddle.
There exists at least one (and we conjecture exactly one) mode around the black hole
background, whose contribution to the determinant diverges in the limit ω → 1. The mode
in question arises from the quantization of the ‘centre of mass’ motion of the black hole,
and accounts for the contribution of a series of descendants (of the primaries that make
up the black hole). Accounting for this divergence gives rise to the Revolving Black Hole
solutions we have already introduced above. We demonstrate in appendix C.1, that the
singular part of the contribution of these modes to lnZ is given by

− ln(1− e−β(1−ω)) ≈ − ln (β(1− ω)) (3.19)

The relatively mild singularity in (3.19) is subleading compared to the divergence of the gas
(see (3.10)), and so will play no role in the new ‘Grey Galaxy’ solutions that we construct
later in this paper. The subleading nature of this divergence is the canonical ensemble’s

37While the arguments presented above seem relatively convincing to us, they do not constitute a proof.
We need, for instance, to show the absence of obstructions to analytic continuation. If the continuation
involves branch ambiguities, we would also need to specify a choice of branch. It would certainly be useful to
justify our prescription more carefully. In this paper we proceed assuming the correctness of our prescription,
leaving more careful justification to further work.
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version of the micro-canonical observation that revolving black hole saddles are entropically
subleading compared to Grey Galaxy saddles.38 However, the divergence discussed in this
subsection permits the construction of a new subleading ‘revolving black hole’ solution, that
we study in appendix C.

As we discuss in section 7, new solutions appear to have interesting implications for
the spectrum of supersymmetric black holes.

3.3.3 Divergent contributions from families of modes

We now turn to a discussion of the second kind of divergence, namely the divergence arising
from an infinite family of modes, each of whose contribution remains finite as ω → 1. In
subsection 3.1 we have already studied this question around the thermal AdS saddle. As
argued in that section, the summation over modes with large values of l (see (3.4)) gives
rise to the divergent contribution (3.10) to the partition function. We emphasize that the
divergence in (3.10) has its origin in modes with large values of l. As is intuitively clear from
considerations of the centrifugal force (and as we have already explained in the introduction
and explain in much more detail in appendix E), these modes live at large values of r, so
their divergent contribution to the determinant around the Kerr-AdS saddle is identical
to (3.4), the divergent contribution around the pure AdS saddle.39

It follows from (3.11) that the gas contribution to the angular momentum and energy
is given by

∆E ∼ ∆L ∼ − C∆(β)
β2(1− ω)2 > 0 . (3.20)

Note the perfect agreement with the formula (1.6) from the introduction. As we have already
noted under (1.6), when 1 − ω ∝

√
G, ∆E ∼ 1

G is comparable to the classical or saddle
point value of the black hole energy.40 At these values of ω, however, the contributions of
the determinant to the entropy and lnZ are both of order 1√

G
(see (3.11) and (3.10)) and

so are parametrically subleading compared to the classical black hole contributions, which
are of order 1

G .
Let us summarize the situation from the viewpoint of the canonical ensemble. Classical

black holes that lie above the red curve in figure 1 are legitimate saddle points. Classical
black holes that lie below the red curve in figure 1 receive infinite one-loop contributions,
and so do not exist, but are replaced by a new two-parameter family of saddle points. All

38We emphasize that the two different divergences we have described above are physically rather different.
(3.19) is associated with the infinite occupation of a single mode and is reminiscent of Bose condensation.
(3.10), on the other hand, is a consequence of the finite, but equal, occupation of an infinite number of
modes, and is conceptually similar to a high-temperature divergence.

39More formally, as we have explained above, the black hole determinant is a product over terms, one
associated with each quasi-normal mode. In the limit l → ∞, quasi-normal mode frequencies of the
counterparts of those in (3.1) become ∆ + j + 2n + O(e−bl), where b is a positive constant whose value
depends on the size of the black hole in the centre (the parameter a in subsection 2.8). The small correction
to the normal mode frequency includes both real and imaginary pieces. As the quasinormal mode frequencies
tend to the normal mode frequencies, their contribution to the DHS determinant ([34, 35]) reduces to their
contribution to the global AdS determinant.

40At the same values of ω, the divergent contribution of zero modes to the energy from (3.19) scales like
1√
G

, and so is subleading compared to the classical result.
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of the new saddles have values of ω just less than unity, i.e. lie just above the red curve
in figure 1. More precisely 1 − ω =

√
Gα where G is the (parametrically small) Newton

constant and α is an arbitrary number. Our new saddles are parameterized by α and where
on the red curve in figure 1 they lie (equivalently by α their temperature β). Two saddle
points with the same temperature but different values of α represent the same classical
black hole dressed with different one-loop gas contributions.41 Two such saddle points have
the same leading order entropy, and the same value of E − J , but differ in their energies
(and angular momenta).

4 The stress tensor of the bulk gas

In this section, we compute the bulk stress tensor for a minimally coupled scalar propagating
in AdS4 space in the ‘thermal gas’ phase at inverse temperature β and angular velocity ω.

We parameterize AdS4 space as

X−1 = cosh ρ cos t
X0 = cosh ρ sin t
X1 = sinh ρ sin θ cosϕ
X2 = sinh ρ sin θ sinϕ
X3 = sinh ρ cos θ .

(4.1)

Through this paper, we will trade the coordinate ρ for the coordinate r defined by

sinh ρ = r . (4.2)

Note that cosh2 ρ = 1 + r2 and tanh2 ρ = r2

1+r2 . The metric in these coordinates is given by

ds2 = − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
2

= −(1 + r2)dt2 + dr2

1 + r2 + r2dΩ2
2

dΩ2
2 = dθ2 + sin2 θdϕ2 .

(4.3)

The energy is the charge generated by the Killing vector ∂t, while Jz is the charge
generated by rotations on the X1-X2 plane, i.e. by the Killing vector ∂ϕ.

In this section, we study a free real minimally coupled scalar field of mass M (chosen
so that ∆(∆ − 3) = M2) propagating in the bulk AdS4. Our bulk system is taken to
be at inverse temperature β and angular velocity ω. Thermal excitations of the scalar
produce a net effective bulk stress tensor. In this section, we evaluate the expectation value
(ensemble average) of this bulk stress tensor using two different methods: first by using the
Hamiltonian method, and second by using the Euclidean method. The advantage of the
first method is that it is physically very transparent. The advantage of the second method
is that it is algebraically convenient. As we will see below, our two methods yield identical
answers.

41As we will see below, these distinct one-loop contributions modify the metric, but in a simple and
controllable way, and far away from the black hole.
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4.1 Hamiltonian method

4.1.1 Mode wavefunctions

The real massive scalar field described above can be expanded as a linear combination of
solutions to the Klein-Gordon equation as:

ϕ(r, t, θ, ϕ) =
∑

n,l,m

1√
2Enl

(
e−i(∆+2n+l)tYlmFnl(r)anlm + ei(∆+2n+l)tY ∗

lmF
∗
n,l(r)a∗n,l,m

)
≡
∑

n,l,m

ψnlm(xµ)an,l,m + ψ∗
nlm(xµ)a∗n,l,m

(4.4)

where we have defined
Enl = ∆+ 2n+ l . (4.5)

Our spherical harmonics are normalized in the usual manner, i.e. so that they obey∫
d2Ω Ylm(θ, ϕ)Y ∗

l′m′(θ, ϕ) = δll′δmm′ . (4.6)

We demand that the coefficient wave functions ψnlm are orthogonal in the Klein-Gordon
norm, i.e. that

2Enl

∫ √
−g(−g00)ψnlmψ

∗
n′l′m′(r) = δn,n′δl,l′δmm′ . (4.7)

Using (4.6), (4.7) reduces to the requirement∫ √
−g(−g00)Fnl(r)F ∗

n′l′(r) = δnn′δll′ . (4.8)

By performing a canonical quantization of this scalar field, we demonstrate in appendix H
that the classical numbers anlm and a∗n,l,m are promoted, in the quantum theory, to operators
that obey the standard canonical commutation relations

[anlm, a
†
n′l′m′ ] = δn,n′δl,l′δmm′ . (4.9)

Even though we will not use this explicit expression in the rest of this section, we note for
completeness that the exact form of the function Fn,l(ρ) is known [36], which is given by

Fnl(r) = Nn,l
rl

(1 + r2) l+∆
2

2F1

(
−n,∆+ l + n, l + 3

2 ,
r2

1 + r2

)

Nnl = (−1)n
√
2(∆ + 2n+ l)

√√√√√ Γ
(
n+ l + 3

2

)
Γ(∆ + n+ l)

n!Γ2
(
l + 3

2

)
Γ
(
∆+ n− 1

2

) .
(4.10)

Note also that, in the large l limit,

Nnl ≃ (−1)n

√√√√√ 2l∆+2n− 1
2

n!Γ
(
n+∆− 1

2

) . (4.11)

In this paper, we are most interested in large values of l. Both the spherical harmonics
and the functions Fnl simplify in this limit, as we explain in appendix D and appendix E
respectively.
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4.2 Expression for the bulk stress tensor as a sum over modes

The bulk stress tensor for our free scalar field is given by

Tµν = ∂µϕ∂νϕ− gµν

2
(
(∂ϕ)2 +M2ϕ2

)
. (4.12)

Let us study the scalar field in a thermal ensemble with inverse temperature β and angular
velocity ω. Because we are dealing with a free system, it follows that the density matrix, ρ,
for our system is given by

ρ =
∏

n,l,m

ρnlm (4.13)

where ρnlm is the density matrix associated with the single particle state with the specified
quantum numbers. Explicitly

ρnlm =
∑

k

e−βk((∆+2n+l)−ωm)|k⟩⟨k| (4.14)

where k is the occupation number of the state with quantum numbers n, l,m, and the states
|k⟩ are of unit norm. The expectation value of the stress tensor only receives contributions
from terms in which the same mode is both created and destroyed and so

⟨Tµν⟩ =
Tr(ρTµν)

Z
=
∑

n,l,m

1
Znlm

Tr
(
ρnlmT

nlm
µν

)
(4.15)

where Z = Trρ is the partition function, Znlm = Trρnlm = 1
1−e−β(∆+2n+l−ωm) is the partition

function over the given state and

Tnlm
µν = tnlm

µν a†n,l,man,l,m

tnlm
µν =

[
∂µψn,l,m∂νψ

∗
n,l,m + ∂µψ

∗
n,l,m∂νψn,l,m − gµν

(
gαβ∂αψn,l,m∂βψ

∗
n,l,m +M2|ψn,l,m|2

)]
.

(4.16)

To evaluate the traces in (4.15), we need to evaluate the sum over k in (4.14). As the
operator in (4.16) is just the number operator, it follows that

Tnlm
µν |k⟩ = k tnlm

µν |k⟩ . (4.17)

Performing the sum over k, it follows that

Tr
(
ρnlmT

nlm
µν

)
Znlm

=
tnlm
µν

eβ(∆+2n+l−ωm) − 1
. (4.18)

We conclude that
⟨Tµν⟩ =

∑
n,l,m

tnlm
µν

eβ(∆+2n+l−ωm) − 1
. (4.19)

(4.19) has a simple physical interpretation. The expectation value of the stress tensor is
simply the sum of the stress tensors of each of the individual modes of the scalar, weighted
by the mode’s bosonic thermal occupation number.
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The change of variables m = l − a turns (4.19) into

⟨Tµν⟩ =
∞∑

n=0

∞∑
l=0

2l∑
a=0

tnlm
µν

eβ(∆+2n+aω+(1−ω)l) − 1
. (4.20)

In the limit ω → 1 of our interest, the summation in (4.20) receives its dominant contributions
from l of order 1

β(1−ω) .42,43 On the other hand, the summation receives its dominant
contribution from values of the variables n and a that are of order unity. In the regime of
interest, therefore, the upper limit in the summation over a in (4.20) is unimportant and
can be dropped. (4.20) can thus be written as

⟨Tµν⟩ =
∞∑

n=0

∞∑
a=0

(T eff
na )µν

(T eff
na )µν =

∞∑
l=0

tnlm
µν

eβ(∆+2n+aω+(1−ω)l) − 1
.

(4.21)

Let us estimate the stress tensor to the leading order in large l. It can be easily seen,
that the leading order contribution in the stress tensor components will be from derivatives

with respect to t and ϕ. For instance, taking the derivative of the term e
−2l

r2

r∆ with respect to

r gives rise to term which roughly goes like l
r3

e
−2l

r2

r∆ . This term is peaked at r ∼
√
l, hence it

is of the order l−1/2. Similarly, the derivative with respect to θ is of the order
√
l. On the

other hand, derivatives with respect to t and ϕ are of the order l, and hence, the one which
contributes the most to the stress tensor.

Therefore, in leading order in l, only Tij where i, j = t, ϕ are significant. These terms
are well approximated by

tnla
tt = −tnla

tϕ = tnla
ϕϕ = 2|ψn,l,l−a|2l2 ≡ tnla .44 (4.22)

It follows that, to leading order

⟨T ⟩ ≡ ⟨Ttt⟩ = −⟨Ttϕ⟩ = ⟨Tϕϕ⟩ =
∞∑

n=0

∞∑
a=0

tna

tna =
∞∑

l=0

2l2|ψn,l,l−a|2

eβ(∆+2n+aω+(1−ω)l) − 1
.

(4.23)

All other components of the stress tensor vanish to the leading order.
42We are working in the limit when ω → 1 at fixed β. All the approximations in this section needs to be

revisited if the temperature simultaneously scales to zero like a power of (1 − ω). In the physical context of
this paper, however, the temperature of the gas equals the temperature of the black hole at its core. As
we have seen in section 2, the temperature of such black holes is bounded from below by 1

2π
, and so is

never small.
43As we will see below, tnlm

µν is proportional to l2, which means stress tensor from higher l modes is
dominant, however, they are suppressed by the exponential in the denominator for generic values of ω.
However, when ω is close to unity, this suppression is suppressed, hence the stress tensor is peaked at values
of l which are as high as (1 − ω)−1.

44This term comes entirely from the ∂µϕ∂νϕ part of the stress tensor. Note that the terms in gµν∂µϕ∂νϕ

cancel each other at leading order: this is simply because kµk
µ = 0. Restated, the cancellation happens

because the gas is purely right-moving (chiral).
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4.2.1 Matching the total energy with thermodynamics

Before proceeding to evaluate the stress tensor in more detail, we pause to check that the
integral of our stress tensor correctly captures the correct thermodynamical energy and
angular momentum of our system.

The bulk energy and angular momentum are given in terms of the bulk stress tensor
by the integral expressions

E = −
∫ √

−gg0νTν0, J =
∫ √

−gg0νTνϕ (4.24)

where the integral is taken over a constant time slice. Since the background metric is
diagonal, we find

E = −
∫ √

−gg00T00, J =
∫ √

−gg00T0ϕ (4.25)

Using the AdS metric (4.3) at large r and plugging in (4.23) we get

Enal =
∑
nla

∫
drdΩ 2l2|ψn,l,l−a|2

eβ(∆+2n+aω+(1−ω)l) − 1
.45 (4.26)

Using (4.7), together with the fact that g00√−g = −1 (in the r coordinate system at
large r) we see that ∫ √

−g(−g00)drdΩ|ψn,l,l−a|2 ≈ 1
2Enl

≈ 1
2l . (4.27)

So the energy in (4.26) evaluates to

E =
∑
nla

l

eβ(∆+2n+aω+(1−ω)l) − 1
(4.28)

i.e. precisely to the thermodynamical energy as expected. Also notice that since Ttϕ = −T00,
it can be easily seen from (4.25), that E = J as we should expect from the chiral nature of
the gas.

45As an aside we note that it is possible to work a bit more precisely. Instead of taking the large l limit
from the beginning, we can more accurately work out the stress tensor. Putting in the form of the AdS
metric and working at large r (i.e. using the Poincare path metric), the expression for the energy becomes

E = 2
∫
drdΩ

(
(∆ + 2n+ l)2 + (lδθ)2 +M2r2) |ψn,l,l−a|2 .

The first term in this expression comes from the term ∂0ϕ∂0ϕ. The second term in this expression comes
from gθθ∂θϕ∂θϕ. We note that the terms in gµν∂µϕ∂νϕ cancel each other at leading order (this is simply
because kµk

µ = 0). Also, r derivatives in that expression are completely negligible at large l. The term
(l2δθ)2 is subleading, because (δθ)2 ∼ 1

l2 and so can be ignored. Also, the term M2r2 is also of order l
(because r ∼

√
l). This term is also, therefore, subleading in comparison to the first term. We conclude that,

at leading order

Enal =
∑
nla

∫
drdΩ 2(∆ + 2n+ l)2|ψn,l,a|2

eβ(∆+2n+aω+(1−ω)l) − 1

Making the approximation (∆ + 2n+ l)2 → l2 gives us the answer in the main text.
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4.2.2 Performing the summations

Reassured by the check of the previous subsubsection, we now proceed with our evaluation
of the detailed local form of the stress tensor.

Using the expressions presented in appendices D and E, we see that the mod squared
wave function to the leading order in l is:

|ψnla|2 ≈ 1
2l

|χln|2

r2
|ψHO

a (δθ)|2
2π . (4.29)

We have used the fact that in ψnla = 1√
2Enl

Fnl(r)Yla(θϕ), Enl is approximately l. We have
also used (E.12) to express Fnl in terms of the radial wave function for the three-dimensional
harmonic oscillator, χln(r), defined in appendix E, and have used (D.6) to approximate
the spherical harmonics. Finally, we have divided our answer by 2π to account for the
normalization coming from the integral over ϕ.46

It follows that

tnla = 2l2|ψnla|2

= l

2πr2 |χln(r)|2|ψa
HO(δθ)|2 .

(4.30)

Now let us compute the total stress tensor which is the sum of stress tensors in each
mode, weighted by the average occupation of that mode:

T =
∑
nla

tnla

eβ(∆+2n+aω)+β(1−ω)l − 1

=
∑
nla

∞∑
q=1

tnlae
−qβ((∆+2n+aω)+(1−ω)l)

=
∞∑

q=1

∑
nla

l

2πr2 |χln(r)|2|ψa
HO(δθ)|2e−qβ((∆+2n+aω)+(1−ω)l) .

(4.31)

The sums over n and a are now easily performed using (D.8) and (E.13). We find

T =
∞∑

q=1

∑
l

l

2πr2 e
−qβl(1−ω)∑

n

|χln(r)|2e−l(2n+∆− 1
2)( qβ

l )
∑

a

|ψa
HO(δθ)|2e−l(a+ 1

2)( qβ
l )

=
∞∑

q=1

∑
l

l

2πr2 e
−qβl(1−ω)KRHO

(
r, r,

qβ

l

)
KHO

(
δθ, δθ,

qβ

l

)

=
∞∑

q=1

∫
dl

l
5
2

r3(2π sinh qβ) 3
2
exp

[
−l
((cosh qβ − 1

sinh qβ

)
δθ2 + cosh qβ

r2 sinh qβ + qβ(1− ω)
)]

× I∆−3/2

(
l

r2 sinh qβ

)
.

(4.32)

46We have been careful to use normalized wave functions for the dependence on r and θ. Similarly, we
should use the normalized constant wave function in the ϕ direction, i.e. 1√

2π
.
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On the first line of (4.32) we have replaced (∆+2n+aω) by (∆+2n+a) (as is appropriate
in the limit ω → 1). /on the last line, we have substituted the explicit expressions for
KRHO and KHO, and also replaced the summation over l by an integral over l; again this
is justified in the limit ω → 1.

In order to proceed we substitute the identity

In(x) =
ex
(

x
2
)n

Γ(n+ 1)1F1(n+ 1/2, 2n+ 1,−2x) (4.33)

(which expresses In(x) as a product of an exponentially growing term and a term that
decays at infinity like x−n) to obtain

T =
∞∑

q=1

∫
dl

l
5
2

r3(2π sinh qβ) 3
2
exp

[
−l
((cosh qβ − 1

sinh qβ

)(
δθ2 + 1

r2

)
+ qβ(1− ω)

)]
(

l

2r2 sinh qβ

)∆−3/2 1
Γ(∆− 1/2)1F1

(
∆− 1, 2∆− 2, −2l

r2 sinh qβ

)
.

(4.34)

The integral over l in (4.34) is a Laplace transform of the 1F1 function times a power
law. The ‘frequency’ of this Laplace transform is

uq

2r2 sinh qβ

where
uq = 2x2

(
(cosh qβ − 1)

(
ζ2 + 1

x2

)
+ βq sinh qβ

)
(4.35)

and we have partially moved to the scaled variables

x2 = r2(1− ω) , ζ2 = δθ2

1− ω
.

Happily, Mathematica can evaluate this Laplace transform. We find

=
∞∑

q=1

∫
dl

l∆+1

r2∆π3/2(2sinhqβ)∆ exp
(
−l uq

2r2 sinhqβ

)
1

Γ(∆−1/2)1F1

(
∆−1,2∆−2, −2l

r2 sinhqβ

)

=
∞∑

q=1

(
2r2 sinhqβ

uq

)2+∆ Γ(2+∆)
Γ(∆−1/2)2F1

(
∆−1,∆+2,2∆−2,− 4

uq

)
1

r2∆π3/2(2sinhqβ)∆

=
∞∑

q=1

1
(1−ω)22∆x2∆

sinh2 qβ

π3/2
(
(coshqβ−1)

(
ζ2+ 1

x2

)
+βq sinhqβ

)∆+2

Γ(2+∆)
Γ(∆−1/2)2F1

(
∆−1,∆+2,2∆−2,− 4

uq

)

= 4x4

π3/2(1−ω)2
Γ(2+∆)

Γ(∆−1/2)

∞∑
q=1

sinh2 qβ

u∆+2
q

2F1

(
∆−1,∆+2,2∆−2,− 4

uq

)
.

(4.36)
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In going from the first to the second line of (4.36) we have evaluated the Laplace transform.
In going from the second to the third line in (4.36), we have re-expressed our result entirely
in terms of scaled variables, and have performed some convenient rearrangements. In going
from the third to the fourth line of (4.36) we have further rearranged our final answer, to
provide it in a form which is convenient for taking the small x limit.

The third and fourth lines of (4.36) are the final answer for the Hamiltonian evaluation
of the stress tensor for the bulk gas in AdS4. Our result is expressed in terms of the function

2F1

(
∆− 1,∆+ 2, 2∆− 2,− 4

uq

)
. (4.37)

At small uq, this function decays like ∼ u∆−1
q . At large uq, the function tends to unity.

It follows from the last line of (4.36) that the bulk stress tensor tends to zero like x4 in
the small x limit; also that the stress tensor goes to zero like 1

ζ2∆+4 in the large ζ limit. At
large x, on the other hand, the hypergeometric function goes to a constant, and the third
line of (4.36) tells us that the stress tensor scales like 1

x2∆ , as expected for any normalizable
configuration.

These results summarize that the bulk stress tensor is well localized around small ζ
and away from small x, and is normalizable at infinity.

4.3 Euclidean computation

In this subsection, we rederive the thermal expectation value of the bulk stress tensor as
mentioned in (4.36), this time from the Euclidean path integral point of view. From this
point of view, we would like to compute the one-point function of the stress tensor (4.12)
around the background of the thermal AdS saddle. We obtain this expectation value by
first evaluating the two-point function of the bulk scalar at separated points in the one-loop
approximation about the appropriate Euclidean saddle point. We then take the derivatives
that appear in (4.12) and finally take the coincident limit. The coincident limit includes
a temperature-independent divergent piece. After subtracting away this term we find a
well-defined answer (see below (F.6) for a more careful discussion of this point).

The procedure described above is easier to carry out than it may first appear. The
two-point function in thermal AdS is given by a simple sum over images of zero temperature
two-point functions (see [37] for instance). Successive images are separated by integral
multiples of (β,−iβω) in (τE , ϕ) space, where τE is the Euclidean time. (The i in the last
expression is a consequence of the fact that the rotation operator is eiJz whereas the density
matrix has eβωJzϕ.) It follows that the two-point function in our Euclidean ensemble is
given by

⟨Φ(r1, θ1, τ
E
1 , ϕ1)Φ(r2, θ2, τ

E
2 , ϕ2)⟩β =

∞∑
q=−∞

⟨Φ(r1, θ1, τ
E
1 , ϕ1)Φ(r2, θ2, τ

E
2 +qβ, ϕ2−iqβω))⟩0 .

(4.38)
The zero temperature two-point functions that appear on the r.h.s. of (4.38) are

functions of the “chordal distance” u between their arguments in embedding space. Explicitly
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in equations (see equation 4.6 in [37]).

⟨Φ(x1)Φ(x2)⟩0 = C∆
1
u∆ 2F1

(
∆,∆− 1, 2∆− 2,−4

u

)
(4.39)

where

u=−2+2
(√

(1+r2
1)(1+r2

2)cosh(τE
1 −τE

2 )−r1r2 (cosθ1 cosθ2+sinθ1 sinθ2 cos(ϕ1−ϕ2))
)

(4.40)
and

C∆ = Γ(∆)
2π3/2Γ(∆− 1/2)

. (4.41)

In the method of images, we need to take τ2−τ1 = qβ, ϕ2−ϕ1 = −iqβω, ρ1 = ρ2, θ1 = θ2
for the qth image. Therefore, we have

uq = −2 + 2(−r2 sin2 θ cosh(qβω)− r2 cos2 θ + (1 + r2) cosh(qβ)) . (4.42)

Before proceeding with the computation we pause to explain, from the Euclidean point
of view, why the stress tensor is non-negligible at large r only when ω → 1 and for values
of θ very close to the equator.

At large r and generic values of θ the chordal distance uq between images is very large,
and the propagator (4.39) (and consequently its contribution to the bulk stress tensor)
is very small. If we stick to large values of r, there is only one way to make the chordal
distances small: that is to make the distances between images approximately lightlike. The
chordal distance due to the temporal separation between neighboring images is spacelike and
of magnitude r

√
cosh β (recall we are in Euclidean space). On the other hand, the distance

due to the (imaginary) angular separation is timelike and of magnitude r
√
cosh(βω) sin θ.

The total chordal distance is small only if these two distances become equal in magnitude:
this happens when ω is near unity and θ is also near π

2 . We see this in equations as follows.
When ω → 1, |τE

1 − τE
1 | = |ϕ1 − ϕ2|. In that case, in the large r limit of (4.42), the first

and last terms compete with each other. Also if cos θ (roughly of the order r−1/2) is very
small, the chordal distance can be made order unity. Therefore we see that even at large
values of r, the chordal distance is of the order unity when ω → 1 and θ = π

2 − δθ with
small δθ. Written explicitly, in the ω → 1 limit and in terms of rescaled coordinates

x =
√
1− ω r, ζ = δθ√

1− ω
, (4.43)

the chordal distance takes the following form:

uq = 2x2
(
(cosh qβ − 1)

( 1
x2 + ζ2

)
+ qβ sinh qβ

)
. (4.44)

Now the stress tensor is a function of derivatives of the fields as written in (4.12).
Therefore, to compute the thermal stress tensor, we need two derivatives of the two
functions for all the images and then we need to sum over all the images except at q = 0.
This is because, at q = 0, the two insertion points coincide and hence give an infinite
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contribution. However, we find precisely the same divergence at zero temperature. Since
we are interested in the magnitude of the stress tensor above the zero temperature value
we simply discard this divergent term. This simple manoeuvre renormalizes our bulk
stress tensor.

We now proceed to compute the derivatives we need. Let us suppose that the two-point
function takes the following form:

⟨Φ(x)Φ(xq)⟩ ≡ F (uq) (4.45)

where xq is related to x by shifts in τ and ϕ mentioned above. Taking derivatives with
respect to the coordinates µ1, µ2, we obtain

Kq
µ1µ2 ≡ ∂µ1∂µ2⟨Φ(x1)Φ(x2)⟩m = F ′′(u) ∂u

∂µ1

∂u

∂µ2

∣∣∣∣
x1=x,x2=xq

+ F ′(u) ∂2u

∂µ1∂µ2

∣∣∣∣∣
x1=x,x2=xq

.

(4.46)
Then we rescale the coordinates as r = x√

1−ω
and δθ =

√
1− ωζ and take the ω → 1

limit. We can see that the dominant derivatives (of the order 1
(1−ω)2 ) occur only from taking

τEτE , ϕϕ, and τEϕ derivatives. The r and θ derivatives are subdominant in the ω → 1
limit.

We list τEτE , ϕϕ and τEϕ components defined as Kq ≡ Kq
τEτE = iKq

τEϕ
= −Kq

ϕϕ:

−Kq = Γ(∆)
2π3/2Γ(∆− 1/2)

4∆x4u−∆−2 sinh2 βm

(∆− 2)(1− ω)2

[
−2(∆− 3) 2F1

(
∆,∆, 2(∆− 1),− 4

uq

)

−
(
∆2 − 3∆ + 4 + 8

u

)
2F1

(
∆,∆+ 1; 2(∆− 1);−4

u

)]

= sinh2 qβ

(1− ω)2
Γ(∆ + 2)

2π 3
2Γ(∆− 1/2)

1
2∆x2∆

2F1
(
∆− 1,∆+ 2, 2∆− 2, −4

uq

)
((

1
x2 + ζ2

)
(cosh qβ − 1) + qβ sinh qβ

)∆+2

(4.47)

where in going from the first line to the second, we have used the following identity relating
Hypergeometric functions:

−2(∆−3)2F1

(
∆,∆,2(∆−1),−4

u

)
+
(
∆2−3∆+4+ 8

u

)
2F1

(
∆,∆+1,2(∆−1),−4

u

)
= 2F1

(
∆−1,∆+2;2∆−2;−4

u

)
(∆−2)(∆+1) .

(4.48)

Let us try to understand the scaling of these derivatives intuitively. As we explained above,
in the ω → 1 limit, the chordal distance becomes lightlike, and hence the chordal distance is
of order one even at large values of r. When we take the derivatives with respect to τ and
ϕ, we are going away from the lightlike ray and hence the chordal distance becomes large
and hence τ and ϕ derivatives are large at large values of r and small values of ζ (more
precisely when r ∼ 1√

1−ω
and δθ ∼

√
1− ω).
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Now that we have the appropriate derivatives of the two functions, we can simply
evaluate the thermal stress tensor by summing over all the images. The leading order
components of the stress tensor are Ttt = Tϕϕ = −Ttϕ ≡ T :47

T =−2
∞∑

q=1
Kq

=
∞∑

q=1

sinh2 qβ

(1−ω)2
Γ(∆+2)

π
3
2Γ(∆−1/2)

1
2∆x2∆

2F1
(
∆−1,∆+2,2∆−2, −4

uq

)
((

1
x2 +ζ2

)
(coshqβ−1)+qβ sinhqβ

)∆+2

≡ f(x,ζ)
(1−ω)2

(4.49)

which is exactly the answer that we obtained in (4.36). (The factor of 2 on the first line
of (4.49) results from the fact that we have to sum over both positive as well as negative
values of q.)

4.4 Total energy from the integral of the stress tensor

In the previous two subsections, we computed the bulk stress tensor of the gas using two
separate methods; both methods gave us the same final answer (4.49). In this subsection,
we perform a further consistency check of this answer. We compute the total energy by
integrating the stress tensor over the bulk using (4.25), and match the result with the
thermodynamic expectation mentioned in (4.28). We find perfect agreement.

To proceed with this check, we first expand the exact thermodynamical answer (4.28) in
a power series expansion in e−β∆. We accomplish this by Taylor expanding the denominator
in (4.28). We then convert the sum over l to an integral (as we have explained above, this
is appropriate at small 1− ω). At this stage the sum over n and a are geometric sums, and
so very easily evaluated. We find:

E =
∞∑

q=1

∑
na

∫
dl le−qβ(∆+2n+aω+(1−ω)l)

=
∑

q

1
β2q2(1− ω)2

e−qβ∆

(1− e−2qβ)(1− e−qβ)

= 1
(1− ω)2

∑
q

eqβ(3/2−∆)

4q2β2 sinh qβ sinh qβ
2
.

(4.50)

We will now reproduce (4.50) by integrating our bulk stress tensor (4.49). According

47Remember that we computed derivatives of the two-point function with respect to Euclidean time above
which is τE = it, however, stress tensor has derivatives with respect to the Lorentzian time.
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to (4.25)

E=
∫ √

−g(−g00)T00 =2π
∫
drdθ sinθT00

≈ 2π
∫
dxdζT00(x,ζ)

=
∑

q

2π sinh2 qβΓ(∆+2)
2∆(1−ω)2π3/2Γ(∆−1/2)

∞∑
i=0

(−2)i

Γ(i+1)
Γ(∆−1+i)
Γ(∆−1)

Γ(∆+2+i)
Γ(∆+2)

Γ(2∆−2)
Γ(2∆−2+i)

∫
dxx4

∫
dζ

( 1
(coshqβ−1)(1+x2ζ2)+qβ sinhqβ

)2+∆+i

=
∑

q

2π sinh2 qβΓ(∆+2)
2∆(1−ω)2π3/2Γ(∆−1/2)

∞∑
i=0

(−2)i

Γ(i+1)
Γ(∆−1+i)
Γ(∆−1)

Γ(∆+2+i)
Γ(∆+2)

Γ(2∆−2)
Γ(2∆−2+i)

√
πΓ(∆+i+3/2)
Γ(∆+i+2)

1√
coshqβ−1

∫
dx

x3

((coshqβ−1)+qx2 sinhqβ)∆+i+3/2 .

(4.51)

In going from the second line to the third line, we have used the series expansion of the
Hypergeometric function. In going from the third line to the fourth, we have performed
the elementary integration over ζ. Simplifying the expression presented in the final line
of (4.51) gives

E=
∑

q

∑
i

2sinh2 qβ

2∆(1−ω)2
4−i−1 (4(∆+i)2−1

)
Γ(2(i+∆−1))

Γ(i+1)Γ(i+2∆−2)

(−2)i

√
coshqβ−1

∫
dx

x3

((coshqβ−1)+qx2 sinhqβ)∆+i+3/2

=
∑

q

sinh2 qβ tanh2
(

qβ
2

)
2∆(1−ω)2q2β2

1
(coshqβ−1)∆+2

∑
i

Γ(2(i+∆−1))
Γ(i+1)Γ(i+2∆−2)

1
(−2(coshqβ−1))i

=
∑

q

sinh2 qβ tanh2
(

qβ
2

)
22∆+2(1−ω)2q2β2

1(
sinh qβ

2

)2∆+4 2F1

∆−1,∆−1/2,2∆−2,− 1
sinh2

(
mβ
2

)


=
∑

q

sinh2 qβ tanh2
(

qβ
2

)
22∆+2(1−ω)2q2β2

1(
sinh qβ

2

)2∆+4
2−3+2∆eqβ(3/2−∆)

cosh qβ
2 sinh2−2∆ qβ

2

= 1
(1−ω)2

∑
q

eqβ(3/2−∆)

4q2β2 sinhqβ sinh qβ
2
.

(4.52)

In going from the first to the second line, we have performed the elementary integral
over x. In going from the second to the third line we have performed the sum over i in
Mathematica. This sum turns out to be a Hypergeometric function. In going from the
third line to the fourth line we have used the following identity:

2F1(a, a+ 1/2, 2a, z) = 1√
1− z

(
1
2 +

√
1− z

2

)1−2a

. (4.53)
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The transition from the second last to the last line of (4.52) involves elementary algebraic
simplifications.

We see that the last line of (4.52) is in perfect agreement with the last line of (4.50),
completing our verification.

4.5 Summary of this section

In this subsubsection, we summarize the results of this section that we will use in the rest
of this paper.

• To leading order in 1− ω, the bulk stress tensor of the gas takes the form

Ttt = −Ttϕ = Tϕϕ = T = f(x, ζ)
(1− ω)2 (4.54)

where x and ζ are the scaled radial and angular variables defined in (4.43) and f(x, ζ)
was obtained in (4.49).

• In the small x limit uq ≃ 2(cosh qβ − 1),

f(x) = Cβ,∆
0 x4 (4.55)

where Cβ,∆
0 is

Cβ,∆
0 = Γ(∆ + 2)

π
3
2Γ(∆− 1/2)

1
2∆

∞∑
q=1

sinh2 qβ 2F1

(
∆− 1,∆+ 2, 2∆− 2,− 2

cosh qβ − 1

)
.

(4.56)

Note, in particular, that f(x) is independent of ζ in this limit.

• In the large x limit uq ≃ 2x2 ((cosh qβ − 1)ζ2 + qβ sinh qβ
)
,

f(x, ζ) = Cβ,∆
∞ (ζ)
x2∆ (4.57)

where the function Cβ,∆
∞ (ζ) is,

Cβ,∆
∞ (ζ) = 4

π3/2
Γ(∆ + 2)

2∆+2Γ(∆− 1/2)

∞∑
q=1

sinh2 qβ

((cosh qβ − 1)ζ2 + qβ sinh qβ)∆+2 . (4.58)

5 Back-reaction on the metric

In the previous section, we computed the bulk stress tensor due to the gas that fills thermal
AdS. In this section, we will compute the backreaction of this stress tensor on the background
AdS (or black hole) metric.

The stress tensor defined in the previous subsection is of order unity at values of r
that are of order unity. This is clear both intuitively (values of r of order unity receive
contributions only from l ≤ r2∆, see appendix E) as well as from the third of (4.12). A
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stress tensor of order unity induces a response in the metric of order G, i.e. a response
that vanishes in the classical limit G→ 0. In other words, we should expect the solution
sourced by this stress tensor to be classically indistinguishable from global AdS (or the
Kerr-AdS black hole, if we are studying the gas about this solution) at coordinates r of
order unity. On the other hand, we will see that the response to the bulk stress tensor
‘builds up’ at larger values of r. In this section, we formulate and solve the equations that
govern this behavior.

5.1 The equations in scaled coordinates

The backreaction of the bulk stress tensor becomes classically significant only at values of r
that are large enough to enclose a finite fraction of the total energy. It follows from (4.57)
that this happens at x of order unity, or r of order 1√

1−ω
. At these distances the bulk stress

tensor is also highly localized in θ around π
2 ; it will thus turn out that the backreaction to

the metric is only significant over δθ of order
√
1− ω, i.e. for coordinates ζ that is of order

unity. In order to compute the backreaction of the stress tensor on the AdS metric, it is
thus useful to work with the scaled coordinates (1.9). It is also useful to scale t and ϕ in the
same way as θ. As the stress tensor is right-moving at the speed of light, it is particularly
useful to define the left and right-moving linear combinations of these scaled coordinates

σ+ = t+ ϕ√
1− ω

, σ− = t− ϕ√
1− ω

. (5.1)

In these coordinates the background AdS metric becomes

ds2 = −(1 + r2)dt2 + dr2

1 + r2 + r2(dθ2 + sin2 θdϕ2)

≈ dr2

r2 + r2(dθ2 + dϕ2 − dt2)

= dx2

x2 + x2(dζ2 − dσ+dσ−) .

(5.2)

(In going from the first to the second line we have used the fact that r is large and that θ is
highly localized near π

2 ). The bulk stress tensor in these new coordinates is given by

T++ = T−− = (1− ω)T = f(x, ζ)
(1− ω) . (5.3)

The Einstein equation takes the form

Rµν − gµνR

2 = 3gµν + 8πG
1− ω

f(x, ζ)δµσ−δνσ− . (5.4)

As we have explained above, in the solutions of interest, (1 − ω)2 ∼ G. It follows that
the quantity

κ = 8πG
1− ω

(5.5)

is parametrically small (it is of order
√
G). The Einstein equation can be rewritten as

Rµν − gµνR

2 = 3gµν + κf(x, ζ)δµσ−δνσ− (5.6)
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and we see that the correction to the background AdS (sourced by the gas bulk stress
tensor) is parametrically small. It follows that this correction can be accurately computed
in the linearized approximation.

In the rest of this paper, we work in Graham Fefferman gauge, i.e. we demand that
gxx = 1

x2 and gxi = 0 for i = ζ, σ+, σ−. Always working to linearized order in κ, it is not
difficult to demonstrate that the solution to (5.6) turns out to take the form

dx2

x2 + x2
(
dζ2 − dσ+dσ−

)
+ κx2A(x, ζ)dσ−dσ− (5.7)

where the unknown function A(x) obeys the sourced minimally coupled scalar equation
1√
−g

∂µ
(√

−ggµν∂νA
)
= −2f(x, ζ)√

−g
. (5.8)

The metric that appears on the l.h.s. of (5.8) is the unperturbed AdS metric. Completely
explicitly, the differential equation (5.8) can be written as

∂2A

∂ζ2 + ∂

∂x

(
x4 ∂

∂x
A(x, ζ)

)
= −2f(x, ζ) . (5.9)

In the rest of this section, we will proceed to solve (5.9).

5.1.1 Solving in Fourier space

In order to solve (5.9) we Fourier transform both the unknown A and the source f in ζ,48

A(ζ, x) =
∫

dk√
2π
eikζAk(x)

fk(x) =
∫

dζ√
2π
e−ikζf(x, ζ) .

(5.10)

Ak(x) obeys the equation

−k
2

2 Ak(x) +
∂

∂x

(
x4

2
∂

∂x
Ak(x)

)
= −fk(x). (5.11)

Now the solutions to the homogeneous equation

−k
2

2 Ak(x) + 2x3∂Ak

∂x
+ x4

2
∂2Ak

∂x2 = 0 (5.12)

are given by
B+

k e
k
x

(
1− k

x

)
+B−

k e
− k

x

(
1 + k

x

)
. (5.13)

Using standard differential equation theory (reviewed in appendix G) we conclude that the
most general solution to the sourced equation (5.11) is thus given by

Ak(x)=B+
k e

k
x

(
1− k

x

)
+B−

k e
− k

x

(
1+ k

x

)
+

1
k3

(
e

k
x

(
1− k

x

)∫
dx′e

−k
x′

(
1+ k

x′

)
fk(x′)−e

−k
x

(
1+ k

x

)∫
dx′e

k
x′

(
1− k

x′

)
fk(x′)

)
.

(5.14)
48Note that the periodicity of ζ is 2π√

1−ω
and so is effectively infinite in the limit under study.
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(5.14) has two undetermined integration constants. These constants are determined
from the following considerations. First, we require that our solution be normalizable at
x = ∞. Second, we require that it be regular at x = 0. The first condition is enforced by
taking all the integrals in the particular solution to run from ∞ to x, and choosing the
homogeneous solution so that it is purely normalizable. In other words, it follows from the
condition of normalizablity that

Kn(k)
(
e

k
x

(
1− k

x

)
− e

−k
x

(
1 + k

x

))
+

1
k3

(
e

k
x

(
1− k

x

)∫ ∞

x
dx′e

−k
x′

(
1 + k

x′

)
fk(x′)− e

−k
x

(
1 + k

x

)∫ ∞

x
dx′e

k
x′

(
1− k

x′

)
fk(x′)

)
(5.15)

for an as yet undetermined constant Kn(k).
Using the fact that f(x) decays, at large x, like a

x2∆ , the reader can convince herself
that the term in the second line of (5.15) decays like a

x2∆+2 (the terms of order 1
x2∆−1 , 1

x2∆

and 1
x2∆+1 all cancel). For ∆ > 1

2 — i.e. for non-free fields that obey the unitarity bound —
this decay is more rapid than 1

x3 .
On the other hand the term in the first line of (5.15) (the term that multiplies Kn(k))

decays like 1
x3 at infinity. It follows that the solution (5.15) is normalizable and that its

boundary stress tensor is proportional to Kn(k) (of course Fourier transformed in ζ).
The as yet undetermined constant Kn(k) is fixed by the requirement of good behaviour

at x = 0. At any fixed, nonzero k the general solution (5.15) has a piece that diverges
exponentially at x = 0; we choose Kn(k) to ensure that the coefficient of this offending
divergence vanishes. We now explain in more detail how this works.

Let us take the case that k is positive and first consider the integrals in the second line
of (5.15). In these expressions, the part of both integrals that comes from the neighbourhood
of x = 0 gives expressions that are power law in x (the exponentials in the prefactors cancel
the exponentially large or small contributions from the integrals). In the first term on the
second line of (5.15), however, the contribution to the integral from generic (not small)
values of x gives rise to an exponentially growing term. This term must be cancelled by the
exponentially growing term in the homogeneous solution. This is achieved if we choose

Kn(k) = −
( 1
k3

∫ ∞

0
dxe

−k
x

(
1 + k

x

)
fk(x)

)
so that the solution, for k > 0, becomes

Ak(x)=−
( 1
k3

∫ ∞

0
dx′e−

k
x′

(
1+ k

x′

)
fk(x′)

)(
e

k
x

(
1− k

x

)
−e− k

x

(
1+ k

x

))
+

1
k3

(
e

k
x

(
1− k

x

)∫ ∞

x

dx′e
−k
x′

(
1+ k

x′

)
fk(x′)−e−

k
x

(
1+ k

x

)∫ ∞

x

dx′e
k
x′

(
1− k

x′

)
fk(x′)

)
.

(5.16)

Equivalently

Ak(x)=
(

1
k3

∫ ∞

0
dx′e

−k

x′

(
1+ k

x′

)
fk(x′)

)(
e

−k
x

(
1+ k

x

))
− 1
k3

(
e

k
x

(
1− k

x

)∫ x

0
dx′e

−k

x′

(
1+ k

x′

)
fk(x′)+e

−k
x

(
1+ k

x

)∫ ∞

x

dx′e
k
x′

(
1− k

x′

)
fk(x′)

)
.

(5.17)
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The properties of the solution near ∞ are best understood from the solution written in
the form (5.16). On the other hand, the properties of the solution near x = 0 are best
understood in the solution written in the form (5.17).

The solution for k < 0 is obtained similarly. The analogue of (5.16) is

Ak(x)=−
( 1
k3

∫ ∞

0
e

k
x′

(
1− k

x′

)
fk(x′)

)(
e

k
x

(
1− k

x

)
−e

−k
x

(
1+ k

x

))
+ 1
k3

(
e

k
x

(
1− k

x

)∫ ∞

x
e

−k
x′

(
1+ k

x′

)
fk(x′)−e

−k
x

(
1+ k

x

)∫ ∞

x
e

k
x′

(
1− k

x′

)
fk(x′)

)
(5.18)

while the analogue of (5.17) is

Ak(x)=−
( 1
k3

∫ ∞

0
e

k
x′

(
1− k

x′

)
fk(x′)

)(
e

k
x

(
1− k

x

))
+ 1
k3

(
e

k
x

(
1− k

x

)∫ ∞

x
e

−k
x′

(
1+ k

x′

)
fk(x′)+e

−k
x

(
1+ k

x

)∫ x

0
e

k
x′

(
1− k

x′

)
fk(x′)

)
.

(5.19)

Our final solution for A(ζ, x) is obtained by substituting (5.16) and (5.18) (equivalently (5.17)
and (5.19)) into (5.10).

For a value of k that could be of either sign, the generalization of (5.16) is

Ak(x)=−
( 1
k3

∫ ∞

0
e−

|k|
x′

(
1+ |k|

x′

)
fk(x′)

)(
e

k
x

(
1− k

x

)
−e−

k
x

(
1+ k

x

))
+

1
k3

(
e

k
x

(
1− k

x

)∫ ∞

x
e

−k
x′

(
1+ k

x′

)
fk(x′)−e−

k
x

(
1+ k

x

)∫ ∞

x
e

k
x′

(
1− k

x′

)
fk(x′)

)
(5.20)

while the analogue of (5.17) is

Ak(x)=
(

1
|k|3

∫ ∞

0
e

−|k|
x′

(
1+ |k|

x′

)
fk(x′)

)(
e

−|k|
x

(
1+ |k|

x

))
− 1
|k|3

(
e

|k|
x

(
1− |k|

x

)∫ x

0
e

−|k|
x′

(
1+ |k|

x′

)
fk(x′)+e

−|k|
x

(
1+ |k|

x

)∫ ∞

x

e
|k|
x′

(
1− |k|

x′

)
fk(x′)

)
.

(5.21)

The expression (5.17) appears to blow up as |k| → 0, however, this divergence is illusory.
In order to see this we use the following two approximations:

e
∓
k

x
(
1± k

x

)
fk(x)≈ f0(x)+kf1(x)+

k2

2

(
f2(x)−

f0(x)
x2

)
+ k3

6

(
f3(x)−3f1(x)

x2 ±2f0(x)
x3

)
+· · · .49

(5.22)

49Here,
fn(x) = dn

dkn
fk(x)|k=0 .
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Inserting (5.22) into (5.17), it is easily verified that the integrand in this expression is
actually regular as k → 0. Concretely

A0(x) =
1
3

[∫ ∞

0

f0(x′)
x′3

+ 1
x3

∫ ∞

0
f0(x′)−

∫ x

0

f0(x′)
x′3

+ 1
x3

∫ x

0
f0(x′)

+
∫ ∞

x

f0(x′)
x′3

− 1
x3

∫ ∞

x
f0(x′)

]
= 2

3

[∫ ∞

x

f0(x′)
x′3

+ 1
x3

∫ x

0
f0(x′)

]
.

(5.23)

(5.23) naively appears to be singular as x→ 0, but once again this singularity is illusory.
Using the fact that f0(x) ∼ x3 in the small x limit, we see that the second term in the last
line of (5.23) actually scales like x. The first term on the same line scales like a constant,
and so gives the dominant small x contribution to A0

A0(x) ≈
2
3

∫ ∞

x

f0(x′)
x′3

. (5.24)

5.2 Metric correction in position space

In the previous subsection, we computed the correction to the metric in Fourier space in ζ.
In this subsection, we inverse Fourier transform to come back to the position space.

Our method is simple. We insert our solution for Ak(x), (5.20), into the definition

A(x, ζ) =
∫ ∞

−∞

dk√
2π
Ak(x)eikζ . (5.25)

We then substitute the second of (5.10) into the resultant expression. At this stage our
expression for A(x, z) contains three integrals; the integral over k in (5.25), the integral
over x′ in (5.20) and the integral over ζ ′ from the second of (5.10) (we use the symbol ζ ′
for the dummy integration variable that appears in the second of (5.10)). The integrals
over x′ and ζ ′ are weighted by the complicated function f(x′, ζ ′), and so are difficult to
actually perform. On the other hand, the integral over k is weighted only by the elementary
functions that appear in (5.20) and the second of (5.10). As a consequence, the integral
over k is easily performed. We relegate the details of this integral to appendix I. Performing
this integral gives us an expression of the final form

A(x, ζ) =
∫ ∞

−∞

dζ ′

2π

∫ ∞

0
dx′f(x′, ζ ′)Kx,ζ(x′, ζ ′) (5.26)

where (as we show in appendix I)

Kx,ζ(x′, ζ ′) =
1
2

((
ζ − ζ ′

)2 + 1
x2 + 1

x′2

)
log

(ζ − ζ ′)2 +
(

1
x + 1

x′

)2

(ζ − ζ ′)2 +
(

1
x′ − 1

x

)2

− 2
xx′

. (5.27)

(5.26) and (5.27), together with the formula for f(x′, ζ ′) presented in (4.49), may be regarded
as our final result for the correction of the AdS metric in response to the bulk gas.
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The function Kx,ζ(x′, ζ ′) is an effective bulk-to-bulk Greens function for the operator
that appears in (5.9). It is easy directly check that for x′ ̸= x,

∂2Kx,ζ(x′, ζ ′)
∂ζ2 + ∂

∂x

(
x4∂Kx,ζ(x′, ζ ′)

∂x

)
= 0 (5.28)

and, more generally that it obeys

∂2Kx,ζ(x′, ζ ′)
∂ζ2 + ∂

∂x

(
x4∂Kx,ζ(x′, ζ ′)

∂x

)
= −4πδ(x− x′)δ(ζ − ζ ′) , 50 (5.29)

as expected.

5.3 The large x limit

In this subsection, we compute the correction to the metric in the large x limit, and use
our result to obtain the boundary stress tensor.

5.3.1 Metric correction in the large x limit

In large x limit the Kernel Kx,ζ(x′, ζ ′) has the following form,

Kx,ζ(x′, ζ ′) =
8

3x3
x′

(x′2(ζ − ζ ′)2 + 1)2 +O
( 1
x4

)
(5.30)

Putting (5.30) in (5.26) at large x we get,

A(x, ζ) = 8
3x3

∫ ∞

−∞

dζ ′

2π

∫ ∞

0

dx′ x′ f(x′, ζ ′)
(x′2(ζ − ζ ′)2 + 1)2 (5.31)

As an algebraic check of (5.31) we compute its Fourier transform in ζ to find

Ak(x) =
1
x3 ×

(2
3

∫ ∞

0
e

−k
x′

(
1 + k

x′

)
fk(x′)

)
k > 0

= 1
x3 ×

(2
3

∫ ∞

0
e

k
x′

(
1− k

x′

)
fk(x′)

)
k < 0 .

(5.32)

This result exactly matches the large x limit of (5.16).

5.3.2 Boundary stress tensor

Moving back to unscaled coordinates, we find that the normalizable tail of the metric at
infinity is given by

(dt− dϕ)2

1− ω
×

8
3
∫∞

0
dx′

2π

∫ dζ′x′f(x′,ζ′)
(x′2(ζ−ζ′)2+1)2

r
√
1− ω

. (5.33)

The boundary stress tensor is then given by multiplying the coefficient of 1
r by 3

16πG [38].
Therefore, for the boundary stress tensor we get

Ttt =
κ

2πG(1− ω) 3
2

∫ ∞

0

dx′

2π

∫
dζ ′

x′f(x′, ζ ′)
(x′2(ζ − ζ ′)2 + 1)2 . (5.34)

50One can check this equation using the following property in 2d (ζ, y) plane, we know,
∇

′2
flat log

[
(ζ − ζ′)2 + (y − y′)2] = 4πδ(ζ − ζ′)δ(y − y′). Then use the coordinate transform, y = 1

x
.
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From (4.24) we see that the total boundary energy is given by∫
dϕdθ sin2 θTtt . (5.35)

However, the stress tensor is peaked about ζ = 0 and has an ‘order one’ width in ζ (more
details below). It follows that the stress tensor is highly peaked around θ = π

2 , and so
sin2 θ in (5.35) can just be set to unity, and (5.35) can be rewritten by changing integration
variables (from θ to ζ) as

E =
√
1− ω

∫
dϕdζTtt . (5.36)

Inserting (5.34) into (5.36) we find

E =
∫
dϕdζ

4
(1− ω)2

∫ ∞

0

dx′

2π

∫
dζ ′

x′f(x′, ζ ′)
(x′2(ζ − ζ ′)2 + 1)2 . (5.37)

The integral over ζ is easily performed, and we find

E = 1
(1− ω)2

∫
dϕdx′dζ ′f(x′, ζ ′) (5.38)

in perfect agreement with the bulk expression for the energy of the gas.
The expression (5.34) can also be used to estimate how peaked the stress tensor is

about θ = π
2 . It follows from (5.34) that at large values of ζ,

Ttt =
4

(1− ω) 5
2
× 1
ζ4

∫ ∞

0

dx′

2π

∫
dζ ′

f(x′, ζ ′)
x′3

. (5.39)

It follows that the fall off of Ttt with δθ is of the form

Ttt ∼
1√

1− ω(δθ)4 .

It follows that the energy contained at values of θ s.t. |π
2 − θ| < (δθ)0 is of order

1√
1− ω(δθ)3

0
.

Provided that (δθ)0 is held fixed as ω → 1, it follows that this energy tail is subleading
by a factor (1− ω) 3

2 relative to the total energy. It follows, in other words, that the gas
contribution to the boundary stress tensor is δ function localized about the equator θ = π

2 .

5.4 The small x limit

It is easy to verify that when x is small

Kx,ζ(x′, ζ ′) ≈
8x

3 (ζ2x2 + 1)2
1
x′3

.51 (5.40)

51The term 1
(ζ2x2+1)2 in (5.40) is well approximated by unity when ζ is either small or of order unity, but

not when ζ is of order 1/x, a fact that will become important below.
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It follows that the metric at small x (and arbitrary ζ) is given by

A(x, ζ) =
∫ ∞

−∞

dζ ′

2π

∫ ∞

0
dx′f(x′, ζ ′)Kx,ζ(x′, ζ ′)

= 8x
3 (ζ2x2 + 1)2

∫ ∞

−∞

dζ ′

2π

∫ ∞

0

dx′

x′3
f(x′, ζ ′)

= c0 x

(ζ2x2 + 1)2

(5.41)

where

c0 = 8
3
√
2π

∫ ∞

0

dx′

x′3
f0(x′) . (5.42)

Note this A(x, ζ) is zero at x = 0 and increases linearly with x at the leading order.
As an algebraic check of (5.41), we use this formula to compute the Fourier transform

(at zero frequency) of A(x, ζ) at small x. We find

A0(x) =
∫ ∞

−∞

dζ√
2π
A(x, ζ)

=
∫ ∞

−∞

dζ√
2π

c0 x

(ζ2x2 + 1)2

=
√
π

2
√
2
c0

= 2
3

∫ ∞

0

dx′

x′3
f0(x′)

(5.43)

in perfect agreement with the (5.24), the small x limit of (5.23)

5.5 Large ζ limit

Let us see the behaviour of the metric at large ζ. In this limit, the kernel takes the
following form:

Kx,ζ(x′, ζ ′) ≈
8

3ζ4x3x′3
. (5.44)

Integrating this with the source, we get the metric correction at large ζ as:

A(x, ζ) = 8
3x3ζ4

∫ ∞

0

dx′

x′3
f0(x′) =

√
2πc0
x3ζ4 . (5.45)

Note, in particular, that A(x, ζ) decays rapidly for large ζ. It follows that the correction to
the AdS metric is everywhere sharply localized around the equator of the S2. The constant
c0 is defined in (5.42).

5.6 Summary of our final answer for the bulk metric

It follows from the discussion of the previous subsubsections that our final answer for the
bulk metric of the Grey Galaxy solutions is given as follows.
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• For r ≪ 1√
1−ω

the metric is given by a Kerr-AdS metric (2.2) with ω = 1, i.e. by a
Kerr-AdS black hole with the paremeter m given by (2.23). The free parameter a of
these solutions forms one of the parameters of the Grey Galaxy saddles.

• At r ≫ 1 our solution is given by the pure AdS metric (the second of (5.2)) plus
two small correction terms δ1ds

2 and δ2ds
2. δ1ds

2 is simply the tail of the black hole
solution i.e.

δ1ds
2 = 2m

r

(
dt− a sin2 θ dϕ

)2
(1− a2 cos2 θ)5/2 (5.46)

(see (2.39)). When this tail is written in terms of the coordinates x, ζ, σ±, this term
in the metric is of order (1− ω) 3

2 .

• The second of these corrections is the metric response to the gas, and is given by

δ2ds
2 = κx2A(ζ, x)dσ−dσ− (5.47)

where A(ζ, x) is given in (5.26). The coordinates used in (5.47) are defined in terms of
r, θ, t, ϕ by (4.43) and (5.1). Note that δ2ds

2 is proportional to κ defined in (5.5), and
so is of order 1− ω. Note that δ2ds

2 is parametrically larger than δ1ds
2 (by a factor

of 1√
1−ω

) when measured pointwise. However, while δ1ds
2 is nonzero over a range of

order unity in θ, δ2ds
2 is nonzero over a θ range of order

√
1− ω. As a consequence,

these two metric contributions correspond to stress tensors that carry total boundary
energies of the same order. While the stress tensor from δ1ds

2 is smoothly spread
over the boundary sphere, the stress tensor from δ2ds

2 is δ function localized on the
boundary sphere.

6 Comparison with other solutions

6.1 Comparison with numerical evolutions

Consider a Kerr-AdS black hole with parameters [9]

m = 0.2375, a = 0.2177 . (6.1)

The reader can verify that this black hole lies in the shaded blue region of figure 3 (it sits on
the black point in that diagram) and so is superradiant unstable. In an interesting paper [9],
Chelser numerically perturbed this black hole and followed its subsequent evolution. He
constructed two different numerical solutions, starting with distinct initial conditions. On
both occasions he found that the solution initially evolved rapidly in time, settling down
into ever slower evolution at later times until the simulation was halted. Chesler observed
that his two initial conditions did not evolve to the same final configuration, but that their
two entropies (at the time of stopping the simulation) were very similar. In particular, the
horizon entropy, in each simulation, had increased by about 11.2%.

In this section, we will examine the implications of these findings for our proposal for
the endpoint of the superradiant instability of Kerr-AdS black holes.
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• Let us first analyze our proposed end point of this instability quantitatively. Using (2.5)
we find that the original Kerr-AdS black hole had an outer horizon radius given by

r+ = 0.2650 . (6.2)

Then using (2.13), it follows that the scaled charges and the chemical potentials of
this black hole are given by

ϵ = 0.26172, j = 0.05698, s = 0.12345, ω = 1.9810. (6.3)

As ω > 1, the black hole is the superradiant unstable. Now using (2.26), it is a simple
matter to compute the parameters of the black hole that sits at the centre of the Grey
Galaxy solution with the same charges: these are given by

ω = 1, a = 0.1276, ϵ = 0.2346, s = 0.1462, j = 0.0299. (6.4)

Note that the increase in entropy of the Grey Galaxy solution over the initial black
hole is by 18.4%. It follows that our Grey Galaxy black hole could be the eventual
end point of Chesler’s evolution, as it has a higher entropy than the configuration
reached at the time of stopping the simulation.

• The fact that Chesler’s two different initial conditions did not approach the same
configuration is also easily explained within our framework. Recall that the Grey
Galaxy solution represents a thermodynamical ensemble of configurations rather than
a particular field configuration. While we have argued that the ‘coarse-grained metric’
(i.e. metric in scaled coordinates) and, particularly, the boundary stress tensor has
small fluctuations, our solution still represents an ensemble, and we should not expect
two different initial conditions to reach precisely the same field configuration at any
given finite time.

• When Chesler stopped his simulation, his configurations were continuing to evolve
slowly. The rate of evolution was slower at the end than at the beginning of the
simulation. This fact matches the observation (see the introduction) that the time
scale for superradiant decays of large l modes diverges exponentially with l; as a
consequence, we should expect the time scale for settling into the final Grey Galaxy
saddle to be exponentially large.52

52If one were to continue Chesler’s evolution [9] to later times, we feel that it is plausible that the solution
will go through a cascade of (quasi-)resonator metastable states. These resonators will involve modes
with increasingly large l, in equilibrium with black holes whose ω approaches nearer and nearer to unity
from above. A very crude estimate of the entropy of a resonator in equilibrium with a mode with angular
momentum l would be given by the non interacting model involving this mode and the black hole. As we
have explained in the introduction, we expect this qualitative behaviour to continue until l is of order 1√

G
.

At these late times we expect the nature of our solution to change qualitatively (see appendix J) from a
solution in which a few bulk modes are dominantly occupied to a solution in which all modes with angular
momentum below a critical number are almost equally occupied. It would be very interesting to check this
expectation against numerical simulations like those of [9], but continued to longer times.

– 52 –



J
H
E
P
1
1
(
2
0
2
3
)
0
2
4

In summary, while the intriguing detailed results of [9] certainly do not concretely verify
our conjecture, they do not contradict it either. In fact, the observations of [9] appear to us
to be in broad general agreement with one quantitative aspect (the entropy increase) and
a couple of qualitative aspects (ensembles and slow evolution) of the picture spelt out in
this paper. It would certainly be interesting to have further concrete evidence — either for
or against our conjecture for Grey Galaxies as endpoints of the superradiant instability of
Kerr-AdS black holes.

6.2 Comparison with black resonators

We also compare our solutions with the black resonators in AdS4 [5, 16]. Black resonators
are solutions whose charges are below the ω = 1 (red) line of figure 1. The black resonators
by themselves have extra instabilities but have larger entropies than the unstable Kerr-AdS
black holes at the same charges if they exist in the blue region of figure 1 [5]. If our
Grey Galaxies are the final states at given charges E, J below the ω = 1 line of figure 1,
perturbating black resonators should also evolve to our solutions. So the Grey Galaxies
should have larger entropies than all known black resonator solutions at the same charges.
To test this, we compare the entropies of the black resonators reported in [5, 16] with those
of our solutions at the same charges.

We consider the case in which E and J are small, meaning that they are given by G−1

times a parametrically small number independent of G. (Still, E, J are at G−1 order so
we can rely on the two-derivative gravity.) In this case, [16] found an analytic expression
for the entropy of small black resonators for the ‘scalar mode’ in the metric perturbation
with l = m, based on earlier works on the ‘non-interacting mix’ picture of hairy black
holes [10–12]. The expression is given by

sbr = 4
[
ϵ− (1 +m−1)j

]2
. (6.5)

We expressed their formula with our rescaled quantities defined in (2.12), and m is the
angular momentum parameter of the perturbation mode. The subscript ‘br’ stands for the
black resonator. Since the numerical resonator solutions of [5] satisfy (6.5) very well (see
their figure 2), say for ϵ ≲ 0.11 and j ≲ 0.008, we will show here that the entropies of small
Grey Galaxies are always larger than (6.5) for arbitrary values of m.

To see this, recall that the entropy of our Grey Galaxy is given by that of the core
black hole at ω = 1. The charges carried by the core black hole and the total system have
the same ϵ− j. So ϵ− j can be parametrized by the rotation parameter a of the core black
hole at ω = 1, which is obtained from (2.26) by

ϵ− j = a
1
2

2(1− a) . (6.6)

To stay in the regime ϵ, j ≪ 1 in which the approximation (6.5) is valid, we take a ≪ 1,
thus obtaining

ϵ− j ≈ a
1
2

2 . (6.7)
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Figure 5. Entropies of Grey Galaxies (red curve), black resonators of [6] (various dots) and
Kerr-AdS5 black holes (black curve) at energy ϵ = 0.02. (The black curve ends at the extremal black
hole point on the lower right side.)

The entropy of the core black hole, or that of the Grey Galaxy, is given from (2.26) by

sgg = a

1− a
≈ a . (6.8)

Now consider the entropy (6.5) of small black resonators at the same ϵ, j. One finds

sbr < 4[ϵ− j]2 ≈ a ≈ sgg . (6.9)

The first inequality is only asymptotically saturated for m = ∞, and we plugged in (6.7)
and (6.8) at the second/third steps, respectively. We have thus shown that the small Grey
Galaxy solutions have larger entropies than small black resonators of [5, 16] at arbitrary m.

As we shall briefly comment in section 8, the key ideas of our Grey Galaxies are quite
simple and should generalize to other AdSD with D > 4. In particular, in AdS5, there
are two angular momenta J1, J2 and two angular velocities ω1, ω2. For instance, for an
over-rotating black hole satisfying ω1, ω2 > 1, we naturally conjecture that its endpoint
is given by the Grey Galaxy which contains the core black hole at ω1 = ω2 = 1. (See
section 8 for more discussions on the shape of the full solution.) Generalizing the discussions
of section 3.2, we consider the constant E − J1 − J2 plane in the 3-dimensional space of
(J1, J2, E) passing through the point of our Grey Galaxy charges. The core black hole
charge is where this plane meets the ω1 = ω2 = 1 curve. This way, we can identify the core
black hole parameters and compute the Grey Galaxy entropy by the Bekenstein-Hawking
entropy of the core.

In AdS5, many black resonator solutions were constructed at J1 = J2 [6], by employing
an U(1)×SU(2)R ⊂ SO(4) invariant ansatz and numerically solving the ordinary differential
equations of the radial variable. For instance, figure 7 of [6] shows the entropies of various
families of black resonators at fixed energy ϵ = 0.02 and different values of the angular
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momentum j. (See appendix K for our charge convention.) By following the procedure
explained in the previous paragraph, one can check that the AdS5 Grey Galaxies have
larger entropies than all the black resonators shown in figure 7 of [6] at same charges.
figure 5 shows the entropies of the Kerr-AdS5 black holes (black curve), various black
resonators (coloured dots, for different families with n = 0, 1, · · · , 6) and our Grey Galaxies
(red curve). They all carry energy ϵ = 0.02. The dots are taken from [6],53 while the
two curves are plotted as follows. To plot the black curve, one first solves the equation
ϵ(m, a) = 0.02 in (K.3) for m(a), and then plug this in (K.4) to obtain r2

+(a) by solving the
cubic polonimial equation for r2

+. Then plugging in m(a) and r+(a) into j, s in (K.3), one
obtains (j(a), s(a)) at ϵ = 0.02. The black curve of figure 5 is obtained by a parametric plot
of the last (j(a), s(a)). The red curve is obtained by plugging in (K.9) into s of (K.7) to
obtain the expression for s(ϵ− j), and then plotting s(0.02− j). The red curve is plotted in
the region in which the Kerr-AdS5 black hole is unstable, i.e. ω > 1. We see that, for all the
black resonators in this figure, our Grey Galaxies at the same charges have larger entropies.

6.3 Further collapse of the gas into a black hole?54

The Grey Galaxy configuration is one in which we have removed some energy (equal to
angular momentum) from the rotating black hole and put it in the chiral gas (this process
increases the entropy of the central black hole). The reader may wonder if it is possible
to further increase the entropy of our solution by collapsing the gas into a black hole that
revolves rapidly around AdS. This does not work, for a reason we now explain.

To very good accuracy, the gas that makes up the GG solution has E = J . On the
other hand a black hole revolving around the big central black hole has E > J . If the
moving black hole is small, this difference is also small, but it must be accounted for. For
this reason the gas cannot, by itself, collapse into a black hole.

The only way that such a black hole can be formed is if the required energy is somehow
extracted out of the central black hole. However such a process always turns out to lower the
entropy of the central black hole by an amount that is larger than the entropy created in the
newly formed small black hole. For this reason such a process is entropically disfavourable,
and so will not happen. In the rest of this subsection we explain this point in equations.

Let us suppose that the central black hole has energy E1 and angular momentum J1.
Let us suppose that the smaller black hole has rest energy and rest angular momentum
E2 and J2, and that it has been sent zooming around AdS by acting on the corresponding
‘black hole creation’ boundary operator with ∂n

z . It then follows that the total energy,
angular momentum, and entropy of our system is

E = E1 + E2 + n

J = J1 + J2 + n

S = SBH(E1, J1) + SBH(E2, J2)
(6.10)

Let us now compare this setup with a Grey Galaxy type configuration with energy and
angular momentum n put in the gas. The configuration (6.10) is entropically dominant

53We thank the authors of [6] for providing the numerical data to us.
54We thank A. Zhiboedov and Z. Komargodski for raising the question that led to this subsection.
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Figure 6. The black dot here depicts the Black hole with charges E1 + E2 and J1 + J2 defined
in (6.10). Its position is chosen at random. The middle blue curve is the extremal bound for the
black hole with charges E1 and J1 (all legal solutions lie above this curve). The green curve is
the extremal line for the black hole with charges E2, J2, but plotted in the E1, J1 plane. All legal
solutions lie below this curve. Therefore, the allowed values of E1, J1 lie in the shaded blue regions.
We have used mathematica to create a (roughly) 40× 120 grid in each of these two allowed regions,
and have explicitly checked, at each lattice point, that the entropy of the black hole with charges
E1 +E2 and J1 + J2 is always greater than the sum of the entropies of the black holes with charges
E1, J1 and E2, J2. We have repeated this computation for several different choices for the location
of the black dot within the shaded blue region.

only if
SBH(E1, J1) + SBH(E2, J2) > SBH(E1 + E2, J1 + J2) (6.11)

Note that the condition (6.11) is now one for stationary black holes (the zooming around
has left the equation). We believe (6.11) is never satisfied for values of (E1 + E2, J1 + J2)
that lie under the super-radiant curve (the red curve in figure 1).55 Analytically, it is easy to
check this is the case if E2 and J2 are small. At a few randomly selected values of E1 + E2
and J1 + J2, we have also numerically checked (see figure 6) that (6.11) is never obeyed for
any choice of the decomposition of charges.

In conclusion, the chiral gas cannot gain entropy by collapsing into a black hole.

7 Comments on supersymmetric black holes

Analogues of the solutions presented in this paper may well turn out to play a role in resolving
a puzzle about the spectrum of supersymmetric black holes in AdSD spaces for D ≥ 4. We

55In particular, if the point (E1 +E2, J1 + J2) lies below the extremal curve (blue curve in figure 1), then
it is impossible to decompose the charges into a sum of two nonzero terms.
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remind the reader of the puzzle in the familiar context of N = 4 Yang-Mills theory. Recall
that the bosonic part of the N = 4 superconformal algebra is SO(4, 2)×SO(6). The Cartan
subgroup of this algebra is spanned by the energy, the U(1) rotations in SU(2)L and SU(2)R,
and the three Cartans, H1, H2, H3 of SO(6). To make our point in a simple manner, it is
useful to specialize to a subsector of states of the theory: states with H1 = H2 = H3 = H,
and states whose angular momentum lies entirely in SU(2)L (with z angular momentum
Jz). The Cartan charges in this sector are the energy, H and Jz. The BPS bound is

E ≥ 2Jz + 3H .

One might, naively, have expected there exist supersymmetric black holes (saturating the
BPS bound) for every value of Jz and H . In fact, such black holes — the so-called Gutowski
Reall black holes [39] — are actually known only on a curve in H,Jz space. Remarkably
enough, black holes everywhere on this curve have ω = 2 (ω is the chemical potential dual
to Jz) and µ = 3 (µ is the chemical potential dual to H).

What is the field theory interpretation of the fact that Gutowski Reall black holes exist
only on a curve in J −H space? This observation would naively appear to suggest that
the dual field theory hosts order eN2 states only at these particular charges and angular
momenta. Such a result seems hard to understand from field theory. As has been suggested
and studied in [11, 40, 41], it seems likelier that there exist new, previously overlooked,
black hole solutions away from this curve.

In this context, it is interesting that, at least, the revolving black hole solutions (see
appendix C) have a clear supersymmetric analogue. As we have explained above, the
classical entropy of Gutowski Reall black holes captures the contribution of supersymmetric
primaries. We can act on these primaries with the two supersymmetric derivatives which,
respectively, have (JL

z , J
R
z ) = (1

2 ,±
1
2). If we act on the primary with n copies of each of

these derivatives, we increase JL
z by n leaving JR

z unchanged. This mechanism would appear
to produce a two-parameter set of new black holes — the first parameter parameterizes the
Gutowski Reall black hole, and the second one characterizes its revolution. If the charge
relation for the black hole of [39] is J = f(H), the generalized 2-parameter solutions satisfy
J ≥ f(H) because they are the conformal descendants of the former. Thus revolving black
hole saddles appear to fill out at least one-half of the H − J plane! While they may or
may not be the dominant solutions, their entropy (which is easy to compute in the large
N limit, mimicking the work out of this paper) gives a lower bound on the entropy of
supersymmetric black holes as a function of H and Jz, at least over the over-rotating half
side of the H − J plane.

It is also possible that supersymmetric analogues of the Grey Galaxy saddles described
in this paper exist. Indeed the analysis of section 4 of the very recent paper [42] suggests
this may be the case. [42] studied the possibilities of perturbing Gutowski-Reall black holes
by small BPS scalar hairs, finding that such perturbed configurations exist for large enough
mode angular momentum. At least when the core BPS black hole is small and the gas of
BPS gravitons is dilute, it seems likely that the noninteracting mix picture of [10, 11] will
apply. We leave a detailed investigation of this fascinating possibility to future work.
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Figure 7. Phase diagram of solutions. Above the red line, the boundary field theory has a smooth
tensor spread over S2. Below the red line, the stress tensor has an extra delta function localized
contribution on top of the smooth distribution. The Grey Galaxy solution is a parametrically (in
Newton’s constant G) good approximation the true solution for every value of (E, J) in the blue
shaded region.

8 Discussion and future directions

In this paper, we have presented a conjecture for the microcanonical ‘Phase Diagram’
(entropy as a function of energy and angular momentum) of a large N CFT3 with a two-
derivative gravity dual. Our phase diagram is depicted in figure 7. Above the red curve
(in the pink-shaded region) the dual bulk solution is a Kerr-AdS black hole. Between the
red and blue curves (in the blue-shaded region) the dual bulk solution is the Grey Galaxy
constructed in this paper. The red curve denotes a (microcanonical) phase transition for the
system. The nature of the boundary stress tensor dual to these solutions constitutes an order
parameter for the phase transition. Just above the red line, the stress tensor is smoothly
distributed over S2. As one crosses the red line, along with the smooth distribution, the
stress tensor includes a contribution that is highly localized around the equator of the
boundary S2. This localized term becomes a delta function in the large N limit. The
presence of this delta function is the boundary smoking gun for the Grey-Galaxy phase.

While we conjecture that Grey Galaxies dominate the micro-canonical ensemble in the
blue region of figure 7, we emphasize that these solutions never dominate the canonical
ensembles: they are always sub-leading compared to the thermal gas. Viewed as saddle
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points of these ensembles, they are not even stable. Their status in this regard, we believe,
is similar to that of small Schwarzschild black holes in AdS.

It is interesting to contrast the central proposal of this paper with the endpoints of
the superradiant instabilities of charged black holes in AdS, that were extensively studied
about 15 years ago. In that case, the endpoints were superfluid hairy black holes — see
e.g. [43–45]. An explicit time evolution simulation was also performed that indeed ends in
the expected hairy black hole solution [46]. There are three main qualitative differences
between these hairy black hole solutions and the ‘Grey Galaxies’ presented in this paper.
First, Grey Galaxies are black holes in the background of a gas of a very large number of
modes no one of which is macroscopically occupied, while the superfluid hairy black holes
describe black holes immersed in a macroscopically occupied Bose condensate of a single
mode. Second, while the condensate that supports hairy black holes lives in the vicinity of
the black hole, the gas that supports Grey Galaxies dominantly lives far away from the
black hole. Third, while hairy black holes represent a single classical configuration, Grey
Galaxy saddles are an ensemble of configurations. Moreover, the ensemble in question does
not exist in the purely classical theory but is stabilized by quantum mechanics.56

In this paper, we have focussed on the study of large N CFTs whose dual description
is Einstein gravity in the bulk. While the physics that underlies our Grey Galaxy solutions
makes crucial use of the large N limit, it seems to us that the two derivative nature of the
bulk description did not play a qualitatively crucial role. For concreteness let us consider
ABJM theory parameterized by N and λ. In this paper, we have constructed the ‘phase
diagram’ of this theory (as a function of E and J) at large N and large λ. Let us now
consider the same theory at large N but a fixed finite value of λ. Since the thermodynamic
charges of black holes are, presumably, continuous functions of 1

λ , it follows that the ‘phase
diagram’ of Kerr-AdS black holes in such a theory will be qualitatively similar to figure 1, at
least when the fixed value of λ is large. It seems likely to us that the dominant gravitational
phase below the (analogue of the) red line in figure 1 will continue to be given by the
analogues of Grey Galaxy solutions, which, we conjecture, will continue to be distinguished
by the presence of a δ function contribution to the boundary stress tensor even at finite
values of λ. It would be very interesting to further investigate this question.

56The thermodynamics of the gas of any classical field theory suffers from the ultraviolet catastrophe.
This paradox is famously resolved in quantum mechanics. In the current context, the ultraviolet catastrophe
shows up in (3.6). The classical version of (3.6) is obtained by Taylor expanding the exponential in that
formula at a small value of its argument, and is given by

lnZ =
∞∑

n,l=0

2l∑
a=0

− ln (β(∆ + 2n+ ωa) − β(1 − ω)l) ,

an expression that is clearly divergent. It follows that the quantum nature of the underlying bulk theory is
essential to the Grey Galaxy solutions. As we have explained in the introduction, the Grey Galaxy solution is
classical in a coarse grained sense, even though it is sourced by a quantum gas, only because all fluctuations

— quantum as well as statistical — are suppressed, in this solution, by the central limit theorem. In other
words, the classical description applies to our solution for the same reason that the hydrodynamics of a
highly quantum liquid — like strongly coupled N = 4 Yang-Mills — is parametrically well described by
classical equations at large N .
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From the point of view of the field theory, the black hole part of the Grey Galaxy
solution is a ‘quark-gluon plasma’; an interacting configuration of N2 ‘gluons’. On the other
hand, the gas part of the Grey Galaxy solution is composed of local singlets, and so can be
thought of as the moral analogue of ‘glue-balls’. In field theory terms, as ω is scaled to unity,
the quark-gluon plasma manages to increase its entropy by expelling fast-rotating glue-balls.
These glue-balls carry very large angular momentum, and so are sharply localized around
the equator of the boundary S2, accounting for the δ function contribution to the stress
tensor. It would be very interesting to understand this phenomenon — in any reasonable
approximation — directly in the field theory. In this context we note that Grey Galaxy
solutions have several similarities with the field theory configurations studied in [47]. It
is possible that the effective descriptions of [47] will allow us to better understand the
dynamics of Grey Galaxies.

As we have mentioned in section 7, it is even possible that Grey Galaxy solutions have
supersymmetric analogues. If this turns out to be the case, it would likely allow for a more
precise understanding (e.g. at finite N) of the solutions presented in this paper.

As we have explained in subsection 1.5, ω > 1 Kerr-AdS black holes are classically
unstable, and we expect classical perturbations of such black holes to evolve into Grey
Galaxy solutions. It is interesting that quantum effects also lead to a similar evolution,
even in the absence of a classical perturbation. The relevant quantum effects are simply
Hawking radiation. Over time scales of order unity, this effect will populate low l modes,
at (classical) amplitudes of order G. These amplitudes will then be amplified to order
unity over time scales of order (− lnG) by the exponential classical instabilities. From this
point on we expect the subsequent evolution of the system to proceed along the lines of the
discussion in subsection 1.5. Note that the delay in the quantum process, compared to its
classical counterpart, is much smaller than the time scales associated with the complete
formation of the Grey Galaxy solution.

Although the focus of this paper has been on Grey Galaxy solutions, in appendix C we
have also presented a detailed construction of another class of new solutions, the so-called
Revolving Black Hole saddles. These new solutions are intriguing because they describe
large classical black holes in a coherent quantum state. These configurations are essentially
descendants of classical black holes that sit at the centre of AdS, and so are extremely
easy to construct. As their construction involves only symmetry analysis, it seems to us
that the construction is precise enough to be applied to supersymmetric contexts. As we
have explained in section 7, the simple construction of appendix C already appears to have
nontrivial implications for the spectrum of supersymmetric states in, e.g., AdS5 × S5. It
would be very interesting to further investigate this point.

As RBHs are (marginally) entropically subdominant compared to Grey Galaxy solutions,
we expect that RBHs will eventually decay into GGs. The net effect of such a decay process
will be to transfer the rotational angular momentum from the RBH orbital motion into
the gas. This dynamics would presumably be initiated by the Hawking radiation of gas
modes (recall that the gas would like to be very heavily populated at ω = 1 − O(G)
as is appropriate for RBHs), but the qualitative nature of the subsequent dynamics is
not completely clear to us. We leave further exploration of this interesting question to
future work.
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An unusual feature of RBHs is that they are macroscopic objects that occupy highly
quantum wave functions. Standard lore asserts that quantum states for macroscopic objects
decohere rapidly. It would be interesting to work out this lore in the context of RBHs.
In this context we emphasize that the charges of any particular localized revolving black
hole are very different from those of the RBH. Perhaps decoherence effects effectively
turn the RBH state into a density matrix that gives equal weight to every position of the
(now localized) revolving classical black hole. It would be interesting to better understand
this point.

The bulk gas stress tensor, in the Grey Galaxy solution, is a sum of terms, one associated
with each bulk field. In this paper, we have presented detailed formulae for the ‘gas stress
tensor’ (and consequent metric back-reaction) due to a bulk scalar field dual to a boundary
operator of dimension ∆. It would be useful to work out the corresponding expressions for
bulk fields of higher spin (and, in particular, the bulk metric). Given that we already know
that the total energy in the higher spin gas is given in terms of the energy of associated
effective scalars by (3.8) and (3.9), it is tempting to conjecture that a similar formula holds
also for the corresponding local bulk stress tensors. We leave these issues to future work.

Through this paper, we have focussed on the special case of the superradiant instability of
Kerr-AdS4. As we have mentioned in the introduction, similar instabilities exist in AdSD for
all D > 4.57 Although the precise technical details will change from dimension to dimension,
it seems clear that Grey Galaxy (and, certainly, revolving black hole) solutions will have
analogues in every D > 4. It would be interesting to explicitly construct these solutions.

While we expect some qualitative aspects of the D = 4 solutions to persist in all
dimensions, we also expect some qualitatively new features to arise in D > 4. Our
expectation stems from the fact that the number of inequivalent angular velocities is
[D−1

2 ] > 1 for every D > 4. For instance, AdS5 contains a spatial S3. Let us imagine
that this S3 is embedded into C2, and the two complex numbers in C2 are called z1 and
z2. In this situation, we have two angular velocities, ω1 and ω2, that are respectively dual
to rotations in the z1 and z2 planes. This observation suggests that we will now have
three qualitatively different varieties of black holes. The first variety consists of Kerr-AdS
black holes with |ω1| < 1 and |ω2| < 1. The second variety consists of black holes with
one of the two angular velocities — let us say ω1 — parametrically near to unity, while
the second angular velocity is less than and well separated from unity. We expect the
Grey Galaxy solution in this situation to be closely analogous to those presented in this
paper. In particular, we expect that the gas that makes up the galaxy will continue to be
centred around a two-dimensional disk of a large radius; the disk in question will live on
the plane z2 = 0.

The third kind of saddle is one in which ω1 and ω2 are both parametrically close to
unity. In this case, we expect a halo spread on a large 4-dimensional spatial ball. For
instance, when ω1 = ω2 approach 1, the U(2) ⊂ SO(4) symmetry rotating z1, z2 is unbroken.
Since there are no preferred directions for the disks in this case, we expect a graviton halo

57In D = 3, on the other hand, the angular velocity of black holes never exceeds unity (ω tends to unity
from below as the black hole energy is lowered to extremality). As a consequence, black holes in D = 3 do
not suffer from the superradiant instability, and Grey Galaxy solutions do not exist in this dimension.
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whose stress-energy tensor depends only on the radial coordinate. It would certainly be
interesting to work all this out in detail. We leave this to future work.

Another new feature in AdSD in D > 4 is that a larger variety of black holes with
angular momentum exist in this case. For instance, there exist black rings [48] and black
Saturns [49]. It thus is possible that thermodynamically dominant solutions in D > 4 involve
these new elements in a nontrivial manner — perhaps together with Grey Galaxy-like
saddles. We also leave investigations of this point to future work.
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A A brief review of superradiant instabilities in AdS

Consider a charged rotating black hole in a flat space. Let the chemical potential and
angular velocity of this black hole, respectively, be denoted by µ and ω. Now consider a
fluctuation about the black hole background, of frequency f , angular momentum j and
charge q. If such a fluctuation is sent toward the black hole, one might expect that some
of it would be absorbed and the rest will be reflected. However, it was discovered over 60
years ago [2] that this is not always the case. When the fluctuation is such that

qµ+ jω > f, (A.1)

it turns out that more of the wave comes out than was sent in. In other words the wave
extracts energy, angular momentum and charge from the black hole. This remarkable
phenomenon is called superradiance.

Superradiance for AdS black holes differs from the flat space version in two qualita-
tive respects.

• In flat space one asks about the fate of a wave packet, at a particular frequency,
that is incident on a black hole. The question is posed in the language of scattering
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(computation of a reflection amplitude) and makes sense precisely because free asymp-
totic states exist in flat space, and their properties are unaffected by the presence
or absence of a black hole at the centre. In contrast, AdS is a box. The form (and
spectrum) of generic fluctuations about empty AdS, and AdS with a black hole, are
different from each other. Consequently, a scattering-type superradiance question
cannot even be posed for generic fluctuations, about a generic AdS black hole solution.
There are two exceptions to this rule. First, if the black hole under study is small, in
AdS units, then local physics is approximately that of flat space and flat space results
apply.58 Second, if the fluctuation mode under study has parametrically large angular
momentum then the centrifugal barrier ensures that it dominantly lives at a very
large value of the radial parameter, and interacts very weakly with the black hole.
Superradiant-type scattering computations are, thus, well-defined for such modes even
for large black holes.

• When the superradiant phenomenon is well defined in AdS, its consequences are very
different from flat space. Recall that the superradiant enhancement for modes that
obey (A.1), is a ‘one off’ condition in flat space. In AdS, however, this is not the
case. A mode incident on the black hole is amplified. This mode hits the AdS wall
and is reflected back onto the black hole, which once again amplifies it. This process
continues ad infimum giving rise to exponential instability.

Let us now suppose we are in a parametric regime where the superradiant phenomenon
is approximately well-defined in AdS (either because the black hole is small or because the
modes in question have high angular momentum). In that case, the mode that first goes
unstable is the one with the largest ratio of q

f (in the case of charged black holes) or of
j
f (in the case of rotating black holes). Let us first consider the case of a charged field of
charge q propagating in the background of a charged, non-rotating, black hole. In this case,
all fluctuation modes carry a charge q. Consequently, the highest ratio of q

f is achieved
for the fluctuation mode with the lowest energy. This mode is the ‘primary state’ of the
corresponding charged field (its frequency is the scaling dimension ∆ of the dual operator).
The mode in question carries zero angular momentum. As we have explained above, the
language of superradiance is only appropriate for the study of such modes for small black
holes. In this case, it was demonstrated in [10] that the black hole is unstable if µq > ∆,
and that the end point of the instability is a charged black hole sitting inside a cloud of the
scalar (which is approximately in its primary state). As the black hole is so much smaller
than the scalar cloud, these two elements interact only weakly with each other. Roughly
speaking, the superradiant instability produces a Bose condensate of a single scalar mode,
weakly interacting with the black hole. This picture is accurate when the black hole is
small. It is corrected, order by order, in a power series in the black hole radius, and can be
qualitatively inaccurate when the black hole radius exceeds the AdS scale.

With all this preparation, let us now consider the case of prime interest to this paper,
namely the case of a rotating black hole in AdS that is not necessarily small in AdS units.

58This intuition was used by [10] to compute the threshold of superradiant instabilities for small charged
black holes in AdS and to compute the endpoint of the superradiant instability in this case.

– 63 –



J
H
E
P
1
1
(
2
0
2
3
)
0
2
4

According to (A.1), the modes that first go unstable are those with the highest ratio of
j
f . Now the CFT unitarity bound tells us that j

f is bounded from above by unity. The
fluctuation modes that most closely approach this bound are those with very large angular
momentum and correspondingly large energy. In the large j limit, the ratio of j

f tends to
unity for such modes.59 But, as we have explained above, these large angular momentum
modes are precisely those for which the superradiant analysis is self-consistent (for black
holes of arbitrary size). Referring back to (A.1), we conclude that all rotating AdS black
holes are unstable when ω > 1. Given any ω > 1 (no matter how close ω is to unity) we
find that all modes with j greater than a critical value — and therefore an infinite number
of modes — are unstable. For this reason, the endpoint of the superradiant instability of
rotating black holes is qualitatively different from the endpoint of the instability for charged
(especially small charged) black holes.

B Free particle motion in AdSd+1

In this appendix, we review aspects of the classical and quantum description of free particles
in AdSd+1. The particles we study are dual to CFT operators with dimension ∆ and ‘spin’
s (for d > 3 the ‘spin’ s is a catchphrase for an irreducible representation of SO(d)).

B.1 Quantization and group cosets

First, consider the motion of a single spinless particle in AdSd+1. The phase space of this
system is the set of all inequivalent geodesics and is 2d dimensional (‘d positions and d

velocities’). Satisfyingly, this 2d dimensional phase space is completely generated by the
action of the symmetry group. Consider, for instance, a geodesic that sits at the centre
of AdS. SO(d) × SO(2) transformations map this geodesic back to itself. However the
remaining symmetry generators — those that live in the coset SO(d, 2)/(SO(d)× SO(2)) —
map it to a distinct geodesic. As the coset SO(d, 2)/(SO(d)× SO(2)) is 2d dimensional,60

it is plausible — and true — that the action of this coset action generates the full phase
space. In other words, the phase space is isomorphic to SO(d, 2)/(SO(d)× SO(2)). The
quantization of this phase space — with respect to the group invariant symplectic form
inherited from particle action — produces the spin-zero, dimension ∆ representation of
SO(d, 2). From the spacetime point of view, this Hilbert Space is the space of solutions of
the relativistic Klein-Gordon equation with m2 = ∆(∆− d).

The generalization to particles with spin is complicated by the fact that the spin degrees
of freedom of a particle are already quantum. These quantum degrees of freedom may be

59Consider an example. Under the state operator map these modes map to the operator ∂j−2
z Tzz. This

operator has z angular momentum j and dimension j + 1. In the limit that j is large f
j

tends to unity, and
so these modes lead to a superradiant instability in the background of a black hole with ω > 1.

60The infinitesimal generators of this coset are precisely the 2d Pµ and Kµ. We emphasize that it is not
the case that the classical geodesic at the centre of AdS is annihilated by Kµ: if this had been the case we
would have too few parameters in our geodesics. The fact that Kµ does not annihilate the geodesic at the
centre, even though it quantum mechanically annihilates the primary state- is analogous to the fact that a
annihilates the vacuum of the Harmonic oscillator, even though it does not act as zero on the phase space
point x = p = 0.
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obtained by the quantization of the appropriate co-adjoint orbits of SO(d)(see e.g. [50]).
These orbits are generated as follows. We start with an SO(d) charge ‘matrix’ (this is an
SO(d) Lie algebra element — but with quantized but otherwise arbitrary coefficients, see
below). Without loss of generality, we choose this algebra element to lie in the Cartan of
SO(d). The co-adjoint orbit is the submanifold, in the space of (adjoint valued) charges,
that is generated by the action of the symmetry group on this chosen Cartan element. When
the initial Cartan is chosen so that all quantized coefficients are nonzero, this subspace
is isomorphic to SO(d)/H (H is the Cartan subgroup of SO(d)). The quantization of
the coefficients of the Cartan generator is necessary for the consistency of the quantum
problem.61 When the SO(d) system is taken in isolation, the endpoint of this quantization
is the irreducible representation of SO(d) whose highest weights are determined by the
quantized coefficients that define the original Cartan element.

It follows that the full phase space for the motion of spinning particles in AdSd is
given by specifying both a geodesic and an SO(d) charge (an SO(d) coadjoint element).
Let us choose our starting phase space element to be a geodesic sitting at the centre of
AdSd, with co-adjoint charges lying in the Cartan. Let us suppose that the co-adjoint
representation under study is generic (the coefficients of all Cartan elements are nonzero). In
this case, the only symmetry group elements that leave both the geodesic and the co-adjoint
element unchanged are those in SO(2)×H. So the phase space, in this case, is identified
with the group coset SO(d, 2)/(SO(2)×H).62 The quantization of this coset produces the
corresponding representation of the conformal group SO(d, 2).63 From the spacetime point
of view, the Hilbert Space associated with this quantization is the space of solutions of the
relativistic higher spin equations in AdSd+1.

Notice that H ′ = SO(2)×H is simply the Cartan subgroup of SO(d, 2). Consequently
SO(d, 2)/(SO(2)×H) = SO(d, 2)/H ′. It follows that the quantization described above is
simply the co-adjoint quantization of the conformal group itself. This last statement is
exact and applies without restrictions.64

One way of understanding the connection between particle motion and co-adjoint
quantization of SO(d, 2) is to realize that every geodesic defines an SO(d, 2) charge vector
simply because it carries specific values of each of the (d+ 2)(d− 1)/2 SO(d, 2) Noether
charges. The discussion of the previous paragraphs explains that the charges label geodesics
(no two geodesics carry the same charge). It follows that the phase space of geodesics can
be identified with the coadjoint phase space.

The map between geodesics and charges can be developed as follows. To start with
let us evaluate the charges of our reference point in phase space: i.e. the geodesic at the

61For instance, consider the special case d = 3. In this case, the co-adjoint orbits are generated by the
action of the rotation group on charge vectors and so consist of two spheres. The spin s representation is
obtained by taking the symplectic form to be the round magnetic field on the S2 with s units of magnetic
flux. Flux quantization tells us that s must be an integer.

62In the special case d = 3, any particular unit vector on this S2 is left invariant only by rotations around
the vector’s axis, i.e. by an SO(2) ⊂ SO(3). Consequently, the phase space is now SO(3, 2)/(SO(2)× SO(2)).

63Even though the phase space now has a dimension that is larger than 2d, all but 2d parameters on this
phase space are compact, and their quantization produces the particles’ spin.

64In contrast, the description as the quantization of SO(d, 2)/(SO(2) ×H) = SO(d, 2)/H ′ applies only for
co-adjoint orbits that are generic, i.e. that have nonzero entries for all quantized coefficients.
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centre of AdSd — with SO(d) charge vectors to be Hi that lie in the Cartan of SO(d). The
spacetime SO(d, 2) Noether charges for this system lie in the Cartan of SO(d, 2), and in fact
are given by (∆, Hi) (∆ is the energy, i.e. the SO(2) charge). As we have mentioned above,
the most general classical solution is an SO(d, 2) rotation of our reference solution. The
charges of this new solution are thus the SO(d, 2) rotation of the adjoint element (∆, Hi).

In the next few subsections, we present a completely explicit construction of the ‘right
moving part of the phase space’, and also its quantization, the especially simple case d = 2.
We present this analysis for the following reasons:

• The right moving AdS3 phase space (and its quantization) constitute a submanifold
of the phase space of the motion of spinning particles in AdSd+1 (and a sub Hilbert
Space of this larger quantization). Moreover, this submanifold of phase space (and
subspace of Hilbert Space) turns out to be precisely the ones that will prove to be
relevant to the construction of revolving Black Hole solutions (see the next appendix).

• The discussion of spinning particles is particularly simple for the special case d = 2.
As the co-adjoint orbits of SO(2) are a point, the full phase space is simply the space
of geodesics. Consequently, it is much simpler to directly study this simple subspace
(and its quantization) than to study the full set of geodesics in AdSd+1, and then
focus on the solutions of interest.

B.2 Coordinates and symmetries in AdS3

Let us first study the action of the six-dimensional symmetry group SO(2, 2) on coordinates
in AdS3. AdS3 can be thought of as the submanifold

−X2
−1 −X2

0 +X2
1 +X2

2 = −1 (B.1)

of R2,2. The four embedding space coordinates can usefully be packaged into a 2× 2 matrix

X =
(
X−1 −X1 X2 −X0
X0 +X2 X−1 +X1

)
where detX = 1 (B.2)

(the condition detX = 1 reproduces (B.1)). Clearly the transformation

X ′ = fXf̄T (B.3)

(where f and f̄T are independent real65 2× 2 matrices, each of unit determinant) preserves
the condition detX = 1. It follows that SO(2, 2) = SL(2, R)× SL(2, R), a fact that is, of
course, well known.

In order to obtain intuition for the matrix parameterization of AdS3, ((B.2)) it is useful
to perform a few exercises. If we parameterize global AdS3 as

X−1 = cosh ρ cos τ
X0 = cosh ρ sin τ
X1 = sinh ρ cosϕ
X2 = sinh ρ sinϕ

(B.4)

65The reality condition follows from the requirement that X and X ′ are both real.
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then the time translation τ → τ +T is generated by the SO(2, 2) transformation that acts as

X ′
−1 = cosTX−1 − sin TX0, X ′

0 = cosTX0 + sin TX−1, (B.5)

while the rotation ϕ→ ϕ+Θ is the transformation that acts as

X ′
1 = cosΘX1 − sinΘX2, X ′

2 = cosΘX2 + sinΘX1 (B.6)

In other words, the f matrix

fA =
(
cosA − sinA
sinA cosA

)
(B.7)

generates time translation by A accompanied by a rotation by A, while the f̄ matrix

f̄B =
(

cosB sinB
− sinB cosB

)
(B.8)

generates time translation by B together with rotation by −B.66 Following usual conventions,
we say that the matrix (B.7) generates left moving time translations by A, while the
matrix (B.8) generates right moving time translations by −B.

Now consider a group f in the neighbourhood of identity, i.e. one that takes the form

I + fα,β,γ , fα,β,γ = ασ3 + γσ1 + β(iσ2) (B.9)

where α, β and γ are infinitesimals. fα,β,γ is a generator of SL(2, R), and transforms in the
adjoint representation of SL(2, R). In particular under a left moving time translation by A
this generator transforms as

fAfα,β,γf
−1
A = fα′,β′,γ′ (B.10)

with

α′ = cos 2A α− sin 2A γ

β′ = β

γ′ = α sin 2A+ γ cos 2A
(B.11)

It follows that the generator βiσ2 commutes with left moving time translations, and
so iσ2 should be identified with L0. On the other hand, α and γ transform like a two-
dimensional vector under left moving time translations. We can diagonalize this action as
follows. Define

α = Az +Az̄

γ = i (Az −Az̄)
(B.12)

66It follows that the choice A = −B = −Θ
2 gives a rotation by angle Θ while the choice A = B = T

2 gives
a time translation by time T .
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then the transformation of Az and Az̄ under left moving time translations is given by

A′
z = e−i2AAz

A′
z̄ = ei2AAz̄

β′ = β

(B.13)

It follows that Az and Az̄, respectively, parameterize infinitesimal translations and special
conformal transformations. Notice that Az and Az̄ are complex conjugates of each other.
The factors of i in (B.12) are one way of understanding the well-known equation

Pz = K†
z .

B.3 Geodesics in AdS3

In this subsection, we present a detailed description of the space of geodesics in the special
case d = 2, i.e. geodesics in AdS3. In this special case, we have 4 parameter space of
geodesics.

Consider a geodesic sitting in the centre of AdS3. The geodesic sits at X−1 = cos τ ,
X0 = sin τ with X1 = X2 = 0. The geodesic is obtained by varying over τ . The X matrix
corresponding to this configuration is

X =
(
cos τ − sin τ
sin τ cos τ

)
(B.14)

The only nonzero charges for this solution are

L0 = ihσ2, L̄0 = ih̄σ2 (B.15)

h and h̄ are the left and rightmoving weights of the dual d = 2 primary operator.
We now produce a new right-moving geodesic by acting on the original geodesic by

SL(2, R)/U(1), i.e. by the action
X ′ = Xf̄T (B.16)

where f lies in SL(2, R)/U(1). To start with let us take

f̄a =
(
cosh a sinh a
sinh a cosh a

)
(B.17)

It is easy to verify that the coordinates of this geodesic are given by

X ′
−1 = cosh a cos τ
X ′

0 = cosh a sin τ
X ′

1 = sinh a sin τ
X ′

2 = sinh a cos τ

(B.18)

We see that this geodesic sits at the fixed value of ρ, ρ = a and rotates in ϕ so that dϕ
dτ = 1.

This rotation is purely right-moving and approaches the speed of light as ρ → ∞. Note
that the particle is displaced in the X2 (rather than X1) direction at τ = 0.
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As the SL(2, R) transformation f̄a is purely right-moving, it leaves all left-moving
charges unchanged. However right-moving charges are transformed. The right-moving
SL(2, R) charges for this new geodesic are

Qa = (f̄T
a )−1Q0f̄

T
a = E (cosh 2a(iσ2) + sinh 2a σ3) (B.19)

Note that Qa is a boost of Q0 into the σ3 direction. The fact that the boost is in the σ3
rather than the σ1 direction is related to the fact that our geodesic is displaced in the X2
(rather than the X1) direction at τ = 0.

We can obtain a more general right-moving geodesic by choosing f in (B.16) to be
fAfa, i.e. by the construction

X̃ = Xf̄T
a f̄

T
A (B.20)

where, as above,

f̄A =
(
cosA − sinA
sinA cosA

)
(B.21)

The coordinates of this more general geodesic X̃ are given by
X̃−1 = cosh a cos(τ −A)
X̃0 = cosh a sin(τ −A)
X̃1 = sinh a sin(τ +A)
X̃2 = sinh a cos(τ +A)

(B.22)

This geodesic traverses the same orbit as (B.18) except that it is rotated on the circle by
ϕ→ ϕ+ 2A.

The charges corresponding to these configurations are also rotated

QA,a = (f̄T
A )−1(f̄T

a )−1Q0f̄
T
a f̄

T
A = h (cosh 2a(iσ2) + sinh 2a(sin 2A σ1 + cos 2A σ3)) (B.23)

So we see f̄A has rotated the charge — which was proportional to σ3 in (B.19) to a charge
proportional to (cos 2A σ3 + sin 2A σ1) in the new solution. In other words, the charge of
this new solution tracks the position of the particle at τ = 0.67

We have, so far, described the construction and charges of the 2 parameter set of
purely right-moving geodesics. The construction (and charges) of the 2 parameter set of
purely left-moving geodesics — and indeed of the most general 4-parameter set of left and
right-moving geodesics — proceeds along entirely similar lines. We do not pause to present
these constructions, as only the right-moving geodesics appear in the study of Revolving
Black Hole solutions in the next appendix.

B.4 Solutions of the wave equation in AdS3

In this section, we study the right-moving solutions of the wave equation in AdS3. In other
words, we find the quantum states that result from the quantization of the two-parameter
set of right-moving geodesics constructed in the previous subsection.

We will start by this section studying the motion of scalars, and then turn to the study
of spinning particles.

67Let us say this more clearly. From (B.22) it is clear that the effective geodesic equation is τ ′ = ϕ′ − 2A.
This 2A offset in the initial condition is precisely reflected in the rotation of charges QA,a by an angle 2A.
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B.4.1 Scalar motion in ρ, τ, ϕ coordinates

Let us first study the quantization of geodesic motion in AdS3 in the most straightforward
manner imaginable, i.e. by simply working out the minimally coupled scalar equation
in convenient coordinates, and examining the interplay with the group structure. This
subsubsection is a review of the analysis of [51].

The metric of AdS3 is given by

ds2 = − cosh2 ρ dτ2 + sinh2 ρ dϕ2 + dρ2 (B.24)

Let us define u = τ +ϕ and v = τ −ϕ. The paper of Maldacena and Strominger [51] informs
us that the Killing vectors for the leftmoving SL(2, R) are given by

L0 = i∂u

L−1 = e−iu
[cosh 2ρ
sinh 2ρ ∂u − 1

sinh 2ρ∂v +
i

2∂ρ

]
L1 = eiu

[cosh 2ρ
sinh 2ρ ∂u − 1

sinh 2ρ∂v −
i

2∂ρ

] (B.25)

The generators above obey the commutation relations

[L0, L±1] = ∓L±1

[L1, L−1] = 2L0
(B.26)

(we have discussed one SL(2, R). The second is given by the interchange u↔ v).
Define the Casimir operator L2 by

L2 = −L2
0 +

L1L−1 + L−1L1
2 = L−1L1 − L0(L0 − 1) (B.27)

Consider a primary state (annihilated by L1) with weight L0 = h. When acting on this
state, the Casimir evaluates to −h2 + h. Consequently, the wave equation takes the form

L−1L1 − L0(L0 − 1) = −h2 + h (B.28)

A similar derivation (B.28) also holds when we add a bar to every term on the l.h.s.
of (B.28) (recall that, for the operator dual to a scalar field, h̄ = h). These two equations
are consistent: using (B.25), and its barred version, it is easy to verify that

L−1L1 − L0(L0 − 1) = L̄−1L̄1 − L̄0(L̄0 − 1) = ∇2

4 (B.29)

so that (B.28) becomes
∇2Φ = −(2h)(2h− 2)Φ (B.30)

Recall that in the case of a scalar field, the famous AdS/CFT formula asserts that

∆(∆− d) = m2
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(here d is the field theory dimension, and ∆ is the scaling dimension of the field). In the
case d = 2 under study here, we find

2h(2h− 2) = m2 (B.31)

and so (B.30) is the minimally coupled scalar equation.68

The explicit form of the primary function (obtained from the condition that it is
annihilated by L−1 and L̄−1) is,

ψh,0,0 = c
e−ih(u+v)

(cosh ρ)2h
(B.32)

where c is a normalization constant.
Let us now define the descendants of the primary states as

ψh,n,n′ = (L−1)n
(
L̄−1

)n′

ψh,0,0 (B.33)

Clearly the L0 and L̄0 weights of these states are given by h+ n and h̄+ n′. By using the
explicit form of L−1 and L̄−1 we find the explicit expressions

ψh,n,0 = cn

(
e−i u tanh ρ

)n e−ih(u+v)

(cosh ρ)2h

ψh,0,n = c̄n

(
e−i v tanh ρ

)n e−ih(u+v)

(cosh ρ)2h

(B.34)

here, cn and c̄n are normalization constants. The formula for more general mixed descendants
— those obtained is much more complicated (it is the 2+1 dimensional analogue of (4.10)).
We will not need these expressions and do not present them here.

As we have mentioned above, our interest in right-moving solutions of the wave equation
in AdS3 comes from the fact that these solutions effectively produce solutions to the wave
equation in higher dimensional AdS spaces. In the next few paragraphs, we illustrate this
fact by direct comparison.

In (4.10) we have presented the most general solution to the radial part of the wave
equation in AdS4. Let us translate the wave functions (B.34) into the coordinates used
in (4.10). Using (B.4), the first of (B.34) can be rewritten in terms of the embedding space
coordinates. (4.1) and (4.2) can then be used to rewrite the embedding space coordinates
in terms of the coordinates used in (4.10). The net result of this exercise is the following —
the wave function (B.34) can be reexpressed in terms of the coordinates of (4.10) by making
the replacements

cosh ρ→
√
1 + r2, tanh ρ→ r sin θ√

1 + r2
.

68Equivalently

h(h− 1) = m2

4 −→ h = 1
2

(
1 +

√
1 +m2

)
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(the time and ϕ dependences remain unaffected between the two expressions). This replace-
ment rule turns the second of (B.34) into

ψh,0,n = e−it(2h+n)+iϕn sinl θrl

(1 + r2) l+2h
2

(B.35)

Let us now compare (B.35) with the most general solution in AdS4 presented
around (4.10). This solution is proportional to

e−it(∆+l+2n)Ylm(θ, ϕ)Fnl(r)

If we choose a = 0 then the spherical harmonic takes the simple form

Ylm ∝ eilϕ sinl θ

If we also choose n = 0 the hypergeometric function that appears in (4.10) reduces to
unity and

Fnl ∝
rl

(1 + r2) l+∆
2

Putting everything together, we find the wave function

e−i(∆+l)t+ilϕ sinl θrl

(1 + r2) l+∆
2

(B.36)

We see that (B.35) agrees exactly with (B.36) once we make the identifications 2h = ∆ and
n = l (n here is the symbol used in (B.34), denoting the descendent level). We see that the
solution to the AdS3 wave equations are, indeed, also solutions to the AdS4 wave equations,
as expected.

B.4.2 Scalar fields in embedding space

We will now repeat and generalize the analysis of the previous sub-subsection using the
embedding space formalism. In this sub-subsection, we continue to work with scalars: we
will generalize to the study of particles of spin n in the next sub-subsection.

Consider the R2,2 space in which AdS3 is embedded (see (B.38)). We can coordinatize
this embedding space as

X−1 = Tx−1

X0 = Tx0

X1 = Tx1

X2 = Tx2

(B.37)

where
−x2

−1 − x2
0 + x2

1 + x2
2 = −1 (B.38)

The xi themselves should be thought of as being determined by the three coordinates on a
unit AdS3. The metric of embedding space, in these coordinates, takes the form

ds2 = −dT 2 + T 2dΩ2
AdS3 (B.39)
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It follows that the Laplacian in embedding space is given by the equation

∇2 = − 1
T 3∂TT

3∂T + 1
T 2∇

2
AdS3 (B.40)

Let us now study harmonic functions (i.e. functions that obey ∇2f = 0) in R2,2. Let
us also demand that our functions are of homogeneity (degree) −2h = −∆ in the Cartesian
embedding space coordinates. It follows that, when acting on such functions, the operator

1
T 3∂TT

3∂T

gives −m2/T 2 where m2 = ∆(∆− 2). It follows such functions when restricted to the AdS3
sub-manifold, are solutions to the AdS3 Klein Gordon equation with the above-quoted value
of the mass.

We have thus found a very simple way to generate solutions of the scalar wave equation
in AdS3. We need simply construct Harmonic functions, of a specified homogeneity, in R2,2.

Let us now study the symmetry algebra, SL(2, R) × SL(2, R), in embedding space
language. It proves useful to define

W = X−1 + iX0√
2

W̄ = X−1 − iX0√
2

Z = X1 + iX2√
2

Z̄ = X1 − iX2√
2

(B.41)

Generators of the left moving SL(2, R), given in equation (B.25), take the following
form embedding space

L0 = 1
2
(
W∂W − W̄∂W̄ − Z∂Z + Z̄∂Z̄

)
L1 = Z∂W + W̄∂Z̄

L−1 = −Z̄∂W̄ −W∂Z

(B.42)

Similarly, the right moving SL(2, R) generators are given by

L̄0 = 1
2
(
W∂W − W̄∂W̄ + Z∂Z − Z̄∂Z̄

)
L̄1 = Z̄∂W + W̄∂Z

L̄−1 = −Z∂W̄ −W∂Z̄

(B.43)

Let us now identify the primary wave function. Any expression independent of W , Z̄
and Z is clearly annihilated by both L1 and L̄1. Consequently,

ψ = 1
W̄ 2h

(B.44)
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is clearly a primary state for a scalar of weight ∆ = 2h. As (B.44) is a function of W̄ only,
it is harmonic as required. Using W = cosh ρ e−i u+v

2 and Z = sinh ρ ei u−v
2 , it is easy to

check that (B.44) is indeed the same as (B.32).
By acting n times with L−1 or L̄−1 we find that

ψh,n,0 = 1
W̄ 2h

(
Z̄

W̄

)n

ψh,0,n = 1
W̄ 2h

(
Z

W̄

)n
(B.45)

These expressions are also easily checked against (B.34).69

Notice that the expressions in (B.45) are everywhere regular in AdS3, despite the fact
that they have powers of W̄ in the denominator. This is because W̄ unlike Z and Z̄ never
vanish on the AdS3 sub-manifold. This observation also explains why our expressions never
have Z or Z̄ in the denominator. The reason that we have W̄ , rather than W in the
denominator, is that we are looking for positive energy solutions (the wave functions that
multiply a rather than a† in canonical quantization).

B.4.3 Higher spin solutions in embedding space

Let us now attempt to generalize the analysis of the previous subsubsection to fields of
higher spin. In particular, we are interested in square integrable solutions of the Laplace
equation in embedding space (B.39)

∇2
AdS3S

µ1···µs = (−2h)(−2h+ 2)Sµ1···µs (B.46)

A spin-s primary solution also satisfies the following equations

LL0 S
µ1···µs = hSµ1···µs , LL̄0

Sµ1···µs = h̄ Sµ1···µs ,

LL1 S
µ1···µs = 0, LL̄1

Sµ1···µs = 0
(B.47)

where L denotes the Lie derivative.70,71

69Note that (B.45) are clearly homogeneous of degree −2h. Moreover, these functions depend only on
either Z or Z̄ (never both) and W̄ , and so consequently are harmonic.

70Here Lie derivative L of tensor Tµ1···µa
ν1···νb

with respect to vector Xµ is defined by,

(LXT )µ1···µa
ν1···νb

= X.∇Tµ1···µa
ν1···νb

− (∇cX
µ1 )T cµ2···µa

ν1···νb
− · · · − (∇cX

µa )Tµ1···µa−1c
ν1···νb

+ (∇ν1X
c)Tµ1···µa

cν2···νb
+ · · · + (∇νbX

c)Tµ1···µa
ν1···νb−1c

71It turns out that these equations have a consistent solution only when h̄− h = ±s.
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Primaries of the spin-s field are given very simply in terms of scalar primaries. It is
easy to check that these are given by,72

S(+),µ1µ2···µs = ψh,0,0L̄
µ1
1 L̄µ2

1 · · · L̄µs
1 , h− h̄ = s

S(−),µ1µ2···µs = ψh̄,0,0L
µ1
1 Lµ2

1 · · ·Lµs
1 , h− h̄ = −s.

(B.48)

Maximally rotating descendants are also given very simply in terms of their scalar
counterparts. The solutions have the following form,

S
(+),µ1µ2···µs

i = ψh,i,0L̄
µ1
1 L̄µ2

1 · · · L̄µs
1 , h− h̄ = s,

S
(−),µ1µ2···µs

i = ψh̄,0,iL
µ1
1 Lµ2

1 · · ·Lµs
1 , h− h̄ = −s .73

(B.49)

Using the SL(2, R) commutator relations one can also check that S(±)
n transforms under

SL(2, R) generators as follows,

LL0S
(+),µ1µ2···µs
n = (h+ n)S(+),µ1µ2···µs

n

LL1S
(+),µ1µ2···µs
n = n(2h+ n− 1)S(+),µ1µ2···µs

n−1

LL−1S
(+),µ1µ2···µs
n = S

(+),µ1µ2···µs

n+1

LL̄0
S(+),µ1µ2···µs

n = h̄ S(+),µ1µ2···µs
n

LL̄1
S(+),µ1µ2···µs

n = 0

(B.50)

LL̄0
S(−),µ1µ2···µs

n = (h̄+ n)S(−),µ1µ2···µs
n

LL̄1
S(−),µ1µ2···µs

n = n(2h̄+ n− 1)S(−),µ1µ2···µs

n−1

LL̄−1
S(−),µ1µ2···µs

n = S
(−),µ1µ2···µs

n+1

LL0S
(−),µ1µ2···µs
n = hS(−),µ1µ2···µs

n

LL1S
(−),µ1µ2···µs
n = 0

(B.51)

B.5 Probability distribution function and classical limit

The solutions (B.45) and (B.49) and not yet properly normalized. We work with the Klein
Gordon Norm. Consider a constant time surface, τ = u + v = i log

√
W
W̄

= τ0. The unit
normal vector to this surface is given by,

n̂ = − 1
cosh ρ(∂u + ∂v) =

i√
2

√W̄

W
∂W̄ −

√
W

W̄
∂W

 (B.52)

The induced metric on this constant time surface takes the form

ds2|τ=τ0 = sinh2 ρ dϕ2 + dρ2 (B.53)
72Using chain rule in Lie derivative, L1 ψh,0,0 = 0, and [L1, L1] = [L̄1, L1] = 0 one can easily convince

that (B.45) are indeed spin-s primaries.
73One can see for (LL1 )i descendant we used the S(+) primary from equation (B.48) since L1 does not

interact with the L̄1 vector indices and the problem reduces to exactly like the scalar problem. A similar
argument works for the anti-holomorphic (S(−)) solution.
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The volume form in the constant time surface is,
√
gind dρ dϕ = sinh ρ dρ dϕ =

√
2|Z| dρ dϕ (B.54)

Now consider the tensor

S
(+)
µ1µ2···µs = ψh,n,0L̄1 µ1L̄1 µ2 · · · L̄1 µs

S
(+)∗
µ1µ2···µs = (−1)sψ∗

h,n,0L̄−1 µ1L̄−1 µ2 · · · L̄−1 µs

(B.55)

Its Klein-Gordon norm is given by the integral, over the constant time surface of

dϕdt
√
gind i

(
S

(+)∗
β1···βs

n̂.∇S(+)β1···βs − S(+)β1···βs n̂.∇S(+)∗
β1···βs

)
= 1

2s−1

(
(2h+ n)

∣∣∣∣ ZW
∣∣∣∣+ 2s|ZW |

)
|ψh,n,0|2

= 1
2s−1 ((2h+ n) tanh ρ+ s sinh 2ρ) tanh

2n ρ

cosh4h ρ

(B.56)

In the problem of physical interest in this paper (see the next appendix) h, s and n are
all very large (and, generically, comparably large). In this case the spatial distribution of
the probability density (B.56) is dominated by the expression

tanh2n ρ

cosh4h ρ
.

This function is peaked at
ρ0 ≃ sinh−1

√
n

2h (B.57)

with a width of order 1
2
√
h
.

Note that the parameter s affects the spatial distribution of the probability density
only at the first sub-leading order in a large parameter expansion. In particular, the peak
of the probability density function lies at the same position for every value of s.

Similarly for the other solution

S
(−)
µ1µ2···µs = ψh̄,0,nL1 µ1L1 µ2 · · ·L1 µs

S
(−)∗
µ1µ2···µs = (−1)sψ∗

h̄,0,n
L−1 µ1L−1 µ2 · · ·L−1 µs

(B.58)

repeating the same calculation, we find that the probability density is given by
√
gind i

(
S

(−)∗
β1···βs

n̂.∇S(−)β1···βs − S(−)β1···βs n̂.∇S(−)∗
β1···βs

)
= 1

2s−1

(
(2h̄+ n)

∣∣∣∣ ZW
∣∣∣∣+ 2s|ZW |

)
|ψh̄,0,n|

2

= 1
2s−1

(
(2h̄+ n) tanh ρ+ s sinh 2ρ

) tanh2n ρ

cosh4h̄ ρ

(B.59)

The peak of probability density of the S(−)
n wave function lies at,

ρ0 ≃ sinh−1
√
n

2h̄
(B.60)
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Let us summarise. For all values of the spin of the primary field, the probability
distribution associated with the nth descendent wave function is highly peaked at the radial
location (B.61). However, the wave function is completely delocalized in the ϕ direction
(indeed the only dependence of the wave function on ϕ is through the phase eimϕ where
m is the z component of the angular momentum). In other words, this wave function is
extremely well localized around a particular classical orbit. But it is completely delocalized
in the ‘where on the orbit one happens to be’ coordinate.

B.6 Matching the geodesic and the wave function calculation

As we have explained in the previous subsection, in the limit that n and h̄ are both large,
the wave function corresponding to the nth descendent is strongly localized around the
radial location

ρ0 = sinh−1
√
n

2h̄
(B.61)

Localization of wave functions at large quantum numbers is usually associated with a
classical limit. In the current instance, the classical limit of the primary wave function is
the geodesic that sits at the centre of AdS, (B.14). The classical limit of the nth descendent
of this primary is a geodesic obtained by ‘boosting’ the primary, (the boost in question lies
in the right moving SL(2, R)). The boost in question should be chosen so that the resulting
geodesic carries L̄0 = h̄+ n. Precisely such geodesics were studied around (B.22). Recall
that these geodesics were obtained (see (B.20)) by acting on the geodesic at the centre of
AdS by fAfa from the right (see (B.17) and (B.7) for definitions). The L̄0 value of the
resultant geodesic is h̄ cosh 2a,74 and the resultant geodesic lives on an orbit located at

ρ = a. (B.62)

We see that the charge and radial locations of descendants and geodesics both agree with
each other if we choose (h, h̄) of the primary to match the corresponding charges for the
geodesic at the centre of AdS, and also make the identifications

n = 0
n′ = h̄(cosh 2a− 1)

(B.63)

We can invert the last of (B.63) to solve for a in terms of n and h̄. We find

a = sinh−1
√
n

2h̄
(B.64)

Comparing (B.64) and (B.61), we see that the wave function of the descendant state
ψh,0,n is peaked at exactly the same value of ρ as the location of classical orbits of a massive
particle of mass m that carries the same value of L0 and L̄0 charges.

Note that our matching procedure above has completely determined the value of a.
However, it has had nothing to say about the parameter A. Geodesics at the value of a
presented in (B.64) — but at all values of A — have the same charge and radial location

74The L0 value of this geodesic is unchanged at h.
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as the descendent wave function. We can understand this fact in the following terms. As
we have explained in subsection B.1, the phase space of geodesics in AdS3 is the coset
SO(2, 2)/(SO(2)× SO(2)) = SL(2, R)/U(1)× SL(2, R)/U(1). The left-moving part of this
co-set plays no role in the current discussion and so can be ignored: effectively our classical
phase space is SL(2, R)/U(1). The quantities a and A are parameters on this phase space.
The quantum wave function corresponding to the nth descendent is a state that is highly
localized in a but completely delocalised in A. As A determines the angular location of
the particle at τ = 0 (see (B.22)), the fact that the wave function does not single out a
particular value of A is simply a restatement of an already noted fact (the last paragraph
of the previous subsection), namely that the wave function is not peaked at a particular
position on the orbit, but is uniformly smeared all over the orbit.

The fact that no particular geodesic (B.22) can well approximate the descendent wave
function could have been anticipated from a consideration of SL(2, R) charges. As we
have explained in (B.23), the geodesics described at particular values of a and A all carry
definite SL(2, R) charges. Geodesics at a given value of a (but different values of A) all
carry the same value of L0. This is the value we have already matched with the descendent
wave function earlier in this sub-subsection. However, geodesics at different values of A
each carry a different, A dependent, values L̄1 and L̄−1 (see the second term on the r.h.s.
of (B.23)). In contrast, our descendent wave function is such that ⟨L1⟩ = ⟨L−1⟩ = 0 on this
state. It is thus impossible for our descendent state to be well localized around any one of
the classical geodesics (B.22). In fact, the descendent state is an equal linear combination
of these geodesics at all values of A, explaining how its average L1 and L−1 charges vanish.

We could obtain a state that is highly peaked in ϕ at t = 0 (and so more closely
resembles a classical geodesic) by considering a linear combination of descendants n. Let us
suppose we want to achieve a definite value of the location, ϕ, of our particle on its orbit,
with accuracyδϕ. This can be achieved by a state of the sort

ψh,ϕ0,δϕ =
M∑

k=−M

|ak|eikϕ0ψh,0,n+k (B.65)

where M ∼ 1
δϕ but M ≪ n. Here the functions |ak| are some smooth envelope functions

like a Gaussian that is maximum at k = 0, is symmetric in k ↔ −k, and is very small at
k = M . Roughly speaking we can think of |ak| = χ(k/M) where χ is a smooth function
that interpolates from zero (when its argument is minus one) to unity (when its argument
is zero) to zero (when its argument is one). Saddle point type reasoning tells us that this
wave function is peaked at a value of ϕ given by

ϕ− t = ϕ0 (B.66)

Note, comparing with (B.51) we see,

ϕ0 = 2A (B.67)

Using (see (B.51))

L̄0ψ̃h,0,n = (h+ n)ψ̃h,0,n

L̄1ψ̃h,0,n =
√
n(2h̄+ n− 1)ψ̃h,0,n−1

L̄−1ψ̃h,0,n =
√
n(2h̄+ n− 1)ψ̃h,0,n+1

(B.68)
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it follows that, on such a state in large h, n limit,

⟨L̄1⟩ =
(
⟨L̄−1⟩

)∗
= ei 2A

√
n(2h̄+ n) (B.69)

Using (B.64) allows us to re-express (B.69) as

⟨L̄1⟩ =
(
⟨L̄−1⟩

)∗
= ei 2Ah sinh(2a) (B.70)

in precise agreement with the value of the off-diagonal charge in (B.23).

B.7 Primary and descendant contributions in the saddle point approximation

As we have explained in great detail in subsection B.1, the state space of an irreducible
representation of SO(d, 2) may be obtained from the quantization of geodesics (plus the
co-adjoint orbits of SO(d) charges) in AdS. Similarly, the thermal partition function over
this state space may be obtained by performing a world line path integral over particle
trajectories in thermal AdS space.75

In the limit that ∆ is very large (with spin held fixed) the path integral over worldline
trajectories (that wind once around the thermal AdS circle) may be computed in the saddle
point approximation. The saddle point geodesic (the one with the shortest Euclidean length)
sits at the centre of AdS space,76 and its contribution to the path integral is e−β∆.

We have still to perform the integral over the SO(d) co-adjoint orbit, and also the
integral over fluctuations of the trajectory over its saddle point value. The first of these
produces the partition function over the SO(d) representation in which the particle lies.
Combining it with the saddle point value gives us the partition function overall primary
states, ZPrimaries.

The one loop path integral over fluctuations of the trajectory about this saddle point
captures the contributions of descendants, and so evaluates (in the special case d = 3) to

1
(1−e−β(1−ω))(1−e−β(1+ω))(1−e−β) . Putting these pieces together we obtain (for d = 3)

Z = e−β∆∑m=s
m=−s e

βωm

(1− e−β(1−ω))(1− e−β(1+ω))(1− e−β)
. (B.71)

(where we have used the fact that when d = 3 and in the spin s representation

ZPrimaries = e−β∆
m=s∑

m=−s

eβωm

Of course, this is the exact answer for the partition function over the given (long) SO(3, 2)
representation module.

75More precisely, this partition function is obtained by restricting particle trajectories to those in which
the worldline circle winds the spacetime circle precisely once. These are the trajectories we study in this
subsection. Trajectories that wind n times capture the contributions of n particles in AdS: summing over all
such windings yields the partition function over the Fock Space of particles in AdS. As mentioned above,
our interest, in this section is in the partition function over the single-particle Hilbert Space, so we restrict
our path integral to trajectories that wind the time circle exactly once.

76The centre of AdS has the following definition. AdS4 space hosts a unique time-like geodesic that is
everywhere tangent to the Killing vector ∂t where t is the global time. Translations ∂t are generated by
the energy operator E. Through this paper, we refer to any point on this geodesic as lying at the centre of
AdS4. Note that the notion of a centre only makes sense once we have made a particular choice of E (or
global time). Of course the entropy S(E, Jz) and partition function Z[β, ω] are also meaningful only once
we have made such a choice.
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We emphasize that the saddle point contribution to Z captured only the contribution of
one primary state. The contribution of all other primary states — as well as the contribution
over descendants came from the one-loop determinant over this saddle point.

In the discussion above we were able to perform the integral over particle trajectories in
the saddle point approximation, but were constrained to perform the integral over co-adjoint
orbits exactly (in order to obtain the group character of the primaries in the numerator
of (B.71)). The situation in this regard simplifies if s, like ∆, is also large. In this, the
integral over the co-adjoint orbit can also be performed in the saddle point approximation.
To see how this works let us, as above, specialize to the case d = 3. In this case, the saddle
point configuration is the one in which the coadjoint charge vector — whose length is s
-points in the positive z direction (we assume that ω is positive). Consequently, the saddle
point approximation to the partition function is simply

e−β∆+βωs

The exact answer (B.71) is this saddle point answer times the extra factor∑2s
a=0 e

−βωa

(1− e−β(1−ω))(1− e−β(1+ω))(1− e−β)
(B.72)

Up to exponential accuracy in s,77 we can ignore the upper limit of the summation in (B.72)
and approximate (B.72) as

1
(1− e−βω)(1− e−β(1−ω))(1− e−β(1+ω))(1− e−β)

(B.73)

(B.73) is easy to understand. Recall that the phase space, in the case under study,
is 8 dimensional. 6 of the 8 coordinates have to do with the position and velocity of
the particle in AdS4, while the remaining two coordinates are locations on the S2 that
parameterize SO(3) co-adjoint orbits. Moving to Lorentzian space for a moment, we might
the linearization about this saddle point configuration (in the 8-dimensional tangent space
of phase space) to yield 4 normal mode oscillator degrees of freedom. The determinant
of the Euclidean path integral should, then, reduce to the product of thermal partition
functions of these four normal mode oscillators. This exactly matches the form of the final
result (B.73), provided the four normal modes have the following charges.

• One of the normal modes carries angular momentum −1 and energy zero. This mode
arises from the degrees of freedom in SO(3) co-adjoint space.

• The remaining three normal modes each carry unit energy, but carry angular momenta
1, −1 and 0 respectively. These modes describe wiggles of the geodesic in AdS4.

The contribution of each of the four normal modes produces a factor of the form (C.2),
yielding the four factors in the denominator in (B.73).

77In the next appendix s will be of order 1
G

. Consequently, this approximation is good for all orders in
perturbation theory.
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We conclude that the exact answer for the thermal partition function (B.71) can be
reproduced, up to exponential accuracy in the saddle point approximation by retaining
only the saddle point and determinant contributions. The determinant is generated by four
normal modes

C Revolving black hole solutions

In the introduction (see subsection 3.3.2) we have briefly discussed the divergence of
entropy leading to the construction of the sub-leading ‘revolving black hole’ solution. In
this appendix, we elaborate on the thermodynamics and the physical interpretation of
these solutions.

C.1 Zero mode contribution to the black hole determinant

In subsection B.7 we have explained that the world line path integral for large ∆ and large
spin particles in thermal AdS can be performed in the saddle point approximation. The
saddle point captures the contribution of the highest spin state to the partition function,
while the determinant around the saddle point captures the contribution of all other
primaries plus descendants.

Now Kerr-AdS black holes are also classical saddle points that sit at the centre of AdS
space. Of course, black holes capture the contribution of an ensemble of representations of
SO(d, 2) rather than the contribution of a single representation. Given the discussion of
subsection B.7, it is natural to expect (and we conjecture) that the classical entropy of a
spinning black hole (whose spin, for simplicity, lies in a single two plane, let’s say the 12
two plane) approximately computes the entropy of only the highest spin primaries. The
contribution of all other primaries — as well as of descendants — will be captured by the
one-loop determinant.

We now describe, in much more detail, precisely how we expect this to work at the
technical level. It was demonstrated in [34, 35] that the one loop partition function about
a Euclidean black hole is given by a product of factors, one associated with each of the
quasinormal modes of the black hole. This observation is the black hole analogue of the
well-known fact (one we have used extensively in the main text, as well as at the end of
appendix B.7) that determinant around (say) thermal AdS is the product over terms, one
associated with each of the definite energy solutions of the Lorentzian theory. Each of these
individual terms is simply the partition function

Tre−βH+ωβJ (C.1)

over the Hilbert Space obtained by quantizing the phase space generated by the corresponding
Lorentzian solutions. If the mode in question has energy E and angular momentum J , its
contribution to the partition function is given by

1
1− e−βE+ωβJ

(C.2)

The chief new element that arises in the case of Black Holes is that the quasi-normal
modes have complex frequencies. As a consequence, their contributions to the determinant

– 81 –



J
H
E
P
1
1
(
2
0
2
3
)
0
2
4

are that of a harmonic oscillator with friction [34, 35]. If the black hole under study
happens to possess some normal modes (modes whose frequencies happen to be real) then
the contribution of these modes to the black hole determinant continues to take the usual
form (C.1), i.e. the form (C.2). While almost all quasi-normal modes around Kerr-AdS
black holes have complex frequencies, one class of modes has real frequencies. These are
the modes that are generated by the action of the symmetry group SO(d, 2) on the black
hole solution.78 The manifold of solutions so obtained is precisely the co-adjoint orbit
(see subsection B.1) associated with a primary, whose highest weights are the spins of the
original black hole (the one that sits at the centre of AdS). The phase space thus obtained
is precisely the one described in subsection B.1. It follows that the quantization of this
phase space gives the answer described in subsection B.1.

Let us specialize, for concreteness, to the special case of a rotating black hole with spin
s in AdS4. This is precisely the case studied at the end of subsection B.7. As explained
in that subsection the space of black hole solutions so obtained is 8 dimensional. At the
nonlinear level, this space is isomorphic to the group Coset SO(3, 2)/(SO(2)× SO(2)) (see
subsection B.1). However the determinant around the Kerr-AdS black hole saddle does not
see this full nonlinear manifold of gravitational solutions, but only accesses the tangent space
around the saddle point. We studied the quantization of this tangent space under (B.73).
As explained there, the tangent space consists of four normal modes, whose energies and
angular momenta are completely determined by symmetry considerations, and are given as
explained at the end of subsection B.7. We have one mode with zero energy and angular
momentum −1, together with three modes with unit energy and angular momenta 1, 0 and
−1. The formulae of [34, 35] then tells us that the contribution of these modes to the black
hole determinant is given by (B.73).

To reiterate, symmetry considerations assure us that the quasinormal mode analysis
about this d = 4 Kerr-AdS black hole will have four normal modes with charges described
above. The contribution of these modes to the determinant is (B.73). In the next subsection,
we will now explore the physical consequences of these technical results.

C.2 Divergence from descendants

The physical importance of the contribution (B.73) to the partition function is the following.
The factor 1

(1−e−β(1−ω)) , which appears in (B.73), clearly diverges as ω → 1. This factor
captures the contribution of the Jz = 1 derivative, ∂+, to the partition function. This
derivative is Boltzmann unsuppressed at ω = 1. We conclude that, unlike thermal AdS
space (see subsection 3.3.2) the black hole saddle hosts one mode whose contributions to the
determinant diverge in the limit ω → 1.79 We conclude that the logarithm of the partition

78This family of black holes may be constructed by performing coordinate transformations on the original
solution. As the coordinate transformations are non-vanishing at infinity, the resultant solutions are related
by large gauge transformations, and so are physically distinct.

79The mode in question is one of the ‘zero modes’ for the centre of mass motion of the black hole, as
described above. Note that this mode is missing in global AdS for two related reasons. From the point of
view of the bulk, the zero modes are absent because global AdS is empty, it contains nothing that can move.
From the viewpoint of conformal representation theory, these modes are absent because the vacuum module
is uni-dimensional (it has no SO(3, 2) descendants).
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function receives the divergent contribution

lnZdescendants = − ln(1− e−β(1−ω)) (C.3)

from this descendant mode.
As a brief aside, we note that the discussion of the previous paragraphs can immediately

be turned into the following general theorem. The partition function of every CFT diverges
for ω > 1. This result follows because — as we have explained above, the contributions
of descendants to the partition function diverge for ω > 1. Since the result follows from
simple representation theory considerations, it holds for any CFT.

Using the usual thermodynamical formulae

J = 1
β
∂ω lnZ

E = −∂β lnZ + ω

β
∂ω lnZ

S = lnZ − β∂β lnZ

(C.4)

(where all β derivatives are taken at constant ω, and all ω derivatives are taken at constant
β) we find that the charge and energy associated with the descendant derivatives is

J = E = 1
β(1− ω) (C.5)

while the entropy, as usual, is negligible.80 It follows, in particular, that when 1− ω ∼
√
G

(as is the case for the Grey Galaxy solution), the charges in descendant derivatives are of
order 1√

G
and so are subleading compared to the energy and angular momentum of the gas

and that of the classical black hole.81

Despite the fact that the contribution of descendants is subleading compared to that of
the gas, in the next subsection we will attempt to better understand the physical nature
of the gravitational solutions in which charge and energy are redistributed between the
classical saddle and descendants (with the gas completely unoccupied) in a manner that
maximises the black hole entropy. As descendants — like the gas — carry E = J , the
classical thermodynamics of the solutions we study more in the next subsection are identical
to that of the Grey Galaxy solutions. In fact, the discussion of section 3.2 applies unchanged
to the new saddles of this appendix except for one change: the subleading entropy of the
gas in the Grey Galaxy solutions — which we computed to be of order 1/

√
G in (3.11), is

actually zero in the current context. This is because a condensate of derivatives carries
no entropy (there is exactly one way to build a state of any given charge). In fact, from

80While thermodynamics assigns this solution a nonzero entropy of order ln(1 − ω) this answer is an
artifact of thermodynamics being only marginally applicable to the case under study. The actual entropy
associated with descendants is clearly zero, as there is a unique descendant state with energy and angular
momentum n units larger than that of the primary.

81On the other hand, were we to scale 1−ω ∼ G, then the descendants would carry the energy of order 1
G

— comparable to the classical black hole — but the energy of the gas, at these values of ω, would be ∼ 1
G2 ,

and so superclassical. We conclude there is no thermodynamically sensible saddle in which descendants
contribute comparably to the gas.
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the viewpoint of section 3.2, the reason that the Grey Galaxy saddle dominates over the
‘revolving black hole’ saddle of this section, is that the former carries an extra entropy of
order 1√

G
, while the revolving black hole solution of this appendix carries zero entropy.

Given the fact that the revolving black hole saddles that we construct in this appendix
are always subleading, the reader may wonder why we bother to further study these solutions
in the next subsection. We offer three reasons

• It is often interesting to study subleading saddles, even if they are not dominant,
particularly if they are long-lived. In the current context, we do not see a clear classical
mechanism for the decay of the revolving black hole solutions to the Grey Galaxy
solutions. We thus suspect that the revolving black hole solutions are very (possibly
non-perturbatively) long-lived, even though they are not entropically dominant.

• In the case of black holes in AdS4, the temperature of black holes with ω = 1 was
bounded from below (see subsection 2.8). It is possible that this will not be the case
in some other situations (e.g. either rotating black holes in higher dimensions or black
holes that have both charges as well as rotation). In this case, it could well turn out
that revolving black hole solutions actually dominate thermodynamics at very low
temperatures (e.g. temperatures of order − ln(1− ω)) because all gas modes have a
twist gap (a gap in E − Jz) while the descendant modes have a twist gap of zero.

• Finally, as we have already mentioned in the introduction, while the revolving black
holes may not be dominant solutions, they certainly are (very simply constructed)
solutions, and so their entropy gives a lower bound for the true entropy of the saddle
point. As we have explained in section 7, this argument can be used to find a lower
bound for the entropy of supersymmetric states in N = 4 Yang-Mills.

C.3 Physical interpretation of the Bose condensate of derivatives in terms of
Revolving Black Holes

As we have explained in the previous subsection, every point in the blue-shaded part of the
phase diagram figure 7 admits both a Grey Galaxy solution (as we have explained in detail
in the main text) as well as another solution describing a black hole ‘in equilibrium with a
Bose condensate of derivatives’ (described in the previous subsection). In this subsection
we explore the physical interpretation of this new solution, the black hole ‘in equilibrium
with a Bose condensate of derivatives’.

In fact, the physical interpretation we are looking for was already worked out in
appendix B. In that appendix, the motion of a spinning particle in AdS was analyzed.
In subsections B.5 and B.6 we constructed the wave function corresponding to the nth

descendant state of a particle of left moving dimension (i.e. ∆+s
2 ) equal to h. In the limit

that h and n are both large, we demonstrated there that the wave function in question was
given by a wave function over geodesics of the form fAfaX. fa and fA are the SL(2, R)
elements respectively given in (B.17) and (B.7), and X is the geodesic sitting at the centre
of AdS, given by (B.14). The geodesics that make up the wave function have the definite
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value of a given in (B.64), but do not have a definite value of A. In fact, the correct
description of the state puts it in a wave function for A proportional to

ψ =
∫
dAeinA|A⟩ (C.6)

Although the discussion in B.5 and B.6 were presented in the context of AdS3, the results
apply without modification to AdS4. Consider those geodesics moving in the space (4.1)
that everywhere have X3 = 0. Such geodesics are identical to geodesics in AdS3. Similarly
wave functions of the form (B.48) and (B.49) also represent solutions to the wave equation
in AdS4: they are simply those solutions that happen to be independent of X4. It is also
easy to convince oneself that (B.48) are maximal spin primaries from the viewpoint of
AdS4. The solutions in (B.49) are precisely those corresponding to primaries of maximal
spin acted on with derivatives which further increase this spin. These are precisely the
modes that give rise to the divergence in (B.73).

Although the discussion in appendix B was performed for spinning particles, all the
actual analysis used only symmetry considerations, and so applies without modification to
black holes.

We conclude that the physical interpretation for the black hole ‘in equilibrium with
a Bose condensate of derivatives’ is the wave function (C.6). In this context, the ket |A⟩
denotes the metric of the Kerr-AdS black hole boosted (coordinate transformed) by the
symmetry element fA.82 The completely remarkable aspect of this interpretation is that
the state in question is quantum in nature, even though it describes the motion of a highly
macroscopic object which happens to be a black hole.

Each individual classical configuration that contributes to this wave function is a black
hole whose centre of mass revolves around one of the geodesics in (B.22).

It is very unusual for macroscopic objects to live in wave functions that are not well
approximated by classical configurations. The standard reason offered for this observation
is that macroscopic objects are easily entangled with orthogonal environmental degrees
of freedom, which prevents interference, effectively reducing such systems to a classical
ensemble over possible values. There may well be a sense in which this happens in the
current context. We leave this question for further investigation.

D Spherical harmonics at large m

θ dependent part of the spherical harmonics with ϕ dependence of the form eimϕ satisfies
the following equation:

− 1
sin θ

∂

∂θ

(
sin θ∂Plm(θ)

∂θ

)
+ m2Plm(θ)

sin2 θ
= l(l + 1)Plm(θ) . (D.1)

To convert this to standard Schrodinger equation form, we perform the following change
of variable:

Plm(θ) = ψlm(θ)√
sin θ

(D.2)

82Note that fA belongs to the left moving SL(2,R) in SO(2, 2), which, in turn, is a subgroup of the
symmetry group SO(3, 2).
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ψ(θ) then satisfies the following equation:

−ψ′′
lm + ψlm(4m2 − (1 + sin2 θ))

4 sin2 θ
= l(l + 1)ψlm (D.3)

Clearly, this potential has a minima at θ = π
2 . At large values of l and m with a = l−m,

fixed, the potential at θ = π
2 becomes steeper and steeper. Therefore, we work in the

coordinate δθ = π
2 − θ. In the limit of small δθ, we get the following equation:

−ψ′′
lm(δθ) + δθ2(4m2 − 1)

4 ψlm =
(
l(l + 1)− 4m2 − 2

4

)
ψlm (D.4)

Taking large l, large m limit with a = l −m fixed, we get

−ψ′′
la(δθ) + l2δθ2ψlm = 2l

(
a+ 1

2

)
ψla (D.5)

This is the Schrodinger equation for a harmonic oscillator with unit mass, ℏ = 1, frequency
l and energy l

(
a+ 1

2

)
which means that a is the level of the harmonic oscillator.

It follows that when l is large but a is of order unity

Yl,l−a(θ, ϕ) =
(
l

π

) 1
4 1√

2π
√
2aa!

ei(l−a)ϕe−(l−a) (δθ)2
2 Ha(

√
mδθ) = ei(l−a)ϕψ

HO
a (δθ)
2π , 83 (D.6)

where m = l − a and Ha(y) ath Hermite polynomial, normalized in the usual manner, i.e.
normalized so that ∫ ∞

−∞
e−y2

Ha(y)Hb(y) = δab(2aa!
√
π)

Here ψHO
a (δθ) is the unit normalized wavefunction of the harmonic oscillator at level a

with frequency l. There is a factor of
√
2π in the denominator since the spherical Harmonic

must be unit normalized when integrated with respect to θ and ϕ.
In the main text, we need to compute the sum

∞∑
a=0

|Yl,l−a(θ, ϕ)|2e−α(a+ 1
2) (D.7)

Focussing on the contribution of large l but a of order unity we find
∞∑

a=0
|Yll−a(θ, ϕ)|2e−α(a+ 1

2) ≈
∑

a

|ψla|2

2π e−l(a+ 1
2) = 1

2π ⟨δθ|e
−αH |δθ⟩ (D.8)

83The Gaussian decay of this function may directly be understood in the following terms. A spherical
Harmonic with total angular momentum l and z component of angular momentum l − a is proportional to
sinl−a θ times a degree a polynomial of cos θ. The exponential dependence in (D.6) comes from the factor of
sinl−a θ. Setting θ = π

2 − δθ, with δθ2 ≪ 1 we have

sinl−a(θ) ≈
(

1 − (δθ)2

2

)l−a

=

((
1 − (δθ)2

2

) 2
δθ2
) (l−a)δθ2

2

≈
(
e−1) (l−a)(δθ)2

2

in agreement with (D.6). This exponential kills the function unless δθ is small. When δθ is small cos θ ≈ δθ.
The polynomial in cos θ, mentioned above, thus turns into a polynomial in δθ, and in fact, turns out to be
Ha(

√
mδθ).
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The last expression on the r.h.s. of (D.8) is simply matrix element of the evolution
operator of the Harmonic oscillator. This quantity is well known (for instance it is easily
computed via using Feynman’s path integral method), yielding

⟨δθ|e−αH |δθ⟩ =
√
l√

2π sinh lα
exp

(
−lδθ2 cosh lα− 1

sinh lα

)
(D.9)

E The radial dependence of AdS wave functions at large l

In this appendix, we demonstrate that in the large l limit, the radial part of the mode
wavefunction obeys a Schrodinger equation obeyed by the angular momentum L sector
of a three-dimensional harmonic oscillator where L = ∆ − 2. (Note that L is a fictional
angular momentum, and, in particular, should nowhere be confused with the real angular
momentum l). We use this connection to compute the wave function — and a relevant sum
over mod squared wave functions weighted by energy — in this limit.

Let the wave function for our scalar field of mass M =
√
∆(∆− 3) take the form

ϕ = Ylme
−iEtF (r) . (E.1)

It was shown in [36] that the field redefinition

F (r) = 1√
1 + r2

χ(r) , 84 (E.2)

transforms the equation of motion into the following Schrodinger-type equation for χ where
χ(r) satisfies the following Schrodinger equation in the variable

−χ′′(ξ) +
(
l(l + 1)
sin2 ξ

+ M2 + 2
cos2 ξ

)
χ(ξ) = E2χ(ξ) (E.4)

where the variable ξ, used in this equation is defined by cos ξ = 1√
1+r2 .85

The effective potential for mode with large angular momentum l has a minima at
ξ ≈ π

2 − (M2+2)1/4
√

l
in large l limit. Since this is very near to π

2 , let us work in the variable
ξ = π

2 − z. Note that, to leading order, z = 1
r . In the large l limit, Schrodinger’s equation

takes the following form:

−χ′′(z) +
(
l(l + 1)z2 + M2 + 2

z2

)
χ = (E2 − l(l + 1))χ . (E.5)

Now the effective radial Schrodinger equation of the Lth angular momentum mode of a
3-dimensional harmonic oscillator with frequency f and mass 1 is given by

−χ′′(z) +
(
f2z2 + L(L+ 1)

z2

)
χ(z) = 2Eχ . (E.6)

84At large r this redefinition simplifies to

F (r) = χ(r)
r

. (E.3)

85In this variable, boundary of AdS is at ξ = π
2 .

– 87 –



J
H
E
P
1
1
(
2
0
2
3
)
0
2
4

We see that (E.5) and (E.6) are identical once we make the identifications

f2 = l(l + 1)

2E = E2 − l(l + 1) =⇒ E =
√
l(l + 1) + 2E

L(L+ 1) =M2 + 2 = (∆)(∆− 3) + 2 =⇒ (L+ 2)(L− 1) = ∆(∆− 3) =⇒ L = ∆− 2
(E.7)

It follows from (E.7) that

E =
√
l(l + 1) + 2E

L(L+ 1) = (∆)(∆− 3) + 2 =⇒ (L+ 2)(L− 1) = ∆(∆− 3) =⇒ L = ∆− 2
(E.8)

The angular momentum L sector of the 3d harmonic oscillator of frequency f has
eigenenergies given by

E =
(
2n+ L+ 3

2

)
f, n = 0, 1 . . . (E.9)

(the factor of 3
2 is the ground state energy of the three oscillators, L is the minimum number

of excitations we need to excite angular momentum L, and n is the number of ‘contracted
excitations’ that increase the energy but do not change the angular momentum). It follows
that at large l

Enl =
√
l(l + 1) + 2E

=
√
l(l + 1) + 2l

(
2n+∆− 1

2

)
≈ l + 2n+∆

(E.10)

in agreement with our expectations from the state operator map (see section 3).
The radial wavefunctions corresponding to these eigenvalues are given by

ψRHO
nLM = YLM

z
χln(z)

χln(z) ≡ Nn,∆z
∆−1e−

lz2
2 L

∆− 3
2

n (lz2)

Nn,∆ =

√√√√√ l3

π

2n+∆n!l∆−2

(2n+ 2∆− 3)!!

(E.11)

where the wave functions χnl(z) solve the equation (E.6) with eigenvalues E listed in (E.9).
Using (E.3) and the relation z = 1

r it follows that

Fnl(r) =
χln

r
= Nn,∆

r∆ e−
l

2r2L
(∆− 3

2)
n

(
l

r2

)
(E.12)

where Fnl can now be inserted in (E.1).86

86In that equation we have (F → Fnl) together with (E → Enl); where Enl was listed in (E.10).
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In the main text (see the first line of (4.32)) we are interested in the quantity

1
r2

∞∑
n=0

|χln(r)|2e−l(2n+∆− 1
2) qβ

l ≡ KRHO(r, r, τ)
r2 (E.13)

Using L = ∆− 2 and f = l and (E.9), we see that (E.13) can be recast as

KRHO(r, r, τ) =
∞∑

n=0
|ψln

RHO(r)|2e−Enlτ

τ = qβ

l

(E.14)

Just as in the discussion under (D.8), KRHO is an effective Feynman propagator. More
precisely, it is simply the projection of the matrix elements of the Euclidean evolution
operator of the three-dimensional harmonic oscillator87 onto the angular momentum L

sector. This projection yields (see eq. 3.3.6 of [52])

KRHO(r,r,τ)= l

r sinh lτ exp
(
− l

r2
cosh lτ
sinh lτ

)
I∆−3/2

(
l

r2 sinh lτ

)
= l

r sinh lτ exp
(
− l

r2
cosh lτ
sinh lτ

)
×
(

l

2r2 sinh lτ

)∆− 3
2

exp
[
± l

r2 sinh lτ

] 1
Γ
(
∆− 1

2
)1F1

(
∆−1,2∆−2,∓ 2l

r2 sinh lτ

)
(E.15)

F The thermal stress tensor of a free conformal scalar on S2 × S1

In this appendix, we compute the stress-energy tensor of a free massless scalar field in 2 + 1
dimensions, on a unit S2, at inverse temperature β and angular velocity ω. We perform
this computation first using an algebraically simple Euclidean computation, and second
using a conceptually clarifying (but algebraically more complicated) Hamiltonian method.

F.1 Euclidean Computation

In this subsection compute the one-point function of the thermal stress tensor directly in
Euclidean space. We do this by2 first evaluating the Euclidean two-point function of ϕ
on S2 × S1, taking appropriate derivatives on the two ϕ insertions, and then taking the
coincident limit so that the operator so obtained is the stress tensor. After an appropriate
normal ordering, the answer is finite and gives the stress tensor on the sphere.

F.1.1 Euclidean two Point Function on S2 × R

As the first step in our computation, we compute the two-point function of free fields on
S2 × R. As S2 × R is Weyl equivalent to R3, this computation is easily performed. We
take the two-point function in R3 and apply the conformal transformation that takes us
to S2 ×R.

87Which is given by the product of three copies of (D.9); one for each of the Cartesian coordinates.

– 89 –



J
H
E
P
1
1
(
2
0
2
3
)
0
2
4

The two-point function in R3 is simply the following:

⟨Φ(x1)Φ(x2)⟩R3 = 1
4π|x1 − x2|

(F.1)

To go to S2 ×R, we need to apply the conformal scaling eτ = r. The scaling dimension of
the free field in 3d is 1

2 , and so we obtain

⟨Φ(x1)Φ(x2)⟩S2×R = e
τ1+τ2

2

4π|eτ1 n̂1 − eτ2 n̂2|

= e
τ1+τ2

2

4π
√
e2τ1 + e2τ2 − 2eτ1+τ2(cos θ1 cos θ2 + sin θ1 sin θ2 cos(ϕ1 − ϕ2))

= 1
4π

√
2
√
cosh(τ1 − τ2)− cos θ1 cos θ2 − sin θ1 sin θ2 cos(ϕ1 − ϕ2)

(F.2)

where τ is the Euclidean time.

F.1.2 Two Point Function on S2 × S1

The two-point function on S2 ×S1 is obtained from that on S2 ×R by the method of images
just as we did in subsection 4.3. If β is the inverse temperature and ω, the angular velocity,
the thermal two-point function can be written as a sum over zero temperature two-point
functions(see (4.38)). Therefore, for the thermal two-point function, we have

⟨Φ(θ1, τ
E
1 , ϕ1)Φ(θ2, τ

E
2 , ϕ2)⟩β =

∞∑
q=−∞

⟨Φ(θ1, τ
E
1 , ϕ1)Φ(θ2, τ

E
2 + qβ, ϕ2 − iqβω))⟩0 . (F.3)

F.1.3 The stress tensor

The stress tensor of a free CFT on the sphere can be obtained by varying the action with
respect to the metric on the sphere. The action of the free scalar field on S2 ×R with the
conformal coupling is the following:

S[Φ] = 1
2

∫
d3x

√
−g

(
−gµν∂µΦ∂νΦ− 1

8RΦ
2
)

(F.4)

where R is the Ricci scalar of S2 ×R which for a sphere of radius r is R = 2
r2 . Taking the

variation of the action above with respect to the metric, and using the fact that Gµν = 0
on the sphere, we get the following formula for the stress tensor:

Tµν =∂µΦ∂νΦ− gµν

2

(
(∂Φ)2 + Φ2

2

)
+ 1

8GµνΦ2 + 1
8r2 (gµν∇2 −∇µ∇ν)Φ2

=∂µΦ∂νΦ− gµν

2

(
(∂Φ)2 + Φ2

2

)
+ 1

4r2 (gµνΦ∇2Φ+ gµν(∂Φ)2 − Φ∇µ∇νΦ− ∂µΦ∂νΦ)

(F.5)

where,
Gµν = Rµν − 1

2Rgµν .
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F.1.4 Evaluation of the Stress Tensor

To compute the stress tensor, we use the same procedure as in subsection 4.3. We can
compute various derivatives Kq

ij and then the stress tensor will be the sum of those derivatives
over all the images. Just as in subsection 4.3, we can easily see that in the limit ω → 1, the
contribution of the non-derivative quadratic term will be subdominant in (1− ω). For e.g.,
the tt component of the stress tensor takes the following form:

⟨Ttt(x)⟩β = i2
∞∑

q=−∞,q ̸=0
∂τ1∂τ2⟨Φ(x1)Φ(x2)⟩S2×R

∣∣∣
τ2−τ1=qβ,ϕ2−ϕ1=−iqβω,θ1=θ2

= −
∞∑

q=1

−4 cosh qβ
(
cos2 θ + sin2 θ cosh qβω

)
− cosh 2qβ + 5

32π
√
2
(
βq(1− ω) sin2 θ sinh qβ + cos2 θ(cosh qβ − 1)

)5/2

≈
∞∑

q=1

3
8π

√
2

sinh2 qβ

(δθ2(cosh qβ − 1) + βq(1− ω) sinh qβ)5/2 ,
88

(F.6)

This matches with the form we obtained in (F.14).
The fact that the summation in (F.6) runs over all values of q except q = 0 follows

from the following considerations. If we were to honestly compute the expectation value
of the stress tensor, we would first need to carefully specify its definition (i.e. the local
subtractions we use to give this composite operator meaning). We sidestep all these issues
using the following device. In (F.6) we have really computed not the expectation value
of the stress tensor itself, but, instead, the expectation value of the stress tensor minus
its expectation value at zero temperature. All ambiguities of definition disappear in this
difference. As the zero temperature expectation value of the stress tensor is given precisely
by the q = 0 term in the summation, the difference computed in (F.6) involves a summation
with q = 0 removed.

Following along the same lines, we can also see that in the limit ω → 1, Ttt = −Ttϕ =
Tϕϕ ≡ T .

F.2 Computation using Hamiltonian method

In this subsection, we present the (elementary) computation of the free CFT stress tensor
on the sphere.

The single particle eigenstates for free scalar fields on S2 are labeled by the angular
momentum quantum numbers, (l,m). Explicitly, the eigenfunctions (units normalized in
the Klein-Gordon norm) are given by

ψl,m(θ, ϕ, t) = 1√
2El

Ylm(θ, ϕ)e−iElt (F.7)

where El = l + 1
2 . The field operator Φ admits the expansion

Φ =
∑
l,m

ψl,mal,me
−iElt + ψ∗

l,ma
†
l,me

iElt (F.8)

88The factor of i2 is due to the fact that stress tensor contains derivatives with respect to Lorentzian
time t = iτ .
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where [
al,m, a

†
l′,m′

]
= δll′δmm′ (F.9)

The computation of the expectation value of the stress tensor in the thermal ensemble is
straightforward (a similar computation is performed in more detail in subsection 4.2). One
finds that

⟨Tµν⟩ =
∑
l,m

tlmµν

eβ( 1
2 +aω+l(1−ω)) − 1

(F.10)

where tlmµν is simply the classical stress tensor of the field configuration ϕl,m. tlmµν is easy
to compute, but we do not need all its details. For very similar reasons to the discussion
around (3.6), the only modes at large l and large m contribute to the part of the stress
tensor that is singular (as ω → 1). Let us consider the mode with (J, Jz) = (l, l − a) with
l ≫ 1 and a of order unity. Acting on such ∂ϕ and ∂t are of order l, and are much larger
than the action of ∂θ on the same mode (which turns out to be of order

√
l).89 Retaining

only the leading order contributions (see around (4.22) for details of the computation in a
very similar context) we find that tlmµν boundary stress tensor is given by

tlmtt = −tlmtϕ = tlmϕϕ ≈ 2l2 1
2
(
l + 1

2

) |Ylm|2

≈ l

2π

 4
√

l
π√

2aa!

2

e−lδθ2
H2

a(
√
lδθ)

= l

2π |ψ
HO
a (δθ)|2

(F.11)

where ψHO
a (δθ) is the ath wavefunction of a Harmonic oscillator with unit mass and frequency

l.
Inserting (F.11) into (F.10) we find that, at leading order,

T = Ttt = −Ttϕ = Tϕϕ ≈ 1
2π

∫
dl

∞∑
a=0

l|ψHO
a (δθ)|2

eβ( 1
2 +aω) eβ(1−ω)l − 1

= 1
2π

∞∑
q=0

∫
dl le−(q+1)β(1−ω)l∑

a

|ψHO
a (δθ)|2e−(q+1)β( 1

2 +aω)
(F.12)

The sum over a is simply the quantity

⟨δθ|e−
β(q+1)

l
HHO |δθ⟩

where HHO is the harmonic oscillator Hamiltonian.
This is the standard path integral in Euclidean time. We use the following result:

⟨x|e−τHHO |x⟩ =
√
l√

2π sinh lτ
e−

lx2
sinh lτ

(cosh lτ−1) (F.13)

89Also note that we get some extra terms in the stress tensor in (F.5) because of the conformal coupling.
However, these terms are like derivatives of Φ2 which means that in the mode stress tensor, they appear as
derivatives of ψ∗

lmψlm. Since the oscillating factors in t and ϕ cancel, these derivatives are subdominant in
large l limit. Therefore it is only the first term (F.5) that contributes in the limit ω → 1.
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Using the above identity, and taking τ = β(q+1)
l

T = 1
2π

∞∑
q=0

∫
dl le−(q+1)β(1−ω)l∑

a

|ψHO
a (δθ)|2e−(q+1)β( 1

2 +aω)

= 1
2π

∞∑
q=0

∫
dl l3/2 exp

(
−l
(
(q+1)β(1−ω)+ δθ2(cosh((q+1)β)−1)

sinh((q+1)β)

))
1√

2π sinh((q+1)β)

=
∞∑

q=1

3
8π

√
2

sinh2 qβ

(qβ(1−ω)sinhqβ+δθ2(coshqβ−1))5/2

(F.14)

Let us compute the total energy by integrating the stress tensor over the sphere. Since the
stress tensor is dominant at values of θ close to π

2 .Therefore we integrate over the variable ζ
which is order unity here. We will have an extra factor of

√
ω from this change in variables.

E = 2π
√
1− ω

∫ ∞

−∞
dζT00

= 2π
(1− ω)2

∞∑
q=1

∫ ∞

−∞
dζ

3
8π

√
2

sinh2 qβ

(qβ sinh qβ + ζ2(cosh qβ − 1))5/2

= 1
2(1− ω)2

∑
q

1
(qβ)2 sinh qβ

2

(F.15)

The thermal expectation value of energy can also be computed in the same way as we
did in (4.50). Following the same steps we get the following:

E =
∞∑

q=1

∑
a

∫
dlle−qβ(a+ 1

2 +(1−ω)l)

=
∑

q

1
(qβ)2(1− ω)2

e−
qβ
2

1− e−qβ

=
∑

q

1
2(qβ)2(1− ω)2

1
sinh qβ

2

(F.16)

which is exactly the same as in (F.15).

G Sourced solutions from homogeneous solutions

Let us pause to discuss some differential equation theory. Suppose we are given an equation
of the form

C(x)ψ′′ + C ′(x)ψ′(x) + E(x)ψ = s(x) (G.1)

Let us suppose that ϕ1(x) and ϕ2(x) are known to be solutions of the homogeneous
equation. We want to solve the inhomogeneous equation. Then one particular solution of
the differential equation is given by

ψ(x)=−ϕ1(x)
∫

ϕ2(x)s(x)
C(x)(ϕ1(x)ϕ′2(x)−ϕ2(x)ϕ′1(x))

−ϕ2(x)
∫

ϕ1(x)s(x)
C(x)(ϕ2(x)ϕ′1(x)−ϕ1(x)ϕ′2(x))

(G.2)
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When studying (5.11) we can choose ϕ1 = e
k
x

(
1− k

x

)
and ϕ2 = e

−k
x

(
1 + k

x

)
. We find

ϕ′1(x)ϕ2(x)− ϕ′2(x)ϕ1(x) =
2k3

x4

It follows that the general solution to (5.11) is given by (5.14)

H Canonical quantization of a the free scalar in AdS4

The symplectic current Jµ for a free scalar field in AdS4 (see around (4.4)) is given by

Jµ = −δϕ ∧ ∂µδϕ (H.1)

Using the equations of motion of the scalar field, it is easy to see that ∇µJµ = 0. It follows
that the symplectic form is given by

Ω =
∫ √

gJ0 =
∫ √

gg0µJµ (H.2)

(the integral is taken over a constant time surface; the conservation of current guarantees
that this integral is independent of our choice of time). Inserting (4.4) into (H.2), we find
the symplectic form

Ω = i
∑
nlm

δanlm ∧ δa∗nlm (H.3)

It follows that the Poison Brackets are

{anlm, a
∗
n′l′m′} = −iδll′δmm′δnn′ (H.4)

Upon quantization, the canonical commutators are given by[
anlm, a

†
n′l′m′

]
= δll′δmm′δnn′ (H.5)

I Derivation of the Kernel in (5.27)

In this appendix, we will derive the kernel we used in (5.21) which calculates the back-
reaction of the matter stress tensor on the metric. Fourier transform of Ak(x) in k variable
will give us the correct metric correction in the following form,

A(x, ζ) =
∫ ∞

−∞

dk√
2π
eikζ

[( 1
|k|3

∫ ∞

0
e

−|k|
x′

(
1 + |k|

x′

)
fk(x′)

)(
e

−|k|
x

(
1 + |k|

x

))
− 1
|k|3

(
e

|k|
x

(
1− |k|

x

)∫ x

0
e

−|k|
x′

(
1 + |k|

x′

)
fk(x′)

+e
−|k|

x

(
1 + |k|

x

)∫ ∞

x
e

|k|
x′

(
1− |k|

x′

)
fk(x′)

)]
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=
∫ ∞

−∞

dk√
2π|k|3

eikζ
[∫ ∞

0
dx′e−|k|( 1

x′ + 1
x)
(
1 + |k|

x′

)(
1 + |k|

x

)
fk(x′)

−
∫ x

0
dx′e−|k|( 1

x′− 1
x)
(
1− |k|

x

)(
1 + |k|

x′

)
fk(x′)

−
∫ ∞

x
dx′e−|k|( 1

x
− 1

x′ )
(
1 + |k|

x

)(
1− |k|

x′

)
fk(x′)

]
=
∫ ∞

−∞

dk

|k|3
∫ ∞

−∞

dζ ′

2π e
ik(ζ−ζ′)

[∫ ∞

0
dx′e−|k|( 1

x′ + 1
x)
(
1 + |k|

x′

)(
1 + |k|

x

)
f(x′, ζ ′)

−
∫ x

0
dx′e−|k|( 1

x′− 1
x)
(
1− |k|

x

)(
1 + |k|

x′

)
f(x′, ζ ′)

−
∫ ∞

x
dx′e−|k|( 1

x
− 1

x′ )
(
1 + |k|

x

)(
1− |k|

x′

)
f(x′, ζ ′)

]
=
∫ ∞

−∞

dk

|k|3
∫ ∞

−∞

dζ ′

2π e
ik(ζ−ζ′)

[∫ ∞

0
dx′f(x′, ζ ′)e−|k|( 1

x′ + 1
x)
(
1 + |k|

x′

)(
1 + |k|

x

)
−
∫ x

0
dx′f(x′, ζ ′)e−|k|( 1

x′− 1
x)
(
1− |k|

x

)(
1 + |k|

x′

)
−
∫ ∞

x
dx′f(x′, ζ ′)e−|k|( 1

x
− 1

x′ )
(
1 + |k|

x

)(
1− |k|

x′

)]
(I.1)

Going from the second line to the third line we used the inverse Fourier transform of fk(x).
In other steps, we rearranged various terms in this expression. Now to perform the k

integral we can rearrange the integrals in the above expression and rewrite in the following
suggestive form,

A(x, ζ) =
∫ ∞

−∞

dζ ′

2π

[∫ ∞

0
dx′f(x′, ζ ′)

∫ ∞

−∞

dk

|k|3
e−|k|( 1

x′ + 1
x)+ik(ζ−ζ′)

(
1 + |k|

x′

)(
1 + |k|

x

)
−
∫ x

0
dx′f(x′, ζ ′)

∫ ∞

−∞

dk

|k|3
e−|k|( 1

x′− 1
x)+ik(ζ−ζ′)

(
1− |k|

x

)(
1 + |k|

x′

)
−
∫ ∞

x
dx′f(x′, ζ ′)

∫ ∞

−∞

dk

|k|3
e−|k|( 1

x
− 1

x′ )+ik(ζ−ζ′)
(
1 + |k|

x

)(
1− |k|

x′

)]
(I.2)

There is a total of three k integrals but all the k integrals have similar forms except
changes in ± signs. So we generalized these ± signs by c1 and c2. Let us define,

Kc1c2
x,ζ (x′, ζ ′) =

∫ ∞

−∞

dk

|k|3
e−|k|( c1

x′ + c2
x )+ik(ζ−ζ′)

(
1 + c1

|k|
x′

)(
1 + c2

|k|
x

)
(I.3)

Using this definition (I.3) we can rewrite the metric in (I.2) in the following manner

A(x,ζ)=∫ ∞

−∞

dζ ′

2π

[∫ ∞

0
dx′f(x′, ζ ′)K++

x,ζ (x
′, ζ ′)−

∫ x

0
dx′f(x′, ζ ′)K+−

x,ζ (x
′, ζ ′)−

∫ ∞

x

dx′f(x′, ζ ′)K−+
x,ζ (x

′, ζ ′)
]

(I.4)
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where various choices of c1, c2 = ±1 will give us all the integrals. Now let’s evaluate this
integral exactly keeping c1 and c2 arbitrary,

Kc1c2
x,ζ (x′, ζ ′) =

∫ ∞

−∞

dk

|k|3
e−|k|( c1

x′ + c2
x )+ik(ζ−ζ′)

(
1 + c1

|k|
x′

)(
1 + c2

|k|
x

)
=
∫ 0

−∞

dk

−k3 e
k( c1

x′ + c2
x )+ik(ζ−ζ′)

(
1− c1

k

x′

)(
1− c2

k

x

)
+
∫ ∞

0

dk

k3 e
−k( c1

x′ + c2
x )+ik(ζ−ζ′)

(
1 + c1

k

x′

)(
1 + c2

k

x

)
=
∫ 0

∞

−dk
k3 e−k( c1

x′ + c2
x )−ik(ζ−ζ′)

(
1 + c1

k

x′

)(
1 + c2

k

x

)
+
∫ ∞

0

dk

k3 e
−k( c1

x′ + c2
x )+ik(ζ−ζ′)

(
1 + c1

k

x′

)(
1 + c2

k

x

)
= 2

∫ ∞

0

dk

k3 e
−k( c1

x′ + c2
x ) cos

[
k(ζ − ζ ′)

] (
1 + c1

k

x′

)(
1 + c2

k

x

)

(I.5)

In the above steps, we simplified the integral of k by removing the modulus of k and
changing the limit of integration from (−∞,∞) to (0,∞). Mathematica can easily perform
the indefinite k integral and we get,

2
∫
dk

k3 e
−k( c1

x′ + c2
x ) cos [k(ζ−ζ ′)]

(
1+c1

k

x′

)(
1+c2

k

x

)
=− 1

2

(
(ζ−ζ ′)2+ 1

x2 +
1
x′2

)(
Ei
[
k
(
−i(ζ−ζ ′)− c1

x
− c2

x′

)]
+Ei

[
k
(
i(ζ−ζ ′)− c1

x
− c2

x′

)])
− 1
2k e

k(− c1
x − c2

x′ +i(ζ−ζ′))
(
c1

x
+ c2

x′
+i(ζ−ζ ′)+ 1

k

)
− 1
2k e

k(− c1
x − c2

x′ −i(ζ−ζ′))
(
c1

x
+ c2

x′
−i(ζ−ζ ′)+ 1

k

)
= Ic1c2(k) (let)

(I.6)

Now we need to evaluate this function Ic1c2(k) at k = 0 and k → ∞. This function is zero
at k → ∞ though it is not regular at k = 0. So we will evaluate this function at k = η

where η is a small finite positive number that is approaching zero. In very small η limit
Ic1c2(η) has the following expansion

lim
η→0+

Ic1c2(η)=− 1
η2 −

(
(ζ−ζ ′)2+ 1

x2 +
1
x′2

)
logη+ζ2+

(1
2−γ

)(
(ζ−ζ ′)2+ 1

x2 +
1
x′2

)
+ c1c2
xx′

− 1
2

(
(ζ−ζ ′)2+ 1

x2 +
1
x′2

)
log
((

c1
x
+ c2
x′

)2
+(ζ−ζ ′)2

) (I.7)

Hence, from (I.5) we get,

Kc1c2
x,ζ (x′, ζ ′)= 0− lim

η→0+
Ic1c2(η)

= 1
η2 +

(
(ζ−ζ ′)2+ 1

x2 +
1
x′2

)
logη−(ζ−ζ ′)2−

(1
2−γ

)(
(ζ−ζ ′)2+ 1

x2 +
1
x′2

)
− c1c2
xx′

+1
2

(
(ζ−ζ ′)2+ 1

x2 +
1
x′2

)
log
((1

x
+ c1c2

x′

)2
+(ζ−ζ ′)2

)
(I.8)
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In the above answer since c1, c2 comes always as a product, we can see that Kc1c2
x,ζ (x′, ζ ′)

satisfies,
K+−

x,ζ (x
′, ζ ′) = K−+

x,ζ (x
′, ζ ′) (I.9)

Now we can use the result of (I.8) and (I.9) in (I.4) and after simplification we get,

A(x, ζ) =
∫ ∞

−∞

dζ ′

2π

[∫ ∞

0
dx′f(x′, ζ ′)K++

x,ζ (x
′, ζ ′)−

∫ x

0
dx′f(x′, ζ ′)K+−

x,ζ (x
′, ζ ′)

−
∫ ∞

x
dx′f(x′, ζ ′)K−+

x,ζ (x
′, ζ ′)

]

=
∫ ∞

−∞

dζ ′

2π

∫ ∞

0
dx′f(x′, ζ ′)

[
K++

x,ζ (x
′, ζ ′)−K+−

x,ζ (x
′, ζ ′)

]
=
∫ ∞

−∞

dζ ′

2π

∫ ∞

0
dx′f(x′, ζ ′)Kx,ζ(x′, ζ ′) (let).

(I.10)

where, Kx,ζ(x′, ζ ′). Finally, we get the metric in the form,

Kx,ζ(x′, ζ ′) = K++
x,ζ (x

′, ζ ′)−K+−
x,ζ (x

′, ζ ′)

= 1
2

(
(ζ − ζ ′)2 + 1

x2 + 1
x′2

)(
log

[
(ζ − ζ ′)2 +

(1
x
+ 1
x′

)2
]

− log
[
(ζ − ζ ′)2 +

(1
x
− 1
x′

)2
])

− 2
xx′

(I.11)

This is the kernel we used in subsection 5.2.

J Quasi-Thermodynamic analysis

In this appendix, we perform a quasi-thermodynamic analysis of the gas studied in this
paper at ω > 1.

The reader may find the study of the system at ω > 1 surprising, given the fact that
its unstable nature seems to rule out the use of thermodynamics. Concretely, when ω > 1,
modes with l > ∆

ω−1 are unstable, and are infinitely occupied in the canonical partition
function. As we have explained in the introduction, however, (see subsection 1.5), even
though modes at large l are unstable, the time scale for their emission scales like ebl at
large l. At any given finite time, therefore, modes with l > lm (where lm is a suitably
increasing function of time) are not occupied. For this reason, it seems to us that canonical
thermodynamics with a cut-off on angular momenta (l < lm) might well turn out to be a
reasonable model for the nature of the configuration as a function of time (parameterized
through lm) as the black hole approaches the end point of super-radiance, in the manner
described in subsection 1.5). In this appendix, we study this model.

The specific question we ask is the following. Suppose we are located at a specific point
in E, J Space in figure 2. When lm is large compared to unity, then our solution will have
traversed almost all of the distance, along the dotted line, to the solid black line in figure 2.
Let us denote the difference between E and the energy of the intersection of the dotted
lines with the black curve, as Eout. When lm is large, the energy Eout lies outside the black
hole. Note that Eout is of order 1

G . In this appendix, we model the distribution of this
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energy between various bulk modes by a quasi-thermodynamic ensemble — one in which
we apply the rules of thermodynamics after simply throwing away all modes with l > lm.
The quasi-thermodynamics of our system is defined by the quasi-partition function

lnZ =
∞∑

n=0

lm∑
l=0

2l∑
a=0

− ln
(
1− e−β(∆+2n−α+ωa)−βl(1−ω)

)
, (J.1)

together with the requirement that the energy contained in this ensemble is Eout (the last
requirement will be used to find the effective value of ω in (J.1)).

J.1 The Bose Condensate Phase

If lm is not too large we might intuitively suspect that the energy of the ensemble (J.1) can
be very large only if ω is less than but very close to ωc the maximum allowed value of ω,

ωc = 1 + ∆
lm

(J.2)

Let
ω = ωc − δω (J.3)

If δω is very small then the mode with n = 0, a = 0, l = lm will be very strongly occupied:
our system will then consist of a Bose condensate in this mode. The occupation of all
other modes can be ignored if the energy in these modes is much smaller than the energy
contained in the mode with l = lm. We will now work out the condition for this requirement
to be self-consistently met.

Recall that the energy contained in a mode with n = a = 0 is given by

El =
l

eβ(∆+(1−ω)l) − 1
(J.4)

It follows that the energy contained in the mode with l = lm is given by

Elm = lm
βlm(ωc − ω) = 1

βδω
. (J.5)

(where we have used the fact that eβ(∆+(1−ω)lm) must be near to unity for macroscopic
occupation of this state).

If we assume that all the energy lies in this mode, it must be that

δω = 1
βEout

(J.6)

Now the result (J.6) is self-consistent only if the energy contained in all other modes is
small compared to Eout. Let us check when this is the case. The energy contained in all
other modes Eoth may be estimated by

Eoth =
lm−1∑
l=0

l

eβ(∆+(1−ω)l) − 1

=
lm∑

b=1

lm − b

eβ
(

∆+
(

δω− ∆
lm

)
(lm−b)

)
− 1

=
lm∑

b=1

lm − b

eβ
(

δωlm
(

1− b
lm

)
+ b∆

lm

)
− 1

(J.7)
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(we have retained only modes with n = a = 0 because the contribution of modes with
nonzero n and nonzero a is much smaller).

Let us first consider the contribution of terms with b < αlm to the summation in (J.7).
For such terms, the exponent in the last of (J.7) can be Taylor expanded. We will see
self-consistently that

δωl2m ≪ 1 (J.8)

Using this condition the relevant range of summation in the last line of (J.7) is approximately
given by

lm
β∆

αlm∑
b=1

lm − b

b
≈ l2m
β∆ (lnαlm − α) ≈ l2m ln lm

β∆ (J.9)

(where we have kept only the leading term in the large lm limit). It is easy to convince
oneself that the summation in b from αlm to lm is subleading in (J.9), and so can be ignored.

We have a Bose condensate (almost all energy in one state) when

l2m ln lm
β∆ ≪ Eout (J.10)

i.e., very approximately, when

lm ≪ 2
√
2β∆Eout

ln(2β∆Eout)
(J.11)

Plugging (J.11) into (J.8) and using (J.6), we see that (J.8) is indeed obeyed (because
lnEout is a large number).

In summary, we conclude that our system is well approximated by a Bose condensate
in the single mode l = lm when (J.10) is met. When lm becomes so large that (J.10) is
no longer obeyed, the system is better thought of as a gas (with energy spread over many
modes) than a Bose condensate.

K Kerr-AdS5 black holes

The mass E, angular momentum J = J1 + J2 (in the special case J1 = J2), angular velocity
ω ≡ ω1 = ω2 and the entropy S of the Kerr-AdS5 black holes are given in the convention
of [6] by

ϵ ≡ GE = πµ(a2 + 3)
4 , j ≡ GJ = πµa , s ≡ GS = π2r3

h

2

√
1 + 2µa2

r4
h

, ω = 2µa
r4

h + 2a2µ
(K.1)

where µ, a are the two parameters of the solution, and rh is the location of the event horizon
which is given by the largest root of

0 = 1− 2µ(1− a2)
r2

h(1 + r2
h)

+ 2a2µ

r4
h(1 + r2

h)
. (K.2)

G is the 5d Newton constant, and we have set the AdS5 radius to 1. Although we present
the expressions in the convention of [6] for comparisons, it is often more convenient to
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use the parameters r+,m of [23] instead of rh, µ above, which are related by r2
h = r2

++a2

1−a2 ,
µ = m

(1−a2)3 . In terms of these parameters, the expressions above are given by

ϵ = πm(a2 + 3)
4(1− a2)3 , j = πma

(1− a2)3 , s = π2(r2
+ + a2)2

2r+(1− a2)2 , ω = a(r2
+ + 1)

r2
+ + a2 (K.3)

and

m = (r2
+ + a2)2(r2

+ + 1)
2r2

+
. (K.4)

To have a black hole solution with a regular event horizon (non-negative Hawking tempera-
ture), r+, a should satisfy [23]

2r4
+ + r2

+ − a2 ≥ 0 → r2
+ ≥ −1

4 +

√
1
16 + a2

2 . (K.5)

The extremal black holes saturate this inequality. a satisfies 0 ≤ a < 1. In this range, ϵ, j
satisfy the bound ϵ > j.

The black hole at ω ≥ 1 suffer from superradiant instabilities. This condition is
equivalent to

r2
+ ≤ a . (K.6)

The black holes saturating this inequality, r2
+ = a will be the core black holes of our AdS5

Grey Galaxies satisfying ω = 1. These black holes satisfy m = a(1+a)3

2 and

ϵ = πa(a2 + 3)
8(1− a)3 , j = πa2

2(1− a)3 , s = π2a
3
2

2(1− a)2 . (K.7)

In particular, one finds

ϵ− j = πa(3− a)
8(1− a)2 (K.8)

for the core black holes at ω = 1. One can invert this relation to obtain

a =
3
2 + δ −

√
9
4 + 2δ

1 + δ
, δ ≡ 8(ϵ− j)

π
> 0 . (K.9)

Inserting it back to s in (K.7) expresses the entropy is given in terms of the charge ϵ− 2j.
The ϵ, j charges of a Grey Galaxy and its core black hole have the same values of ϵ− 2j.
Therefore, s of (K.7) expressed as a function of ϵ− 2j is the entropy of the Grey Galaxy in
terms of its independent charges ϵ, j.
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