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Abstract 

 

Application of Machine Learning Technique to Generate 

Flow Properties in a Round Turbulent Jet 

by 

Seongeun Choi 

Doctor of Philosophy in Civil and Environmental 

Engineering 

Seoul National University 

Professor Jin Hwan Hwang, Advisor 

 

This study utilized Convolutional Neural Network (CNN) and Generative Adversarial 

Network (GAN) algorithms to generate flow velocity and turbulent properties in jet flows 

and evaluate their performance. Three-dimensional Large Eddy Simulation (LES) data sets 
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of a round turbulent jet flow, obtained through the Computational Fluid Dynamics (CFD) 

software, OpenFOAM, were used as ground-truth to train the Machine Learning (ML) 

algorithms. The good agreement between the simulation results and observation data from 

laboratory experiments confirmed the reliability of the LES data set. For this study, the 

resolved data, excluding the subgrid-scale (SGS) part of the LES data, served as the input 

data. Subsequently, a ML model was employed to generate the velocity field, incorporating 

the SGS component. The primary focus was on predicting the SGS information using the 

input data and producing a complete velocity field with accurate fluid flow characteristics. 

Various grid sizes and Reynolds numbers were used to assess the performance of the CNN 

and GAN algorithms. 

The CNN algorithm was tested with two architectures. The first architecture consists 

of layers connected in one path, while the second architecture has layers connected in three 

paths. The second architecture outperformed the first architecture in terms of generating 

flow velocity and turbulent kinetic energy. It demonstrated exceptional extrapolation 

capabilities, accurately reproducing flow properties regardless of the grid size and 

Reynolds number of the input data considered in this study. Similarly, the GAN algorithm 

was tested with two architectures. The first architecture had fully connected layers, while 

the second architecture had convolutional layers. The second architecture outperformed 

the first architecture in reproducing the velocity field. However, both GAN architectures 

faced challenges in reproducing turbulent attributes and spatial correlations, especially 

being influenced by the grid size and Reynolds number. 
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Furthermore, this study investigates the accuracy of CNN techniques in simulating 

turbulence characteristics using time-averaged velocity data. The input data was time-

averaged velocity, and the output data predicted turbulent kinetic energy (TKE), time-

averaged production, and dissipation. The CNN model was trained and tested using 

different Reynolds numbers for TKE, time-averaged production, and dissipation. The 

results showed that the CNN model reasonably predicted the trend of the ground truth. 

Overall, the CNN algorithms were found to have the potential to accurately predict 

turbulence characteristics using time-averaged velocity data. The findings in this study can 

provide valuable insights for selecting an appropriate ML algorithm to reproduce complex 

turbulent flow phenomena. 

Keyword: Turbulent Jet; Convolutional Neural Network; Generative Adversarial Network; 

Large Eddy Simulation; OpenFOAM. 

Student number: 2017-24760  
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CHAPTER 1. INTRODUCTION 

1.1 Background and Necessity 

In hydraulic and aerodynamic engineering, the turbulent jet has been observed in numerous 

environmental problems. From a hydraulic perspective, these environmental problems can be related to 

the discharge of water waste in domestic, agricultural, and industrial areas, including waste disposal 

and treatment facilities. They can also encompass chemical release accidents caused by marine traffic, 

offshore exploration, and the construction of marine structures. Additionally, the plunging jet aerator 

serves as a representative example of using multiple jets to add and mix oxygen into liquids by 

incorporating air bubbles in hydraulic engineering (Kumar et al., 2022). The use of multiple jets helps 

in increasing the mixing efficiency of chemical components and reducing the concentration of 

contaminants. However, reproducing such multiple jets or analyzing their efficiency through numerical 

simulations can be time-consuming, and the accuracy of the simulated results may not be guaranteed, 

depending on the grid resolution. In this context, it is necessary to propose appropriate machine learning 

(ML) models to address the aforementioned issues. The first step in this process should be to develop 

ML algorithms that can accurately predict the flow of a single jet before tackling multiple jet flows. 

To study complex jet flows, the various methods have been utilized, including theoretical analysis 

(Fischer et al., 1979; Lee et al., 2003), laboratory experiments (Xu & Antonia, 2002; Matsuda & 

Sakakibara, 2005), and numerical investigations (Bogey et al., 2005; Kim et al., 2009; Huang et al., 

2020; Xiao et al., 2021), to investigate the characteristics of jet flow. Fischer et al. (1979) have pointed 

out that turbulent jet velocity profiles are influenced by factors such as the surrounding fluid conditions, 

the shape of the jet inlet, and the presence of buoyancy force. They have provided equations for time-

averaged profiles based on these conditions. In particular, Lee et al. (2003) have focused on 

distinguishing between jet and plume and have mathematically modeled the velocity profiles and 

momentum flux of planar and spherical jets. While time-averaged profiles were relatively 
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straightforward to formulate theoretically, accurately describing instantaneous turbulent flows 

considering various flow and geometric parameters posed a challenge. Several laboratory experiments 

were conducted to describe turbulent jet velocity profiles by considering multiple parameters 

simultaneously. Xu and Antonia (2002) conducted experiment to investigate the impact of jet inlet shape. 

They compared fully developed turbulent profiles of a smooth contraction nozzle and a pipe nozzle jet 

flow. Matsuda and Sakakibara (2005) performed experiments at various Reynolds numbers to study 

three-dimensional vortex structures in jet flows. However, the experimental data collected in these 

studies were limited in terms of the covered area and duration of measurements. Furthermore, altering 

the jet's shape, inclination, or ambient flow conditions proved to be difficult in these experiments. Due 

to the limitations associated with laboratory experiments, numerical simulations have been widely 

utilized as an alternative approach. Numerical simulations provided greater flexibility in modifying 

flow and geometric parameters, as well as in obtaining data for analysis. 

In the early studies of simulating jet flows, the Reynolds-Averaged Navier-Stokes (RANS) 

turbulence model was commonly employed (Georgiadis et al., 2006; Faghani et al., 2011; Wang et al., 

2014). Georgiadis et al. (2006) examined various RANS models and compared the numerical results 

with laboratory experiments. They found that the k-epsilon model demonstrated the best agreement 

with the experimental data compared to other models. Subsequently, Faghani et al. (2011) conducted 

numerical simulations using the k-epsilon turbulence model for different nozzle shapes. They analyzed 

parameters such as mean velocity, turbulence intensity, and turbulence kinetic energy of the jet flow. 

However, RANS turbulence models only provided ensemble-averaged values and cannot capture the 

variation in flow velocity over time. To address this limitation, the Large Eddy Simulation (LES) 

turbulence model was introduced. LES can provide instantaneous flow velocity and pressure over time, 

as well as replicate the anisotropy of turbulence (Dejoan & Leschziner, 2005; Gohil et al., 2014). Dejoan 

and Leschziner (2005) performed LES simulations that were in good agreement with experimental 

measurements. They obtained turbulence energy budgets and Reynolds stresses based on the validated 
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model performance. Gohil et al. (2014) implemented higher-order spatial and temporal discretization 

schemes, enabling the capture of more detailed turbulent flow fields compared to Dejoan and Leschziner 

(2005). However, it was important to note that in order to obtain high-quality numerical results, the 

numerical grid size should be sufficiently small to properly model the shear layer and near-wall 

turbulence eddies. Otherwise, the reliability of the numerical results can be compromised (Weaver & 

Mišković, 2021). LES simulations can outperform RANS simulations only when an adequate mesh 

resolution is employed and appropriate wall-damping methods are selected. 

Wang et al. (2010) and Taub et al. (2013) employed Direct Numerical Simulation (DNS) as an 

optimal model to address the challenges discussed earlier. DNS is a computational method that directly 

calculates the flow equations without any turbulence model assumptions. It offers excellent numerical 

accuracy and provides detailed information about turbulent statistics. In their study, Wang et al. (2010) 

conducted DNS of a turbulent jet flow at a Reynolds number of 4,700. They verified that various 

turbulent statistics, including turbulence intensity and Reynolds stress, matched well with experimental 

values. Taub et al. (2013) focused on investigating mean velocity and turbulence properties, including 

vortical behaviors near the jet inlet, using DNS. They directly calculated turbulence statistics without 

relying on assumptions made in previous studies. This approach provided more accurate results. 

However, it is important to note that employing DNS in most cases, especially at high Reynolds 

numbers, can be computationally intensive and may not be feasible due to the requirement for extensive 

computational resources. In the study by Wang et al. (2010), over 20 million grids were utilized for the 

Reynolds number of 4,700, and Taub et al. (2013) required over 34 million grids for the Reynolds 

number of 2,000. While DNS offers excellent accuracy, its application is typically limited to lower 

Reynolds numbers or cases where computational resources are available to handle significant 

computational demands. 

ML has been employed to improve the accuracy and efficiency of numerical simulations in 

turbulence modeling. ML is a popular technique for developing turbulence models (Ling et al., 2016; 
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Wu et al., 2017; Gamahara & Hattori, 2017; Park & Choi, 2021). Ling et al. (2016) used the ML model 

to develop a nonlinear eddy viscosity model for the RANS model. The proposed model demonstrated 

sufficient accuracy in predicting Reynolds stresses, but it struggled with mean velocity predictions. To 

enhance the model's performance, Wu et al. (2017) modified the turbulence model by separating the 

Reynolds stress into linear and nonlinear components, resulting in accurate mean velocity field results. 

In the LES model, Gamahara and Hattori (2017) aimed to improve the existing subgrid-scale (SGS) 

eddy viscosity models using an artificial neural network (ANN). They developed a function that related 

the resolved scales to the SGS stress tensor without assuming isotropic turbulence. The stress tensor's 

individual components were trained separately, avoiding any isotropic turbulence assumptions. While 

this model generally provided a good fit, it had the limitation of being applicable only within a certain 

grid size range. Park and Choi (2021) proposed another SGS eddy viscosity model using various neural 

networks for a turbulent channel flow. They predicted and compared the SGS stresses using different 

prediction models. Their results indicated that neural network models can also be applied to SGS. 

However, these models were restricted by specific geometries and a certain range of Reynolds numbers. 

This study proposes a new approach that use ML models based only on the resolved flow properties 

quantified by an LES model. The SGS eddy behaviors are substituted with those calculated by a pre-

trained ML model for various Reynolds numbers. This approach allows for the use of lower mesh 

resolutions compared to DNS, resulting in reduced computational costs and improved accuracy in SGS 

modeling. Since the existing SGS turbulence models are not utilized in this study, the ML models are 

used as the alternative methods. More specifically, among ML models, convolutional neural network 

(CNN) and generative adversarial network (GAN) are used for generating the SGS turbulence. CNN is 

a neural network model primarily used for image and video data processing. It offers the advantage of 

preserving spatial/local information by analyzing specific pixels and their surrounding pixels, rather 

than the entire image. 

In contrast, GAN consists of a generator and discriminator. The generator aims to generate data that 
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closely resembles real data, attempting to deceive the discriminator. On the other hand, the 

discriminator's role is to distinguish between real and fake data. GAN offers the advantage of generating 

new images that mimic the target images. This is achieved by training the generator to match the 

probability distribution of real data. To enable the ML models mentioned earlier to reproduce the SGS 

component, it is necessary to separate the SGS part and resolved part. Therefore, in this study, a two-

dimensional Fast Fourier Transform (FFT) is employed to accomplish this task. The two-dimensional 

FFT is a mathematical technique used to convert spatial data into frequency domain data. The 

transformation into the frequency domain facilitates the removal of specific frequency components. By 

isolating the high-resolution LES SGS part, the focus of this research lies in training the ML models to 

generate velocity fields that accurately correspond to the SGS part, achieving similar accuracy to that 

of high-resolution LES. 

 

1.2 Objectives of Research 

LES is a turbulence model commonly employed to simulate instantaneous flow behaviors in various 

types of flows. The LES turbulence model relies on SGS eddy viscosity models, which assume isotropic 

turbulence in the SGS, in contrast to the resolved scale where the flow velocity and pressure are directly 

resolved. However, due to the isotropic assumption and dependence on the local grid size, accurately 

representing certain turbulent flows with strong shear layers becomes challenging for these existing 

eddy viscosity models. In this context, a new approach is proposed to reproduce such turbulent flows 

with reduced computational costs while maintaining similar accuracy to high-resolution LES 

simulations. The primary objective of this study is to develop ML algorithms capable of generating 

turbulent motion at the sub-grid scale without relying on existing SGS modeling approaches or specific 

turbulence assumptions.  

The highest resolution LES data, obtained in advance, are initially compared to the results of 
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numerous previous experiments to establish their reliability as ground truth. To separate the LES 

turbulent flow into the resolved part and the SGS part, FFT is employed. The SGS part of the highest 

resolution LES data is analyzed, and suitable CNN and GAN structures are applied to reproduce it. 

During this step, the optimal CNN and GAN structures for predicting SGS are determined by evaluating 

various combinations of layers, nonlinear functions, and optimizations. Detailed information about the 

structures of the machine learning algorithms required to generate SGS turbulent flow is provided. This 

comparison enables the assessment of the algorithms' ability to handle different grid sizes and Reynolds 

numbers, thus evaluating their scalability. 

After successfully generating the velocity, the subsequent step involves extending the analysis to 

include the generation of turbulent characteristics as well. This study purposes to assess the accuracy 

of machine learning techniques in simulating turbulence characteristics using time-averaged velocity 

data and grid points. The input data comprises time-averaged velocities and grid points for a jet flow, 

while the output data includes time-averaged Turbulent Kinetic Energy (TKE), production, and 

dissipation. The study initially trains on a Reynolds number of 10,000 and conducts testing on a 

Reynolds number of 15,000. The normalized root mean square error (NRMSE) and R-squared values 

are employed to analyze the performance of the ML models in simulating TKE using only time-

averaged velocity as input. In order to achieve the main goal of this study, the following three sub-

objectives need to be accomplished beforehand: (1) Design and evaluate machine learning algorithms 

to optimize the generation of the jet flow field. (2) Investigate the applicability of the best-performing 

machine learning algorithm in generating turbulence characteristics in jets. (3) Compare and assess the 

computational efficiency of implementing the machine learning algorithm with relying solely on 

Computational Fluid Dynamics (CFD) calculations. 
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CHAPTER 2. FUNDAMENTAL BACKGROUDS 

2.1 Jets 

When a fluid is discharged through an orifice and encounters another fluid, differences in velocity, 

temperature, or contamination can result in momentum and buoyancy. The type of flow that forms 

depend on the dominant factor; if momentum is dominant, a jet is formed, while if buoyancy is dominant, 

a plume is formed. In cases where both factors are present, a buoyant jet or forced plume can form 

(Abramovich et al., 1984). Among them, jets have been widely used in hydraulic and aerodynamic 

engineering to address various environmental issues such as the discharge of water waste in domestic, 

agricultural, and industrial areas, chemical release accidents caused by marine traffic and offshore 

exploration, and the construction of marine structures and waste disposal and treatment systems (Mossa 

& Davies, 2017). The use of jet flows is intended to improve turbulent mixing of chemical components, 

increasing efficiency, and decreasing pollutant concentration. Due to its velocity difference between the 

centerline and surroundings, the jet flow involves high mass, momentum, and energy exchange, 

resulting in high mixing efficiency. However, the complex nature of jet flows necessitates studying 

characteristics such as velocity, Reynolds number, and turbulent kinetic energy. 

Fischer et al. (1979) emphasized that jet flow characteristics are determined by three parameters: jet 

parameters, environmental parameters, and geometrical parameters. Jet parameters refer to the initial 

conditions of the jet at the inlet, such as the inlet velocity, and the properties of the jet substance, such 

as its temperature and salinity. Environmental parameters describe the conditions of the surrounding 

fluid, such as the presence of a current or stratification of the ambient fluid. Geometrical parameters are 

related to the shape and inclination of the jet inlet. Depending on these various parameters, jet flows 

can take on different shapes. To better understand turbulent flow, it is necessary to examine the shape 

of the jet flow under various conditions. This study investigates the characteristics of a jet flow that is 

discharged vertically upward from the bottom of an ambient fluid, where the jet inlet has a round shape. 
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Figure 1 illustrates the ideal experimental configuration of jets ejected into an ambient fluid of the 

same type via a nozzle with diameter 𝐷 with velocity 𝑈𝐽. The Reynolds number, a non-dimensional 

parameter, is defined as 𝑅𝑒 = 𝑈𝐽𝑑/𝜈 . Jets exhibit statistically stationary and axisymmetric flow, 

meaning the flow characteristics are independent of time and circumferential coordinate, but depend on 

the axial and radial coordinates. The velocity components in the 𝑥, 𝑟, and 𝜃 directions are denoted by 

𝑈, 𝑉, and 𝑊. As the velocity is independent of circumferential coordinate, the centerline velocity is 

denoted as in terms of the temporally mean axial velocity field < 𝑈(𝑥, 𝑟, 𝜃) > as 

𝑈0(𝑥) = 𝑈(𝑥, 0,0).   (1) 

The jet half width 𝑟1/2(𝑥) is defined as 

𝑈(𝑥, 𝑟1
2

, 0) = 1/2𝑈0(𝑥).  (2) 

 

Figure 1. A sketch of a round jet experiment with polar-cylindrical coordinate system, taken 

from Pope (2000). 

Figure 2 depicts the mean axial velocity profiles observed at two points along the jet, showing how 

the jet decays and spreads with increasing axial distance. It is clear that the jet decay is characterized 

by a decrease in the centerline velocity 𝑈0(𝑥), while the jet spread is characterized by an increase in 

the half-width 𝑟1/2. 



 

9 

 

 

Figure 2. Radial profiles of mean axial velocity in a turbulent round jet at Re 95,500. The red 

lines indicate the half width of the profile, taken from Hussein et al., (1994). 

 

Figure 3. Radial profiles of mean axial velocity in a turbulent round jet, Reynolds number of 

100,000. The radial distance is divided by the half width, adapted by Wygnanski and Fiedler 

(1969). 
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However, the shape of the mean axial velocity profiles does not change in Figure 3 , where the 

profiles plotted against 𝑟/𝑟1/2 collapse onto a single curve.  

Self-similarity is an important factor that arises in fully turbulent flows. It refers to the property that 

certain aspects of the flow, such as the shape of the velocity profile, remain unchanged as the flow 

evolves in the downstream direction shown in Figure 3. In terms of the velocity profile, this means that 

the profile at one axial location can be expressed to the profile at a different axial location by a simple 

scaling factor. To quantify this property, characteristic scales 𝑄0(𝑥)  and 𝛿(𝑥)  are defined for 

dependent variable 𝑄 and the independent variable 𝑦 as functions of 𝑥. Then, scaled variables are 

defined by (Pope, 2000) 

𝜉 ≡
𝑦

𝛿(𝑥)
    (3) 

�̃�(𝜉, 𝑥) ≡
𝑄(𝑥,𝑦)

𝑄0(𝑥)
.  (4) 

If two variables, �̃�(𝜉, 𝑥) and �̃�(𝜉), are the same, it means that the variable Q is self-similar with 

respect to the scaling variable 𝜉. It is characterized by a self-similar curve that closely resembles a 

Gaussian distribution. This can be mathematically expressed as: 

𝑈(𝑥, 𝑟) = 𝑈0(𝑥)exp (−
𝑟2

2𝜎2
).   (5) 

Here, 𝜎(𝑥) represents the standard deviation of the velocity profile from the centerline.  

Returning to velocity profile, Figure 4 shows the inverse of 𝑈0(𝑥)  plotted against 𝑥/𝐷 . The 

experimental data are observed to lie on a straight line, which can be represented by the equation: 

𝑈0(𝑥)

𝑈𝐽
=

𝐵

(𝑥−𝑥0)/𝐷
 .  (6) 

Here, 𝑥0 and 𝐵 are defined as the virtual origin and empirical constant, respectively. It is found that 

the jet spreads linearly, and the spreading rate is defined as: 
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𝑆 ≡
𝑑𝑟1/2(𝑥)

𝑑𝑥
.  (7) 

The spreading rate is also constant and can be rewritten as  

𝑟1/2(𝑥) = 𝑆(𝑥 − 𝑥0)  (8) 

for 𝑥 in self-similar region. 

 

 

Figure 4. The inverse of the mean centerline velocity along the centerline in a turbulent round 

jet at Reynolds number of 95,500; measurements of Wygnanski and Fiedler (1969).  

 

 

 



 

12 

 

Table 1. The spreading rate 𝑺 and velocity decay constant 𝑩 for turbulent round jets (Pope, 

2000). 

 
Panchapakesan and 

Lumley (1993) 

Hussein et al. (1994), 

hot-wire data 

Hussein et al. (1994), 

laser-Doppler data 

𝑅𝑒 11,000 95,500 95,500 

𝑆 0.096 0.102 0.094 

𝐵 6.06 5.9 5.8 

 

Figure 5 depicts a simple round jet that was studied in this research. The flow of the simple round 

jet can be divided into two zones: the zone of flow establishment (ZFE) and the established flow zone 

(ZEF). The criterion that distinguishes between the two regions is the ratio of the size of the jet inlet to 

the distance from the inlet, 𝑥. The criterion for distinguishing between the two regions is 𝑥/𝐷 < 6.2, 

and the flow velocity profiles in these two zones are distinct (List, 1982). The velocity profiles are as 

follows: 

1. In the zone of flow establishment (ZFE) 

𝑈 = 𝑈𝐽 , 𝑐 = 𝑐𝐽;  𝑟 ≤ 𝑅   (9) 

𝑈 = 𝑈𝐽𝑒𝑥𝑝 [−(𝑟 − 𝑅)
2/𝑏2 ], 𝑐 = 𝑐𝐽𝑒𝑥𝑝 [−(𝑟 − 𝑅)

2/𝜆2𝑏2] ;  𝑟 > 𝑅   (10) 

2. In the zone of established flow 

𝑈 = 𝑈𝐽exp [− (
𝑟

𝑏
)
2
], 𝑐 = 𝑐𝐽exp [− (

𝑟

𝜆𝑏
)
2
]  (11) 

𝑐, 𝑐𝐽 represent a concentration and jet inlet concentration, respectively, while 𝑏(𝑥) is width of jet. 𝜆 

is a constant that was determined through laboratory experiments.  

Figure 5 shows that the ZFE can be further subdivided into the potential core and the mixing zone 

based on the distance from the center of the inlet. Due to the momentum exchange between the core 
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and the quiescent fluid, the core's width decreases as it moves away from the inlet. Conversely, the 

width of the mixing layer increases with distance from the inlet. Specifically, the entrainment process 

and the spreading rate of a turbulent jet are determined by the large and dominant eddies that extend 

across the entire width of the jet (Lee et al., 2003). Based on these jet flow properties, this study focuses 

on reproducing the small eddies rather than the large eddies. 

 

 

Figure 5. Simple jet showing zone of flow establishment and established flow (Lee et al., 2003) 

 

If the streamwise and radial coordinates are denoted by 𝑥 and 𝑟, and the velocities are 𝑢 and 𝑣, 

the continuity and 𝑥 -momentum equations are as follows (List, 1982):  

𝜌
𝜕𝑢

𝜕𝑥
+ 𝜌

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣) = 0   (12) 

𝜌𝑢
𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑟
= −

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅ ̅).  (13) 

The 𝑥-momentum equation can be rewritten as: 
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𝜌𝑢
𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑟
= 𝜌𝑢

𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑟
+ 𝜌𝑢 (

𝜕𝑢

𝜕𝑥
+ 𝜌

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣)) = −

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅ ̅).  (14) 

Above equation is then multiplied by 2𝜋𝑟 and integrated from 𝑟 = 0 to infinity, yielding: 

𝑑

𝑑𝑥
∫ 𝜌𝑢22𝜋𝑟𝑑𝑟
∞

0
= 0.  (15) 

Substituting the assumed velocity profile, the equation can be modified as: 

𝑀(𝑥) = ∫ 𝑢22𝜋𝑟𝑑𝑟
∞

0
=
𝜋

2
(𝑈0
2𝑏2) = 𝑈𝑚

2 𝜋𝐷
2

4
.  (16) 

 Also, the tracer mass conservation is defined: 

𝑢
𝜕𝑐

𝜕𝑥
+ 𝑣

𝜕𝑐

𝜕𝑟
= −

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣′𝑐′̅̅ ̅̅ ̅).  (17) 

Similar to momentum equation, the tracer mass flux can be written as: 

𝑑

𝑑𝑥
∫ 𝜌𝑐2𝜋𝑟𝑑𝑟
∞

0
= 0  (18) 

∫ 𝑢𝑐2𝜋𝑟𝑑𝑟
∞

0
=

𝜋𝜆2

1+𝜆2
(𝑈0𝑐0𝑏

2) = 𝑈𝑚𝑐𝑚
𝜋𝐷2

4
.  (19) 

The various round jet equations are summarized in Table 2. 
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Table 2. Round jet formulation for zone of established flow (𝒙 ≥ 𝟔. 𝟐𝑫) with jet diameter D, 

source velocity 𝑼𝑱, and momentum flux 𝑴𝟎 (List, 1982) 

Jet width 𝑏 = 0.114𝑥   

Centerline velocity 
𝑈0

𝑈𝐽
= 6.2 (

𝑥

𝐷
)
−1
  𝑈0 = 7.0𝑀0

1/2
𝑥−1  

Centerline concentration 
𝑐0

𝑐𝐽
= 5.26/ (

𝑥

𝐷
)
−1
   

Centerline dilution 𝐷𝑙 = 0.19𝑥/𝐷   

Average dilution ratio 𝐷𝑙̅̅ ̅ = 0.32𝑥/𝐷  𝐷𝑙𝑟 = 0.286𝑀0
1/2
𝑥  

 

2.2 Machine Learning 

Figure 6 shows the relationships between artificial intelligence, machine learning, deep learning, 

supervised learning, and unsupervised learning. Artificial intelligence (AI) is a technology that 

embodies human-like abilities, such as learning, reasoning, perceptual, and language comprehension 

abilities in a computer (Ongsulee, 2017). Therefore, it has the potential to be applied in various areas, 

such as speech comprehension, game playing, driving a car, and interpreting complex data (Pannu, 

2015). However, it requires explicit programming by humans to solve the issues. On the other hand, 

machine learning, a subfield of AI, has an ability to automatically learn and program rules based large 

amount of data (Helm et al., 2020). Through sufficient training and correction, machine learning 

algorithms automatically identify an appropriate model that can produce accurate outputs even when 

presented with previously unseen data. Another definition of ML is that it involves algorithms that can 

learn patterns in high-dimensional spaces without explicit programming or direction from humans 

(Prado, 2018). It differs from traditional statistical modeling in that it trains the rules instead of solely 

predicting outcomes. ML involves several steps in learning these rules, including image analysis, object 

detection, and object recognition. 
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Figure 6. Relationships among artificial intelligence, machine learning, deep learning, 

supervised learning and unsupervised learning. 

 

ML has several main categories related to learning approaches: supervised learning, unsupervised 

learning, and reinforcement learning. Supervised learning is a training process using labeled data. In 

other words, the algorithms receive a set of input data and the output of each input data. It is frequently 

used in classification and regression tasks. Classification is a process of dividing a large dataset into 

distinct groups or classes based on specific features or attributes. In contrast, regression involves 

predicting a continuous value of a target variable based on inputs. Unsupervised learning algorithms, 

on the other hand, use data without any labels, and determine the correct answers without any expected 

output. This algorithm has a high degree of freedom and is applied when solving clustering problems, 

where the goal is to group data into meaningful clusters based on their similarities. Another important 

application of unsupervised learning is dimensionality reduction, which involves simplifying complex 

data by identifying and removing redundant or irrelevant features, thus improving the performance of 

subsequent analysis tasks. Reinforcement learning has no expected output and is trained using trial and 

error. In other words, it rewards and acts in the desired direction when the desired output is achieved. 
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Figure 7. Machine learning types and applications 

 

Deep learning (DL) has been developed to solve the multi-step problem of ML. DL, also known as 

deep hierarchical learning or deep machine learning, is a subfield of ML. DL can be trained in single 

step, but the explanation of the results and causes is insufficient. DL is based on an artificial neural 

network (ANN), which is an algorithm that mimics the structure and operation of the human neural 

network (Vemuri, 1988). ANN is trained through the connection of artificial neurons, and in this process, 

it finds appropriate weights and bias values. In other words, DL consists of these neuron layers, and the 

word ‘deep’ simply refers to the concept of using numerous layers.  

 

2.2.1 Basic of Deep Learning 

Now, the fundamentals of ANN are discussed briefly. As mentioned previously, ANN is a deep 

learning algorithm that refers to the human neural network, so it consists of neurons, which are the 

smallest performance components (Rahman et al., 2019). These neurons form a layer, and these layers 
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constitute a typical ANN algorithm. Typically, there are usually three or more layers, and they are called 

input layer, hidden layer, and output layer. The first layer of the algorithm is referred to as an input layer, 

and as its name implies, it is responsible for receiving input data. Similarly, the output layer is the final 

layer and is responsible for rearranging and exporting the output data to a desired size. The hidden 

layers determine how much the previous data should be weighted up or down before being passed to 

the other layers (O'Shea & Nason, 2015). Each layer is connected by coefficients (weights), bias, and 

non-linear functions (Zupan, 1994). 

In Figure 8a, there is a 4 layered ANN algorithm, and the layers have connections each other. In 

these connections, each neuron receives input data, multiplies weights, adds bias, and then passes 

through a non-linear function to generate output that the following neuron receives (Agatonovic-Kustrin 

& Beresford, 2000). Specifically, input data manipulation operations are separated into linear and non-

linear components. Weight is one of the linear components that is multiplied with the input value. 

Typically, initial value of the weight is determined randomly, and this value is modified during 

algorithm training. A significant input value is multiplied by a weight with a large absolute value, and 

a value close to 0 is multiplied in the opposite case. In addition to weights, bias is also a linear 

component. It is added to the output of multiplying the input by a weight, essentially to alter the input's 

range. Finally, the activation function is applied to transform this linear relationship into a nonlinear 

one.  
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Figure 8. (a) Typical architecture of artificial neural network consisting of input, hidden and 

output layer and (b) artificial neuron example with 3 input neurons and activation function, 

ReLU. 

 

Figure 8b is an enlarged version of the layer connections, as shown in Figure 8a. Three neurons in 

the input layer are connected to a single neuron in the next layer by multiplying their weights, adding a 

bias, and using a nonlinear activation function, Rectified Linear Unit (ReLU). In this way, the movement 

of the input value through the hidden layer to the output layer is called as forward propagation. As its 

name suggests, it goes only one direction, forward-pass. However, when moving only forward, weight 
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or bias value cannot be updated. Thus, the backpropagation is required to update the weight and bias to 

make better outcomes. The back propagation uses a loss (cost) function to calculate the error value, and 

then updates the weight and bias values in the direction which the error decreases. 

Sigmoid, Rectified Linear Unit (ReLU), softmax, tanh, and leaky ReLU are the most frequently 

employed activation functions. These activation functions are summarized below, and Figure 9 depicts 

the activations.  

• Sigmoid: The input data is valid for all real numbers, while the output data is in the interval [0, 

1]. The S-shaped curve of the Sigmoid nonlinear function makes it continuously differentiable. It is 

represented mathematically: 

𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥
..  (20) 

• ReLU: It is one of common non-linear functions in CNN algorithm (Alzubaidi et al., 2021). It converts 

all numbers to positive numbers or 0. When the output is zero, the corresponding neuron deactivates. It 

indicates that ReLU has a low computational cost. 

 𝑓𝑅𝑒𝐿𝑈(𝑥) = {
𝑥  𝑥 > 0
0  𝑥 ≤ 0

  (21) 

• Softmax: It combines multiple sigmoid functions. While Sigmoid is used for binary classification, 

Softamx can be employed for multi-classification (Sharma et al., 2017). Its benefit is returning the 

probability for each class. It can be expressed as 

𝑓𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥) =
𝑒−𝑥

∑𝑒−𝑥𝑖
 for group 𝑖.  (22) 

• Tanh: appears S-shaped and symmetrical about the origin. Hence, it is continuous and differentiable. 

Also, it has steep gradient. The output ranges from -1 and 1.  

𝑓𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
   (23) 
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• Leaky ReLU: Positive numbers come out directly, whereas negative numbers come out by down-

scaling. The down scaling number 𝑚 is usually small.  

𝑓𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = {
𝑥  𝑥 > 0
𝑚𝑥  𝑥 ≤ 0

   (24) 

 

 

Figure 9. Non-linear activation functions: Sigmoid, Rectified Linear Unit (ReLU), Tanh, Leaky 

ReLU. Whereas Sigmoid and Tanh have a range of outputs, ReLU and Leaky ReLU are not 

constrained in the positive direction. In Leaky ReLU, 𝒎 is 0.05. 

 

The loss function can be divided into two groups: classification and regression, according to the 

objectives of deep learning algorithms. Various loss functions are summarized in Table 3. 

  



 

22 

 

Table 3. Loss function for classification and regression 

classification  

0-1 loss function 𝐿(𝑦, �̇�) = {
1 𝑖𝑓 𝑦�̇� < 0
 0 𝑖𝑓 𝑦�̇� ≥ 0

 

Perceptron loss function 𝐿(𝑦, �̇�) = {
−𝑦�̇� 𝑖𝑓 𝑦�̇� < 0
0   𝑖𝑓 𝑦�̇� ≥ 0

 

Cross entropy loss 
𝐿(𝑦, �̇�) = −𝑙𝑜𝑔�̇� where �̇� =

{
𝑝       𝑖𝑓 𝑦 = 1
1 − 𝑝 𝑖𝑓 𝑦 ≠ 1

 

Sigmoid entropy loss 
𝐿(𝑦, �̇�) = −𝑙𝑜𝑔�̇� where �̇� =

{
𝑝       𝑖𝑓 𝑦 = 1
1 − 𝑝 𝑖𝑓 𝑦 ≠ 1

 

Softmax cross entropy loss 𝐿(𝑦, 𝑝(𝑦|𝑥)) = −𝑝(𝑦|𝑥) 

Exponential loss 𝐿(𝑦, �̇�) = 𝑒−𝑦�̇� 

Regression  

Square loss 𝐿(𝑦, �̇�) = (𝑦 − �̇�)2 

Absolute loss 𝐿(𝑦, �̇�) = |𝑦 − �̇�| 

Huber loss 𝐿(𝑦, �̇�) = {
(𝑦 − �̇�)2/2   𝑖𝑓 |𝑦 − �̇�| ≤ 𝛿

𝛿|𝑦 − �̇�| − 𝛿2/2  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑥: input data, 𝑦: real value, �̇�: generated value, 𝐿: loss function 

𝑝 and �̇�: probability 𝛿: parameter 
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There are four representative loss functions for classification. 0-1 loss function has only two loss 

values, 0 and 1. The loss is 1 if the real value and generated value have same sign (classification to the 

same group), otherwise the loss is 0, shown in Figure 10a. It sets the loss to 1 regardless of the difference 

between the real and generated values. Consequently, it has the disadvantage that it is difficult to 

determine how much to modify, so it is rarely used. Therefore, the perceptron loss function is developed 

to assess the difference. The loss is 0 when the real and generated value have same sign, otherwise loss 

is absolute value of generated value (Figure 10b). These two loss functions are simple to use, but they 

are not robust for noise data (Wang et al., 2022). 

Cross entropy loss is another model commonly used to measure deep learning models. It has a 

singularity that probability is an output. So, it helps the generated distribution to have similar real data 

distribution. For example, the loss function predicted a 10%, 65%, and 25% probability, respectively, 

that the outcome would be classified into groups 1, 2, and 3. And if the actual outcome belongs to group 

2, the cross-entropy loss is −(0 × log(0.1) + 1 × log(0.65) + 0 × log (0.25)) . Thus, the cross-

entropy loss function can also be used for multiclass classification and is also known as the log loss 

function (Wang et al., 2022). If it is combined with softmax or sigmoid activation, it is called as softmax 

or sigmoid cross entropy loss. Exponential loss is also another loss, and it is superior to the 0-1 loss 

function.  Because the loss is computed by applying an exponent to the product of the generated and 

actual values (Figure 10c). This loss function offers two benefits (Wang et al., 2022). Firstly, it can be 

continuous and differential. Secondly, it can impose a penalty if the true and generated values have 

different sign. To be specific, the error gradient become sharper, as the loss is large. So, when the 

generated value is incorrectly labeled, this loss function helps the model to be converge easily. 
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Figure 10. Loss function for classification and regression; (a) 0-1 loss function, (b) perceptron 

loss function, (c) exponential loss, (d)square loss, (e) absolute loss and (f) huber loss 

(a) (b)

(c) (d)

(e) (f)
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For regression problems, there are several loss functions, including the square loss function, the 

absolute loss function, and the huber loss function (Sharma, 2017). The square loss function calculates 

the square of the difference between the real and generated values. If the difference is large, so is the 

gradient (Figure 10d). While, as the loss value approaches 0, the gradient becomes smaller. It has an 

advantage for rapid convergence and precision (Wang et al., 2022). Absolute loss measures a difference 

between the real value and the generated value shown in Figure 10e. It is robust when outliers are trained 

because the loss does not increase sharply even if the difference is significant. When the generated value 

is close to the actual value, however, it has a larger loss than the square loss function, so it is less popular 

than the square loss function. Huber loss is a loss function combined with square and absolute loss 

functions. This loss function takes one parameter (𝛿) and compares its magnitude to the loss value to 

determine the appropriate loss equation. If the difference between the real and generated values is less 

than the parameter, the squared loss is employed; otherwise, the absolute loss is employed (Figure 10f). 

Consequently, it is possible to state that this model possesses both the benefits of an absolute loss 

function and a square loss function (Wang et al., 2022). First, when training the outlier, the absolute loss 

function can be used to prevent the loss from rising sharply. When it is very close to the real value, on 

the other hand, it can be learned by gradually adjusting the weights and bias using the square loss 

function. However, setting the parameter to proper value is difficult. 

When the loss value is obtained by the loss function introduced above, the weight and bias are 

adjusted accordingly, which is called back propagation. This method is founded on the theory of 

gradient descents (GD). If the loss and weight at epoch, 𝑖, are set to 𝐿(𝑤𝑖) and 𝑤𝑖, respectively, then 

the weight at next epoch using GD can be defined as: 

𝑤𝑖+1 = 𝑤𝑖 − 𝛾𝛻𝐿(𝑤𝑖).  (25) 

As shown by the equation, the weight changes in the opposite direction of the loss function's slope. If 

the loss function has a positive slope, the weights must be changed to a value that causes the loss 
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function to shift in the opposite direction. The rate at which the weights change over one epoch is known 

as the learning rate. If the learning rate is too high, the optimal value is bypassed, whereas if it is too 

low, a local minimum may be found (Goodfellow et al., 2014). After all train data is learned, GD 

modifies the weights and biases, so it takes a long time to find the optimal weight and bias. To solve 

this problem, the stochastic gradient descent (SGD) algorithm was developed. After the batch has been 

trained, the weight is adjusted. The batch is a subset of the entire data set. This method finds optimal 

values more quickly than gradient descent, but it still does not solve the disadvantage that the learning 

rate has a large effect. (Wang et al., 2022). 

When using gradient descent, it is important to note that weights or biases can reach local minimums 

or saddle points. When the weights are updated, the learning gradient, which determines in which 

direction to train, is a crucial property for solving this problem. Momentum optimizer is the optimizer 

that the GD optimizer has been improved in terms of learning gradient. When updating the weight, this 

method reflects the direction in which the weight was previously altered. It is defined as: 

𝜈𝑖+1 = 𝜌𝜈𝑖 + 𝛻𝐿(𝑤𝑖)  (26) 

𝑤𝑖+1 = 𝑤𝑖 − 𝛾𝜈𝑖+1  (27) 

where 𝜈𝑖 is the previously weight changed direction, also known as weight increment. 𝜌 is momentum 

factor value, which ranges from 0 to 1 (Wang et al., 2022). If the momentum factor is low, it cannot 

avoid local minimum or maximum. While, when the momentum factor is too high, it is easy to skip the 

global minimum or maximum. 

Optimizers are concerned not only with the gradient but also with the learning rate. Adagrad is an 

optimization that enhances the learning rate of gradient descent. It has a variable learning rate depending 

on the frequency of adjustment. It has a high learning rate for infrequent updates, as variables that 

change infrequently are likely to require significant adjustments to reach the optimal solution. However, 

it has low learning rate for frequent updates (Ruder, 2016).  Dean et al. (2012) told that Adagrad is 
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more resilient than stochastic gradient descent in large neural network models. Adagrad is defined as: 

𝑆𝑖+1 = 𝑆𝑖 + (𝛻𝐿(𝑤𝑖))
2   (28) 

𝑤𝑖+1 = 𝑤𝑖 −
𝛾

√𝑆𝑖+1+
∙ 𝛻𝐿(𝑤𝑖)  (29) 

In this equation, 𝑆𝑖 is accumulating and growing as training continues. Thus, the step size decreases as 

the algorithm is trained. It indicates that the model can converge as the local point is approached as the 

step size becomes smaller. Therefore, it is advantageous for convex functions, but difficult to avoid the 

saddle point (Goodfellow et al., 2014). In order to prevent the step size from becoming too small, 

RMSprop is an optimization model that is slightly improved by Adagrad. RMSprop sets decay rate (𝜆 ) 

to gradually decrease the accumulated value. 

𝑆𝑖+1 = 𝜒 ∙ 𝑆𝑖 + (1 − 𝜒)(𝛻𝐿(𝑤𝑖))
2   (30) 

𝑤𝑖+1 = 𝑤𝑖 −
𝛾

√𝑆𝑖+1+
∙ ∇𝐿(𝑤𝑖)  (31) 

Adam is an optimizer that combines Momentum and RMSprop. Consequently, both gradient 

direction and learning rate can be considered. It has advantages that are computationally inexpensive 

and simple to use (Wang et al., 2022). And it needs less tuning than every other optimization method 

(Goodfellow et al., 2014). However, this model heavily focuses on reducing the computational time, so 

it may not converge to the optimal solution (Tran, 2019). In addition, it has a decaying problem, so 

Loshchilov & Hutter (2018) propose the AdamW optimization for addressing Adam's decaying problem. 

It is mathematically expressed as: 

𝜈𝑖+1 = 𝜒 ∙ 𝜈𝑖 + (1 − 𝜒1)𝛻𝐿(𝑤𝑖)   (32) 

𝑆𝑖+1 = 𝜒2𝑆𝑖 + (1 − 𝜒2) ∙ (∇𝐿(𝑤𝑖))
2   (33) 

𝜈𝑖+1̂ =
𝜈𝑖+1

1−𝜒1
2 , 𝑆𝑖+1̂ =

𝑆𝑖+1

1−𝜒2
2   (34) 
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𝑤𝑖+1 = 𝑤𝑖 −
𝛾

√𝑆𝑖+1̂+
𝜈𝑖+1̂   (35) 

where 𝜒1 and 𝜒2 represent constants. 

The types and characteristics of optimizers are summarized in Figure 11a. It shows that momentum 

takes into account gradient direction, whereas Adagrad considers the learning rate. Moreover, Adam 

considers both the gradient direction and learning rate. Figure 11b shows how each optimization 

algorithm traverses the contour of the loss surface (Ruder, 2016). Due to the fact that SGD is an 

algorithm that has not improved either the learning direction or the learning step, it is evident that the 

learning speed is slow. Consequently, it is the sole optimization algorithm that has not yet reached its 

lowest point. Momentum and NAG are optimizers focused on the learning direction, so they have 

shifted various paths on loss contour. However, the routes of Adgrad, Adadelta, and RMSprop's routes 

are relatively straightforward because they primarily consider the learning rate. This phenomenon is 

also shown in Figure 11c (Ruder, 2016). If the path can be known from the Figure 11b, then the training 

speed of each optimization can be verified in Figure 11c. SGD cannot identify the saddle point, so it 

does not move away from it. On the other hand, all other algorithms are moving toward the global 

minimum because these algorithms recognize that they are in a saddle point. The learning rate improved 

optimizer, Adagrad, Adadelta, and RMSprop, move fast than the other model. As the gradient along the 

path from the saddle point to the global minimum increases, the learning step increases, and as a result, 

the training speed of these algorithms increases. In other words, it is evident that the computational cost 

of these models is low. Due to the slow learning rate, Momentum and NAG, in which only the gradient 

is improved, move slowly. Therefore, each optimizer has its own strengths and weaknesses, and it is 

essential to select an optimizer based on the characteristics of the training data. 
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Figure 11. (a) Optimizer types and characteristics, (b) training paths of optimizer on loss 

contour (Ruder, 2016), and (c) training speed of optimizer on saddle point (Ruder, 2016) 

 

A single execution of forward-pass and back propagation over the entire data set is known as an 

epoch. However, it is difficult to determine the weights and biases that account for the entire data set at 

once due to the volume of data. So, after dividing the data by batch size, the calculation for each batch 

is performed. It is known as one iteration, and at this point the weight and bias values are updated. For 

example, if the total data set of 1000 is divided into 100 data per one batch, then there are ten iterations 

per one epoch. If 10 epochs are calculated, the weights and bias are updated through 100 iterations. It 

is possible to avoid under-fitting and over-fitting by setting the algorithm's epoch values appropriately. 

Figure 12 shows the concept of under-fitting and over-fitting. Underfitting is too simple to even 

accommodate the trainset (Figure 7a).  The condition of overfitting occurs when the training set is 

over-trained. Consequently, the model performs poorly on data other than the training data (Figure 12c).  

If the model is trained with the appropriate number of epochs, as illustrated in Figure 12b, we can find 
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the optimal model. 

In the model training process, data sets can be categorized as train, validation, and test sets. Train 

set are used to tune the ML model, and parameters such as weight and bias are adjusted to fit the training 

set. Validation set is used only to evaluate a trained model already been trained. In other words, it is not 

utilized to estimate weights or biases. The error of train and validation set determines the 

hyperparameters such as epoch. The test set is used to evaluate the model after training is complete, and 

it is comprised of unbiased data samples.  

 

 

Figure 12. Concept of (a) underfit, (b) optimal, and (c) overfit 

 

2.2.2 Convolutional Neural Network 

CNN is a network that, like ANN, receives an input and performs an operation, but the input of each 

layer in a CNN model is organized in three dimensions (Alzubaidi et al., 2021). The input data consists 

of height, width, and depth, with height and width being equal. The depth is also referred to as the 

number of channels. These input data are extracted by the kernel (filter) with sharing the weights. The 

kernel traverses the input data at a predetermined interval, performs the dot product with the subregion 

of input data, and obtains the output as the matrix of dot products (Goodfellow et al., 2016). Therefore, 

the kernel extracts distinct image features from one another, and the resulting image is known as a 



 

31 

 

feature map. Figure 13 shows a CNN example comprised of an input image, three kernels, and three 

feature maps. Each kernel extracts unique characteristics, including edge and curve, etc. Here, the width 

and height of the image match the height of the width of the three-dimensional output, and the depth is 

three because there are three feature maps.  

 

 

Figure 13. 2D convolution example using a kernel size of 3, stride of 1 

 

This process is be expressed as using an input (𝐼), kernel (𝐾), and the output image (𝑂): 

𝑂(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 −𝑚, 𝑗 − 𝑛)𝑛𝑚   (36) 

The output data has a smaller size than the input data in CNN because of combining multiple input data 

into a single output data. Thus, padding is used to maximize the utilization of edge data and prevent 

image compression. Mainly, same padding which make the out data in the same size as the input data 

is used. 

In addition to padding, the output size is also affected by the stride and kernel sizes. When stride is 

set to 1, for instance, the kernel advances by one unit (Figure 14a). If the stride is 2, the kernel shifts 

two pixels, and the output size is decreased by one pixel relative to the previous example (Figure 14b). 
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In Figure 14c, the kernel size has been increased to 3, and as a result, the output data size is smaller 

than in Figure 14a. Accordingly, each convolutional layer can specify kernel size, stride, and padding, 

and must be adequately specified with output size in mind.  

 

 

Figure 14. Convolution with kernel 2 and stride 1 (a); kernel 2 and stride 2 (b); kernel 3 and 

stride 1 (c) 

 

A convolutional layer can be defined (Jin et al., 2018): 

𝑦𝑐 = 𝐹(𝜅 ∗ 𝑥𝑐 + 𝑏𝑐)  (37) 

where 𝑦𝑐 represents the output feature map, 𝑥𝑐 the input feature map, * the convolutional operator, 𝜅 

the learnable convolutional kernel, 𝑏𝑐 the additive bias, 𝐹 the nonlinear activation function.  

After using convolutional layers, pooling is a popular layer in the CNN model to reduce the use of 

parameters and suppress over-fitting (Goodfellow et al., 2016). The pooling has an advantage known 

as 'Invariance to translation'. If only one data is extracted from a large number of input data, it means 

the extracted data still contains all of the input data's information. For example, if we translate whether 

an image has a human face or not, we only need to know whether the image has two eyes, nose, and a 

mouth; we do not need the exact location of the eyes, nose, and mouth. Therefore, the pooling uses 

smaller data sets which retain the characteristics of the entire data set. So, it is helpful to improve the 
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computational efficiency of the network. There are two representative pooling methods, average pooling 

and max pooling. They extract, respectively, the average and maximum value of a specified sub-region 

chosen by kernel. Figure 15 illustrates an example of an average and maximum pooling layer with stride 

of two pixels and kernel of two pixels. The output of the average pooling layer indicates the mean value 

of the selected data, whereas the output of the maximum pooling layer indicates the maximum value of 

the selected data. 

 

 

Figure 15. Example of average and maximum pooling layers with a stride of two pixels and a 

kernel of two pixels; the maximum and average values of the selected subregion are respectively 

calculated. 

 

2.2.3 Generative Adversarial Network 

Goodfellow introduced the Generative Adversarial Network (GAN) as a representative 

unsupervised model in 2014. (Goodfellow et al., 2014). A standard GAN model consists of a generator 

and discriminator pair network (Figure 16). Typically, these generator and discriminator networks are 

Max pooling output Average pooling output
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comprised of convolutional and fully neural networks (Creswell et al., 2018). Generator creates an 

image from the random noise in order to create a target image, and discriminator receives both the real 

target image and the fake image created by the generator and determines which is real and which is fake. 

The error between the real and fake images motivates the generator and discriminator produce more 

realistic images and distinguish between real and fake images, respectively. Following training 

iterations, generative models are led to produce the fake image which is similar to real image, and 

discriminator models are eventually unable to distinguish between real and fake images. 

 

 

Figure 16. Typical model of generative adversarial network which has generator and 

discriminator; generator make the fake image from random noise and discriminator distinguish 

the real and fake images. The losses lead generator and discriminator make realistic image and 

find fake image well. 

 

As the training iterations progress, the generator's distribution, 𝑝𝑔, which is specified by the input 

noise variables, 𝑝𝑧(𝑧), shifts in the direction of becoming more similar to the data distribution, 𝑝𝑑𝑎𝑡𝑎, 

in traditional GAN model. The mapping process to data space and parameter in GAN algorithm are 

denoted by 𝐺(𝑧) and 𝜃𝑔, respectively. 𝐷(𝑥) is defined as the probability and changed depending on 

where 𝑥 comes from the generator or real data. 𝐷(𝑥) is close to 1 when 𝑥 come from the data and 

close to 0 otherwise. The Gans’ loss function, 𝑉(𝐺, 𝐷), is written as equation 21 and it is known as 

two-player minmax gam (Goodfellow et al., 2014). The first term represents the expected value of the 

output when the real data 𝑥 is input into the discriminator, and the second term is the expected value 
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when the fake data 𝑧  is input into the discriminator after being input into the generator. When 𝐷 

discriminates has good performance, 𝐷(𝑥) becomes 1 and then the first term disappears. The samples 

created by 𝐺(𝑧) can be identified as fake values. Therefore D(𝐺(𝑧)) can achieve 0 if it discriminates 

effectively. Also, because 𝐺  is so proficient at generating data similar to real data, 𝐷  does not 

recognize the image generated by 𝐺 as fake and concludes that it is real in the second term. So, G has 

the minimum value negative infinity. In other words, this model trains G to minimize and D to maximize 

the loss function, respectively. The loss function is expressed as below and 𝐄 stands for expected value. 

𝑚𝑖𝑛𝑚𝑎𝑥𝑉(𝐺, 𝐷) = 𝜠𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝜠𝑧~𝑝𝑧(𝑧)[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]  (38) 

The process of training is illustrated in Figure 17. In the beginning, G and D perform poorly, so 

generative distribution (red dotted line) is far from the data set distribution (black solid line) and 

discriminative distribution (green dashed line) is unable to distinguish the data (Figure 17a). As the 

GAN is being trained, G and D begins to be optimized. The learning rate of two networks are different 

(Goodfellow et al., 2014). Usually, D and G are optimized by k steps and 1 step, respectively. It means 

that D trains faster than G, so D can distinguish whether data come from data sets or samples. Therefore, 

at the middle of training, while G 's performance is poor, D distinguishes the data generated by G from 

real data samples too well (Figure 17b). Afterward, G is trained so that the data set distribution and 

generative distribution are similar to produce similar samples to the data (Figure 17c). After training 

Gan networks iterate, D is unable to distinguish the data because 𝑝𝑔 is same as 𝑝𝑑𝑎𝑡𝑎 (Figure 17d).  

So, D(x) yields only 0.5. This Gan algorithm has the benefit of being compatible with numerous models 

and requiring no inference during training. However, D and G should be well balanced and improved, 

it has the disadvantage that 𝑝𝑔(𝑥) does not explicitly exist (Goodfellow et al., 2014). 
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Figure 17. Several steps of GAN training by generative distribution (red dotted line), data set 

distribution (black solid line) and discriminative distribution (green dashed line); (a) generative 

distribution is different from data set distribution and discriminator is hard to differentiate 

between both distribution, (b) training of discriminator is faster than that of generator, so 

discriminate recognize generative and data set distribution well, (c) generative distribution is 

modified to match real data distribution, and (d) generative distribution is same as data set 

distribution and discriminator is incapable to differentiate both distribution 

 

If the training and time are enough, 𝐺 is optimized when the generator's distribution, 𝑝𝑔, has same 

the data distribution, 𝑝𝑑𝑎𝑡𝑎. It was proved by Goodfellow in 2014 and reproved here (Goodfellow et 

al., 2014). For a fixed 𝐺, a discriminator 𝐷 maximize the quantity 𝑉: 

𝑉(𝐷) = 𝜠𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] + 𝜠𝑧~𝑝𝑔[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑥)))]  (39) 

𝑉(𝐷) = ∫ 𝑝𝑑𝑎𝑡𝑎(𝑥)𝑙𝑜𝑔 (𝐷(𝑥))𝑑𝑥𝑥
+ ∫ 𝑝𝑔(𝑧)𝑙𝑜𝑔 (1 − 𝐷(𝑔(𝑧)))𝑑𝑧𝑧

  (40) 

𝑉(𝐷) = ∫ 𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑙𝑜𝑔(𝐷(𝑥)) + 𝑝𝑔(𝑥)𝑙𝑜𝑔 (1 − 𝐷(𝑔(𝑥)))𝑑𝑥𝑥
  (41) 

If 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑔 change as 𝑎 and 𝑏, respectively, the equation is as below:  

𝑉(𝐷) = 𝑎𝑙𝑜𝑔(𝐷) + 𝑏𝑙𝑜𝑔(1 − 𝐷)  (42) 

This equation has a maximum value in [0,1] when 𝐷𝑂 =
𝑎

𝑎+𝑏
=

𝑝𝑑𝑎𝑡𝑎

𝑝𝑑𝑎𝑡𝑎+𝑝𝑔
. Therefore, a loss value is as 

follow: 

𝑉(𝐺, 𝐷) = 𝑉(𝐺, 𝐷𝑂) = ∫ 𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑙𝑜𝑔(𝐷𝑂(𝑥)) + 𝑝𝑔(𝑥)𝑙𝑜𝑔 (1 − 𝐷𝑂(𝑥))𝑑𝑥𝑥
  (43) 
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= ∫ 𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑙𝑜𝑔 (
𝑝𝑑𝑎𝑡𝑎

𝑝𝑑𝑎𝑡𝑎+𝑝𝑔
) + 𝑝𝑔(𝑥) 𝑙𝑜𝑔 (1 −

𝑝𝑑𝑎𝑡𝑎

𝑝𝑑𝑎𝑡𝑎+𝑝𝑔
)𝑑𝑥

𝑥
  (44) 

= ∫ 𝑝𝑑𝑎𝑡𝑎(𝑥) 𝑙𝑜𝑔 (
𝑝𝑑𝑎𝑡𝑎

𝑝𝑑𝑎𝑡𝑎+𝑝𝑔
) + 𝑝𝑔(𝑥) 𝑙𝑜𝑔 (

𝑝𝑔

𝑝𝑑𝑎𝑡𝑎+𝑝𝑔
)𝑑𝑥

𝑥
  (45) 

= 𝜠𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [𝑙𝑜𝑔
𝑝𝑑𝑎𝑡𝑎

𝑝𝑑𝑎𝑡𝑎+𝑝𝑔
 ] + 𝜠𝑥~𝑝𝑔(𝑥) [𝑙𝑜𝑔

𝑝𝑔

𝑝𝑑𝑎𝑡𝑎+𝑝𝑔
 ]  (46) 

The global optimum of the generator is achieved if 𝑝𝑑𝑎𝑡𝑎 = 𝑝𝑔 and at that time a global minimum of 

loss function 𝑉𝐺 is −𝑙𝑜𝑔4. The equation 29 can be reformulated as: 

𝜠𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [𝑙𝑜𝑔
𝑝𝑑𝑎𝑡𝑎

𝑝𝑑𝑎𝑡𝑎+𝑝𝑔
 ] + 𝜠𝑥~𝑝𝑔(𝑥) [𝑙𝑜𝑔

𝑝𝑔

𝑝𝑑𝑎𝑡𝑎+𝑝𝑔
 ] + 𝑙𝑜𝑔4 − 𝑙𝑜𝑔4  (47) 

= 𝜠𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [𝑙𝑜𝑔 2
𝑝𝑑𝑎𝑡𝑎

𝑝𝑑𝑎𝑡𝑎+𝑝𝑔
 ] + 𝜠𝑥~𝑝𝑔(𝑥) [𝑙𝑜𝑔 2

𝑝𝑔

𝑝𝑑𝑎𝑡𝑎+𝑝𝑔
 ] − 𝑙𝑜𝑔4  (48) 

Kullback–Leibler divergence (𝐾𝐿𝐷) is a function used to calculate the difference between any two 

probability distributions and it can be expressed as follows: 

𝐾𝐿𝐷(𝑃‖𝑄) = 𝜠x~𝑃 [𝑙𝑜𝑔
𝑃

𝑄
 ].  (49) 

So, the global minimum of loss function is arranged: 

𝑉𝐺 = 𝜠𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) [𝑙𝑜𝑔
𝑝𝑑𝑎𝑡𝑎

(𝑝𝑑𝑎𝑡𝑎+𝑝𝑔)/2
 ] + 𝜠𝑥~𝑝𝑔(𝑥) [𝑙𝑜𝑔

𝑝𝑔

(𝑝𝑑𝑎𝑡𝑎+𝑝𝑔)/2
 ] − 𝑙𝑜𝑔4√𝑎2 + 𝑏2  (50) 

= 𝐾𝐿𝐷 (𝑝𝑑𝑎𝑡𝑎‖
𝑝𝑑𝑎𝑡𝑎+𝑝𝑔

2
) + 𝐾𝐿𝐷 (𝑝𝑔‖

𝑝𝑑𝑎𝑡𝑎+𝑝𝑔

2
) − 𝑙𝑜𝑔4  (51) 

= 2𝐽𝑆𝐷(𝑝𝑑𝑎𝑡𝑎‖𝑝𝑔) − 𝑙𝑜𝑔4  (52) 

Jensen– Shannon divergence ( 𝐽𝑆𝐷 ) is a function between the model’s distribution and the data 

generating process and it can be expressed as follows: 

𝐽𝑆𝐷(𝑃‖𝑄) =
1

2
𝐾𝐿𝐷 (𝑃‖

𝑃+𝑄

2
) +

1

2
𝐾𝐿𝐷 (𝑄‖

𝑃+𝑄

2
).  (53) 
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If the two distributions, 𝑝𝑔  and 𝑝𝑑𝑎𝑡𝑎 , are same, 𝐽𝑆𝐷  yields 0. On the other hand, 𝐽𝑆𝐷  becomes 

positive value. Therefore, the global minimum loss function, 𝑉𝐺, is −𝑙𝑜𝑔4 if and only if 𝑝𝑔 = 𝑝𝑑𝑎𝑡𝑎 

(Goodfellow et al., 2014). At this moment, the discriminator just predicts 0.5 for all samples drawn 

from 𝑥. In other words, the generator, 𝐺, is optimal when the discriminator, 𝐷, cannot distinguish real 

data and fake samples. 

 

2.3 Computational Fluid Dynamics 

The motion of Newtonian fluids is governed by the nonlinear partial differential equations known 

as Navier-Stokes equations. These equations are used to describe a wide range of phenomena, such as 

weather patterns, ocean currents, and pipe flows (Galdi, 2011). Computational Fluid Dynamics (CFD) 

is a powerful tool for approximating solutions to these partial differential equations. In this technique, 

the PDEs are transformed into algebraic equations, which are then discretized by computers to find 

solutions. The continuity and momentum equations that describe fluid motion are given by Jiang and 

Lai (2016) as follows: 

Continuity equation, 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0   (54) 

Momentum equation, 

𝜕𝑢𝑖

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗) = −

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑖
+ 𝑔𝑖   (55) 

where 𝑣, t, ρ, and 𝑔 represent velocity, time, density, pressure, and gravity, respectively. Additionally, 

indices 𝑖 = 1, 2, and 3 correspond to streamwise, spanwise, and vertical directions, respectively. The 

equation corresponds to unsteady, incompressible, and viscous fluid flows. These equations describe 

unsteady, incompressible, and viscous fluid flows. 
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Figure 18. Decomposition of energy spectrum depending on computational numerical models; 

Direct numerical simulation (DNS), Large eddy simulation (LES) and Reynolds averaged 

Navier Stokes (RANS). DNS resolves all scales of eddies directly, while RANS models all scales 

of eddies. LES resolve the larger-scale eddies directly and requires artificial modeling for the 

remaining smaller-scale eddies. 

 

Turbulence one of the most common types of irregulars, unstable, and random flows, and is 

characterized by its transport and mixing properties (Pope, 2000). To investigate these properties, there 

have been numerous theoretical, experimental, and computational studies on turbulence. In this study, 

turbulent flows were investigated using computational fluid dynamics (CFD), that employs three major 

turbulence models: DNS, LES, and RANS models. DNS solve the Navier-Stokes equations to obtain 

for one realization of the flow, resolving all length scales and timescales directly. As a result, DNS is 

computationally expensive. LES solves the equations for the filtered velocity field, which are equivalent 

to the large scales of the turbulence. The smaller-scale motions are not resolved directly and are instead 
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modeled. In RANS, the equations are solved for the mean velocity field, and a turbulence model based 

on either the turbulent viscosity hypothesis or the Reynolds-stress transport equation is used to model 

the Reynolds stresses (Pope, 2000). According to the turbulent-viscosity hypothesis in RANS, the 

Reynolds stresses are given 

< 𝑢𝑖𝑢𝑗 >=
2

3
𝑘𝛿𝑖𝑗 − 𝜈𝑡(

𝜕<𝑈𝑖>

𝜕𝑥𝑗
+
𝜕<𝑈𝑗>

𝜕𝑥𝑖
).  (56) 

Furthermore, the turbulent viscosity 𝜈𝑡 is calculated as the product of a velocity and a length scale. 

𝜈𝑡 = 𝑢
∗𝑙∗  (57) 

These are illustrated in Figure 18. 

 

2.3.1 Turbulent Characteristic 

The turbulent flows are characterized by the following properties (Ferziger, 2002): 

∙ Turbulent flow is unsteady, meaning that the time series velocity plot exhibits randomness or 

unfamiliarity, and can be described as chaotic. 

∙ Turbulent flows are three-dimensional, so the instantaneous field of turbulent flows has three spatial 

dimensions. 

∙ As the intensity of turbulence increases, vortex stretching becomes one of the principal mechanisms. 

it means turbulent flows have a large amount of vorticity. 

∙ Turbulent flows have coherent structures that are responsible for large-scale motion. However, the 

random component of turbulent flows results in divergent size, strength, and time scales, making their 

study difficult. 

∙ Turbulent flows exhibit a broad range of length, time, and strength scales. 
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Turbulent eddies can have various sizes ranging from the width of the flow to smaller scales, and the 

smallest size is related to the Reynolds number (Pope, 2000). At high Reynolds numbers, turbulence 

exhibits two important characteristics: energy cascade and Kolmogorov scales. In 1922, Richardson 

first identified eddies of different sizes and the energy cascade process that occurs between them 

(Richardson, 1992). Large eddies contain smaller eddies, which have their velocity dissipated by 

viscosity until they fragment into even smaller eddies. This fragmentation process is known as the 

energy cascade. The size, velocity, timescale, and Reynolds number of the largest eddies are defined as 

𝑙𝐿, 𝑢(𝑙𝐿), τ(𝑙𝐿) and Re𝐿 = 𝑢(𝑙𝐿)𝑙𝐿/ν. In large eddies, the Reynolds number is high, so the viscosity 

is negligible. This means that diffusion of momentum and energy is less effective, allowing for the 

transfer of energy to smaller scales through the energy cascade process (Richardson, 1922). 

Consequently, the smaller eddies exhibit a lower Reynolds number and a more stable motion with the 

molecular viscosity dominating. Ultimately, the energy transfer to smaller scales culminates in 

dissipation.  

It is difficult to find a criterion to distinguish between large or small eddies. Three hypotheses 

suggested by Kolmogorov in 1941 can help to solve this problem (Kolmogorov,1941). The first 

hypothesis is that at sufficiently high Reynolds number, the small-scale turbulence is statistically 

isotropic (Pope, 2000). It is known as Kolmogorov's local isotropy hypothesis. Therefore, the criterion, 

𝑙𝐸𝐼, which separates anisotropic from isotropic motions, is useful. When the size is smaller than 𝑙𝐸𝐼, the 

turbulent motion is isotropic. The second hypothesis is Kolmogorov’s first similarity hypothesis. At a 

high Reynolds number, 𝜈 and 휀 determine the universal form of small-scale turbulent motion (𝑙 <

𝑙𝐸𝐼) (Pope, 2000). The time scale of small size turbulent motion, 𝑙/𝑢(𝑙), is smaller that of large size 

turbulent motion, 𝑙𝐿/𝑢(𝑙𝐿). It means the small eddies quickly reach a dynamic equilibrium. In addition, 

the small eddies have unique length (𝜂), velocity (𝑢𝜂) and time scale (𝜏𝜂) determined by 𝜈 and 휀 

(Kolmogorov,1941): 
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𝜂 ≡ (𝜈3/휀)1/4   (58) 

𝑢𝜂 ≡ (휀𝜈)
1/4  (59) 

𝜏𝜂 ≡ (𝜈/휀)
1/2  (60) 

The Reynolds number of Kolmogorov number is unity (η𝑢𝜂/ν = 1 ). If the turbulent motion is in 

Kolmogorov scale, it can be explained using the similarity hypothesis and the universal form.  

The third hypothesis is Kolmogorov's second similarity hypothesis (Pope, 2000). The statistics of 

motion have a universal form determined by 휀 if the size is in 𝑙𝜂 ≫ 𝑙 ≫ 𝜂 at high Reynolds number. 

A length scale, 𝑙𝐷𝐼, is the dividing standard between two parts. One part is affected by 𝜈 and 휀, while 

the other section is influenced by only 휀. The dissipation and inertial ranges are their respective part 

name. In inertial subrange (𝑙𝐸𝐼 > 𝑙 > 𝑙𝐷𝐼 ), the motion is affected by 휀 , and the viscosity effects is 

neglected. On the other hand, the viscosity is a significant effect in dissipation rate. These various length 

scales and ranges are summarized in Figure 19. In inertial subrange, the velocity scales and time scales 

are denoted (Pope, 2000): 

𝑢(𝑙) = (휀𝑙)1/3 = 𝑢𝜂(𝑙/𝜂)
1/3~𝑢𝐿(𝑙/𝑙𝐿)

1/3   (61) 

𝜏(𝑙) = (𝑙2/휀)1/3 = 𝜏𝜂(𝑙/𝜂)
2/3~𝜏𝜂(𝑙/𝑙𝐿)

2/3  (62) 

As shown in equations, the velocity and time scale decrease as the length, 𝑙, decrease. The quantity of 

energy transported from the large to small eddies is denoted by 𝐸𝑡(𝑙) and has an order of magnitude of 

𝑢2(𝑙)/𝜏(𝑙).  
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Figure 19. Schematic diagram of various length scale, wave number and ranges. The energy 

containing range product the energy and transferred energy dissipated in dissipation range. The 

transfer of energy is called as energy cascade and order is 𝒖𝟐(𝒍)/𝝉(𝒍) 

 

A turbulent flow can achieve a statistically stationary state after an initial transient period. The 

autocovariance (𝑅(𝑠)) for a statistically stationary state be defined as 

𝑅(𝑠) =< 𝑢(𝑡)𝑢(𝑡 + 𝑠) >  (63) 

and the autocorrelation function can be normalized as 

𝜚(𝑠) =< 𝑢(𝑡)𝑢(𝑡 + 𝑠) >/< 𝑢(𝑡)2 >  (64) 

where 𝑢(𝑡) is fluctuation of velocity at time 𝑡. The autocorrelation function is symmetric about 𝑠 = 0, 

meaning that 𝜚(𝑠) = 𝜚(−𝑠) . Additionally, the autocorrelation function satisfies the following 

conditions: 

𝜚(0) = 1, 𝜚(𝑠) ≤ 1  (65) 

Here, 𝜚(0)  represents the correlation of fluctuations at the same time, which is always 1. The 

autocovariance is defined as 𝑅(𝑠) ≡< 𝑢(𝑡)2 > 𝜚(𝑠), and the frequency spectrum 𝐸(𝜔) is a pair with 

𝑅(𝑠) as its Fourier transform. 
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𝐸(𝜔) ≡
1

𝜋
∫ 𝑅(𝑠)𝑒−𝑖𝜔𝑠𝑑𝑠
∞

−∞
   (66) 

           =
2

𝜋
∫ 𝑅(𝑠)𝑐𝑜𝑠 (𝜔𝑠)𝑑𝑠
∞

−∞
  (67) 

𝑅(𝑠) ≡
1

2
∫ 𝐸(𝜔)𝑒𝑖𝜔𝑠𝑑𝜔
∞

−∞
  (68) 

           = ∫ 𝐸(𝜔) 𝑐𝑜𝑠(𝜔𝑠) 𝑑𝜔
∞

−∞
.  (69) 

 

2.3.2 Direct Numerical Simulation 

Direct Numerical Simulation is a model used to solve Navier-Stokes equations without averaging 

or approximation, making it the most accurate approach (Ferziger et al., 2002). For useful results, the 

computational domain should be larger than the physical domain or the largest turbulent eddy. 

Additionally, it can capture the kinetic energy dissipation if the results are valid. The dissipation occurs 

on the smallest scales, and viscosity is relevant in this process. Therefore, the grid size must be smaller 

than the Kolmogorov scale, 𝜂 (Lesieur, 1987). To produce accurate results using DNS, the length and 

time scales are important. The number of grids in each direction must be at least 𝐿/𝜂, where 𝜂 is the 

Kolmogorov length scale defined as 𝜂 ≡ (𝜈3/휀)1/4 , for homogeneous isotropic flow that use the 

uniform grid. The boundary length is almost similar to the largest eddies, so the number of grids can be 

expressed as  𝑙𝐿/𝜂. The dissipation order is 𝑢3(𝑙𝐿)/𝑙𝐿, and the number of grids in one direction can be 

rewritten as (𝑢(𝑙𝐿)𝑙𝐿/𝜈)
3/4. Therefore, the total number of grids in three directions is proportional to 

Re9/4. As the spacing between grids is fine in DNS, the time step must also be fine. Previous studies 

have shown that to produce accurate results, the number of time steps should be proportional to Re3/4 

(Ferziger et al., 2002). However, the large number of grids required in DNS means that a lot of time 

steps are also necessary. Taking into account the overall number of grids and time steps, it can be seen 

that they are proportional to Re^6. Because the number of grids and time steps can become extremely 
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large, DNS has many limitations in solving fully turbulent models at high Reynolds numbers. Simple 

flows at low Reynolds numbers can be simulated using DNS on workstations. However, the required 

number of grid points and computational time depend on the specific flow and Reynolds number being 

simulated.  

DNS requires accurate numerical methods to produce reliable results for flows that have a wide 

range of time and length scales. In most cases, explicit methods that are stable for the required time step 

based on the accuracy requirement are available and are commonly used (Ferziger et al., 2002). 

However, there is a notable exception when dealing with solid surfaces, as the important structures in 

these regions are of very small size, and very fine grids must be used, especially in the direction normal 

to the wall. In these cases, implicit methods may be necessary to maintain numerical stability, even 

though they come with an extra computational cost. The most commonly used time methods are those 

of second to fourth order accuracy. Among them, Runge-Kutta methods have been used most frequently, 

although other methods are also used (Ferziger et al., 2002). While Runge-Kutta methods require more 

computation per time step than other methods of the same order, they are preferred because they produce 

much smaller errors for a given time step.  

DNS resolves a wide range of length scales, requiring an accurate discretization method. The 

velocity fields can be expressed using Fourier transforms, and the wavenumber resolved is 𝜋/∆𝑥: 

𝑢(𝑥) = ∑ �̃�(𝑘) 𝑒𝑖𝑘𝑥.  (70) 

 The exact derivative of 𝑒𝑖𝑘𝑥 , 𝑖𝑘𝑒𝑖𝑘𝑥  can be replaced by 𝑖𝑘𝑒𝑓𝑓𝑒
𝑖𝑘𝑥  where 𝑘𝑒𝑓𝑓  is the effective 

wavenumber. The difficulty encountered in simulating turbulent flows is that the turbulence spectra, 

which describe the distribution of turbulence energy over wavenumber or inverse length scale, are 

typically large over a significant range of the wavenumber spectrum 0 to 𝜋/∆𝑥. As a result, a better 

measure of error is: 
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𝜖2 =
∫(𝑘−𝑘𝑒𝑓𝑓)

2
𝐸(𝑘)𝑑𝑘

∫𝑘2𝐸(𝑘)𝑑𝑘
.  (71) 

Here, 𝐸(𝑘)  is the energy spectrum of the turbulence in one dimension, and it is calculated as 

�̂�(𝑘)�̂�∗(𝑘)/2. 

 

2.3.3 Large Eddy Simulation 

Large eddy simulation (LES) resolves the large-scale motions directly but parameterizes small 

scales by modeling them (Piomelli, 1999). The smaller eddies are assumed to be homogeneous and 

universal, and LES emerged to model their motion. LES takes less time than DNS, which solves all 

scales of eddies directly for the same flow, but it is still expensive and time-dependent (Sagaut, 2006). 

As the Reynolds number increases, the LES method is preferred over DNS. When LES is used to 

simulate the flow, the separation of large and small eddies is important. Usually, a filtering operation of 

the velocity is defined as follows (Ferziger, 2002): 

𝑢�̃�(𝑥) = ∫𝐺(𝑥, 𝑥
′)𝑢𝑖(𝑥′)𝑑𝑥′  (72) 

where 𝐺 is a filter function which determine the range of small scale. The preferred filter functions are 

the sharp Fourier cutoff filter, Gaussian filter, and top-hat filter, respectively. They are defined as 

(Piomelli, 1999): 

𝐺(𝑘) = ∫𝐺(𝑥′)𝑒−𝑖𝑘𝑥
′
𝑑𝑥′ = {1    𝑖𝑓 𝑘 ≤ 𝜋/∆̅

0     𝑜ℎ𝑡𝑒𝑟𝑤𝑖𝑠𝑒
,  (73) 

𝐺(𝑥) = √
6

𝜋∆̅2
𝑒𝑥𝑝 (−

6𝑥2

∆̅2
),  (74) 

𝐺(𝑘) = { 1/∆̃    𝑖𝑓 
|𝑥| ≤ ∆̃

0            𝑜ℎ𝑡𝑒𝑟𝑤𝑖𝑠𝑒
.  (75) 

In these equations, ∆̃  represents the filter width. In OpenFOAM, the top-hat filter is applied as a 
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standard filter, and the filter width is usually set to the characteristic length of grid size (Sagaut, 2005). 

Figure 20 shows that eddies larger than the grid size are considered as resolved directly and are 

classified as large-size eddies. Conversely, small eddies, which are smaller than the grid size, are 

modeled. 

 

 

Figure 20. (a) The schematic image in the domain illustrates large and small size eddies. Larger 

size eddies are larger than the grid size, while small size eddies are smaller than the grid. (b) The 

cutoff length and wavenumber are represented by ∆̅ and 𝝅/∆̅, respectively. Thus, larger eddies 

whose wave number is larger than the cutoff wavenumber are resolved directly, while small 

eddies are modeled. 

 

The continuity and momentum equations applied a filter: 

𝜕𝑢�̃�

𝜕𝑥𝑖
= 0  (76) 

𝜕𝑢�̃�

𝜕𝑡
+
𝜕(𝑢𝑖𝑢�̃�)

𝜕𝑥𝑗
= −

1

𝜌

𝜕�̃�

𝜕𝑥𝑖
+ 𝜈

𝜕

𝜕𝑥𝑗
(
𝜕𝑢�̃�

𝜕𝑥𝑗
+
𝜕𝑢�̃�

𝜕𝑥𝑖
) + 𝑔𝑖 .  (77) 

The tilde symbol denotes the filtered operation applied to these equations. The velocity can also be 

decomposed as 𝑢 = �̃� + 𝑢′. In the momentum equation, the second term on the left side is non-linear 

and can be expressed as (Jawahar et al., 2018): 

𝑘

𝐸(𝑘)

/ck = 

sub-grid

resolved

(a) (b)
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𝑢𝑖𝑢𝑗̃ = (𝑢�̃� + 𝑢𝑖)(𝑢�̃� + 𝑢𝑗)̃ = 𝑢�̃�𝑢�̃�̃ + 𝑢�̃�𝑢′�̃� + 𝑢′𝑖𝑢�̃̃� + 𝑢′𝑖𝑢′�̃� 𝑢  (78) 

So, the filtered momentum equation is rewritten: 

𝜕𝑢�̃�

𝜕𝑡
+
𝜕(𝑢�̃�𝑢�̃�)

𝜕𝑥𝑗
= −

𝜕�̃�

𝜕𝑥𝑖
+ 𝜈

𝜕

𝜕𝑥𝑗
(
𝜕𝑢�̃�

𝜕𝑥𝑗
+
𝜕𝑢�̃�

𝜕𝑥𝑖
) +

𝜕𝜏𝑖𝑗
𝑆𝐺𝑆

𝜕𝑥𝑗
.  (79) 

The subgrid-scale stresses are denoted as 𝜏𝑖𝑗
𝑆𝐺𝑆, and they can be decomposed into Leonard stress,  

𝐿𝑖𝑗 = 𝑢�̃�𝑢�̃�̃ −𝑢�̃�𝑢�̃�, cross terms, 𝐶𝑖𝑗 = 𝑢�̃�𝑢′�̃� + 𝑢′𝑖𝑢�̃̃�, and Reynolds subgrid-scale tensor, 𝑅𝑖𝑗 = 𝑢′𝑖𝑢′�̃� 

(Piomelli, 1999). The Leonard stress represents the interaction between filtered values, and the cross 

term is associated with the interaction between resolved and modeled values. Lastly, the Reynolds 

subgrid-scale is related to the interaction between subgrid-scales. The resolved scale is almost unable 

to dissipate the energy, so the subgrid-scale removes the energy (Sagaut, 2006). The width of the scales 

can be defined using various methods, with the cubic method being one of the most commonly used. 

The grid spacings in the three coordinate directions are denoted by ∆1, ∆2, and ∆3. A characteristic 

filter width ∆ is taken to be ∆≡ (∆1∆2∆3)
1/3.  

 There are various methods to resolve subgrid-scale stresses, including the Smagorinsky and dynamic 

models. Firstly, the Smagorinsky model assumes a reasonable model, given by Equation (52), where 

the subgrid-scale stresses 𝜏𝑖𝑗
𝑆𝐺𝑆 are related to the resolved scale strain-rate tensor of large scale (𝑆𝑖�̃�) 

and eddy viscosity 

𝜏𝑖𝑗
𝑆𝐺𝑆 −

𝛿𝑖𝑗

3
𝜏𝑘𝑘
𝑆𝐺𝑆 = νSGS𝑆𝑖�̃�.  (80) 

The form of the subgrid-scale eddy viscosity can be derived by dimensional arguments, yielding 

(Ferziger, 2002): 

𝜈𝑡 = 𝐶𝑠
2∆2|𝑆|̃  (81) 

where 𝐶𝑆 is a model parameter to be determined, |𝑆|̃ = (�̃�𝑖𝑗�̃�𝑖𝑗)
1/2

. For isotropic turbulence, the value 
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of 𝐶𝑠 is typically taken as 0.2, but it needs to be reduced to approximately 0.065 in the bulk of the flow 

(Ferziger, 2002). 

The dynamic models compute the model parameters at every spatial grid point and every time step 

from results of the LES. It was first introduced by Germano et al. (1991) in detail. These dynamic 

models solve several difficulties that arise with the use of traditional eddy viscosity models (Ferziger, 

2002). For instance, in shear flows, the Smagorinsky model parameter needs to be much smaller than 

in isotropic turbulence. The dynamic model produces this change automatically, eliminating the need 

for manual adjustment. Additionally, the model parameter needs to be reduced even further near walls, 

and the dynamic model automatically decreases the parameter in the correct manner near the wall. 

Another issue with traditional models is the unclear definition of the length scale for anisotropic grids 

or filters, but this problem is resolved with the dynamic model since the model compensates for any 

error in the length scale by changing the value of the parameter. 

In LES, the grid size is an important factor, similar to DNS. The grid size takes into account the 

characteristic length, denoted by 𝑙0. The characteristic length is the largest size resolved in LES. To 

ensure that 80% of the total energy is resolved, the grid spacing in all three dimensions should be smaller 

than 𝑙𝐸𝐼 (Pope, 2000), where 𝑙𝐸𝐼 is calculated as 𝑙0/6. Specifically, 𝑙𝐸𝐼 is obtained by integrating 

the autocorrelation function 𝑓(𝑟, 𝑡) over the domain, given by: 

𝑙𝐸𝐼 =
𝑙0

6
= ∫𝑓(𝑟, 𝑡)𝑑𝑟 = ∫ < 𝑢𝑖

′(𝑥 + 𝑟, 𝑡)𝑢𝑖
′(𝑥, 𝑡) >/𝑢𝑅𝑀𝑆

′ 𝑑𝑟.  (82) 

where 𝑢𝑟𝑚𝑠
′  is root mean square velocity. 

 

2.4 Fourier Transform 

In numerous fields, the Fourier transform (FT) has been extensively used to solve numerous 
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engineering problems. FT is a technique for decomposing the original data into sinusoids of various 

frequencies (Hoffman, 1997). It is advantageous that it can divide any data into the sum of temporal or 

spatial signals. The two-dimensional FFT was developed so that these FT methods could be applied to 

images. An image can be described mathematically as some function 𝑓(𝑥, 𝑦) , where 𝑥  and 𝑦  are 

spatial coordinates of image and 𝑓(𝑥, 𝑦) represents the data of the image at point (𝑥, 𝑦). So, the two-

dimensional Fourier transform, and the inverse Fourier transform are defined below (Rzeszotarski's 

work,1983): 

𝐹(𝑢, 𝑣) =
1

√𝑀𝑁
∑ ∑ 𝑓(𝑥, 𝑦)𝑁−1

𝑦=0 𝑒−𝑖2𝜋(
𝑢𝑥

𝑀
+
𝑣𝑦

𝑁
)𝑀−1

𝑥=0   (83) 

𝑓(𝑥, 𝑦) =
1

√𝑀𝑁
∑ ∑ 𝐹(𝑢, 𝑣)𝑁−1

𝑦=0 𝑒𝑖2𝜋(
𝑢𝑥

𝑀
+
𝑣𝑦

𝑁
)𝑀−1

𝑥=0 . (84) 

If the original image, 𝑓(𝑥, 𝑦), has dimensions 𝑀 by 𝑁, then the x and y have ranges of 0 to 𝑀 − 1 

and 0 to 𝑁 − 1, respectively. 𝑖 equals the square root of −1 and 𝑢 and 𝑣 are spectral coordinates. 

With FT's aforementioned characteristics, the original image is transformed into a linear combination 

of multiple frequencies (Burger & Burge, 2016). 

𝑒𝑖2𝜋(
𝑢𝑥

𝑀
+
𝑣𝑦

𝑁
) = cos [2𝜋 (

𝑢𝑥

𝑀
+
𝑣𝑦

𝑁
)] + 𝑖𝑠𝑖𝑛[2𝜋(

𝑢𝑥

𝑀
+
𝑣𝑦

𝑁
)]  (85) 

Equation 2 shows two-dimensional cosine and sine functions with horizontal and vertical wave 

numbers 𝑢 and 𝑣, respectively, and the corresponding angular frequencies 𝑤𝑚, 𝑤𝑛. At this time, the 

shape of the Fourier Transform domain changes depending on the values of 𝑀  and 𝑁 . Figure 21 

depicts how the Fourier domain changes by setting various values of wavenumber 𝑚  and 𝑛  in 

horizontal and vertical directions. First, when both M and N are zero, there is no specific frequency, 

so the domain is flat. Similarly, as M and N change, the domain takes on a specific shape. If M is 

zero, the frequency only exists along the 𝑦 direction. In contrast, when 𝑁 is zero, there is only 𝑥 axis 

frequency. As the values of M and N increase, the wave's form becomes increasingly complex. 
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 Figure 21. Two-dimensional Fourier domain of cosine functions by wave number 𝐌 and 𝑵 in 

horizontal and vertical directions 

 

The Fourier transform, 𝐹(𝑢, 𝑣) , is complex numbers in general, 𝐹(𝑢, 𝑣) = 𝐹𝑅(𝑢, 𝑣) + 𝐹𝐼(𝑢, 𝑣) . 

|𝐹(𝑢, 𝑣)| is the magnitude spectrum and it is calculated √𝐹𝑅(𝑢, 𝑣)
2 + 𝐹𝐼(𝑢, 𝑣)

2. Also, the phase angle, 

∅(𝑢, 𝑣), is defined as 𝑡𝑎𝑛−1 [
𝐹𝐼(𝑢,𝑣)

𝐹𝑅(𝑢,𝑣)
]. The two -dimensional Fourier Transform has two basic properties, 

periodicity and symmetry (Burger & Burge, 2016). First, periodicity is that the spectrum repeats in one 

1
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direction by 𝑀 and 𝑁, respectively. 

𝐹(𝑢, 𝑣) = 𝐹(𝑢 + 𝑝𝑀, 𝑣 + 𝑞𝑁) where p, q ∈ {−∞,… ,−1,0,1,… ,∞}.    (86) 

The second characteristics, symmetry, is symmetric at the origin and can be represented as 

|𝐹(𝑢, 𝑣)| = |−𝐹(𝑢, 𝑣)|.   (87) 

These characteristics are because the original data is a real number, but it is changed to a complex 

number when FT is applied. Therefore, it is common to move point, (𝑢, 𝑣) = (0,0), to the midpoint of 

the domain when drawing the FT domain. Figure 22 shows three examples of two-dimensional Fourier 

spectra of a rectangle with different angles. The angles of the rectangle are 0°, 30° and 45° respectively. 

First, when the angle of the rectangle is 0, the Fourier domain has two horizontal and vertical lines. 

When this rectangle rotates to the right, the two straight lines inside the Fourier domain also rotate to 

the right. As the angle of the rectangle increases, increases, the inclination of the lines in the spectrum 

domain increases. 

Figure 23 illustrates the application of a two-dimensional Fourier transform to a more complex image. 

It is a photograph of the Han River in Seoul taken from Gwangjang-dong. The log-scale magnitudes of 

Fourier transform in original and shifted coordinates are illustrated in Figure 23 b and c, respectively. 

The log-scale Fourier transform is calculated as log(1+|F(u,v)|) to avoid that the number in logarithm 

is zero. As shown in Figure 23b, the frequency in one direction increases and decreases as far from the 

lower left corner. So, as mentioned earlier, it is recommended to shift the spectrum so that the center 

frequency is (0,0) like Figure 23c. Therefore, the Fourier transform mentioned in the future refers to a 

domain which (0,0) is shifted to the center, as shown in Figure 23c. 
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Figure 22. Three example of rectangle images with the various angles and its centered Fourier 

spectrums  

 

 

Figure 23. (a) Original image, (b) Fourier Transform and (c) shifted Fourier Transform 

 

Filtering is used to eliminate the unwanted frequencies (Dogra et al., 2014). Typically, image 
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filtering is usually applied to remove noise and improves the digital image for varied application (Dogra 

et al., 2014). A filter is a matrix composed of values between 0 and 1. If the component is 1, the 

frequency remains constant, and if it is 0, the frequency is eliminated. The box filtering is an ideal and 

straightforward filtering method because it eliminates the range above or below the specified frequency. 

The definitions of low pass filter (𝐻𝐿) and high pass filter (𝐻𝐻) are  

𝐻𝐿(𝑢, 𝑣) = {
1     √(𝑢 −𝑀/2)2 + (𝑣 − 𝑁/2)2 ≤ ℎ0

0     √(𝑢 −𝑀/2)2 + (𝑣 − 𝑁/2)2 > ℎ0
  (88) 

𝐻𝐻(𝑢, 𝑣) = {
1     √(𝑢 −𝑀/2)2 + (𝑣 − 𝑁/2)2 ≥ ℎ0

0     √(𝑢 −𝑀/2)2 + (𝑣 − 𝑁/2)2 < ℎ0
   (89) 

Figure 24 illustrates the example of applying box filtering to the photograph of the Hangang River. 

Figure 24a and d show the original photograph and log-scale Fourier transform, respectively. When box 

filtering was performed, h0 was designated as 30. The low pass filter leaves low frequencies to the 

spectrum, and the low pass filtered inverse Fourier transform has a loss of sharpness (Figure 24b and 

e). In contrast, a high pass filter eliminates low frequency, leaving the image with only edge information 

(Figure 24c). Typically, low pass filtering is used to smooth the image, while high pass filtering is used 

to sharpen the image (Dubey, 2014). This is because the edges or sharp parts of the image are converted 

to the sum of the high frequencies after Fourier transform (Dubey, 2014).  
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Figure 24. (a) Original photograph, (b) low pass filtered inverse Fourier transform, (c) high pass 

filtered inverse Fourier transform, (d) centered log-scale Fourier spectrum of original 

photograph, (e) log-scale Fourier spectrum after low pass filtering, and (f) log-scale Fourier 

spectrum after high pass filtering 

original low pass high pass

𝑓(𝑥,𝑦)

(a) (b) (c)

(d) (e) (f)

Centered

log(1 + 𝐹 𝑢, 𝑣  )
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CHAPTER 3. LITERATURE REVIEW 

3.1 Jet Flow Literature Review 

The jet flow has been extensively studied as a valuable method for analyzing turbulent flows. Early 

research conducted by Liepmann and Laufer (1947) focused on the average and turbulent flow 

characteristics of jet flows, as well as the mixing processes involved. Their work revealed the complex 

interactions, including energy exchange, that occur in the near-field region of jet flows. Building upon 

this knowledge, Matsuda and Sakakibara (2005) performed experimental visualization of three-

dimensional turbulent flows in jet systems. They conducted experiments across various Reynolds 

numbers and successfully identified the vortex structures present in three-dimensional jet flows. 

Additionally, Shinneeb et al. (2008) investigated the large-scale structures within the near-field region 

of jet flow exits. They employed the Proper Orthogonal Decomposition (POD) method to analyze the 

rotational motion, size, and strength of these large vortices. Typically, the near field of a jet exit is 

defined as the region within approximately six times the jet diameter (Abdel, 2010). These studies 

collectively contribute to our understanding of the near-field behavior and characteristics of jet flows. 

In the context of jet flows, the region located at a significant distance from the jet nozzle is 

commonly referred to as the far-field or fully-developed region (Ball et al., 2012). Numerous previous 

studies have proposed the applicability of similarity theory in the far-field region (Johansson et al., 2003; 

Revuelta et al., 2002; Gourlay et al., 2001). Johansson et al. (2003) divided the flow in front of the jet 

nozzle into two sections: the near wake region and the far wake region. They discovered that the flow 

in the near wake region does not exhibit equilibrium similarity, indicating a nonequilibrium state. 

However, they observed that the flow in the far wake region adheres to equilibrium similarity. Similarly, 

Gourlay et al. (2001) conducted numerical simulations using a DNS (Direct Numerical Simulation) 

turbulent model to investigate the velocity, turbulent amplitude, and wake velocity in jet flows. Their 

findings confirmed the presence of self-similarity in the late wakes of both unstratified and density 
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stratified fluids. Notably, they successfully captured the characteristics of late wakes, which develop in 

the far field, in both stratified and non-stratified fluids. These studies support the notion of equilibrium 

similarity in the far-field region of jet flows. 

The presence of universal self-similarity in the far field of jet flows has been a topic of debate in 

previous studies (Uddin and Pollard, 2007; Xu & Antonia, 2002). This implies that the initial conditions 

can have an impact on the self-similar region (Abdel, 2010). Uddin and Pollard (2007) conducted LES 

(Large Eddy Simulation) simulations with various initial conditions. They manipulated the jet radius-

to-width ratio and analyzed the mean velocity profiles and turbulence intensities in different cases. They 

observed that the mean velocity statistics followed the universal equilibrium theory, suggesting self-

similarity. However, the turbulent statistics were found to be influenced by the initial conditions, 

indicating a departure from universal self-similarity. Similarly, Xu & Antonia (2002) performed 

experimental investigations by comparing two jet flows: one from a smooth contraction nozzle and the 

other from a pipe nozzle (fully developed turbulent profile). They analyzed the mean velocity, turbulent 

intensities, and Reynolds shear stress. Their findings revealed that the flow from the smooth contraction 

nozzle achieved self-similarity more rapidly compared to the long pipe flow. These studies highlight 

the influence of initial conditions on the self-similarity of jet flows, indicating that the attainment of 

universal self-similarity can be affected by specific factors such as nozzle geometry and initial flow 

configuration. 

Furthermore, several previous studies have suggested that the flow in both the near and far field of 

jet flows is influenced by the Reynolds number (Deo et al., 2008; Kwon & Seo, 2005; O’Neill et al., 

2004). Deo et al. (2008) conducted experiments on planar jets spanning a wide range of Reynolds 

numbers. Unlike previous studies that focused on Reynolds numbers above 10,000, they investigated 

Reynolds numbers ranging from 1,500 to 16,500, encompassing a much broader range. Their findings 

revealed that as the Reynolds number increases, the potential core of the jet becomes shorter and the 

spreading rate in the near field increases. However, in the far field, the spreading rate and velocity decay 
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decrease with increasing Reynolds number. Studies have also explored the effects of Reynolds number 

on not only circular jets but also planar jets. Kwon & Seo (2005) divided the jet flow into two sections: 

the zone of flow establishment and the zone of established flow, representing the near field and far field, 

respectively. They conducted experiments on round jets covering a wide range of Reynolds numbers. 

They observed that the dimensionless length of the zone of flow establishment decreases as the 

Reynolds number increases. The axial velocity profiles were found to closely follow a Gaussian 

distribution with increasing Reynolds number. O’Neill et al. (2004) performed PIV (Particle Image 

Velocimetry) experiments on round jet flows. They investigated the instability of the jet flow structure 

and identified certain Reynolds numbers, such as 680 and 1,030, where the flow structure exhibited 

clear instability. Furthermore, they noted the presence of distinct vortical structures near the orifice at 

both low and high Reynolds numbers. In summary, jet flows have served as representative cases in 

turbulent flow studies, and the turbulence of jets continues to be a subject of ongoing research. The 

study of jet flow is summarized in Table 4. 

 

Table 4. Previous studies for jet flows 

Papers Methods Buoyancy Purpose 

Gourlay et 

al. (2001) 
CFD(DNS) 

Simple jet 

and 

buoyant 

jet 

Confirmed the vortices in unstratified and 

density stratified fluids proved that the mean 

late wakes which occur in far field has self-

similarity 

Xu & 

Antonia 

(2002) 

Experiment(

X-wire) 
Simple jet 

Compared the results of two jet flows, a smooth 

contraction nozzle and a pipe nozzle (fully 

developed turbulent profile). Found out that a 

smooth contraction nozzle had the self-similarity 

state more rapidly than a long pipe. 

Johansson et 

al. (2003) 

Experiment 

and 

CFD(DNS) 

Simple jet 

Divided the flow in front of jet nozzle into 2 

sections named near wake region and far wake 

region and indicated that the flow in far wake 

region obeys the equilibrium similarity 

O’Neill et al. 

(2004) 

Experiment 

(PIV) 
Simple jet 

Conducted the PIV experiments of the round jet 

flow. Investigated the instability of jet flow 
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structure and found that the jet flow structure 

was unstable at certain Reynolds numbers such 

as 680 and 1,030. Indicated that the flow near 

the orifice has clear vortical structures at both 

low and high Reynolds numbers 

Matsuda & 

Sakakibara 

(2005) 

Experiment 

(PIV) 
Simple jet 

Conducted the experiments in various Reynolds 

number and found out the vortex structures of 

three- dimensional jet flow. Visualized the three-

dimensional turbulent flow 

Kwon & Seo 

(2005) 

Experiment 

(PIV) 
Simple jet 

Conducted the round jet experiments for various 

Reynolds number which has wide range. Found 

that the dimensionless length of the zone of flow 

establishment decreases as the Reynolds 

number increases. Checked the axial velocity 

profiles followed Gaussian distribution well as 

the Reynolds number increases. 

Uddin and 

Pollard 

(2007) 

CFD(LES) Simple jet 

Changed the rate of jet radius over width and 

obtained the mean and fluctuated velocity. 

Compared the mean velocity profile and 

turbulence intensity. Found out that the mean 

statistics followed the universal equilibrium 

theory, but turbulent statistics were affected by 

initial conditions. 

Shinneeb et 

al. (2008) 

Experiment 

(PIV) 
Simple jet 

Investigated large-scale vortical structures in the 

near field of jet flow exit and applied POD 

method to study position, size, strength and 

rotational sense of these vortices 

Deo et al. 

(2008) 

Experiment 

(hot-wire 

anemometry) 

Simple jet 

Conducted the plan jet experiments for various 

Reynolds number which has wide range. 

Indicated that as the Reynolds number increases, 

the potential core is getting shorter and the 

near-field spreading rate increases. 

 

3.2 Machine Learning Literature Review 

ML has gained significant popularity and is being applied to various tasks, including data 

reconstruction, turbulence modeling, and solving non-linear partial differential equations (PDEs). In the 

hydraulic field, there are three main topics where machine learning is utilized (image processing, 

making turbulence models and solving non-linear PDEs). In the area of image processing, ML 
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techniques have been employed to enhance low-resolution or noisy images (Dong et al., 2015; Maulik 

& San, 2017; Jin et al., 2018; Deng et al., 2019; Kim et al., 2021). Dong et al. (2015) proposed a deep 

CNN model for single-image super-resolution, achieving superior results with minimal preprocessing 

and postprocessing. The model demonstrated robustness and simplicity, as it was successfully tested on 

various cases. Similarly, Jin et al. (2018) utilized CNNs for image processing, specifically predicting 

time-series velocity fields from pressure fields at different Reynolds numbers. They proposed a three-

path CNN architecture by extending the existing one-path CNN approach. Maulik & San (2017) 

developed a single-layer ANN model to advance image processing techniques for blurred or noisy 

images. They generated blurred images using low-pass spatial filtering and then recovered the filtered 

scales. Notably, their model validated the universal similarity hypothesis of Kolmogorov (1941), 

confirming that the two-dimensional and three-dimensional results exhibited homogeneous and 

isotropic turbulence. They compared probability density functions of real data with reconstructed data, 

demonstrating the effectiveness of their approach (Figure 25).  

 

 

Figure 25. (a) A priori results for velocity field recovery for stratified turbulence true fields, (b) 

coarse-grained fields with Gaussian smoothing, (c) reconstructed fields (Maulik et al., 2017) 

 

 In the field of image processing, the application of unsupervised machine learning models has also 

been explored. Deng et al. (2019) developed two GAN models for reconstructing the images which had 
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low-resolution. These models can recover instantaneous flow field, statistical flow quantities, and 

spatial correlations. Figure 26 illustrates the GAN architecture, consisting of a generator and 

discriminator. Unlike typical GAN models that use random noise as input data, these models take low-

resolution images as input. Similarly, Kim et al. (2021) utilized a cycle-GAN for a super resolution 

construction. In this study, the machine learning algorithm was trained to reconstruct filtered velocity 

fields and perform a conversion from LES data to DNS data. The goal was to generate a complete 

domain field from partial data. During the training process, the ground truth for comparison and 

evaluation was provided by the DNS data. 

 

Figure 26. Schematic structure of super-resolution reconstruction of turbulent velocity fields 

using generative adversarial networks (Deng et al., 2019) 

 

The second topic focus on solving turbulence models using neural networks (Ling et al., 2016; Wu 

et al., 2017; Gamahara & Hattori, 2017; Pawar et al., 2020; Park & Choi, 2021). Ling et al. (2016) 

proposed a neural network model that captures the non-linear relationship between Reynolds stresses 

and mean strain rate, unlike traditional linear eddy viscosity models used in Reynolds-Averaged Navier-

Stokes (RANS) simulations. Wu et al. (2017) extended this idea by introducing both linear and non-

linear functions to represent the Reynolds stress in their modified RANS model. Their approach 

improved the prediction of both Reynolds stress and mean velocity compared to the existing nonlinear 
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RANS model. Gamahara & Hattori (2017) focused on the relationship between grid scale and subgrid 

scale, deviating from the conventional assumption of subgrid-scale symmetry. They developed an 

artificial neural network (ANN) model that treated each subgrid-scale component separately, serving as 

a subgrid-scale model. Pawar et al. (2020) proposed a data-driven turbulent closure model, which 

estimated subgrid-scale stresses using resolved coarse flow fields. This data-driven approach exhibited 

computational efficiency compared to traditional subgrid-scale turbulent closure models. Park and Choi 

(2021) explored single and multiple neural network subgrid-scale models for predicting subgrid-scale 

(SGS) stresses in turbulent channel flow. They varied the input data, such as strain tensor and velocity 

gradient, and compared the results with Direct Numerical Simulation (DNS) data. Although this model 

had limitations in terms of geometry and applicability to specific Reynolds numbers, it demonstrated 

the potential of neural network models in capturing subgrid-scale phenomena. 

The application of neural network models in solving non-linear PDEs has also been investigated. 

Raissi & Karniadaki (2018) developed a model to solve non-linear PDEs and assessed its accuracy by 

comparing the results with the actual solutions for various non-linear equations at different time points. 

They successfully applied the model to different PDEs, including Burgers' equation and Korteweg-de 

Vries (KdV) equation. Building upon this work, Raissi et al. (2020) extended the application of neural 

networks to solve the Navier-Stokes equation, a fundamental equation in fluid dynamics. They obtained 

the velocity and pressure fields by training neural networks on data from the Navier-Stokes equation. 

Additionally, they demonstrated the capability of neural networks in transforming low-resolution and 

noisy images into high-resolution images. This approach has been applied to various scenarios, 

including physical and biomedical problems. These studies show the potential of neural networks in 

solving non-linear PDEs and addressing hydrodynamic challenges. The use of ML techniques in 

hydrodynamics help improving understanding, prediction, and modeling in fluid dynamics applications. 

A summary of previous studies applying deep learning in hydrodynamics can be found in Table 5. 
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Table 5. Previous studies for hydro dynamic with deep learning 

Papers Methods Classification Purpose 

Dong et al., 

(2015) 
CNN 

Image 

Processing 

They proposed deep CNN model to recover 

single image super resolution with a little 

preprocessing and postprocessing. Especially 

they achieved superior results with the light 

computational cost. Also, the model had 

robustness and simplicity because they tested 

this model into various cases. 

Ling et al. 

(2016)  
DNN 

Turbulent 

Model 

They proposed a neural network model so that 

he Reynolds stresses and the mean strain rate 

have a nonlinear relationship, unlike the existing 

RANS model with a linear eddy viscosity model. 

The Reynolds stress of proposed model was 

more accurate by setting the DNS model result as 

the ground truth and comparing that of existing 

RANS model. 

Wu et al. 

(2017) 
ML 

Turbulent 

Model 

They modified the previous nonlinear model of 

RANS to divide the Reynolds stress into linear 

and nonlinear. The existing nonlinear model 

predicted the Reynolds stress well, but the mean 

velocity not.  While, the proposed model solved 

the problem as predict the mean velocity well. 

Maulik & 

San (2017) 
ANN 

Image 

Processing 

They developed the ANN model to advance the 

image processing for blurred or noisy images. 

The ANN model had only a single layer and 

recovered the filtered scales. They confirmed the 

two-dimensional and three-dimensional results 

had homogeneous and isotropic turbulence. 

Gamahara & 

Hattori 

(2017) 

ANN 
Turbulent 

Model 

They found the relationship between the grid 

scale and subgrid-scale. They didn’t focus on the 

symmetry of the subgrid-scale, but they 

considered each subgrid-scale component 

separately. The results confirm that ANN can be a 

substitute of the subgrid model. 

Jin et al. 

(2018) 
CNN 

Image 

Processing 

They developed a fusion CNN which had three-

paths to capture spatial and temporal 

information. It predicted the time-series velocity 

fields from the pressure fields. The developed 

model can predict the velocity fields at various 

Reynolds numbers. 
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Raissi & 

Karniadaki 

(2018) 

NN 
Non-linear 

PDEs 

They made a model to solve the non-linear 

partial differential equations (PDEs). The 

accuracy of the model was analyzed by 

comparing the results of the presented model 

with the actual solution for various non-linear 

equations at various time points. 

Deng et al., 

(2019) 
GAN 

Image 

Processing 

Two models were developed to reconstruct the 

images which had low-resolution. These models 

can recover instantaneous flow field, statistical 

flow quantities, and spatial correlations. They set 

the DNS data as ground truth and made the 

experimental results as high-resolution images. 

Pawar et al. 

(2020) 
ANN 

Turbulent 

Model 

The data-driven turbulent model was proposed 

and estimated the subgrid-scale stresses using 

resolved the coarse flow fields. It was called 

data-driven turbulent closure model and 

evaluated with DNS results. It had fast 

computational cost. 

Raissi et al. 

(2020) 
NN 

Non-linear 

PDEs 

They solved the non-linear partial differential 

equations (PDEs) and obtained the velocity and 

pressure fields. They also changed the low 

resolution and noisy images to high resolution. It 

was applied to the various situation such as 

physical and biomedical problems. 

Park & Choi 

(2021) 

ANN & 

CNN 

Turbulent 

Model 

They proposed some SGS models for predicting 

the SGS stresses for a turbulent channel flow. 

They changed the input data such as strain 

tensor and velocity gradient and compare the 

results with DNS data. This model has the 

limitation of the geometry. 

Kim et al. 

(2021) 
GAN 

Image 

Processing 

The cycle-GAN was developed for a super 

resolution construction. This model was used to 

reconstruct the filtered velocity fields and 

extracted the DNS data from the LES data. Also, it 

generated the full domain field from the partial 

data field. 

GAN: Generative Adversarial Network; ML: Machine Learning; NN: Neural Network; ANN: 

Artificial NN; DNN: Deep NN; CNN: Convolutional NN 
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3.3 Decomposition Method Literature Review 

Several decomposition methods, such as Fast Fourier Transform (FFT), Proper Orthogonal 

Decomposition (POD), and Turbulence Filtering method, have been employed to analyze turbulence 

and extract flow structures. Among these methods, POD has been widely used in previous research 

papers (Chatterjee, 2000; Erdil et al., 2002; Oh et al., 2007; Bayraktar & Yilmaz, 2011; Karasu, 2020). 

Chatterjee (2000) focused on managing large amounts of data and aimed to obtain low-dimensional 

descriptions using POD that capture the significant flow structures. This decomposition method allows 

for the assessment of the energy contained in each mode, which is related to the kinetic energy of the 

fluid in fluid mechanics. Subsequently, Erdil et al. (2002) and Bayraktar & Yilmaz (2011) ranked the 

energy associated with each mode. In the study conducted by Karasu (2020), the diamond-shaped flow 

behind a cylinder was investigated, and the vortex shedding and shear layer were examined using 

decomposition methods, including POD. However, it is important to note that the POD method is 

sensitive to changes in coordinates (Chatterjee, 2000) and has limitations when applied to non-repetitive 

motions or high Reynolds number flows (Erdil et al., 2002). 

The Fourier Transform (FT) method has also been widely used in various studies on turbulence 

analysis (Yılmaz & Kodal, 2000; Starn, 2001; Bayraktar & Yilmaz, 2011; Dubey, 2014; Karasu, 2020; 

Agarwal et al., 2021). Yılmaz & Kodal (2000) conducted experiments on a forced jet and applied FT to 

decompose the fluctuating and forced parts of the velocity fields. They identified the various frequencies 

present in the jet flows and specifically identified the frequency associated with the forced part. They 

highlighted that the FT method can effectively separate the forced part compared to the POD method. 

Starn (2001) utilized FT to efficiently solve fluid equations in large-scale simulations that require 

significant computational time. By transforming the images into the frequency domain, they were able 

to smooth the images and extract information corresponding to specific frequencies. This approach 

allowed for the reconstruction of images based on specific frequency components. Dubey (2014) 
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employed two-dimensional Fourier analysis to describe images. By converting the original images into 

the frequency domain, they were able to extract image features specific to certain frequencies. The two-

dimensional FT method preserved the original image information while providing insights into 

frequency-related characteristics. Agarwal et al. (2021) performed numerical simulations using LES 

and employed FT to identify the modal structure of the flow. They effectively captured vortex features 

in specific areas using the FT method. Additionally, they utilized Dynamic Mode Decomposition 

(DMD), another decomposition method, to identify modes associated with vortex shedding and 

separation.  

The turbulence filtering method has been utilized to extract proper coherent structures related to 

turbulence characteristics (Erdil et al., 2002). This method aims to separate the turbulent and non-

turbulent parts of the flow by applying appropriate filters. Spatial filtering has also been employed to 

decompose velocity fields into turbulent and non-turbulent components (Oh et al., 2007). Unlike POD, 

which may not be suitable for decomposing turbulent flows, spatial filtering techniques allow for the 

extraction of turbulent eddy structures. It can be helpful for identifing and analyzing the dominant 

features and structures associated with turbulence. Bayraktar & Yilmaz (2011) conducted experiments 

using hot-wire anemometry and applied wavelet techniques. Wavelet analysis is effective in revealing 

the dominant frequencies present in the flow. By applying wavelet transforms, the multiscale 

characteristics of turbulence can be gained. 

 

Table 6. Previous studies for decomposition method of velocity fields 

Papers Methods Classification Purpose 

Yılmaz & 

Kodal 

(2000) 

Turbulen

ce filter 

method 

(FFT) 

Decomposition 

turbulent and 

forced parts 

They obtained the experimental results of a 

forced jet and decomposed the fluctuating part 

and forced part of velocity fields. They found out 

the various frequency of the jet flows and find 

the frequency of forced part. They found out that 
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this method can take apart the forced part well 

compared with POD method. 

Chatterjee 

(2000) 
POD 

Finding out the 

interesting 

flow structure 

This study dealt with amount of data and tried to 

obtain the low-dimensional descriptions which 

can capture the interesting flow structures using 

POD. This decomposition method confirmed that 

how much energy each mode is contained, and 

these energies were related to fluid's kinetic 

energies in fluid mechanics area. However, POD 

method was sensitive to coordinates changed. 

Starn 

(2001) 
FFT 

Solving the 

fluid equation 

easily 

They used FFT to solve the fluid equations 

efficiently because the large fluid simulations 

took large cost time. They changed the image as 

frequency domains and made the images 

smoother using this frequency domain. Also, 

they redraw the image which was corresponding 

to specific frequencies. 

Erdil et al. 

(2002) 

POD & 

Turbulen

ce filter 

method 

Obtaining of 

various 

physical 

information 

They verified that POD method can provide some 

modes which is ranked by the amount of energy, 

however it is hard to find out the coherent 

structure at high Reynolds number. Also, POD 

method needed identically repeated motions. 

While, the turbulence filter method can produce 

the proper coherent structure which is related 

turbulence characteristics. 

Oh et al. 

(2007) 

POD & 

Spatial 

Filter 

Decomposition 

turbulent and 

non-turbulent 

parts  

They conducted laboratory generated wind and 

decomposed the turbulent and non-turbulent 

parts. The turbulent coherent structure was 

identified by decomposition of the velocity fields. 

They confirmed that proper orthogonal 

decomposition was not good method to 

decompose the turbulent flows. While, the 

spatial filter can extract the turbulent eddy 

structure. 

Bayraktar & 

Yilmaz 

(2011) 

FFT, 

wavelet 

& POD 

Comparison 

the 

decomposition 

technique 

They experimented hot-wire anemometry and 

applied FFT, wavelet and POD technique into the 

results. They compared the free jet spectra and 

transverse jet spectra applied these 

decomposition techniques. They showed that the 

flow near the center of nozzle contained less 

energy. Also, POD results implied that the first 
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few modes had significant amount of total 

energy. 

Dubey 

(2014) 
FT 

Filtering two-

dimensional 

images 

A two-dimensional Fourier Transform was a 

good tool to describe the images. This image can 

be changed into frequency domain, so this 

method was used to extract the images for 

specific frequencies. This method also can 

preserve the information of original images. 

Karasu 

(2020) 

FFT & 

POD 

Finding out the 

flow structure 

In this experimental study, they investigated a 

diamond-shaped flow behind the cylinder. The 

effects a ratio of slit width over cylinder 

diameter was a parameter of this study. They can 

examine the vortex shedding and shear layer 

using the decomposition methods, FFT and POD. 

Agarwal et 

al. (2021) 

FFT & 

DMD 

Verification 

the specific 

vortex 

structure using 

decomposition 

method 

They obtained the numerical results using large 

eddy simulation and found out the modal 

structure using FFT and DMD. Also, they 

confirmed the vortex features in a specific area 

more clearly using FFT. And the modes related to 

specific vortex shedding and separation was 

indicated using DMD. 
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CHAPTER 4. METHODOLOGY 

4.1 Numerical Model Descriptions 

The simulation is executed on 40 nodes of the cluster, which is located in the Flow Physics and 

Informatics Laboratory at Seoul National University, and the parallel processes conducted by these 

cluster increase computing power and improve reliability. To perform the parallel process, Centos Linux, 

gcc, and MPICH, with versions 7.4, 4.94, and 3.1.5, are used for operation, compilation, and parallel 

processing, respectively. Table 7 provides a summary of the cluster server specifications. This study 

uses OpenFOAM, an open-source CFD program, to generate a turbulent jet. This software consists of 

C++ libraries and the application is developed with these libraries to generate executable files and 

conduct simulations (Greenshields, 2015). The application is divided into two categories: solvers and 

utilities. The solver refers to a fluid analysis program, while the utility refers to a program required for 

post-processing or format conversion. OpenFOAM gives users access to solvers and utilities, enabling 

them to easily solve problems by selecting the desired solvers and utilities. In addition, a folder is 

provided for pre- and post-processing, and the user can modify these two folders as desired. Figure 27 

demonstrates the structure of OpenFOAM (Greenshields, 2015). 

Table 7. Cluster specifications 

R740 Server Dell (TM) PowerEdge R740 Server 

CPU Xeon Gold 6248 20Core 2.5Ghz 27.50MB Cache × 2 

RAM 12× 16GB DDR4 2933 Dual Ranked RDIMMs 

Storage 43TB SSD server 

OS CentOS Linux version 7.5 

Compiler Gcc version 4.9.4 

Parallel Computing MPICH version 3.1.5 

CFD Software OpenFOAM-5.x with OpenMPI 2.1.1 
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Figure 27. Structure of OpenFOAM (Greenshields, 2015) 

 

This software uses numerical analysis technique, which is a method for obtaining a solution more 

quickly and easily by transforming a differential equation into an algebraic equation. Finite Difference 

Method (FDM) and Finite Volume Method (FVM) are examples of typical numerical analysis 

techniques. FDM permits each grid point to have a variable value, enabling a single algebraic equation 

for the variable value. The formula is resolved by using Taylor expansion to define the derivative. Since 

this finite difference method only has variables at lattice points, it is more beneficial for structural 

analysis than fluid flow studies. Therefore, OpenFOAM software employs the FVM to analyze fluid 

flow (Peiró & Sherwin, 2005). FVM is utilized to compute continuum mechanics associated with fluid 

flow and deformation (Greenshields, 2015). The finite volume method divides and analyzes the space 

to be analyzed into control volumes (CVs). Each volume is referred to as a cell. The control volume's 

surface consists of four in 2D and six in 3D. As the sum of the planes, the flux passing through the 

surface of the control volume is expressed. There is an illustration of the two-dimensional finite volume 

method, and because it is a two-dimensional finite volume method, there are four surfaces (S) e, w, n, 

and s, as depicted in Figure 28. Because the flux change in the cell equals the sum of the flux changes 

on each surface, the control volume method can be expressed as follows (Ferziger et al., 2002): 

∫ 𝑓𝑑𝑆
𝑆

= ∑ ∫ 𝑓𝑑𝑆
𝑆𝑘𝑘   (90) 

Open Source Operation and Manipulation (OpenFOAM) C++ Library

Utilities
Meshing

Tools

User

Applications

Standard

Applications
ParaView

Others e.g.

EnSights

Pre-

processing
Solving

Post-

processing
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Figure 28. Example of 2D Finite Volume Method (Ferziger et al., 2002) 

 

In this study, the Large Eddy Simulation (LES) equations were solved using the PIMPLE 

(PISO/SIMPLE) loop, which is a combination of the SIMPLE and PISO loops. The PIMPLE algorithm 

involves three main steps: (1) momentum prediction, (2) pressure correction, and (3) momentum 

correction. Initially, the velocity and pressure fields were estimated and inserted into the momentum 

equation to obtain a predicted velocity field. The guessed pressure field was then used to correct the 

predicted velocity field to satisfy the momentum equation. Subsequently, the corrected velocity field 

was used to rectify the pressure field, and the corrected pressure field was used to correct the velocity 

field once again to satisfy the momentum equation. The new velocity and pressure fields were then 

checked for convergence by substituting them into the continuity and momentum equations. If they 

converged, they were considered a solution, and the velocity and pressure fields for the next time step 

were estimated. If they did not converge, a new estimate was required at the same time step. The 

PIMPLE loop involves both inner and outer loops, with the outer loop beginning with the momentum 

predictor and the inner loop beginning with the pressure corrector. The PISO loop has one outer loop 

and several inner loops, while the SIMPLE loop has one inner loop and several outer loops. Since the 

PIMPLE loop is a combination of the PISO and SIMPLE loops, it has several inner and outer loops. 
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Figure 29. Pimple algorithm in OpenFOAM software. 
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4.2 Fourier Transform 

This section introduces an application of the two-dimensional Fourier Transform to the jet flow 

velocity field. Figure 30a depicts a velocity field with an inlet velocity of 0.5 𝑚/𝑠 and a diameter of 

0.02 𝑚. The velocity field is the fluctuating velocity obtained by subtracting the instantaneous velocity 

from the mean velocity. The mean velocity is computed by averaging the instantaneous values from 350 

to 450 seconds after the jet inlet emission. In stream-wise and span-wise directions, the domain range 

is 0 to 0.8 m and the uniform grid size is 0.05 m. The total number of grids is 160 × 160 in 𝑥 and 𝑦. 

The velocity range is between 0 and 0.18 m/s, and the velocity fluctuation is clearly visible in the shear 

layer. Figure 30 shows the velocity field and its centered log-scale Fourier Spectrum. The centered 

logarithm Fourier Spectrum has ranges from 0 to 6, with high energy at low frequency. 

 

 

Figure 30. (a) The velocity field and (b) its Fourier Spectrum 

 

It is conducted as depicted in Figure 31 to check the effects of high pass and low pass filtering on 

the original jet velocity field. As mentioned previously, the original image of a jet is the magnitude of 

fluctuating velocity (Figure 30a). The component, ℎ0, is set to 15 in Equation 58 and 59. The low pass 

filter retains the desired low frequencies while setting the Fourier values of undesirable high frequencies 

to 0. Since the high Fourier spectrum values are concentrated at low frequencies, the jet flow has an 



 

74 

 

abundance of energy at low frequencies. So, the low filtering retains a significant amount of energy, 

and the maximum velocity is 0.18 m/s, which is the same value as the original image (Figure 31a). It is 

also confirmed that the jet flow is reproduced in its entirety. Figure 31b shows that the low pass filtering 

makes the image smoothing. The spatial energy spectra cut off at the certain value which is set by the 

component, ℎ0, in Equation 58 and 59. The spatial spectrum reveals that the frequency is proportional 

to the energy content, with the lower the frequency containing more energy (Figure 31c). In addition, if 

the energy spectrum is examined after the low pass frequency has been applied, it notices that the energy 

is cut off at a specific frequency. Using this, the part of velocity in grid smaller than the sub grid scale 

can be eliminated.  

While, the image's high frequency components are preserved when applying the high pass filter 

(Figure 31d). Small movements are captured when using the high pass filtering, unlike with low pass 

filtering. The maximum velocity is 0.09 m/s, which is approximately half of the original image's 

maximum velocity. In addition, high pass filtering is used to express sharp movements. Also, the high 

pass filtering makes the Fourier spectrum value of other frequencies zero except for the specific high 

frequencies (Figure 31e). The energy spectrum of high pass filtering is only illustrated at high 

frequencies (Figure 31f). It has been demonstrated that when the frequency is high, the energy is 

relatively low. When the energy spectrums of high and low filtering are combined, the result is the 

original energy spectrum of the image. 
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Figure 31. (a) The high pass filter velocity field image, (b) its Fourier Spectrum, (c) its spatial 

Power Spectra and (d) low pass filter velocity field image, (e) its Fourier Spectrum, (f) its spatial 

Power Spectra 
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4.3 Machine Learning Algorithms 

4.3.1 Convolutional Neural Network Algorithm 

This study examines two types of CNN algorithms to extract the jet flow image and predict the jet 

flow at the next time step. The first algorithm is a conventional model comparable to the one proposed 

by Lecun (1989). This model has a single path composed of an input layer, a convolutional layer, a 

pooling layer, and an output layer (see Figure 32a). This CNN model with a single path contains six 

convolutional blocks with convolutional layers, nonlinear functions, and max pooling layers. The 

convolutional block right before the output layer consists of simply a convolutional layer. Additionally, 

the model includes an LSTM model, which is one of the RNN models. It helps to remember the time-

series data. The nonlinear function employs LeakyReLU, which can output both positive and negative 

integers without diverging in the negative direction. The second CNN model is the model suggested by 

Jin et al. (2018), which combines three paths, as illustrated in Figure 32b. This model is intended to 

capture both precise spatial-temporal information and traits that are invariant to tiny spatial-temporal 

series variations (Jin et al., 2018). This model consists of six convolutional blocks, each comprising a 

convolutional layer, nonlinear function, maximum pooling layer, and fully connected layer. Additionally, 

this model includes an LSTM model at the beginning of the second CNN model. This model sends data 

over three paths and turns image features into one-dimensional data using a fully connected layer after 

passing through the convolutional layer. Concat layer captures and combines certain image 

characteristics. And the final block reproduces the image with these characteristics. The second CNN 

model uses a nonlinear function as LeakyReLU for the same reason as the first CNN model. In both 

models, the optimizer was trained with Adam, which can take gradient direction and learning rate into 

account. In this study, two CNN models are evaluated to identify which model reproduces the highest 

resolution LES velocity fields more accurately, and then the suitable range by adjusting the grid size 

and Reynolds number are indicated. 
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Figure 32. (a) The traditional CNN architecture and (b) the three path CNN architecture; 

‘Conv’ and ‘Concat’ denote convolution layer and Concatenate 

 

In the CNN algorithm, the optimal kernel size, batch size, and epoch settings are crucial time-saving 

and performance-enhancing parameters. So, in this study, the proper hyperparameters of the second 

model are investigated. First, to determine the appropriate batch kernel size, the time and epoch required 

when using various kernel sizes are investigated. Figure 33 shows the train and validation loss as a 

function of kernel size, with the red circle representing the optimal epoch for each case. All cases train 

the algorithm with batch size 2. In all cases, the train loss is decreasing, whereas the validation loss 

remains constant before increasing abruptly. The optimal epoch is when the validation loss exceeds the 

training loss. As the kernel size increases, the number of training epochs increases, but the loss does not 

change significantly. Table 8 summarizes the optimal epoch and total training time for each kernel size. 
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As the kernel size increases, the total training time until 100 iterations take longer (Table 8). Therefore, 

the optimal kernel size is 3 × 3 because it consumes less time and requires fewer epochs. 

 

Figure 33. Train and validation loss of kernel size (a) 𝟑 × 𝟑, (b) 𝟓 × 𝟓, (c) 7× 𝟕 and (d) 9× 𝟗 

and the optimal epoch for each case marked by a circle filled red 

Table 8. Optimized epoch and total training time until 100 epochs for kernel size 𝟑 × 𝟑, 𝟓 × 𝟓, 

𝟕 × 𝟕 and 9× 𝟗  

kernel size 3 × 3 5 × 5 7 × 7 9 × 9 

Optimized 

epoch 
66 72 74 88 

Total Time 1265.6 seconds 1413.4 seconds 1635.2 seconds 1834.2 seconds 

 

Figure 34 depicts the train and validation loss depending on batch, and the red color circle shows 

the optimal epoch for each case. All cases train the algorithm with kernel size 3 × 3. The optimal epoch 

is usually set the validation loss is higher than the training loss. In cases with batch sizes 1, 2, and 5, the 

train loss decreases while the validation loss remains constant before increasing abruptly. It is confirmed 
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that the sudden increase as occurring immediately after the optimal epoch. When the batch size is 10, 

however, there is no proper epoch because train loss exceeds validation loss in every epoch. It indicates 

that batch 10 requires more than100 epochs. The optimal epoch and total training time for each kernel 

size are summarized in Table 9. This table demonstrates that as batch size increases, total training time 

decreases, but more epoch are required to reach proper training.  But, the loss did not differ 

significantly between cases. The batch size of five spends less time calculating the time until the 

appropriate epoch is reached. So, this study set the batch size to 5. 

 

 

Figure 34. Train and validation loss of batch size 1, 2, 5 and 10 and the optimal epoch for each 

case marked by a circle filled red 

Table 9. Optimized epoch and total training time until 100 epochs for batch size 1, 2, 5 and 10 

Batch size 1 2 5 10 

Optimized 

epoch 
59 66 94 - 

Total Time 2250.4 seconds 1265.6 seconds 675.6 seconds 537.6 seconds 

 



 

80 

 

Table 10. Details of the parameters of the second CNN structure 

Type Layer 
Kernel 

size/stride 
Activation Output shape 

Main path Input - - 120 × 120 × 3 

 LSTM 3 × 3/2 Leaky ReLU 120 × 120 × 3 

 Conv 1-1 3 × 3/2 Leaky ReLU 60 × 60 × 8 

 Conv 1-2 3 × 3/2 Leaky ReLU 30 × 30 × 16 

 Max Pooling 1-3 3 × 3/1 - 30 × 30 × 16 

 Conv 1-3 3 × 3/2 Leaky ReLU 15 × 15 × 32 

 Flatten 1-3 - - 7200 

 Dense 1-3 - - 300 

 Concatenate - - 900 

 Dense 1-4 - Leaky ReLU 10800 

 Reshape - - 60 × 60 × 3 

 ConvTranspose 1-4 3 × 3/2 - 120 × 120 × 3 

 Output - - 120 × 120 × 3 

Right path Max Pooling 2-1 3 × 3/2 - 30 × 30 × 16 

 Conv 2-1 3 × 3/2 Leaky ReLU 15 × 15 × 32 

 Flatten 2-1 - - 7200 

 Dense 2-1 - - 300 

Left path Max Pooling 3-1 3 × 3/1 - 15 × 15 × 32 

 Conv 3-1 3 × 3/2 Leaky ReLU 15 × 15 × 32 

 Flatten 3-1 - - 7200 

 Dense 3-1 - - 300 

 

Table 10 summarizes the second CNN model, which can be divided into three paths. As stated above, 

it consists of six convolutional boxes, which include convolutional layer, nonlinear function, maximum 

pooling layer, and fully connected layer. The first path is the main path that divides and gathers data. 

To keep the image's characteristics, there are left and right paths. To be specific, after the LES data sets 

are obtained, the highest resolution LES data set is used as truth data known as ground truth, while the 

LES data set is used as training set and test set. In other words, the highest resolution LES data is used 

to determine train the sub-grid eddies and evaluate whether these eddies are reproduced the sub-grid 

scale of highest resolution LES data. It is specifically trained to replicate not only velocity fields but 

also energy spectra. The sub-grid length scale is then determined using the wave number, which is a 
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spatial frequency of the eddy. In this study, the Fourier Transform was used to decompose the sub-grid 

scale and the resolved scale. 

 

4.3.2 Generative Adversarial Network Algorithms 

The standard GAN consists of two networks: the generator and discriminator. The generator 

produces the fake images, while the discriminator identifies them. The two GAN algorithms presented 

in this work also have a generator and discriminator. The first GAN algorithm is a traditional model 

consisting of Fully Connected (FC) block, Convolutional layer, and maximum pooling layer. FC Blocks 

contain a flatten layer, a dense layer, and a non-linear function (Figure 35a). The first GAN model 

constructed using FC blocks needs lots of time since all the data must be processed in each layer. The 

generator has six FC blocks and one CB, and the discriminator has ten FC blocks and one CB. The 

generator must produce a fake image, the output size of the final layer, convolutional layer, is same to 

the wanted image size. The final layer of the discriminator utilizes a sigmoid that returns a value 

between 0 and 1, since the image should return a value near to 1 if it is real data and close to 0 if it is 

fake data. This traditional GAN architecture is inadequate for capturing minor motions or statistical 

fluctuations. So, Deng et al. (2019) propose a super resolution GAN that is applied to the turbulent 

flows. This model is composed of CBs, fully connected layer, and upsampling layers (Figure 35b). The 

generator has six CBs, one fully connected layer, and two upsampling layers. Two upsampling layers 

are employed to make the output size match the intended image size. The discriminator's final layer is 

a sigmoid layer for the same reason as the first GAN method.  
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Figure 35. (a) The traditional GAN architecture and (b) the super resolution GAN architecture; 

‘Conv’ denotes convolution layer 

 

 The loss function is one of the factors that has a significant impact on the performance of machine 

learning when determining the optimal weight parameters. In forward propagation, the difference 

between neural network output and real data is calculated, and the loss value is used to determine the 

optimal weights (Ho & Wookey, 2019). The loss funciton of GANs algorithms is the binary cross-

entropy (log loss) as loss function. The binary cross-entropy is defined as (Jadon, 2020): 

𝐿(𝑖, 𝑖)̂ = −∑ (𝑖𝑙𝑜𝑔(𝑖)̂ + (1 − 𝑖)𝑙𝑜𝑔 (1 − 𝑖̂))𝑁𝐷   (91) 
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where 𝑖 and 𝑖 ̂ are true values and the predicted results by GANs, respectively, and ND is the number 

of data sets. It compares predicted probability distribution to ground truth probability distribution, and 

it is usually used for a classification problem in machine learning (Hurtik et al., 2022). When this loss 

function is applied, the weight and bias parameters are modified so that the sum of loss value approaches 

0. The loss value can only be zero or one. In other words, the loss is zero if the predicted value is 

categorized in real data, and one if it is not. The loss values corresponding to real data group in the loss 

function are as follows: 

𝐿(𝑖, 𝑖)̂ = −∑ 𝑖𝑙𝑜𝑔(𝑖)̂𝑁𝐷 .   (92) 

On the other hand, the loss value corresponding to the fake group is as follows: 

𝐿(𝑖, 𝑖)̂ = −∑ (1 − 𝑖)𝑙𝑜𝑔 (1 − 𝑖)̂𝑁𝐷 .  (93) 

The optimization in both GAN algorithm is Adam which is used in CNN algorithms. 

 

 

Figure 36. Train loss of second GAN algorithm and the optimal epoch for each case marked by a 

circle filled red 
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Table 11. Details of the parameters in the second GAN structure 

Type Layer 
Kernel 

size/stride 
Activation Output shape 

Generator Input - - 120 × 120 × 3 

 Conv 3 × 3/2 LeakyReLU 60 × 60 × 8 

 Conv 3 × 3/1 LeakyReLU 60 × 60 × 16 

 Max Pooling 3 × 3/1 - 60 × 60 × 16 

 Conv 3 × 3/1 LeakyReLU 60 × 60 × 32 

 Max Pooling 3 × 3/1 - 60 × 60 × 32 

 Conv 3 × 3/1 LeakyReLU 60 × 60 × 64 

 Max Pooling 3 × 3/1 - 60 × 60 × 64 

 Conv 3 × 3/1 LeakyReLU 60 × 60 × 128 

 Max Pooling 3 × 3/1 - 60 × 60 × 128 

 Conv 3 × 3/1 LeakyReLU 60 × 60 × 256 

 Max Pooling 3 × 3/1 - 60 × 60 × 256 

 Conv 3 × 3/2 LeakyReLU 30 × 30 × 512 

 Max Pooling 3 × 3/1 - 30 × 30 × 512 

 UpSampling 3 × 3/2 - 60 × 60 × 64 

 UpSampling 3 × 3/2 - 120 × 120 × 8 

 Conv 2 3 × 3/1 LeakyReLU 120 × 120 × 3 

 Output - - 120 × 120 × 3 

Discriminator Input - - 120 × 120 × 3 

 Conv 3 × 3/2 LeakyReLU 60 × 60 × 8 

 Conv 3 × 3/1 LeakyReLU 60 × 60 × 16 

 Max Pooling 3 × 3/1 - 60 × 60 × 16 

 Conv 3 × 3/2 LeakyReLU 30 × 30 × 32 

 Max Pooling 3 × 3/1 - 30 × 30 × 32 

 Conv 3 × 3/2 LeakyReLU 15 × 15 × 64 

 Max Pooling 3 × 3/1 - 15 × 15 × 64 

 Conv 3 × 3/2 LeakyReLU 8 × 8 × 128 

 Max Pooling 3 × 3/1 - 8 × 8 × 128 

 Conv 3 × 3/2 LeakyReLU 4 × 4 × 256 

 Max Pooling 3 × 3/1 - 4 × 4 × 256 

 Conv 3 × 3/2 LeakyReLU 2 × 2 × 512 

 Max Pooling 3 × 3/1 - 2 × 2 × 512 

 Fully Connected - LeakyReLU 512 

 Fully Connected - - 1 

 Output - - 120 × 120 × 3 
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To determine a proper training epoch of second GAN model, the loss per epoch is examined (Figure 

36). It is confirmed that the loss value decreases progressively as the epoch grows and increases abruptly 

at epoch 150. So, the epoch and the batch size are set to 150, 10, respectively. The details of second 

GAN algorithm are summarized in Table 11. 
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CHAPTER 5. RESULTS 

5.1 Computational Results of LES 

The computational domain was chosen to encompass the jet flow, as depicted in Figure 37a. The 

domain extends up to 𝑥 = 0.6m in the streamwise direction and 0.2 m in the cross-stream directions 

(𝑟 ). Hefny and Ooka (2009) suggested that the choice of computational mesh can influence the 

computational results. They confirmed that the orthogonal hexahedral mesh style offered the most 

efficient computational solution compared to other mesh shapes. Other mesh styles produced poor 

results due to their skewness and misalignment with the predominant direction of flow. Therefore, this 

study employs regular hexahedral uniform mesh grids with four different resolutions, consisting of 

1,008,000 to 2,560,000 control volumes. Additionally, the inlet velocity varies depending on the 

different Reynolds numbers considered. The velocity magnitude of the jet simulated using the LES 

turbulence model is depicted in Figure 37b. The figure illustrates the presence of a jet core and a shear 

layer, wherein the core thickness decreases as it moves away from the inlet. The shear layer is situated 

farther from the inlet compared to the core and exhibits a significant increase in thickness just above 

the jet inlet. The velocity magnitude field of the jet core appears to be higher than that of the shear layer. 

Table 12 presents information on the different mesh resolutions and flow conditions at the inlet for a 

total of five cases. It also summarizes the elapsed time required to achieve a simulation time of 2000 

seconds for each case. It is observed that smaller grid sizes necessitate more time for computation. The 

dataset used to train the ML algorithms was obtained ten minutes after the simulation initiation. Data 

was saved every second for a duration of twenty minutes, with the final eight minutes utilized for 

algorithm evaluation. All of the cases in this study employ the LES turbulence model. 
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Figure 37. (a) The computational domain for the jet flow is shown with a blue-colored iso-

surface of vorticity magnitude (10/s), (b) An axial section of the velocity field at a single instance 

is also displayed. 

 

Table 12. Details of the computational cases. 

Case 1 2 3 4 5 

Grid resolution 161×161×101 141×141×101 121×121×71 

Cells 

(approximate) 
2,560,000 1,960,000 1,008,000 

Grid spacing 0.5 cm 0.6 cm 0.7 cm 

Inlet velocity 0.5 m/s 0.75 m/s 1.0 m/s 

Reynolds 

number 
10,000 15,000 20,000 

Elapsed time 
1,536,000 

seconds 

1,124,000 

seconds 

514,000 

seconds 

530,000 

seconds 

544,000 

seconds 
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The second numerical experimental case is conducted with a grid size of approximately 0.1 cm and 

considers Reynolds numbers of 10,000 and 15,000. The computational domain for this case has 

dimensions of 0.6 m in the axial direction and 0.2 m in the radial direction. The diameter of the jet is 2 

cm, resulting in jet inlet velocities of 0.5 m/s and 0.75 m/s for the Reynolds numbers of 10,000 and 

15,000, respectively. Table 13 provides a summary of the turbulent characteristics for the Reynolds 

number of 10,000 in Case 1 of Table 12. The corresponding equations for the turbulent characteristics 

are as follows:  

𝑘 =
1

2
(𝑢′2 + 𝑣′2 +𝑤′2), 휀 = 2𝜈〈𝑠′𝑖𝑗𝑠′𝑖𝑗〉 + 2𝜈𝑡〈𝑠′𝑖𝑗𝑠′𝑖𝑗〉  (94) 

where 𝑢′, 𝑣′, 𝑤′, 𝜈, and s′ij denote the velocity fluctuations in the stream-wise, lateral, and vertical 

directions, kinematic viscosity, and strain rate tensor, respectively. The indices 𝑖=1, 2, and 3 represent 

the stream-wise, spanwise, and vertical directions, respectively. The other turbulence statistics are 

estimated using spatially averaged 𝑘 and 휀. The Taylor microscale (𝜆) and the associated Reynolds 

number (𝑅𝑒𝜆) are defined as: 

𝜆 = √15𝜈𝑞2/휀, 𝑅𝑒𝜆 ≅ 𝑞𝜆/𝜈  (95) 

 

Table 13. Spatial averaged turbulence statistics 

𝑘 (m2/s2) ε (m2/s3) 𝜆 (m) Re𝜆 𝜏𝜂 (s) 𝜂 (m) 

0.00075 4.95 × 10−5 0.0212 813 0.142 3.77 × 10−4 

 

To determine the appropriate grid size for LES, four specific locations were chosen to calculate the 

characteristic length in the (x, 𝑟1, 𝑟2) directions. These locations, along with a schematic representation 

of the jet flow computational domain, are summarized in Figure 38 and Table 14. The autocorrelations 

at these four locations, at four different times, and in three directions are depicted in Figure 39-Figure 
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42. The point at which the autocorrelation first reaches zero is indicated with a marker. For the first 

probe, the autocorrelation becomes zero at approximately 0.0575 m. For the 2nd, 3rd, and 4th probes, 

the autocorrelation become zero at distances of 0.0660, 0.080, and 0.0865 m, respectively. Consequently, 

the characteristic length in this study is determined to be 0.0725 m. 

 

Figure 38. A schematic of the jet flow computational domain and indicates the four locations. 

 

Table 14. The four locations used for calculating the characteristic length at probes. 

Probe number (𝑥, 𝑟1, 𝑟2) 

Probe 1 (0.603, -0.014, -0.190) 

Probe 2 (0.517, -0.006, -0.022) 

Probe 3 (0.430, -0.027, -0.027) 

Probe 4 (0.603, -0.034, -0.039) 
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Figure 39. The autocorrelation of velocity in the streamwise, spanwise, and transverse directions 

was calculated for probe 1. 

 

Figure 40. The autocorrelation of velocity in the streamwise, spanwise, and transverse directions 

was calculated for probe 2. 
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Figure 41. The autocorrelation of velocity in the streamwise, spanwise, and transverse directions 

was calculated for probe 3. 

 

Figure 42. The autocorrelation of velocity in the streamwise, spanwise, and transverse directions 

was calculated for probe 4. 
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In the second study, the grid size employed in the domain was approximately 0.1 cm that is 60-70 

times smaller than the characteristic length. 

Four experimental results were used to validate the ground truth data in this study (Panchapakesan 

et al., 1993; Khorsandi et al., 2013; Moeini et al., 2020; Fang et al., 2020). Khorsandi et al. (2013) and 

Moeini et al. (2020) both used acoustic Doppler velocimetry (ADV) to examine jet flows with Reynolds 

numbers of 10,600 and 10,000, respectively, based on jet diameter and nozzle exit velocity. The 

sampling frequencies were 25 Hz and 200 Hz, respectively. Panchapakesan et al. (1993) used flying 

hot-wire anemometry (FHWA) to examine the jet flow at a Reynolds number of 11,000. Table 15 

summarizes the comparison of the experimental results mentioned above with the present results. As 

shown in the table, the mean velocity decay constant of this study has the lowest value compared to 

those of the other experiments. Moreover, the mean velocity decay constant appeared to increase with 

increasing Reynolds number. Given that the Reynolds number in this study is the smallest, it is 

reasonable to conclude that the smallest value for the mean velocity decay constant is appropriate. 

 

Table 15. Comparing the present results with three previous experimental studies conducted by 

Moeini et al. (2020), Khorsandi et al. (2013), and Panchapakesan et al. (1993) for validation 

purposes. 

 Present work 
Moeini et al. 

(2020) 

Khorsandi et al. 

(2013) 

Panchapakesan 

et al. (1993) 

Method LES ADV ADV FHWA 

𝑅𝑒 10,000 10,000 10,600 11,000 

Jet diameter (m) 0.02 0.01 0.03175 0.0016 

Mean velocity 

decay constant 
5.05 5.58 5.66 6.06 

 

Figure 43 depicts the profile of axial and lateral mean velocity, normalized by the nozzle diameter 
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(𝐷) and the jet exit velocity (𝑈𝑗), at a certain distance from the jet entrance, 𝑥𝑐/𝐷=37. The results of 

this study are obtained at 100Hz frequency for 300 seconds, and then temporally averaged. The red dots 

in Figure 43a represent the locations where the velocity data were collected. Consistent with the finding 

of physical experiments, the axial velocity was shown to decrease along the r-axis axis as it moves away 

from the jet inlet (Figure 43b). In the meantime, some discrepancies are observed between the lateral 

mean velocity and that of other studies. However, Figure 43c shows the same trend between the 

simulated and observation data that the highest velocity is located at a similar x position, and then the 

velocity gradually slows down similarly. Especially, in line with the ADV experimental result of Moeini 

et al. (2020), it is confirmed that the velocity slightly increases at 𝑟/𝑥𝑐 of 0.15. Therefore, it is evident 

that the current LES results closely resemble the experimental results. 

 

Figure 43. (a) Schematic view of jet flow, (b) normalized axial, and (c) normalized lateral mean 

velocity were taken at 𝒙𝒄/𝑫=37 and compared to other laboratory experimental studies 

This study also compared it with another experimental study by Fang et al. (2020). In their 
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laboratory experiment, they used a wave flume that had a length of 40 m, a width of 1.2 m, and a water 

depth of 1.2 m. The jet nozzle had a diameter of 0.01 m and was positioned 1.2 m above the flume 

bottom. In Case VS1, the jet flow was discharged into a quiescent water environment to establish the 

baseline flow characteristics. The experimental parameters, including the jet Reynolds number, Froude 

number, and Weber number, were measured and utilized to validate the proposed integral model for a 

non-buoyant turbulent jet in a wave environment. The second case in this was validated with Case VS1, 

which was a non-buoyant jet experiment. Figure 44 shows the axial velocity of the jet normalized by 

the jet inlet velocity along the centerline axis. Although the numerical results are slightly different from 

the laboratory experiments, the R-squared value is approximately 0.928. This indicates that the 

numerical experiments are in good agreement with the laboratory experiments conducted by Fang et al. 

(2020). 

 

 

Figure 44. The axial velocity of the jet normalized by the jet inlet velocity along the centerline 

axis of the jet. 

These well-matched results with laboratory experiments allowed for an analysis of the jet flow using 
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the same methods as in the previous jet flow study. Figure 45 shows the average axial velocity profile 

at two points along the jet, illustrating how the jet decays and spreads as the axial distance increases. 

The jet decay is clearly visible as a decrease in the centerline velocity, < 𝑈 > . The axial velocity 

profiles also indicate that the velocity is maintained at a wider range as it moves away from the jet flow. 

This implies that the value of 𝑟1/2, which is half of the centerline mean flow velocity, moves away from 

the centerline. Additionally, in Figure 46, where the profile is plotted for 𝑟/𝑟1/2 and reduced to a single 

curve, the trend of the average shaft velocity profile remains unchanged, confirming that the self-

similarity of the jet flow is well-preserved. As previously mentioned, self-similarity is achieved in the 

ZEF when 𝑥/𝐷 > 6.2 . In this study, this property is observed at a distance approximately 0.12 m 

away from the jet inlet. 

 

 

Figure 45. Radial profiles of mean axial velocity in a turbulent round jet at Reynolds number of 

10,000. 



 

96 

 

 

Figure 46. Radial profiles of mean axial velocity against radial distance normalized 𝒓𝟏/𝟐 in a 

turbulent round jet, Reynolds number of 10,000. 

Figure 47 illustrates the reciprocal of 𝑈0 plotted against 𝑥/𝐷. The experimental data is observed 

to fall on a straight line that can be represented by the following equation: 
𝑈0(𝑥)

𝑈𝐽
=

𝐵

(𝑥−𝑥0)/𝐷
  . The 

empirical constant 𝐵 can be calculated using this equation, and summarized in Chapter 2. Table 16 

presents a comparison with other experiments. The spreading rate, also known as 𝑆, is obtained from 

the equation, 𝑟1/2(𝑥) = 𝑆(𝑥 − 𝑥0), and is summarized in Table 16. 

Table 16. The spreading rate 𝑺 and velocity decay constant 𝑩 for turbulent round jets (Pope, 

2000) and present work. 

 
Panchapakesan and 

Lumley (1993) 

Hussein et al. (1994), 

hot-wire data 

Hussein et al. (1994), 

laser-Doppler data 

Present 

work 

𝑅𝑒 11,000 95,500 95,500 10,000 

𝑆 0.096 0.102 0.094 0.116 

𝐵 6.06 5.9 5.8 5.01 
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Figure 47. The inverse of the mean centerline velocity along the centerline in a turbulent round 

jet at Reynolds number of 10,000 

Figure 48 displays the temporal velocity spectra of the axial and lateral velocity, constructed based 

on the fluctuating velocities obtained from LES for Case 1 at 𝑥𝑐/𝐷=22.5. The spectra were obtained at 

a frequency of 100 Hz, with the maximum value of the energy spectrum limited to 50 Hz due to the 

Nyquist criterion. The axial and lateral velocity spectra clearly show the energy-containing area and 

energy decay parts. It has been observed that both energy ranges fall between 10−14𝑚2/𝑠2  and 

10−4 𝑚2/𝑠2. This indicates that the axial and lateral directions contain the same amount of energy and 

decay at the same rate. 

 

Figure 48. (a) Axial and (b) lateral velocity spectra at the jet centerline for the 100 Hz 

sampling frequencies measured at 𝒚𝒄/𝑫=22.5 
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In this study, the data was calculated using LES (Large Eddy Simulation) for three cases, namely 

Case 1, Case 2, and Case 3, with grid sizes of 0.5, 0.6, and 0.7 cm, respectively. The values used in 

these cases were referred to as High Resolution (HR), Intermediate Resolution (IR), and Low 

Resolution (LR), respectively. Figure 49 depicts the energy spectra of HR, IR, and LR LES data, 

represented in green, yellow, and purple, respectively. The spatial energy spectra were calculated using 

velocity fluctuations and were derived at each time, followed by time-averaging the spectra obtained 

over a total of 300 seconds. The energy range is approximately from 10^-15 to 10^-6 m^2/s^2, and the 

same range can be observed in all three graphs. It can be observed that as the grid size decreases, the 

maximum wave number also decreases. 

 

 

Figure 49. Spatial energy spectrum of high, intermediate, and low resolution LES 

 

5.2 Convolutional Neural Network 

The CNN algorithm extracts image features and generates data while preserving the characteristics 

of the images, as mentioned in Section 4.3. There are two CNN architectures described. The first 

proposed CNN architecture, known as the most basic algorithm, consists of a single-path layer with 
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convolutional layers, nonlinear functions, and padding. The second CNN architecture is composed of 

three paths. In this study, there are four CNN results, as shown in Table 17. Comparing one path CNN 

+ IR LES with three path CNN + IR LES allows for the observation of differences in results based on 

the CNN algorithm. The results obtained by predicting IR and LR LES using the three path CNN 

demonstrate the ability to accurately learn SGS flow behavior even as the grid size of LES increases. 

This analysis was conducted to verify that the SGS flow behavior can be accurately captured regardless 

of the increasing grid size of LES. Finally, the data trained with intermediate and low Reynolds numbers 

is utilized to predict high Reynolds numbers, verifying whether the CNN model generates accurate 

results across various Reynolds numbers. 

 

Table 17. Classification of CNN results 

Classification CNN architecture Train case Test case 

One path CNN + IR LES One path CNN Case 1 Case 2 

Three path CNN + IR LES Three path CNN Case 1 Case 2 

Three path CNN + LR LES Three path CNN Case 1 Case 3 

Three path CNN + Low and Intermediate 

Reynolds number 
Three path CNN Case 3 and 4 Case 5 

 

The energy spectrum presented in Figure 50 illustrates the data reconstructed using the one path 

CNN technique for IR LES data and the data reconstructed using the three path CNN technique for IR 

LES data, both aimed at reproducing the velocity field of HR LES. In addition, to facilitate data 

comparison, the energy spectrum of the actual HR LES data has also been plotted. All energy spectrums 

were derived in a manner similar to Figure 49. The spectrum is depicted in blue, magenta, and green 

colors, respectively. As observed in the previously examined energy spectrum in Figure 49, the 

maximum wave number of the IR LES was smaller than that of the HR LES. However, by utilizing 

CNN techniques, it can be confirmed that the maximum wave number of the IR LES aligns with the 
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maximum wave number of the HR LES. When using the one path CNN, it was observed that the energy 

values were lower compared to the HR LES energy. On the other hand, when using the three path CNN, 

it was noted that the energy spectrum had a similar slope to the HR LES energy spectrum. It was 

observed that the three path CNN more accurately reproduces the spectrum compared to the one path 

CNN. Subsequently, the time averaged velocity and turbulence kinetic energy (TKE) fields were 

depicted based on the results obtained from the three path CNN only. 

  

 

Figure 50. Spatial energy spectrum of high resolution LES, one path CNN + intermediate 

resolution LES, and three path CNN + intermediate resolution LES 

 

Figure 51 depicts the results of mean velocity fields obtained by applying the three path CNN with 

varying grid sizes. The figure consists of three subfigures: (a) shows the mean velocity field of HR LES, 

(b) represents the result generated using the three path CNN technique for IR LES data, and (c) 

represents the result generated using the three path CNN technique for LR LES data. The mean data 

was obtained by averaging data collected over a period of 5 minutes. The velocity is visualized using a 

color gradient ranging from blue to yellow, with yellow indicating higher velocities. Notably, high 
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velocities are observed near the jet inlet. In Figure (b), which represents the velocity field generated 

using the three path CNN and IR LES data, the corresponding values of R^2 and NRMSE were 

calculated as 0.9811 and 1.94%, respectively. Similarly, in Figure (c), which represents the velocity 

field generated using the three path CNN and LR LES data, the corresponding values of R^2 and 

NRMSE were calculated as 0.9628 and 2.66%, respectively. 

 

 

Figure 51. The time-averaged magnitude of velocity; (a) High resolution LES, (b) Intermediate 

resolution LES + three path CNN, and (c) Low resolution LES + three path CNN 

 

Subsequently, TKE was calculated and depicted as shown in Figure 51. The TKE values are 

obtained from HR LES, IR LES with the three path CNN, and LR LES with the three path CNN, 

arranged from left to right in Figure 51. Similar to the previous figures, the color gradient in the figure 

represents increasing TKE values from blue to yellow, with stronger TKE values observed near the inlet 

compared to the surrounding regions. For the case of IR LES with a 10% increase in grid size and the 

utilization of the three path CNN to generate the velocity field, the TKE was calculated as 0.9260, with 

an RMSE of 11.04%. In Figure 51c, where the grid size increased by 20% and the three path CNN was 
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used to generate the velocity field, the TKE was calculated as 0.9033, with an RMSE of 12.41%. 

 

 

Figure 52. TKE of LES and CNN results; (a) High resolution LES, (b) Intermediate resolution 

LES + three path CNN, and (c) Low resolution LES + three path CNN 

 

Figure 53a and b depict the time averaged velocity and TKE, respectively, calculated using the 

azimuthal averaging technique. The HR LES data is represented by circles, IR LES data with the three 

path CNN by squares, and LR LES data with the three path CNN by triangles. Both velocity and TKE 

values are nondimensionalized using the central values, and the distance from the center is 

nondimensionalized using the diameter of the jet. In Figure 53a, the strongest velocity occurs at the 

centerline, and the velocity decreases as the distance from the centerline increases. Approximately at a 

distance of 7.5 cm from the centerline, the velocity reaches zero. In Figure 53b, the TKE exhibits the 

highest value at the centerline, and the TKE decreases as the distance from the centerline increases. 

TKE value reaches zero at a distance of 9.5 cm from the centerline. Both graphs show good agreement 

between HR LES, IR LES with the three path CNN, and LR LES with the three path CNN. 
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Figure 53. (a) Azimuthal temporally averaged velocity profile normalized by jet inlet velocity 

and (b) Azimuthal averaged turbulence kinetic energy normalized by jet inlet velocity. 

 

The R-squared values and NRMSE for the temporally averaged velocity profiles and TKE in the 

entire region have been summarized in Table 18. It includes the results obtained using the one path CNN 

on IR LES, the results obtained using the three path CNN on IR LES, and the results obtained using the 

three path CNN on LR LES. It can be observed that all the results obtained using the three path CNN 

have an R-squared value exceeding 0.9. On the other hand, the results obtained using the one path CNN 

exhibit an R-squared value of 0.575 for the velocity and negative values for the TKE. This indicates 

that the results obtained using the three path CNN architecture more accurately capture the desired 

characteristics and can be considered as better method in this context. 

Table 18. R-squared and NRMSE of CNN results compared to the ground truth 

  
One path CNN 

+ IR LES 

Three path 

CNN + IR LES 

Three path 

CNN + LR LES 

R-squared  
Temporally 

averaging 

0.575 0.981 0.963 

NRMSE 
7.88 % 1.94 % 2.66 % 

R-squared  

TKE 

-0.6886 0.926 0.903 

NRMSE 
50.85 % 11.04 % 12.41 % 
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Figure 54 depicts the time series of the instantaneous velocity along the 𝑟1, 𝑥, and 𝑟2 axes for both 

the LES and the three path CNN on IR LES, obtained at the center of the computational domain. Both 

LES and three path CNN on IR LES show time-averaged instantaneous velocities of 0 m/s along the 𝑟1 

axis, 0.05 m/s along the 𝑥 axis, and 0 m/s along the 𝑟2 axis. As expected, based on the TKE, the 

velocity range in three path CNN on IR LES is smaller compared to LES. Specifically, in three path 

CNN on IR LES, the maximum and minimum values along the 𝑥 axis are -0.06 m/s and 0.06 m/s, 

respectively, whereas in LES, the corresponding values are 0.08 m/s and 0.08 m/s. This difference can 

be attributed to the fact that although the trained model accurately reproduces the velocity field, the 

predicted values for TKE are slightly lower. 

In order to provide a more detailed comparison between the results obtained using the one path 

CNN on IR LES, the three path CNN on IR LES, and the three path CNN on LR LES, a Taylor diagram 

was utilized for evaluation (Figure 55). The Taylor diagram visualizes the standard deviation, 

correlation coefficient, and root mean square error between the reference values and the model results, 

enabling a comprehensive assessment of model performance. On the left side, the lower values of the 

standard deviation indicate a better match between the model results and the reference data. Along the 

radial lines on the right side, a stronger correlation with the reference data is indicated by values closer 

to the bottom. The concentric circles inside the diagram represent the root mean square error, and results 

closer to the ground truth indicate better performance. From the diagram, it can be observed that the 

one path CNN on IR LES is positioned in the top-left corner, indicating a lower correlation coefficient 

of 0.2. On the other hand, the three path CNN on IR LES and the three path CNN on LR LES show 

correlation coefficients of 0.9 or higher, along with root mean square errors of approximately 0.0005. 

The standard deviations are also calculated to be around 0.0005. Overall, the Taylor diagram confirms 

that the results obtained using the three path CNN on IR LES and LR LES exhibit higher correlation 

and lower errors compared to the one path CNN on IR LES, demonstrating better agreement with the 

ground truth data. 
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Figure 54. Instantaneous velocities of LES (black line) and the three path CNN result on IR LES (blue line) at center of domain 
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Figure 55. Taylor diagram displaying a statistical comparison with the results obtained using the 

one path CNN on IR LES, the three path CNN on IR LES, and the three path CNN on LR LES 

and the ground truth data. 

 

The following is an investigation into whether the three path CNN can accurately generate velocity 

fields despite variations in Reynolds number. Figure 56a represents the numerical results obtained from 

LES at a high Reynolds number of 20,000. Figure 56b illustrates the prediction of the velocity field at 

high Reynolds number using the three path CNN trained on low and intermediate Reynolds numbers. 

The mean velocity field was obtained by averaging the results over a 5-minute period. As observed in 

the previous grid convergence study, the velocity is stronger near the jet inlet and decreases as the 

distance from the inlet increases. The R-squared value of 0.9003 and the RMSE of 4.03% indicate a 

strong agreement between the predicted velocity field generated by the three path CNN and the high 
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Reynolds number LES data. 

 

 

Figure 56. The time-averaged magnitude of velocity; (a) High Reynolds number and (b) Low 

and Intermediate Reynolds number + three path CNN 

 

Figure 57a represents the TKE obtained from LES at a high Reynolds number of 20000. Figure 57b 

depicts the TKE obtained by utilizing the model trained using low and intermediate Reynolds numbers 

with the three path CNN to predict the velocity field at the high Reynolds number. The R-squared value 

is 0.673, and the RMSE is 1.61%. In this study, the three path CNN model is considered to be superior 

in generating flow velocity compared to the one path CNN. This suggests that the three path CNN is a 

more effective technique in capturing spatial features. 
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Figure 57. TKE (a) High Reynolds number and (b) Low and Intermediate Reynolds number + 

three path CNN 
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5.3 Generative Adversarial Network 

GAN is a type of unsupervised learning that can learn without labels and has a significant advantage 

in directly generating data. There are two GAN architectures used in generating velocity fields, as 

described in section 4.3. The first architecture, named spatially isolated GAN, is the most fundamental 

algorithm, which connects all data using a fully connected layer for training all data at once. The second 

architecture, named spatially connected GAN, uses convolutional layers to reconstruct high-resolution 

flow fields from low-resolution ones. In this study, four GAN outcomes are presented, as summarized 

in Table 19. By comparing the outcomes of the spatially isolated GAN + IR LES configuration with 

those of the spatially connected GAN + IR LES configuration, it can be observed the differences in 

results based on the GAN algorithm. The results obtained through the utilization of the spatially 

connected GAN on IR and LR LES demonstrate the ability to accurately learn flow behavior even as 

the grid size of LES increases.  Moreover, the trained data encompassing intermediate and low 

Reynolds numbers are employed to generate the velocity field at high Reynolds numbers, thereby 

verifying the GAN model's ability to generate accurate results across a wide range of Reynolds numbers. 

 

Table 19. Classification of GAN results 

Classification GAN architecture Train case Test case 

Spatially isolated GAN + IR LES Spatially isolated GAN Case 1 Case 2 

Spatially connected GAN + IR LES Spatially connected GAN Case 1 Case 2 

Spatially connected GAN + LR LES Spatially connected GAN Case 1 Case 3 

Spatially connected GAN + Low and 

Intermediate Reynolds number 
Spatially connected GAN Case 3 & 4 Case 5 

 

The energy spectrum depicted in Figure 58 represents the outcomes obtained from HR LES data, 

spatially isolated GAN applied to IR LES data, and spatially connected GAN applied to IR LES data, 



 

110 

 

indicated by the colors green, blue, and red respectively. As shown in Figure 49, it is evident that the 

maximum wavenumber of IR LES is smaller than that of HR LES. However, with the implementation 

of the GAN technique, specifically in Figure 58, the maximum wavenumber of IR LES increases and 

aligns with that of HR LES. By employing the spatially isolated GAN technique, it becomes apparent 

that an energy cascade does not occur, resulting in a linear energy spectrum formation. Conversely, with 

the implementation of the spatially connected GAN, an energy cascade is observed. However, a notable 

increase in the energy spectrum can be observed compared to HR LES when the wavenumber ranges 

from 300 to 653. In this study, the velocity field and TKE were derived using the spatially connected 

GAN, which yields relatively consistent energy spectra. 

 

 

Figure 58. Spatial energy spectrum of high resolution LES, spatially isolated GAN + 

intermediate resolution LES, and spatially connected GAN+ intermediate resolution LES 

 

The results based on changes in grid size are presented in Figure 59. The figure illustrates the mean 

velocity fields obtained from HR LES, the mean velocity field computed using the spatially connected 

GAN technique on IR LES data, and the mean velocity field obtained by applying the spatially 
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connected GAN technique to LR LES data. It can be observed that a high-velocity field is prominently 

present near the jet inlet. In Figure 59b, the mean velocity field generated using the spatially connected 

GAN technique on IR LES data yields R squared value of 0.9384 and NRMSE of 3.35%. Similarly, in 

Figure 59c, the mean velocity field obtained by applying the spatially connected GAN technique to LR 

LES data results in R squared value of 0.9270 and NRMSE of 3.54%.  

 

 

Figure 59. The time-averaged magnitude of velocity; (a) High resolution LES, (b) Intermediate 

resolution LES + spatially connected GAN, and (c) Low resolution LES + spatially connected 

GAN 

 

The TKE is calculated and illustrated in Figure 60, utilizing HR LES, HR data obtained by applying 

the spatially connected GAN technique on IR LES, and HR data obtained by applying the spatially 

connected GAN technique on LR LES. The TKE is calculated and presented in Figure 60, where the 

grid size of the IR LES is increased by 20% compared to the HR LES grid size. The spatially connected 

GAN is then employed on the IR LES to generate the velocity field. The TKE is calculated as R-squared 

of 0.1939 with NRMSE of 36.08%. In Figure 60c, where the grid size is increased by 40% of the HR 

LES grid size to generate the velocity field, the calculated TKE is 0.0742 with an RMSE of 39.45%. 
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Figure 60. TKE of LES and GAN results; (a) High resolution LES, (b) Intermediate resolution 

LES + spatially connected GAN, and (c) Low resolution LES + spatially connected GAN 

 

Figure 61a and b present the time-averaged velocity and TKE, respectively, calculated using the 

azimuthal averaging technique. The HR LES data is represented by circles, the IR LES data obtained 

with the spatially connected GAN is represented by squares, and the LR LES data obtained with the 

spatially connected GAN is represented by triangles. Both velocity and TKE values are normalized 

using the central values, and the distance from the center is normalized using the diameter of the jet. In 

Figure 61a, the centerline exhibits the highest velocity, which gradually decreases as the distance from 

the centerline increases. The velocity reaches zero at approximately 7.5 cm from the centerline. In 

Figure 61b, the TKE reaches its maximum value at the centerline and decreases as the distance from 

the centerline increases. Notably, the TKE value reaches zero starting from a distance of 9.5 cm in the 

HR LES, while it converges to zero at a distance of 6.5 cm. These findings suggest that there is a slight 

discrepancy in the TKE compared to the ground truth. 

 



 

113 

 

 

Figure 61. (a) Azimuthal temporally averaged velocity profile normalized by jet inlet velocity 

and (b) Azimuthal averaged turbulence kinetic energy normalized along the 𝒙-axis at 𝒙/𝑫=6.7. 

 

Table 20 summarizes the R-squared values and NRMSE for the temporally averaged velocity 

profiles and TKE across the entire region. This table includes results obtained using the spatially isolated 

GAN on IR LES, results obtained using the spatially connected GAN on LR LES, and results obtained 

using the spatially connected GAN on LR LES. It is observed that all the results obtained using the 

spatially connected GAN exhibit an R-squared value exceeding 0.9. However, the TKE values show 

relatively lower R-squared values compared to the velocity profiles. 

 

Table 20. R-squared and normalized RMSE of GAN results with ground truth 

  
Isolated GAN  

+ IR LES 

Connected 

GAN + IR LES 

Connected 

GAN + LR LES 

R-squared  Temporally 

averaging 

0.8223 0.9384 0.9270 

NRMSE 0.0484 3.35 % 3.54 % 

R-squared  
TKE 

-0.029 0.194 0.074 

NRMSE 0.4152 36.08 % 39.45 % 
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Figure 62 illustrates the time series of the instantaneous velocity obtained at the center of the domain 

along the 𝑥 and 𝑟 axes for LES and HR data using the spatially connected GAN on IR LES. Both 

LES and HR data exhibit an approximate time-averaged instantaneous velocity of 0, 0.05, and 0 m/s 

along the 𝑥 and 𝑟 axes. Moreover, the velocity ranges of HR data and LES show similarity in each 

axis. The 𝑟-axes values reveal maximum and minimum velocities of -0.08 and 0.08 m/s for LES and 

HR data using the spatially connected GAN on IR LES, respectively. Along the 𝑥-axis, the velocity 

range of LES ranges from -0.02 to 0.18 m/s, which closely aligns with the range observed in HR data 

using the spatially connected GAN on IR LES.  

The GAN technique was also analyzed using a Taylor diagram in Figure 63, as mentioned before, 

standard deviation, correlation coefficient, and root mean square error are plotted. The superior 

outcomes are depicted as we progress downward from the left to the right, approaching closer proximity 

to the ground truth at the bottom. According to the findings of this study, the correlation coefficient of 

the spatially connected GAN on IR LES is high, whereas the correlation coefficient of the spatially 

connected GAN on LR LES is relatively lower, at around 0.5. Additionally, when the spatially isolated 

GAN is used, both the correlation coefficient and standard deviation are lower. Based on the preceding 

findings, it has been determined that the spatially connected GAN is a more suitable approach for 

generating time-averaged velocity fields compared to the spatially isolated GAN. However, during this 

process, it was observed that the TKE values generated were smaller than the actual HR values. This 

indicates that the velocity fluctuations are underestimated compared to the ground truth.
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Figure 62. Instantaneous velocities of LES (black line) and the spatially connected GAN result on IR LES (blue line) at center of domain 
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Figure 63. Taylor diagram of case HR LES data and GAN results 

 

Figure 64a represents the numerical results obtained from LES at a high Reynolds number of 20000. 

On the right side, the spatially connected GAN model trained using low and intermediate Reynolds 

numbers is utilized to predict velocities at the high Reynolds number, resulting in the visualization of 

the mean velocity field. It can be observed that the velocity is high near the jet inlet and decreases as 

the distance from the inlet increases. The R squared value for this case is determined to be 0.8394, with 

NRMSE of 5.99%.  
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Figure 64. The time-averaged magnitude of velocity; (a) High Reynolds number, (b) Low and 

Intermediate Reynolds number + Spatially connected GAN 

 

Figure 65a illustrates the numerical results obtained from LES at a high Reynolds number of 20000. 

In Figure 65b, the spatially connected GAN model trained using low and intermediate Reynolds 

numbers is employed to predict velocity fields at the high Reynolds number, resulting in the 

visualization of TKE. The R-squared value for this case is determined to be 0.3303, with NRMSE of 

26.31%. This can be considered as one of the limitations of GAN known as mode collapse, which refers 

to the generator of GAN being biased towards a specific distribution or mode. Mode collapse often 

occurs when the training data exhibits similar patterns or characteristics. In this study, resolved velocity 

data excluding the subgrid scale velocity field are used as the input data. The exclusion of the random 

component of turbulence from the input data of GAN can lead to mode collapse, as the input data 

becomes relatively lacking variation. 
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Figure 65. TKE (a) High Reynolds number and (b) Low and Intermediate Reynolds number + 

Spatially connected GAN 

  



 

119 

 

5.4 Time Averaged Turbulent Characteristic 

The input data in this study consists of time-averaged velocities, as depicted in Figure 66. The mean 

streamwise velocity (𝑈) is observed to be relatively higher compared to the radial velocities (𝑉,𝑊). As 

the distance from the jet inlet decreases (𝑥 approaches 0), the mean streamwise velocity increases, 

while the mean radial velocities exhibit positive and negative values in the free shear stress region. The 

input data in this study includes the time-averaged velocity values along with their corresponding grid 

point locations. The objective of this study is to predict time-averaged TKE, production, and dissipation 

using the provided input data. The output data is presented in Figure 67. It can be observed that the 

highest production and dissipation values are located near the starting point of the shear stress region, 

at approximately 𝑥/𝐷 is 0.2. The maximum value of TKE is measured to be 0.028 𝑚2/𝑠2. Generally, 

the production values outweigh the dissipation values, which is expected as this region is closer to the 

jet flow and experiences higher production rates. Moreover, TKE, production, and dissipation exhibit a 

distinct pattern near the jet flow and become more random as the distance from the jet inlet increases. 

The study aims to investigate the accuracy of ML techniques in simulating these turbulence 

characteristics. 

The ML model was initially trained using a Reynolds number of 10,000, and subsequently tested 

using a Reynolds number of 15,000. The test input data, as shown in Figure 68, exhibits velocity field 

similar to that observed at a Reynolds number of 10,000, but with an overall increase in magnitude by 

a factor of 1.5. The shapes of TKE, production, and dissipation in the test output data resemble those 

observed at a Reynolds number of 10,000(Figure 69). The highest values of these variables are still 

located near the starting point of the shear stress region. The highest TKE value in the test output data 

is 0.0565 𝑚2/𝑠2. Consistent with the training data, the production values are larger than the dissipation 

values in the test output data, showing a stronger production near the jet inlet. All the time-averaged 

values are based on 30 second simulation time. 
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Figure 66. The three-dimensional time-averaged velocity components in the longitudinal direction (𝑼) and radial directions (𝑽,𝑾) were 

measured in a turbulent jet at a Reynolds number of 10,000.  



 

121 

 

 

 

Figure 67. The three-dimensional turbulent kinetic energy (TKE), production (𝑷), and dissipation (𝜺) were measured in a turbulent jet at a 

Reynolds number of 10,000. 
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Figure 68. The three-dimensional time-averaged velocity components in the longitudinal direction (U) and radial directions (V,W) were 

measured in a turbulent jet at a Reynolds number of 15,000. 
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Figure 69. The three-dimensional turbulent kinetic energy (TKE), production (P), and dissipation (ε) were measured in a turbulent jet at a 

Reynolds number of 15,000. 
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Table 21 provides a summary of the NRMSE and R-squared values for TKE, production, and 

dissipation. The R-squared values are 0.885, 0.5165, and 0.7348, respectively. Notably, the simulation 

of TKE using only time-averaged velocity as input demonstrates the best performance among the three 

variables. On the other hand, the NRMSE values for TKE, production, and dissipation are reported as 

1.40%, 0.73%, and 1.97%, respectively. According to the NRMSE values, production exhibits the best 

simulation performance among the three variables. The NRMSE takes into account the scale of the 

variables and provides a normalized measure of the error. In this case, the NRMSE values indicate that 

the relative error in predicting production is the smallest compared to TKE and dissipation. The lower 

NRMSE for production suggests that the ML model successfully captures the patterns and variations in 

the production variable, resulting in a more accurate simulation outcome for production compared to 

TKE and dissipation. 

  

Table 21. Normalized Root Mean Square Error (NRMSE) and R-squared of Turbulent kinetic 

energy, production and dissipation 

 NRMSE R-squared 

TKE 1.40 % 0.8850 

Production 0.73 % 0.5165 

dissipation 1.97 % 0.7348 

 

Figure 70 presents the three-dimensional plots of TKE, depicting both the ground truth and the ML 

results. TKE exhibits its highest value near 𝑥=0.17 m and expands as the distance from the jet inlet 

increases. Comparing the ML result with the ground truth, the three-dimensional TKE plot of the ML 

result shows a similar shape but slightly lower TKE values along the centerline. Examining the cross-

sectional TKE plots at specific x-values, such as 𝑥=0.344 m in Figure 71 and 𝑥=0.551 m in Figure 72, 

both the ground truth and the ML result demonstrate strong TKE values near 𝑟=0. This trend is captured 
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by the ML model at these specific locations. Notably, at 𝑥 =0.551 m, the width of TKE is wider 

compared to that at 𝑥=0.344 m, indicating that TKE spreads more extensively as it moves away from 

the jet inlet. Analyzing the azimuthal-averaged TKE plot of the ML result, its width is similar to that of 

the ground truth. However, there are differences in the values near the centerline (where 𝑟 is almost 

zero). Despite these differences, the R-squared value remains relatively high, suggesting an adequate 

agreement between the ML result and the ground truth in capturing the overall TKE characteristics. 

 

 

Figure 70. The three-dimensional Turbulent kinetic energy (TKE) measured in a turbulent jet at 

a Reynolds number of 15,000 and ML results. 
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Figure 71. (a) Cross section and (b) azimuthal averaged TKE at 𝒙 = 0.344 m 

 

Figure 72. (a) Cross section and (b) azimuthal averaged TKE at 𝒙 = 0.551 m 
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According to Figure 73, the three-dimensional representation of production reveals that both the 

ground truth and ML exhibit prominent values near the inlet, with a gradual decrease in production as 

the distance from the jet flow increases. As 𝑟 approaches 0, positive production values are concentrated 

in the vicinity. The overall three-dimensional shapes of the ground truth and ML result demonstrate a 

notable similarity. When comparing the azimuthal-averaged plots at 𝑥=0.344 m and 𝑥=0.551 m, it is 

evident that the shapes of the graphs for both the ML result and the ground truth are highly similar 

(Figure 74, Figure 75). However, there were slight differences observed between the ML result and the 

ground truth in the maximum peak values at both 𝑥=0.344 m and 𝑥=0.551 m. Moreover, it can be 

observed that as the 𝑥 value decreases, particularly closer to the inlet, the values tend to be generally 

larger. 

 

 

Figure 73. The three-dimensional production measured in a turbulent jet at a Reynolds number 

of 15,000 and ML results. 



 

128 

 

 

Figure 74. (a) Cross section and (b) azimuthal averaged production at 𝒙 = 0.344 m 

 

Figure 75. (a) Cross section and (b) azimuthal averaged production at 𝒙 = 0.551 m 
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Figure 76 illustrates the dissipation distribution from 𝑥=0.176 to 0.62 m. In the ground truth, it is 

observed that as the radial distance (𝑟) approaches 0, the dissipation values tend to increase. However, 

when 𝑟 reaches exactly 0, the dissipation value becomes relatively small. This phenomenon indicates 

that the dissipation is high in the vicinity of 𝑟=0 but decreases abruptly when r reaches the exact center 

point. On the other hand, in the ML results, the clear pattern of increasing dissipation values as 𝑟 

approaches 0 is not as evident. The dissipation values in the ML results show a more gradual change as 

𝑟 decreases, and the distinction near 𝑟=0 is not as pronounced compared to the ground truth. To further 

explore this phenomenon, the dissipation cross-section and azimuthally-averaged result can be analyzed 

at 𝑥=0.344 and 0.551, respectively, as depicted in Figure 77 and Figure 78. Figure 77demonstrates a 

notable agreement between the ground truth and ML result. However, in the case of Figure 78, while 

the overall shape appears similar, there are slight discrepancies in the values obtained. 

 

 

Figure 76. The three-dimensional dissipation (𝜺) were measured in a turbulent jet at a Reynolds 

number of 15,000 and ML results. 
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Figure 77. (a) Cross section and (b) azimuthal averaged dissipation at 𝒙 = 0.344 m 

 

Figure 78. (a) Cross section and (b) azimuthal averaged dissipation at 𝒙 = 0.551 m 
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CHAPTER 6. CONCLUSION 

In this study, we applied the well-known CNN and GAN algorithms to accurately predict SGS 

turbulent flow behaviors in jet flows and evaluated their performance. Three-dimensional LES data set 

of such jet flows, yielded by a CFD software, OpenFOAM, is used as the ground-truth for training the 

aforementioned ML algorithms. The LES data set began to be collected ten minutes after the simulation 

started to ensure the fully developed jet flow. The good agreement between the observation data from 

several laboratory experiments and the simulated result of LES confirms that the LES data set can be 

used as a reliable ground-truth. The LES data sets, consisting of various grid sizes and Reynolds 

numbers, are used to train the CNN and GAN algorithms, each having two different architectures. In 

this study, the LES data can be considered as the output and input in the train set simultaneously. The 

data for the first 12 minutes are used to train the algorithms, and those for the last 8 minutes are utilized 

to test the algorithms. The evaluation of the performance of the trained CNN and GAN algorithms is 

presented, comparing them to each other. It was determined that the training times for the CNN and 

GAN algorithms are significantly shorter than the required times for simulating the LES (with the 

Smagorinsky model) for the same time period. This finding clearly shows the outstanding advantage of 

using the ML techniques to replicate the jet flow characteristics. The main findings of this study are 

summarized in the following sections.  

 

6.1 Energy Spectrum for the Jet Flow Yielded by LES 

The temporal and spatial energy spectra for the jet flow were constructed based on each axial and 

lateral flow velocity quantified by LES. Both temporal spectra established by the axial velocity and 

lateral velocity clearly show the energy-containing area and energy decay parts. It is revealed that the 

energy ranges of both energy spectra are almost the same, indicating the same amount of energy and 
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decay at the same rate along the axial and lateral directions. For the spatial energy spectra, the energy 

tends to decrease as the frequency increases due to the energy cascade. However, at certain frequencies, 

the over-rated energy was also observed, resulting from the unestablished flow structures just ejected 

from the inlet. When the spatial energy spectra were drawn again for the LES data in the fluid domain, 

excluding the first 5cm in the axial axis from the jet inlet, it was confirmed that the over-estimated 

energy region was alleviated. The energy range appears to be almost in line with to that of the temporal 

energy spectra. Based on these findings, when conducting a jet flow study, it can be deemed reasonable 

to select an analysis domain excluding a distance from the jet inlet to avoid overvaluing small-scale 

eddies. 

 

6.2 Convolutional Neural Network 

The results of the CNN algorithm were classified into four distinct outcomes based on different 

architectures, grid sizes of the training and testing sets, and Reynolds numbers. The overall results 

indicate that the first architecture of CNN performs poorly, in terms of velocity, turbulence intensity, 

and turbulent kinetic energy when the grid size of the LES trains set data is larger (20%) than that of 

the highest resolution LES train data set. On the other hand, it is confirmed that, with the second CNN 

architecture, the aforementioned flow properties by the CNN algorithm are well reproduced in 

accordance with the results of the highest resolution LES test set in spite of the larger grid size of LES 

train set. The R-squared value of 0.981 is the best fit with the ground truth compared to other cases. 

Similarly, the spatial energy spectrum for the second architecture is drawn properly in line with that for 

the highest resolution LES data. This good agreement can be attributed to the fact that the information 

of velocity fields was well preserved and remembered while passing through the convolutional blocks 

because two paths are located in the middle of the main path of the CNN model. The good performance 

of the CNN algorithm with the second architecture continues when the grid size of the LES test set is 
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increased (16%). Specifically, the R-squared value is 0.963, and the normalized RMSE is 0.0266 at this 

grid size. It is also verified that the CNN algorithm trained based on an increased (by 50 %) Reynolds 

number at the same grid size as the former can predict the flow velocity and turbulence intensity quite 

reasonably, consistently with the highest resolution LES test set. 

The Taylor diagram was presented to evaluate the ability of each CNN architecture in terms of the 

correlation between the fluid data from the CNN algorithm and the highest resolution LES test set. The 

correlation when the first CNN architecture was applied is shown to be low, and the RMSE was also 

high. This implies that when the grid size of the input train set is somewhat larger (16 %) than that of 

the output train set, it may be inadequate to use the first CNN structure to predict the instantaneous 

velocity over time. On the other hand, it can be seen in the Taylor diagram that the data predicted by 

the second CNN architecture exhibited a strong correlation with the highest resolution LES test set. It 

is noteworthy that the correlation value did not significantly change as the grid size of the LES test set 

grew. 

Summarizing the results above, it can be seen that the second architecture of CNN has some 

extrapolation capability and can learn the intrinsic mechanism based on the different grid sizes and 

Reynolds numbers. Consequently, it is confirmed that the three-path CNN model (the second 

architecture) can accurately reproduce the flow properties regardless of the grid size of the input train 

set and the Reynolds number considered in this study. 

 

6.3 Generative Adversarial Network 

The results of the GAN algorithm were classified into four distinct outcomes based on different 

architectures, grid sizes of the training and testing sets, and Reynolds numbers, which are the same 

conditions as the CNN model. The results of the first GAN architecture indicate that its performance in 
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terms of instantaneous velocity and TKE is inadequate. Specifically, the R-squared value of TKE is 

negative. In contrast, it is demonstrated that the flow features of the second design correspond well with 

the velocity field of the highest resolution LES dataset, despite the higher grid size in the input set than 

the output set. However, it is challenging to reproduce the TKE, with an R-squared value of only 0.194. 

The spatial energy spectrum for the second GAN architecture is similarly reconstructed to that of the 

highest resolution LES data, indicating good performance. This reasonable agreement is possible due 

to the super resolution GAN model's convolutional layer, which can detect small-scale flow 

characteristics. However, when the grid size of the test input data increases by 16%, it was found to be 

challenging for the GAN model with the second architecture to predict the flow behaviors. The mean 

velocity has an R-squared value of 0.927, whereas the TKE has an R-squared value of 0.074. These 

results suggest that the GAN algorithm faces difficulties in reproducing the velocity fluctuation due to 

the noise present in the velocity field generated by GAN. 

The Taylor diagram constructed by instantaneous flow velocities indicates that the correlation and 

RMSE are low when applying the first GAN architecture. When the grid size of the input train set is 

somewhat bigger (16 %) than that of the output train set, the initial GAN structure cannot be suitable to 

predict the fluctuating components of velocity. In contrast, the Taylor diagram established by the data 

predicted by the second GAN design reveals that it has a strong correlation with the highest resolution 

LES test set. However, it turned out that the correlation decreases as the grid size of the LES test set 

grows. 

Summarizing the results above suggests that the second architecture of GAN can reproduce 

instantaneous velocity fields, but it struggles with reproducing statistical flow quantities and spatial 

correlations. It was found that the noise generated by the GAN model led to velocity fluctuations that 

were not consistent with the ground truth. Consequently, it was confirmed that the super-resolution 

GAN model can accurately reproduce only the mean velocity field regardless of the grid sizes 

considered in this study, but its performance may be also affected by an increased grid size. 
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6.4 Time Averaged Turbulent Characteristics  

This study investigates the accuracy of machine learning techniques in simulating turbulence 

characteristics using time-averaged velocity data. The input data consisted of time-averaged velocity 

values, and the output data are time-averaged TKE, production, and dissipation. The simulation results 

showed that the mean axial velocity was relatively higher than the radial velocities, and the highest 

production and dissipation values were located near the starting point of the shear stress region. The 

ML model was trained and tested using different Reynolds numbers, with the train set at the Reynolds 

number of 10,000 and the test set at the Reynolds number of 15,000. The normalized RMSE and R-

squared values were calculated for TKE, production, and dissipation. The simulation of TKE using only 

time-averaged velocity as input showed the best performance among the three variables. The three-

dimensional plots and cross-sectional plots of TKE, production, and dissipation showed that the 

machine learning model reasonably predicts the shape of the ground truth, but the values is slightly 

different near the centerline. Overall, the results demonstrated the potential of using machine learning 

techniques in accurately simulating turbulence characteristics using time-averaged velocity data. 

Furthermore, the results showed that the machine learning model's performance was consistent across 

different Reynolds numbers, indicating its robustness and applicability to reproduce the flow in a range 

of fluid conditions. 
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초    록 

본 연구에서는 합성곱 신경망과 생성적 적대 신경망을 활용하여 제트 흐름에서 유속

과 난류 특성을 생성하는 연구를 진행하였다. 전산유체역학 소프트웨어인 오픈폼을 활용

해 원형 난류 제트 흐름의 3차원 큰에디모사 데이터를 도출하여 기계 학습 알고리즘을 

학습시키기 위한 참값으로 사용하였다. 수치모의 결과와 실험실 실험 데이터가 적절하게 

일치하는 것으로 확인되었으며, 이에 따라 큰에디모사의 신뢰성이 확인되었다. 본 연구

에서는 큰에디모사의 아격자 부분을 제외한 해상 된(resolved) 유속자료를 입력 데이터

로 사용하였다. 이후, 기계 학습 모델을 활용하여 아격자 요소를 포함한 유속장을 생성

하였다. 본 연구에서는 입력 데이터를 사용하여 아격자 정보를 예측하고 정확한 유체 흐

름 특성을 담은 완전한 유속장을 생성하였다. 다양한 그리드 크기와 레이놀즈수를 사용

하여 합성곱 신경망과 생성적 적대 신경망 알고리즘의 성능을 평가하였다. 

합성곱 신경망 알고리즘은 두 가지 아키텍처로 구성되었다. 첫 번째 아키텍처는 층이 

한 경로로 연결된 구조이고, 두 번째 아키텍처는 층이 세 개의 경로로 연결된 구조이다. 

두 번째 아키텍처가 유속과 난류 운동 에너지 생성 측면에서 첫 번째 아키텍처보다 성능

이 뛰어난 것으로 확인되었다. 또한 두 번째 아키텍처는 외삽 능력이 우수하여, 이 연구

에서 고려된 입력 데이터의 그리드 크기와 레이놀즈수와 상관없이 정확한 유체 흐름 특

성을 재현하는 능력을 보였다. 마찬가지로 생성적 적대 신경망 알고리즘도 두 가지 아키

텍처로 구성되었다. 첫 번째 아키텍처는 완전 연결 층으로 구성되고, 두 번째 아키텍처

는 합성곱 층으로 구성되었다. 두 번째 아키텍처가 유속장 재생산 측면에서 첫 번째 아

키텍처보다 뛰어난 성능을 보였다. 그러나 두 생성적 적대 신경망 아키텍처 모두 합성곱 

신경망에 비해 난류 특성과 공간적 상관관계를 재현하는 데 상대적으로 다소 부정확한 
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결과를 보였다.  

또한, 본 연구에서는 합성곱 신경망 기법을 사용하여 시간 평균 된 유속 데이터를 통

해 난류 특성을 재현하는 연구를 진행하였다. 입력 데이터는 시간 평균한 유속이고, 출

력 데이터로는 난류 운동 에너지, 시간 평균한 생성 및 소산이 예측됐다. 합성곱 신경망 

모델을 평가하기 위해 합성곱 신경망 학습에 사용되지 않은 다른 레이놀즈수를 사용하여 

난류 운동 에너지, 시간 평균한 생성, 소산을 생성했다. 그 결과 합성곱 신경망 모델은 

난류 특성을 적절하게 구현하는 것으로 나타났다. 결과적으로, 합성곱 신경망 모델은 시

간 평균한 유속 데이터를 사용하여 난류 특성을 예측하는 데 잠재력을 가졌으며, 복잡한 

난류 흐름 현상을 재현하는 적절한 기계학습 알고리즘을 선택하는 데 유용한 통찰력을 

제공한다. 

주요어: 난류 제트; 합성곱 신경망; 생성적 적대 신경망; 큰에디모사; 오픈폼 

학  번: 2017-24760 
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