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Abstract 

 

With the advancement of technology and the densification of modern society, 

infrastructure facilities are closely interconnected, thereby forming a vast 

infrastructure network. Seismic damage to individual structures can result in socio-

economic costs to the entire infrastructure network. To quantify the risk of networks 

and ensure efficient operation and maintenance, there is a need for network seismic 

reliability analysis. To this end, the seismic failure probability of structures should 

first be assessed, and then the network reliability is evaluated under different 

combinations of structural conditions. It is challenging to apply such network 

seismic reliability analysis for large-scale networks due to common source effects of 

earthquakes throughout the network, interdependent seismic demands, and It is 

challenging to apply such network seismic reliability analysis for large-scale 

networks. Monte Carlo Simulation (MCS) has been used to overcome these 

limitations, but still has several limitations, including inefficiency for low probability 

events and difficulty in probabilistic inference. 

This dissertation proposes three main methodologies for seismic network 

reliability analysis. The first approach introduces Bayesian networks (BNs) and 

junction trees (JTs) to evaluate network reliability and quantify the complexity. 

Based on the JT constructed from the dual representation of a given network, the 

reliability of directed acyclic networks can be evaluated by one-way message passing. 

Even for a cyclic network, the reliability can be accurately assessed using a set of 

equivalent directed acyclic subnetworks through cycle decomposition. Meanwhile, 

although it is common to quantify the complexity of network reliability analysis only 

by the number of components, the network topology also affects the actual 
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computational complexity. Numerical examples demonstrate that the proposed 

method can not only evaluate network reliability and component importance 

measures in real time, but also quantify the complexity using the maximum clique 

size in JT. 

Second, a centrality-based selective recursive decomposition algorithm (CS-

RDA) is proposed to identify critical components that play a key role in terms of 

connectivity based on the network centrality, thereby (1) simplifying the network for 

multi-scale approaches and (2) significantly increasing the convergence of recursive 

decomposition algorithm (RDA). Compared to other RDAs, CS-RDA can achieve 

the target bound width using significantly fewer subgraphs. The efficiency and 

accuracy of CS-RDA are demonstrated by numerical examples including large-scale 

highway bridge networks. The application examples also investigate the trade-off 

between efficiency and accuracy with respect to the degree of network simplification. 

Finally, a variance-reduction sampling method is proposed to enhance the 

scalability and efficiency of direct MCS. The binary limit-state function for network 

connectivity is reformulated into more informative continuous limit-state functions 

that quantify how close each sample is to the network failure event. The proposed 

functions facilitate the construction of intermediate relaxed failure events, thereby 

enabling network reliability analysis using subset simulation. Furthermore, a single 

implementation of subset simulation can generate the network reliability curve by 

configuring each intermediate failure domain as a network failure event under a 

given earthquake intensity. Numerical examples demonstrate that the proposed 

method can accurately and efficiently evaluate network reliability curves in terms of 

k-terminal reliability and maximum flow, as well as two-terminal reliability. 
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Chapter 1. Introduction 
 

 

 

 

1.1 Motivations 

 
As cities become denser and more complex than ever before, modern societies are 

highly dependent on the reliability of complex urban infrastructure networks such as 

transportation, electricity, and gas networks. These networks are critical to ensuring 

the safety of communities by providing necessary services for survival such as access 

to food, water, shelter, or medical care. The importance of their post-earthquake 

performance is even more pronounced. Damaged infrastructure networks cause 

disproportionate socio-economic losses, although they should be used to facilitate 

evacuation and relief activities. Therefore, to make appropriate decisions about 

infrastructure networks and to allocate available resources, it is essential to quickly 

evaluate the post-disaster network performance, such as network disconnection. 

To perform an accurate network reliability analysis (NRA) for an earthquake 

causing widespread damage, the interdependency between uncertainty demands 

reaching each site should be considered, along with the failure probabilities of 

components. This makes seismic reliability analysis of large-scale networks 

inherently time consuming. For example, the computational complexity of analyzing 

their interdependencies is given as 𝑂(𝑁2),  where 𝑁  denotes the number of 

components. Besides, NRA faces various obstacles including complex network 

topologies and the curse of dimensionality due to exponentially growing 

combinations of component states. The most prominent limitation is that the network 

state is not explicitly known by the combination of component states. In addition, 
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complex networks have extremely low failure probabilities due to their redundancy, 

which requires an enormous number of iterations to achieve a statistically significant 

level of convergence especially for sampling-based methods. 

 

1.2 Objectives 

 
Traditional methods for NRA can be classified into three categories: (1) analytical 

approaches; (2) decomposition approaches; and (3) sampling-based approaches. 

However, there are scalability problems in applying each method to large-scale 

infrastructure networks. To facilitate the seismic reliability analysis of large-scale 

networks, this dissertation proposes three main NRA methods, one for each category. 

Exact computation based on traditional analytical approaches has been limited 

to small networks or simple network topologies, such as series and parallel systems. 

In the first proposed method, Bayesian networks (BNs) and their junction trees (JTs) 

are used to assess the exact reliability of general networks. This JT-based NRA 

method is inspired by the fact that BNs are graphical models representing random 

variables and dependencies and can be used to perform probabilistic inference. The 

message-passing process, scheduled to update the network failure probability, 

specializes in complexity quantification using maximum clique size and 

probabilistic inference, as well as accurate NRA. 

The second method decomposes the target network into cut sets and link sets, 

thereby narrowing down the upper and lower bounds of network reliability. To 

effectively decompose large-scale networks into subnetworks, components that play 

a key role in network connectivity should be identified. For this purpose, a centrality-

based selective recursive decomposition algorithm (CS-RDA) is proposed by 
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combining betweenness centrality (BC) and selective recursive decomposition 

algorithm (S-RDA). In addition to node centrality for network decomposition, edge 

centrality is also used for cluster detection. The complexity of NRA can be greatly 

reduced by network simplification based on detected clusters, which greatly expands 

the size of networks that can be handled. 

Finally, the third method combines a variance-reduction sampling with NRA. 

Although various sampling approaches, including the crude MCS, have been 

adopted with high flexibility and scalability, they are highly inefficient for low-

failure events. To this end, the binary limit-state function for network connectivity 

analysis is reformulated into more informative continuous limit-state functions, 

quantifying how close each sample is to a network failure. These proposed functions 

allow subset simulation to be performed for NRA. Therefore, a single 

implementation of Hamiltonian Monte Carlo-based subset simulation (HMC-SS) 

can generate the network reliability curve by configuring each intermediate failure 

domain as a network failure event under an earthquake intensity. Table 1.1 provides 

an overview of the proposed methods. 

 

Table 1.1. Overview of proposed methods 

Method Approach Features 

Junction-tree-based 

analysis 
Analytical method 

- Exact NRA 

- Complexity quantification 

- Probabilistic inference 

Centrality-based 

selective recursive 

decomposition 

algorithm 

Decomposition-based 

method 

- Bounds of network reliability 

- Multi-scale NRA 

- Component importance measure 

Subset simulation- 

based analysis 
Sampling method 

- k-terminal reliability &  

k-out-of-N reliability analysis 

- Network reliability curves 
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1.3 Organization 

 
The organization of the dissertation is as follows. In Chapter 2, BNs and JT 

algorithms based on the dual representation of networks are combined for NRA. The 

constructed JT is used for probabilistic inference and complexity quantification as 

well as for NRA. Chapter 3 proposes a non-simulation-based network reliability 

algorithm, and uses centrality for clustering the network and identifying critical 

nodes belonging to min-cuts. BC of each component, combined with the failure 

probability, is proposed as a measure of component importance to replace the 

computationally expensive conditional probability-based importance measures 

(CPIMs). In Chapter 4, new continuous network limit-state functions are proposed 

to apply variance-reduction sampling methods to NRA. Owing to the flexibility of 

the sampling methods, the proposed algorithm can evaluate the reliability curve of 

networks through a single implementation of subset simulation. Finally, Chapter 5 

summarizes the developed methods and recommends topics for future research. 

Throughout this dissertation, networks or systems are modeled as graphs with 

nodes (also called vertices) and edges (also called links or arcs) for NRA. It should 

be noted that nodes and edges in the graph do not always correspond to node-type 

and line-type components, respectively, in the given network. Chapter 2 only 

considers the failure of line-type components, which are represented as nodes in the 

corresponding BN. In contrast, the nodes of the graphs in Chapter 3 represent both 

node-type components (e.g., stations and bridges) and line-type components (e.g., 

pipelines and roads). Their respective failure probabilities are modeled as 

neighboring edges in the graph. In Chapter 4, the graph can be modeled as the 

original network to use the proposed sampling-based algorithm.  
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Chapter 2. Network reliability analysis (NRA) and 

complexity quantification using Bayesian 

network and dual representation 
 

 

 

 

2.1 Introduction  

 
For the exact failure probability of a network consisting of 𝑁  arcs, one should 

perform the probabilistic analysis over 𝑁-dimensional probability spaces. Since the 

size of such a distribution grows exponentially with the number of components (𝑁), 

a complete quantification of these distributions becomes infeasible even for a 

moderate number of components (typically 𝑁 ≥ 30). To overcome such limitations, 

several sampling-based methods have been proposed. However, such an approach is 

computationally inefficient when the failure probability is low. Another limitation of 

the sampling-based approach is that a new analysis should be performed to update 

the failure probabilities based on available information or evidence. 

To overcome these limitations, an efficient NRA method is proposed where the 

failure event is defined as the disconnection of an OD pair of interest. The main idea 

is to separate the modeling of structural failures and functional failures of network 

components (i.e., edges and/or nodes) by employing a BN. Thereby, the analysis 

complexity depends not only on the network size (i.e., the number of component 

events), but also on the network topology. Once a BN model is established, one can 

utilize existing BN inference algorithms to carry out reliability analysis. 

The advantages of the proposed method are three-fold. First, the method can 

compute the exact failure probability of large-scale networks that were previously 
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considered to be too large for an exact analysis. Second, existing BN algorithms that 

are readily available in general-purpose software programs facilitate implementation. 

Finally, the method enables us to quantify the complexity of network topology from 

the perspective of reliability analysis, which remains as an unresolved task. 

In this chapter, only arc failures are considered. However, this is not necessarily 

a limitation since it is straightforward to modify the proposed method to consider 

node failures (Ball et al. 1995). In addition, the proposed method deals only with a 

given network that does not have a directed cycle, which is a fundamental 

requirement for BNs. This drawback also can be mitigated by preprocessing to 

decompose cycles. The cycle decomposition preprocessing still works for networks 

with multiple cycles. 

Chapter 2 is organized as follows. Section 2.2 summarizes the background 

theories of BN and JT and introduces the concept of dual representation of networks. 

Section 2.3 proposes a new NRA method based on BN and dual graphs, as well as 

cycle decomposition and network simplification preprocessing. In Section 2.4, the 

proposed method is applied to the NRA, and the network complexity is quantified in 

terms of the number of arcs in various network topologies. Then, a large-scale 

transportation network is analyzed as a numerical example to demonstrate the 

efficiency and usefulness of the proposed method in Section 2.5. Finally, the 

conclusions and future work are presented in Section 2.6. 
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2.2 Background 

 
2.2.1 Bayesian network (BN) 

 

A BN is one of the probabilistic graphical models (PGMs) that visualize directional 

dependence between random variables (r.v.’s). A BN is represented by a directed 

acyclic graph (DAG), 𝐺(𝑵, 𝑬), where 𝑵 and 𝑬 denote a set of nodes that stand 

for r.v.’s and a set of directed edges that represent statistical or causal dependencies 

between a node pair, respectively. When an edge points from node 𝑁𝑖 to node 𝑁𝑗 , 

they are called parent and child nodes, respectively. 

Once a BN graph is set up, each node 𝑁𝑖 ∈ 𝑵  needs to be quantified by a 

probability distribution being conditioned on its parent nodes 𝑃𝑎(𝑁𝑖),  i.e., 

𝑃(𝑁𝑖|𝑃𝑎(𝑁𝑖)). Then, the joint probability distribution 𝑃(𝑵), represented by a BN 

graph, becomes a product of the conditional probabilities of all nodes, i.e., 

𝑃(𝑵) = ∏ 𝑃(𝑁𝑖|𝑃𝑎(𝑁𝑖)).

𝑁𝑖∈𝑵

 (2.1) 

Eq. (2.1) shows how a BN factorizes a full joint distribution 𝑃(𝑵) into lower-

dimensional distributions 𝑃(𝑁𝑖|𝑃𝑎(𝑁𝑖)),  which can significantly reduce the 

memory required to store distributions. In other words, a BN enables efficient 

modeling of a high-dimensional probability distribution by visualizing conditional 

independence between r.v.’s. 

BNs have a few limitations. As the number of parent nodes increases, the 

memory required to store the conditional probability 𝑃(𝑁𝑖|𝑃𝑎(𝑁𝑖))  grows 

exponentially. In other words, given too many parent nodes, it becomes infeasible to 

quantify a BN. Another limitation is that a BN graph must not have any directed 

cycle, which limits the class of problems that can be handled by the BN methodology. 
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2.2.2 Junction tree (JT) algorithm 

 

A junction tree (JT) is a graphical method that enables a structured way for inferring 

a BN model. A BN graph can be transformed into a JT graph, for which multiple 

general-purpose algorithms are available for computing marginal probabilities 

(Barber 2012). Once a JT graph is constructed, one can perform probabilistic 

inference by passing messages (which are in the form of probability distributions) 

between the cliques in the tree. This message-passing process is equivalent to 

distributing and combining local probability information across a JT graph. After 

updating the message of all cliques, one can compute the marginal probability 

distribution of any r.v. by visiting a clique that the r.v. of interest belongs to. 

JT models are advantageous for inferring BN models especially because of 

accessible computer programs that can manage the whole analysis process of a JT 

model. To implement the proposed method, the BRML toolkit (Barber 2012) is used. 

 

2.2.3 Dual representation of networks 

 

A dual representation of a network converts arcs and nodes from a primal network. 

In other words, in a dual network, arcs in a primal network become nodes, and node 

pairs are connected if their corresponding arcs are directly connected in a primal 

network. Such alternative representation often reveals hidden properties of a network 

that do not appear apparent in a primal network (Porta et al. 2006). 

 

2.3 Proposed JT-based NRA method 

 
For a new NRA method, BN, JT, and dual graphs are utilized. Advantages of the 

proposed method are three-fold: (1) the method can evaluate the reliability of 
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networks whose exact solution was previously considered unattainable, (2) the 

computational complexity of an arbitrary network can be quantified from the 

perspective of NRA, and (3) it can be extended to compute probabilistic indices, e.g., 

CPIM. 

Figure 2.1 illustrates a summary of the proposed procedure. First, one simplifies 

a target network by eliminating components that are not connected to an OD pair of 

interest. Then, a BN graph is built by using a dual representation of the simplified 

network. Next, the BN graph is transformed into a JT graph, for which a message-

passing is scheduled; this can be done by employing one of the existing JT algorithms. 

The final JT model can be used for three purposes: (1) quantifying the computational 

complexity of NRA; (2) performing NRA; and (3) probabilistic inference. 
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Figure 2.1. Flowchart of proposed JT-based NRA method 
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2.3.1 Preprocessing 

 

The proposed method utilizes BN, and thus inherently cannot handle directed cyclic 

networks. To mitigate this limitation, this section proposes a scheme for 

decomposing the original cyclic network into multiple acyclic subnetworks. A cycle 

is defined as multiple arcs forming a closed polygon, so that the cycle is broken when 

one or more arcs fail. If all arcs in the cycle survive, the cycle can be considered as 

a single component. This means that a graph with a single cycle consisting of 𝑛 arcs 

can be decomposed into 𝑛 + 1 directed acyclic subgraphs. More specifically, the 

first subgraph represents the graph where one arc of the cycle fails, and the second 

represents the one where the first arc works but another arc fails. In the same way, 

one can create up to the 𝑛𝑡ℎ subgraph, where (𝑛 − 1) arcs work but the other is 

broken. Finally, the (𝑛 + 1)𝑡ℎ subgraph with all functional arcs is equivalent to a 

graph where the inflow and outflow arcs to the cycle are concentrated at a single 

vertex within the cycle. The reliability analysis for the network with 𝑛𝑐𝑦𝑐 cycles 

requires the following number of decomposed subgraphs: 

𝑛𝑠𝑢𝑏 =∏(𝑛𝑖 + 1),

𝑛𝑐𝑦𝑐

𝑖=1

 (2.2) 

where 𝑛𝑖  is the number of arcs in 𝑖𝑡ℎ  cycle. Then, network failure probability 

𝑃(𝑆) is computed using the decomposed subgraphs, i.e., 

𝑃(𝑆) = ∑[𝑃𝑗 ∙ 𝑃(𝑆
𝑗)]

𝑛𝑠𝑢𝑏

𝑗=1

, (2.3) 

where 𝑃𝑗  denotes the likelihood of subgraph 𝑗;  and 𝑃(𝑆𝑗)  is the failure 

probability of the 𝑗𝑡ℎ  subgraph. This scheme has the limitation that the 
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computational cost increases rapidly as the number of cycles increases as shown in 

Eq. (2.2). In such cases, prioritizing and analyzing the most likely subgraphs first 

can provide an approximation to the solution without having to analyze all the 

subgraphs. Figure 2.2 shows a graph 𝐺 with a single cycle consisting of three arcs, 

and the four subgraphs generated after cycle decomposition are shown in Figure 2.3. 

When dealing with large networks, a sizeable portion of the vertices may be 

unreachable from either the origin or destination. Such vertices unnecessarily 

complicate the NRA. Therefore, the proposed method first removes those vertices 

and their connected arcs that can be identified by any basic connectivity analysis 

algorithm. Numerical experiments show that this strategy significantly improves the 

efficiency of the proposed algorithm. 

Unlike cycle decomposition preprocessing, the network simplification is not 

mandatory. Even if this is omitted, unnecessary nodes can be eliminated through 

marginalization during the message-passing in a JT graph. However, with the 

proposed preprocessing, computation becomes much more efficient than with 

marginalization. Especially in random networks that often have many isolated 

components from an OD pair, this strategy enables solving problems that seem 

intractable in their original forms. 
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Figure 2.2. Example graph with a cycle 

 

 

 

  

  

Figure 2.3. Equivalent subgraphs after cycle decomposition (dashed: failed edges, 

bold black: survival edges, red: unknown) 
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2.3.2 Bayesian network (BN) 

 

2.3.2.1 BN construction using dual graph 

 

The method builds a BN, in which nodes represent components that can fail. Then, 

a directed edge is created for each pair of nodes whose corresponding arcs are 

connected in the target network. Since this study considers arc failures only, the 

resulting BN has a topology equivalent to the dual representation of a target network.  

For example, consider an example network in Figure 2.4, which consists of four 

vertices (blue circles) and five directed arcs (green arrows). The origin and 

destination vertices are denoted by O and D, respectively. Then, using the dual 

representation, the corresponding BN can be constructed as in Figure 2.5. In the BN, 

𝑇1, … , 𝑇𝑁 (in this case, 𝑁 = 5) are binary r.v.’s that take 1 if the head of arc 𝑖 is 

reachable from the origin vertex, and 0 otherwise. 𝑆 is a binary r.v. whose state 

becomes 1 if the destination vertex can be reached from the origin vertex, and 0, 

otherwise. While conditional probability tables (CPTs) of 𝑇𝑖 will be discussed in 

Section 2.3.2.3, the CPT of 𝑆 is constructed as Table 2.1 (Byun and Song 2021a). 

 

 

 

Figure 2.4. Example network with five arcs 
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Figure 2.5. BN graph constructed via dual representation of example network 

 

 

Table 2.1. CPT of 𝑆 given 𝑇1, … , 𝑇𝑁 

𝑃(𝑆|𝑇1, … , 𝑇𝑁) 𝑆 = 1 𝑆 = 0 

∑ 𝑇𝑖
𝑇𝑖∈𝑃𝑎(𝑆)

≥ 1 1 0 

∑ 𝑇𝑖
𝑇𝑖∈𝑃𝑎(𝑆)

= 0 0 1 

 

 

The proposed method is applicable only to maximum flow analysis (for which 

connectivity analysis is a special case). This is because the method achieves 

efficiency by exploiting conditional independence between arcs that are not directly 

connected; that is, the connectivity status of an arc (from an origin vertex) is 

independent to the status of other vertices when the status of directly connected arcs 

is known. For instance, in the BN graph in Figure 2.5, the connectivity of arc 5 to 

the origin vertex is independent to arcs 1 and 4, being conditioned on the connectivity 

of arcs 2 and 3. 

Such conditional independence may not hold for other types of analysis. For 

example, in a traffic simulation analysis, traffic is sequentially assigned by referring 

to traffic flows on both preceding and succeeding arcs. 
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2.3.2.2 Addition of component events 

 

The node 𝑇𝑖  represents a topology-based perspective of NRA. In addition, one 

needs to include r.v.’s to represent the states of component events, denoted as 𝑋𝑖 , 

i.e., 𝑋𝑖  represents whether arc 𝑖  is functional (𝑋𝑖 = 1)  or not (𝑋𝑖 = 0).  By 

construction, 𝑋𝑖  becomes a parent node of 𝑇𝑖  for each 𝑖 = 1,… ,𝑁.  Then, the 

CPT of 𝑇𝑖 can be constructed as shown in Table 2.2 if arc 𝑖 is directly connected 

to the origin node. If arc 𝑖  is reachable from the origin node but not directly 

connected to it, one can use the CPT in Table 2.3. 

In quantifying the CPTs of 𝑋𝑖,  there are largely two cases: (1) component 

events are statistically independent and (2) dependent. In the first case, one can 

simply add a node 𝑋𝑖 and an edge heading from 𝑇𝑖 to 𝑋𝑖 for each 𝑖. For instance, 

for the example network, a BN is constructed as shown in Figure 2.6. Then, each 

node 𝑋𝑖 , 𝑖 = 1,… ,𝑁, is assigned a CPT that represents 𝑃(𝑋𝑖). 

 

Table 2.2. CPT of 𝑇𝑖 given 𝑋𝑖 

𝑃(𝑇𝑖|𝑋𝑖) 𝑇𝑖 = 1 𝑇𝑖 = 0 

𝑋𝑖 = 1 1 0 

𝑋𝑖 = 0 0 1 

 

Table 2.3. CPT of 𝑇𝑖 given 𝑋𝑖 and 𝑇1, … , 𝑇𝑁 

𝑃(𝑇𝑖|𝑋𝑖 , 𝑇1, … , 𝑇𝑁) 𝑇𝑖 = 1 𝑇𝑖 = 0 

( ∑ 𝑇𝑘
𝑇𝑘∈𝑃𝑎(𝑇𝑖)

) ∙ 𝑋𝑖  ≥ 1 1 0 

∑ 𝑇𝑘
𝑇𝑘∈𝑃𝑎(𝑇𝑖)

= 0 0 1 

𝑋𝑖 = 0 0 1 
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On the other hand, in the second case, where nodes are connected to each other, 

the computation becomes complicated. For example, Figure 2.7 illustrates a 

modified BN graph of the example network. In this case, it is required to quantify a 

single joint CPT 𝑃(𝑋1, … , 𝑋𝑁)  over all nodes 𝑋1, … , 𝑋𝑁 ,  whose size increases 

exponentially with 𝑁. 

 

 

 

 

Figure 2.6. BN graph of example network with independent component events 

 

 

 

Figure 2.7. BN graph of example network with dependent component events 
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2.3.2.3 JT construction and message-passing scheduling 

 

For probabilistic inference, the BN graphs constructed in Section 2.3.2.2 can be used 

to build JT graphs. This can be done automatically using existing algorithms such as 

the maximum weight spanning tree algorithm (Barber 2012). Once a JT graph is 

constructed, message-passing can be scheduled, for which several algorithms can be 

used (Barber 2012). 

For example, the JT graph for the BN graph in Figure 2.6 can be constructed as 

Figure 2.8. To update the system probability 𝑃(𝑆) at the end, the message-passing 

is scheduled from low to high numbered cliques as 1 → 6,  2 → 6,  …, 8 → 9. 

Note that the yellow cliques come from the addition of component events, which 

only propagates the component failure probabilities and is irrelevant to the maximum 

clique size. This means that one can infer the complexity of the target NRA just by 

comparing the size of the largest clique in the JT composed of white cliques. In 

contrast, the JT graph corresponding to the BN in Figure 2.7 becomes a large single 

clique including all nodes 𝑋1, … , 𝑋𝑁 , 𝑇1, … , 𝑇𝑁 , and 𝑆 as shown in Figure 2.9.  

 

 

 

Figure 2.8. JT graph corresponding to Figure 2.6 
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Figure 2.9. JT graph corresponding to Figure 2.7 

 

 

 

2.4 Utilization of constructed JT graph 

 
2.4.1 Complexity quantification of NRA 

 

A constructed JT graph can be used to quantify the computational complexity of 

NRA by evaluating the sum of the memory required to store the CPTs of the cliques. 

Specifically, the memory demanded by a clique 𝐶𝑗 is the product of the number of 

states of the r.v.’s in 𝐶𝑗 . Therefore, the required memory is proportional to 2𝑁𝑗 

where 𝑁𝑗  is the number of r.v.’s in clique 𝐶𝑗.  For instance, the number of 

probabilities to be stored in Figure 2.8 is 22 × 5 + 23 × 4 = 52  as five cliques 

consist of two components and four cliques consist of three components. It is noted 

that the largest clique governs a required memory in general. 

Such utility is beneficial in that the quantification of network topology 

complexity remains inconclusive. While there are several metrics developed to this 

end (e.g., Valiant 1979; Ball 1986), the proposed approach provides a direct metric 

for NRA. Before performing NRA, one can use the proposed approach to measure 

the complexity of a given network topology and select an appropriate NRA method. 

For instance, if the given topology is too complicated to apply analytical methods, 

one can use a sampling method or advanced BN inference algorithms. 
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2.4.2 JT-based NRA 

 

Once a junction graph and a message-passing schedule are set up, NRA can be 

carried out by evaluating the marginal distribution of the system event, 𝑃(𝑆). This 

procedure is straightforward when component events are statistically independent 

(e.g., JT in Figure 2.8). 

On the other hand, when they are dependent (e.g., Figure 2.9), advanced 

inference strategies such as Rao-Blackwellized particles or conditioning (Koller and 

Friedman 2009; Byun and Song 2021b) can be employed to make the analysis 

affordable. The Rao-Blackwellized approach circumvents memory issues by 

applying sampling to a subset of r.v.’s while performing exact inference over other 

r.v.’s. Meanwhile, if there are common-cause variables (e.g., intensity of an 

earthquake), applying the conditioning technique to those variables can significantly 

reduce a required memory (Byun and Song 2021b). Even when there is no common-

source variable, one can artificially model such variables, e.g., Bensi et al. (2011) 

and Song and Kang (2009). 

The most notable thing about this method is that it can handle multiple states, 

not just the binary state of a component. By defining multiple states of a component, 

it can be easily extended to analyze the connectivity of the network as well as the 

maximum flow. 

 

2.4.3 Probabilistic inference 

 

Accurate and fast JT-based NRA using one-way message-passing can easily be 

extended to probabilistic inference, including CPIM (Song and Kang 2009). 

Scheduling message-passing in the other direction from the JT could be an option, 
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but simply iterating the message-passing proposed with the modified failure 

probabilities is sufficient owing to the fast computation time. More specifically, 

CPIM can be updated by the conditional network failure probability given one 

component fails, the component failure probability, and the original network failure 

probability as 

𝐶𝑃𝐼𝑀𝑖 = 𝑃(𝐸𝑖|𝐸𝑛𝑒𝑡) =
𝑃(𝐸𝑖𝐸𝑛𝑒𝑡)

𝑃(𝐸𝑛𝑒𝑡)
=
𝑃(𝐸𝑛𝑒𝑡|𝐸𝑖)𝑃(𝐸𝑖)

𝑃(𝐸𝑛𝑒𝑡)
. (2.4) 

 

2.5 Numerical examples 

 
2.5.1 Application I: typical network topologies 

 

This section investigates the computational complexity of four typical network 

topologies: line, grid, tree, and complete networks in Figure 2.10. Since the largest 

clique governs computational complexity, the largest clique size of the 

corresponding JT graphs is examined, along with the computable range (red area) on 

a personal computer with 16GB of RAM in Figure 2.11, where the number of arcs 

varies from 4 to 184. In the line and tree networks, the complexity is not affected by 

an increasing number of arcs. On the other hand, the maximum clique size in 

complete networks increases linearly, indicating that the memory demand increases 

exponentially. The maximum clique size of the grid structure also increases with the 

number of arcs, but at a much slower rate than the complete network. 
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(a) 

 

 

 

(b) 

 

 

 

(c) 

 

(d) 

 

Figure 2.10. Typical network topologies: (a) line, (b) grid, (c) tree, and (d) 

complete 

 

 

Figure 2.11. Maximum clique size of each topology with network size represented 

by number of arcs 
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2.5.2 Application II: random network with a cycle 

 

Consider the random network with a cycle mentioned in Figure 2.2, where the 

probability of any two vertices being connected is uniformly assumed to be 50%. 

The edges connecting vertices 3 and 4, 4 and 5, and 5 and 3 are defined by edge 1, 

edge 2, and edge 3, respectively. 𝐸1,  𝐸2,  and 𝐸3  denote the failure events of 

corresponding edge with probabilities of 0.115, 0.107, and 0.105, respectively. Based 

on this information, one can compute the likelihood of each subgraph in Figure 2.3, 

since the failure of every component is independent to each other. 

Although quantifying the complexity of NRA for the original network is 

impossible because one cannot build a BN, the generated acyclic subgraphs make it 

possible. Table 2.4 shows the computation time, quantified complexity in terms of 

maximum clique size, likelihoods, and failure probabilities for each subgraph. There 

is minor difference in the computation time, and in terms of the complexity of NRA, 

the more surviving edges there are, the larger the maximum clique size since inflows 

and outflows are concentrated on the vertices connected to surviving edges. In the 

end, Table 2.5 shows that the network reliability evaluated by their weighted sum is 

almost identical to the MCS result, but the computation time is about 1/1,000 of that 

by MCS. 
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Table 2.4. NRA results for subgraphs 

Subgraph Computation time 
Max. 

clique size 
Likelihood 𝑃𝑓 

{𝐺|𝐸1} 0.0714 s 5 0.115 2.97 × 10−3 

{𝐺|�̅�1𝐸2} 0.0710 s 5 0.095 6.10 × 10−3 

{𝐺|�̅�1�̅�2𝐸3} 0.0812 s 6 0.083 2.46 × 10−3 

{𝐺|�̅�1�̅�2�̅�3} 0.0713 s 7 0.707 2.11 × 10−3 

 

 

 

Table 2.5. Comparison of NRA results 

Methods Computation time 𝑃𝑓 

JT-based NRA 0.295 s 2.61 × 10−3 

MCS 337.8 s 2.67 × 10−3 

 

 

 

2.5.3 Application III: Shelby County water distribution network 

 

A real-world water distribution network is a prime example of directed networks, 

where most edges points in a single direction. Figure 2.12 shows the water 

distribution network in Shelby County, TN (Lim and Song 2012). It consists of 49 

vertices including storage tanks and pumping stations, and 71 directional arcs. The 

direction of some edges are modified from the original network, and the location of 

several storage tanks and pumping stations are set based on the network topology. 

Under emergency events, such as an earthquake, it is important to have a guaranteed 

water supply based on the connection from any storage tanks to pumping stations. 

Accordingly, the disconnection probability from one or more tanks to each pumping 

station is evaluated using the proposed JT-based NRA method. 

Prior to the probability evaluation, the maximum clique size in the constructed 
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JT for complexity quantification is given by 8, which is independent of the target 

pumping stations. The failure probability of each component is assumed to be 5%, 

and the water shut-off probability for each station, 𝑃(𝑆1),  𝑃(𝑆2),  and 𝑃(𝑆3), 

evaluated by the proposed method is shown in Table 2.6 with the computation time. 

Moreover, the results are compared with those by MCS. The evaluated network 

failure probabilities vary from 0.234% to 7.16%, and the proposed JT-based NRA 

evaluates them accurately within about 0.4 seconds regardless of the probability. In 

contrast, the efficiency of MCS is highly dependent on the target probability; the 

lower the probability, the longer MCS takes. On the problem with the highest 

computational cost, MCS takes about 369 seconds for a target coefficient of variance 

of 1%. This is about 1,000 times longer than that of the proposed method, and if the 

more robustly the components are designed, the worse the efficiency of the MCS. 

 

 

 

Figure 2.12. Water distribution network in Shelby County, TN, with three storage 

tanks and three pumping stations. 
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Table 2.6. NRA results on water distribution network in Shelby County, TN. 

Methods 𝑃(𝑆1) Time 𝑃(𝑆2) Time 𝑃(𝑆3) Time 

JT-based NRA 0.234% 0.382 s 7.16% 0.348 s 4.72% 0.292 s 

MCS 0.251% 369 s 7.29% 11.1 s 4.63% 19.4 s 

 

 

 

2.5.4 Application IV: EMA benchmark network 

 

The Eastern Massachusetts (EMA) highway network, modified from Zhang et al. 

(2018), consists of 129 directional arcs and 74 vertices, as shown in Figure 2.13(a). 

The failure probability of each arc, 𝑃(𝑋𝑖 = 0),  is set as 0.1 for 𝑖 = 1,… ,129. 

Using the network simplification strategy described in Section 2.3.1, the network is 

simplified to that in Figure 2.13(b), where the numbers of arcs and vertices are 

reduced to 85 and 47, respectively. 

Considering the independent component events 𝑋𝑖 , the maximum clique sizes 

of the JT graph with and without preprocessing are identical as 16. The result implies 

that, in this example, the preprocessing does not incur any difference in 

computational complexity while slightly shortening the time by reducing message-

passing between cliques. Table 2.7 compares the computation time, and the network 

failure probability estimates by the proposed method with and without preprocess, 

compared to the results of Monte Carlo simulation (MCS). The results confirm that 

the proposed method provides consistent estimates of the network failure probability, 

while taking only about 2.6~3.8% of the computation time taken by MCS. It is noted 

that the result computed by the proposed method is an exact solution. 
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(a) 

 

  

(b) 

 

Figure 2.13. EMA highway network: (a) original network, and (b) simplified 

network by preprocess 
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Table 2.7. Analysis results of EMA highway network 

Methods Computation time 𝑃𝑓 

MCS 19.99 s 2.952 % 

JT-based NRA 

(w/ preprocess) 
0.525 s 2.957 % 

JT-based NRA 

(w/o preprocess) 
0.757 s 2.957 % 

 

 

Figure 2.14 shows the results of probabilistic inference in terms of CPIM using 

Eq. (2.4); components with high CPIM are highlighted with red solid lines. Since the 

edges removed by network simplification (blue dashed lines) have no effect on the 

OD connectivity, CPIMs for these edges are identical to the initial failure probability 

of network. On the other hand, the remaining edges (red or black solid lines) are 

engaged in network reliability, and each CPIM varies depending on their locations, 

even though the individual failure probabilities are unified to 0.1. Table 2.8 shows 

the five edges with the highest CPIMs, i.e., those with the greatest impact on the 

network reliability, and their CPIMs. Figure 2.15 shows the maximum clique sizes 

for the networks in Sections 2.5.2 through 2.5.4. 

 

 

Table 2.8. Edges with highest CPIM 

Edge ID CPIM 

73 0.613 

85 0.424 

82 0.386 

63 0.195 

61 0.171 
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Figure 2.14. Results of probabilistic inference: edges with highest CPIM 
 

 

 

 

 
Figure 2.15. Comparison of application examples and typical topologies in terms of 

maximum network clique size. 
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Chapter 3. Multi-scale NRA using Centrality-based 

Selective Recursive Decomposition 

Algorithm 
 

 

 

 

3.1 Introduction  

 
Various non-simulation-based approaches such as first-order system reliability 

method approximations (Hohenbichler and Rackwitz 1982) have been developed. 

However, most of these methods are too complicated and inaccurate to analyze non-

series or non-parallel systems. To compute the failure probability of general systems, 

Song and Kang (2009) proposed the matrix-based system reliability method, which 

divides the sample space of the component events into mutually exclusive and 

collectively exhaustive events. Li and He (2002) proposed the recursive 

decomposition algorithm (RDA), which decomposes a network into subgraphs 

recursively to compute the network disconnection probability. RDA systematically 

identifies disjoint (mutually exclusive) link sets (i.e., sets of components whose joint 

survivals ensure the connectivity between predefined two terminal nodes) and cut 

sets (i.e., sets of network components whose joint failures cause the disconnection 

of the node pair), which allows us to compute the network reliability simply by 

summing up the probabilities of the identified sets. However, applying these non-

simulation-based methods to the reliability analysis of complex infrastructure 

networks may require unrealistic computational costs and an excessive amounts of 

computer memory. 

To obtain narrow bounds on the network reliability in a relatively short time, 
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Lim and Song (2012) proposed the selective recursive decomposition algorithm (S-

RDA) that preemptively identifies critical disjoint link sets and cut sets with the 

highest probability of network connection or disconnection in the RDA process, 

along with an efficient risk assessment framework considering the spatial correlation 

of ground motions. By prioritizing the identification of link sets and cut sets that 

make dominant contributions to the network reliability and failure probability, S-

RDA significantly enhances the convergence speed of the bounds, thus saving the 

computational cost in terms of time and memory. This improved efficiency has 

allowed for the analysis of larger infrastructure networks that traditional non-

simulation-based algorithms could not handle due to the excessive computational 

cost. However, despite the improved performance of S-RDA, there are still 

fundamental limitations in applying RDA to large infrastructure networks because 

the numbers of critical disjoint link sets and cut sets grow exponentially as the 

network size increases. In addition, as the number of components constituting each 

disjoint link set and cut set also increases, evaluating the joint probability in higher 

dimensions can become time-consuming and inaccurate. 

To alleviate this computational challenge, methods to identify a simplified 

network representation have been developed. Gómez et al. (2013) proposed a 

hierarchical network representation method for large-scale networks. Clusters are 

identified by the Markov clustering method based on the network topology to 

construct a simplified network consisting of the identified clusters and inter-cluster 

connections. To facilitate the network reliability analysis (NRA), the nodes 

connecting the clusters and inter-cluster connections were assumed to be 

indestructible. Lim et al. (2015) proposed a multi-scale approach using spectral 
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clustering algorithms to efficiently evaluate the network reliability by considering 

not only the failure probability of each node, but also the spatial correlations between 

component failures for accurate seismic risk assessment (Lim and Song 2012). 

However, the spectral clustering methods used in this approach have a critical 

disadvantage for large-scale networks: expensive computational cost. The 

computational cost problem is quite critical for dimensionality reduction 

computations in large and dense networks. 

This chapter aims to address the computational complexity problems in large-

scale network analysis by using the network centrality index. To this end, a network 

reliability method called centrality-based selective recursive decomposition 

algorithm (CS-RDA) is proposed (Lee and Song 2021). The critical nodes, i.e., those 

which are most likely to be included in the minimum cut set, are detected based on 

network centrality, and preferentially decomposed in each identified link set to find 

cut sets with higher probabilities, thereby promoting fast convergence of the 

algorithm. This chapter also introduces a network clustering algorithm based on the 

centrality concept to simplify large-scale networks that make non-simulation-based 

approaches intractable. After obtaining a simplified network representation, the 

reliability of each cluster and that of the simplified network are evaluated by the 

proposed CS-RDA. 

The remainder of this chapter is organized as follows. Section 3.2 describes how 

the uncertainty of seismic capacity and demand for each component and statistical 

dependencies are handled throughout the dissertation as well as in this chapter, along 

with the two existing non-simulation-based approaches that provide a foundation for 

CS-RDA: the original RDA and S-RDA. Section 3.3 provides an overview of 
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network centrality measures, and proposes two new algorithms based on the network 

centrality: (1) the edge-betweenness algorithm and (2) CS-RDA. The simplified 

network representation using super-components proposed by Lim et al. (2015), and 

how to handle the uncertainty in the seismic capacity and demand of each super-

component and the statistical dependencies between them are also discussed together. 

Finally, the applicability of the proposed algorithm is demonstrated and tested by the 

reliability analysis of numerical examples in Section 3.4 in which its performance is 

compared with that of existing algorithms. 

 

3.2 Background and related works 

 
3.2.1 Seismic risk assessment in infrastructure networks 

 

In assessing the failure probabilities of components, two major uncertainties need to 

be considered: (1) seismic demands throughout the network, and (2) seismic capacity 

of each component. These uncertainties of components form the basis for computing 

the network seismic reliability and component importance measures. 

 

3.2.1.1 Ground motion intensities and spatial correlation 

 

To predict ground motion intensities based on a seismic attenuation model, a ground 

motion prediction equation (GMPE) (Abrahamson and Youngs 1992; Joyner and 

Boore 1993; Goda and Hong 2008) is often used in the form 

ln𝐷𝑖(𝑇𝑛) = 𝑓(𝑀, 𝑅𝑖 , 𝝀𝑖, 𝑇𝑛) + 𝑋𝑖(𝑇𝑛), (3.1) 

where 𝐷𝑖(𝑇𝑛) is a ground-motion intensity measure at the 𝑖th site, such as peak 

ground acceleration (PGA), peak ground velocity (PGV), and spectral acceleration 
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(SA); 𝑓(𝑀, 𝑅𝑖, 𝝀𝑖, 𝑇𝑛) is the attenuation relation given in terms of the earthquake 

magnitude 𝑀,  the distance between the earthquake source and the 𝑖th  site, 𝑅𝑖 , 

and a set of other explanatory variables 𝝀𝑖; and 𝑋𝑖(𝑇𝑛) is the random residual at 

the 𝑖th  site with zero mean and standard deviation 𝜎𝑋.  The residual 𝑋𝑖(𝑇𝑛)  is 

described as the sum of 휂(𝑇𝑛)  and 휀𝑖(𝑇𝑛),  which are the inter- and intra-event 

residuals with zero means and standard deviations 𝜎𝜂(𝑇𝑛)  and 𝜎𝜀(𝑇𝑛), 

respectively. It is assumed that 휂(𝑇𝑛)  and 휀(𝑇𝑛)  are statistically independent of 

each other and both follow Gaussian distributions. As a result, the standard deviation 

of the residual 𝑋𝑖(𝑇𝑛) is derived as 𝜎𝑋(𝑇𝑛) = (𝜎𝜂
2(𝑇𝑛) + 𝜎𝜀

2(𝑇𝑛))

1

2
. Because only 

PGA or PGV is considered as the ground motion intensity measure 𝐷𝑖  in this 

dissertation, the natural period 𝑇𝑛 is omitted to simplify Eq. (3.1) as 

ln𝐷𝑖 = ln �̅�𝑖 + 휂 + 휀𝑖 , (3.2) 

where 𝐷𝑖  and �̅�𝑖  are the actual PGA or PGV demand at the 𝑖th  site and its 

prediction by the GMPE, respectively (Lim and Song 2012). 

To consider uncertainties in the spatial distribution of the seismic demands, 

researchers including Goda and Hong (2008) suggested models for correlation 

coefficient between residuals at the 𝑖th  and 𝑗th  site. The correlation coefficient 

between 휀𝑖 and 휀𝑗 is often expressed as a function of the distance Δ𝑖𝑗 between the 

two sites. From Eq. (3.2), the correlation between ln𝐷𝑖  and ln𝐷𝑗,  i.e., 

𝜌ln𝐷𝑖 ln𝐷𝑗(Δ𝑖𝑗), is derived in terms of characteristics of inter-event residual (𝜎𝜂), 

intra-event residual (𝜎𝜀), and distance Δ𝑖𝑗 , that is, 
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𝜌ln𝐷𝑖 ln𝐷𝑗(Δ𝑖𝑗) =
𝜎𝜂
2 + 𝜌𝜀𝑖𝜀𝑗(Δ𝑖𝑗)𝜎𝜀

2

𝜎𝜂
2 + 𝜎𝜀

2 . (3.3) 

The attenuation relation model in Boore and Akinseen (2008) is adopted to 

predict the natural logarithm of the PGA demand at the 𝑖th component as 

ln 𝑃𝐺𝐴̅̅ ̅̅ ̅̅
𝑖 = −0.5265 − 0.0115√𝑅𝑖

2 + 1.352

+ ln(𝑅𝑖
2 + 1.352) [−0.3303 + 0.0599(𝑀𝑤 − 4.5)], 

(3.4) 

where 𝑀𝑤 is the moment magnitude; and 𝑅𝑖 is the distance between the epicenter 

and the 𝑖th  site given in km. For calculating intra-event spatial correlation, the 

model proposed by Goda and Hong (2008) is used, which is given as follows: 

𝜌𝜀𝑖𝜀𝑗(Δ𝑖𝑗) = exp(−0.27Δ𝑖𝑗
0.40). (3.5) 

 

3.2.1.2 Probability and statistical dependence of failures 

 

Following HAZUS-MH (FEMA 2013), the uncertain limit-state capacity of the 𝑖th 

structure, 𝐶𝑖, is assumed to follow a lognormal distribution with parameters 𝐶�̅� and 

휁𝑖, which are the median and the lognormal standard deviation of 𝐶𝑖, respectively. 

The failure probability of the 𝑖th structure in a network is then computed as 

𝑃(𝐸𝑖) = 𝑃(𝐶𝑖 ≤ 𝐷𝑖), (3.6) 

where 𝐸𝑖 denotes the event that the 𝑖th structure is closed due to serious seismic 

damage. The seismic damage and the limit-state capacity are assumed to be 

statistically independent of each other. By substituting Eq. (3.2) into Eq. (3.6), and 

applying the natural logarithm, the failure probability is computed as 
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𝑃(𝐸𝑖) = 𝑃(ln𝐶𝑖 ≤ ln𝐷𝑖) = Φ

(

 
ln �̅�𝑖 − ln 𝐶�̅�

√휁𝑖
2 + 𝜎𝜂

2 + 𝜎𝜀
2

)

 , (3.7) 

where Φ(∙)  denotes the cumulative distribution function (CDF) of the standard 

Gaussian distribution. 

Next, the joint failure probability of the 𝑖th and 𝑗th structures is derived as 

𝑃(𝐸𝑖𝐸𝑗) = 𝑃[(ln 𝐶𝑖 ≤ ln𝐷𝑖) ∩ (ln𝐶𝑗 ≤ ln𝐷𝑗)] 

                 = Φ2(−𝛽𝑖, −𝛽𝑗, 𝜌𝑖𝑗),  

 

(3.8) 

where Φ2(∙,∙, 𝜌𝑖𝑗) denotes the bivariate normal CDF with zero means, unit standard 

deviations and the correlation coefficient 𝜌𝑖𝑗;  and 𝛽𝑖 = −Φ
−1[𝑃(𝐸𝑖)]  and 𝛽𝑗 =

−Φ−1[𝑃(𝐸𝑗)] are the generalized reliability indices, which can be computed from 

Eq. (3.7). The correlation coefficient between safety factors, 𝜌𝑖𝑗 is also derived as 

𝜌𝑖𝑗 =
휁𝑖휁𝑗𝛿𝑖𝑗 + (𝜎𝜂

2 + 𝜎𝜀
2)𝜌ln𝐷𝑖 ln𝐷𝑗(Δ𝑖𝑗)

√휁𝑖
2 + 𝜎𝜂

2 + 𝜎𝜀
2√휁𝑗

2 + 𝜎𝜂
2 + 𝜎𝜀

2

 

       =
휁𝑖휁𝑗𝛿𝑖𝑗 + 𝜎𝜂

2 + 𝜌𝜀𝑖𝜀𝑗(Δ𝑖𝑗)𝜎𝜀
2

√휁𝑖
2 + 𝜎𝜂

2 + 𝜎𝜀
2√휁𝑗

2 + 𝜎𝜂
2 + 𝜎𝜀

2

, 

 

 

(3.9) 

where 𝛿𝑖𝑗  is the Kronecker delta, which is 1 if 𝑖 = 𝑗,  and 0 otherwise. This 

derivation of the correlation coefficients not only dramatically shortens the 

computation time compared to the numerical methodology, but also ensures the 

accuracy. When the limit-state capacity follows a distribution other than lognormal 

distribution, the correlation coefficient 𝜌𝑖𝑗 should be calculated using a numerical 

method, which may decrease efficiency. Since the failure probability of each 

structure can be represented by the CDF of the standard Gaussian distribution, the 
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probability of the disjoint link set or cut set can be computed by a multivariate normal 

CDF algorithm such as a dimension reduction scheme (Kang and Song 2010) or 

quasi-Monte Carlo simulation (Genz 1992). 

 

3.2.2 Recursive decomposition algorithm (RDA) 

 

A network can be considered as a graph 𝐺 = (𝑵, 𝑬) where 𝑵 and 𝑬 denote the 

sets of the nodes and edges, respectively. In the graph, the set 𝑵 is composed of the 

nodes representing both node-type and line-type components, while the set 𝑬 

consists of edges connecting the node-type and line-type elements in the given 

network. In the numerical examples in Section 3.4, only the failures of node-type 

elements, e.g., bridges, are considered while the line-type elements are assumed to 

be undamaged. 

Consider a network consisting of nodes including two terminal nodes, which is 

represented by a graph 𝐺. After a natural or human-made disaster occurs, the node 

pair may remain connected or disconnected from each other. Suppose each 

component also has a binary state: operative or failed. To express the origin-

destination (OD) connectivity in terms of the states of components, a ‘structure 

function’ Ψ(𝐺)  and ‘node functions’ 𝑎𝑖 ,  𝑖 = 1,… , 𝑛,  i.e., Bernoulli random 

variables representing the connectivity of the graph 𝐺  and the state of the 𝑖th 

component respectively, are introduced as follows: 

Ψ(𝐺) = {
1, if OD pair is connected,
0, if OD pair is disconnected,

 
(3.10) 

𝑎𝑖 = {
1, if 𝑖th component operates,

0, if 𝑖th component fails.
 (3.11) 
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To represent the structure function Ψ(𝐺)  of a given network as a linear 

function of node functions 𝑎𝑖, the recursive decomposition algorithm (RDA) (Li 

and He 2002) identifies disjoint link sets and cut sets by the following procedure, 

which is illustrated in Figure 3.1. Since the structure function Ψ(𝐺)  will be 

decomposed according to the Boolean operation laws in RDA, it is difficult to deal 

with networks with components having more than two states without generalization 

of the formulation. 
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Figure 3.1. Flowchart of recursive decomposition algorithm 
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3.2.2.1 Step 1: Identification of shortest paths for network decomposition 

 

Consider the Bernoulli random variable for the shortest path between OD nodes 

𝐿1 = 𝑎1𝑎2…𝑎𝑛, which is equal to the product of node functions 𝑎𝑖 , 𝑖 = 1,… , 𝑛, 

constituting the shortest path. Then, the structure function Ψ(𝐺) is expressed as 

Ψ(𝐺) = 𝑎1𝑎2…𝑎𝑛Ψ(𝐺) + (𝑎1𝑎2…𝑎𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅Ψ(𝐺), (3.12) 

where �̅�𝑖 is equal to 1 − 𝑎𝑖. According to the Boolean operation laws, Eq. (3.12) 

is expanded as a linear function of node functions and structure functions of 

subgraphs in ascending order of component numbering as 

Ψ(𝐺) = 𝑎1𝑎2…𝑎𝑛Ψ(𝐺) + (𝑎1𝑎2…𝑎𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅Ψ(𝐺) 

            = 𝑎1𝑎2…𝑎𝑛 + �̅�1Ψ(𝐺1) + 𝑎1�̅�2Ψ(𝐺2) + ⋯

+ 𝑎1𝑎2⋯𝑎𝑛−1�̅�𝑛Ψ(𝐺𝑛), 

(3.13) 

where 𝐺𝑖 represents the subgraph of 𝐺, obtained by removing the 𝑖th node in the 

link set 𝐿1 from the original graph 𝐺. 

 

3.2.2.2 Step 2: Examination of OD connectivity in subgraphs 

 

Even if the reliability of each component is known, the structure function Ψ(𝐺) 

cannot be accurately assessed due to structure functions of some subgraphs on the 

right-hand side in Eq. (3.13). To define all these terms as the product of node 

functions or a constant, it is necessary to investigate whether the OD pair is 

connected in each subgraph. The selection of subgraphs to explore the OD 

connectivity follows a breadth-first search (BFS) (Ahuza et al. 1993; Cormen et al. 

2009) ordering, which gives a priority to the existing subgraphs. If the OD pair is 

disconnected in the subgraph 𝐺𝑖 ,  Ψ(𝐺𝑖)  will be zero and its coefficient 
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𝑎1𝑎2⋯𝑎𝑖−1�̅�𝑖 will be classified as the Bernoulli random variable for a disjoint cut 

set 𝐶𝑛𝑐+1, where 𝑛𝑐 represents the number of disjoint cut sets found so far. On the 

contrary, if the OD pair is still connected in the subgraph 𝐺𝑖, the subgraph 𝐺𝑖 will 

be saved separately, and in Step 1 of the subsequent iteration, the shortest path will 

be searched among the stored subgraphs. 

 

3.2.2.3 Step 3: Calculating bounds on network reliability 

 

In a simple network, one can identify all disjoint link sets and cut sets, and evaluate 

the exact network reliability 𝑅 or network failure probability 𝑃𝑓 using all disjoint 

link sets or cut sets, respectively. If all disjoint link sets between the OD node 𝐿𝑖, 

𝑖 = 1,… ,𝑁𝐿 , are identified, the network reliability 𝑅, i.e., the probability that the 

structure function Ψ(𝐺) is equal to 1, is calculated as 

𝑅 = 𝑃[Ψ(𝐺) = 1] = 𝑃 (⋃𝐿𝑖

𝑁𝐿

𝑖=1

) =∑𝑃(𝐿𝑖)

𝑁𝐿

𝑖=1

. (3.14) 

On the other hand, the network failure probability 𝑃𝑓  can be obtained by 

summing up the probabilities of all disjoint cut sets 𝐶𝑖, 𝑖 = 1,… ,𝑁𝐶 , i.e. 

𝑃𝑓 = 𝑃[Ψ(𝐺) = 0] = 𝑃(⋃𝐶𝑖

𝑁𝐶

𝑖=1

) =∑𝑃(𝐶𝑖).

𝑁𝐶

𝑖=1

 (3.15) 

In a large-scale complex network, however, many disjoint link sets and cut sets 

could make it intractable to assess the exact network reliability or failure probability 

due to the exorbitant memory or computation time required. In this case, one can 

alternatively compute the bounds on the network reliability or failure probability 

using a set of the identified disjoint link sets and cut sets, i.e., 
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∑𝑃(𝐿𝑖)

𝑛𝐿

𝑖=1

≤ 𝑅 ≤ 1 −∑𝑃(𝐶𝑖)

𝑛𝐶

𝑖=1

, (3.16a) 

∑𝑃(𝐶𝑖)

𝑛𝐶

𝑖=1

≤ 𝑃𝑓 ≤ 1 −∑𝑃(𝐿𝑖)

𝑛𝐿

𝑖=1

, (3.16b) 

where 𝑛𝐿  and 𝑛𝑐  are the numbers of identified disjoint link sets and cut sets, 

respectively. From either Eq. (3.16a) or (3.16b), the bound width Δ𝐵  can be 

computed as 

Δ𝐵 = 1 −∑𝑃(𝐿𝑖)

𝑛𝐿

𝑖=1

−∑𝑃(𝐶𝑖)

𝑛𝐶

𝑖=1

. (3.17) 

Steps 1 to 3 are repeated until the bound width Δ𝐵 becomes smaller than the 

target width. During iterations, the Bernoulli random variable for shortest path 

between the OD pair within the subgraph 𝐺𝑘  is represented as 𝐿′ = 𝑎1
′𝑎2
′ …𝑎𝑚

′ , 

and its structure function Ψ(𝐺𝑘) is expanded recursively in Step 1, i.e., 

Ψ(𝐺𝑘) = 𝑎1
′𝑎2
′ …𝑎𝑚

′ + �̅�1
′Ψ(𝐺1,𝑘) + 𝑎1

′ �̅�2
′Ψ(𝐺2,𝑘) + ⋯

+ 𝑎1
′𝑎2
′ ⋯𝑎𝑚−1

′ �̅�𝑚
′ Ψ(𝐺𝑚,𝑘), 

(3.18) 

where 𝐺𝑖,𝑘 represents the second-order subgraph of 𝐺, obtained by removing the 

𝑖th  node from the subgraph 𝐺𝑘 .  The constant term (𝑎1𝑎2⋯𝑎𝑘−1�̅�𝑘) ×

(𝑎1
′𝑎2
′ …𝑎𝑚

′ )  newly created by substituting Eq. (3.18) into Eq. (3.13) is the 

Bernoulli random variable for a disjoint link set 𝐿𝑛𝐿+1, where 𝑛𝐿 represents the 

number of disjoint link sets discovered until the current iteration. 

 
3.2.3 Selective RDA (S-RDA) 

 

To achieve faster convergence of the bounds in Eq. (3.16a) or (3.16b), selective RDA 

(S-RDA) was proposed to make improvements in two aspects: (1) selective 
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identification of critical disjoint link sets and cut sets, and (2) decomposition of 

subgraphs indicating the highest likelihood (Lim and Song 2012). These 

improvements are applied to Step 1 of the original RDA as described below. The 

methods of examining the OD connectivity and calculating the bounds on the 

network reliability are the same as those described in Steps 2 and 3. 

On the other hand, there is a difference in Step 1: S-RDA identifies the most 

reliable paths instead of the shortest paths. Because each reliable path has a higher 

probability than the shortest path, S-RDA can reduce the bound width more rapidly 

than the original RDA. To find the link sets with the highest probability of survival, 

a modified Dijkstra’s algorithm (Ahuza et al. 1993; Cormen et al. 2009) is utilized 

instead of BFS. For quick calculations in Step 1, statistical dependence between 

component failures is ignored. That is, the reliability of each link set is estimated as 

the product of the reliability estimates of the components in the link set while 

identifying the paths. The statistical dependence is fully considered when calculating 

the bounds in Step 3. 

There is another difference in the selection of a subgraph to decompose. In the 

original RDA, subgraphs are selected following the component ordering choice. In 

contrast, S-RDA decomposes subgraphs with the highest likelihood of survival or 

failure first. This facilitates the convergence of the bounds computed by S-RDA. 

 

3.3 Centrality-based network simplification and NRA 

 
Despite the merits and technical advances discussed above, the applicability of RDA 

and S-RDA are still limited due to the large computation time and memory required 

for complex infrastructure networks. To further expedite the convergence of the 
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bounds, this chapter proposes a centrality-based selective RDA (CS-RDA), which 

singles out the critical nodes whose failures can cause the disconnection between the 

OD pair from network topology viewpoint. This section first reviews network 

centrality measures and introduces CS-RDA for efficient network reliability analysis 

based on BC. In addition, for an efficient clustering-based multi-scale approach, a 

network simplification method is proposed based on edge-centrality. 

 

3.3.1 Network centrality measures 

 

Evaluating the impact of each component on network performance is essential in 

analysis and management of a network. Various network centrality indices have been 

developed to quantify node importance in a network and modified to investigate 

influential people in social networks, key nodes on the Internet, and super-spreaders 

of diseases (Özgür et al. 2008). In this section, three major network centrality indices 

are reviewed: (1) degree centrality, (2) closeness centrality, and (3) betweenness 

centrality. 

First, degree centrality of a node is defined as the number of its neighboring 

nodes (Nieminen 1974). The definition is based on the presumption that the more 

nodes are connected to a given node, the greater impact the node tends to make on 

the whole network. Using the adjacency matrix 𝐴, whose element 𝐴𝑖𝑗 takes 1 if 

there is an edge from node 𝑖 to node 𝑗, and 0 otherwise, the degree centrality of the 

𝑖th node, 𝐶𝐷(𝑖), is calculated as 

𝐶𝐷(𝑖) =∑𝐴𝑖𝑗
𝑗≠𝑖

. (3.19) 

Second, closeness centrality of a node is defined as the average distance of the 
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shortest paths to the other nodes in the network (Beauchamp 1965). On this account, 

the distances of all edges in the network should be defined to find the shortest path. 

It is noted that the directivity of edges can lead to completely different results. For 

example, a famous person in a social network tends to have high closeness centrality 

from incoming edges, but low closeness centrality from outgoing edges. The 

closeness centrality of the 𝑖th node, 𝐶𝐶(𝑖), is defined as 

𝐶𝐶(𝑖) =
𝑁𝑛

∑ 𝑑𝑖𝑗𝑗≠𝑖
, (3.20) 

where 𝑁𝑛  is the number of nodes in the given network; and 𝑑𝑖𝑗  represents the 

shortest distance between node 𝑖  and node  𝑗,  which will be replaced by the 

probability of the most reliable path between the two nodes later in this chapter. 

Finally, betweenness centrality quantifies the importance of a given node in 

terms of the proportion of shortest paths passing through the node (Freeman 1977). 

While the closeness centrality concentrates on the lengths of the shortest paths 

starting from or ending at a given node, betweenness centrality focuses on how often 

the shortest paths between all OD pairs in the network go through the node. In detail, 

the betweenness centrality of the 𝑖th node, 𝐶𝐵(𝑖), is given as 

𝐶𝐵(𝑖) =∑∑
𝑣𝑖(𝑠, 𝑡)

𝑣(𝑠, 𝑡)
𝑡≠𝑠,𝑖𝑠≠𝑖

, (3.21) 

where 𝑣(𝑠, 𝑡)  is the number of shortest paths between node 𝑠  and node 𝑡;  and 

𝑣𝑖(𝑠, 𝑡) is the number of those passing through node 𝑖. Later in this chapter, 𝑣(𝑠, 𝑡) 

and 𝑣𝑖(𝑠, 𝑡) will be substituted with the number of the most reliable paths between 

node 𝑠 and node 𝑡, and the number of those via node 𝑖, respectively. 
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3.3.2 Network simplification using edge-centrality 

 

As the number of disjoint sets within the network increases exponentially, the 

accuracy of calculating the probability of each disjoint set may get worse because 

the computational errors caused by the high-dimensional calculation may 

accumulate. 

To overcome the computational limitation, the idea of network simplification 

via clustering has been explored (Gómez et al. 2013; Lim et al. 2015). The network 

simplification methods aim to minimize the computational complexity of network 

analysis while preserving information on each component and network topology. 

However, for large-size networks, simplification by a spectral clustering algorithm 

(Lim et al. 2015) still entails a prominent level of computational complexity, which 

makes the approach infeasible. To overcome the computational limitation of the 

existing method at a slight expense of accuracy, the following section proposes a 

clustering algorithm using edge-betweenness. A network modelling framework is 

also introduced to describe the simplified network (Lim et al. 2015) in terms of the 

clusters identified by the proposed algorithm. 

 

3.3.2.1 Edge-betweenness algorithm 

 
Modularity is one of the network descriptors often used for measuring the goodness 

of a given clustering choice (Newman and Girvan 2004). To be more specific, 

modularity 𝑄 is defined as the normalized difference between the actual and the 

expected numbers of the edges connecting a pair of nodes both of which are currently 

located in the same cluster, i.e., 
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𝑄 =
1

2𝑚
∑∑{[𝐴𝑖𝑗 − 2𝑚𝑝𝑖𝑝𝑗]𝛿𝑐𝑖𝑐𝑗}

 

𝑗

,

 

𝑖

 (3.22) 

where 𝑚 =
1

2
∑ ∑ 𝐴𝑖𝑗𝑗𝑖   is the total number of the edges in the network; 𝑝𝑖 

represents the likelihood that an edge is connected to the 𝑖th node after the network 

edges are re-distributed randomly while keeping the degree centralities of individual 

nodes and total number of edges unchanged; and 𝛿𝑐𝑖𝑐𝑗 is the Kronecker delta, which 

gives 1 if both the 𝑖th and 𝑗th nodes belong to the same cluster, and 0 otherwise. 

Since 𝑝𝑖  is derived as 𝐶𝐷(𝑖) 2𝑚⁄ ,  the modularity can be described in terms of 

degree centralities as 

𝑄 =
1

2𝑚
∑∑{[𝐴𝑖𝑗 −

𝐶𝐷(𝑖)𝐶𝐷(𝑗)

2𝑚
] 𝛿𝑐𝑖𝑐𝑗}

 

𝑗

.

 

𝑖

 (3.23) 

Although it is NP-hard to find the network clustering choice maximizing the 

modularity (Brandes et al. 2007), it is known that a heuristic edge-betweenness 

algorithm, called the Girvan-Newman algorithm, can provide remarkable and swift 

solutions (Newman and Girvan 2004). The edge-betweenness algorithm detects 

clusters in a network by progressively removing the edges with the highest edge-

betweenness, whose definition is almost identical to the BC used in Section 3.3.1. 

The edge-betweenness aims to measure how often an edge, instead of a node, lies on 

the shortest path between each pair of nodes in the network. The detected edges with 

the highest edge-betweenness are removed until the modularity 𝑄  has the 

maximum value. At this time, the edges that have been eliminated but cannot detach 

clusters are restored. This algorithm can be further extended to the multi-scale 

approach by deeming each detected cluster as a super-node in the upper level of 

clustering. 
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(a) 

 

 

  

(b) 

 

Figure 3.2. Hypothetical network example: (a) original topology, and (b) clusters 

identified using edge-betweenness algorithm  
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Table 3.1 Modularity and number of clusters by edge-betweenness algorithm 

No. of eliminated edges 0 5 10 15 20 25 

Modularity 0 0.476 0.642 0.675 0.631 0.578 

No. of clusters 1 2 4 6 8 10 

 

 

For example, let us consider a hypothetical network in Figure 3.2(a), which has 

42 nodes (red dots) and 85 bi-directional edges. The modularity of the network shows 

the maximum value when the network is divided into 6 clusters (gray facets in black 

dashed lines in Figure 3.2(b)) by the edge-betweenness algorithm. Table 3.1 shows 

that the more edges are removed, the more clusters are formed, whereas the 

modularity tends to decrease as more than 15 edges are removed. 

 

3.3.2.2 Representation of simplified network 

 
Using the identified clusters, one can obtain a simplified representation of the 

network in terms of super-components such as inter-cluster edges, inter-cluster nodes, 

and super-edges (Lim et al. 2015). Inter-cluster edges refer to those connecting 

different clusters (thick red lines in Figure 3.3) while inter-cluster nodes are the those 

connected with each other by inter-cluster edges (blue dots in Figure 3.3). Super-

edges (thick gray lines in Figure 3.3) are virtual edges that stand for connectivity 

between inter-cluster nodes within the same cluster. The reliability of a super-edge 

is defined as the probability that the corresponding inter-cluster nodes lose their 

connectivity, while the reliability of an inter-cluster node is the same as that of the 

corresponding actual node. To represent the simplified network following a ‘node-

weighted’ network modelling approach that constructs a graph with only node 

weights, the virtual ‘edge node’ is introduced at the midpoint of each super-edge 

(Lim and Song 2012). There are three methods of evaluating the reliability of super-
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edges depending on the number of OD nodes included in the cluster, which were 

detailed by Lim et al. (2015). 

 

 

 

Figure 3.3. Representation of simplified hypothetical network using super-

components 

 

 

3.3.3 Centrality-based selective RDA (CS-RDA) 

 
This section proposes a new selective recursive decomposition algorithm based on 

the network centrality concept. Whereas S-RDA prioritizes paths and subgraphs in 

terms of their potential contributions to the reduction of the probability bound width 

Δ𝐵 in Eq. (3.17), the proposed algorithm termed ‘centrality-based selective RDA’ 

(CS-RDA) additionally focuses on critical nodes whose removals would make 

maximum effects on the OD connectivity from the network topology viewpoint. In 

detail, the critical nodes are defined as those whose removals would minimize the 
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number of branches in the following network decomposition process, e.g., the OD 

nodes themselves. The algorithm identifies nodes with higher centrality as critical 

ones based on the observations that the removal of nodes with high centrality 

accelerates network disconnection compared to the removals of randomly selected 

nodes (Petreska et al. 2010). To incorporate the proposed idea of using network 

centrality into the algorithm, the following process is added to Step 1 of S-RDA: the 

components in the identified critical disjoint link set are sorted in descending order 

of network centrality before decomposing them as shown in Eq. (3.21). This process 

enables the algorithm to decompose the graph into the smaller number of link sets 

and cut sets having high probabilities. The performance of CS-RDA naturally relies 

on the choice of the network centrality. 

One can compare the performance of CS-RDA with different types of centrality 

in network examples. In addition to the three centralities introduced in Section 3.3.1, 

the commonly used ‘eigenvector centrality’ and ‘PageRank centrality’ are also tested. 

Assuming that all components in the hypothetical network in Figures 3.2 and 3.3 

have a failure probability of 3%, and that the correlation coefficients between them 

are 5%, the bounds of network failure probability and bound widths for each 

centrality are shown in Figure 3.4(a) and (b). Table 3.2 shows the number of disjoint 

sets for each centrality required to achieve the bound width of 0.1%. CS-RDA with 

BC converges most efficiently across all the network centralities, and this behavior 

is commonly observed in other networks (Cetinay et al. 2018). 

However, CS-RDA might have a critical disadvantage for networks in which 

the centralities of the OD nodes are extremely low. For example, Figure 3.5 shows 

the Eastern Massachusetts highway network (Zhang et al. 2018), and the colors 
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represent BC of each component. It is noted that BCs of the OD nodes are exactly 

zero. In this case, the failures of the OD nodes related directly to the disconnection 

of the OD pair can be found later in the process, which makes the performance of 

CS-RDA identical to that of S-RDA or even worse. To overcome this, one can assign 

virtual nodes to each OD node. Connections among the virtual nodes that are 

introduced to the same OD node increase the centralities of the OD nodes while 

connections between virtual nodes connected to different OD nodes increase 

centralities of nodes included in the most reliable path. The process to determine the 

number of virtual nodes involves a trade-off between the computational cost of 

network centrality and the improvement in efficiency of network reliability analysis. 

The optimal number of virtual nodes depends on the network size and the location 

of the OD pair. In this algorithm, the diameter of the network, i.e., the maximum of 

the shortest path lengths, is set to the number of virtual nodes based on the experience 

of the authors. The link sets and cut sets identified by the abovementioned process 

lead to a smaller number of components having higher probabilities than those by S-

RDA, which make the convergence of the bounds faster. 

 

 

 

 

 

 

 

 

 

Table 3.2. Modularity and number of clusters by edge-betweenness algorithm 

Centrality S-RDA 
Between

ness 
Closeness Degree 

Eigen-

vector 
Pagerank 

Required 

disjoint sets 
231,174 48,244 51,684 53,407 56,306 81,818 
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(a) 

 

(b) 

 

Figure 3.4. Performance of CS-RDA with different centralities: (a) bound widths, 

and (b) bounds on the network failure. 
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Figure 3.5. Example of OD nodes with low BC: Eastern Massachusetts highway 

network 
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For details of CS-RDA, let us consider a simple network reliability assessment 

example in Figure 3.6, where the surviving nodes and failed nodes in (sub)graphs 

are represented by thick gray circles and orange dotted circles, respectively. The 

analysis examines the connectivity between the origin node 1 and destination node 

5. It is assumed that the reliability of node 3 is 0.8, the reliability of the other nodes 

is 0.9, and their failure events are statistically independent of each other. In the 

original RDA and S-RDA, the Bernoulli random variable for the most reliable path 

𝐿1  between the OD pair is represented as the product of the node functions 

constituting the path, that is, 𝐿1 = 𝑎1𝑎2𝑎4𝑎5 (see Figure 3.6(a)). On the other hand, 

as shown in Figure 3.6(b), CS-RDA rearranges the node functions in 𝐿1  in the 

descending order of BC so that 𝐿1 = 𝑎1𝑎5𝑎4𝑎2 (after 4 virtual nodes are attached 

to each of the OD nodes following the aforementioned recommendation regarding 

the number of virtual nodes). The re-ordering affects the network decomposition in 

Eq. (3.13). Figure 3.6 shows four subgraphs originating from the identified link set 

𝐿1  for each approach. In the results by CS-RDA, the first three subgraphs are 

identified as disjoint cut sets, and only the last one is recognized as a disjoint link set 

𝐿2 = 𝑎1𝑎5𝑎4�̅�2𝑎3.  The subsequent decomposition of the path 𝐿2  leads to a 

disjoint cut set 𝐶4 = 𝑎1𝑎5𝑎4�̅�2�̅�3.  The algorithm is then terminated because no 

more paths are available. As a result, the network reliability is calculated as 0.714 

according to Eq. (3.14), i.e., by summing the probabilities of the identified link sets 

𝐿1 and 𝐿2. While existing RDAs enumerate at least 8 disjoint sets (Figure 3.6(a)), 

CS-RDA can complete the network decomposition by 6 disjoint sets (Figure 3.6(b)). 

This disparity in the number of disjoint sets increases exponentially as the network 

size increases. 
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(a) 

 
 

 

(b) 

 

Figure 3.6. Decomposition of an example network by (a) existing RDAs, and (b) 

CS-RDA 
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A simplified network identified by a multi-scale analysis approach has a 

significantly reduced number of components compared to the original network. On 

the other hand, the approach may introduce a new challenge in calculating the failure 

probability and the statistical dependence of super-components, especially super-

edges within the simplified network. When the 𝑖th and 𝑗th super-components are 

inter-cluster nodes, the failure probabilities 𝑃(𝐸𝑖) and 𝑃(𝐸𝑗), and the correlation 

coefficient 𝜌𝑖𝑗 are equal to those in Eqs. (3.7) and (3.9), respectively. However, if 

either or both are super-edges, one should find the correlation coefficient 𝜌𝑖𝑗 

describing the statistical dependence between two super-components numerically, 

which may result in extremely complex and time-consuming calculations. 

The failure probability of the 𝑖th  super-edge is assessed using CS-RDA by 

setting the nodes at both ends of the super-edge to the OD pair and expressed as 

𝑃(𝐸𝑖) = P(⋃𝐶𝑘
𝐸𝑖

𝑛𝐶
𝑖

𝑘=1

) =∑𝑃(𝐶𝑘
𝐸𝑖)

𝑛𝐶
𝑖

𝑘=1

, (3.24) 

where 𝐶𝑘
𝐸𝑖  is the 𝑘th  disjoint cut set in the 𝑖th  super-edge, 𝑘 = 1,… , 𝑛𝐶

𝑖 ;  and 

𝑛𝐶
𝑖  the total number of the identified disjoint cut sets in the 𝑖th super-edge. Suppose 

𝐸𝑖  and 𝐸𝑗  represent the failure events of the 𝑖th  and 𝑗th  super-components, 

respectively. The joint failure probability 𝑃(𝐸𝑖𝐸𝑗) can be computed as 

𝑃(𝐸𝑖𝐸𝑗) = P [(⋃𝐶𝑘
𝐸𝑖

𝑛𝐶
𝑖

𝑘=1

)⋂(⋃𝐶𝑙
𝐸𝑗

𝑛𝐶
𝑗

𝑙=1

)] =∑∑𝑃(𝐶𝑘
𝐸𝑖𝐶𝑙

𝐸𝑗)

𝑛𝐶
𝑗

𝑙=1

𝑛𝐶
𝑖

𝑘=1

, (3.25) 

where 𝐶𝑘
𝐸𝑖 and 𝐶𝑙

𝐸𝑗
 are the 𝑘th and 𝑙th disjoint cut set identified by CS-RDA in 

the 𝑖th  and 𝑗th  super-components (Lim et al. 2015), respectively, 𝑘 = 1,… , 𝑛𝐶
𝑖  
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and 𝑙 = 1,… , 𝑛𝐶
𝑗
. 

However, in large-scale networks, the probability 𝑃(𝐸𝑖𝐸𝑗)  obtained by Eq. 

(3.25) is inaccurate and time-consuming due to the extremely large 𝑛𝐶
𝑖  and 𝑛𝐶

𝑗
. To 

enhance the efficiency and accuracy of the calculation above, 𝑃(𝐸𝑖) and 𝑃(𝐸𝑖𝐸𝑗) 

in Eqs. (3.24) and (3.25) respectively can be calculated by sampling sufficient 

component failure events that satisfy Eqs. (3.7) and (3.9). Then, one can find the 

correlation coefficient 𝜌𝑖𝑗  numerically by substituting 𝑃(𝐸𝑖)  and 𝑃(𝐸𝑖𝐸𝑗) 

obtained by the sampling into the following equation: 

𝑃(𝐸𝑖𝐸𝑗) = Φ(−𝛽𝑖)Φ(−𝛽𝑗) + ∫ 𝜑2(−𝛽𝑖, −𝛽𝑗, 𝜌)

𝜌𝑖𝑗

0

𝑑𝜌, (3.26) 

where 𝜑2(∙,∙, 𝜌) is the joint probability density function of the bi-variate standard 

Gaussian distribution with a correlation coefficient 𝜌.  While the number of 

iterations of Eq. (3.26) increases in proportion to the square of the number of super-

components, the individual computation time is proportional to the cluster diameter, 

resulting in a trade-off between the calculation of correlations and the reliability 

analysis of the simplified network. In general, the rate of increase in the number of 

super-components exceeds that of cluster diameters, which implies that the higher 

the analysis scale is, the shorter the total computation time becomes. 
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3.3.4 Conditional probability-based importance measure 

 
In efforts to establish an efficient and cost-effective maintenance planning for 

infrastructure networks, it is helpful to identify components making critical 

contributions to network reliability based on topological importance and component 

failure probabilities (i.e., structural vulnerability). To quantify and rank the 

contributions of components to a network, various component importance measures 

(Henley and Kumamoto 1981; Der Kiureghian et al. 2007; Song and Kang 2009) 

have been proposed, and CPIM is utilized in this section. The network failure 

probability 𝑃(𝐸𝑛𝑒𝑡) and joint probability 𝑃(𝐸𝑖𝐸𝑛𝑒𝑡) in Eq. (2.4) can be computed 

by ∑ 𝑃(𝐶𝑗)
𝑛𝐶
𝑗=1  and ∑ 𝑃(𝐸𝑖𝐶𝑗)

𝑛𝐶
𝑗=1  from Eq. (3.15) through CS-RDA, respectively, 

under the assumption that the bound width of CS-RDA is negligible (Lim and Song 

2012). 

 

3.4 Numerical examples 
 

Three numerical examples are presented to demonstrate the proposed CS-RDA and 

multi-scale analysis approach based on the edge-betweenness algorithm: the 

hypothetical network shown in Figure 3.5, a highway bridge network in San Jose, 

CA (modified from Nabian and Meidani (2018)), and a highway bridge network in 

San Diego, CA. The computation times reported hereinafter are based on the use of 

MATLAB® on a personal computer with AMD Ryzen 5 3600 3.60 GHz CPU and 

16GB RAM. 

To compare the performance of existing algorithms with that of the proposed 

algorithm, the number of disjoint sets and the computation time required to achieve 

the target bound width are presented. Subsequently, it is discussed how the 
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computational cost and accuracy of the analysis change as the scale increases with 

the edge-betweenness algorithm, compared to the results of the uni-scale approach. 

Note that uni-scale analysis refers to original-scale network analysis, and networks 

that have been simplified once and twice are defined as bi-scale and tri-scale 

networks, respectively. Finally, the most critical components using the CPIMs are 

explored and compared to those with high BC to discuss the implications of network 

centrality. 

Because of the lack of information on bridge types, the standard deviations of 

the inter- and intra-event residuals are assumed to be 0.265 and 0.502, respectively. 

The parameters of limit-state capacities 𝐶𝑖  for all the nodes in the hypothetical 

network and all the bridges in the highway bridge network in San Jose, CA are 

assumed to be 0.85 for the median PGA, 𝐶�̅� (g), and 0.69 for the standard deviation 

of the natural logarithm, 휁𝑖. For the bridges in the highway bridge network in San 

Diego, CA, it is assumed to be 0.77 for 𝐶�̅�, and 0.65 for 휁𝑖. 

 

3.4.1 Example I: Hypothetical example 
 

The hypothetical network example illustrated in Figures 3.2 and 3.3 has 42 nodes 

and 85 bi-directional edges (42+85×2=212 network components). Figure 3.7 shows 

the OD nodes and the epicenter location along with BC of each node (using colors); 

a red-color node has a higher BC while a blue node has a lower BC. The earthquake 

scenario considered has a moment magnitude 𝑀𝑤 =  7.0. This network is relatively 

small, so the multi-scale analysis is not applied. 
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Figure 3.7. Hypothetical network example and BC of nodes 
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(a) 

 
(b) 

Figure 3.8. Bounds on the network reliability for the hypothetical network in terms 

of (a) number of disjoint sets, and (b) computation time 
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Table 3.3. Analysis results for hypothetical network example (𝑀𝑤 = 7.0) 

Methods 𝑃𝑓 # of disjoint sets Computational time 

MCS 0.0510 - 169 s 

Original RDA 0.0507~0.0517 1,895 44.0 s 

S-RDA 0.0505~0.0515 530 10.6 s 

CS-RDA 0.0506~0.0516 220 4.32 s 

 

 

Figure 3.8 compares the bounds on the network reliability obtained by the 

original RDA (Li and He 2002), S-RDA (Lim and Song 2012) and CS-RDA (Lee 

and Song 2021), in terms of the number of identified disjoint link sets and cut sets, 

and the computation time required to achieve the target bound width of 0.1%. Table 

3.3 provides the results in more detail. The number of the identified disjoint sets 

needed for CS-RDA is only 220, which is only about 11.72% and 41.89% of that for 

the original RDA and S-RDA, respectively. The computation time ratios of CS-RDA 

to the original RDA and S-RDA are similar to the disjoint set ratios, respectively, 

which means that the computation time relies only on the number of disjoint sets. 

Even with this remarkably reduced computation time and memory for CS-RDA, the 

upper and lower bounds on the reliability of the given hypothetical network are close 

to those using existing algorithms, as well as to the value 𝑅 = 0.9490 obtained by 

MCS. 

 

 

 

Table 3.4. CPIMs, BC, and failiure probabilities of nodes with highest CPIMs in 

hypothetical network example 

Comp ID CPIM CPIM Rank BC BC Rank 𝑃𝑓 𝑃𝑓 Rank 

8 0.274 1 0.308 1 0.047 5 

42 0.271 2 0.305 3 0.014 35 

22 0.266 3 0.209 10 0.065 4 

5 0.258 4 0.307 2 0.044 7 

Time 92.5 s 0.085 s 0.0025 s 
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Table 3.4 shows the values and ranks of the CPIMs, BC (virtual nodes are still 

assigned to OD pairs), and failure probabilities (𝑃𝑓) for the nodes with the highest 

CPIMs. While the highest CPIMs are not explained by the corresponding failure 

probabilities, their high BC complements the blind spot. The CPIMs of the three 

nodes (5, 8, 42) with the highest BC are ranked 1st, 2nd, and 4th. It is noteworthy 

that node 22 with relatively low BC has a high failure probability. This indicates that 

CPIM can consider both topological importance and vulnerability of components in 

quantifying the relative contributions of components to the network failure event. 

Table 3.4 also reports the computation time required to obtain the measures. 

For calculating the CPIM of each node, the probabilities of the intersection of 

the disjoint cut sets are found by CS-RDA, and the failure event of each node should 

be calculated as described in Section 3.3.1. The total computational cost was 92.5 

seconds. Meanwhile, it took 0.0850 seconds and 0.0025 seconds to measure the BC 

and failure probabilities of all nodes, respectively. For a relatively quick 

identification of important components from network topology viewpoint, one can 

use BC. If one wishes to evaluate the importance of components accurately 

considering both effects, CPIMs can be computed by CS-RDA. 

 

3.4.2 Example II: San Jose highway bridge network 
 

The San Jose highway bridge network in Figure 3.9 has 125 bridges (blue circles) 

and 153 bi-directional edges (solid lines), i.e., a total of 125+153×2=431 network 

components, which is a modified version of the network in Nabian and Meidani 

(2018). An earthquake event with the moment magnitude 𝑀𝑤 =  7.0 is chosen, and 

the latitude and longitude of the epicenter shown at the lower left corner in Figure 
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3.9 are N35.24° and W122.05° respectively. The OD nodes (red stars) are located 

in the northwest and southeast. When the number of components in the target 

network exceeds 100, performing NRA with CS-RDA alone becomes too 

computationally intensive, resulting in memory and computation time issues. To 

address this issue, the edge-betweenness algorithm identifies nine clusters for the bi-

scale analysis and two clusters for the tri-scale analysis respectively, as shown in 

Figures 3.10(a) and (b). The simplified network in the bi-scale analysis has 38 nodes 

and 70 bi-directional edges (38+70×2=178 network components), and that in the tri-

scale analysis has only 14 nodes and 19 bi-directional edges (14+19×2=52 network 

components). 
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Figure 3.9. Highway bridge network in San Jose, CA 
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(a) 

 
  

(b) 

 

Figure 3.10. Hierarchical representation of San Jose highway bridge network 

example for (a) bi-scale, and (b) tri-scale analysis 
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(a) 

 
  

(b) 

 

Figure 3.11. (a) Bounds on network reliability for San Jose highway bridge  

network, and (b) bound widths in terms of number of disjoint sets 
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The results in Figure 3.11 demonstrate the efficiency of CS-RDA in terms of 

the number of identified disjoint link sets and cut sets through comparison with the 

original RDA and S-RDA. The bounds by CS-RDA converge to the target bound 

width of 3% by 113,694 disjoint sets, which are only 3.82% and 19.26% of those by 

the original RDA and S-RDA, respectively.  

Table 3.5 summarizes the results of uni-, bi-, and tri-scale network reliability 

analyses using CS-RDA. Unlike the uni-scale approach, the bi- and tri-scale 

approaches require additional data preprocessing, which consists of the edge- 

betweenness algorithm and the probabilistic analysis to evaluate the failure 

probability and statistical dependency of super-components. Despite the relatively 

long preprocessing time, the total computation time decreases significantly at the 

higher scale, while there is little loss in terms of accuracy. The analysis time 

excluding the preprocessing was only 6,085 seconds and 1.37 seconds for the bi- and 

tri-scale approaches, respectively, which are only 1/34 and 1/150,000 of the 

computation time of the uni-scale approach. However, the trade-off for increased 

efficiency is reduced accuracy. As the scale increases, the network reliability is 

overestimated compared to the MCS results. This is due to the overestimation of the 

reliability of super-links during network simplification, which requires additional 

procedures to compensate. 

Table 3.6 shows the CPIMs, BC, and failure probabilities of some nodes in the 

highway bridge network. Since the network is distributed over a large area, the 

failure probabilities of bridges vary depending on the location. Consequently, nodes 

with high CPIMs (nodes 10, 74, 81) depend on the failure probabilities of bridges, 

unlike Example 1. Only node 1 has the same ranks in terms of CPIM and BC. 
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Table 3.5. Analysis results for San Jose highway bridge network (𝑀𝑤 = 7.0) 

Scale 𝑃𝑓 
# of disjoint 

sets 

Preprocessing 

time 

Total computation 

time 

MCS 0.0891 - - 280 s 

Uni-scale 0.0905~0.1005 991,603 - 206,374 s 

Bi-scale 0.0925~0.1025 115,933 240 s 6,375 s 

Tri-scale 0.0935~0.0951 66 46.7 s 48.1 s 

 

 

Table 3.6. CPIMs, BC, and failiure probabilities of nodes with highest CPIMs in 

San Jose highway bridge network 

Comp ID CPIM CPIM Rank BC BC Rank 𝑃𝑓 𝑃𝑓 Rank 

1 0.297 1 0.304 1 0.032 88 

81 0.279 2 0.022 92 0.119 1 

10 0.273 3 0.048 53 0.113 2 

74 0.265 4 0.037 66 0.108 3 

Time 21,740 s 0.197 s 0.0027 s 

 

 

3.4.3 Example III: San Diego highway bridge network 
 

Figure 3.12 shows the San Diego highway bridge network that consists of 317 

bridges (blue circles), 339 bi-directional actual edges (solid lines), and four 

subjunctive edges (red dashed lines). The network thus features a total of 1,003 

(=317+343×2) network components. The Southwest of San Diego and five intercity 

highways connected by subjunctive edges are set as the OD nodes (red stars). An 

earthquake event with the moment magnitude 𝑀𝑤 =  6.0 is chosen, and the latitude 

and longitude of the epicenter are respectively N32.65° and W117.25°. 

Because of the complexity of the network, for the uni-scale analysis, only CS-

RDA analysis is performed, and the results are compared with those by the bi- and 

tri-scales analyses. The edge-betweenness algorithm identifies 16 clusters for the bi-

scale analysis and two clusters for the tri-scale analysis. Most of their inter-cluster 
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nodes are located at the intersections (junctions) or at the center of the edges as 

shown in Figures 3.13(a) and (b). The simplified network of the bi-scale analysis has 

91 nodes and 117 bi-directional edges (91+117×2=325 network components), and 

that of the tri-scale analysis has only 12 nodes and 15 bi-directional edges 

(12+15×2=42 network components). 
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Figure 3.12. Highway bridge network in San Diego, CA 
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(a) 

 
(b) 

 

Figure 3.13. Hierarchical representation of San Diego highway bridge network 

example for (a) bi-scale, and (b) tri-scale analysis 
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Table 3.7 shows that the bound width by the uni-scale analysis does not decrease 

below 2.40% even after a week-long calculation. By contrast, the multi-scale 

analysis provides converged estimate within minutes or seconds. This is because the 

dimension of each disjoint cut set or link set grows rapidly as the number of nodes 

constituting each disjoint set increases in this large network. In calculating the high-

dimensional multivariate normal CDF, the calculation time increases exponentially 

regardless of the methodology used, such as the dimensionality reduction system or 

the quasi-Monte Carlo simulation, while the accuracy of the calculated values is poor. 

On the other hand, despite the preprocessing time for clustering as required in 

Example 2, the reliability assessment of a large-scale network is possible in a shorter 

time. The results at higher scales inevitably contain errors caused by the network 

simplification; the results of the MCS are outside the bounds on the tri-scale in Table 

3.7. This is due to the overestimation of the reliability of clusters containing sources 

or terminals proposed by Lim et al. (2015), which can be corrected by downward 

standardization. 

Table 3.8 shows that three nodes with the highest CPIMs (node 59, 60, and 69) 

have high BCs because of their topological characteristics. On the other hand, node 

44 is identified as an important component because of its high failure probability, 

caused by its proximity to the epicenter. 

 

 

Table 3.7. Analysis results for San Diego highway bridge network (𝑀𝑤 = 6.0) 

Scale 𝑃𝑓 
# of disjoint 

sets 

Preprocessing 

time 

Total computation 

time 

MCS 0.0634 - - 441 s 

Uni-scale 0.0455~0.0695 1,000,000 - More than a week 

Bi-scale 0.0566~0.0660 714 129.8 s 199.3 s 

Tri-scale 0.0564~0.0618 49 83.6 s 84.8 s 
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Table 3.8. CPIMs, BC, and failiure probabilities of nodes with highest CPIMs in 

San Diego highway bridge network 

Comp ID CPIM CPIM Rank BC BC Rank 𝑃𝑓 𝑃𝑓 Rank 

69 0.271 1 0.362 3 0.017 104 

59 0.142 2 0.353 6 0.025 53 

60 0.138 3 0.313 14 0.025 56 

44 0.135 4 0.027 177 0.034 1 

Time 14,845 s 0.0750 s 0.0019 s 
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Chapter 4. Efficient Monte Carlo simulation for 

seismic reliability curves of networks 
 

 

 

 

4.1 Introduction 

 
To quantify the seismic vulnerabilities of infrastructure networks, it is imperative to 

evaluate network reliability based on information about individual components, 

network topology, and seismic hazards. However, the seismic reliability analysis of 

large-scale networks can be computationally demanding or even infeasible; the 

computational cost typically grows exponentially with the number of components. 

Various sampling-based approaches have been proposed to analyze network 

reliability owing to their ease of implementation and high flexibility, but the direct 

MCS is extremely inefficient for rare events, such as the loss of connectivity in large 

infrastructure networks. 

To overcome the limitations of direct MCS, an efficient variance-reduction 

sampling approach is proposed for seismic reliability analysis of infrastructure 

networks. The main idea is to reformulate the binary limit-state function into a more 

informative continuous function. The reformulated continuous limit-state function 

encodes the same failure domain as its binary counterpart, but at the same time, it 

implicitly provides information about the location of the failure domain. The latter 

property is crucial for formulating efficient variance-reduction sampling strategies.  

The proposed limit-state functions quantify how close each sample is to the 

network failure, thereby facilitating the construction of intermediate relaxed failure 

events. A single implementation of Hamiltonian Monte Carlo-based subset 
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simulation (HMC-SS) can generate the network reliability curve by configuring each 

intermediate failure domain as a network failure event under a given earthquake 

intensity. This chapter contributes to the proposal of a method that streamlines MCS 

for assessing the seismic reliability of infrastructure networks, thereby enabling us 

to address large-scale networks that were untreatable with existing sampling-based 

approaches. In numerical examples, the efficiency and accuracy of the proposed 

method are demonstrated by seismic reliability analyses of hypothetical and realistic 

large-scale transportation networks. 

 

4.2 Background 

 
4.2.1 Failure domain of network reliability 

 

An infrastructure network consists of line-type components such as pipelines and 

roads, and node-type components such as stations and bridges. The network can be 

represented as a graph 𝐺(𝑵,𝑬), where 𝑵 is defined as the set of nodes (or vertices) 

that represents both types of components, and 𝑬 is defined as the set of links (or 

edges) that conceptually expresses the connectivity between nodes. Therefore, one 

can assume that all links in set 𝑬 are perfectly reliable, and this assumption does 

not cause any error in the accurate assessment of network reliability. For networks 

with link failures, one can make the abovementioned assumption still valid by 

converting them to equivalent networks with node failures in polynomial time 

(Colbourn 1987; Ball et al. 1995). 

Let 𝑧𝑖 = ln 𝐶𝑖 − ln𝐷𝑖  be the logarithmic safety margin for the 𝑖𝑡ℎ 

component. 𝒛 = [𝑧1, … , 𝑧𝑁] is defined as the network state vector (i.e., a vector of 

the logarithmic safety margins of components), where 𝑁 = |𝑵| is the number of 
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nodes (i.e., the total number of node-type and line-type components) in the target 

network. Then, the network reliability problem is performed by evaluating the failure 

probability 𝑃𝑓 via multi-dimensional integration as 

𝑃𝑓 = ∫𝑓(𝒛)𝑑𝒛

 

ℱ

= ∫𝕝(𝐺(𝒛) ≤ 0)𝑓(𝒛)𝑑𝒛

 

ℝ𝑁

, (4.1) 

where ℱ = {𝒛|𝐺(𝒛) ≤ 0} is the failure domain for the network reliability problem, 

such as connectivity reliability analysis (e.g., two-terminal, 𝑘-terminal, all-terminal 

reliability) and capacity reliability analysis (Nabian and Meidani 2018); 𝐺(𝒛) ∈ ℝ 

is the network limit-state function; 𝑓(𝒛)  is the joint probability density function 

(PDF) of the network state vector 𝒛  through seismic reliability analysis with 

correlation coefficients. 

For two-terminal reliability analysis between the predefined OD node pair, the 

network limit-state function in Eq. (4.1) is replaced with the following binary 

network reliability function, 𝐺OD
Bi (𝒛), as 

𝐺OD
Bi (𝒛) = {

1, if OD pair is connected in 𝒛,
0, otherwise.

 (4.2) 

𝐺OD
Bi (𝒛) is completely dependent on the network topology. For example, in a 

series system, only the joint survival of all components guarantees connectivity. In 

contrast, a parallel system fails only when all components do not work. Therefore, 

the failure domains of 𝑁 -component series and parallel systems, ℱseries  and 

ℱparallel, are respectively defined as 

ℱseries = {𝐺series
Bi (𝒛) = 0} =⋃{𝐵𝑖 = 1}

𝑁

𝑖=1

= { min
𝑖=1,…,𝑁

𝑧𝑖 ≤ 0}, (4.3) 
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ℱparallel = {𝐺parallel
Bi (𝒛) = 0} =⋂{𝐵𝑖 = 1}

𝑁

𝑖=1

= { max
𝑖=1,…,𝑁

𝑧𝑖 ≤ 0}. (4.4) 

where 𝐺series
Bi   and 𝐺parallel

Bi   represent binary network reliability functions with 

series and parallel systems between an OD pair, respectively; and 𝐵𝑖  is the 

Bernoulli variable representing the failure event of component 𝑖 as 

𝐵𝑖 = 𝕝(𝐶𝑖 ≤ 𝐷𝑖) = 𝕝(𝑧𝑖 ≤ 0), (4.5) 

where 𝕝(∙) denotes a binary indicator function that returns 1 if the given inequality 

or equation holds, and 0 otherwise. 

For example, let us consider a two-component series system and a two-

component parallel system. According to Eqs. (4.3) and (4.4), the failure domains 

for each system, ℱseries and ℱparallel, are illustrated in red in Figures 4.1(a) and 

(b), respectively. The exact failure probabilities of each system 𝑃𝑓 is evaluated by 

integrating 𝑓(𝒛) over each failure domain ℱ. 

 

 

 

 

 

 

 

Figure 4.1. Failure domains of (a) two-component series system, and (b) two-

component parallel system 
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Series and parallel systems can be considered as networks with a link set (i.e., 

a set of nodes forming a path between the OD pair) and a cut set (i.e., a set of nodes 

whose simultaneous failure results in the disconnection of the OD pair), respectively. 

In other words, by generalizing Eqs. (4.3) and (4.4) respectively, the failure domain 

of a general network, ℱ, is given in two ways (Song and Der Kiureghian 2003) as 

ℱ =⋂⋃{𝐵𝑖 = 1}

𝑖∈𝐿𝑘𝑘

= {max
𝑘
min
𝑖∈𝐿𝑘

𝑧𝑖 ≤ 0}, (4.6) 

ℱ =⋃⋂{𝐵𝑖 = 1}

𝑖∈𝐶𝑙𝑙

= {min
𝑙
max
𝑖∈𝐶𝑙

𝑧𝑖 ≤ 0} , (4.7) 

where 𝐿𝑘 and 𝐶𝑙 denote the 𝑘-th link set and the 𝑙-th cut set, respectively. 

Once all the cut sets or link sets in a network with 𝑁 components are known, 

the exact network reliability can be evaluated by combining Eq. (4.1) with Eq. (4.6) 

or (4.7). To this end, various non-simulation-based methods have been developed to 

identify all link sets (Abraham 1979; Aziz et al. 1993) or cut sets (Brown 1971; 

Rosenthal 1979), and recursive decomposition algorithms (Li and He 2001; Lim and 

Song 2012; Lim et al. 2015; Lee and Song 2021) use both sets to compute the upper 

and lower bounds of the network reliability. However, network reliability problems 

are NP-hard (Rosenthal 1977; Colbourn 1987), i.e., there is no polynomial-time 

algorithm for general networks, thereby making the accurate reliability analysis of 

large-scale networks infeasible. More specifically, the main challenges of NRA 

include: (1) failure domain exploration in 2𝑁 combinations of component states, 

and (2) fast and accurate computation in the high-dimensional space ℝ𝑁. 

  



 

 

 
81 

 

4.2.2 Review of subset simulation 

 

Subset simulation (Au and Beck 2001) is one of the most widely-used variance-

reduction sampling approaches. The main idea of subset simulation is to represent 

the failure domain of interest, ℱ,  as nested intermediate failure domains, ℱ1 ⊃

ℱ2 ⊃ ⋯ ⊃ ℱ𝑀 = ℱ.  The failure probability 𝑃𝑓  is expressed as a product of the 

conditional probabilities 𝑃(ℱ𝑖|ℱ𝑖−1), which are the transition probabilities to the 

next intermediate failure domain at each step. 

𝑃𝑓 =∏𝑃(ℱ𝑖|ℱ𝑖−1)

𝑀

𝑖=1

, (4.8) 

where ℱ0 = ℝ
𝑁  denotes the initial failure domain. By setting each conditional 

probability identically to a constant 𝑝0, the intermediate failure domains ℱ𝑖, 𝑖 =

1,… ,𝑀 − 1,  are adaptively determined based on the 𝑝0  quantile in ℱ𝑖−1  by 

sampling. Au and Beck (2001) suggested setting 𝑝0 = 0.1, and Zuev et al. (2012) 

demonstrated that 𝑝0 ∈ [0.1,0.3] shows similar performance. 

While generating independent identically distributed samples from the initial 

failure domain is easily accomplished by the crude MCS, it becomes a completely 

different and considerably challenging problem in the intermediate failure domains 

ℱ𝑖−1 for 𝑖 ≥ 2. To this end, various Markov chain Monte Carlo (MCMC) methods 

such as Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970) have 

been utilized. Using MCMC methods, each conditional probability 𝑃(ℱ𝑖|ℱ𝑖−1), 

and the failure probability of interest �̂�𝑓,𝑆𝑆, can be estimated as follows, respectively. 
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𝑃(ℱ𝑖|ℱ𝑖−1) = ∫𝑓(𝒛|ℱ𝑖−1)𝑑𝒛

 

ℱ𝑖

≅
1

𝑛
∑𝕝(𝒛(𝑗) ∈ ℱ𝑖|ℱ𝑖−1)

𝑛

𝑗=1

, (4.9) 

�̂�𝑓,𝑆𝑆 =∏𝑃(ℱ𝑖|ℱ𝑖−1)

𝑀

𝑖=1

≅
𝑝0
𝑀−1

𝑛
∑𝕝(𝒛(𝑗) ∈ ℱ|ℱ𝑀−1)

𝑛

𝑗=1

, (4.10) 

where 𝑛 is the number of samples required for each intermediate failure domain; 

and 𝒛(𝑗)  is the 𝑗𝑡ℎ  sample vector. Subset simulation is particularly efficient for 

extremely sparse events with 𝑃𝑓 ≪ 1; whereas the crude MCS requires 𝑛𝑀𝐶𝑆 ∝
1

𝑃𝑓
 

simulations, the number of samples required for a single implementation of subset 

simulation is theoretically given as 𝑛𝑆𝑆 ≔ 𝑀 ∙ 𝑛 ∝ |log𝑃𝑓| (Au and Beck 2001). 

MCMC methods have a critical limitation; the samples from MCMC methods 

are identically distributed under the stationary state of the Markov chain, but 

interdependent. Although autocorrelation between samples cannot be eliminated 

perfectly, Hamiltonian Monte Carlo based subset simulation (HMC-SS) (Wang et al. 

2019, Chen et al. 2022) is adopted to streamline the MCMC process in this chapter. 

The bias due to autocorrelation of samples and adaptive intermediate failure domains 

is asymptotically unbiased by more than 50 iterations (Au and Beck 2001). 

 

4.3 Subset simulation for NRA 

 
In NRA, connectivity is typically defined by a binary limit-state function as shown 

in Eq. (4.2). The property poses a major obstacle to combining subset simulation and 

network reliability analysis. The 𝑝0 quantile of the samples is chosen to be either 0 

or 1 in each intermediate domain due to the jump discontinuity of binary limit-state 

functions. Therefore, subset simulation cannot narrow down the failure domain and 
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consequently does not work at all. 

 
4.3.1 Informative continuous network limit-state functions 

 

4.3.1.1 Most reliable path-based function 

 

For subset simulation, the existing binary network reliability function, 𝐺OD
Bi (𝒛), is 

reformulate into a more physics-informed continuous function. More specifically, 

the continuous network reliability function, 𝐺OD
RP(𝒛),  is defined in terms of the 

vulnerability of the most reliable path between an OD pair as 

𝐺OD
RP(𝒛) = {

min
𝑖∈𝐑𝐏

𝑧𝑖

𝑛RP
, if OD pair is connected in 𝒛,

0, otherwise,

 (4.11) 

where 𝑹𝑷 is a node set in the most reliable path between the OD pair consisting of 

the survival nodes in 𝒛; and 𝑛RP is the number of nodes on 𝑹𝑷. Eq (4.11) stems 

from the intuition that the detected 𝑹𝑷 is no longer available when any component 

fails (i.e., when any 𝑧𝑖 for 𝑖 ∈ 𝑹𝑷 becomes negative), and that the larger 𝑛RP, the 

more likely components are to fail even for the same minimum 𝑧 value. To expedite 

reliability-based pathfinding, all component failure events are assumed to be 

independent. Then, Dijkstra’s algorithm (Ahuja et al. 1993; Cormen et al. 2009) is 

used to find the most reliable path 𝑹𝑷  between OD nodes that maximizes the 

product of the survival probabilities of nodes obtained from Eq (3.7), i.e., the sum of 

the log-scaled survival probabilities. Figures 4.2(a) and (b) show the proposed 

continuous network reliability functions for the two-component series and parallel 

systems, which are contrasted with the binary network reliability functions in Figures 

4.1(a) and (b). 
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Figure 4.2. Proposed RP-based continuous network reliability function for (a) two-

component series system, and (b) two-component parallel system 

 
 

The proposed function decreases monotonically as it approaches the failure 

domain as shown in Figures 4.2, so that the current samples rarely bounce 

significantly from the previous ones. The intermediate domain gradually converges 

to the failure domain as the subset simulation progresses. Let the 𝑖𝑡ℎ intermediate 

failure domain ℱ𝑖  be {𝐺OD
RP(𝒛) ≤ 𝑔𝑖}.  Then, the failure probability 𝑃𝑓  is 

expressed as a product of conditional probabilities as 

�̂�𝑓,𝑆𝑆 =∏𝑃(𝐺OD
RP(𝒛) ≤ 𝑔𝑖|𝐺OD

RP(𝒛) ≤ 𝑔𝑖−1)

𝑀

𝑖=1

 

          ≅
𝑝0
𝑀−1

𝑛
∑𝕝(𝐺OD

RP(𝒛(𝑗)) ≤ 𝑔𝑖|𝐺OD
RP(𝒛(𝑗)) ≤ 𝑔𝑖−1)

𝑛

𝑗=1

, 

(4.12) 

where 𝑔1 > ⋯ > 𝑔𝑀 = 0  denote intermediate thresholds; 𝑔0 = ∞  denotes the 

initial failure threshold; and 𝒛(𝑗) is the state vector of the 𝑗𝑡ℎ network sample. 

 

4.3.1.2 Shortest path-based function 

 

However, the proposed function 𝐺OD
RP(𝒛) has a critical flaw in terms of computation 

time for reliability analysis of large-scale networks; the time complexity of Dijkstra’s 
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algorithm for the weighted graphs is given by 𝒪(|𝑽|2) (Dijkstra 1959). This is quite 

time-consuming in comparison to breadth-first search (BFS) for the OD connectivity, 

i.e., 𝐺OD
Bi (𝒛),  which has a linear time 𝒪(|𝑬| + |𝑽|).  Although subset simulation 

requires fewer simulations than the crude MCS, the computational cost of each 

simulation becomes significant on large-scale networks. To compensate for the 

weakness, another limit-state function using BFS is proposed, which replaces 𝑹𝑷 

in Eq (4.11) with the node set in the shortest path, 𝑺𝑷, as 

𝐺OD
SP (𝒛) = {

min
𝑖∈𝑺𝐏

𝑧𝑖

𝑛SP
, if OD pair is connected in 𝒛,

0, otherwise,

 (4.13) 

where 𝑛SP  is the number of nodes on 𝑺𝑷.  Figures 4.3(a) and (b) show contour 

plots of the proposed SP-based network reliability function for the two-component 

series and parallel systems, 𝐺series
SP (𝒛)  and 𝐺parallel

SP (𝒛).  Since there is only a 

single path in a series system, i.e., 𝑺𝑷 ≡ 𝑹𝑷,  Figure 4.3(a) for 𝐺series
SP (𝒛)  is 

exactly the same as Figure 4.2(a) for 𝐺series
RP (𝒛).  On the other hand, there is an 

obvious difference between the two contour maps in the parallel system; while 

𝐺parallel
RP (𝒛)  is a globally differentiable continuous function, 𝐺parallel

SP (𝒛)  has a 

jump discontinuity along the boundary between the first and second quadrants 

because 𝑺𝑷 based on BFS only considers component 1 if both survive (i.e., in the 

first quadrant in Figure 4.3(b)). Although this results in distinctively shaped 

intermediate failure domains during subset simulation, it allows for faster 

computation compared to 𝐺parallel
RP (𝒛). 
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Figure 4.3. Proposed SP-based network reliability function for (a) two-component 

series system, and (b) two-component parallel system 

 

 
 

4.3.2 Seismic reliability curve of network 

 

Beyond the fragility curves of structures, this section proposes the concept of 

reliability curves of network connectivity and the way to compute them efficiently 

using the proposed variance-reduction sampling method. 

 

4.3.2.1 Configuration of intermediate failure domains 

 

The intermediate failure domains generated by HMC-SS are the spaces that should 

be traversed to reach the failure domain of interest, i.e., network failure domain. The 

analysis of network reliability curves using HMC-SS begins by extracting useful 

probabilities from these intermediate failure domains. If the target moment 

magnitude is set so that the failure probability is greater than 𝑝0,  the network 

reliability can be calculated without intermediate failure domains. This initial failure 

domain is used as an intermediate failure domain for lower moment magnitudes. It 

is noteworthy that only the mean of seismic demands changes with the moment 

magnitude, while the standard deviations of seismic demands, the distributions of 
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seismic capacities, and the correlation coefficients are independent of the moment 

magnitude as shown in Eqs. (3.7) and (3.9). As a result, the mean of the logarithmic 

safety margins, 𝐸[𝑧𝑖] , depends on the magnitude of the earthquake, but the 

covariance matrix 𝑹𝒛𝒛 = [𝜌𝑧𝑖𝑧𝑗]𝑖,𝑗∈[1,𝑚]
 is independent of 𝑀𝑤 . Figure 4.4 shows 

the failure domain of two-component parallel system and the contour map of 𝒛 

according to the magnitude. 

Since 𝒛 under each 𝑀𝑤 shares the covariance matrix 𝑹𝒛𝒛 = [𝜌𝑧𝑖𝑧𝑗]𝑖,𝑗∈[1,𝑚]
, 

one can linearly transform the contour maps of 𝒛 to overlap into one. A critical point 

is defined as the threshold point at which the network state changes, e.g., the origin 

in Figure 4.4. After the linear transformation, all the contour maps are completely 

overlapped, and only the failure domains or critical points under each 𝑀𝑤  are 

distinguished from each other. Figure 4.5 shows the result of the linear 

transformation, where the failure domain under the larger 𝑀𝑤  acts as an 

intermediate failure domain under the smaller 𝑀𝑤 . 
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Figure 4.4. Failure domain of interest and contour map of logarithmic safety 

margins along magnitude changes 
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Figure 4.5. Overlapped failure domain of interest after linear transformation 

 

 

 

 

 

4.3.2.2 Normalization of intermediate failure domains 

 

There is one more hurdle to overcome to plot the network reliability curve by a single 

run of the subset simulation. Due to the different sensitivities of individual 

components for earthquake magnitude, the critical points are defined as vectors 

rather than scalars. By normalizing the sensitivity of each component to earthquake 

magnitude change, every critical point can be defined as a scalar as long as the 

earthquake magnitude change, Δ𝑀𝑤  is given as a constant. The normalization 

equation for 𝒛 is given as follows: 
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�̃�(𝑀𝑤) =
𝒛(𝑀𝑤)

Δ𝒛
, (4.14) 

where �̃�(𝑀𝑤) is the normalized logarithmic safety margin vector under 𝑀𝑤; and 

Δ𝒛 denotes the difference in logarithmic safety margins for Δ𝑀𝑤.  

Figure 4.6 shows the normalized failure domains with the contour map of the 

joint probability distribution of �̃�. The critical point of the 𝑖𝑡ℎ normalized failure 

domain is given as [1 − 𝑖, 1 − 𝑖, … ,1 − 𝑖], and the 𝑖𝑡ℎ objective function 𝐺𝑖(∙) is 

given as 

𝐺𝑖(�̃�) = 𝐺(�̃�) − (𝑖 − 1), (4.15) 

where 𝐺(∙) is the proposed objective function in Eqs. (4.11) and (4.13). 
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Figure 4.6. Normalized failure domains of interest and contour map 

 

 

 

 

 

 

 

 

 

 



 

 

 
92 

 

 

Figure 4.7. HMC-SS-based network reliability curve with different Δ𝑀𝑤 
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4.3.2.3 Generation of network reliability curve 

 

Using the proposed objective function in Eq. (4.14), the network reliability curve can 

be generated by a single implementation of HMC-SS. However, HMC-SS still 

provides biased estimates; the smaller Δ𝑀𝑤, the more detailed the reliability curve, 

but the cumulative error increases as the number of subsets increases. 

Figure 4.7 compares the reliability curve of a single component estimated by 

HMC-SS with the integral-based exact values, while varying the Δ𝑀𝑤.  The red 

solid line shows the exact solution, while the blue dashed line shows the HMC-SS-

based estimates with blurred 95% confidence intervals. Both results are relatively 

similar to the exact solutions for 𝑀𝑤 ≥ 7, i.e., close to the initial failure domain, 

but the difference in accuracy becomes apparent for 𝑀𝑤 ≤ 4  due to the 

accumulated errors. When analyzing so many intermediate failure domains, 

increasing the number of seeds for HMC-SS may be a way to improve convergence. 

 

4.4 Numerical examples 

 
In general, k-terminal reliability analysis and k-out-of-N network reliability analysis, 

i.e., a part of capacity reliability analysis, are considered much more complex than 

two-terminal reliability analysis. They require different methods tailored to the 

characteristics of each reliability, e.g., BFS for connectivity, Ford-Fulkerson 

algorithm (Ford and Fulkerson 1956) for capacity reliability. In contrast, sampling-

based analysis can be used for other reliability indices in essentially the same way as 

for two-terminal reliability, once their limit-state functions are well-defined. To this 

end, two-terminal reliability analyses are first performed for a two-component 
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parallel system and a hypothetical network (Lim et al. 2015) using two proposed 

network reliability functions, 𝐺OD
RP  and 𝐺OD

SP ,  in Section 4.1. Then, Section 4.2 

discusses how to extend the two-terminal reliability analysis to k-terminal reliability 

and k-out-of-N network reliability. To test and demonstrate the accuracy and 

scalability of the proposed methods, they are applied to the highway bridge networks 

in San Jose (Guo et al. 2017; Nabian and Meidani 2018) and San Diego (Lee and 

Song 2021), respectively. 

The seismic capacity parameters for two components in Example 1 and all the 

bridges in the highway networks in San Jose and San Diego are assumed to be 0.98 

g for the median 𝐶�̅�, and 0.69 for the logarithmic standard deviation 휁𝑖. For the 

components in the hypothetical network, the parameters are set to 0.85 g for 𝐶�̅�, and 

0.69 for 휁𝑖. In all the examples of Section 4, the parameters for the HMC-SS are set 

as 𝑛 = 1,000,  𝑝0 = 0.1,  𝑡𝑓 =
𝜋

4
,  and 𝛼 = 0  (for the meaning of the last two 

parameters, refer to Wang et al. (2019)). All computations are implemented using 

MATLAB® on an 8-core MacBook Air (2022) with 8 GB of RAM.  

 

4.4.1 Two-terminal reliability 

 

4.4.1.1 Example I: Two-component parallel system 

 

Consider the two-component parallel system with an earthquake scenario with a 

moment magnitude 𝑀𝑤 = 5.0. The distance Δ12 between two components is set 

to 11.12 km, and the distances 𝑅1  and 𝑅2  of the two components from the 

epicenter are given as 3.46 km and 9.28 km, respectively. Figures 4.8 and 4.9 

illustrate the 250 HMC samples and intermediate domains based on 𝐺OD
RP and 𝐺OD

SP ,  
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Figure 4.8. Samples from (a) entire domain, (b) first subset, and (c) second subset 

using 𝐺OD
RP 

 

 

Figure 4.9. Samples from (a) entire domain, (b) first subset, and (c) second subset 

using 𝐺OD
SP  
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respectively, with the system failure domain ℱ and the contour plot of the joint PDF 

of the logarithmic safety margins, 𝑓(𝒛). Unlike the square intermediate domains of 

𝐺OD
RP,  those of 𝐺OD

SP   gradually converge to the failure domain in the form of the 

lowercase letter ‘d’, showing consistency with the contour plot in Figure 4.9(b). 

Although drawing identically distributed samples from the odd-shaped intermediate 

failure domains of 𝐺OD
SP  is generally a major hurdle for subset simulation, the HMC-

SS facilitates it with the high acceptance rate. 

To evaluate �̂�𝑓,𝑆𝑆  and the coefficient of variation of �̂�𝑓,𝑆𝑆  (c.o.v.) for a 

sequence of moment magnitudes 𝑀𝑤 ranging from 3.0 to 7.0, the HMC-SS with 

𝐺OD
RP and 𝐺OD

SP  are performed 500 times each. Table 4.1 shows the results of subset 

simulations with the exact 𝑃𝑓. Note that while the exact seismic failure probability 

of the two-component system can be evaluated via integration, it is usually infeasible 

for large-scale networks. Both estimated probabilities achieve quite high accuracy 

considering the exact solution, because estimates of subset simulation are 

asymptotically unbiased. 

Table 4.1 also summarizes the computation time 𝑡𝑠𝑠 for a run of HMC-SS of 

each limit-state function. 𝑒𝑓𝑓 = c. o. v.× √𝑁𝑆  is introduced to measure the 

efficiency of variance-reduction sampling methods (Au and Beck 2001), where 𝑁𝑆 

denotes the average number of network samples. A lower 𝑒𝑓𝑓  indicates higher 

sampling efficiency, i.e., lower c.o.v. with fewer samples. Figures 4.10(a) and (b) 

show the variation of 𝑒𝑓𝑓  and 𝑡𝑠𝑠  with 𝑀𝑤  to compare the efficiency of the 

HMC-SS with 𝐺OD
RP and 𝐺OD

SP  in terms of samples and time, respectively. One can 

clearly see the advantages of the two subset simulations; the former converges stably 
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owing to its low c.o.v., while the other requires only a quarter to a fifth of the 𝑡𝑠𝑠 of 

the 𝐺OD
RP-based one. This speed-up comes from the BFS-based shortest path search, 

which is much faster than the Dijkstra algorithm mentioned in Section 4.3.1.2. 

Overall, regardless of the limit-state function, lower failure probabilities require 

more 𝑁𝑆 with longer 𝑡𝑠𝑠, and 𝑒𝑓𝑓 increases monotonically with decreasing 𝑀𝑤 . 

On the other hand, there is a temporary inconsistency in 𝑡𝑠𝑠, when 𝑀𝑤 = 6.0. 

This is because the time to identify seismically damaged components in each 

network sample is proportional to 𝑀𝑤 , even though 𝑁𝑆 is negatively correlated 

with 𝑀𝑤. Nevertheless, 𝑁𝑆 dominates the overall tendency because its variation 

is much larger than that of the component failure probabilities. 

Figure 4.11 shows the network reliability curve generated by a single run of 

HMC-SS (blue dashed line) with the 95% confidence interval of the estimates (blue 

shaded area) and the exact values (red solid line). Table 4.2 compares the efficiency 

and accuracy of the NRA. The 𝐺OD
RP-based HMC-SS is used for comparison in both 

cases, and 𝑛 is set to 10,000 for more accurate reliability curves including other 

numerical examples. Although the single run has a little higher c.o.v., 𝑁𝑆  to 

complete the network reliability curve is only about one-third of that of the separate 

HMC-SS implementation. This efficiency is achieved by minimizing wasted 

samples or intermediate failure domains in the proposed method. 
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Table 4.1. Two-terminal reliability analysis results on two-component parallel 

system 

𝑀𝑤 
𝐺OD
RP  𝐺OD

SP   
Exact 𝑃𝑓 

�̂�𝑓,𝑆𝑆 c.o.v. 𝑡𝑠𝑠(s)  �̂�𝑓,𝑆𝑆 c.o.v. 𝑡𝑠𝑠(s)  

7.0 1.41 × 10−2 0.149 0.447  1.41 × 10−2 0.202 0.102  1.40 × 10−2 

6.0 6.34 × 10−3 0.196 0.730  6.37 × 10−3 0.265 0.169  6.31 × 10−3 

5.0 2.62 × 10−3 0.196 0.635  2.63 × 10−3 0.345 0.136  2.61 × 10−3 

4.0 1.00 × 10−3 0.255 0.817  1.00 × 10−3 0.478 0.176  0.98 × 10−3 

3.0 3.46 × 10−4 0.286 0.837  3.50 × 10−4 0.702 0.212  3.40 × 10−4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2. Efficiency and accuracy of single implementation of HMC-SS-based 

network reliability curve 

𝑀𝑤 
Separate HMC-SS Single implementation 

Exact 𝑃𝑓 �̂�𝑓,𝑆𝑆 c.o.v. 𝑁𝑆 �̂�𝑓,𝑆𝑆 c.o.v. 𝑁𝑆 

7.0 1.41 × 10−2 0.047 19,270 1.41 × 10−2 0.048 19,270 1.40 × 10−2 

6.5 9.50 × 10−3 0.055 26,200 9.47 × 10−3 0.068 9,000 9.49 × 10−3 

6.0 6.34 × 10−3 0.062 27,910 6.29 × 10−3 0.076 9,000 6.31 × 10−3 

5.5 4.15 × 10−3 0.049 28,000 4.07 × 10−3 0.090 9,000 4.10 × 10−3 

5.0 2.62 × 10−3 0.062 28,000 2.59 × 10−3 0.096 9,000 2.61 × 10−3 

4.5 1.62 × 10−3 0.065 28,000 1.61 × 10−3 0.102 9,000 1.62 × 10−3 

4.0 1.00 × 10−3 0.081 32,896 0.99 × 10−3 0.114 9,000 0.98 × 10−3 

3.5 5.82 × 10−4 0.087 37,000 5.88 × 10−4 0.127 9,000 5.85 × 10−4 

3.0 3.46 × 10−4 0.090 37,000 3.41 × 10−4 0.130 9,000 3.40 × 10−4 

Total 𝑁𝑆 264,276 91,270  
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Figure 4.10. (a) 𝑒𝑓𝑓-𝑀𝑤, and (b) 𝑡𝑠𝑠-𝑀𝑤 curves on two-component parallel 

system 
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Figure 4.11. Seismic reliability curve of two-component parallel system at (a) 

linear-, and (b) log-scale 
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4.4.1.2 Example II: Hypothetical example 

 

The hypothetical network introduced in Section 2.4.1 has 42 components, and the 

high-dimensional data makes it difficult to visualize samples as shown in Figures 4.8 

and 4.9. Instead, Table 4.3 shows that HMC-SS using the two proposed network 

limit-state functions still performs well. For extremely small 𝑀𝑤, e.g., 𝑀𝑤 = 3.0, 

the 𝐺OD
SP -based HMC-SS is much closer to the MCS result than the 𝐺OD

RP-based one 

despite much larger c.o.v. values. This is due to some overestimated outliers in the 

𝐺OD
RP-based method, which can be mitigated by increasing the number of samples. 

Figure 4.12 shows the advantages of the two proposed continuous functions in 

terms of sampling efficiency and computation time, respectively, over all earthquake 

magnitudes. Meanwhile, the seismic reliability curve of the hypothetical network 

assessed by the single HMC-SS based on 𝐺OD
RP (yellow dots) is shown in Figure 4.13 

with the results of direct MCS (red line) and the separate implemententation of 

HMC-SS (blue squares). Only the 95% confidence interval of the estimate from a 

single run of HMC-SS is shown in the yellow shaded area. The estimates by the 

single run are unbiased and have little difference from those of direct MCS or 

separate HMC-SS even at low 𝑀𝑤 owing to the sufficiently large 𝑛. 

 

Table 4.3. Two-terminal reliability analysis results on hypothetical network 

𝑀𝑤 
𝐺OD
RP  𝐺OD

SP   
MCS 𝑃𝑓 

�̂�𝑓,𝑆𝑆 c.o.v. 𝑡𝑠𝑠(s)  �̂�𝑓,𝑆𝑆 c.o.v. 𝑡𝑠𝑠(s)  

7.0 5.17 × 10−2 0.111 0.819  5.14 × 10−2 0.120 0.412  5.19 × 10−2 

6.0 1.37 × 10−2 0.170 0.600  1.39 × 10−2 0.194 0.220  1.37 × 10−2 

5.0 3.00 × 10−3 0.233 0.772  3.05 × 10−3 0.318 0.227  2.97 × 10−3 

4.0 5.46 × 10−4 0.304 0.944  5.30 × 10−4 0.566 0.247  5.28 × 10−4 

3.0 8.26 × 10−5 0.363 1.067  7.88 × 10−5 1.114 0.376  7.88 × 10−5 
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Figure 4.12. (a) 𝑒𝑓𝑓-𝑀𝑤, and (b) 𝑡𝑠𝑠-𝑀𝑤 curves on hypothetical network 
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Figure 4.13. Seismic reliability curve of hypothetical network 

 

 

 

4.4.2 k-terminal reliability & k-out-of-N network reliability 

 

4.4.2.1 Example III: k-terminal reliability on San Jose highway network 

 

Two-terminal reliability can be considered as a special case of k-terminal reliability 

with 𝑘 = 2. In other words, the network reliability functions proposed in Eqs. (4.11) 

and (4.13) can be generalized to the limit-state function of k-terminal reliability, 

𝐺𝑽𝑘(𝒛), as 

𝐺𝑽𝑘(𝒛) = min
o∈𝑽𝑂,d∈𝑽𝐷

𝐺𝑜𝑑(𝒛), (4.16) 

where 𝑽𝑂  and 𝑽𝐷  denote the sets of origin and destination nodes, respectively; 

and 𝑘 = |𝑽𝑂| + |𝑽𝐷|.  The computational complexity for k-terminal reliability 

analysis grows linearly with the number of OD pairs, since the network connectivity 

is investigated by the number of OD pairs from each sample. 
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This k-terminal reliability analysis using subset simulation is applied to the San 

Jose highway network (Guo et al. 2017; Nabian and Meidani 2018) introduced in 

Section 2.4.2. Figure 4.14 shows the San Jose highway network with two origins and 

two destinations. Table 4.4 shows the results of the k-terminal reliability analysis 

using 𝐺OD
RP and 𝐺OD

SP  according to Eq. (4.16), along with the direct MCS results. 

Moreover, Figure 4.15 shows 𝑒𝑓𝑓  and 𝑡𝑠𝑠  under each earthquake magnitude to 

compare the performance of each proposed function in terms of sampling efficiency 

and computational speed. 

Figure 4.16 shows the seismic reliability curves of the San Jose highway 

network in terms of k-terminal reliability estimated by the direct MCS and the 

proposed method with and without physics-informed intermediate failure domains. 

As 𝑀𝑤 decreases, the estimates by a single implementation of HMC-SS tend to be 

underestimated compared to the rest due to bias from accumulated errors. However, 

the single run outperforms separate runs in terms of computation time and samples 

required. The saved computational cost can be used for additional sampling to 

increase accuracy, depending on the user's needs. 

 

 

 

 

 

Table 4.4. k-terminal reliability analysis results on San Jose highway network 

𝑀𝑤 
𝐺OD
RP  𝐺OD

SP   
MCS 𝑃𝑓 

�̂�𝑓,𝑆𝑆 c.o.v. 𝑡𝑠𝑠(s)  �̂�𝑓,𝑆𝑆 c.o.v. 𝑡𝑠𝑠(s)  

7.0 1.55 × 10−1 0.076 0.796  1.54 × 10−1 0.076 0.481  1.54 × 10−1 

6.0 7.30 × 10−2 0.110 1.334  7.24 × 10−2 0.107 0.741  7.22 × 10−2 

5.0 3.37 × 10−2 0.124 0.943  3.31 × 10−2 0.149 0.426  3.33 × 10−2 

4.0 1.59 × 10−2 0.160 0.776  1.58 × 10−2 0.185 0.281  1.61 × 10−2 

3.0 7.61 × 10−3 0.189 1.081  7.58 × 10−3 0.246 0.354  7.50 × 10−3 
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Figure 4.14. San Jose highway network with multiple OD nodes 
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Figure 4.15. (a) 𝑒𝑓𝑓-𝑀𝑤, and (b) 𝑡𝑠𝑠-𝑀𝑤 curves on San Jose highway network 
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Figure 4.16. Seismic reliability curves of San Jose highway 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
108 

 

4.4.2.2 Example IV: k-out-of-N reliability on San Diego highway network 

 

Beyond the k-terminal reliability analysis, Eq. (4.16) can be extended to the limit-

state function of the k-out-of-N network reliability for 𝑁 OD pairs, 𝐺𝑘/𝑁 , as 

𝐺𝑘/𝑁(𝒛) = mink
𝑖∈[1,𝑁]

 𝐺𝑂𝐷𝑖(𝒛, 𝑘), (4.17) 

where mink(∙, 𝑘) is defined as a function for an order statistic that returns the 𝑘𝑡ℎ 

smallest value. 

Consider the k-out-of-N network reliability of the San Diego highway network 

in Section 2.4.3. More specifically, Southwest San Diego is set as the origin and five 

intercity highways connecting to neighboring cities are used as the destinations as 

shown in Figure 4.17. The target event is defined as an event that at least three 

destinations are accessible from the origin, i.e., 𝑘 = 3 and 𝑁 = 5. 

 

Table 4.5. k-out-of-N reliability analysis results on San Diego highway network 

𝑀𝑤 
𝐺OD
RP  𝐺OD

SP   
MCS 𝑃𝑓 

�̂�𝑓,𝑆𝑆 c.o.v. 𝑡𝑠𝑠(s)  �̂�𝑓,𝑆𝑆 c.o.v. 𝑡𝑠𝑠(s)  

7.0 1.19 × 10−1 0.089 1.766  1.18 × 10−1 0.091 1.402  1.20 × 10−1 

6.0 3.43 × 10−2 0.130 2.613  3.40 × 10−2 0.135 1.978  3.46 × 10−2 

5.0 8.20 × 10−3 0.202 2.891  7.95 × 10−3 0.221 2.131  8.01 × 10−3 

4.0 1.75 × 10−3 0.286 2.302  1.76 × 10−3 0.350 1.470  1.72 × 10−3 

3.0 3.60 × 10−4 0.357 2.694  3.55 × 10−4 0.611 1.633  3.62 × 10−4 

 

 

Based on Eq. (4.17), the k-out-of-N network reliability can be easily evaluated 

by the proposed method, and Table 4.5 shows the results with two network limit-

state functions at multiple 𝑀𝑤  are very similar to those of the direct MCS. 

Meanwhile, Figure 4.18(a) shows the seismic reliability curves of the network 

assessed by the direct MCS, separate HMC-SS, and the single implementation of 
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HMC-SS with the 95% confidence intervals. In contrast, Figure 4.18(b) shows the 

results of HMC-SS split over two ranges, 3.0 ≤ 𝑀𝑤 ≤ 6.0 and 6.0 ≤  𝑀𝑤 ≤ 10.0, 

compared to the single implementation. While the bias of the single run increases in 

the range of 𝑀𝑤 ≤ 6.0, the two split runs provide comparatively unbiased results. 

Ultimately, more finely partitioned implementations could provide the unbiased 

estimates, but the gain in terms of computational efficiency will be reduced 

compared to the independent separate executions. 
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Figure 4.17. San Diego highway network with an origin and five destinations 
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Figure 4.18. Seismic reliability curves of San Diego highway network under (a) 

single run, and (b) two split runs 
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Chapter 5. Conclusions 
 

 

 

 

5.1 Introduction 

 
This chapter summarizes the major developments and findings of this dissertation. 

Then, the current limitations and requirements that need further investigation are 

elaborated. The chapter is concluded by possible applications and recommendations 

for further research. 

 

5.2 Summary and contributions of this dissertation 

 
In order to perform seismic reliability analyses of large-scale networks with 

probabilistic inference and complexity quantification, this dissertation proposes and 

develops three kinds of NRA methods: (1) JT-based NRA and complexity 

quantification using BNs and dual representation of networks; (2) multi-scale NRA 

approach using CS-RDA; and (3) variance-reduction sampling method for reliability 

curves of networks based on subset simulations. The major findings and 

contributions of this dissertation are graphically presented in Figures 5.1 and 5.2 and 

summarized as follows: 

 

• Exact seismic reliability of complex directional networks other than serial or 

parallel systems can be obtained in near real-time by the proposed JT-based 

NRA method. The generation of JT for the method is automated with a BN that 

is identical to the dual representation of the network. Furthermore, the method 
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can deal with networks with multi-state components. 

• The required memory is governed by the maximum clique size of JT, thereby 

quantifying the complexity of the NRA. It allows users to determine whether 

the NRA is feasible or not on a given resource. 

• JT-based NRA method has inherent limitations in dealing with cyclic networks 

due to the nature of BNs utilizing DAGs. However, the proposed preprocessing 

decomposes the cyclic network into multiple DAGs, thereby making the method 

applicable. Besides, the preprocessing of the network simplification shortens 

the computation time by removing components irrelevant to the OD pair. 

• Numerical examples show that the JT-based NRA method can be effectively 

applied to various types of network, including cyclic networks or realistic large-

scale networks. Moreover, probabilistic inference is successfully performed, 

taking advantage of the near real-time NRA. 

• CS-RDA is a non-simulation-based NRA method using a decomposition 

approach. The main objective of CS-RDA is achieved by reducing the number 

of network decompositions, i.e., subnetworks, required to narrow down the 

upper and lower bounds of seismic network reliability. To this end, the method 

uses BC to integrates the non-simulation-based NRA method and the 

hierarchical clustering method. In addition, analytically derived correlation 

coefficients assess interdependencies between component failures accurately 

and quickly. 

• CS-RDA effectively captures the critical components expected to be included 

in the minimum cut-set. Numerical examples were investigated to test and 

demonstrate the efficiency and accuracy of CS-RDA with multi-scale 
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approaches. In each example, the proposed method outperforms the existing 

RDAs, as well as MCS without compromising accuracy. 

• Variance-reduction sampling using two proposed continuous network limit-

state functions allows efficient evaluation of sparse failure probabilities of 

large-scale networks. The formulated continuous limit-state functions implicitly 

provide information about the location of the failure domain. HMC-SS is 

adopted for stable and efficient convergence of estimates. 

• Numerical examples show that the proposed HMC-SS-based NRA can 

efficiently evaluate the seismic failure probability of large-scale networks that 

are infeasible with traditional sampling-based methods. In addition, the 

proposed NRA method can be easily extended to analyze other network 

reliability indices, including k-terminal reliability and k-out-of-N reliability. 

• The most prominent application of the proposed method is the evaluation of 

reliability curves of network reliability. In general, intermediate failure domains 

have no special meaning in subset simulation. In contrast, the proposed 

framework discusses the configuration of each intermediate failure domain as a 

network failure event under a given earthquake intensity, and the generation of 

network reliability curves using the intermediate failure probabilities. 

 

5.3 Limitations and recommendations for future investigation 

 
To advance the frontiers of theories and applications relevant to the proposed 

methods, the followings are identified as further research topics: 
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• The proposed JT-based NRA can manage cyclic networks through cycle 

decomposition, but the number of required subnetworks grows exponentially 

with the number of cycles. As a result, it is infeasible to apply the JT-based NRA 

to the reliability analysis of undirected networks. To compensate for this, 

combinations of the JT-based NRA with sampling techniques may be 

considered. 

• Dependent component events result in the generation of a giant single clique in 

the JT, consequently making the computation infeasible. As mentioned in 

Section 2, conditioning can be a solution to reflect the correlation coefficients. 

• Because CS-RDA uses Boolean simplification to decompose a network event 

into combinations of binary structure events, it cannot handle multi-state 

components. Therefore, unlike other proposed methods, CS-RDA is limited in 

its extension to max-flow analysis. However, by considering the different 

damage states of structures, CS-RDA can perform a discretized multi-state 

network analysis. 

• While the failure probabilities and the correlations between the individual 

components can be evaluated using closed-form equations, these equations are 

not valid for those of super-components in CS-RDA. Although MCS is used to 

assess the seismic risk of super-components, it may be limited in terms of 

scalability. Therefore, an efficient seismic risk assessment framework for super-

components is required to apply CS-RDA to large-scale networks. 

• For probabilistic inference, such as CPIM, the network-level outputs should be 

analyzed as a function of input values. In sampling-based approaches, however, 

probabilistic inference requires many evaluations of the NRA. To this end, one 
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can employ the sampling-based sensitivity analysis methods that have recently 

been developed for the NRA (Wang and Jia 2020). 
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Figure 5.1. Diagram of main contribution and findings of the dissertation 
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Figure 5.2. Trade-off between accuracy and scalability in proposed methods 
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초  록 

 

이동규 

건설환경공학부 

서울대학교 대학원 

 

현대 사회에서 기술이 발전하고 도시가 고밀화됨에 따라 사회기반시설물이 

상호간에 긴밀하게 연결되어 하나의 거대한 사회기반시설 네트워크 

(infrastructure network)를 형성하고 있으며, 지진에 의한 개별 구조물의 

손상은 라이프라인 네트워크 전반에 막대한 피해를 초래할 수 있다. 

네트워크의 위험성을 정량화하고 효율적인 유지보수가 이루어질 수 있도록, 

네트워크 차원의 내진 신뢰성 분석의 필요성이 대두된다. 이를 위해서는 

다수의 구조물의 지진에 의한 손상 및 파괴 확률과 더불어, 구조물의 상태 

조합에 따른 네트워크의 연결성 및 흐름 용량이 평가되어야 한다. 이러한 

네트워크의 내진 신뢰성 분석은 지진이 네트워크 전반에 공통적으로 

미치는 불확실성(common source effect)과 상호 의존적인 구조물의 상태 변화, 

구조물의 개수에 기하급수적으로 비례하여 증가하는 연산 복잡도 등으로 

인해 대규모 네트워크에 확대 적용하는 데에 어려움을 겪어왔다. 이를 

극복하기 위해 몬테카를로 시뮬레이션(Monte Carlo Simulation, MCS)이 

사용되나, 확률이 희박한 사건에 대한 시뮬레이션의 비효율성과 확률적 

추론의 어려움 등 여러 한계를 지닌다. 

본 논문에서는 이러한 종전의 한계를 극복하기 위해, 세 가지의 

네트워크 내진 신뢰성 분석 방법론을 제안한다. 먼저, 베이지안 

네트워크(Bayesian network, BN)와 정션 트리(junction tree, JT)에 기반한 

네트워크 신뢰성 평가 및 복잡도 정량화 방법론이 제안된다. 네트워크 쌍대 

표현(dual representation)을 이용하여 구축된 BN과 그에 기반하여 형성된 

JT에서는 단방향 메시지 전달만으로 사이클이 없는 방향성 네트워크 

신뢰성의 정해를 평가할 수 있다. 네트워크가 사이클을 갖는 경우에도, 
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사이클을 순차적으로 분해하여 제거함으로써 신뢰성을 정확히 평가할 수 

있다. 한편, 네트워크 신뢰성의 복잡도는 구성요소의 개수로 평가하는 것이 

일반적이나, 실제로는 네트워크 위상 또한 연산 복잡도에 영향을 미친다. 

수치 예제를 통해 제안된 방법이 정확한 네트워크 신뢰성과 구성요소의 

중요도 지표를 단시간 내에 평가할 뿐만 아니라, 다양한 위상의 네트워크 

신뢰성 복잡도를 JT의 최대 클리크(clique)의 크기를 통해 정량화할 수 

있음을 보였다. 

또한, 중심성 기반 선택적 재귀 분해 알고리듬(Centrality-based selective 

recursive decomposition algorithm, CS-RDA)은 네트워크의 중심성을 기반으로 

연결성에 핵심적인 영향을 미친다고 판단되는 구성요소를 파악함으로써, (1) 

다중 스케일 접근법을 위해 네트워크 간소화를 수행하고, (2) 재귀 분해 

알고리듬(Recursive decomposition algorithm, RDA)의 수렴성을 크게 증가시킨다. 

CS-RDA에서는 이를 통해 RDA에 비해 훨씬 적은 하위그래프 개수만으로, 

동일한 수준의 네트워크 신뢰도 범위를 달성할 수 있다. 실제 대규모 교량 

네트워크를 이용한 수치 예제를 통해, 향상된 CS-RDA의 효율성 및 

정확성을 증명하고, 네트워크 간소화 정도에 따른 효율성과 정확성의 

변화를 분석하였다. 

마지막으로, 종전에 사용되던 MCS의 확장성과 효율성을 향상시키기 

위한 분산 감소 시뮬레이션 기법이 제안된다. 기존 연결성 측면의 이진 

한계상태 함수는 네트워크 실패 도메인까지의 거리를 정량화하는 연속 

함수로 재정의되며, 이는 하위집합 시뮬레이션 기반의 네트워크 신뢰성 

해석을 가능하게 한다. 더 나아가, 하위집합 시뮬레이션의 각 중간 실패 

도메인이 특정 지진 강도에서의 네트워크 파괴 이벤트에 대응하도록 

구성함으로써, 단일 하위집합 시뮬레이션으로 네트워크 취약도 곡선을 

생성할 수 있다. 수치 예제를 통하여 제안된 방법론이 2단자 신뢰성(two-

terminal reliability) 분석은 물론, k단자 신뢰성(𝑘 -terminal reliability), 네트워크 

흐름 용량 분석에 손쉽게 확장되어 높은 효율성과 정확성을 가짐을 보였다. 

 

주요어: 네트워크 신뢰성 분석; 내진 신뢰성; 사회기반시설 네트워크; 
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대규모 네트워크; 그래프 이론; 베이지안 네트워크; 정션 트리 알고리듬; 

복잡도 정량화; 확률적 추론; 다중 스케일 접근법; 클러스터링; 재귀적 

분해 알고리듬; 하위집합 시뮬레이션; 해밀토니안 몬테카를로; 네트워크 

신뢰도 곡선. 
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