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Abstract

Predicting the Impact on Speed Reduction
in Adjacent Networks of a Link Using the
Graph Attention Model

Seung Woo Ham
Department of Civil and Environmental Engineering
College of Engineering

Seoul National University

Traffic congestion has long been recognized as a significant impediment to urban
mobility, causing delays, increased travel times, and considerable economic and
environmental costs. In light of these challenges, this study aims to identify
the influence of links within a road network on adjacent networks to prioritize
them for future applications. Focusing on the urban road network of Seoul,
South Korea, we developed an impact on adjacent network index and a high-
performance prediction model for network-scale speed reduction. The model
incorporates the property of traffic flow and heterogeneity of road networks,
accounting for interrupted and uninterrupted flows. Furthermore, we introduced
a loss function for attention values to enhance their realism and the reliability

of prediction results. Consequently, when paired with a graph attention model,



the traffic flow-aware adjacency matrix demonstrated enhanced performance in
comparison to the traditional distance-based adjacency matrix. Also, applying
the heterogeneity of road networks brought advanced performance in speed
reduction prediction tasks. Adding an attention loss weakened the prediction
task, which is natural but strengthened the recall of the true data. Our results
demonstrate the model’s real-time performance and its potential for practical
applications in various traffic scenarios. The results of this model are anticipated
to be concurrently used in transportation operations such as signal optimization

and traffic planning like road expansion.

Keywords: Graph Attention Model, Speed Reduction, Impact on Adjacent
Network, Heterogeneous Road Network, Attention Loss
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Chapter 1

Introduction

1.1 Background

Roads are vital infrastructure connecting a country’s significant bases and play a
crucial role in national development. These transportation systems are respon-
sible for transporting resources, such as people and goods, to their required
locations, thereby satisfying social needs and enhancing productivity. Conse-
quently, efficient road usage generates economic benefits by reducing driving
costs and time. Roads demonstrate efficient transport capacity up to their maxi-
mum limit, with traffic volume increasing linearly as new vehicles enter the road.
However, traffic congestion occurs if vehicles continue to enter the road beyond
its capacity, and transportation efficiency declines sharply. At this point, the
upward trend on the density-traffic volume graph ceases, and the traffic volume
at the peak begins to fall, allowing for only minimal traffic processing compared
to the road’s capacity.

Traffic congestion causes significant economic losses due to extended travel



times and energy inefficiency, making it a pressing issue for urban areas. The
rapid urbanization and population growth in these areas have increased the
number of vehicles on the roads, exacerbating congestion issues. Hence, urban
areas became the primary victim of traffic congestion. According to a 2020
study by the Korea Transport Institute on national traffic congestion costs,
Seoul’s traffic congestion cost amounted to 11.55 trillion won, which increased
to 31.05 trillion won when combined with Gyeonggi-do and Incheon urban areas.
Although Seoul’s population has been declining steadily since 2010, congestion
costs continue to rise due to increased commuting distances from suburban
commuters (Jun, 2020) and a greater number of vehicles per household.

Countermeasures such as controlling traffic signals are implemented to ad-
dress traffic congestion to improve transportation efficiency. However, the avail-
able resources are insufficient compared to the demand at various points. Addi-
tionally, the current allocation of resources is not based on data analysis but on
a practical level. When congestion shifts from recurrent to non-recurrent, allo-
cating resources to appropriate locations becomes even more complicated. As
the drivers have never encountered the same type of congestion, the response
to non-recurrent congestion will likely worsen. This is due to the unique na-
ture of non-recurrent congestion that occurs differently each time. Given the
growing frequency and severity of traffic congestion resulting from urbanization
(Van Aken et al., 2017) and climate change-induced weather disasters (Dawson
et al., 2016), the decision-making process for deploying countermeasures must
carefully consider the priority links to improve transportation efficiency.

The priority link decision problem is also related to vehicle route selection.
Currently, vehicle route selection is based on individual actions approximating
user equilibrium. However, if V2X becomes a reality, driving behavior closer to

the social optimum can be achieved by managing the traffic volume of priority



links. Efficient resource allocation and detour strategies can only be imple-
mented when the problem of identifying priority links for both recurrent and
non-recurrent congestion is resolved.

Understanding the urban road network can contribute to the increased uti-
lization of road infrastructure by improving road operations and individual
route strategies. The ability to identify a priority link in an urban network re-
quires a sophisticated understanding of the network. In this study, we focused
on identifying links that significantly impact the speed reduction of adjacent
networks, designating these as priority links for further analysis and potential
intervention.

Various studies have attempted to predict traffic conditions thus far. Among
the numerous traffic prediction studies, traffic speed prediction is the most fre-
quently represented topic (Asif et al., 2013; Min and Wynter, 2011; Wang and
Shi, 2013). As the most intuitive aspect affecting road users’ experience is travel
time determined by traffic speed, prioritizing traffic speed is natural. Moreover,
speed as a traffic metric offers versatility and ease of data collection advantages.
Consequently, this study has adopted speed reduction as the criterion for identi-
fying priority links within the traffic network. Therefore, this study will employ
the latest deep learning-based methodology to select priority links in the urban
road network. As a result of this study, the rerouting strategy and countermea-
sure allocation problem can be addressed. Furthermore, this approach enables
better decision-making for infrastructure investment and targeted policy imple-

mentation, promoting long-term sustainable urban development.



1.2 Research Purpose and Scope

The primary objective of this study is to identify the link’s influence on adjacent
networks. By leveraging the magnitude of influence, we can prioritize the links
within a network. This approach allows transportation engineers to focus their
efforts on the most impactful segments of the network, leading to more effective
and efficient traffic management strategies. This study targets complex urban

road networks, specifically focusing on the city of Seoul, South Korea, as its

data source.

Purpose 1 Purpose 2
To define a link’s influence, develop an | — To leverage the index, create a high-
index that can identify the impact of links performance prediction model for speed
on adjacent networks reduction of the adjacent network

Figure 1.1: The purpose of the research

The First purpose of the research is to develop an index that can identify the
impact of links on adjacent networks. The developed index will later be utilized
for prediction, ultimately working as a priority index for road networks. The
objective of the index is to measure the impact of current road congestion on
future networks. When considering the complexity of urban roads, it is a logical
fallacy to assume that a specific road’s congestion is caused by links that are too
far away. Therefore, the number of hops included in the index was appropriately
adjusted. (In a graph, a 'hop’ refers to the path length between the source and
the destination. Two links are considered '1-hop’ apart if they are separated by
one intersection.)

Next, an engineering technique for an advanced understanding of urban

road networks has been proposed. This engineering technique encompasses the




second purpose. The second purpose is to create a high-performance prediction
model for speed reduction of the adjacent network.

The adjacency matrix within the graph attention model has been recon-
structed as a traffic flow-aware adjacency matrix, which replaces the distance-
based adjacency matrix. This traffic flow-aware matrix takes into consideration
the direction of traffic flow and congestion propagation. This adjacency matrix
overcomes the drawback of the distance-based matrix, which is used widely
throughout the literature. By leveraging the power of the adjacency matrix to
reflect n-hop connections, the number of layers can be reduced. This enables
the identification of relationships between links with fewer layers and allows for
faster computation.

Another technique is to reflect the heterogeneity of the road network. Model
structure improvement has been made toward modifying the components of the
graph attention model to reflect heterogeneity. There are two types of traffic
flow: interrupted and uninterrupted flow. Particularly in urban areas, inter-
rupted and uninterrupted flow exist at different levels and form separate road
networks. Previous models have lacked consideration for these differences. This
study addressed this issue by incorporating these distinctions into the model.

A loss related to the attention value within the model has been added to
enhance the realism of road network analysis. The attention value is merely
a parameter within the model; as such, the model primarily focuses on pre-
dicting speed reduction rather than the interpretability of the attention value
itself. However, this approach leads to issues with the attention value’s lack of
realism, which will be addressed later in this study. After predicting the influ-
ence in adjacent networks of each link is completed, operational strategies are

recommended at a qualitative level.



1.3 Research Contribution

The contributions of this paper can be summarized into four aspects.

First, a novel adjacent network impact index and its prediction model have
been proposed. This index provides a simple description of roads’ impact on
future networks. Combined usage with a prediction model will enable us to
decide the countermeasure locations and strategies against congestion.

Second, a traffic flow awareness structure has implied in the model. The
traflic flow goes from upstream to downstream, and congestion propagates from
downstream to upstream. Also, a traffic network is a regular network compared
with other networks such as social networks. The model has reflected these
characteristics of traffic and road networks using an adjacency matrix.

Third, the model’s performance is enhanced by considering the characteris-
tics of the heterogeneous road network. Urban roads, consisting of interrupted
and uninterrupted flows, possess distinct features that need to be individu-
ally addressed. The proposed model improves its understanding of the road
network by incorporating road heterogeneity between interrupted and uninter-
rupted flows.

Fourth, the model induces more realistic attention values, thereby increasing
the reliability of prediction results. Attention values exist only as parameters in
the model, and the model’s learning focuses primarily on prediction accuracy,
often overlooking interpretability. This characteristic can severely undermine
the realism of the model’s internal parameters. We introduced a loss function
for the attention values to enhance their realism. The remaining paragraphs in
this section describe each contribution in more detail.

First Contribution: The research developed a congestion index on the

network side, which has not been implemented before. This index will reveal



the impact of roads on the network that other indices have been unable to
show. Moreover, this index is predicted by a deep learning model, so it also has
a predictability to unseen conditions. Non-recurrent congestion is often caused
by rare events such as natural disasters or accidents. Based on past data, exist-
ing statistical models cannot respond effectively to these events. Optimization
models have been proposed to address this issue, but they can be computa-
tionally complex and lack real-time performance as road network size increases.
Furthermore, these models cannot predict future situations in high performance
as they predict the future with internal human-made logic.

The results of this study demonstrate the ability to achieve real-time per-
formance that was not possible with the previous priority link identification
method. Nvidia’s Tesla A100 GPU can process the Seoul road network within 5
seconds. Even if the model is implemented on a device with significantly lower
computational power, provided there is sufficient graphic memory to upload it,
the model can respond within the 5-minute target time. Additionally, the ad-
jacency matrix, non-linear function, and attention mechanism incorporated in
the graph attention model contribute to deeply understanding traffic in urban
networks. Consequently, the model can operate robustly across various scenar-
ios. A mere three weeks of data is sufficient for model training, highlighting the
model’s strengths in practical applications.

Second Contribution: The model incorporates a traffic flow-aware adja-
cency matrix. Traffic flow progresses from upstream to downstream, with con-
gestion propagating in the opposite direction, from downstream to upstream.
This connection-based flow propagation should be considered in a model. More-
over, traffic networks exhibit greater regularity than other networks, such as so-
cial networks. These unique traffic characteristics are accounted for within the

model by utilizing an adjacency matrix. Through the literature, various mod-



els have been applied to predict traffic speed, and with the emergence of deep
learning-based traffic speed prediction models in 2014, prediction accuracy has
increased significantly (Zhang et al., 2019b; Wang et al., 2019; Jia et al., 2016).
Recently, graph-based deep learning methodologies have emerged, and as road
networks themselves are graphs, these methodologies are being actively applied
to network traffic speed prediction tasks (Yu et al., 2020; Lu et al., 2020).

Graph-based deep learning methodology has the advantage of reflecting the
relationship between multiple data points. Domain knowledge can be involved
by feeding the appropriate adjacency matrix, inducing message propagation to
follow the purpose. However, a non-parametric method can also be applied using
the attention mechanism. The attention mechanism considers the significance
of the specific data by comparing the similarity between data sets. The model
focuses more on influential data Vaswani et al. (2017), which has assigned a
high attention value. The attention mechanism allows the model to learn the
relationship in a non-parametric way instead of the user-determined relationship
between the links. The graph attention model is a model that combines both
graph-based methodology and an attention mechanism (Velickovic et al., 2017).
By blending the strengths of these two methodologies, they exhibit a synergistic
effect in predicting traffic speed (Zhang et al., 2019a; Kong et al., 2020; Zhang
et al., 2020; Park et al., 2020; Zheng et al., 2020).

However, existing graph attention model research in traffic speed prediction
has lacked consideration of traffic flow. In most papers, the numeric value of
the adjacency matrix has been determined by the distance between the data
collection points, which are referred to as ”links” or "road segments.” A short
distance between two links does not necessarily mean that this pair highly
influences each other. Utilization of the Graph Neural Network (GNN) tailored

to the road network structure is also insufficient. When too many layers are



stacked within a GNN, a cycle structure occurs between nodes in a graph. This
cycle affects the interconnected nodes and causes the over-smoothing problem
in which the predictions of all nodes become similar (Liu et al., 2020; Chen
et al., 2020). In addition, as the number of layers increases, the probability
of occurrence of diverging or vanishing gradients in the overall structure also
increases linearly (Chen et al., 2019; Galimberti et al., 2023). Unfortunately, the
road network graph is a form of a grid; thus, it is much more regular than other
graphs, such as citation graphs. A graph’s higher regularity and low connectivity
increase the minimum distance between node points; therefore, road network
graphs need more graph neural layers than conventional graphs. Consequently,
developing a methodology that can avoid the chronic problems of GNN while
reflecting specific traffic characteristics is necessary.

Third Contribution: This study reflects the characteristics of real-world
road networks in the model. Road networks, in reality, consist of uninterrupted
flow and interrupted flow. Uninterrupted flow corresponds to major arterial
roads in urban areas, such as the Gangbyeon Expressway, Olympic Express-
way, and Dongbu Expressway. These roads have no traffic signals and higher
speed limits. While the number of uninterrupted roads is small, they serve as
the central axis in urban areas. Interrupted flow encompasses the remaining
roads, which are more numerous but have lower road capacities. These roads
typically facilitate movement within sub-areas. Including both types of roads
without differentiating between them could potentially degrade the model’s
performance. Therefore, in this study, we have incorporated modules capable
of understanding each road network’s characteristics.

Forth Contribution: The fourth contribution aims to address the black-
box limitations of deep learning. While deep learning studies typically focus on

performance metrics, this study emphasizes internal attention values. Attention



values, which is an internal parameter, often sacrifice their value distribution
for the sake of accuracy. However, in this study, we constructed a model that
considers the realism of parameter values by building an attention value-based
loss function.

As discussed later, the model focuses solely on prediction performance if
we do not assign appropriate loss constraints on attention values. In this case,
the distribution of attention values becomes unrealistic. For example, it may
concentrate all attention values on a single link. Focusing the attention value
on a single link might be more beneficial, given the simplicity of the traffic
phenomenon. However, the attention value at this point cannot be deemed
natural. This phenomenon can be easily observed when training the model
without imposing an attention loss.

The remainder of the paper is organized as a literature review, where we
focus on conventional priority link detection and graph attention model-based
methodology. Then, we describe our model details in the methodology section.
The model of each stage and data will be described in detail. Finally, the results

and conclusion show the outcome of our analysis and implication directions.
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Chapter 2

Literature Review

2.1 Traffic Speed and Congestion Prediction

Traffic speed prediction has evolved as a critical component in the efficient and
intelligent management of road networks. It plays a pivotal role in formulat-
ing traffic control and routing strategies, minimizing congestion, and improving
safety. This paragraph delves into the broad range of methodologies and models
utilized in traffic speed prediction research. The discussion traces the trajectory
from numerical models to cutting-edge deep learning methodologies, underlin-
ing the significance of each approach in progressing the field.

Various models attempt to solve the problem of traffic speed prediction us-
ing numerical approaches. One notable study in this regard is Dong et al. (2014)
(Dong et al., 2014). Dong et al. (2014) put forward numerical state space mod-
els that offer several advantages in the field of traffic prediction. The proposed
model incorporates both temporal and spatial data, allowing for the considera-

tion of incoming traffic effects and the propagation of shock waves. Furthermore,
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the observation equation in the model utilizes occupancy data to calibrate es-
timation errors over time. The models developed for predicting network flow
rate and time mean speed are based on state space models that account for
both congested and non-congested traffic, taking into account spatial-temporal
patterns to enhance prediction accuracy and robustness. Unlike Autoregressive
Integrated Moving Average (ARIMA) and other time series techniques, these
models do not require the variable to be stationary. Moreover, the state space
estimation method generates equations with a similar structure for stationary
and nonstationary data.

Various machine learning techniques can also be found in a vast amount of
literature addressing the problem of traffic speed prediction. Pan et al. (2012) fo-
cused on predicting speed in the transportation network of Los Angeles County
(Pan et al., 2012). They explored the impact of rush hours and events on speed
prediction accuracy, particularly for short-term and long-term averages, even
in the presence of infrequent occurrences like accidents. By incorporating his-
torical rush-hour behavior, the researchers significantly improved the accuracy
of traditional predictors, achieving a 67% enhancement for short-term predic-
tions and a remarkable 78% improvement for long-term predictions. The study
compared the performance of two prediction models, ARIMA and the Histor-
ical Average Model (HAM). The analysis of real data revealed that ARIMA
outperformed HAM when predicting less than 30 minutes in advance. However,
HAM demonstrated superior performance for the longer prediction horizon than
ARIMA. This result claims ARIMA is less suitable for long-term predictions
exceeding 30 minutes in advance.

Asif et al. (2013) introduced unsupervised learning techniques for analyzing
the spatiotemporal performance trends in a large-scale prediction system based

on Support Vector Regression (SVR) (Asif et al., 2013). The study revealed the
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predictability of traffic speeds differed among roads, and the traditional evalu-
ation indices failed to capture the variations across different time periods. The
authors identified that certain roads exhibited consistent performance patterns,
while others displayed significant variations in performance over time.

Zou et al. (2015) conducted a comprehensive evaluation of the multi-step
prediction performance of three models: the Space-Time (ST) model, Vector
Auto Regression (VAR), and ARIMA (Zou et al., 2015). Speed data from five
loop detectors in Minnesota is used in the research. To capture the cyclical
characteristics of the speed data, hybrid prediction approaches are proposed,
which decompose the speed into a periodic trend and a residual part. The peri-
odic component is modeled using a trigonometric regression function, while the
residual part is modeled using the ST, VAR, and ARIMA models. The results
indicate that the ST model outperforms the VAR and ARIMA models for multi-
step freeway speed prediction as the time step increases. It also demonstrates
that modeling the periodicity and the residual part separately leads to a bet-
ter understanding of the underlying structure of the speed data. The proposed
hybrid prediction approach effectively accommodates the periodic trends and
provides accurate predictions for forecasting horizons exceeding 30 minutes.

Following the advent of deep learning methodology, numerous traffic in-
formation prediction studies have adopted deep learning techniques for their
tasks. One study by Ma et al. (2015) introduces a novel architecture called
Long Short-Term Neural Network (LSTM NN) that effectively captures non-
linear traffic dynamics by addressing the issue of back-propagated error de-
cay (Ma et al., 2015). The LSTM NN demonstrates superior performance in
terms of accuracy and stability compared to other dynamic neural networks
and parametric/nonparametric algorithms. Another research by Wang et al.

(2016) focuses on continuous traffic speed prediction using a deep learning
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method called Error-feedback Recurrent Convolutional Neural Network (eR-
CNN) (Wang et al., 2016). This approach incorporates the spatiotemporal in-
formation of contiguous road segments and employs error feedback neurons to
address abrupt traffic events. The eRCNN outperforms state-of-the-art com-
petitors in terms of predictive accuracy. Zhang et al. (2019) also propose the
Attention Graph Convolutional Sequence-to-Sequence model (AGC-Seq2Seq)
for multistep traffic speed prediction (Zhang et al., 2019b). This deep learn-
ing framework combines the Sequence-to-Sequence (Seq2Seq) model and graph
convolution network to capture the complex temporal dynamics and spatial cor-
relations. The attention mechanism and a newly designed training method are
introduced to overcome the challenges of multistep prediction and capture tem-
poral heterogeneity. Numerical experiments demonstrate that AGC-Seq2Seq
achieves the best prediction performance compared to benchmark models. Fu-
ture research directions include integrating traffic flow theories and applying
the proposed frameworks to advanced transportation management systems.
Several studies have explored the application of advanced deep learning
methodologies in traffic prediction (Polson and Sokolov, 2017; Wu et al., 2018;
Ma et al., 2017). Polson and Sokolov (2017) utilized a linear model fitted with
L1 regularization and tangent hyperbolic non-linear layers. They confirmed the
methodology’s effectiveness in anomalous cases, such as during Chicago Bears
football games and snowstorm events. Wu et al. (2018) attempted to incorporate
the spatiotemporal property using a hybrid model called Deep Nural Network
based Traffic Flow (DNN-BTF) prediction model. The periodicity of traffic flow
was represented through multiple Convolutional Neural Networks (CNN) based
on weekly/daily datasets. By including a CNN in the model structure, it was
possible to capture the spatial features of the network. Ma et al. (2017) also

employed a CNN to capture spatial features, representing traffic speed as a
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single image with road time as the axis and the speed of a specific road and
time being expressed as an image pixel value. They confirmed that deep learning
methodologies outperformed existing statistical models in each paper.

However, research on speed reduction has been relatively limited, with most
studies focusing solely on speed prediction. Moreover, in order to improve travel
time prediction accuracy, it is crucial to develop a model that can effectively
handle the variability and uncertainty in challenging regions. This targeted
approach will enable transportation planners and decision-makers to make more
informed decisions.

There also exist studies on congestion itself (Nagy and Simon, 2021; Nguyen
et al., 2016; Sun et al., 2021). However, in previous research, they defined con-
gestion as a binary variable and built a model to predict congestion propagation
paths. Instead of the severity of congestion on each link, they focused their re-
search on the propagation itself. We can intuitively understand that there are
severe levels of congestion. Therefore, there is a need to represent congestion as

a continuous value.
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2.2 Priority Link Identification

The representative approach to Priority Link Identification is the network index-
based method. A network can be represented using various types of indices, such
as degree centrality, eigenvector centrality, and Katz centrality. These network
indices offer diverse characteristics for the nodes within the network. Numerous
studies have been conducted based on these indices. Bell et al. (2017) introduced
a vulnerability assessment technique based on a capacity-weighted spectral net-
work partitioning strategy. They identified priority network linkages as capacity
bottlenecks: network limits with the lowest capacity (Bell et al., 2017). Mattsson
and Jenelius (2015) categorized vulnerability assessments into topology-based
analyses (e.g., connectivity and capacity vulnerability) and system-based anal-
yses, depending on whether the congestion impact by traffic flows was included
(Mattsson and Jenelius, 2015). These attempts were primarily applied when
estimating an essential link in a fixed graph. From a fundamental perspective,
the simulation-based and optimization-based methods introduced below also
can be considered derivatives of network index-based research.

Formulating the priority link selection problem as an optimization is also
a common approach. Li et al. (2019) investigated a transportation network
recovery strategy for the emergency recovery phase based on an optimization
problem. They also proposed two resilience metrics to evaluate recovery rapidity
and network performance. The link selection strategy was developed using a
genetic algorithm. In this case, the genetic algorithm plays a role in selecting
a link with high significance. The evaluation part is based on the optimization
model (Li et al., 2019). Yang et al. (2016) established a mathematical model
to select a priority link based on travelers’ heterogeneous risk-taking behavior.

They aggregated the research area to alleviate the computational burden (Yang
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et al., 2016). Almost all priority link identification problems work at the bi-level
to identify the appropriate priority link and observe the effect in the network
accordingly. This was also the case with Yang et al. (2016). A bi-level model
was also adopted by Yu, Yang, and Yun (2014). The research was conducted to
find a priority link based on the link redundancy index in the first step and the
link priority index in the second step (Yu et al., 2014; Gu et al., 2020). As the
optimization problem becomes more complex, by adding various variables, the
optimization problem eventually reaches a level that cannot be solved in closed
form, resulting in a long computational time for a solution.

Simulation-based priority link detection consists of a link selection algo-
rithm and network evaluation. The simulation-based algorithm has predictive
power as it searches all possible future scenarios but has a computational cost
and time weakness. The other problem is that since the future is predicted
according to human-made logic, the model may not function properly in unex-
pected situations that humans did not anticipate. Gauthier et al. (2018) verified
the network’s resilience when a disruptive event occurred using resilience stress
testing and a dynamic mesoscopic simulator. Furthermore, the most critical
link among road networks was selected based on the overall travel cost of the
entire network. The time difference for the loss of each link was the criteria.
However, this study acknowledged a problem with the ranking. The ranking
changes rapidly depending on which metric is used. Additionally, it recognized
that unavoidable computational costs occurred during the simulation process.
Due to the high demand for computational power, it was explained that it is
challenging to utilize in real-time, even in a medium-sized network. In a test
using the Paris DIRIF road network, which is a medium-sized network com-
prising 868 links, the selection of a priority link took over an hour (Gauthier

et al., 2018).
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Another study used a genetic algorithm with a simulation (Pan et al., 2022).
A genetic algorithm selects which link to cut through the generations; the sim-
ulation starts without the cut-out link. In this study, it is also essential to
determine which metric to evaluate network resilience. The simulation results
were evaluated with recovery time and cumulative performance during the re-
covery. This bi-level model formulation is one of the most common model types
for selecting priority links. Recent studies tend to select a priority link based on
multiple criteria. Aydin et al. (2018) used multiple criteria to select a strategy,
such as centrality in network and road hierarchy as criteria (Aydin et al., 2018).
Liu et al. (2019) also brought a similar approach for prioritization problem (Liu

et al., 2022)
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In order to more accurately assess and manage transportation networks, it
is crucial to develop new indices or methodologies that can capture the dynamic
nature of traffic flow and congestion. By incorporating real-time traffic data and
considering the relationships between connected links, these new approaches can
provide a more comprehensive understanding of network performance, allowing
for more informed decision-making in traffic management and infrastructure
planning.

In optimization and simulation modeling, the inherent iterative processes
can aptly depict the nuances of road networks, with correlations between roads
being illuminated through appropriate model design. While optimization allows
for the identification of priority links exclusively in the present context, its
confluence with simulation models facilitates prospective predictions. A priority
link identification model that can perform prediction can be built with a scheme
that renders the future situation through the simulation model and solves the
optimization problem for that particular situation. However, optimization and
simulation models also have their drawbacks.

Primarily, the computational demands of both optimization and simulation
are extensive, precluding real-time determination of priority links. To accurately
represent impending traffic conditions within a desired timeframe, simulations
must encompass the entire duration. If the interlude between simulation steps
is overly extended, it compromises both the utility and precision of the appli-
cation. Conversely, a shortened time interval necessitates an extensive iterative
process, prolonging the attainment of anticipated traffic scenarios. The liter-
ature confirmed that the computation time exceeded 1 hour, even in the size
of a small village. In the case of deep learning, parallelization using GPUs is
well constructed so that many matrix operations can be processed almost in-

stantaneously. However, simulations based on mathematical models are not yet
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parallelized through GPU.

Secondly, the simulation model does not accurately predict future scenarios.
This issue is a common problem inherent to all simulation models. By approx-
imating real-world situations through finite units, errors are inevitably gener-
ated. These errors accumulate over time, resulting in the simulation model’s
low performance in predicting distant future scenarios. Furthermore, the sim-
ulation designer’s bias may be reflected in the simulation, causing the overall
results to be skewed. Recently, deep learning has been introduced to address
this issue, and if the graph attention mechanism can accurately reproduce all
traffic situations, precise results can be obtained. However, the model will vary
depending on the traffic conditions that the researcher deems most important.
The prescribed methodology for addressing this issue employs deep learning
techniques with the graph attention mechanism.

Third, different outcomes are obtained depending on the index to be opti-
mized. Many of the performance metrics identified in the literature are deter-
mined at the researcher’s discretion. These metrics need to be strictly defined
since they influence the conclusion of the optimization problem. Nevertheless,
akin to the challenges encountered in simulation, a certain degree of human-
induced bias remains inevitable.

Fourth, the accumulated data cannot be utilized effectively. Since the future
situation is implemented using a predetermined model, newly collected data
cannot be incorporated into the model. The model developer should directly
modify the internal structure of the simulation to incorporate new data. Until
such modifications are executed, the model remains incapable of reflecting the

continuously accrued data.
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Table 2.3: Existing models and their evaluation with various criteria

Criteria

Index-based

Optimization and Simulation

Real-time

/A, May not be possible to

increase the network size

X, Real-time unavailable

from medium-sized networks

Network

Topology

A, Reflected by index, but
depends on the intention of

the model developer

O, Reflect on the simulation

Link-Link

Attraction

A, Reflected by index, but
depends on the intention of

the model developer

A, Reflect in simulation, but
depends on the intention of

the model developer

Dynamic
property of
Traffic

/A, Varies by the formulation

of the index

O, Reflected as an internal

mechanism

Future

Prediction

X, Index calculation based on

historical data

A\, Reflect in simulation, but
Depends on the intention of

the model developer

2.3 Link and Network Indices

Various congestion metrics are used to evaluate traffic conditions, including

speed, travel time, and delay. These metrics provide valuable insights into the

performance of individual road links and can help transportation planners and

engineers identify problem areas and prioritize improvement projects. However,

while these metrics offer a detailed understanding of congestion levels on indi-

vidual links, they may not fully capture the broader network dynamics and the

relationships between connected links (Afrin and Yodo, 2020).

23



In order to better understand the overall traffic flow within a network and its
impact on congestion, it is essential to consider the interdependencies between
connected road links. Traditional congestion metrics, mostly a metric for indi-
vidual links, can overlook the cascading effects of congestion on adjacent links
and the more extensive transportation network (Li et al., 2019). The specific
limitation of indices can be summarized below

Firstly, certain indices are grounded in linear models, which fail to encap-
sulate the dynamic nature of traffic. Within traffic flow, vehicles interact with
those both in front and behind them. Similarly, vehicular platoons respond to
preceding and succeeding platoons. Additionally, when a shock wave traverses
the roadway, it too induces interactions. Compared to the traffic response with
such a dynamic and non-linear relationship with various elements, the linear
model has an inherent problem: it cannot reflect such non-linearity.

Second, some indices do not reflect the topology of the road network. While
it is possible to consider the traffic conditions of adjacent roads, quantifying
the degree of their interdependence remains a challenge. Therefore, the more
complex the road network, the lower the indices’ performance.

Third, the indices do not reflect the hierarchy between the two roads. Not all
roads are the same; various hierarchies exist among them. Occasionally, some
studies take road hierarchy into account. However, even those studies fail to
define the relationship between two distinct hierarchies of roads. There may be
more important roads among the connected roads, but such characteristics are
not taken into account in the existing indices.

Fourth, when the size of the network increases, real-time priority link iden-
tification is impossible. If the network consists of 100 links, only 10,000 compar-
isons corresponding to a 100 by 100-matrix are needed to determine important

links. However, if there are more than 5,000 links, like the Seoul road network
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conducted in this study, the number of comparisons increases to 2,500,000. In
this case, if the comparison for one pair takes longer than 0.1 ms, the prediction
for a single step takes more than 5 minutes, making it difficult to utilize at the
traffic operation level.

Fifth, the indices cannot have predictive power. As the indices are based
on past data. Therefore, it is possible to interpret only past relationships that
have already passed. Consideration of the future circumstances to come has
not been carried out. This can be a serious problem in real applications. In the
case of rare events, such as severe accidents or unprecedented disasters like the
heavy rain that occurred in August 2022, there is no comparable historical data
available. Even if it is not a rare case, some existing indices cannot interpret
the phenomenon unless the exactly same event has occurred in the past, even
if it is a frequent event.

Hence, as we can check through the literature, network indices, such as
betweenness centrality, degree centrality, Katz centrality, closeness centrality,
and eigenvector centrality, have been widely used to analyze and understand
the structural properties of transportation networks. These indices help identify
important nodes or links within the network and can provide valuable insights
for transportation planning and management. Degree centrality represents how
directly connected a link is to other links. Katz centrality indicates how many
different paths can reach other links. Closeness centrality measures how close the
distance is from other links to the target link. Betweenness centrality determines
whether a specific link is part of the shortest path between two other links.

However, these indices also have limitations, primarily related to their in-
ability to capture the dynamic nature of traffic within the network. One major
limitation of these centrality measures is that they are based on the static

structure of the network. When the structure of the network is fixed, the val-
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Table 2.4: Definitions of each centrality

Centrality Definition
Degree Centrality Cp(i) = deg(i)
Katz Centrality Cr(i) =32, Z;\le o (Ak)ji
Closeness Centrality Col(i) = (N —1)/>2; dij
Betweenness Centrality Cp(i) = X2 2iz 0k (1) /0jk

ues of these indices are fixed as well, regardless of the actual traffic conditions.
Consequently, these static characteristics do not account for the dynamic fluc-
tuations in traffic flow and congestion that are commonly observed in real-world
transportation networks. As a result, relying solely on these traditional network
indices may lead to an incomplete understanding of traffic patterns and their

impact on network performance.

2.4 Graph Attention Model

As deep learning methods demonstrated superior achievements compared to
conventional statistical models, graph-based deep learning methods, such as
Graph Neural Networks (GNN)s, also showcased their technical value. GNNs
are a distinct variant of neural networks specifically designed to handle data
structured as graphs. They possess the ability to discern the entire topological
configuration of a graph, concurrently updating the properties of both its nodes
and edges based on the characteristics of their adjacent elements. This proce-
dure includes the enhancement of node embeddings via a process of aggregation

and combining at each respective layer.
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) = AGGREGATED ({A{) Vu € N'(v)}) (21)

WY = o(WO . COMBINE({™, 1)) (2:2)

In Equation 2.1 hg)l) denotes the feature vector of the node v at the [-th
layer, and A (v) stands for the group of neighboring nodes to a specific node v.
At every layer [, a differentiable function part, AGGREGATE, amasses the rep-
resentation vectors of neighbors, which are then assimilated via the COMBINE
function. Furthermore, a weight matrix W is applied, and a nonlinear activation
function o is utilized to refresh the hidden depiction of node v. This model is
typically referred to as the message-passing scheme.

The Graph Convolutional Network (GCN) (Kipf and Welling, 2016) is an
effective variant of CNN adapted for graph structures. It’s a fundamental type
of message-passing neural network, using a local neighborhood assembly with
first-order spectral filters that are learned, followed by a nonlinear activation

function to construct node representations.

A = o(W® . MEAN{R!~Y Vu € N(v) U {v}}) (2.3)

Based on this GNN, and mostly GCN, numerous research has emerged.
Yu, Lee, and Sohn (2020) established an adjacency matrix that considered road
length and lane number and inserted a learnable parameter inside the adjacency
matrix value, generating a similar effect to the attention mechanism (Yu et al.,
2020). Lu et al. (2020) concurrently applied Long Short-Term Memory (LSTM)
and GNN (Lu et al., 2020). They used the Xi’an and Beijing feature graphs from
road traffic networks and applied the obtained features to LSTM.

Several studies presented attempts to extract spatial and temporal features

of the road traffic network using graphs. Ge et al. (2019) utilized k-order spec-
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tral graph convolution to approximate the message-passing scheme of a graph
(Ge et al., 2019). Using a dilated causal convolution, they constructed a spa-
tiotemporal dependency of road traffic data. Furthermore, the day of the week,
road structure, and points of interest were incorporated to advance the model.
Li et al. (2021) created a graph where two model substructures were fused si-
multaneously to create spatial and temporal dependencies. Local and global
dependencies were obtained from gated dilated networks (Li and Zhu, 2021).
However, these approaches have limitations, as excessive intervention from re-
searchers is needed. Human-made adjacency weights induce the model to be
human-dependent.

GNN models had exceptional forecast accuracy; however, they statistically
estimated traffic’s spatial dependencies, overlooking the possibility of dependen-
cies changing over time. Moreover, the interpretability of deep learning models
is insufficient due to their black-box nature. Therefore, a deeper understand-
ing of the road traffic network interdependence derived from the deep learning
model is essential.

The attention value captured by the Graph Attention Network (GAT) can
represent structural dependencies, providing a higher understanding of the road
traffic network and the model. (Researchers have the discretion to adopt the
GAT framework when integrating attention mechanisms into graphs. Numerous
variations exist.) Several attempts have been made to apply the attention mech-
anism to graph neural networks without following the GAT framework—these
attempts aimed at capturing spatial and temporal attention, respectively. Wang
et al. (2020) combined traffic information on adjacent roads with a positional
attention mechanism, and a similar approach was taken by Zhou et al. (2021)
by reflecting temporary attraction using temporal attention Wang et al. (2020);
Zhou et al. (2020).
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The implementation of the GAT framework in traffic information prediction
commenced with the work of Zhang et al. (2019). Zhang et al. (2019) integrated
the LSTM layer into the GAT framework and utilized the distance between
links as the basis for the adjacency matrix (Zhang et al., 2019a). Nevertheless,
given that the inception of the attention mechanism aimed to deviate from
the existing recurrent neural network (RNN), it is challenging to argue that
the combination of LSTM with GAT is a suitable approach. Kong et al. (2020)
employed both a self-adaptive adjacency matrix and a distance-based adjacency
matrix to augment the non-parametric nature of their model Kong et al. (2020).
Additionally, they utilized a residual architecture to facilitate information flow
across layers. Capturing spatiotemporal features has been a crucial aspect of
the GAT framework. Zhang et al. (2020), Zheng et al. (2020), and Park et
al. (2020) introduced various layers to capture spatiotemporal features (Zhang
et al., 2020; Park et al., 2020; Zheng et al., 2020). Park et al. (2020) enhanced
the adjacency matrix by considering connectivity and edge weight, such that
two directly connected links are deemed to have connectivity.

Despite the extensive literature, three primary gaps remain. Firstly, prior
studies did not construct the adjacency matrix with traffic flow as the focal
point. Park et al. (2020) and Yu, Yin, and Zhu (2017) attempted a connectivity-
based matrix; however, it concentrated on the link’s physical connection rather
than the connection established via traffic flow (Park et al., 2020; Yu et al.,
2017). Other studies determined the adjacency matrix based solely on distance.
This means the consideration of road network topology was insufficient. Insuf-
ficient consideration can also be found in other aspects. Numerous papers have
employed residual connections; however, the introduction of residual connec-
tions was due to the performance demonstrated in other studies, not because

of the consideration of traffic-related characteristics (He et al., 2016).
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Secondly, There was no consideration for the various hierarchies of roads
present in traffic. All roads were treated as having the same hierarchy, and as
a result, no distinction was made between interrupted and uninterrupted flows.
The type of road, determined by the presence or absence of signals, significantly
influences driving behavior and, therefore, must be taken into account.

Lastly, the examination of attention values was insufficient. There has been
no investigation into which roads are deemed essential by each attention value
and the effects that emerge accordingly. Although there are examples of case
studies conducted at the level of several dozen links, it is challenging to find
such literature at a more extensive network scale. In this paper, we will establish
a method for obtaining realistic attention values and verify the effects of these
attention values on a city scale. This study aims to propose solutions that
address these limitations.

The remainder of this section aims to validate the aforementioned limita-
tions via case studies. Numerous research endeavors depict the adjacency matrix
of road networks based on proximity. Nonetheless, this methodology presents
several logical inconsistencies. It is not accurate to unconditionally connect
two links simply because they are nearby, nor is it accurate to refrain from
connecting them solely due to a significant distance between them. Figure 2.1
illustrates such a situation. This figure provides a detailed view of Mangwon
Hangang Park, revealing that Gangbyeonbuk-ro and Mangwon-ro are situated
close to each other. With a straight-line distance of approximately 200 meters,
most studies consider these roads interconnected.

However, in reality, accessing Mangwon-ro from Gangbyeonbuk-ro requires a
driving distance of more than 2 kilometers, traversing Tojeong-ro and Wausan-
ro. This phenomenon is particularly prevalent in the vicinity of urban highways.

Olympic Expressway, Gangbyeon Expressway, and Naebu Expressway all pass
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by branch roads but are not directly connected to them. As a result, the urban
expressway, which plays a crucial role in the road network, generates biased

predicted values due to numerous branch roads. Given the importance of urban

highways, this issue presents a significant challenge.

Figure 2.1: Failure case of a distance-based adjacency matrix

An adjacency matrix can be constructed based on connectivity to address
this issue. However, this approach introduces another problem stemming from
the unique characteristics of road networks, such as that of Seoul, when com-
pared to other types of networks. These unique characteristics can be identified
through various graph indices. Table 2.6 presents a comparison of network in-

dices for the Seoul road network, airline data, and authorship data. As the most
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representative network type, airline data exhibit a high average degree and low
average path length. Its modularity is 0.245, which is lower than that of other
graphs. The authorship network has the lowest average degree, at 3.451, and
likely due to the nature of thesis writing activities, which are not expected to
yield as high a degree as other networks. Consequently, it demonstrates a low
density of 0.002 and a high modularity of 0.955.

However, the average path length is the most significant difference between
the Seoul road network and the airline and authorship networks. The airline
network has an average path length of 2.318, meaning that other airports can be
reached with fewer than three stops on average. Despite its low average degree,
the authorship network also has an average path length of 5.823, indicating that
all individuals can be connected within six hops. In contrast, the average path
length of the Seoul road network is 16.73, signifying that, on average, 16.73
movements are required to reach another link. This discrepancy arises from the
nature of road networks, which lack a central hub. The absence of a hub further
exacerbates the difference between the minimum and maximum path lengths.

The degree distribution depicted in Figure 2.2 also illustrates how the Seoul
road network differs from other networks. Since the airline network consists of
several hubs and mostly spokes, the degree values are generally low. As the
degree value increases, the count consistently decreases. In contrast, the degree
distribution of the Seoul road network peaks at the average degree value. Very
few links serve as hubs, and even those have degree values that do not differ
significantly from other links. As demonstrated in Table 2.6 and Figure 2.2, the
Seoul road network represents a highly unique type of graph. Consequently, the
performance of the model is limited when approached using the same methods
as existing graph attention models.

Finally, directly applying the graph attention mechanism to traffic predic-
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Table 2.6: Indices of various networks

Type of Network Seoul Road Airline Authorship
Network Network Network
Nodes 5,068 235 1,589
Edges 27,957 1,297 2,742
Average Degree 5.582 11.038 3.451
Network Diameter 46 4 17
Average Path length 16.727 2.318 5.823
Density 0.001 0.047 0.002
Modularity 0.899 0.245 0.955
Average Clustering 0.122 0.652 0.878
Coefficient

tion risks overfitting. The attention mechanism was originally introduced to
handle challenges in domains such as natural language processing. In natural
languages, the vast lexicon can be arranged in myriad combinations to construct
sentences. For instance, the term ”hard” can denote ”difficult” or ”exhausting,”
and simultaneously convey ”absolute” or ”undeniable.” To address such com-
plexities, GPT-4 employs a staggering one trillion parameters.

In contrast, road network data is relatively simple. The speed range is fixed,
with no significant deviations from that range. Although there are instances
where the speed drops suddenly, it always remains a positive value. As shown
in Figure 2.2, the speeds of roads tend to move in tandem. The speeds of
links in the road network rise and fall together. They decrease during morning
and afternoon rush hours and increase throughout the day, with high speeds

guaranteed in the early morning and late at night. Even with a straightforward

34 A=



Degree Distribution of Seoul Road Network
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Figure 2.2: Degree distribution of Seoul road network(top) and conventional

network (Airline) (bottom)

rule, a range of speeds can be easily predicted. If a model equipped with a large

number of parameters used in natural language processing systems is employed
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for this simple behavior, overfitting naturally occurs.

Speed of Major Links
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Figure 2.3: Speed of major links showing similar behavior

In particular, the issue becomes more significant since we are also interested
in the attention value. While indicators related to speed reduction are primary,
this study will also examine whether outliers in attention values occur. Accurate
speed predictions and the emergence of biased attention can coexist. In fact,
this occurred in numerous cases during the model training. All attention values
tend to have the same value or be randomly concentrated on two or three
links. All of these problems originate from overfitting. Precisely, as the number
of links increases, so does the number of parameters, leading to more severe
overfitting. Although the speed reduction prediction performance improves, the

attention value already produces results beyond common sense. In the case
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of the graph attention model, it was observed that overfitting occurs rapidly
as the graph layer - attention - graph layer - attention pattern is repeated.
Since we are tackling a problem that has bounded values with a synchronized
trend, the attention value is prone to deviate from common sense. It is because
the problem could be solved with just the graph layer without an attention
mechanism. In the next chapter, which introduces Methods, we will discuss

how current research addressed the aforementioned problem.

- M 2- T ¢



Chapter 3

Establishment of Impact on
Adjacent Network Index

3.1 Index Setup

3.1.1 Research Flow and Data Description

Set a impact of adjacent Propose a traffic flow Develop a advanced
network index based adjacency matrix prediction model

Figure 3.1: The framework and flow of the research

This study mainly consists of three steps. Firstly, we develop an index that
can determine the impact of the adjacent network. Secondly, we improve the
adjacency matrix of the model to be utilized for predicting the index. Lastly,
we develop a prediction model for estimating the index.

In part 1, we define the impact of the adjacent network index. So far, most
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deep learning applications in traffic have primarily focused on predicting travel
speeds. While travel speed is a crucial factor, this study aims to measure a
particular road’s influence on the speed reduction of the network.

The index representing the degree of impact on the network can be defined
in various ways depending on the researcher’s purpose and the given data. The
objective of this study is to understand the impact a specific road has on the
degradation of travel speeds within the network. Accordingly, the research was
conducted using base indicators related to speed. The new index is the time-
space combination of existing indicators.

In some studies, attention values are directly used to assess the importance
of links. While it is possible to consider attention values as direct indicators of
importance, current research chooses not to do so. This decision was made be-
cause the validation of attention values has not yet been sufficiently conducted,
and developing a direct indicator is more straightforward.

Instead of measuring the speed itself, we measured the degree of speed
reduction. The appropriate speed can vary for each road. Even if vehicles pass
at the same speed of 15 km/h, the congestion level will have different values
depending on the road’s appropriate speed. For instance, if the link speed is
measured at 15 km/h, the speed reduction ratio for a road with an appropriate
speed of 30 km/h would be 50%), while for a road with an appropriate speed of
60 km/h, the ratio would be 75%. Based on such speed reduction indicators,
we aimed to investigate the impact on the degree of speed reduction in the
network.

In Part 2, we improved the shortcomings of the existing graph attention
model by using data from Gangnam-gu. The fields in which the graph attention
model has been actively developed are social network services, recommendation

systems, and pharmacies. These fields have few things in common with trans-
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portation. For this reason, there are model characteristics that are not suitable
for the characteristics of traffic. The most significant difference when comparing
the example with the social network service is the absence of a hub in the social
network. There may be routes that act as significant axes due to high traffic
volume, but according to the road network data, there is almost no difference in
the node degree of the main routes and the branch lines. One problem that oc-
curs because of this is that the maximum distances between nodes are lengthy.
In Part 2, this problem was solved by improving the adjacency matrix. Details
on this are described in the problem definition, which will be described later.

This research improved the model based on data from Gangnam-gu data
because of the practical computational cost problem. The time difference be-
tween training and testing is significant in deep learning models. In the case of
training, the gradient of each parameter identified in the loss should be updated
every batch. Since deep learning is a model with enhanced explanatory power
by using a large number of parameters, the update process takes a considerable
amount of time. On the other hand, in the case of testing, there is no need to
store the gradient; only checking the output is necessary, thus taking much less
time. In this study, when training was conducted throughout Seoul, it generally
took about 10 hours for the train and validation errors to converge. Therefore,
improving the model structure using this data may take too long.

The structure of urban roads in cities is grid structures, which are generally
similar. Therefore, it is expected that there will be no significant problems even
if the adjacency matrix is developed based in Gangnam-gu, one of the most
urbanized areas in Seoul.

Lastly, in Part 3, the index developed in Part 1 and the adjacency matrix
made in Part 2 were used for the entire city of Seoul. In this part, we sought to

incorporate traffic characteristics into the model. There are two main types of
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traffic flow: interrupted flow, which has traffic signals, and uninterrupted flow,
which has no traffic signals. These two flows possess different hierarchies on
the road and exhibit distinct characteristics. Uninterrupted flow typically has a
higher speed limit and broader road width. In contrast, interrupted flow exhibits
opposite properties: lower speed limit and narrower road width. Although it is
clear that the hierarchy of different roads should be treated separately, there
have been no attempts to the best of our knowledge. In this study, we aim to
develop a model that reflects the hierarchy of roads with varying characteristics.

In addition, this study introduced a loss to limit unrealistic attention values.
Previous analyses of attention values have not been adequately conducted, par-
ticularly in network-scale studies like this one. Ideally, attention values should
be well-distributed, referencing links close to a specific link. However, as the
number of referenced links increases, attention values begin to deviate in unex-
pected directions. This is expected to have a relationship with the synchronized
behavior of the traffic state.

Most of the speed of a city shows a similar pattern. During the morning
and afternoon peak hours, the overall travel speed decreases; at other times,
the travel speed increases. In other words, from the point of view of the graph
attention model, even if the weight of the attention score is adjusted less sen-
sitively, the model can respond appropriately. In reality, the attention value is
focused on one single link.

The sum of attention each link can refer to equals one. Therefore, if you
check the maximum attention of each link, you can find out which road is
considered the most important. The problem is that most roads give maximum
attention to similar or nearly identical roads. There may be various reasons
for this, but the simplicity of the traffic speed data described above is thought

to play a major role. For this reason, human intention was included in the
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model development stage. The sum of each road’s attention scores and distance
penalty was checked for both uninterrupted and interrupted flow. Here the
distance penalty was given if the referred link was located too far.

The rest of this section describes the data. In Seoul, the traffic information
collection agency provides traffic data through Transport Operation & Infor-
mation Service (TOPIS). Information such as link speed, traffic volume, and
public transportation usage is provided. Of these, link speed data was used in
this study. Traffic volume data were excluded because the collection location
was less than 3% of the link speed, and there were too many missings.

The link speed provided by TOPIS is recorded based on the service link.
However, there is a difference between the standard node-link system and the
service link system provided by the National Traffic Information Center. TOPIS
provides mapping data between the service and standard links to solve this
problem. In general, one service link consists of 1 to 4 standard links. However,
given the sheer volume of links, missing elements in the mapping data are
inevitable. The number of standard links obtained based on the Service link-
Standard link mapping data was counted as 11,398. Considering that there were
24,720 existing mapping data, more than half were lost due to missing. Since one
of the essential ideas of this study is the improvement of the adjacency matrix,
this loss of connectivity adversely affects the study results. Therefore, if there
is a service link with speed data within 3-hop, the link has been restored. In
this way, the number of repairing a broken standard link corresponds to about
2,500. Therefore, the total number of service links used in the Seoul study was
counted as 5,068. Figure 3.2 shows the illustration of the service links in Seoul.

The acquisition period was from November 1 to November 28, 2022, and
data were acquired for 28 days. The unit of aggregation of the data is 5 min-

utes. It is confirmed that as social distancing restrictions in Seoul were gradually

1l 7
42 & Ly



hi : .
'\_\ g \}}.""";.--_.//,m
'. ¥ O - ol
o SHEN
s
L wrl
\ AT
el
r
| - 16t
Yoz ’
2
- 1=
=N i
B F oS
‘ 'l'ﬂ‘s \
i "
\ i3
i ye —-—
4 ELY,
A
f r
£ 2i4i HTRE - i
it
f & Rl
] = .Eb:_ '—'-n:—_-—;"-_-'ﬁ' 3

L L

e

Figure 3.2: The service link of Seoul used in the research
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lifted in September 2021, the transportation demand in November 2022 would

have been equal to that of a typical year. Since some companies still recom-

mend working from home, slight differences may exist, but it is expected to be

minimal.

Gangnam-gu data used in Part 1 consists of 228 links selected from Seoul

data. Using these 228 links, we proceeded with model improvement. All major

arterial roads in the vicinity of Gangnam-gu are included in this data.

3.1.2 Utilizing Speed Reduction Index

There are various indicators for measuring the state of a network. We can obtain

various indicators by combining primary traffic data such as speed, density,
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Figure 3.3: Target service link of Gangnam-gu used in the research

and volume. Speed is the simplest, most stable, and easiest to acquire among
the various fundamental indicators. Although data acquisition points for traffic
volume were limited in this study, speed data was available for almost all links.
Therefore, speed was chosen as the base indicator in this study. Table 3.1 below
also highlights the advantages of using speed as a metric, including its simplicity,

stability, and ease of data acquisition.
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Table 3.1: Congestion Metrics and Assessment Criterias (Rao and Rao, 2012)

Speed

O | © | Simplicity

O | O | Ease of Data Collection

O | © | Stability

O | © | Repeatability

> | © | Management of Congestion
> | ¢ | City Comparision

O | O | Continuous value

Travel

Time

>~
>~
>
o
>~
>~
o

Delay

o
o
>
o
>
>
o

LOS and

Volume

This study used the speed reduction index(SRI) as the basis for various
metrics, focusing on network congestion. The following Equation 3.1 defines

the index:

85 th til d — t d
Speed Reduction Index = DETCENITe Spec - CUTTOND Spee (3.1)
85 th percentile speed

The SRI can have different values for different links, even at the same speed.
As shown in Figure 3.4, if the original speed limit of a road is higher, the SRI
will have a larger value. For example, when the speed on a left link in Figure 3.4
is measured as 40 km/h, the SRI will be 50% because the link’s 85th percentile
speed is 80 km/h. However, on the road with an 85th percentile speed of 50
km/h, 45 km/h corresponds to 20% on the SRI.
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Figure 3.4: Example of SRI for different link

Using SRI, it is possible to measure how congested each road is while con-

sidering the relative hierarchy of the roads. Typically, the SRI is represented as

the inverse of the speed graph. In the following examples, we will examine the

characteristics of SRI.

During the morning and afternoon commute, congestion is worse at one time

than the other. The links highlighted in red on the map on the right correspond

to the blue link on the left graph, which is the source of the speed reduction
causing the speed reduction on the downstream links. As shown in Figure 3.5

below, it can be seen that one of the SRI peaks is more severe than the other

during the morning and afternoon commute.

Speed Reduction Index (SRI) of 1-hop Away from Blue Link

8

— Service 1D 1020011500

~

Speed Reduction Index (SRI)
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&

- Seoul Seongdong-gu Seobingo-ro
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The next thing we can infer is that not all connected links are necessarily
related to congestion. Congestion propagation may not occur for links that
involve U-turns or right/left turns. The figure below, Figure 3.6, illustrates
the speed reduction propagation originating from the link indicated by the
blue graph on the left. It can be seen that even when the SRI value rises, the
yellow graph remains at a low value. This is because there are different types
of connectivity and connectivity that have no relationship to each other.

In Figure 3.6, again, we can confirm that speed reduction propagation takes
longer than expected. Shockwave propagation is different from speed reduction
propagation. The literature shows that the speed of an urban shockwave is
13.32 km/h, but the speed observed in our graph is much slower than that
(Ramezani and Geroliminis, 2015). This means shockwave and speed reduction

is a different phenomenon.

Speed Reduction Index (SRI) of I-hop Away from Blue Link

80 — Service ID 1030006500

Service ID 1030006600
— Service ID 1030008000
— Service ID 1030008300

Speed Reduction Index (SRI)

Figure 3.6: Discovery of unrelated links and delay in speed reduction

propagation

Lastly, it can be difficult to intuitively understand speed reduction propaga-
tion beyond 1-hop, especially when considering various possible routes for speed
reduction propagation. This is due to the interconnectedness of the network,
which can make it difficult to discern a clear trend in congestion propaga-

tion. This highlights the need for more sophisticated modeling techniques to
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accurately predict and analyze speed reduction propagation in complex urban
networks. By developing more advanced models, we can gain a better under-
standing of how speed reduction propagates and identify effective strategies for

mitigating its effects.

3.1.3 Creating an Impact on Adjacent Network Index

The impact on the adjacent network index aims to assess whether the current
speed reduction on a given link results in future speed reduction on connected
links. This index is calculated as the product of the current speed reduction
index of the given link and the sum of the future speed reduction index of the
links connected to the given link.

The current speed reduction index of the given link plays a crucial role
in this calculation, as an uncongested road cannot cause congestion on other
links. This consideration ensures that only congested links are evaluated when
determining the impact on the adjacent network, thus providing a more accurate
representation of the potential traffic issue.

The future speed reduction index of connected links represents the extent of
the future speed reduction in the neighborhood due to the speed reduction of the
target link. By accounting for the speed reduction index on connected links, the
index offers a comprehensive understanding of how the current congestion on a
specific link may contribute to the overall traffic conditions in the surrounding
area.

There was an issue regarding how many hops to consider in the index. Real-
istically, it is challenging to assume that speed reduction propagates consistently
beyond three hops on urban roads. Even the SRI graph becomes uncertain in
terms of correlation after passing just two hops. If congestion were to propa-

gate beyond three hops, the propagation pattern would ultimately be reflected

1 3
48 M=



in the indices, as we will observe the speed reduction for all links up to three
hops away. The relationship between a specific link and a link five hops away
can be determined through the impact on the adjacent network index for the

two hops away link.

eoe

Present of Target Link
—

SRli7 ! ! l l

Future of Adjacent Networks
3-hop 60]min T T T T

SRIj ¢

Py O

1-hop 2-hop 3-hop

Figure 3.7: Diagram of impact on adjacency matrix index

In summary, taking into account more than three hops would likely not pro-
vide additional valuable information, as the relationship between links becomes
less clear and less directly connected with each hop. Focusing on the immediate
neighboring links (up to two or three hops away), the impact on the adjacent
network index can provide more accurate and actionable insights into speed
reduction and its propagation through the road network. As a result, the index

has been set up as Equation (3.2) below.

Impact on Adjacent Network Index, of Link 4, at time T’

3—hop 60

=IANLr= > > SRIjry (32)
JEN(i) t=5
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3.1.4 Preprocessing the Index

Data engineering might be just as important, if not more so, than model de-
velopment. The data distribution was adjusted to ensure that it was suitable
for smooth model training. The initial distribution of SRI is shown on the left
side of Figure 3.8. Most values are between -20 and 100; however, some values
have large negative numbers. Some values even reach -575. These values occur
because some vehicles drive anomalously fast on roads with significantly low
85th-percentile speeds. Our primary focus is on speed reduction, not determin-
ing the speeds of fast-moving vehicles. Therefore, we performed normalization

by appropriately reducing the absolute values of such data points.

Speed Reduction Index Counts Before Normalization Speed Reduction Index Counts After Normalization

le6
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500000
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300000
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Data Counts
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05 100000

00 0
-600 -500 -400 -300 -200 -100 [ 100 -40 -20 0 20 40 0 80 100

Speed Reduction Index Speed Reduction Index

Figure 3.8: Before and after normalizing SRI

The previously validated SRI serves as input data for the model. Next, the
distribution of data we examined is the model’s output, which is the sum of
future SRI values in the adjacent network. As seen on the left side of Figure
3.9, since the SRI was processed relatively well, the sum of future SRI val-
ues exhibited a distribution close to normal. However, by applying a square
root transformation, we were able to make the distribution even more closely

resemble a normal distribution.

50 S Eas kg



7]
2

o

Data Coun

700000

600000

500000

400000

300000

200000

100000

0

Figure

Sum of Future SRI on Adjacent Network
Before Normalization

0 5000 10000 15000 20000 25000
Sum of Future SRI
on Adjacent Network

Data Counts

Sum of Future SRI on Adjacent Network

After Normalization (Sqaure Root)

600000

500000

400000

300000

200000

100000

04

0

100 125 150

Sqaure Root of Sum of Future SRI
on Adjacent Network

3.9: The Sum of future SRI before and after normalization

3.2 Analyzing the IANI

in 40,868,352 data points.

3.2.1 Statistical Property of TANI

Table 3.2: Statistics of a sum of future SRI

Table 3.2 represents the pre-normalization values of the sum of future SRI for

5,068 links over 28 days, with 24 hours per day and 12 values per hour, resulting

Statistics Value
Mean 6,076.127
Standard Deviation 3,219.975
Min Value 0.000
25-Percentile Value 1.061
50-Percentile Value 3,720.780
75-Percentile Value 5,733.657
Max Value 27,155.070

The average value is 6,076.127, with a standard deviation of 3,219.975. The
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preprocessing step ensures that the minimum value of SRI is set to 0, resulting
in 0 values in the sum of future SRI. The median is 3,720.780, and the maxi-
mum value is 27,155.070. The TANI calculation involves applying depreciation
coefficients of 0.925 and 0.8 for the time step and number of hops, respectively.

The statistics for each hop of the links are provided below.
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Table 3.3: Statistics about the number of N-hop links

Statistics 1-hop 2-hop 3-hop Sum 1 to
3-hop
Mean 2.798 7.213 15.074 26.085
Standard 1.232 3.647 7.355 11.699
Deviation
Min Value 0.000 0.000 0.000 1.000
25-Percentile 2.000 5.000 10.000 18.000
Value
50-Percentile 3.000 7.000 15.000 26.000
Value
75-Percentile 4.000 10.000 20.000 34.000
Value
Max Value 8.000 23.000 42.000 66.000

On average, each link receives contributions from approximately 26.1 links.
TANI is calculated by multiplying the sum of future SRI by the individual link’s
SRI. The histogram in Figure 3.10 illustrates the distribution of IANT using SRI

and normalized SRI.
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Figure 3.10: TANI with SRI and normalized SRI

The detailed statistics of IANI values are presented in Table 3.4. It can
be observed that the distribution is left-skewed for the un-normalized case,

indicating a higher concentration of values towards the lower end.

Table 3.4: Statistics of TANI with SRI and normalized SRI

Statistics TANT with SRI TANI with Normalized
SRI
Mean 258,779.8 3,121.9
Standard Deviation 189,006.0 1,626.1
Min Value 0.0 0.0
25-Percentile Value 118,976.9 1,929.8
50-Percentile Value 217,374.9 2,919.7
75-Percentile Value 353,851.6 4,088.9
Max Value 2,225,545 14,150.1

When visualizing the TANT values, Figure 3.11 is obtained. It shows higher
values in areas corresponding to the central business district, such as near Gang-
nam and Yeouido. Arterial links such as Dongbu Expressway also showed a high

value of TANI.
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Figure 3.11: Visualizing the TANI value

The top 10 roads with high IANI values are as in Table 3.5. Notably, many
of these roads are major arterial roads, including the Gangbyeon Expressway,
Gyeongbu Expressway, and Dongbu Expressway, along with regular roads like
National Assembly Road.

The difference between averaging IANI without distinguishing the time and
day of the week and averaging it separately for morning and afternoon rush
hours and weekdays and weekends is significant. The following contents in Table
3.6 are the top 10 links during weekdays in the morning hours (6-10 AM). It
shows a stronger concentration on major arterial roads.

Table 3.7 illustrates the top 10 links during weekdays in the afternoon hours
(5-9 PM). It can be observed that the top 10 links are more diverse, encom-

passing various roads.
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Table 3.5: Roads with the highest IANI mean value

Rank Name of the Road Speed Limit | Length (m) | Number of
(km/h) Lanes
Dongbu Expresswa;
1 & P Y 57.5 1588.7 2.2
(FHEAER)
Dongbu Expresswa;
2 8 P Y 80.0 369.3 2.0
(FFAER)
Gangbyeon Expresswa;
3 8hY P Y 80.0 2892.8 4.0
(FHE=R)
Gyeongbu Expresswa;
4 YOORs P Y 70.0 1698.9 4.0
(AFIEER)
Banpo-daero
5 50.0 618.2 2.5
(TrEg =)
Olympic Expresswa;
6 yHp P Y 80.0 1742.3 4.6
(EHYY=)
National Assembly-daero
7 ) 50.0 1188.6 2.2
(F3|ti=2)
Dongbu Expresswa;
8 8 P Y 60.0 310.4 2.0
(FFRALR)
Dongbu Expresswa;
9 8 P Y 60.0 200.6 1.2
(FFEIALR)
Dongbu Expresswa;
10 8 P Y 80.0 2964.3 3.0

(T ER)
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Table 3.6: Roads with the highest TANI mean value at weekday and

morning(6-10am) peak

Rank Name of the Road Speed Limit | Length (m) | Number of
(km/h) Lanes
Dongbu Expresswa;
1 & P Y 57.5 1588.7 2.2
(FHRIAER)
Dongbu Expresswa;
2 & P Y 80.0 4459.1 3.0
(BRAAER)
Olympic Expresswa;
3 yHp P Y 80.0 3796.9 4.2
(=€gg=)
Dongbu Expresswa;
4 & P Y 80.0 369.3 2.0
(FRAER)
Dongbu Expresswa;
5 & P Y 80.0 2964.3 3.0
(FRHER)
Dongbu Expresswa;
6 & P Y 80.0 2553.0 3.0
(BHRAER)
Dongil-ro
7 52.0 1352.6 2.9
(5T 5YLR)
Gangbyeon Expresswa
8 &by P Y 80.0 2892.8 4.0
(AaER)
Gyeongbu Expresswa;
9 yeons P Y 70.0 1698.9 4.0
(AFI&EER)
Dongbu Expresswa
10 & P Y 80.0 639.2 3.0

(T ER)
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Table 3.7: Roads with the highest TANI mean value at weekday and

afternoon(5-9pm) peak

Rank Name of the Road Speed Limit | Length (m) | Number of
(km/h) Lanes
Dongbu Expresswa;
1 8 P Y 97.5 1588.7 2.2
(ERAAER)
Seocho-daero
2 ) ) 50.0 568.1 3.0
(HzT Azxd=)
Gyeongbu Expresswa
3 yeons P Y 70.0 1698.9 4.0
(AR DEER)
National Assembly-daero
4 ) 73.3 2216.5 2.4
(FTZT =2 =)
National Assembly-daero
) ) 50.0 1188.6 2.2
(Y52 =3 =)
Olympic Expresswa;
6 ymp P Y 80.0 1742.3 4.6
(S =)
Banpo-daero
7 50.0 618.2 2.5
G ES A k=Y
Dongbu Expresswa;
8 8 P Y 80.0 3332.4 3.0
(ERUAER)
Dongil-ro
9 50.0 605.5 2.5
(A5t TL=)
Bongeunsa-ro
10 50.0 624.3 3.0

(T T2AR)
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Table 3.8 shows the top 10 links during weekends in the morning hours (6-10
AM). Due to relatively lower traffic volume compared to other time periods,
peripheral roads are more prominent in the top links. This aligns with the results
obtained from past speed prediction, where the attention values of peripheral
roads in the outskirts of Seoul were found to be higher during weekends.

The contents of Table 3.9 are the top 10 links during weekends in the af-
ternoon hours (5-9 PM). Once again, it is evident that major arterial roads are
selected as important links.

Based on the findings, it can be observed that different links are important
in different time periods. There are two main strategies that can be considered
based on this index.

The first strategy is to expand the links with high IANI value from a trans-
portation planning perspective. By physically widening the links, it is expected
that congestion caused by limited space can be alleviated.

The second strategy is to implement vehicle route diversion. Avoiding routes
with high predicted future IANI values makes it possible to prevent the in-
flux of traffic exceeding the road capacity. However, the formulation of precise
strategies based on signal utilization is difficult since the data does not include

turn-type information.
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Table 3.8: Roads with the highest TANI mean value at weekend and

morning(6-10am) peak

Rank | Name of the Road Speed Limit | Length (m) | Number of
(km/h) Lanes
Seosomun-ro
1 50.0 198.8 2.0
(F7 HAER)
Gosanja-ro
2 50.0 406.3 3.0
(T AR =)
Myeongil-ro
3 yeons 40.0 276.0 1.0
(FEsT HL=)
Geumnanghwa-ro
4 ) 50.0 149.4 2.0
(BAT adetz)
Songi-ro
5 30.0 300.8 2.0
(37 Fol=2)
Dongbu Expresswa;
6 8 P Y 80.0 369.3 2.0
(ERIHER)
Seobu Expressway
7 80.0 1109.4 1.8
(MEAE=)
Hangeulbiseok-ro
8 30.0 488.1 1.5
(= S2HAR)
Dongnam-ro
9 50.0 327.7 3.0
(5T TE=)
Seooreung-ro
10 50.0 125.7 3.0

(2BFAHALTE)
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Table 3.9: Roads with the highest TANI mean value at weekend and

evening(5-9pm) peak

Rank Name of the Road Speed Limit | Length (m) | Number of
(km/h) Lanes
Dongbu Expresswa;
1 & P Y 57.5 1588.7 2.2
(BRAAER)
Gangbyeon Expresswa;
2 by P Y 80.0 2892.8 4.0
(AHER)
Olympic Expresswa;
3 yHmp P Y 80.0 1742.3 4.6
(=HOg=)
Gyeongbu Expresswa;
4 yeons P Y 70.0 1698.9 4.0
(ARIETR)
Dongbu Expresswa;
5 & P Y 80.0 2964.3 3.0
(BRAAER)
Banpo-daero
6 50.0 618.2 2.5
(Mz L 2)
Dongbu Expresswa;
7 & P Y 80.0 369.3 2.0
(BRAAER)
Dongil-ro
8 50.0 605.5 2.5
(57 TL=)
National Assembly-daero
9 i 50.0 1188.6 2.2
(F5=F Z3qR)
Olympic Expresswa;
10 ymp P Y 80.0 1515.2 5.0
(HHE=)
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3.2.2 Comparing IANI with Graph Centralities

The section explores the relationship between graph centralities and IANI. Each
centrality has the following characteristics: Degree centrality represents how
directly connected a link is to other links. Katz centrality indicates how many
different paths can reach other links. Closeness centrality measures how close the
distance is from other links to the target link. Betweenness centrality determines
whether a specific link is part of the shortest path between two other links.
After examining the correlation coefficients between various centralities and
TANI, it was found that all coefficients were positive. A strong relationship with
ITANI was observed between degree centrality and Katz centrality, which are

closely related to the direct connection index with other links.
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Table 3.10: Correlation between various centralities and IANI

Betweenness| Degree Katz Closeness
TANI
Centrality | Centrality | Centrality | Centrality
Betweenness
1.000 0.126 0.087 0.348 0.120
Centrality
Degree
1.000 0.837 0.180 0.630
Centrality
Katz
1.000 0.201 0.573
Centrality
Closeness
1.000 0.196
Centrality
TANI 1.000

However, further analysis of links with high TANI values revealed additional
features in addition to these characteristics. As we can check in Table 3.10, it
is observed that betweenness centrality is characteristically high for links with
extensive value of TANI. This is likely due to the specific properties of each
centrality measure. Betweenness centrality assesses whether a road is included
in the shortest path between two other roads.

The fact that a road greatly impacts its surrounding roads implies that it
has a high probability of being included in the shortest path between other
roads, which is an intuitive notion. However, it is difficult to determine whether
or not other centrality measures should be incorporated, as the reasons for
their inclusion or exclusion are not clear. Further analysis and investigation of
these centrality measures may provide valuable insights into their relevance and

potential contributions to the overall understanding of the road network.
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Table 3.11: Value of various centralities of the roads with the top 100 INAI

Type of Centrality Top 100 mean Mean Ratio
Betweenness Centrality 0.0114 0.0031 3.7249
Degree Centrality 0.0020 0.0015 1.3109
Katz Centrality 0.0099 0.0129 1.6016
Closeness Centrality 0.0684 0.0617 1.1094

3.2.3 Comparing IANII with SRI

The study compared IANI with commonly studied metrics in traffic speed anal-
ysis, SRI. Similar to the analysis conducted in Chapter 4.4.2; the research ex-
amined the correlation coefficients between each centrality and the metrics. The
results are presented in Table 3.12, which shows that all network centralities
exhibited higher correlation coefficients with TANI compared to SRI. This in-
dicates that TANI incorporates not only the speed information but also the
structural characteristics of the network.

Next, we grouped the values of SRI and TANI and examined the link at-
tributes, such as length and number of lanes, within each group. Both SRI and
TANI were divided into five quintiles. Figure 3.12 illustrates the variation of link
attribute values by quintile, while Figure 3.13 shows the centralities’ values for

each quintile. The same information is summarized in Table 3.13 and 3.14.
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Table 3.12: Comparing the correlation of SRI and TANI with various

centralities
Betweenness Degree Katz Closeness
SRI | TANI
Centrality | Centrality | Centrality | Centrality
Betweenness
1.000 0.126 0.090 0.348 0.031 | 0.120
Centrality
Degree
1.000 0.837 0.180 0.018 | 0.630
Centrality
Katz
1.000 0.201 0.020 | 0.573
Centrality
Closeness
1.000 0.008 | 0.196
Centrality
SRI 1.000 | 0.378
TANI 1.000
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Figure 3.12: Mean values of various criteria by quintile of SRI and TANI
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Figure 3.13: Mean values of various centralities by quintile of SRI and TANI
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Table 3.13: Various value of links by quintile of TANT

Quintile 1 2 3 4 5
Length 488.01 | 499.31 | 569.36 | 622.31 | 718.48
Average Number of Lanes 2451 | 2387 | 2479 | 2.609 | 2.697
Lane Chaged or Not 0.115 | 0.149 | 0.176 | 0.157 | 0.197
SRI 48.375 | 43.230 | 40.581 | 38.029 | 34.439
TANI 3600.2 | 3292.1 | 3172.8 | 2931.4 | 2612.8
Speed Limit 47.711 | 46.393 | 47.288 | 48.695 | 49.869
Betweenness Centrality 0.0039 | 0.0025 | 0.0025 | 0.0027 | 0.0037
Degree Centrality 0.0015 | 0.0015 | 0.0015 | 0.0015 | 0.0015
Katz Centrality 0.0127 | 0.0130 | 0.0135 | 0.0128 | 0.0123
Closeness Centrality 0.0622 | 0.0611 | 0.0613 | 0.0616 | 0.0622

For TANI, it was observed that as the quintile increased, the link length,
the number of lanes, and the occurrence of lane changes all increased. Con-
versely, SRI exhibited the opposite trend, indicating that narrower roads ex-
perienced more localized speed reductions. Various centralities consistently in-
creased across TANI quintiles, indicating that links with higher TANI values are
more strategically positioned within the network.

Just like the previous section categorized the value into quintile groups,
categorical values are generally commonly used in transportation planning and
operation. However, when utilizing continuous values, it is possible to examine
the magnitude of extreme values while also dividing the values into categories
using appropriate thresholds. This approach allows us to take advantage of both
the benefits of continuous values and the categorization aspect.

Figure 3.14 compares cases where SRI and TANT exhibit different patterns in
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Table 3.14: Various value of links by quintile of SRI

Quintile 1 2 3 4 5
Length 609.33 | 552.22 | 567.76 | 568.36 | 594.22
Average Number of Lanes 2.677 2.56 | 2.505 | 2.499 | 2.394
Lane Chaged or Not 0.184 | 0.181 | 0.176 | 0.143 | 0.104
SRI 44.62 | 41.404 | 40.284 | 39.377 | 38.809
TANI 4395 3613 | 3165.4 2694 | 1891.3
Speed Limit 49.196 | 47.895 | 47.071 | 47.422 | 48.293
Betweenness Centrality 0.0046 | 0.0033 | 0.0027 | 0.0027 | 0.0021
Degree Centrality 0.0018 | 0.0016 | 0.0015 | 0.0014 | 0.0011
Katz Centrality 0.0177 | 0.0146 | 0.0127 | 0.0109 | 0.0086
Closeness Centrality 0.0636 | 0.0624 | 0.0619 | 0.0613 | 0.0597

SRI TANI

-0\ N\ = -

Figure 3.14: The different values between SRI and TANT in the same region

the same region. For SRI, it tends to be higher for shorter and narrower roads,
suggesting higher values assigned to areas with limited connectivity, such as

apartment access roads. On the other hand, major roads leading to arterial
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routes tend to have lower SRI values. In contrast, IANI considers both speed
reduction and network importance, thus selecting less important roads and more

significant roads from a network perspective.
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Chapter 4

Graph Attention Model for Urban
Network

4.1 Background of the Graph Attention Model

In the prediction problem, the attention mechanism selects data to be referred to
with a higher weight using the higher attention value. The attention mechanism

consists of a query, key, function, and value.

Alq, K, V) = Zsoftmax( flg, K))V (4.1)

A query is input data of a target we are trying to predicate. In this paper,
the current link speed data or a speed reduction index becomes a query. The
relationship between a query and several other keys is determined by a pre-
defined function, where a key is a non-query link. Function determines the
relationship between a query and a key. In GAT, a function is a 1-layer Neural

Network (NN).
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Alq, K, V) = Zsoftmax(l — layer Nerual Network (¢||K))V (4.2)

(2
The detailed process can be illustrated using the following example, which

depicts a graph composed of five nodes and seven edges.

Adjacency Matrix
o o nodef 1 | 2 |3 | 4

1|01 0]1

S | S | @

I |{of1]|1

2
3

o 411101
s5lolofl1|1]o0

Figure 4.1: Example graph with five nodes and seven edges

(-1

;- Here, the relationship

)

Let the feature vector in layer [ of any node i be h
(I-1)

between the feature vector h; of node i and the feature vector hg.l_l of node
j is defined as the following Equation (4.3) in the term energy e. The attention
value « is the softmax of this energy value for the connected node. Equation
(4.4) shows the softmax process in the GAT model.

Attention values are obtained through a simple softmax function. Matrix
W is utilized to obtain energy, and since W is a learnable parameter, higher
performance energy is achieved as the iteration progresses. The 1-layer NN of
Equation (4.3) below is also a learnable parameter, with a total of two matrices
being learned in the process of obtaining energy. The same matrix is used for
all node pairs. Therefore, the existing matrix W can be used continuously even

if a new node is added. The graph neural network is explained to have inductive
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properties. The opposite is called the transductive property. The processes of
Equation 4.3) and Equation (4.4) below are performed only for adjacent nodes.
Since we are currently checking node i, Equation (4.3) and (4.4) are performed

for k € N (i), the nodes included in the neighbor of node i.

e'™ = LeakyReLU <1 ~ layer NN (Whgl‘”HWh;"”)) (4.3)

exp (e<l._l)>
(-1 _ ij (4.4)
tJ (I-1) ’
ZkEN(i) €xp (eik )
The attention value «, obtained through Equation (4.4) is used to calculate
@

i

«

the feature vector h;’ of time step 4. In this case, the activation function is
applied after adding the feature vectors to the neighboring nodes. In the original
paper, where graph attention networks were introduced, Leaky Relu was used,
and in this study, the convention of the original paper was followed (Velickovic

et al., 2017).

hgl) = ActivationFunction Z ozg-_l)Whl(-l_l) (4.5)
FEN(3)

Figure 4.2 illustrates the process of applying the graph attention mechanism
to node 2. Node 2 is connected to nodes 1, 3, and 4, so the energy for these nodes
is obtained by passing their feature vectors through matrix W and feeding the
concatenated result through the 1-layer Feedforward Neural Network. Using
this energy, the attention value « is calculated. By performing a weighted sum

based on «, the feature vector hg) of node 2 of layer [ is obtained. In a practical

implementation, this involves a linear combination of the feature vectors hgl_l)

from all previous layers (I — 1).
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Figure 4.2: Calculating the feature vector of node 2 in layer [

The above explanation discusses the original graph attention mechanism in-
troduced by Velickovic et al. (2017) (Velickovic et al., 2017). This paper’s model
is based on an improved model called Attention-Based Spatial-Temporal Graph
Convolutional Networks (ASTGCN). ASTGCN is a modified graph attention
model designed explicitly for spatiotemporal prediction (Guo et al., 2019). AST-
GCN applies spatial attention to the same time step and temporal attention
to different time steps. The fundamental structure of ASTGCN is similar to
the graph attention network, except that it seeks attention along two axes. As
shown in Figure 4.3, temporal attention is applied to individual nodes, while

spatial attention is applied to a single time step.

74 '.\"-E _.';'.:.- 1_..5 f .:



2021-11-01 13:00

®
2021-11-01 13:05
®
o ®
2021\11 01 13: 10
2- hop
o

. hop

Spatial Attention 7 // 2-hop

¢« o

Figure 4.3: Temporal and spatial attention of ASTGCN

The core structure of ASTGCN consists of connecting multiple spatiotem-
poral attention blocks. In the original ASTGCN paper, separate spatiotemporal
attention blocks were constructed for time, date, and day of the week. How-
ever, this study uses a single block to prevent overfitting. Additionally, the skip
connection structure is omitted.

Spatial attention is denoted as S, while temporal attention is denoted as T'.
The multiplications of matrices depicted below can be understood as a single-

layer perceptron.
T
S=E-o <<h(1_1)W1> W, (h<1—1>w3) n b1> (4.6)

s = exp (i)
W 2_keN(i) P (Sik)
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T=F. .o ((h<1—1>U1) U, (h<1—1>U)T + cl) (4.8)

_ exXp (Ti,j)
ZkeN(i) exp (Tz',k)

ASTGCN’s attention is computed using matrix multiplication, as described

/
T;;

(4.9)

above. Matrix W and matrix U serve as learnable spatial and temporal atten-
tion parameters, respectively. While the process is similar to graph attention
networks, an additional matrix multiplication step is included for dimensional

unification.

Spatio-Temporal Attention Block

Spatial

Attention Graph

Convolution
+

2d Convolution

+
Temporal
Attention

Figure 4.4: Iterative scheme of Spatio-temporal attention block

After obtaining spatial and temporal attention through Equations (4.6),
(4.7), (4.8), and (4.9), the spatiotemporal attention block is completed by con-
necting with the graph convolution and 2D convolution layers. As the dimen-
sion of the feature vector entering and leaving these blocks remains constant,
an appropriate number of blocks can be added based on the complexity of the
problem. In this study, the research was conducted using two blocks for de-
veloping the adjacency matrix and a single block for developing the prediction

model.
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4.2 Improving the Graph Attention Model with Ad-

jacency Matrix
4.2.1 The Traffic Flow Awareness Adjacency Matrix

The issue of the Euclidean distance-based adjacency matrix not accurately rec-
ognizing traffic flow was addressed by introducing a traffic flow-aware adjacency
matrix. As shown in Figure 4.5, the traffic flow direction begins at Intersection
1, proceeds through Link 1, enters Intersection 2, and then goes through Link

2 and Intersection 3.

Intersection Link 1 Intersection Link 2 Intersection

1 2 3
Traffic Flow Direction —— N

Link | 1 2 Link | 1 2 Link | 1 2

1 0 1 1 0 0 1 0 1

2 0 0 2 1 0 2 1 0
<Downstream Connection™> <Upstream Connection™> <Bidirectional Connection>

Figure 4.5: The traffic flow awareness adjacency matrix

In the situation described above, three connection matrices have been pro-
posed: the Downstream connection matrix, the Upstream connection matrix,
and the Bidirectional connection matrix. In the Downstream connection ma-
trix, Link 2 is situated downstream of Link 1 in the direction of traffic flow.
Thus, in this case, since link 2 corresponds to the Downstream connection of
link 1, a value of 1 is assigned to the (1, 2) position in the matrix. All other
values remain at 0. The Upstream connection matrix operates similarly. Given

that link 2 is located downstream of link 1, a value of 1 is assigned to the (2,
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1) position in the matrix. The Bidirectional connection matrix combines both
Downstream and Upstream connections.

There are also papers that have conducted research using adjacency matri-
ces, such as the Bidirectional connection matrix, in existing traffic state pre-
diction studies (Li et al., 2017). However, this paper is unique in differentiating
Downstream and Upstream connections. The underlying concept stems from
the notion that the amount of influence a specific link receives from other links
may differ. Even in the case of interrupted flow due to urban links, if there are no
additional congestion factors besides traffic signals, the speed of the upstream
section will propagate to the downstream section as-is, making a Downstream
connection more appropriate. Conversely, if traffic congestion in the downstream
section is severe and the traffic decrease in the downstream section continues to
the upstream section as a form of shockwave, applying an Upstream connection
would be more suitable. Thus the selection of an adjacency matrix may differ

by the type of problem.

4.2.2 Introducing Katz Centrality to the Adjacency Matrix

Katz centrality is a measure representing the centrality of a node applied in
graph theory (Katz, 1953). It represents the sum of all possible walk lengths of
a specific node. Katz centrality mainly indicates the relative power of a node’s
influence on others in a social network. It can be expressed in a formula, as

shown in Equation (4.10).

CKatZ (7’) = Z Z Bk (A)écz (410)

k=1 j=1
The above expression has the same form as the sum of the geometric series

of a matrix. 8 is a decay function that prevents the values of the above ex-

1 3
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pression from diverging. If an appropriate S cannot be selected, the value itself
may diverge, and computation becomes impossible. Since it is the sum of the
geometric series, assuming that k goes to positive infinity, it can be arranged in
a closed form, as shown in Equation (4.11) below. If Equation (4.10) diverges,
the inverse of Equation (4.11) cannot be obtained, resulting in an incalcula-
ble expression. However, if k is not infinite, Katz centrality can be obtained

unconditionally.

Crar()) = (I — BAT) ' =T (4.11)

The idea behind Katz centrality is both intuitive and powerful. It is evident
that nearby links have a more substantial impact on one another. Therefore,
this study designed an adjacency matrix based on Katz centrality. At this time,
the number of hops of the link to be connected is determined according to the
value of k. Determining an appropriate number of hops has a significant impact
on the performance of the model. An explanation of this is illustrated in Figure

4.6.

Adjacency Matrix A A? A3
node| 1 |2 |3 |45 node{ 1 |2 |3 |45 nodel 1 |2 |3 |45
1loflt]o]|1]o 121211 12]5]3]|6]3

(D0
/ 2t o1t |o|*Al2 1|31 ]2|2|*Ala|s]a|7|7]3
@ » »

. 3ot fof1 |1 3 2 1]3]2]1 33 |7)al7]s
@ ® a1t ]1]o]t 41 |2]2]4]1 4alel7]7]6]6
s{oloflt]1]o s af1]1]2 503 3562

Figure 4.6: k-times multiplying adjacency matrix enables to connect k-hop

matrix

The adjacency matrix for the graph on the left in Figure 4.6. is shown on the
right. Node 1 and Node 2 have a value of 1 because they are connected to each

other, and Node 1 and Node 3 have a value of 0 because they are not connected.
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However, if you multiply A once to make A2, we can see that there is number
2 in the (1, 3) position that describes the connectivity of Node 1 and Node 3.
This is the number of cases that can lead to a 2-hop connection. There is one
path to Node 1 — Node 2 — Node 3 and another path through Node 1 — Node 4 —
Node 3. In this way, A% guides the way to a 2-hop connection. A* represents the
number of cases that can go to a k-hop connection. A* inevitably diverges if a
decay hyperparameter such as 3 is not added. Therefore, normalization should
be performed together with the decay hyperparameter.

Another advantage of introducing Katz centrality is that the number of
graph convolution layers can be reduced. When defining the adjacency ma-
trix as A matrix, the k-layer is required to express the k-hop connection, but
when Y27, BAF is introduced, it can be reached in 1-layer. Reducing the num-
ber of layers also helps prevent overfitting. When a large number of layers are
introduced to investigate a simple phenomenon, the number of parameters is
excessive, and overfitting occurs. As explained in Section 3.3.4, Limitations in
Graph Attention Model, simple phenomena such as traffic are even more vul-
nerable to overfitting. In that respect, it can be said that it is more appropriate
to introduce the concept of Katz centrality to this research problem. For ad-
ditional information on this, see Section 4.3.3, Handling the Overfitting and
Oversmoothing Problem.

Section 3.3.4, Limitations in Graph Attention model, also pointed out the
high regularity of the road network. Because of this, the average path length
increases. If Katz centrality is applied, a k-hop connection can be connected in

one layer to reflect a wide range of networks.
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4.2.3 Handling the Overfitting and Oversmoothing Problem

The overfitting problem mentioned in Section 4.3.2., Introducing Katz Central-
ity to the Adjacency is directly related to the number of parameters. Therefore,
this study solved the problem by reducing the spatiotemporal attention block
to two or one. In addition to this, a small number of epochs were applied.

In addition to the overfitting problem, graph neural networks have another
issue: the oversmoothing problem (Chen et al., 2020). The oversmoothing prob-
lem refers to an issue in which the values of all nodes become the same when
the receptive field of the graph neural network becomes too wide (Liu et al.,
2020). The phenomenon is shown in Figure 4.7. Each time it passes through
one graph convolutional layer, it can reflect connections that are 1-hop further
away. However, if too many connections are expressed compared to the graph,

the receptive field of all nodes becomes almost the entire graph.

3-hop Connection

Figure 4.7: The example of oversmoothing caused by extensive receptive field
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Graph neural networks operate using message-passing techniques to share
information with neighboring nodes. When a message is received from all nodes,
a problem occurs where the nodes’ features in the graph become very similar. To
prevent this issue, a small number of layers should be maintained. The road net-
work is highly regular and has a longer average path length than other graphs,
making it less susceptible to oversmoothing. However, even so, oversmoothing
can occur at the sub-network level. For this reason, the number of layers in the

entire network was kept small.

4.3 Adding Physical Meaning to the Model
4.3.1 Reflecting the Heterogeneity of Road Networks

The first physical meaning employed in this study is to reflect the road network’s
heterogeneity. Interrupted and uninterrupted flow, which makes the hierarchy
of road networks, shows different aspects of speed reduction propagation.

Uninterrupted flow refers to links without signals and those that are straight,
stretching continuously. Consequently, the traffic speed on these roads is rela-
tively fast, and the relationships between the roads are comparatively straight-
forward. When a speed reduction occurs downstream, it is directly transmitted
upstream. The propagation of speed reduction moves faster compared with the
interrupted flow. Figure 4.8 below illustrates the Eastern Expressway in the
Seongdong District. The colors blue, green, yellow, orange, and red indicate
increasing levels of speed reduction, respectively. Traffic proceeds from the top
to the bottom of the figure. In each row, as time passes, it is evident that
congestion is distinctly propagating backward.

Figure 4.9 illustrates the case of interrupted flow in Gangnam. In the case

of interrupted flow, it is difficult to determine a clear direction of congestion
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Figure 4.8: Propagation of speed reduction through an uninterrupted flow.

Each subfigure’s time step starts from 6:00 am to 8:00 30 min interval

propagation. The road network is densely interconnected, making it challenging
to identify the cause and origin of congestion. As time passes, speed reduction
continually interacts between connected roads, making it virtually impossible
to pinpoint the source of congestion.

Upon analyzing the 5,068 service links in Seoul, a total of 280 uninterrupted
flow links and 4,788 interrupted links were identified. The classification results
are shown in Figure 4.10 below. As can be seen in the figure, the distinction
between the major expressways within the urban center and the remaining
roads is clearly visible, highlighting the importance of considering both types
of flows when modeling traffic patterns.

In order to reflect the distinct characteristics of these different flows, this
study proposes the Attention-based Spatio-Temporal Heterogeneous Graph Con-
volution Network (AST-HGCN). This novel approach takes into account the
heterogeneous nature of urban traffic flows, capturing the unique relationships
and dynamics present in interrupted and uninterrupted flows. By incorporating

these considerations into the model, the AST-HGCN provides a more accu-
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Figure 4.9: Propagation of speed reduction through an interrupted flow. Each

subfigure’s time step starts from 6:00 am to 8:00 30 min interval

rate and comprehensive understanding of traffic patterns, ultimately resulting
in improved performance and more precise predictions in a variety of traffic
scenarios.

The model structure is shown in Figure 4.11 below. An ASTGCN block
containing information for all links was created, along with separate ASTGCN
blocks for uninterrupted flow and interrupted flow information. From the block
containing the total link data, the output vector h is obtained; from the block
containing the uninterrupted flow link data, the output vector u is obtained;
and finally, from the block containing the interrupted flow link data, the output
vector ¢ is obtained.

The output vector h obtained from the total link data was divided into vec-
tor slices corresponding to uninterrupted and interrupted flows. Let us call these
vectors h; and h,, for interrupted flow and uninterrupted flow, respectively. We

then obtained the attention between h; and ¢, as well as the attention between
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Figure 4.10: Visualization of uninterrupted flow(red) and interrupted

flow(light blue)

h, and u. Subsequently, after receiving the output vector from each block,
attention values were obtained for each type of flow using a 1-layer feedfor-
ward neural network. Finally, as shown in Equation 4.12, each attention value
was multiplied by the output vector, and a weighted sum was calculated. The
weighted sum of each output vector becomes the output ¢, and is compared

with true y to obtain various loss values.

= h+ oyp,u+ apt (4.12)
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Vector slice

Total links data
A (5,068 X 5,068)

Output vector

h Vector slice

hy

Output vector I 1-layer feedforward a

u (Concatenate) neural network Uhy
Output vector I 1-layer feedforward a

i (Concatenate) neural network why

Figure 4.11: The structure of Attention-based Spatio-Temporal Heterogeneous

Graph Convolution Network (AST-HGCN)

Uninterrupted flow links
A, (280 x 280)

Interrupted flow links
A; (4,788 x 4,788)

4.3.2 Incorporating Traffic Volume Data

In the current data acquisition location, the number of traffic volume sensors
is significantly lower compared to the traffic speed. However, traditional speed
prediction models commonly incorporate traffic volume. Therefore, this study
aims to explore possibilities for integrating traffic volume into our model. Fig-
ure 4.12 displays the locations where traffic volume is collected, and it can be
observed that there is a significant scarcity of traffic volume data compared to
traffic speed data.

The scarcity of data can be addressed using deep learning techniques. In
deep learning, data compression can be achieved using an autoencoder com-
posed of an encoder and decoder. We assume that the traffic volume data has
already been compressed into a hidden embedding, and we can utilize this em-
bedding by feeding it into the decoder. The overall framework of the model is
depicted in 4.13.
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Figure 4.12: Data points with traffic volume
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Figure 4.13: Incorporating traffic volume using a decoder neural network




4.3.3 Adding a Penalty as an Attention Loss

There are some issues concerning attention values. Attention values are param-
eters, and the primary objective of a model is to produce an output vector,
not to fit parameters to give them a physical meaning. This can lead to biased
results of attention value, as the focus is not on generating accurate attention
values but on the model performance.

There is no significant issue when the number of reference links is small. In
this study, the example of Gangnam-gu does not pose a significant problem.
However, as the number of links increases, the individual links begin to get
confused about which links they should reference. Moreover, each link’s SRI
trend is similar: high at the commute time and relatively low at the other time.
So when the model face with the challenge of choosing a few links from among
5,000 for each link, the values do not converge easily.

In such cases, the attention values tend to concentrate on a single link. It
is not just a slight concentration; all the links focus solely on that specific link.
An example of this is shown in Table 4.1. Looking at Link 2 in Table 4.1, one
can see that all the attention values are concentrated on it. The problem is that
Link 2 is not actually an important link, and this phenomenon occurs randomly.

Additional loss terms can be introduced to address this problem and gener-
ate more realistic attention values. These loss terms include the concentration
penalty and the distance penalty. The concentration penalty aims to prevent the
attention value from being overly focused on a specific random link, ensuring a
more balanced distribution of attention across links.

The distance penalty encourages the model to assign higher attention values
to nearby links rather than distant ones. By incorporating these penalties, the

model is guided to generate more realistic attention values that better represent

1 3
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Table 4.1: Example of an attention value matrix that is concentrated on a

specific link

Link 1 Link 2 Link 3 .o Link n-1 Link n

Link 1 0.00017 0.99812 0.00011 . 0.00015 0.00011
Link 2 0.00021 0.99141 0.00027 . 0.00016 0.00023
Link n-1 0.00035 0.99452 0.00026 ... 0.00018 0.00026
Link n 0.00017 0.99275 0.00018 . 0.00025 0.00019

the relationships between links in the road network.

2

Concentration Penalty = Z Z a; j (4.13)

Distance Penalty = Z o x Shortest Path Matrix (4.14)
by row

The total loss, including these penalties, is defined as follows:

Loss = RMSE loss + 31 Z Concentration Penalty
flow type

(4.15)
+ b1 Z Concentration Penalty
flow type

Unfortunately, the model’s performance inevitably decreases when this loss
is introduced. This is because the model focuses less on the original objective
since a different type of loss is included. Therefore, a decrease in prediction
performance is unavoidable. We will later examine the implications that can be

drawn from this model through the analysis of results.
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Chapter 5

Results

5.1 Improving the Adjacency Matrix

This part of the research presents an improvement of the graph attention model
using speed data from Gangnam-gu, which is the second step in the research
workflow.

Before moving on to a more detailed discussion, the paper would like to in-
troduce the overall prediction frame. The prediction frame in this study remains
consistent throughout the experiments. Even if the prediction target changes
to impact on adjacent network index from speed. Using the previous hour’s
data, the next hour’s speed is predicted. The prediction forecasts the speed of
all links within the network simultaneously. This approach is maintained even
when dealing with future data. An example is shown in Figure 5.1. The first
dataset consists of speed data input from 08:00 to 08:55, and the speed data
from 09:00 to 09:55 is predicted. The second dataset uses speed data input from
09:00 to 09:55 and predicts speed data from 10:00 to 10:55. In this manner, a
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result with a 1-hour input horizon and a 1-hour prediction horizon is obtained.

Input Range = Past 60min to Smin — Prediction Horizon = Future Smin to 60min

08:00 | 08:05 | 08:10 08:45 | 08:50 | 08:55 | 09:00 | 09:05 | 09:10 09:45 | 09:50 | 09:55 | 10:00 | 10:05

\ ) — J

Y f
Input Prediction
T ) ) v
Input Prediction

Figure 5.1: Input and prediction horizon and scheme

Thanks to this frame, a single prediction consists of a total of 12 data
points, which is an hour. As shown ins Figure 5.2, data from future 5min to
future 60min are predicted. The upper graph of Figure 5.2 displays the result of
predicting the future 5min, and the graph below shows the result of predicting
the future 60min. Predictions are depicted in red, while ground truth data
are shown in blue. Overall, both future 5min and future 60min predictions
exhibit appropriate performance. Qualitatively, it appears that the local peak
of the future 5min is predicted more accurately than the local peak of the future
60min. Naturally, predicting the nearer future is an easier task. In fact, verifying
whether the model better predicts the nearer future serves as another measure
of whether the model has been properly trained.

Figure 5.3 displays the results. Over time, the RMSE loss exhibits a mono-
tonically upward-sloping trend. This outcome aligns with our common under-
standing that we are better at predicting the near future and worse at predicting
the far future. This graph shows that the model’s speed prediction ability is an
RMSE of 4.2 for the previous 5 min. This corresponds to a 13.64% MAPE
error. Even when predicting the far future, the RMSE remains below 4.8 and
demonstrates good performance.

From here on, the paper will discuss the results of the improved adjacency

-1
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Speed Prediction Result of Future Smin

35 —— Prediction

a 25 50 75 100 125 150 175 200
Number of Timesteps (5min/step)

Speed Prediction Result of Future 60min

Prediction
| foen,

Speed (km/h)

100 125 150 175 200
Number of Timesteps (Smin/step)

Figure 5.2: Speed prediction result of future 5min(top) and 60min(bottom) of
Gangnam-gu link (selected)

matrix. By utilizing an adjacency matrix that combines the concepts of traffic
flow awareness and Katz centrality, it demonstrated higher performance than
the existing adjacency matrix. Detailed results can be found in Table 5.1.

To assess the accuracy and stability of the speed prediction data, 50 ex-
periments were conducted for each type of connection. Root Mean Squared
Error (RMSE) and Mean Absolute Percentage Error (MAPE) were the error
measurements used. In addition to evaluating the simple model performance,
the standard deviation of the error was also checked to ensure the stability of
model learning. The calculation process for RMSE and MAPE can be found in
Equations 5.1 and 5.2.

n

1 2
MSE = | — i — 1
RMSE =23 (5 =1) (5.1)

Yi — 1
Yi

100% w—
MAPE =
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Prediction Horizon by RMSE Loss
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Figure 5.3: Prediction Horizon by RMSE loss of Gangnam-gu links

The first notable point in the results of Table 5.1 is that the 2D distance ad-
jacency matrix based on Euclidean distance exhibited the lowest performance.
When measuring speed with the Distance 2D adjacency matrix, the RMSE
showed the worst performance, while the MAPE demonstrated the second-
worst performance. This suggests that there is room for improvement in the
model performance of numerous studies conducted using 2D distance so far.
Surprisingly, the model’s performance based on the 1D distance adjacency ma-
trix was higher. This could be because the roads in Gangnam-gu are similar to
a grid shape, and the 1D distance, which measures the distance along the side
of the grid, accurately reflects the distance between links.

The Downstream 4-hop adjacency matrix displayed the best performance
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Table 5.1: Speed prediction result in Gangnam-gu

Type of Connection RMSE RMSE MAPE MAPE
Avg. Std. Avg. Std.
Downstream 1-hop 4.455 0.26 14.59 0.724
Downstream 2-hop 4.572 0.231 14.77 0.557
Downstream 3-hop 4.455 0.247 14.4 0.716
Downstream 4-hop 4.437 0.239 14.41 0.565
Upstream 1-hop 4.44 0.237 14.52 0.598
Upstream 2-hop 4.571 0.281 14.72 0.726
Upstream 3-hop 4.501 0.234 14.57 0.609
Upstream 4-hop 4.504 0.265 14.68 0.483
Bidirectional 1-hop 4.454 0.236 14.38 0.569
Bidirectional 2-hop 4.515 0.225 14.68 0.575
Bidirectional 3-hop 4.498 0.261 14.57 0.567
Bidirectional 4-hop 4.535 0.281 14.96 0.681
1D Distance 4.484 0.299 14.76 0.567
2D Distance 4.634 0.265 14.82 0.684

among the traffic low-aware adjacency matrices. The Bidirectional adjacency
matrix showed a trend of decreasing performance from 4-hop, which could be
attributed to the effects of oversmoothing. This phenomenon was either absent
or weakly apparent in the Downstream or Upstream adjacency matrix. As the
Bidirectional adjacency matrix has the broadest receptive field, the probability
of encountering oversmoothing issues is higher.

Before diving into further discussion, it is essential to clarify the meaning

of the ”attention value” that will be frequently mentioned from now on. The
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attention mechanism introduces a weighted sum approach to the data prediction
task. In the attention mechanism, the weight of the data deemed to have a
more significant influence on the link through a specific function is increased.
Consequently, the summation of the attention value referenced by a particular
link is unconditionally 1. We cannot use an attention value greater than 1 in
total. The left figure in Figure 5.4 shows an example of an attention value matrix
obtained through learning. The center illustrates the weighted summation using
attention value. At this point, the row summation is 1. We can determine the
link’s influence by summation on the column. It adds how many other links refer
to the target link when predicting data for the next time step. The attention

value claimed in this study is the result of this consensus.

Attention Value

7 N~

2=1.2][¥=06||2=0.7]|¥=1.5

Link j Link j Linkj
1 2 3 4 1 2 3 4 1 2 3 4
Linki Linki Linki

I=1 I — N N

1 0.2 0.4 0.1 0.3 1 0.2 0.4 0.1 0.3 1 0.2 0.4 0.1 0.3
5=1 f D N

2 07 | 01 | 01 | 0.1 2 07 | 01 | 0.1 | 0.1 2 0.7 || o1 [[ o1 || o1
3=1 ‘ N N

3 0 0.1 0.4 0.5 3 0 | 01 0.4 0.5 3 0 0.1 0.4 0.5
I=1 f — N N

4 0.3 0.0 0.1 0.6 4 0.3 0.0 0.1 0.6 4 0.3 0.0 0.1 0.6

Attention Value Matrix Summation by Row equals 1 Summation by Column

is the Attention Value

Figure 5.4: The illustration of the term ”attention value”

Figure 5.5 presents the result of acquired attention values for each link tar-
geting Gangnam-gu. The X-axis represents the link identification number with
no physical meaning, while the Y-axis displays the summation of attention val-
ues. We can interpret the summation of attention values as the influence of each

link. The link marked with 35 is the dominant figure, and based on this, we can
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predict that this link is important. However, we should not be immediately per-

suaded by the absolute magnitude of the numbers. As mentioned several times

before, attention values are very sensitive and can change significantly, even

with minor adjustments. Therefore, it is more appropriate to observe changes

in relative magnitude and attention value over time rather than attributing

meaning to absolute values, which could lead to over-interpretation.
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Summation of Attention Value
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Summation of Attention Value Histogram of Links
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Links
(The number does not have physical meaning)

Figure 5.5: Attention Sum Histogram of Links in Gangnam-gu

Figure 5.6 shows the top 10 links of the summation of attention targeting

Gangnam-gu. As the value of the summation of attention becomes similar as we

go down to the lower level, it becomes difficult to conclude with certainty which
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link is more important. However, we can judge that the above list’s links are
significant. One intuitive characteristic is that there are more significant links
at the entry and exit points of the boundary than inside Gangnam-gu. Table 5.2
shows summary information for each road. For intuitive understanding, Korean
notation is included in parentheses. The ” Connecting region” column indicates
the region to which the corresponding link is connected, and the "In/Out to
Gangnam-gu” column indicates whether the corresponding link is a link enter-
ing or exiting Gangnam-gu. Links marked with ”-” are within Gangnam-gu. In
the case of "In/Out to Gangnam-gu,” equal numbers were derived with four
in-links and four out-links.

So, how should we interpret the summation of attention? A link with a large
summation of attention value significantly impacts the road network. Due to
the nature of downtown areas, roads with high traffic volume and congestion
have a greater impact than roads with smooth traffic. Congestion mainly occurs
during commuting hours, and the primary commuting route is located at the
border between Gangnam-gu and other areas, not inside Gangnam-gu. For this
reason, it is expected that priority links are mainly identified at the boundary
between Gangnam-gu and other regions. For this hypothesis to be valid, it must
be proven that the attention value at non-commuting hours is smaller than the

attention value during the commute.
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Figure 5.6: Top 10 links in Gangnam-gu by summation of attention
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Table 5.2: Summary of Top 10 links in Gangnam-gu by summation of attention

Rank Road Name Connecting Region In/Out to
Gangnam-gu
) Gangnam-daero Shinsa-Hannam Bridge Out
(A=) (AA-Rha e )
5 Southern Beltway | Songpa, Suseo-Daechi, Samsung n
(dHee=) (Fut, A-HA], A4)
5 Sinbanpo-ro Banpo-Nonhyeon n
(ARt =) (FtZ-=4)
A Sapyeong-daero Sinnonhyeon-Banpo 1C Out
(AHBd =) (Al=9A-RF2IC)
. Yeongdong-daero | Yeongdong Bridge - Cheongdam I
(FEdi=) (FEeu-Ad)
6 Nonhyeon-ro Maebong-Yeoksam )
(=9=) (M-&- 944
. Eonju-ro Dogok-Yangjae IC, Naegok 1C Out
(9%2) (=2-9F41C, hHC)
g Yeongdong-daero | Cheongdam - Yeongdong Bridge Out
(FEdi=) (dd -gsH)
9 Seolleung-ro Hanti-Seongneung ]
(A=) (§e-45)
10 Yeongdong-daero Suseo IC-Samsung n

(Jsd=z)

(AIC-H4)
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Figure 5.7 displays the attention values obtained on Tuesday, November
2, 2021, for the top 3 links that showed the highest attention value. Atten-
tion values were obtained during the evening time when commuting occurs. In
this figure, it can be observed that a consistently high attention value appears
throughout the entire period. A more impressive insight can be obtained when

comparing Figure 5.6 and Figure 5.7.

Attention Value of Top 3 Links
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Time
(Tuesday, November 2,2021)

Figure 5.7: Attention value of top 3 links of Gangnam-gu on Tuesday,

November 2, 2021, afternoon

Figure 5.8 presents the attention values of the top 3 links on Wednesday,
November 3, 2021. Here, an ”attention hole” with a low attention value of the
top 3 links, which was not seen in Figure 5.7, is observed. This time corresponds
to lunchtime during business hours, and it is a period when the demand for

movement to the entrance and exit of Gangnam-gu is inevitably reduced. Most
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of the traffic will be directed to restaurants or cafes, which can be reached
by a walk. The occurrence of small attention values, or attention holes, on
links entering Gangnam-gu during non-commuting hours, is consistent with
our common sense. Although it is imperfect, this case study provides evidence

that attention values propose relatively realistic values.

Attention Value of Top 3 Links
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Figure 5.8: Attention value of top 3 links of Gangnam-gu on Wednesday,

November 3, 2021, around the lunchtime
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5.2 Considering Road Network Heterogeneity and Traf-

fic Volume

We evaluated the performance of the model from two perspectives. The first is
the predictive accuracy for the average link, and the second is the predictive
accuracy for the link with a high index value. For the second part of the stan-
dard, we verified the performance of each model using two widely used concepts
in prediction models, precision and recall.

Precision and recall are two important performance metrics often used in
prediction models. Precision refers to the fraction of true positive predictions
out of all positive predictions made by the model, essentially measuring the
model’s accuracy in identifying positive cases. On the other hand, Recall mea-
sures the fraction of true positive predictions out of all actual positive cases,
assessing the model’s ability to identify all relevant cases. Balancing these two
metrics is crucial for a robust prediction model, as a high precision with low
recall indicates that the model is overly conservative and misses many relevant
cases. In contrast, a high recall with low precision suggests that the model
produces many false positives.

Although the concepts of precision and recall do not exactly match the
situation here, they can be applied similarly. Our main goal is to find links
with high TANI values. Therefore, we can evaluate the model based on how well
it predicts the top-k values. Accurately predicting the actual top-k is similar
to recall while predicting the model’s top-k well is similar to precision. In the
example shown in Figure 5.9, Prediction 1 has a perfect match for the top-3
predicted values with the actual ones, so the precision is 100%. However, the
recall is 0%. On the other hand, Prediction 2 has perfectly matched the top-3,

so the ranking accuracy from this perspective is 100%, and the recall is 50%.
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We will use such a measure to compare the models.

D E E G
True
50 40 30 25
o D A B C
Prediction 1
20 20 20 15
D E F G
Prediction 2
5 5 0 0

Figure 5.9: Example to introduce precision and recall (Let the true is trying to

judge the top-3 samples)

In such problems, recall is more important. It is more crucial to accurately
predict the true high values rather than just predicting what the model thinks
are high values. Although the model without attention loss has better perfor-
mance up to the top 20, the performance beyond that is better with attention
loss. Therefore, different strategies can be used depending on the situation. If
there is a strategy applicable to more than 30 links, it is appropriate to use
a model with attention loss. On the other hand, for strategies involving fewer
links, using a model without attention loss may be more suitable.

Incorporating heterogeneous road hierarchies has proven to be effective, as
shown in Table 5.3. Based on the MAPE criterion, it demonstrated a 10.3%
reduction in prediction error. To determine the physical meaning of this indica-
tor, it should be calculated using the MAPE, which represents the accuracy of
predicting the total future congestion. Through this, the effectiveness of road
heterogeneity has been validated. Here, the research successfully improved the
ASTGCN.

We could incorporate the limited traffic volume into our model based on the
structure in Figure 4.13. The MAPE and its standard deviation, when including
traffic volume, are presented in Table 5.4. The MAPE and standard deviation
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Table 5.3: MAPE and its standard deviation for homogeneous and

heterogeneous network

Homogeneous Network

Heterogeneous Network

(ASTGCN) (AST-HGCN)
MAPE 13.83% 12.40%
Std. Dev. 0.20% 0.28%

decreased, indicating an overall model performance improvement.

Table 5.4: MAPE and its standard deviation for without and with volume data

Without Volume Data

With Volume Data

(AST-HGCN) (AST-HGCN)
MAPE 12.40% 12.14%
Std. Dev. 0.28% 0.21%

Surprisingly, the same phenomenon occurred in precision and recall errors.

Both errors showed a decrease when the volume data was included. Including

volume data as a new dimension appears to enhance our understanding of traffic

patterns.
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Table 5.5: Precision and recall error in the case of the model with and without

traffic volume decoder

Precision Error

Recall Error

Num of Without With Without With
top-k Volume Data | Volume Data | Volume Data | Volume Data

100 61.72% 59.24% 54.44% 54.21%
75 64.40% 61.82% 55.90% 55.68%
50 68.39% 65.66% 57.66% 57.44%
30 73.05% 70.15% 59.55% 59.35%
20 75.94% 72.96% 60.69% 60.49%
10 81.01% 77.88% 61.77% 61.54%
5 86.44% 82.84% 61.41% 61.11%
3 94.51% 89.54% 60.96% 60.61%
1 134.32% 126.23% 60.37% 59.95%
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5.3 The Result of Implementing Attention Loss and

its Guidelines

The overall performance of a model with attention loss has decreased compared
with a model without attention loss. The MAPE of AST-HGCN increased from
12.40% to 12.50%, which is a negligible level when considering the benefits
obtained from interpretability. We additionally observed the precision and recall

for a link with a high-valued index.

Table 5.6: Precision and recall error in the case of the model with and without

attention loss

Precision Error Recall Error

Num of Without With Without With
top-k Att. Loss Att. Loss Att. Loss Att. Loss
100 55.68% 61.72% 56.06% 54.44%
75 57.93% 64.40% 57.26% 55.90%
50 60.94% 68.39% 58.56% 57.66%
30 64.33% 73.05% 59.67% 59.55%
20 66.88% 75.94% 60.16% 60.69%
10 73.63% 81.01% 60.45% 61.77%
5 79.12% 86.44% 59.86% 61.41%
3 81.46% 94.51% 59.38% 60.96%
1 87.19% 134.32% 59.18% 60.37%

Based on the experimental results, we were able to confirm that the model
including attention loss exhibited superior performance in predictions beyond

the top 30. As the main focus of this problem is actually to accurately predict
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high values, we can assert that the model incorporating attention loss offers
greater practical effectiveness.

As described in Chapter 4.2.3, when the number of links increases, the
model fails to properly assign stronger attention values to specific links, which
the model treats as a critical link. To address this issue, we introduced the
attention penalty. In this chapter, we examined whether the attention values
actually concentrate on a random link as the number of links increases.

As the number of links in a model expands, it is more likely for the atten-
tion value to be concentrated. This problem is significantly more challenging
for the case of Seoul than the case of Gangnam District. In Gangnam Dis-
trict, the model needs to find the link to focus the attention value among 228
links, whereas, for Seoul, it needs to find the link among 5,068 links. This can
be considered about 20 times more difficult. Due to this, situations, where all
attention values are concentrated on a single link, occur often in the training
process with Seoul. This deviates significantly from the actual scenario. How-
ever, by applying attention loss, the model can overcome this issue.

Table 5.7 demonstrates the severity of the phenomenon of extreme con-
centration. The table presents the concentration loss values collected randomly
sampling 50 to 3,000 links without the attention penalty during training. As the
number of links increases, the concentration loss increases and the ratio com-
pared to the case where all attention is focused on a single link also converges
to around 43.46% with 3,000 links.

The concentration loss counts indicate how many models trained with a
specific number of links exceeded a certain ratio. For example, 40% of ”Over
12.5%” in the case of 1,000 links means that 40% of the models had a concen-
tration ratio higher than 12.5%. This ratio also increases as the number of links

increases.
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Table 5.7: Concentration loss and concentration loss count by the number of

links

Number Concentration Loss Concentration Loss Count
of Links Moan Std. Ratio Over | Over | Over | Over
Dev. 6.25% | 12.5% | 25.0% | 50.0%
50 1.27 0.14 | 2.55% 0% 0% 0% 0%
64 1.82 1.93 | 2.85% 5% 5% 0% 0%
100 1.53 0.27 | 1.53% 0% 0% 0% 0%
128 6.35 5.09 | 4.96% 45% 0% 0% 0%
256 9.43 7.66 | 3.68% 25% 0% 0% 0%
500 33.23 16.74 | 6.65% 50% 5% 0% 0%
750 | 105.46 | 118.18 | 14.06% 80% 25% 15% 5%
1000 | 123.89 63.80 | 12.39% 90% 40% 5% 0%
1500 | 337.01 | 306.63 | 22.47% | 100% 75% 20% 5%
2000 | 518.34 | 464.15 | 25.92% 90% 70% 35% 15%
2500 | 817.18 | 788.39 | 32.69% | 100% 80% 30% 20%
3000 | 1303.84 | 1007.25 | 43.46% | 100% 95% 55% 35%

Figure 5.10 illustrates the key findings from Table 5.7. However, it is not easy
to establish a clear upper threshold for the ratio to determine what is considered
normal. Determining whether assigning 6.65% of attention to a single link out
of 500 links is appropriate or inappropriate is challenging. Nevertheless, as the
number of links increases, it is natural for the ratio to decrease. However, in

actual training, the opposite occurs. Therefore, additional penalties should be

applied to ensure proper training.
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Chapter 6

Conclusion

Through this study, we addressed the problem of link impact index definition
and its prediction, taking into account real-time, future prediction, and traffic
network reflection. The inference time of the model developed in this study
is within a few seconds using the NVIDIA A100 graphic card, guaranteeing
real-time performance. By employing the developed model, the priority links of
the Seoul road network can be identified. The results were analyzed based on
various factors, such as the model’s structure and the application of attention
loss. Based on the analysis results, it is anticipated that we will be able to
respond quickly to situations when a disaster or accident occurs in the future.
Furthermore, by presenting a path detour strategy, it is possible to suggest a
strategy that can drive close to the social optimum out of the current user
equilibrium. The contributions of this paper can be summarized as follows:
This paper’s contributions can be outlined in three aspects. First, we pro-
posed a new index to identify the influence of links to networks in real-time.

Second, we introduced a high-performance speed prediction model based on a
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graph attention model by constructing a traffic flow-reflecting adjacency matrix
value. Despite being a research product, the model’s accuracy demonstrates its
potential for various applications. Third, the research suggested various models
upon considering the heterogeneity of the network or considering the attention
loss. Based on this study, the location and implementation of countermeasures
for speed reduction can be determined.

While conducting attention analysis and developing the model, it was rec-
ognized that the amount of change is more important than the attention value
itself. We anticipate that focusing on the difference in attention values rather
than the attention values themselves can yield more stable results. To this end,
we aim to address various events by determining the average of the attention
values derived from the previously trained model and indexing the amount of
change here.

This study is significant as it simultaneously addresses priority node iden-
tification and speed reduction prediction. However, there are still areas that
need further research. First, by directly obtaining accident and disaster data,
it is necessary to identify the priority links during actual events and how these
priority links change over time. We need to evaluate the strategies proposed by
the model through case studies on more diverse rare events. Second, The most
significant limitation is that the data used in this research is aggregated at the
link level rather than the lane level. Therefore, we can only obtain aggregated
data for vehicles that traveled on specific links for a 5-minute interval rather
than individual vehicle movement data. The data is in the form of aggregated
data rather than movement-level data. We hope to address this limitation in

future research when more detailed data becomes available.
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