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Abstract

Predicting the Impact on Speed Reduction

in Adjacent Networks of a Link Using the

Graph Attention Model

Seung Woo Ham

Department of Civil and Environmental Engineering

College of Engineering

Seoul National University

Traffic congestion has long been recognized as a significant impediment to urban

mobility, causing delays, increased travel times, and considerable economic and

environmental costs. In light of these challenges, this study aims to identify

the influence of links within a road network on adjacent networks to prioritize

them for future applications. Focusing on the urban road network of Seoul,

South Korea, we developed an impact on adjacent network index and a high-

performance prediction model for network-scale speed reduction. The model

incorporates the property of traffic flow and heterogeneity of road networks,

accounting for interrupted and uninterrupted flows. Furthermore, we introduced

a loss function for attention values to enhance their realism and the reliability

of prediction results. Consequently, when paired with a graph attention model,
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the traffic flow-aware adjacency matrix demonstrated enhanced performance in

comparison to the traditional distance-based adjacency matrix. Also, applying

the heterogeneity of road networks brought advanced performance in speed

reduction prediction tasks. Adding an attention loss weakened the prediction

task, which is natural but strengthened the recall of the true data. Our results

demonstrate the model’s real-time performance and its potential for practical

applications in various traffic scenarios. The results of this model are anticipated

to be concurrently used in transportation operations such as signal optimization

and traffic planning like road expansion.

Keywords: Graph Attention Model, Speed Reduction, Impact on Adjacent

Network, Heterogeneous Road Network, Attention Loss

Student Number: 2018-25029
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Chapter 1

Introduction

1.1 Background

Roads are vital infrastructure connecting a country’s significant bases and play a

crucial role in national development. These transportation systems are respon-

sible for transporting resources, such as people and goods, to their required

locations, thereby satisfying social needs and enhancing productivity. Conse-

quently, efficient road usage generates economic benefits by reducing driving

costs and time. Roads demonstrate efficient transport capacity up to their maxi-

mum limit, with traffic volume increasing linearly as new vehicles enter the road.

However, traffic congestion occurs if vehicles continue to enter the road beyond

its capacity, and transportation efficiency declines sharply. At this point, the

upward trend on the density-traffic volume graph ceases, and the traffic volume

at the peak begins to fall, allowing for only minimal traffic processing compared

to the road’s capacity.

Traffic congestion causes significant economic losses due to extended travel
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times and energy inefficiency, making it a pressing issue for urban areas. The

rapid urbanization and population growth in these areas have increased the

number of vehicles on the roads, exacerbating congestion issues. Hence, urban

areas became the primary victim of traffic congestion. According to a 2020

study by the Korea Transport Institute on national traffic congestion costs,

Seoul’s traffic congestion cost amounted to 11.55 trillion won, which increased

to 31.05 trillion won when combined with Gyeonggi-do and Incheon urban areas.

Although Seoul’s population has been declining steadily since 2010, congestion

costs continue to rise due to increased commuting distances from suburban

commuters (Jun, 2020) and a greater number of vehicles per household.

Countermeasures such as controlling traffic signals are implemented to ad-

dress traffic congestion to improve transportation efficiency. However, the avail-

able resources are insufficient compared to the demand at various points. Addi-

tionally, the current allocation of resources is not based on data analysis but on

a practical level. When congestion shifts from recurrent to non-recurrent, allo-

cating resources to appropriate locations becomes even more complicated. As

the drivers have never encountered the same type of congestion, the response

to non-recurrent congestion will likely worsen. This is due to the unique na-

ture of non-recurrent congestion that occurs differently each time. Given the

growing frequency and severity of traffic congestion resulting from urbanization

(Van Aken et al., 2017) and climate change-induced weather disasters (Dawson

et al., 2016), the decision-making process for deploying countermeasures must

carefully consider the priority links to improve transportation efficiency.

The priority link decision problem is also related to vehicle route selection.

Currently, vehicle route selection is based on individual actions approximating

user equilibrium. However, if V2X becomes a reality, driving behavior closer to

the social optimum can be achieved by managing the traffic volume of priority
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links. Efficient resource allocation and detour strategies can only be imple-

mented when the problem of identifying priority links for both recurrent and

non-recurrent congestion is resolved.

Understanding the urban road network can contribute to the increased uti-

lization of road infrastructure by improving road operations and individual

route strategies. The ability to identify a priority link in an urban network re-

quires a sophisticated understanding of the network. In this study, we focused

on identifying links that significantly impact the speed reduction of adjacent

networks, designating these as priority links for further analysis and potential

intervention.

Various studies have attempted to predict traffic conditions thus far. Among

the numerous traffic prediction studies, traffic speed prediction is the most fre-

quently represented topic (Asif et al., 2013; Min and Wynter, 2011; Wang and

Shi, 2013). As the most intuitive aspect affecting road users’ experience is travel

time determined by traffic speed, prioritizing traffic speed is natural. Moreover,

speed as a traffic metric offers versatility and ease of data collection advantages.

Consequently, this study has adopted speed reduction as the criterion for identi-

fying priority links within the traffic network. Therefore, this study will employ

the latest deep learning-based methodology to select priority links in the urban

road network. As a result of this study, the rerouting strategy and countermea-

sure allocation problem can be addressed. Furthermore, this approach enables

better decision-making for infrastructure investment and targeted policy imple-

mentation, promoting long-term sustainable urban development.
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1.2 Research Purpose and Scope

The primary objective of this study is to identify the link’s influence on adjacent

networks. By leveraging the magnitude of influence, we can prioritize the links

within a network. This approach allows transportation engineers to focus their

efforts on the most impactful segments of the network, leading to more effective

and efficient traffic management strategies. This study targets complex urban

road networks, specifically focusing on the city of Seoul, South Korea, as its

data source.

Figure 1.1: The purpose of the research

The First purpose of the research is to develop an index that can identify the

impact of links on adjacent networks. The developed index will later be utilized

for prediction, ultimately working as a priority index for road networks. The

objective of the index is to measure the impact of current road congestion on

future networks. When considering the complexity of urban roads, it is a logical

fallacy to assume that a specific road’s congestion is caused by links that are too

far away. Therefore, the number of hops included in the index was appropriately

adjusted. (In a graph, a ’hop’ refers to the path length between the source and

the destination. Two links are considered ’1-hop’ apart if they are separated by

one intersection.)

Next, an engineering technique for an advanced understanding of urban

road networks has been proposed. This engineering technique encompasses the
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second purpose. The second purpose is to create a high-performance prediction

model for speed reduction of the adjacent network.

The adjacency matrix within the graph attention model has been recon-

structed as a traffic flow-aware adjacency matrix, which replaces the distance-

based adjacency matrix. This traffic flow-aware matrix takes into consideration

the direction of traffic flow and congestion propagation. This adjacency matrix

overcomes the drawback of the distance-based matrix, which is used widely

throughout the literature. By leveraging the power of the adjacency matrix to

reflect n-hop connections, the number of layers can be reduced. This enables

the identification of relationships between links with fewer layers and allows for

faster computation.

Another technique is to reflect the heterogeneity of the road network. Model

structure improvement has been made toward modifying the components of the

graph attention model to reflect heterogeneity. There are two types of traffic

flow: interrupted and uninterrupted flow. Particularly in urban areas, inter-

rupted and uninterrupted flow exist at different levels and form separate road

networks. Previous models have lacked consideration for these differences. This

study addressed this issue by incorporating these distinctions into the model.

A loss related to the attention value within the model has been added to

enhance the realism of road network analysis. The attention value is merely

a parameter within the model; as such, the model primarily focuses on pre-

dicting speed reduction rather than the interpretability of the attention value

itself. However, this approach leads to issues with the attention value’s lack of

realism, which will be addressed later in this study. After predicting the influ-

ence in adjacent networks of each link is completed, operational strategies are

recommended at a qualitative level.
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1.3 Research Contribution

The contributions of this paper can be summarized into four aspects.

First, a novel adjacent network impact index and its prediction model have

been proposed. This index provides a simple description of roads’ impact on

future networks. Combined usage with a prediction model will enable us to

decide the countermeasure locations and strategies against congestion.

Second, a traffic flow awareness structure has implied in the model. The

traffic flow goes from upstream to downstream, and congestion propagates from

downstream to upstream. Also, a traffic network is a regular network compared

with other networks such as social networks. The model has reflected these

characteristics of traffic and road networks using an adjacency matrix.

Third, the model’s performance is enhanced by considering the characteris-

tics of the heterogeneous road network. Urban roads, consisting of interrupted

and uninterrupted flows, possess distinct features that need to be individu-

ally addressed. The proposed model improves its understanding of the road

network by incorporating road heterogeneity between interrupted and uninter-

rupted flows.

Fourth, the model induces more realistic attention values, thereby increasing

the reliability of prediction results. Attention values exist only as parameters in

the model, and the model’s learning focuses primarily on prediction accuracy,

often overlooking interpretability. This characteristic can severely undermine

the realism of the model’s internal parameters. We introduced a loss function

for the attention values to enhance their realism. The remaining paragraphs in

this section describe each contribution in more detail.

First Contribution: The research developed a congestion index on the

network side, which has not been implemented before. This index will reveal
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the impact of roads on the network that other indices have been unable to

show. Moreover, this index is predicted by a deep learning model, so it also has

a predictability to unseen conditions. Non-recurrent congestion is often caused

by rare events such as natural disasters or accidents. Based on past data, exist-

ing statistical models cannot respond effectively to these events. Optimization

models have been proposed to address this issue, but they can be computa-

tionally complex and lack real-time performance as road network size increases.

Furthermore, these models cannot predict future situations in high performance

as they predict the future with internal human-made logic.

The results of this study demonstrate the ability to achieve real-time per-

formance that was not possible with the previous priority link identification

method. Nvidia’s Tesla A100 GPU can process the Seoul road network within 5

seconds. Even if the model is implemented on a device with significantly lower

computational power, provided there is sufficient graphic memory to upload it,

the model can respond within the 5-minute target time. Additionally, the ad-

jacency matrix, non-linear function, and attention mechanism incorporated in

the graph attention model contribute to deeply understanding traffic in urban

networks. Consequently, the model can operate robustly across various scenar-

ios. A mere three weeks of data is sufficient for model training, highlighting the

model’s strengths in practical applications.

Second Contribution: The model incorporates a traffic flow-aware adja-

cency matrix. Traffic flow progresses from upstream to downstream, with con-

gestion propagating in the opposite direction, from downstream to upstream.

This connection-based flow propagation should be considered in a model. More-

over, traffic networks exhibit greater regularity than other networks, such as so-

cial networks. These unique traffic characteristics are accounted for within the

model by utilizing an adjacency matrix. Through the literature, various mod-
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els have been applied to predict traffic speed, and with the emergence of deep

learning-based traffic speed prediction models in 2014, prediction accuracy has

increased significantly (Zhang et al., 2019b; Wang et al., 2019; Jia et al., 2016).

Recently, graph-based deep learning methodologies have emerged, and as road

networks themselves are graphs, these methodologies are being actively applied

to network traffic speed prediction tasks (Yu et al., 2020; Lu et al., 2020).

Graph-based deep learning methodology has the advantage of reflecting the

relationship between multiple data points. Domain knowledge can be involved

by feeding the appropriate adjacency matrix, inducing message propagation to

follow the purpose. However, a non-parametric method can also be applied using

the attention mechanism. The attention mechanism considers the significance

of the specific data by comparing the similarity between data sets. The model

focuses more on influential data Vaswani et al. (2017), which has assigned a

high attention value. The attention mechanism allows the model to learn the

relationship in a non-parametric way instead of the user-determined relationship

between the links. The graph attention model is a model that combines both

graph-based methodology and an attention mechanism (Velickovic et al., 2017).

By blending the strengths of these two methodologies, they exhibit a synergistic

effect in predicting traffic speed (Zhang et al., 2019a; Kong et al., 2020; Zhang

et al., 2020; Park et al., 2020; Zheng et al., 2020).

However, existing graph attention model research in traffic speed prediction

has lacked consideration of traffic flow. In most papers, the numeric value of

the adjacency matrix has been determined by the distance between the data

collection points, which are referred to as ”links” or ”road segments.” A short

distance between two links does not necessarily mean that this pair highly

influences each other. Utilization of the Graph Neural Network (GNN) tailored

to the road network structure is also insufficient. When too many layers are
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stacked within a GNN, a cycle structure occurs between nodes in a graph. This

cycle affects the interconnected nodes and causes the over-smoothing problem

in which the predictions of all nodes become similar (Liu et al., 2020; Chen

et al., 2020). In addition, as the number of layers increases, the probability

of occurrence of diverging or vanishing gradients in the overall structure also

increases linearly (Chen et al., 2019; Galimberti et al., 2023). Unfortunately, the

road network graph is a form of a grid; thus, it is much more regular than other

graphs, such as citation graphs. A graph’s higher regularity and low connectivity

increase the minimum distance between node points; therefore, road network

graphs need more graph neural layers than conventional graphs. Consequently,

developing a methodology that can avoid the chronic problems of GNN while

reflecting specific traffic characteristics is necessary.

Third Contribution: This study reflects the characteristics of real-world

road networks in the model. Road networks, in reality, consist of uninterrupted

flow and interrupted flow. Uninterrupted flow corresponds to major arterial

roads in urban areas, such as the Gangbyeon Expressway, Olympic Express-

way, and Dongbu Expressway. These roads have no traffic signals and higher

speed limits. While the number of uninterrupted roads is small, they serve as

the central axis in urban areas. Interrupted flow encompasses the remaining

roads, which are more numerous but have lower road capacities. These roads

typically facilitate movement within sub-areas. Including both types of roads

without differentiating between them could potentially degrade the model’s

performance. Therefore, in this study, we have incorporated modules capable

of understanding each road network’s characteristics.

Forth Contribution: The fourth contribution aims to address the black-

box limitations of deep learning. While deep learning studies typically focus on

performance metrics, this study emphasizes internal attention values. Attention
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values, which is an internal parameter, often sacrifice their value distribution

for the sake of accuracy. However, in this study, we constructed a model that

considers the realism of parameter values by building an attention value-based

loss function.

As discussed later, the model focuses solely on prediction performance if

we do not assign appropriate loss constraints on attention values. In this case,

the distribution of attention values becomes unrealistic. For example, it may

concentrate all attention values on a single link. Focusing the attention value

on a single link might be more beneficial, given the simplicity of the traffic

phenomenon. However, the attention value at this point cannot be deemed

natural. This phenomenon can be easily observed when training the model

without imposing an attention loss.

The remainder of the paper is organized as a literature review, where we

focus on conventional priority link detection and graph attention model-based

methodology. Then, we describe our model details in the methodology section.

The model of each stage and data will be described in detail. Finally, the results

and conclusion show the outcome of our analysis and implication directions.
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Chapter 2

Literature Review

2.1 Traffic Speed and Congestion Prediction

Traffic speed prediction has evolved as a critical component in the efficient and

intelligent management of road networks. It plays a pivotal role in formulat-

ing traffic control and routing strategies, minimizing congestion, and improving

safety. This paragraph delves into the broad range of methodologies and models

utilized in traffic speed prediction research. The discussion traces the trajectory

from numerical models to cutting-edge deep learning methodologies, underlin-

ing the significance of each approach in progressing the field.

Various models attempt to solve the problem of traffic speed prediction us-

ing numerical approaches. One notable study in this regard is Dong et al. (2014)

(Dong et al., 2014). Dong et al. (2014) put forward numerical state space mod-

els that offer several advantages in the field of traffic prediction. The proposed

model incorporates both temporal and spatial data, allowing for the considera-

tion of incoming traffic effects and the propagation of shock waves. Furthermore,
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the observation equation in the model utilizes occupancy data to calibrate es-

timation errors over time. The models developed for predicting network flow

rate and time mean speed are based on state space models that account for

both congested and non-congested traffic, taking into account spatial-temporal

patterns to enhance prediction accuracy and robustness. Unlike Autoregressive

Integrated Moving Average (ARIMA) and other time series techniques, these

models do not require the variable to be stationary. Moreover, the state space

estimation method generates equations with a similar structure for stationary

and nonstationary data.

Various machine learning techniques can also be found in a vast amount of

literature addressing the problem of traffic speed prediction. Pan et al. (2012) fo-

cused on predicting speed in the transportation network of Los Angeles County

(Pan et al., 2012). They explored the impact of rush hours and events on speed

prediction accuracy, particularly for short-term and long-term averages, even

in the presence of infrequent occurrences like accidents. By incorporating his-

torical rush-hour behavior, the researchers significantly improved the accuracy

of traditional predictors, achieving a 67% enhancement for short-term predic-

tions and a remarkable 78% improvement for long-term predictions. The study

compared the performance of two prediction models, ARIMA and the Histor-

ical Average Model (HAM). The analysis of real data revealed that ARIMA

outperformed HAM when predicting less than 30 minutes in advance. However,

HAM demonstrated superior performance for the longer prediction horizon than

ARIMA. This result claims ARIMA is less suitable for long-term predictions

exceeding 30 minutes in advance.

Asif et al. (2013) introduced unsupervised learning techniques for analyzing

the spatiotemporal performance trends in a large-scale prediction system based

on Support Vector Regression (SVR) (Asif et al., 2013). The study revealed the

12



predictability of traffic speeds differed among roads, and the traditional evalu-

ation indices failed to capture the variations across different time periods. The

authors identified that certain roads exhibited consistent performance patterns,

while others displayed significant variations in performance over time.

Zou et al. (2015) conducted a comprehensive evaluation of the multi-step

prediction performance of three models: the Space-Time (ST) model, Vector

Auto Regression (VAR), and ARIMA (Zou et al., 2015). Speed data from five

loop detectors in Minnesota is used in the research. To capture the cyclical

characteristics of the speed data, hybrid prediction approaches are proposed,

which decompose the speed into a periodic trend and a residual part. The peri-

odic component is modeled using a trigonometric regression function, while the

residual part is modeled using the ST, VAR, and ARIMA models. The results

indicate that the ST model outperforms the VAR and ARIMA models for multi-

step freeway speed prediction as the time step increases. It also demonstrates

that modeling the periodicity and the residual part separately leads to a bet-

ter understanding of the underlying structure of the speed data. The proposed

hybrid prediction approach effectively accommodates the periodic trends and

provides accurate predictions for forecasting horizons exceeding 30 minutes.

Following the advent of deep learning methodology, numerous traffic in-

formation prediction studies have adopted deep learning techniques for their

tasks. One study by Ma et al. (2015) introduces a novel architecture called

Long Short-Term Neural Network (LSTM NN) that effectively captures non-

linear traffic dynamics by addressing the issue of back-propagated error de-

cay (Ma et al., 2015). The LSTM NN demonstrates superior performance in

terms of accuracy and stability compared to other dynamic neural networks

and parametric/nonparametric algorithms. Another research by Wang et al.

(2016) focuses on continuous traffic speed prediction using a deep learning
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method called Error-feedback Recurrent Convolutional Neural Network (eR-

CNN) (Wang et al., 2016). This approach incorporates the spatiotemporal in-

formation of contiguous road segments and employs error feedback neurons to

address abrupt traffic events. The eRCNN outperforms state-of-the-art com-

petitors in terms of predictive accuracy. Zhang et al. (2019) also propose the

Attention Graph Convolutional Sequence-to-Sequence model (AGC-Seq2Seq)

for multistep traffic speed prediction (Zhang et al., 2019b). This deep learn-

ing framework combines the Sequence-to-Sequence (Seq2Seq) model and graph

convolution network to capture the complex temporal dynamics and spatial cor-

relations. The attention mechanism and a newly designed training method are

introduced to overcome the challenges of multistep prediction and capture tem-

poral heterogeneity. Numerical experiments demonstrate that AGC-Seq2Seq

achieves the best prediction performance compared to benchmark models. Fu-

ture research directions include integrating traffic flow theories and applying

the proposed frameworks to advanced transportation management systems.

Several studies have explored the application of advanced deep learning

methodologies in traffic prediction (Polson and Sokolov, 2017; Wu et al., 2018;

Ma et al., 2017). Polson and Sokolov (2017) utilized a linear model fitted with

L1 regularization and tangent hyperbolic non-linear layers. They confirmed the

methodology’s effectiveness in anomalous cases, such as during Chicago Bears

football games and snowstorm events. Wu et al. (2018) attempted to incorporate

the spatiotemporal property using a hybrid model called Deep Nural Network

based Traffic Flow (DNN-BTF) prediction model. The periodicity of traffic flow

was represented through multiple Convolutional Neural Networks (CNN) based

on weekly/daily datasets. By including a CNN in the model structure, it was

possible to capture the spatial features of the network. Ma et al. (2017) also

employed a CNN to capture spatial features, representing traffic speed as a
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single image with road time as the axis and the speed of a specific road and

time being expressed as an image pixel value. They confirmed that deep learning

methodologies outperformed existing statistical models in each paper.

However, research on speed reduction has been relatively limited, with most

studies focusing solely on speed prediction. Moreover, in order to improve travel

time prediction accuracy, it is crucial to develop a model that can effectively

handle the variability and uncertainty in challenging regions. This targeted

approach will enable transportation planners and decision-makers to make more

informed decisions.

There also exist studies on congestion itself (Nagy and Simon, 2021; Nguyen

et al., 2016; Sun et al., 2021). However, in previous research, they defined con-

gestion as a binary variable and built a model to predict congestion propagation

paths. Instead of the severity of congestion on each link, they focused their re-

search on the propagation itself. We can intuitively understand that there are

severe levels of congestion. Therefore, there is a need to represent congestion as

a continuous value.
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2.2 Priority Link Identification

The representative approach to Priority Link Identification is the network index-

based method. A network can be represented using various types of indices, such

as degree centrality, eigenvector centrality, and Katz centrality. These network

indices offer diverse characteristics for the nodes within the network. Numerous

studies have been conducted based on these indices. Bell et al. (2017) introduced

a vulnerability assessment technique based on a capacity-weighted spectral net-

work partitioning strategy. They identified priority network linkages as capacity

bottlenecks: network limits with the lowest capacity (Bell et al., 2017). Mattsson

and Jenelius (2015) categorized vulnerability assessments into topology-based

analyses (e.g., connectivity and capacity vulnerability) and system-based anal-

yses, depending on whether the congestion impact by traffic flows was included

(Mattsson and Jenelius, 2015). These attempts were primarily applied when

estimating an essential link in a fixed graph. From a fundamental perspective,

the simulation-based and optimization-based methods introduced below also

can be considered derivatives of network index-based research.

Formulating the priority link selection problem as an optimization is also

a common approach. Li et al. (2019) investigated a transportation network

recovery strategy for the emergency recovery phase based on an optimization

problem. They also proposed two resilience metrics to evaluate recovery rapidity

and network performance. The link selection strategy was developed using a

genetic algorithm. In this case, the genetic algorithm plays a role in selecting

a link with high significance. The evaluation part is based on the optimization

model (Li et al., 2019). Yang et al. (2016) established a mathematical model

to select a priority link based on travelers’ heterogeneous risk-taking behavior.

They aggregated the research area to alleviate the computational burden (Yang
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et al., 2016). Almost all priority link identification problems work at the bi-level

to identify the appropriate priority link and observe the effect in the network

accordingly. This was also the case with Yang et al. (2016). A bi-level model

was also adopted by Yu, Yang, and Yun (2014). The research was conducted to

find a priority link based on the link redundancy index in the first step and the

link priority index in the second step (Yu et al., 2014; Gu et al., 2020). As the

optimization problem becomes more complex, by adding various variables, the

optimization problem eventually reaches a level that cannot be solved in closed

form, resulting in a long computational time for a solution.

Simulation-based priority link detection consists of a link selection algo-

rithm and network evaluation. The simulation-based algorithm has predictive

power as it searches all possible future scenarios but has a computational cost

and time weakness. The other problem is that since the future is predicted

according to human-made logic, the model may not function properly in unex-

pected situations that humans did not anticipate. Gauthier et al. (2018) verified

the network’s resilience when a disruptive event occurred using resilience stress

testing and a dynamic mesoscopic simulator. Furthermore, the most critical

link among road networks was selected based on the overall travel cost of the

entire network. The time difference for the loss of each link was the criteria.

However, this study acknowledged a problem with the ranking. The ranking

changes rapidly depending on which metric is used. Additionally, it recognized

that unavoidable computational costs occurred during the simulation process.

Due to the high demand for computational power, it was explained that it is

challenging to utilize in real-time, even in a medium-sized network. In a test

using the Paris DIRIF road network, which is a medium-sized network com-

prising 868 links, the selection of a priority link took over an hour (Gauthier

et al., 2018).
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Another study used a genetic algorithm with a simulation (Pan et al., 2022).

A genetic algorithm selects which link to cut through the generations; the sim-

ulation starts without the cut-out link. In this study, it is also essential to

determine which metric to evaluate network resilience. The simulation results

were evaluated with recovery time and cumulative performance during the re-

covery. This bi-level model formulation is one of the most common model types

for selecting priority links. Recent studies tend to select a priority link based on

multiple criteria. Aydin et al. (2018) used multiple criteria to select a strategy,

such as centrality in network and road hierarchy as criteria (Aydin et al., 2018).

Liu et al. (2019) also brought a similar approach for prioritization problem (Liu

et al., 2022)
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In order to more accurately assess and manage transportation networks, it

is crucial to develop new indices or methodologies that can capture the dynamic

nature of traffic flow and congestion. By incorporating real-time traffic data and

considering the relationships between connected links, these new approaches can

provide a more comprehensive understanding of network performance, allowing

for more informed decision-making in traffic management and infrastructure

planning.

In optimization and simulation modeling, the inherent iterative processes

can aptly depict the nuances of road networks, with correlations between roads

being illuminated through appropriate model design. While optimization allows

for the identification of priority links exclusively in the present context, its

confluence with simulation models facilitates prospective predictions. A priority

link identification model that can perform prediction can be built with a scheme

that renders the future situation through the simulation model and solves the

optimization problem for that particular situation. However, optimization and

simulation models also have their drawbacks.

Primarily, the computational demands of both optimization and simulation

are extensive, precluding real-time determination of priority links. To accurately

represent impending traffic conditions within a desired timeframe, simulations

must encompass the entire duration. If the interlude between simulation steps

is overly extended, it compromises both the utility and precision of the appli-

cation. Conversely, a shortened time interval necessitates an extensive iterative

process, prolonging the attainment of anticipated traffic scenarios. The liter-

ature confirmed that the computation time exceeded 1 hour, even in the size

of a small village. In the case of deep learning, parallelization using GPUs is

well constructed so that many matrix operations can be processed almost in-

stantaneously. However, simulations based on mathematical models are not yet
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parallelized through GPU.

Secondly, the simulation model does not accurately predict future scenarios.

This issue is a common problem inherent to all simulation models. By approx-

imating real-world situations through finite units, errors are inevitably gener-

ated. These errors accumulate over time, resulting in the simulation model’s

low performance in predicting distant future scenarios. Furthermore, the sim-

ulation designer’s bias may be reflected in the simulation, causing the overall

results to be skewed. Recently, deep learning has been introduced to address

this issue, and if the graph attention mechanism can accurately reproduce all

traffic situations, precise results can be obtained. However, the model will vary

depending on the traffic conditions that the researcher deems most important.

The prescribed methodology for addressing this issue employs deep learning

techniques with the graph attention mechanism.

Third, different outcomes are obtained depending on the index to be opti-

mized. Many of the performance metrics identified in the literature are deter-

mined at the researcher’s discretion. These metrics need to be strictly defined

since they influence the conclusion of the optimization problem. Nevertheless,

akin to the challenges encountered in simulation, a certain degree of human-

induced bias remains inevitable.

Fourth, the accumulated data cannot be utilized effectively. Since the future

situation is implemented using a predetermined model, newly collected data

cannot be incorporated into the model. The model developer should directly

modify the internal structure of the simulation to incorporate new data. Until

such modifications are executed, the model remains incapable of reflecting the

continuously accrued data.
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Table 2.3: Existing models and their evaluation with various criteria

Criteria Index-based Optimization and Simulation

Real-time △, May not be possible to

increase the network size

X, Real-time unavailable

from medium-sized networks

Network

Topology

△, Reflected by index, but

depends on the intention of

the model developer

O, Reflect on the simulation

Link-Link

Attraction

△, Reflected by index, but

depends on the intention of

the model developer

△, Reflect in simulation, but

depends on the intention of

the model developer

Dynamic

property of

Traffic

△, Varies by the formulation

of the index

O, Reflected as an internal

mechanism

Future

Prediction

X, Index calculation based on

historical data

△, Reflect in simulation, but

Depends on the intention of

the model developer

2.3 Link and Network Indices

Various congestion metrics are used to evaluate traffic conditions, including

speed, travel time, and delay. These metrics provide valuable insights into the

performance of individual road links and can help transportation planners and

engineers identify problem areas and prioritize improvement projects. However,

while these metrics offer a detailed understanding of congestion levels on indi-

vidual links, they may not fully capture the broader network dynamics and the

relationships between connected links (Afrin and Yodo, 2020).
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In order to better understand the overall traffic flow within a network and its

impact on congestion, it is essential to consider the interdependencies between

connected road links. Traditional congestion metrics, mostly a metric for indi-

vidual links, can overlook the cascading effects of congestion on adjacent links

and the more extensive transportation network (Li et al., 2019). The specific

limitation of indices can be summarized below

Firstly, certain indices are grounded in linear models, which fail to encap-

sulate the dynamic nature of traffic. Within traffic flow, vehicles interact with

those both in front and behind them. Similarly, vehicular platoons respond to

preceding and succeeding platoons. Additionally, when a shock wave traverses

the roadway, it too induces interactions. Compared to the traffic response with

such a dynamic and non-linear relationship with various elements, the linear

model has an inherent problem: it cannot reflect such non-linearity.

Second, some indices do not reflect the topology of the road network. While

it is possible to consider the traffic conditions of adjacent roads, quantifying

the degree of their interdependence remains a challenge. Therefore, the more

complex the road network, the lower the indices’ performance.

Third, the indices do not reflect the hierarchy between the two roads. Not all

roads are the same; various hierarchies exist among them. Occasionally, some

studies take road hierarchy into account. However, even those studies fail to

define the relationship between two distinct hierarchies of roads. There may be

more important roads among the connected roads, but such characteristics are

not taken into account in the existing indices.

Fourth, when the size of the network increases, real-time priority link iden-

tification is impossible. If the network consists of 100 links, only 10,000 compar-

isons corresponding to a 100 by 100-matrix are needed to determine important

links. However, if there are more than 5,000 links, like the Seoul road network
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conducted in this study, the number of comparisons increases to 2,500,000. In

this case, if the comparison for one pair takes longer than 0.1 ms, the prediction

for a single step takes more than 5 minutes, making it difficult to utilize at the

traffic operation level.

Fifth, the indices cannot have predictive power. As the indices are based

on past data. Therefore, it is possible to interpret only past relationships that

have already passed. Consideration of the future circumstances to come has

not been carried out. This can be a serious problem in real applications. In the

case of rare events, such as severe accidents or unprecedented disasters like the

heavy rain that occurred in August 2022, there is no comparable historical data

available. Even if it is not a rare case, some existing indices cannot interpret

the phenomenon unless the exactly same event has occurred in the past, even

if it is a frequent event.

Hence, as we can check through the literature, network indices, such as

betweenness centrality, degree centrality, Katz centrality, closeness centrality,

and eigenvector centrality, have been widely used to analyze and understand

the structural properties of transportation networks. These indices help identify

important nodes or links within the network and can provide valuable insights

for transportation planning and management. Degree centrality represents how

directly connected a link is to other links. Katz centrality indicates how many

different paths can reach other links. Closeness centrality measures how close the

distance is from other links to the target link. Betweenness centrality determines

whether a specific link is part of the shortest path between two other links.

However, these indices also have limitations, primarily related to their in-

ability to capture the dynamic nature of traffic within the network. One major

limitation of these centrality measures is that they are based on the static

structure of the network. When the structure of the network is fixed, the val-
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Table 2.4: Definitions of each centrality

Centrality Definition

Degree Centrality CD(i) = deg(i)

Katz Centrality CK(i) =
∑∞

n=1

∑N
j=1 α

k
(
Ak

)
ji

Closeness Centrality CC(i) = (N − I)/
∑

j dij

Betweenness Centrality CB(i) =
∑

j ̸=i ̸=k σjk(i)/σjk

ues of these indices are fixed as well, regardless of the actual traffic conditions.

Consequently, these static characteristics do not account for the dynamic fluc-

tuations in traffic flow and congestion that are commonly observed in real-world

transportation networks. As a result, relying solely on these traditional network

indices may lead to an incomplete understanding of traffic patterns and their

impact on network performance.

2.4 Graph Attention Model

As deep learning methods demonstrated superior achievements compared to

conventional statistical models, graph-based deep learning methods, such as

Graph Neural Networks (GNN)s, also showcased their technical value. GNNs

are a distinct variant of neural networks specifically designed to handle data

structured as graphs. They possess the ability to discern the entire topological

configuration of a graph, concurrently updating the properties of both its nodes

and edges based on the characteristics of their adjacent elements. This proce-

dure includes the enhancement of node embeddings via a process of aggregation

and combining at each respective layer.
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f
(l)
N (v) = AGGREGATE(l)({h(l−1)

u ,∀u ∈ N (v)}) (2.1)

h(l)v = σ(W (l) · COMBINE(h(l−1)
v , f

(l)
N (v))) (2.2)

In Equation 2.1 h
(l)
v denotes the feature vector of the node v at the l-th

layer, and N (v) stands for the group of neighboring nodes to a specific node v.

At every layer l, a differentiable function part, AGGREGATE, amasses the rep-

resentation vectors of neighbors, which are then assimilated via the COMBINE

function. Furthermore, a weight matrix W is applied, and a nonlinear activation

function σ is utilized to refresh the hidden depiction of node v. This model is

typically referred to as the message-passing scheme.

The Graph Convolutional Network (GCN) (Kipf and Welling, 2016) is an

effective variant of CNN adapted for graph structures. It’s a fundamental type

of message-passing neural network, using a local neighborhood assembly with

first-order spectral filters that are learned, followed by a nonlinear activation

function to construct node representations.

h(l)v = σ(W (l) · MEAN{h(l−1)
u , ∀u ∈ N (v) ∪ {v}}) (2.3)

Based on this GNN, and mostly GCN, numerous research has emerged.

Yu, Lee, and Sohn (2020) established an adjacency matrix that considered road

length and lane number and inserted a learnable parameter inside the adjacency

matrix value, generating a similar effect to the attention mechanism (Yu et al.,

2020). Lu et al. (2020) concurrently applied Long Short-Term Memory (LSTM)

and GNN (Lu et al., 2020). They used the Xi’an and Beijing feature graphs from

road traffic networks and applied the obtained features to LSTM.

Several studies presented attempts to extract spatial and temporal features

of the road traffic network using graphs. Ge et al. (2019) utilized k-order spec-
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tral graph convolution to approximate the message-passing scheme of a graph

(Ge et al., 2019). Using a dilated causal convolution, they constructed a spa-

tiotemporal dependency of road traffic data. Furthermore, the day of the week,

road structure, and points of interest were incorporated to advance the model.

Li et al. (2021) created a graph where two model substructures were fused si-

multaneously to create spatial and temporal dependencies. Local and global

dependencies were obtained from gated dilated networks (Li and Zhu, 2021).

However, these approaches have limitations, as excessive intervention from re-

searchers is needed. Human-made adjacency weights induce the model to be

human-dependent.

GNN models had exceptional forecast accuracy; however, they statistically

estimated traffic’s spatial dependencies, overlooking the possibility of dependen-

cies changing over time. Moreover, the interpretability of deep learning models

is insufficient due to their black-box nature. Therefore, a deeper understand-

ing of the road traffic network interdependence derived from the deep learning

model is essential.

The attention value captured by the Graph Attention Network (GAT) can

represent structural dependencies, providing a higher understanding of the road

traffic network and the model. (Researchers have the discretion to adopt the

GAT framework when integrating attention mechanisms into graphs. Numerous

variations exist.) Several attempts have been made to apply the attention mech-

anism to graph neural networks without following the GAT framework—these

attempts aimed at capturing spatial and temporal attention, respectively. Wang

et al. (2020) combined traffic information on adjacent roads with a positional

attention mechanism, and a similar approach was taken by Zhou et al. (2021)

by reflecting temporary attraction using temporal attention Wang et al. (2020);

Zhou et al. (2020).
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The implementation of the GAT framework in traffic information prediction

commenced with the work of Zhang et al. (2019). Zhang et al. (2019) integrated

the LSTM layer into the GAT framework and utilized the distance between

links as the basis for the adjacency matrix (Zhang et al., 2019a). Nevertheless,

given that the inception of the attention mechanism aimed to deviate from

the existing recurrent neural network (RNN), it is challenging to argue that

the combination of LSTM with GAT is a suitable approach. Kong et al. (2020)

employed both a self-adaptive adjacency matrix and a distance-based adjacency

matrix to augment the non-parametric nature of their model Kong et al. (2020).

Additionally, they utilized a residual architecture to facilitate information flow

across layers. Capturing spatiotemporal features has been a crucial aspect of

the GAT framework. Zhang et al. (2020), Zheng et al. (2020), and Park et

al. (2020) introduced various layers to capture spatiotemporal features (Zhang

et al., 2020; Park et al., 2020; Zheng et al., 2020). Park et al. (2020) enhanced

the adjacency matrix by considering connectivity and edge weight, such that

two directly connected links are deemed to have connectivity.

Despite the extensive literature, three primary gaps remain. Firstly, prior

studies did not construct the adjacency matrix with traffic flow as the focal

point. Park et al. (2020) and Yu, Yin, and Zhu (2017) attempted a connectivity-

based matrix; however, it concentrated on the link’s physical connection rather

than the connection established via traffic flow (Park et al., 2020; Yu et al.,

2017). Other studies determined the adjacency matrix based solely on distance.

This means the consideration of road network topology was insufficient. Insuf-

ficient consideration can also be found in other aspects. Numerous papers have

employed residual connections; however, the introduction of residual connec-

tions was due to the performance demonstrated in other studies, not because

of the consideration of traffic-related characteristics (He et al., 2016).
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Secondly, There was no consideration for the various hierarchies of roads

present in traffic. All roads were treated as having the same hierarchy, and as

a result, no distinction was made between interrupted and uninterrupted flows.

The type of road, determined by the presence or absence of signals, significantly

influences driving behavior and, therefore, must be taken into account.

Lastly, the examination of attention values was insufficient. There has been

no investigation into which roads are deemed essential by each attention value

and the effects that emerge accordingly. Although there are examples of case

studies conducted at the level of several dozen links, it is challenging to find

such literature at a more extensive network scale. In this paper, we will establish

a method for obtaining realistic attention values and verify the effects of these

attention values on a city scale. This study aims to propose solutions that

address these limitations.

The remainder of this section aims to validate the aforementioned limita-

tions via case studies. Numerous research endeavors depict the adjacency matrix

of road networks based on proximity. Nonetheless, this methodology presents

several logical inconsistencies. It is not accurate to unconditionally connect

two links simply because they are nearby, nor is it accurate to refrain from

connecting them solely due to a significant distance between them. Figure 2.1

illustrates such a situation. This figure provides a detailed view of Mangwon

Hangang Park, revealing that Gangbyeonbuk-ro and Mangwon-ro are situated

close to each other. With a straight-line distance of approximately 200 meters,

most studies consider these roads interconnected.

However, in reality, accessing Mangwon-ro from Gangbyeonbuk-ro requires a

driving distance of more than 2 kilometers, traversing Tojeong-ro and Wausan-

ro. This phenomenon is particularly prevalent in the vicinity of urban highways.

Olympic Expressway, Gangbyeon Expressway, and Naebu Expressway all pass
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by branch roads but are not directly connected to them. As a result, the urban

expressway, which plays a crucial role in the road network, generates biased

predicted values due to numerous branch roads. Given the importance of urban

highways, this issue presents a significant challenge.

Figure 2.1: Failure case of a distance-based adjacency matrix

An adjacency matrix can be constructed based on connectivity to address

this issue. However, this approach introduces another problem stemming from

the unique characteristics of road networks, such as that of Seoul, when com-

pared to other types of networks. These unique characteristics can be identified

through various graph indices. Table 2.6 presents a comparison of network in-

dices for the Seoul road network, airline data, and authorship data. As the most
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representative network type, airline data exhibit a high average degree and low

average path length. Its modularity is 0.245, which is lower than that of other

graphs. The authorship network has the lowest average degree, at 3.451, and

likely due to the nature of thesis writing activities, which are not expected to

yield as high a degree as other networks. Consequently, it demonstrates a low

density of 0.002 and a high modularity of 0.955.

However, the average path length is the most significant difference between

the Seoul road network and the airline and authorship networks. The airline

network has an average path length of 2.318, meaning that other airports can be

reached with fewer than three stops on average. Despite its low average degree,

the authorship network also has an average path length of 5.823, indicating that

all individuals can be connected within six hops. In contrast, the average path

length of the Seoul road network is 16.73, signifying that, on average, 16.73

movements are required to reach another link. This discrepancy arises from the

nature of road networks, which lack a central hub. The absence of a hub further

exacerbates the difference between the minimum and maximum path lengths.

The degree distribution depicted in Figure 2.2 also illustrates how the Seoul

road network differs from other networks. Since the airline network consists of

several hubs and mostly spokes, the degree values are generally low. As the

degree value increases, the count consistently decreases. In contrast, the degree

distribution of the Seoul road network peaks at the average degree value. Very

few links serve as hubs, and even those have degree values that do not differ

significantly from other links. As demonstrated in Table 2.6 and Figure 2.2, the

Seoul road network represents a highly unique type of graph. Consequently, the

performance of the model is limited when approached using the same methods

as existing graph attention models.

Finally, directly applying the graph attention mechanism to traffic predic-
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Table 2.6: Indices of various networks

Type of Network Seoul Road

Network

Airline

Network

Authorship

Network

Nodes 5,068 235 1,589

Edges 27,957 1,297 2,742

Average Degree 5.582 11.038 3.451

Network Diameter 46 4 17

Average Path length 16.727 2.318 5.823

Density 0.001 0.047 0.002

Modularity 0.899 0.245 0.955

Average Clustering

Coefficient

0.122 0.652 0.878

tion risks overfitting. The attention mechanism was originally introduced to

handle challenges in domains such as natural language processing. In natural

languages, the vast lexicon can be arranged in myriad combinations to construct

sentences. For instance, the term ”hard” can denote ”difficult” or ”exhausting,”

and simultaneously convey ”absolute” or ”undeniable.” To address such com-

plexities, GPT-4 employs a staggering one trillion parameters.

In contrast, road network data is relatively simple. The speed range is fixed,

with no significant deviations from that range. Although there are instances

where the speed drops suddenly, it always remains a positive value. As shown

in Figure 2.2, the speeds of roads tend to move in tandem. The speeds of

links in the road network rise and fall together. They decrease during morning

and afternoon rush hours and increase throughout the day, with high speeds

guaranteed in the early morning and late at night. Even with a straightforward
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Figure 2.2: Degree distribution of Seoul road network(top) and conventional

network (Airline) (bottom)

rule, a range of speeds can be easily predicted. If a model equipped with a large

number of parameters used in natural language processing systems is employed
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for this simple behavior, overfitting naturally occurs.

Figure 2.3: Speed of major links showing similar behavior

In particular, the issue becomes more significant since we are also interested

in the attention value. While indicators related to speed reduction are primary,

this study will also examine whether outliers in attention values occur. Accurate

speed predictions and the emergence of biased attention can coexist. In fact,

this occurred in numerous cases during the model training. All attention values

tend to have the same value or be randomly concentrated on two or three

links. All of these problems originate from overfitting. Precisely, as the number

of links increases, so does the number of parameters, leading to more severe

overfitting. Although the speed reduction prediction performance improves, the

attention value already produces results beyond common sense. In the case
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of the graph attention model, it was observed that overfitting occurs rapidly

as the graph layer - attention - graph layer - attention pattern is repeated.

Since we are tackling a problem that has bounded values with a synchronized

trend, the attention value is prone to deviate from common sense. It is because

the problem could be solved with just the graph layer without an attention

mechanism. In the next chapter, which introduces Methods, we will discuss

how current research addressed the aforementioned problem.

37



Chapter 3

Establishment of Impact on
Adjacent Network Index

3.1 Index Setup

3.1.1 Research Flow and Data Description

Figure 3.1: The framework and flow of the research

This study mainly consists of three steps. Firstly, we develop an index that

can determine the impact of the adjacent network. Secondly, we improve the

adjacency matrix of the model to be utilized for predicting the index. Lastly,

we develop a prediction model for estimating the index.

In part 1, we define the impact of the adjacent network index. So far, most
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deep learning applications in traffic have primarily focused on predicting travel

speeds. While travel speed is a crucial factor, this study aims to measure a

particular road’s influence on the speed reduction of the network.

The index representing the degree of impact on the network can be defined

in various ways depending on the researcher’s purpose and the given data. The

objective of this study is to understand the impact a specific road has on the

degradation of travel speeds within the network. Accordingly, the research was

conducted using base indicators related to speed. The new index is the time-

space combination of existing indicators.

In some studies, attention values are directly used to assess the importance

of links. While it is possible to consider attention values as direct indicators of

importance, current research chooses not to do so. This decision was made be-

cause the validation of attention values has not yet been sufficiently conducted,

and developing a direct indicator is more straightforward.

Instead of measuring the speed itself, we measured the degree of speed

reduction. The appropriate speed can vary for each road. Even if vehicles pass

at the same speed of 15 km/h, the congestion level will have different values

depending on the road’s appropriate speed. For instance, if the link speed is

measured at 15 km/h, the speed reduction ratio for a road with an appropriate

speed of 30 km/h would be 50%, while for a road with an appropriate speed of

60 km/h, the ratio would be 75%. Based on such speed reduction indicators,

we aimed to investigate the impact on the degree of speed reduction in the

network.

In Part 2, we improved the shortcomings of the existing graph attention

model by using data from Gangnam-gu. The fields in which the graph attention

model has been actively developed are social network services, recommendation

systems, and pharmacies. These fields have few things in common with trans-
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portation. For this reason, there are model characteristics that are not suitable

for the characteristics of traffic. The most significant difference when comparing

the example with the social network service is the absence of a hub in the social

network. There may be routes that act as significant axes due to high traffic

volume, but according to the road network data, there is almost no difference in

the node degree of the main routes and the branch lines. One problem that oc-

curs because of this is that the maximum distances between nodes are lengthy.

In Part 2, this problem was solved by improving the adjacency matrix. Details

on this are described in the problem definition, which will be described later.

This research improved the model based on data from Gangnam-gu data

because of the practical computational cost problem. The time difference be-

tween training and testing is significant in deep learning models. In the case of

training, the gradient of each parameter identified in the loss should be updated

every batch. Since deep learning is a model with enhanced explanatory power

by using a large number of parameters, the update process takes a considerable

amount of time. On the other hand, in the case of testing, there is no need to

store the gradient; only checking the output is necessary, thus taking much less

time. In this study, when training was conducted throughout Seoul, it generally

took about 10 hours for the train and validation errors to converge. Therefore,

improving the model structure using this data may take too long.

The structure of urban roads in cities is grid structures, which are generally

similar. Therefore, it is expected that there will be no significant problems even

if the adjacency matrix is developed based in Gangnam-gu, one of the most

urbanized areas in Seoul.

Lastly, in Part 3, the index developed in Part 1 and the adjacency matrix

made in Part 2 were used for the entire city of Seoul. In this part, we sought to

incorporate traffic characteristics into the model. There are two main types of
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traffic flow: interrupted flow, which has traffic signals, and uninterrupted flow,

which has no traffic signals. These two flows possess different hierarchies on

the road and exhibit distinct characteristics. Uninterrupted flow typically has a

higher speed limit and broader road width. In contrast, interrupted flow exhibits

opposite properties: lower speed limit and narrower road width. Although it is

clear that the hierarchy of different roads should be treated separately, there

have been no attempts to the best of our knowledge. In this study, we aim to

develop a model that reflects the hierarchy of roads with varying characteristics.

In addition, this study introduced a loss to limit unrealistic attention values.

Previous analyses of attention values have not been adequately conducted, par-

ticularly in network-scale studies like this one. Ideally, attention values should

be well-distributed, referencing links close to a specific link. However, as the

number of referenced links increases, attention values begin to deviate in unex-

pected directions. This is expected to have a relationship with the synchronized

behavior of the traffic state.

Most of the speed of a city shows a similar pattern. During the morning

and afternoon peak hours, the overall travel speed decreases; at other times,

the travel speed increases. In other words, from the point of view of the graph

attention model, even if the weight of the attention score is adjusted less sen-

sitively, the model can respond appropriately. In reality, the attention value is

focused on one single link.

The sum of attention each link can refer to equals one. Therefore, if you

check the maximum attention of each link, you can find out which road is

considered the most important. The problem is that most roads give maximum

attention to similar or nearly identical roads. There may be various reasons

for this, but the simplicity of the traffic speed data described above is thought

to play a major role. For this reason, human intention was included in the
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model development stage. The sum of each road’s attention scores and distance

penalty was checked for both uninterrupted and interrupted flow. Here the

distance penalty was given if the referred link was located too far.

The rest of this section describes the data. In Seoul, the traffic information

collection agency provides traffic data through Transport Operation & Infor-

mation Service (TOPIS). Information such as link speed, traffic volume, and

public transportation usage is provided. Of these, link speed data was used in

this study. Traffic volume data were excluded because the collection location

was less than 3% of the link speed, and there were too many missings.

The link speed provided by TOPIS is recorded based on the service link.

However, there is a difference between the standard node-link system and the

service link system provided by the National Traffic Information Center. TOPIS

provides mapping data between the service and standard links to solve this

problem. In general, one service link consists of 1 to 4 standard links. However,

given the sheer volume of links, missing elements in the mapping data are

inevitable. The number of standard links obtained based on the Service link-

Standard link mapping data was counted as 11,398. Considering that there were

24,720 existing mapping data, more than half were lost due to missing. Since one

of the essential ideas of this study is the improvement of the adjacency matrix,

this loss of connectivity adversely affects the study results. Therefore, if there

is a service link with speed data within 3-hop, the link has been restored. In

this way, the number of repairing a broken standard link corresponds to about

2,500. Therefore, the total number of service links used in the Seoul study was

counted as 5,068. Figure 3.2 shows the illustration of the service links in Seoul.

The acquisition period was from November 1 to November 28, 2022, and

data were acquired for 28 days. The unit of aggregation of the data is 5 min-

utes. It is confirmed that as social distancing restrictions in Seoul were gradually
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Figure 3.2: The service link of Seoul used in the research

lifted in September 2021, the transportation demand in November 2022 would

have been equal to that of a typical year. Since some companies still recom-

mend working from home, slight differences may exist, but it is expected to be

minimal.

Gangnam-gu data used in Part 1 consists of 228 links selected from Seoul

data. Using these 228 links, we proceeded with model improvement. All major

arterial roads in the vicinity of Gangnam-gu are included in this data.

3.1.2 Utilizing Speed Reduction Index

There are various indicators for measuring the state of a network. We can obtain

various indicators by combining primary traffic data such as speed, density,
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Figure 3.3: Target service link of Gangnam-gu used in the research

and volume. Speed is the simplest, most stable, and easiest to acquire among

the various fundamental indicators. Although data acquisition points for traffic

volume were limited in this study, speed data was available for almost all links.

Therefore, speed was chosen as the base indicator in this study. Table 3.1 below

also highlights the advantages of using speed as a metric, including its simplicity,

stability, and ease of data acquisition.
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Table 3.1: Congestion Metrics and Assessment Criterias (Rao and Rao, 2012)
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This study used the speed reduction index(SRI) as the basis for various

metrics, focusing on network congestion. The following Equation 3.1 defines

the index:

Speed Reduction Index =
85 th percentile speed − current speed

85 th percentile speed
(3.1)

The SRI can have different values for different links, even at the same speed.

As shown in Figure 3.4, if the original speed limit of a road is higher, the SRI

will have a larger value. For example, when the speed on a left link in Figure 3.4

is measured as 40 km/h, the SRI will be 50% because the link’s 85th percentile

speed is 80 km/h. However, on the road with an 85th percentile speed of 50

km/h, 45 km/h corresponds to 20% on the SRI.
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Figure 3.4: Example of SRI for different link

Using SRI, it is possible to measure how congested each road is while con-

sidering the relative hierarchy of the roads. Typically, the SRI is represented as

the inverse of the speed graph. In the following examples, we will examine the

characteristics of SRI.

During the morning and afternoon commute, congestion is worse at one time

than the other. The links highlighted in red on the map on the right correspond

to the blue link on the left graph, which is the source of the speed reduction

causing the speed reduction on the downstream links. As shown in Figure 3.5

below, it can be seen that one of the SRI peaks is more severe than the other

during the morning and afternoon commute.

Figure 3.5: SRI peaks with different values in the morning and afternoon
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The next thing we can infer is that not all connected links are necessarily

related to congestion. Congestion propagation may not occur for links that

involve U-turns or right/left turns. The figure below, Figure 3.6, illustrates

the speed reduction propagation originating from the link indicated by the

blue graph on the left. It can be seen that even when the SRI value rises, the

yellow graph remains at a low value. This is because there are different types

of connectivity and connectivity that have no relationship to each other.

In Figure 3.6, again, we can confirm that speed reduction propagation takes

longer than expected. Shockwave propagation is different from speed reduction

propagation. The literature shows that the speed of an urban shockwave is

13.32 km/h, but the speed observed in our graph is much slower than that

(Ramezani and Geroliminis, 2015). This means shockwave and speed reduction

is a different phenomenon.

Figure 3.6: Discovery of unrelated links and delay in speed reduction

propagation

Lastly, it can be difficult to intuitively understand speed reduction propaga-

tion beyond 1-hop, especially when considering various possible routes for speed

reduction propagation. This is due to the interconnectedness of the network,

which can make it difficult to discern a clear trend in congestion propaga-

tion. This highlights the need for more sophisticated modeling techniques to
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accurately predict and analyze speed reduction propagation in complex urban

networks. By developing more advanced models, we can gain a better under-

standing of how speed reduction propagates and identify effective strategies for

mitigating its effects.

3.1.3 Creating an Impact on Adjacent Network Index

The impact on the adjacent network index aims to assess whether the current

speed reduction on a given link results in future speed reduction on connected

links. This index is calculated as the product of the current speed reduction

index of the given link and the sum of the future speed reduction index of the

links connected to the given link.

The current speed reduction index of the given link plays a crucial role

in this calculation, as an uncongested road cannot cause congestion on other

links. This consideration ensures that only congested links are evaluated when

determining the impact on the adjacent network, thus providing a more accurate

representation of the potential traffic issue.

The future speed reduction index of connected links represents the extent of

the future speed reduction in the neighborhood due to the speed reduction of the

target link. By accounting for the speed reduction index on connected links, the

index offers a comprehensive understanding of how the current congestion on a

specific link may contribute to the overall traffic conditions in the surrounding

area.

There was an issue regarding how many hops to consider in the index. Real-

istically, it is challenging to assume that speed reduction propagates consistently

beyond three hops on urban roads. Even the SRI graph becomes uncertain in

terms of correlation after passing just two hops. If congestion were to propa-

gate beyond three hops, the propagation pattern would ultimately be reflected
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in the indices, as we will observe the speed reduction for all links up to three

hops away. The relationship between a specific link and a link five hops away

can be determined through the impact on the adjacent network index for the

two hops away link.

Figure 3.7: Diagram of impact on adjacency matrix index

In summary, taking into account more than three hops would likely not pro-

vide additional valuable information, as the relationship between links becomes

less clear and less directly connected with each hop. Focusing on the immediate

neighboring links (up to two or three hops away), the impact on the adjacent

network index can provide more accurate and actionable insights into speed

reduction and its propagation through the road network. As a result, the index

has been set up as Equation (3.2) below.

Impact on Adjacent Network Index, of Link i, at time T

= IANIi,T =

3−hop∑
j∈N(i)

60∑
t=5

SRIj,T+t (3.2)
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3.1.4 Preprocessing the Index

Data engineering might be just as important, if not more so, than model de-

velopment. The data distribution was adjusted to ensure that it was suitable

for smooth model training. The initial distribution of SRI is shown on the left

side of Figure 3.8. Most values are between -20 and 100; however, some values

have large negative numbers. Some values even reach -575. These values occur

because some vehicles drive anomalously fast on roads with significantly low

85th-percentile speeds. Our primary focus is on speed reduction, not determin-

ing the speeds of fast-moving vehicles. Therefore, we performed normalization

by appropriately reducing the absolute values of such data points.

Figure 3.8: Before and after normalizing SRI

The previously validated SRI serves as input data for the model. Next, the

distribution of data we examined is the model’s output, which is the sum of

future SRI values in the adjacent network. As seen on the left side of Figure

3.9, since the SRI was processed relatively well, the sum of future SRI val-

ues exhibited a distribution close to normal. However, by applying a square

root transformation, we were able to make the distribution even more closely

resemble a normal distribution.
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Figure 3.9: The Sum of future SRI before and after normalization

3.2 Analyzing the IANI

3.2.1 Statistical Property of IANI

Table 3.2 represents the pre-normalization values of the sum of future SRI for

5,068 links over 28 days, with 24 hours per day and 12 values per hour, resulting

in 40,868,352 data points.

Table 3.2: Statistics of a sum of future SRI

Statistics Value

Mean 6,076.127

Standard Deviation 3,219.975

Min Value 0.000

25-Percentile Value 1.061

50-Percentile Value 3,720.780

75-Percentile Value 5,733.657

Max Value 27,155.070

The average value is 6,076.127, with a standard deviation of 3,219.975. The
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preprocessing step ensures that the minimum value of SRI is set to 0, resulting

in 0 values in the sum of future SRI. The median is 3,720.780, and the maxi-

mum value is 27,155.070. The IANI calculation involves applying depreciation

coefficients of 0.925 and 0.8 for the time step and number of hops, respectively.

The statistics for each hop of the links are provided below.
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Table 3.3: Statistics about the number of N-hop links

Statistics 1-hop 2-hop 3-hop Sum 1 to

3-hop

Mean 2.798 7.213 15.074 26.085

Standard

Deviation

1.232 3.647 7.355 11.699

Min Value 0.000 0.000 0.000 1.000

25-Percentile

Value

2.000 5.000 10.000 18.000

50-Percentile

Value

3.000 7.000 15.000 26.000

75-Percentile

Value

4.000 10.000 20.000 34.000

Max Value 8.000 23.000 42.000 66.000

On average, each link receives contributions from approximately 26.1 links.

IANI is calculated by multiplying the sum of future SRI by the individual link’s

SRI. The histogram in Figure 3.10 illustrates the distribution of IANI using SRI

and normalized SRI.

53



Figure 3.10: IANI with SRI and normalized SRI

The detailed statistics of IANI values are presented in Table 3.4. It can

be observed that the distribution is left-skewed for the un-normalized case,

indicating a higher concentration of values towards the lower end.

Table 3.4: Statistics of IANI with SRI and normalized SRI

Statistics IANI with SRI IANI with Normalized

SRI

Mean 258,779.8 3,121.9

Standard Deviation 189,006.0 1,626.1

Min Value 0.0 0.0

25-Percentile Value 118,976.9 1,929.8

50-Percentile Value 217,374.9 2,919.7

75-Percentile Value 353,851.6 4,088.9

Max Value 2,225,545 14,150.1

When visualizing the IANI values, Figure 3.11 is obtained. It shows higher

values in areas corresponding to the central business district, such as near Gang-

nam and Yeouido. Arterial links such as Dongbu Expressway also showed a high

value of IANI.
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Figure 3.11: Visualizing the IANI value

The top 10 roads with high IANI values are as in Table 3.5. Notably, many

of these roads are major arterial roads, including the Gangbyeon Expressway,

Gyeongbu Expressway, and Dongbu Expressway, along with regular roads like

National Assembly Road.

The difference between averaging IANI without distinguishing the time and

day of the week and averaging it separately for morning and afternoon rush

hours and weekdays and weekends is significant. The following contents in Table

3.6 are the top 10 links during weekdays in the morning hours (6-10 AM). It

shows a stronger concentration on major arterial roads.

Table 3.7 illustrates the top 10 links during weekdays in the afternoon hours

(5-9 PM). It can be observed that the top 10 links are more diverse, encom-

passing various roads.
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Table 3.5: Roads with the highest IANI mean value

Rank Name of the Road Speed Limit

(km/h)

Length (m) Number of

Lanes

1
Dongbu Expressway

(동부간선도로)
57.5 1588.7 2.2

2
Dongbu Expressway

(동부간선도로)
80.0 369.3 2.0

3
Gangbyeon Expressway

(강변북로)
80.0 2892.8 4.0

4
Gyeongbu Expressway

(경부고속도로)
70.0 1698.9 4.0

5
Banpo-daero

(반포대로)
50.0 618.2 2.5

6
Olympic Expressway

(올림픽대로)
80.0 1742.3 4.6

7
National Assembly-daero

(국회대로)
50.0 1188.6 2.2

8
Dongbu Expressway

(동부간선도로)
60.0 310.4 2.0

9
Dongbu Expressway

(동부간선도로)
60.0 200.6 1.2

10
Dongbu Expressway

(동부간선도로)
80.0 2964.3 3.0
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Table 3.6: Roads with the highest IANI mean value at weekday and

morning(6-10am) peak

Rank Name of the Road Speed Limit

(km/h)

Length (m) Number of

Lanes

1
Dongbu Expressway

(동부간선도로)
57.5 1588.7 2.2

2
Dongbu Expressway

(동부간선도로)
80.0 4459.1 3.0

3
Olympic Expressway

(올림픽대로)
80.0 3796.9 4.2

4
Dongbu Expressway

(동부간선도로)
80.0 369.3 2.0

5
Dongbu Expressway

(동부간선도로)
80.0 2964.3 3.0

6
Dongbu Expressway

(동부간선도로)
80.0 2553.0 3.0

7
Dongil-ro

(성동구 동일로)
52.0 1352.6 2.9

8
Gangbyeon Expressway

(강변북로)
80.0 2892.8 4.0

9
Gyeongbu Expressway

(경부고속도로)
70.0 1698.9 4.0

10
Dongbu Expressway

(동부간선도로)
80.0 639.2 3.0
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Table 3.7: Roads with the highest IANI mean value at weekday and

afternoon(5-9pm) peak

Rank Name of the Road Speed Limit

(km/h)

Length (m) Number of

Lanes

1
Dongbu Expressway

(동부간선도로)
57.5 1588.7 2.2

2
Seocho-daero

(서초구 서초대로)
50.0 568.1 3.0

3
Gyeongbu Expressway

(경부고속도로)
70.0 1698.9 4.0

4
National Assembly-daero

(영등포구 국회대로)
73.3 2216.5 2.4

5
National Assembly-daero

(영등포구 국회대로)
50.0 1188.6 2.2

6
Olympic Expressway

(올림픽대로)
80.0 1742.3 4.6

7
Banpo-daero

(서초구 반포대로)
50.0 618.2 2.5

8
Dongbu Expressway

(동부간선도로)
80.0 3332.4 3.0

9
Dongil-ro

(성동구 동일로)
50.0 605.5 2.5

10
Bongeunsa-ro

(강남구 봉은사로)
50.0 624.3 3.0

58



Table 3.8 shows the top 10 links during weekends in the morning hours (6-10

AM). Due to relatively lower traffic volume compared to other time periods,

peripheral roads are more prominent in the top links. This aligns with the results

obtained from past speed prediction, where the attention values of peripheral

roads in the outskirts of Seoul were found to be higher during weekends.

The contents of Table 3.9 are the top 10 links during weekends in the af-

ternoon hours (5-9 PM). Once again, it is evident that major arterial roads are

selected as important links.

Based on the findings, it can be observed that different links are important

in different time periods. There are two main strategies that can be considered

based on this index.

The first strategy is to expand the links with high IANI value from a trans-

portation planning perspective. By physically widening the links, it is expected

that congestion caused by limited space can be alleviated.

The second strategy is to implement vehicle route diversion. Avoiding routes

with high predicted future IANI values makes it possible to prevent the in-

flux of traffic exceeding the road capacity. However, the formulation of precise

strategies based on signal utilization is difficult since the data does not include

turn-type information.
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Table 3.8: Roads with the highest IANI mean value at weekend and

morning(6-10am) peak

Rank Name of the Road Speed Limit

(km/h)

Length (m) Number of

Lanes

1
Seosomun-ro

(중구 서소문로)
50.0 198.8 2.0

2
Gosanja-ro

(동대문구 고산자로)
50.0 406.3 3.0

3
Myeongil-ro

(강동구 명일로)
40.0 276.0 1.0

4
Geumnanghwa-ro

(강서구 금낭화로)
50.0 149.4 2.0

5
Songi-ro

(송파구 송이로)
30.0 300.8 2.0

6
Dongbu Expressway

(동부간선도로)
80.0 369.3 2.0

7
Seobu Expressway

(서부간선도로)
80.0 1109.4 1.8

8
Hangeulbiseok-ro

(노원구 한글비석로)
30.0 488.1 1.5

9
Dongnam-ro

(강동구 동남로)
50.0 327.7 3.0

10
Seooreung-ro

(은평구 서오릉로)
50.0 125.7 3.0
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Table 3.9: Roads with the highest IANI mean value at weekend and

evening(5-9pm) peak

Rank Name of the Road Speed Limit

(km/h)

Length (m) Number of

Lanes

1
Dongbu Expressway

(동부간선도로)
57.5 1588.7 2.2

2
Gangbyeon Expressway

(강변북로)
80.0 2892.8 4.0

3
Olympic Expressway

(올림픽대로)
80.0 1742.3 4.6

4
Gyeongbu Expressway

(경부고속도로)
70.0 1698.9 4.0

5
Dongbu Expressway

(동부간선도로)
80.0 2964.3 3.0

6
Banpo-daero

(서초구 반포대로)
50.0 618.2 2.5

7
Dongbu Expressway

(동부간선도로)
80.0 369.3 2.0

8
Dongil-ro

(성동구 동일로)
50.0 605.5 2.5

9
National Assembly-daero

(영등포구 국회대로)
50.0 1188.6 2.2

10
Olympic Expressway

(올림픽대로)
80.0 1515.2 5.0
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3.2.2 Comparing IANI with Graph Centralities

The section explores the relationship between graph centralities and IANI. Each

centrality has the following characteristics: Degree centrality represents how

directly connected a link is to other links. Katz centrality indicates how many

different paths can reach other links. Closeness centrality measures how close the

distance is from other links to the target link. Betweenness centrality determines

whether a specific link is part of the shortest path between two other links.

After examining the correlation coefficients between various centralities and

IANI, it was found that all coefficients were positive. A strong relationship with

IANI was observed between degree centrality and Katz centrality, which are

closely related to the direct connection index with other links.
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Table 3.10: Correlation between various centralities and IANI

Betweenness

Centrality

Degree

Centrality

Katz

Centrality

Closeness

Centrality
IANI

Betweenness

Centrality
1.000 0.126 0.087 0.348 0.120

Degree

Centrality
1.000 0.837 0.180 0.630

Katz

Centrality
1.000 0.201 0.573

Closeness

Centrality
1.000 0.196

IANI 1.000

However, further analysis of links with high IANI values revealed additional

features in addition to these characteristics. As we can check in Table 3.10, it

is observed that betweenness centrality is characteristically high for links with

extensive value of IANI. This is likely due to the specific properties of each

centrality measure. Betweenness centrality assesses whether a road is included

in the shortest path between two other roads.

The fact that a road greatly impacts its surrounding roads implies that it

has a high probability of being included in the shortest path between other

roads, which is an intuitive notion. However, it is difficult to determine whether

or not other centrality measures should be incorporated, as the reasons for

their inclusion or exclusion are not clear. Further analysis and investigation of

these centrality measures may provide valuable insights into their relevance and

potential contributions to the overall understanding of the road network.
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Table 3.11: Value of various centralities of the roads with the top 100 INAI

Type of Centrality Top 100 mean Mean Ratio

Betweenness Centrality 0.0114 0.0031 3.7249

Degree Centrality 0.0020 0.0015 1.3109

Katz Centrality 0.0099 0.0129 1.6016

Closeness Centrality 0.0684 0.0617 1.1094

3.2.3 Comparing IANII with SRI

The study compared IANI with commonly studied metrics in traffic speed anal-

ysis, SRI. Similar to the analysis conducted in Chapter 4.4.2, the research ex-

amined the correlation coefficients between each centrality and the metrics. The

results are presented in Table 3.12, which shows that all network centralities

exhibited higher correlation coefficients with IANI compared to SRI. This in-

dicates that IANI incorporates not only the speed information but also the

structural characteristics of the network.

Next, we grouped the values of SRI and IANI and examined the link at-

tributes, such as length and number of lanes, within each group. Both SRI and

IANI were divided into five quintiles. Figure 3.12 illustrates the variation of link

attribute values by quintile, while Figure 3.13 shows the centralities’ values for

each quintile. The same information is summarized in Table 3.13 and 3.14.
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Table 3.12: Comparing the correlation of SRI and IANI with various

centralities

Betweenness

Centrality

Degree

Centrality

Katz

Centrality

Closeness

Centrality
SRI IANI

Betweenness

Centrality
1.000 0.126 0.090 0.348 0.031 0.120

Degree

Centrality
1.000 0.837 0.180 0.018 0.630

Katz

Centrality
1.000 0.201 0.020 0.573

Closeness

Centrality
1.000 0.008 0.196

SRI 1.000 0.378

IANI 1.000
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Figure 3.12: Mean values of various criteria by quintile of SRI and IANI
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Figure 3.13: Mean values of various centralities by quintile of SRI and IANI
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Table 3.13: Various value of links by quintile of IANI

Quintile 1 2 3 4 5

Length 488.01 499.31 569.36 622.31 718.48

Average Number of Lanes 2.451 2.387 2.479 2.609 2.697

Lane Chaged or Not 0.115 0.149 0.176 0.157 0.197

SRI 48.375 43.230 40.581 38.029 34.439

IANI 3600.2 3292.1 3172.8 2931.4 2612.8

Speed Limit 47.711 46.393 47.288 48.695 49.869

Betweenness Centrality 0.0039 0.0025 0.0025 0.0027 0.0037

Degree Centrality 0.0015 0.0015 0.0015 0.0015 0.0015

Katz Centrality 0.0127 0.0130 0.0135 0.0128 0.0123

Closeness Centrality 0.0622 0.0611 0.0613 0.0616 0.0622

For IANI, it was observed that as the quintile increased, the link length,

the number of lanes, and the occurrence of lane changes all increased. Con-

versely, SRI exhibited the opposite trend, indicating that narrower roads ex-

perienced more localized speed reductions. Various centralities consistently in-

creased across IANI quintiles, indicating that links with higher IANI values are

more strategically positioned within the network.

Just like the previous section categorized the value into quintile groups,

categorical values are generally commonly used in transportation planning and

operation. However, when utilizing continuous values, it is possible to examine

the magnitude of extreme values while also dividing the values into categories

using appropriate thresholds. This approach allows us to take advantage of both

the benefits of continuous values and the categorization aspect.

Figure 3.14 compares cases where SRI and IANI exhibit different patterns in
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Table 3.14: Various value of links by quintile of SRI

Quintile 1 2 3 4 5

Length 609.33 552.22 567.76 568.36 594.22

Average Number of Lanes 2.677 2.56 2.505 2.499 2.394

Lane Chaged or Not 0.184 0.181 0.176 0.143 0.104

SRI 44.62 41.404 40.284 39.377 38.809

IANI 4395 3613 3165.4 2694 1891.3

Speed Limit 49.196 47.895 47.071 47.422 48.293

Betweenness Centrality 0.0046 0.0033 0.0027 0.0027 0.0021

Degree Centrality 0.0018 0.0016 0.0015 0.0014 0.0011

Katz Centrality 0.0177 0.0146 0.0127 0.0109 0.0086

Closeness Centrality 0.0636 0.0624 0.0619 0.0613 0.0597

Figure 3.14: The different values between SRI and IANI in the same region

the same region. For SRI, it tends to be higher for shorter and narrower roads,

suggesting higher values assigned to areas with limited connectivity, such as

apartment access roads. On the other hand, major roads leading to arterial
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routes tend to have lower SRI values. In contrast, IANI considers both speed

reduction and network importance, thus selecting less important roads and more

significant roads from a network perspective.
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Chapter 4

Graph Attention Model for Urban
Network

4.1 Background of the Graph Attention Model

In the prediction problem, the attention mechanism selects data to be referred to

with a higher weight using the higher attention value. The attention mechanism

consists of a query, key, function, and value.

A(q,K, V ) =
∑
i

softmax(f(q,K))V (4.1)

A query is input data of a target we are trying to predicate. In this paper,

the current link speed data or a speed reduction index becomes a query. The

relationship between a query and several other keys is determined by a pre-

defined function, where a key is a non-query link. Function determines the

relationship between a query and a key. In GAT, a function is a 1-layer Neural

Network (NN).
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A(q,K, V ) =
∑
i

softmax(1 − layer Nerual Network (q∥K))V (4.2)

The detailed process can be illustrated using the following example, which

depicts a graph composed of five nodes and seven edges.

Figure 4.1: Example graph with five nodes and seven edges

Let the feature vector in layer l of any node i be h
(l−1)
i . Here, the relationship

between the feature vector h
(l−1)
i of node i and the feature vector h

(l−1)
j of node

j is defined as the following Equation (4.3) in the term energy e. The attention

value α is the softmax of this energy value for the connected node. Equation

(4.4) shows the softmax process in the GAT model.

Attention values are obtained through a simple softmax function. Matrix

W is utilized to obtain energy, and since W is a learnable parameter, higher

performance energy is achieved as the iteration progresses. The 1-layer NN of

Equation (4.3) below is also a learnable parameter, with a total of two matrices

being learned in the process of obtaining energy. The same matrix is used for

all node pairs. Therefore, the existing matrix W can be used continuously even

if a new node is added. The graph neural network is explained to have inductive

72



properties. The opposite is called the transductive property. The processes of

Equation 4.3) and Equation (4.4) below are performed only for adjacent nodes.

Since we are currently checking node i, Equation (4.3) and (4.4) are performed

for k ∈ N(i), the nodes included in the neighbor of node i.

e
(l−1)
ij = LeakyReLU

(
1 − layerNN

(
Wh

(l−1)
i ∥Wh

(l−1)
j

))
(4.3)

α
(l−1)
ij =

exp
(
e
(l−1)
ij

)
∑

k∈N (i) exp
(
e
(l−1)
ik

) (4.4)

The attention value α, obtained through Equation (4.4) is used to calculate

the feature vector h
(l)
i of time step i. In this case, the activation function is

applied after adding the feature vectors to the neighboring nodes. In the original

paper, where graph attention networks were introduced, Leaky Relu was used,

and in this study, the convention of the original paper was followed (Velickovic

et al., 2017).

h
(l)
i = ActivationFunction

 ∑
j∈N (i)

α
(l−1)
ij Wh

(l−1)
i

 (4.5)

Figure 4.2 illustrates the process of applying the graph attention mechanism

to node 2. Node 2 is connected to nodes 1, 3, and 4, so the energy for these nodes

is obtained by passing their feature vectors through matrix W and feeding the

concatenated result through the 1-layer Feedforward Neural Network. Using

this energy, the attention value α is calculated. By performing a weighted sum

based on α, the feature vector h
(l)
2 of node 2 of layer l is obtained. In a practical

implementation, this involves a linear combination of the feature vectors h
(l−1)
2

from all previous layers (l − 1).
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Figure 4.2: Calculating the feature vector of node 2 in layer l

The above explanation discusses the original graph attention mechanism in-

troduced by Velickovic et al. (2017) (Velickovic et al., 2017). This paper’s model

is based on an improved model called Attention-Based Spatial-Temporal Graph

Convolutional Networks (ASTGCN). ASTGCN is a modified graph attention

model designed explicitly for spatiotemporal prediction (Guo et al., 2019). AST-

GCN applies spatial attention to the same time step and temporal attention

to different time steps. The fundamental structure of ASTGCN is similar to

the graph attention network, except that it seeks attention along two axes. As

shown in Figure 4.3, temporal attention is applied to individual nodes, while

spatial attention is applied to a single time step.
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Figure 4.3: Temporal and spatial attention of ASTGCN

The core structure of ASTGCN consists of connecting multiple spatiotem-

poral attention blocks. In the original ASTGCN paper, separate spatiotemporal

attention blocks were constructed for time, date, and day of the week. How-

ever, this study uses a single block to prevent overfitting. Additionally, the skip

connection structure is omitted.

Spatial attention is denoted as S, while temporal attention is denoted as T .

The multiplications of matrices depicted below can be understood as a single-

layer perceptron.

S = E · σ
((

h(1−1)W1

)
W2

(
h(1−1)W3

)T
+ bl

)
(4.6)

S′
i,j =

exp (si,j)∑
k∈N(i) exp (si,k)

(4.7)
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T = F · σ
((

h(1−1)U1

)
U2

(
h(1−1)U

)T
+ c1

)
(4.8)

T ′
i,j =

exp (T i,j)∑
k∈N(i) exp (T i,k)

(4.9)

ASTGCN’s attention is computed using matrix multiplication, as described

above. Matrix W and matrix U serve as learnable spatial and temporal atten-

tion parameters, respectively. While the process is similar to graph attention

networks, an additional matrix multiplication step is included for dimensional

unification.

Figure 4.4: Iterative scheme of Spatio-temporal attention block

After obtaining spatial and temporal attention through Equations (4.6),

(4.7), (4.8), and (4.9), the spatiotemporal attention block is completed by con-

necting with the graph convolution and 2D convolution layers. As the dimen-

sion of the feature vector entering and leaving these blocks remains constant,

an appropriate number of blocks can be added based on the complexity of the

problem. In this study, the research was conducted using two blocks for de-

veloping the adjacency matrix and a single block for developing the prediction

model.
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4.2 Improving the Graph Attention Model with Ad-

jacency Matrix

4.2.1 The Traffic Flow Awareness Adjacency Matrix

The issue of the Euclidean distance-based adjacency matrix not accurately rec-

ognizing traffic flow was addressed by introducing a traffic flow-aware adjacency

matrix. As shown in Figure 4.5, the traffic flow direction begins at Intersection

1, proceeds through Link 1, enters Intersection 2, and then goes through Link

2 and Intersection 3.

Figure 4.5: The traffic flow awareness adjacency matrix

In the situation described above, three connection matrices have been pro-

posed: the Downstream connection matrix, the Upstream connection matrix,

and the Bidirectional connection matrix. In the Downstream connection ma-

trix, Link 2 is situated downstream of Link 1 in the direction of traffic flow.

Thus, in this case, since link 2 corresponds to the Downstream connection of

link 1, a value of 1 is assigned to the (1, 2) position in the matrix. All other

values remain at 0. The Upstream connection matrix operates similarly. Given

that link 2 is located downstream of link 1, a value of 1 is assigned to the (2,
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1) position in the matrix. The Bidirectional connection matrix combines both

Downstream and Upstream connections.

There are also papers that have conducted research using adjacency matri-

ces, such as the Bidirectional connection matrix, in existing traffic state pre-

diction studies (Li et al., 2017). However, this paper is unique in differentiating

Downstream and Upstream connections. The underlying concept stems from

the notion that the amount of influence a specific link receives from other links

may differ. Even in the case of interrupted flow due to urban links, if there are no

additional congestion factors besides traffic signals, the speed of the upstream

section will propagate to the downstream section as-is, making a Downstream

connection more appropriate. Conversely, if traffic congestion in the downstream

section is severe and the traffic decrease in the downstream section continues to

the upstream section as a form of shockwave, applying an Upstream connection

would be more suitable. Thus the selection of an adjacency matrix may differ

by the type of problem.

4.2.2 Introducing Katz Centrality to the Adjacency Matrix

Katz centrality is a measure representing the centrality of a node applied in

graph theory (Katz, 1953). It represents the sum of all possible walk lengths of

a specific node. Katz centrality mainly indicates the relative power of a node’s

influence on others in a social network. It can be expressed in a formula, as

shown in Equation (4.10).

CKatz (i) =

∞∑
k=1

n∑
j=1

βk(A)kji (4.10)

The above expression has the same form as the sum of the geometric series

of a matrix. β is a decay function that prevents the values of the above ex-
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pression from diverging. If an appropriate β cannot be selected, the value itself

may diverge, and computation becomes impossible. Since it is the sum of the

geometric series, assuming that k goes to positive infinity, it can be arranged in

a closed form, as shown in Equation (4.11) below. If Equation (4.10) diverges,

the inverse of Equation (4.11) cannot be obtained, resulting in an incalcula-

ble expression. However, if k is not infinite, Katz centrality can be obtained

unconditionally.

CKatz(i) =
(
I − βAT

)−1 − I (4.11)

The idea behind Katz centrality is both intuitive and powerful. It is evident

that nearby links have a more substantial impact on one another. Therefore,

this study designed an adjacency matrix based on Katz centrality. At this time,

the number of hops of the link to be connected is determined according to the

value of k. Determining an appropriate number of hops has a significant impact

on the performance of the model. An explanation of this is illustrated in Figure

4.6.

Figure 4.6: k-times multiplying adjacency matrix enables to connect k-hop

matrix

The adjacency matrix for the graph on the left in Figure 4.6. is shown on the

right. Node 1 and Node 2 have a value of 1 because they are connected to each

other, and Node 1 and Node 3 have a value of 0 because they are not connected.
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However, if you multiply A once to make A2, we can see that there is number

2 in the (1, 3) position that describes the connectivity of Node 1 and Node 3.

This is the number of cases that can lead to a 2-hop connection. There is one

path to Node 1 – Node 2 – Node 3 and another path through Node 1 – Node 4 –

Node 3. In this way, A2 guides the way to a 2-hop connection. Ak represents the

number of cases that can go to a k-hop connection. Ak inevitably diverges if a

decay hyperparameter such as β is not added. Therefore, normalization should

be performed together with the decay hyperparameter.

Another advantage of introducing Katz centrality is that the number of

graph convolution layers can be reduced. When defining the adjacency ma-

trix as A matrix, the k-layer is required to express the k-hop connection, but

when
∑∞

k=1 βA
k is introduced, it can be reached in 1-layer. Reducing the num-

ber of layers also helps prevent overfitting. When a large number of layers are

introduced to investigate a simple phenomenon, the number of parameters is

excessive, and overfitting occurs. As explained in Section 3.3.4, Limitations in

Graph Attention Model, simple phenomena such as traffic are even more vul-

nerable to overfitting. In that respect, it can be said that it is more appropriate

to introduce the concept of Katz centrality to this research problem. For ad-

ditional information on this, see Section 4.3.3, Handling the Overfitting and

Oversmoothing Problem.

Section 3.3.4, Limitations in Graph Attention model, also pointed out the

high regularity of the road network. Because of this, the average path length

increases. If Katz centrality is applied, a k-hop connection can be connected in

one layer to reflect a wide range of networks.
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4.2.3 Handling the Overfitting and Oversmoothing Problem

The overfitting problem mentioned in Section 4.3.2., Introducing Katz Central-

ity to the Adjacency is directly related to the number of parameters. Therefore,

this study solved the problem by reducing the spatiotemporal attention block

to two or one. In addition to this, a small number of epochs were applied.

In addition to the overfitting problem, graph neural networks have another

issue: the oversmoothing problem (Chen et al., 2020). The oversmoothing prob-

lem refers to an issue in which the values of all nodes become the same when

the receptive field of the graph neural network becomes too wide (Liu et al.,

2020). The phenomenon is shown in Figure 4.7. Each time it passes through

one graph convolutional layer, it can reflect connections that are 1-hop further

away. However, if too many connections are expressed compared to the graph,

the receptive field of all nodes becomes almost the entire graph.

Figure 4.7: The example of oversmoothing caused by extensive receptive field
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Graph neural networks operate using message-passing techniques to share

information with neighboring nodes. When a message is received from all nodes,

a problem occurs where the nodes’ features in the graph become very similar. To

prevent this issue, a small number of layers should be maintained. The road net-

work is highly regular and has a longer average path length than other graphs,

making it less susceptible to oversmoothing. However, even so, oversmoothing

can occur at the sub-network level. For this reason, the number of layers in the

entire network was kept small.

4.3 Adding Physical Meaning to the Model

4.3.1 Reflecting the Heterogeneity of Road Networks

The first physical meaning employed in this study is to reflect the road network’s

heterogeneity. Interrupted and uninterrupted flow, which makes the hierarchy

of road networks, shows different aspects of speed reduction propagation.

Uninterrupted flow refers to links without signals and those that are straight,

stretching continuously. Consequently, the traffic speed on these roads is rela-

tively fast, and the relationships between the roads are comparatively straight-

forward. When a speed reduction occurs downstream, it is directly transmitted

upstream. The propagation of speed reduction moves faster compared with the

interrupted flow. Figure 4.8 below illustrates the Eastern Expressway in the

Seongdong District. The colors blue, green, yellow, orange, and red indicate

increasing levels of speed reduction, respectively. Traffic proceeds from the top

to the bottom of the figure. In each row, as time passes, it is evident that

congestion is distinctly propagating backward.

Figure 4.9 illustrates the case of interrupted flow in Gangnam. In the case

of interrupted flow, it is difficult to determine a clear direction of congestion
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Figure 4.8: Propagation of speed reduction through an uninterrupted flow.

Each subfigure’s time step starts from 6:00 am to 8:00 30 min interval

propagation. The road network is densely interconnected, making it challenging

to identify the cause and origin of congestion. As time passes, speed reduction

continually interacts between connected roads, making it virtually impossible

to pinpoint the source of congestion.

Upon analyzing the 5,068 service links in Seoul, a total of 280 uninterrupted

flow links and 4,788 interrupted links were identified. The classification results

are shown in Figure 4.10 below. As can be seen in the figure, the distinction

between the major expressways within the urban center and the remaining

roads is clearly visible, highlighting the importance of considering both types

of flows when modeling traffic patterns.

In order to reflect the distinct characteristics of these different flows, this

study proposes the Attention-based Spatio-Temporal Heterogeneous Graph Con-

volution Network (AST-HGCN). This novel approach takes into account the

heterogeneous nature of urban traffic flows, capturing the unique relationships

and dynamics present in interrupted and uninterrupted flows. By incorporating

these considerations into the model, the AST-HGCN provides a more accu-
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Figure 4.9: Propagation of speed reduction through an interrupted flow. Each

subfigure’s time step starts from 6:00 am to 8:00 30 min interval

rate and comprehensive understanding of traffic patterns, ultimately resulting

in improved performance and more precise predictions in a variety of traffic

scenarios.

The model structure is shown in Figure 4.11 below. An ASTGCN block

containing information for all links was created, along with separate ASTGCN

blocks for uninterrupted flow and interrupted flow information. From the block

containing the total link data, the output vector h is obtained; from the block

containing the uninterrupted flow link data, the output vector u is obtained;

and finally, from the block containing the interrupted flow link data, the output

vector i is obtained.

The output vector h obtained from the total link data was divided into vec-

tor slices corresponding to uninterrupted and interrupted flows. Let us call these

vectors hi and hu for interrupted flow and uninterrupted flow, respectively. We

then obtained the attention between hi and i, as well as the attention between
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Figure 4.10: Visualization of uninterrupted flow(red) and interrupted

flow(light blue)

hu and u. Subsequently, after receiving the output vector from each block,

attention values were obtained for each type of flow using a 1-layer feedfor-

ward neural network. Finally, as shown in Equation 4.12, each attention value

was multiplied by the output vector, and a weighted sum was calculated. The

weighted sum of each output vector becomes the output ŷ, and is compared

with true y to obtain various loss values.

ŷ = h + αu,h̄uu + αi,h̄i
i (4.12)
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Figure 4.11: The structure of Attention-based Spatio-Temporal Heterogeneous

Graph Convolution Network (AST-HGCN)

4.3.2 Incorporating Traffic Volume Data

In the current data acquisition location, the number of traffic volume sensors

is significantly lower compared to the traffic speed. However, traditional speed

prediction models commonly incorporate traffic volume. Therefore, this study

aims to explore possibilities for integrating traffic volume into our model. Fig-

ure 4.12 displays the locations where traffic volume is collected, and it can be

observed that there is a significant scarcity of traffic volume data compared to

traffic speed data.

The scarcity of data can be addressed using deep learning techniques. In

deep learning, data compression can be achieved using an autoencoder com-

posed of an encoder and decoder. We assume that the traffic volume data has

already been compressed into a hidden embedding, and we can utilize this em-

bedding by feeding it into the decoder. The overall framework of the model is

depicted in 4.13.
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Figure 4.12: Data points with traffic volume

Figure 4.13: Incorporating traffic volume using a decoder neural network
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4.3.3 Adding a Penalty as an Attention Loss

There are some issues concerning attention values. Attention values are param-

eters, and the primary objective of a model is to produce an output vector,

not to fit parameters to give them a physical meaning. This can lead to biased

results of attention value, as the focus is not on generating accurate attention

values but on the model performance.

There is no significant issue when the number of reference links is small. In

this study, the example of Gangnam-gu does not pose a significant problem.

However, as the number of links increases, the individual links begin to get

confused about which links they should reference. Moreover, each link’s SRI

trend is similar: high at the commute time and relatively low at the other time.

So when the model face with the challenge of choosing a few links from among

5,000 for each link, the values do not converge easily.

In such cases, the attention values tend to concentrate on a single link. It

is not just a slight concentration; all the links focus solely on that specific link.

An example of this is shown in Table 4.1. Looking at Link 2 in Table 4.1, one

can see that all the attention values are concentrated on it. The problem is that

Link 2 is not actually an important link, and this phenomenon occurs randomly.

Additional loss terms can be introduced to address this problem and gener-

ate more realistic attention values. These loss terms include the concentration

penalty and the distance penalty. The concentration penalty aims to prevent the

attention value from being overly focused on a specific random link, ensuring a

more balanced distribution of attention across links.

The distance penalty encourages the model to assign higher attention values

to nearby links rather than distant ones. By incorporating these penalties, the

model is guided to generate more realistic attention values that better represent
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Table 4.1: Example of an attention value matrix that is concentrated on a

specific link

Link 1 Link 2 Link 3 . . . Link n-1 Link n

Link 1 0.00017 0.99812 0.00011 . . . 0.00015 0.00011

Link 2 0.00021 0.99141 0.00027 . . . 0.00016 0.00023

...
...

...
...

...
...

Link n-1 0.00035 0.99452 0.00026 . . . 0.00018 0.00026

Link n 0.00017 0.99275 0.00018 . . . 0.00025 0.00019

the relationships between links in the road network.

Concentration Penalty =
∑

j=1,2,...,n

 ∑
i=1,2,...,n

αi,j

2

(4.13)

Distance Penalty =
∑

by row

α× Shortest Path Matrix (4.14)

The total loss, including these penalties, is defined as follows:

Loss = RMSE loss + β1
∑

flow type

Concentration Penalty

+ β1
∑

flow type

Concentration Penalty
(4.15)

Unfortunately, the model’s performance inevitably decreases when this loss

is introduced. This is because the model focuses less on the original objective

since a different type of loss is included. Therefore, a decrease in prediction

performance is unavoidable. We will later examine the implications that can be

drawn from this model through the analysis of results.
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Chapter 5

Results

5.1 Improving the Adjacency Matrix

This part of the research presents an improvement of the graph attention model

using speed data from Gangnam-gu, which is the second step in the research

workflow.

Before moving on to a more detailed discussion, the paper would like to in-

troduce the overall prediction frame. The prediction frame in this study remains

consistent throughout the experiments. Even if the prediction target changes

to impact on adjacent network index from speed. Using the previous hour’s

data, the next hour’s speed is predicted. The prediction forecasts the speed of

all links within the network simultaneously. This approach is maintained even

when dealing with future data. An example is shown in Figure 5.1. The first

dataset consists of speed data input from 08:00 to 08:55, and the speed data

from 09:00 to 09:55 is predicted. The second dataset uses speed data input from

09:00 to 09:55 and predicts speed data from 10:00 to 10:55. In this manner, a
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result with a 1-hour input horizon and a 1-hour prediction horizon is obtained.

Figure 5.1: Input and prediction horizon and scheme

Thanks to this frame, a single prediction consists of a total of 12 data

points, which is an hour. As shown ins Figure 5.2, data from future 5min to

future 60min are predicted. The upper graph of Figure 5.2 displays the result of

predicting the future 5min, and the graph below shows the result of predicting

the future 60min. Predictions are depicted in red, while ground truth data

are shown in blue. Overall, both future 5min and future 60min predictions

exhibit appropriate performance. Qualitatively, it appears that the local peak

of the future 5min is predicted more accurately than the local peak of the future

60min. Naturally, predicting the nearer future is an easier task. In fact, verifying

whether the model better predicts the nearer future serves as another measure

of whether the model has been properly trained.

Figure 5.3 displays the results. Over time, the RMSE loss exhibits a mono-

tonically upward-sloping trend. This outcome aligns with our common under-

standing that we are better at predicting the near future and worse at predicting

the far future. This graph shows that the model’s speed prediction ability is an

RMSE of 4.2 for the previous 5 min. This corresponds to a 13.64% MAPE

error. Even when predicting the far future, the RMSE remains below 4.8 and

demonstrates good performance.

From here on, the paper will discuss the results of the improved adjacency
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Figure 5.2: Speed prediction result of future 5min(top) and 60min(bottom) of

Gangnam-gu link (selected)

matrix. By utilizing an adjacency matrix that combines the concepts of traffic

flow awareness and Katz centrality, it demonstrated higher performance than

the existing adjacency matrix. Detailed results can be found in Table 5.1.

To assess the accuracy and stability of the speed prediction data, 50 ex-

periments were conducted for each type of connection. Root Mean Squared

Error (RMSE) and Mean Absolute Percentage Error (MAPE) were the error

measurements used. In addition to evaluating the simple model performance,

the standard deviation of the error was also checked to ensure the stability of

model learning. The calculation process for RMSE and MAPE can be found in

Equations 5.1 and 5.2.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷl)
2 (5.1)

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷ1
yi

∣∣∣∣ (5.2)
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Figure 5.3: Prediction Horizon by RMSE loss of Gangnam-gu links

The first notable point in the results of Table 5.1 is that the 2D distance ad-

jacency matrix based on Euclidean distance exhibited the lowest performance.

When measuring speed with the Distance 2D adjacency matrix, the RMSE

showed the worst performance, while the MAPE demonstrated the second-

worst performance. This suggests that there is room for improvement in the

model performance of numerous studies conducted using 2D distance so far.

Surprisingly, the model’s performance based on the 1D distance adjacency ma-

trix was higher. This could be because the roads in Gangnam-gu are similar to

a grid shape, and the 1D distance, which measures the distance along the side

of the grid, accurately reflects the distance between links.

The Downstream 4-hop adjacency matrix displayed the best performance
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Table 5.1: Speed prediction result in Gangnam-gu

Type of Connection
RMSE

Avg.

RMSE

Std.

MAPE

Avg.

MAPE

Std.

Downstream 1-hop 4.455 0.26 14.59 0.724

Downstream 2-hop 4.572 0.231 14.77 0.557

Downstream 3-hop 4.455 0.247 14.4 0.716

Downstream 4-hop 4.437 0.239 14.41 0.565

Upstream 1-hop 4.44 0.237 14.52 0.598

Upstream 2-hop 4.571 0.281 14.72 0.726

Upstream 3-hop 4.501 0.234 14.57 0.609

Upstream 4-hop 4.504 0.265 14.68 0.483

Bidirectional 1-hop 4.454 0.236 14.38 0.569

Bidirectional 2-hop 4.515 0.225 14.68 0.575

Bidirectional 3-hop 4.498 0.261 14.57 0.567

Bidirectional 4-hop 4.535 0.281 14.96 0.681

1D Distance 4.484 0.299 14.76 0.567

2D Distance 4.634 0.265 14.82 0.684

among the traffic flow-aware adjacency matrices. The Bidirectional adjacency

matrix showed a trend of decreasing performance from 4-hop, which could be

attributed to the effects of oversmoothing. This phenomenon was either absent

or weakly apparent in the Downstream or Upstream adjacency matrix. As the

Bidirectional adjacency matrix has the broadest receptive field, the probability

of encountering oversmoothing issues is higher.

Before diving into further discussion, it is essential to clarify the meaning

of the ”attention value” that will be frequently mentioned from now on. The
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attention mechanism introduces a weighted sum approach to the data prediction

task. In the attention mechanism, the weight of the data deemed to have a

more significant influence on the link through a specific function is increased.

Consequently, the summation of the attention value referenced by a particular

link is unconditionally 1. We cannot use an attention value greater than 1 in

total. The left figure in Figure 5.4 shows an example of an attention value matrix

obtained through learning. The center illustrates the weighted summation using

attention value. At this point, the row summation is 1. We can determine the

link’s influence by summation on the column. It adds how many other links refer

to the target link when predicting data for the next time step. The attention

value claimed in this study is the result of this consensus.

Figure 5.4: The illustration of the term ”attention value”

Figure 5.5 presents the result of acquired attention values for each link tar-

geting Gangnam-gu. The X-axis represents the link identification number with

no physical meaning, while the Y-axis displays the summation of attention val-

ues. We can interpret the summation of attention values as the influence of each

link. The link marked with 35 is the dominant figure, and based on this, we can
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predict that this link is important. However, we should not be immediately per-

suaded by the absolute magnitude of the numbers. As mentioned several times

before, attention values are very sensitive and can change significantly, even

with minor adjustments. Therefore, it is more appropriate to observe changes

in relative magnitude and attention value over time rather than attributing

meaning to absolute values, which could lead to over-interpretation.

Figure 5.5: Attention Sum Histogram of Links in Gangnam-gu

Figure 5.6 shows the top 10 links of the summation of attention targeting

Gangnam-gu. As the value of the summation of attention becomes similar as we

go down to the lower level, it becomes difficult to conclude with certainty which
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link is more important. However, we can judge that the above list’s links are

significant. One intuitive characteristic is that there are more significant links

at the entry and exit points of the boundary than inside Gangnam-gu. Table 5.2

shows summary information for each road. For intuitive understanding, Korean

notation is included in parentheses. The ”Connecting region” column indicates

the region to which the corresponding link is connected, and the ”In/Out to

Gangnam-gu” column indicates whether the corresponding link is a link enter-

ing or exiting Gangnam-gu. Links marked with ”-” are within Gangnam-gu. In

the case of ”In/Out to Gangnam-gu,” equal numbers were derived with four

in-links and four out-links.

So, how should we interpret the summation of attention? A link with a large

summation of attention value significantly impacts the road network. Due to

the nature of downtown areas, roads with high traffic volume and congestion

have a greater impact than roads with smooth traffic. Congestion mainly occurs

during commuting hours, and the primary commuting route is located at the

border between Gangnam-gu and other areas, not inside Gangnam-gu. For this

reason, it is expected that priority links are mainly identified at the boundary

between Gangnam-gu and other regions. For this hypothesis to be valid, it must

be proven that the attention value at non-commuting hours is smaller than the

attention value during the commute.
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Figure 5.6: Top 10 links in Gangnam-gu by summation of attention
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Table 5.2: Summary of Top 10 links in Gangnam-gu by summation of attention

Rank Road Name Connecting Region
In/Out to

Gangnam-gu

1
Gangnam-daero

(강남대로)

Shinsa-Hannam Bridge

(신사-한남대교)
Out

2
Southern Beltway

(남부순환로)

Songpa, Suseo-Daechi, Samsung

(송파, 수서-대치, 삼성)
In

3
Sinbanpo-ro

(신반포로)

Banpo-Nonhyeon

(반포-논현)
In

4
Sapyeong-daero

(사평대로)

Sinnonhyeon-Banpo IC

(신논현-반포IC)
Out

5
Yeongdong-daero

(영동대로)

Yeongdong Bridge - Cheongdam

(영동대교-청담)
In

6
Nonhyeon-ro

(논현로)

Maebong-Yeoksam

(매봉-역삼)
-

7
Eonju-ro

(언주로)

Dogok-Yangjae IC, Naegok IC

(도곡-양재IC, 내곡IC)
Out

8
Yeongdong-daero

(영동대로)

Cheongdam - Yeongdong Bridge

(청담 -영동대교)
Out

9
Seolleung-ro

(선릉로)

Hanti-Seongneung

(한티-선릉)
-

10
Yeongdong-daero

(영동대로)

Suseo IC-Samsung

(수서IC-삼성)
In
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Figure 5.7 displays the attention values obtained on Tuesday, November

2, 2021, for the top 3 links that showed the highest attention value. Atten-

tion values were obtained during the evening time when commuting occurs. In

this figure, it can be observed that a consistently high attention value appears

throughout the entire period. A more impressive insight can be obtained when

comparing Figure 5.6 and Figure 5.7.

Figure 5.7: Attention value of top 3 links of Gangnam-gu on Tuesday,

November 2, 2021, afternoon

Figure 5.8 presents the attention values of the top 3 links on Wednesday,

November 3, 2021. Here, an ”attention hole” with a low attention value of the

top 3 links, which was not seen in Figure 5.7, is observed. This time corresponds

to lunchtime during business hours, and it is a period when the demand for

movement to the entrance and exit of Gangnam-gu is inevitably reduced. Most
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of the traffic will be directed to restaurants or cafes, which can be reached

by a walk. The occurrence of small attention values, or attention holes, on

links entering Gangnam-gu during non-commuting hours, is consistent with

our common sense. Although it is imperfect, this case study provides evidence

that attention values propose relatively realistic values.

Figure 5.8: Attention value of top 3 links of Gangnam-gu on Wednesday,

November 3, 2021, around the lunchtime
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5.2 Considering Road Network Heterogeneity and Traf-

fic Volume

We evaluated the performance of the model from two perspectives. The first is

the predictive accuracy for the average link, and the second is the predictive

accuracy for the link with a high index value. For the second part of the stan-

dard, we verified the performance of each model using two widely used concepts

in prediction models, precision and recall.

Precision and recall are two important performance metrics often used in

prediction models. Precision refers to the fraction of true positive predictions

out of all positive predictions made by the model, essentially measuring the

model’s accuracy in identifying positive cases. On the other hand, Recall mea-

sures the fraction of true positive predictions out of all actual positive cases,

assessing the model’s ability to identify all relevant cases. Balancing these two

metrics is crucial for a robust prediction model, as a high precision with low

recall indicates that the model is overly conservative and misses many relevant

cases. In contrast, a high recall with low precision suggests that the model

produces many false positives.

Although the concepts of precision and recall do not exactly match the

situation here, they can be applied similarly. Our main goal is to find links

with high IANI values. Therefore, we can evaluate the model based on how well

it predicts the top-k values. Accurately predicting the actual top-k is similar

to recall while predicting the model’s top-k well is similar to precision. In the

example shown in Figure 5.9, Prediction 1 has a perfect match for the top-3

predicted values with the actual ones, so the precision is 100%. However, the

recall is 0%. On the other hand, Prediction 2 has perfectly matched the top-3,

so the ranking accuracy from this perspective is 100%, and the recall is 50%.
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We will use such a measure to compare the models.

Figure 5.9: Example to introduce precision and recall (Let the true is trying to

judge the top-3 samples)

In such problems, recall is more important. It is more crucial to accurately

predict the true high values rather than just predicting what the model thinks

are high values. Although the model without attention loss has better perfor-

mance up to the top 20, the performance beyond that is better with attention

loss. Therefore, different strategies can be used depending on the situation. If

there is a strategy applicable to more than 30 links, it is appropriate to use

a model with attention loss. On the other hand, for strategies involving fewer

links, using a model without attention loss may be more suitable.

Incorporating heterogeneous road hierarchies has proven to be effective, as

shown in Table 5.3. Based on the MAPE criterion, it demonstrated a 10.3%

reduction in prediction error. To determine the physical meaning of this indica-

tor, it should be calculated using the MAPE, which represents the accuracy of

predicting the total future congestion. Through this, the effectiveness of road

heterogeneity has been validated. Here, the research successfully improved the

ASTGCN.

We could incorporate the limited traffic volume into our model based on the

structure in Figure 4.13. The MAPE and its standard deviation, when including

traffic volume, are presented in Table 5.4. The MAPE and standard deviation
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Table 5.3: MAPE and its standard deviation for homogeneous and

heterogeneous network

Homogeneous Network

(ASTGCN)

Heterogeneous Network

(AST-HGCN)

MAPE 13.83% 12.40%

Std. Dev. 0.20% 0.28%

decreased, indicating an overall model performance improvement.

Table 5.4: MAPE and its standard deviation for without and with volume data

Without Volume Data

(AST-HGCN)

With Volume Data

(AST-HGCN)

MAPE 12.40% 12.14%

Std. Dev. 0.28% 0.21%

Surprisingly, the same phenomenon occurred in precision and recall errors.

Both errors showed a decrease when the volume data was included. Including

volume data as a new dimension appears to enhance our understanding of traffic

patterns.
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Table 5.5: Precision and recall error in the case of the model with and without

traffic volume decoder

Precision Error Recall Error

Num of

top-k

Without

Volume Data

With

Volume Data

Without

Volume Data

With

Volume Data

100 61.72% 59.24% 54.44% 54.21%

75 64.40% 61.82% 55.90% 55.68%

50 68.39% 65.66% 57.66% 57.44%

30 73.05% 70.15% 59.55% 59.35%

20 75.94% 72.96% 60.69% 60.49%

10 81.01% 77.88% 61.77% 61.54%

5 86.44% 82.84% 61.41% 61.11%

3 94.51% 89.54% 60.96% 60.61%

1 134.32% 126.23% 60.37% 59.95%
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5.3 The Result of Implementing Attention Loss and

its Guidelines

The overall performance of a model with attention loss has decreased compared

with a model without attention loss. The MAPE of AST-HGCN increased from

12.40% to 12.50%, which is a negligible level when considering the benefits

obtained from interpretability. We additionally observed the precision and recall

for a link with a high-valued index.

Table 5.6: Precision and recall error in the case of the model with and without

attention loss

Precision Error Recall Error

Num of

top-k

Without

Att. Loss

With

Att. Loss

Without

Att. Loss

With

Att. Loss

100 55.68% 61.72% 56.06% 54.44%

75 57.93% 64.40% 57.26% 55.90%

50 60.94% 68.39% 58.56% 57.66%

30 64.33% 73.05% 59.67% 59.55%

20 66.88% 75.94% 60.16% 60.69%

10 73.63% 81.01% 60.45% 61.77%

5 79.12% 86.44% 59.86% 61.41%

3 81.46% 94.51% 59.38% 60.96%

1 87.19% 134.32% 59.18% 60.37%

Based on the experimental results, we were able to confirm that the model

including attention loss exhibited superior performance in predictions beyond

the top 30. As the main focus of this problem is actually to accurately predict
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high values, we can assert that the model incorporating attention loss offers

greater practical effectiveness.

As described in Chapter 4.2.3, when the number of links increases, the

model fails to properly assign stronger attention values to specific links, which

the model treats as a critical link. To address this issue, we introduced the

attention penalty. In this chapter, we examined whether the attention values

actually concentrate on a random link as the number of links increases.

As the number of links in a model expands, it is more likely for the atten-

tion value to be concentrated. This problem is significantly more challenging

for the case of Seoul than the case of Gangnam District. In Gangnam Dis-

trict, the model needs to find the link to focus the attention value among 228

links, whereas, for Seoul, it needs to find the link among 5,068 links. This can

be considered about 20 times more difficult. Due to this, situations, where all

attention values are concentrated on a single link, occur often in the training

process with Seoul. This deviates significantly from the actual scenario. How-

ever, by applying attention loss, the model can overcome this issue.

Table 5.7 demonstrates the severity of the phenomenon of extreme con-

centration. The table presents the concentration loss values collected randomly

sampling 50 to 3,000 links without the attention penalty during training. As the

number of links increases, the concentration loss increases and the ratio com-

pared to the case where all attention is focused on a single link also converges

to around 43.46% with 3,000 links.

The concentration loss counts indicate how many models trained with a

specific number of links exceeded a certain ratio. For example, 40% of ”Over

12.5%” in the case of 1,000 links means that 40% of the models had a concen-

tration ratio higher than 12.5%. This ratio also increases as the number of links

increases.
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Table 5.7: Concentration loss and concentration loss count by the number of

links

Number

of Links

Concentration Loss Concentration Loss Count

Mean
Std.

Dev.
Ratio

Over

6.25%

Over

12.5%

Over

25.0%

Over

50.0%

50 1.27 0.14 2.55% 0% 0% 0% 0%

64 1.82 1.93 2.85% 5% 5% 0% 0%

100 1.53 0.27 1.53% 0% 0% 0% 0%

128 6.35 5.09 4.96% 45% 0% 0% 0%

256 9.43 7.66 3.68% 25% 0% 0% 0%

500 33.23 16.74 6.65% 50% 5% 0% 0%

750 105.46 118.18 14.06% 80% 25% 15% 5%

1000 123.89 63.80 12.39% 90% 40% 5% 0%

1500 337.01 306.63 22.47% 100% 75% 20% 5%

2000 518.34 464.15 25.92% 90% 70% 35% 15%

2500 817.18 788.39 32.69% 100% 80% 30% 20%

3000 1303.84 1007.25 43.46% 100% 95% 55% 35%

Figure 5.10 illustrates the key findings from Table 5.7. However, it is not easy

to establish a clear upper threshold for the ratio to determine what is considered

normal. Determining whether assigning 6.65% of attention to a single link out

of 500 links is appropriate or inappropriate is challenging. Nevertheless, as the

number of links increases, it is natural for the ratio to decrease. However, in

actual training, the opposite occurs. Therefore, additional penalties should be

applied to ensure proper training.
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Figure 5.10: Concentration loss ratio by number of links
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Chapter 6

Conclusion

Through this study, we addressed the problem of link impact index definition

and its prediction, taking into account real-time, future prediction, and traffic

network reflection. The inference time of the model developed in this study

is within a few seconds using the NVIDIA A100 graphic card, guaranteeing

real-time performance. By employing the developed model, the priority links of

the Seoul road network can be identified. The results were analyzed based on

various factors, such as the model’s structure and the application of attention

loss. Based on the analysis results, it is anticipated that we will be able to

respond quickly to situations when a disaster or accident occurs in the future.

Furthermore, by presenting a path detour strategy, it is possible to suggest a

strategy that can drive close to the social optimum out of the current user

equilibrium. The contributions of this paper can be summarized as follows:

This paper’s contributions can be outlined in three aspects. First, we pro-

posed a new index to identify the influence of links to networks in real-time.

Second, we introduced a high-performance speed prediction model based on a
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graph attention model by constructing a traffic flow-reflecting adjacency matrix

value. Despite being a research product, the model’s accuracy demonstrates its

potential for various applications. Third, the research suggested various models

upon considering the heterogeneity of the network or considering the attention

loss. Based on this study, the location and implementation of countermeasures

for speed reduction can be determined.

While conducting attention analysis and developing the model, it was rec-

ognized that the amount of change is more important than the attention value

itself. We anticipate that focusing on the difference in attention values rather

than the attention values themselves can yield more stable results. To this end,

we aim to address various events by determining the average of the attention

values derived from the previously trained model and indexing the amount of

change here.

This study is significant as it simultaneously addresses priority node iden-

tification and speed reduction prediction. However, there are still areas that

need further research. First, by directly obtaining accident and disaster data,

it is necessary to identify the priority links during actual events and how these

priority links change over time. We need to evaluate the strategies proposed by

the model through case studies on more diverse rare events. Second, The most

significant limitation is that the data used in this research is aggregated at the

link level rather than the lane level. Therefore, we can only obtain aggregated

data for vehicles that traveled on specific links for a 5-minute interval rather

than individual vehicle movement data. The data is in the form of aggregated

data rather than movement-level data. We hope to address this limitation in

future research when more detailed data becomes available.
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국문초록

교통혼잡은도로이동의비효율성을초래하는장애물로,통행시간과연료이용을

증가시켜경제적및환경적비용을초래한다.이러한문제의식에서출발하여본연

구는도로네트워크내의링크가인접네트워크에미치는영향을파악해미래교통

상황에 더 지대한 영향을 끼치는 링크를 선별하는 것을 목표로 한다. 대한민국의

수도인 서울의 도심부 도로 네트워크에 중점을 둔 이 연구에서는 새롭게 정의한

Impact on Adjacency Network Index (IANI)를 기반으로 네트워크 규모의 속도

감소를 예측할 수 있는 모델을 개발했다. 이 모델은 교통 흐름과 도로 네트워크의

특성을 고려하도록 설계되었다. 교통 흐름의 특성을 반영하기 위해서 새롭게 개

발된 인접 행렬이 활용되었으며, 서로 다른 위계를 갖는 연속류 및 단속류 흐름을

고려하여 도로 네트워크 특성을 반영하였다. 또한, 어텐션 값에 대한 손실 함수를

도입하여 그래프 어텐션 모델의 현실성과 예측 결과의 신뢰성을 향상하였다.

교통 흐름이 고려된 인접 행렬은 그래프 어텐션 모델과 함께 활용되었을 때

전통적인 거리 기반의 인접 행렬에 비해 향상된 성능을 보였다. 단속류를 구분한

경우에도 마찬가지로 IANI 예측값의 정확도가 상승하는 것을 확인할 수 있었다.

현실성있는 어텐션 값을 위해 손실 함수에 어텐션 값을 추가한 경우 예측 성능

자체는 악화된다. 하지만 이에 비해 현실적인 주요 링크 선별에 중요한 recall의

값은 상승하였기에 이점이 더 많다고 할 수 있다. 본 연구에서 제시한 모델은 다

양한 교통 시나리오에서 실시간 주요 링크 선별을 통한 대응 가능성을 보여준다.

이 모델의 결과는 신호 최적화 및 도로 확장과 같은 교통 전략 측면에서 사용될

것으로 기대된다.

주요어: 그래프 어텐션 모델, 속도 감소 예측, 네트워크 영향력, 이질적 도로 네트

워크, 어텐션 손실 함수

학번: 2018-25029
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