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Abstract 

 

Occupant behavior (OB) plays a crucial role in building performance simulations, 

but its complexity and variability pose challenges for accurate modeling. This thesis 

emphasizes the importance of reproducibility and replicability in OB models and 

explores the impact of occupant diversity on building energy control and prediction. 

Three types of occupant diversity are identified: temporal, spatial, and behavioral. In 

this thesis, in-situ experiments were conducted in three residential buildings in Seoul, 

South Korea, involving 31 households to investigate occupant diversity. Various 

aspects of occupant behavior, including occupant presence, window state, light 

switch, AC switch, and Boiler switch, as well as indoor and outdoor environmental 

data were collected.  

The results showed significant temporal diversity in occupant presence, 

highlighting the need for considering the temporal variability of behavior in OB 

models. The analysis of window adjustment behavior revealed individual 

preferences and the influence of multiple factors. Furthermore, variations in behavior 

types among households demonstrated diverse perspectives on indoor environment 

control and energy conservation. To address the performance gap in building 

simulations resulting from occupant behavior modeling, this research underscores 

the importance of considering occupant diversity to improve the accuracy and 

effectiveness of building performance simulations. Future research should focus on 

developing more reliable and reproducible occupant models incorporating occupant 

diversity, bridging the gap between actual and simulated building energy use. 
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Chapter 1. Introduction 

 

 

1.1. Background 

Occupant behavior (OB), which describes occupant interactions with buildings, is 

one of the main sources of uncertainty in building performance simulations (Yan et 

al., 2017; O’Brian et al., 2020; Dong et al., 2022). Understanding and accurately 

modeling occupant behavior is crucial to achieving occupant-centric building energy 

control and predicting energy demand (Yang et al., 2022; O’Brian et al., 2017; Ahn 

et al., 2017; Carlucci et al., 2020; D’Oca et al., 2018; Wagner et al., 2018; Norouziasl 

et al., 2021). 

Many attempts have been made to develop OB models, for example, utilizing 

occupant presence, window operation, shading operation, lighting control, 

thermostat adjustment, appliance use, and clothing (Page et al., 2008; Wang et al., 

2011; Salimi et al., 2019; Langevin et al., 2015; Park et al., 2019; Yilmaz et al., 2017; 

Qu et al., 2021). Page et al. (Page et al., 2008) developed an occupant presence model 

with Markov chain transition probabilities to generate a time-series for each 

occupancy in a single zone. The model can reproduce key occupancy properties, 

such as arrival and departure times. Wang et al. (2011) modeled the occupant 

movement occurring in the spaces inside and outside a building. The Markov chain 

approach was used to simulate the stochastic movement of the occupants. Salimi et 

al. (2019) enhanced occupancy modeling using an inhomogeneous Markov chain 

prediction model based on real occupancy data. Further, the agent-based thermal 
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adjustment has been simulated (Langevin et al., 2015), focusing on unconstrained 

adaptive behaviors to maintain thermal sensation, for example, the occupants’ fan, 

heater, and window use. Park et al. (2019) developed a lighting control model based 

on reinforcement learning (RL) and trained on individual occupant behavior and 

indoor environmental conditions to determine personalized set points. Yilmaz et al. 

(2017) simulated three appliance operations using stochastic processes to capture 

daily variations in appliance occupant behavior. Qu et al. (2021) modeled a logistic 

outdoor clothing adjustment based on the assumption that local past temperatures 

influenced it. A four-parameter logistic function was used for the logistic regression.  

However, despite the scientific evidence indicating that OB models contribute to 

the performance gap, they are still occasionally used in building energy control and 

predicting energy usage. Many simulation programs like EnergyPlus default to 

deterministic OB schedules, which simplify considering occupant preferences in 

indoor environments and energy control processes. These simplified approaches 

often rely on predefined schedules or simplified occupancy models that do not fully 

capture the complexity and variability of occupant behavior. This oversimplification 

of occupant preferences and behavior can lead to discrepancies between simulated 

and actual energy consumption, as well as suboptimal indoor comfort and energy 

efficiency (Azar et al., 2012). It highlights the need for more sophisticated and 

realistic modeling approaches that better represent the diverse range of occupant 

behaviors and preferences. Previous research attributes this phenomenon to the lack 

of OB model standardization and clear documentation (Dong et al., 2018; Luo et al., 

2021), which results in models’ limited reproducibility and replicability (Dong et al., 

2022).  



 

 ３ 

In this thesis, the author emphasizes the importance of reproducibility and 

replicability, concepts that are often overlooked in current research practices. 

Reproducibility refers to the ability to obtain consistent results using the same input 

data, while replicability refers to obtaining consistent results across studies that aim 

to address the same scientific questions but employ different data (Dong et al., 2022). 

Through the pursuit of reproducibility and replicability, current researches can 

address the performance gap in OB models and establish a more reliable and 

trustworthy foundation for building energy control and prediction. 

In addition, it is widely believed that OB patterns in residential buildings would 

follow a regular pattern (Aragon et al., 2019; Richardson et al., 2008). However, 

other studies have emphasized that because occupants have diverse occupant profiles, 

describing OB in residential buildings is complicated (Balvedi et al., 2018; Li and 

Dong, 2017; Carlucci et al., 2016). In such residential buildings, whether occupant 

behavior is predictable and whether similar results are found for each household 

remains indeterminate. 

 

 

1.2. Main objectives 

In this thesis, the author argues that occupant diversity hinders reproducibility and 

replicability, resulting in a performance gap in OB models. For example, assuming 

an average occupant or using deterministic patterns can be problematic. The author 

categorizes occupant diversity into tree types as follows (Figure 1.1): 

 Temporal diversity: Occupants exhibit different behaviors in the same 

environment at different times. This emphasizes the need to consider the 
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temporal variability of occupant behavior and capture its dynamics in OB 

models. 

 Spatial diversity: Occupants in different spaces, such as different 

households or buildings, demonstrate varying behavior patterns. 

Recognizing spatial diversity is crucial for developing accurate OB 

models that reflect occupants' specific characteristics and preferences in 

different contexts. 

 Behavioral diversity: Different types of behaviors, such as occupancy, 

window states, light switches, etc., require distinct modeling approaches. 

Considering the unique characteristics and dependencies among various 

behavior types is essential for improving the fidelity and performance of 

OB models. 

In this thesis, the author aims to demonstrate the existence and quantify the three 

types of occupant diversity mentioned above. By doing so, the thesis highlights the 

importance of considering occupant diversity in OB models and its impact on 

reproducibility and replicability. Through empirical analysis and data-driven 

approaches, the research provides evidence for the variability and heterogeneity of 

occupant behavior across different temporal, spatial, and behavioral contexts.  
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Figure 1.1 Three types of occupant diversity and performance gap of OB models 

 

 

To implement the OB model and investigate occupant diversity, the author 

conducted in-situ experiments in three residential buildings in Seoul, South Korea. 

A total of 31 households were selected for data collection. 

The collected data encompassed various aspects of occupant behavior, including 

occupant presence, window state, light switch, AC switch, and Boiler switch. In 

addition to occupant behavior data, environmental data deemed influential on 

occupant behavior were also collected (Wei et al., 2014). This included indoor and 

outdoor temperature, indoor and outdoor humidity, indoor CO2 concentration, 

indoor PM2.5 concentration, and indoor illuminance. 
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1.3 Thesis organization 

 Chapter 1: Provides an introduction to the background and objectives of 

the thesis. Defines occupant diversity into three types: temporal, spatial, 

and behavioral. 

 Chapter 2: Describes the data collection process, focusing on the target 

residential buildings and sensor information utilized in the research. 

 Chapter 3: Examines temporal diversity by employing random walk 

theory to identify the presence of occupancy patterns within each 

household over time. Demonstrates the existence and quantification of 

temporal diversity and presents guidelines for mitigating its impact. 

 Chapter 4: Investigates spatial diversity using Explainable AI (XAI) 

techniques to model occupants' window adjustment behavior (WAB). 

Quantifies the feature influence of various environmental and occupant 

factors, highlighting the variation in environmental perception across 

different households. 

 Chapter 5: Develops a multinomial OB model using LSTM (Long 

Short-Term Memory) to explore behavioral diversity. Analyzes the 

diversity of occupant behavior types and quantifies the degree of 

dependence between different behaviors. Addresses potential issues in 

multinomial OB modeling. 

 Chapter 6: Concludes the thesis by addressing the findings of this thesis 

and presenting future research directions. 
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Chapter 2. Experiments 

 

 

2.1 Target buildings 

The author conducted a pre-survey and selected 31 households who agreed to 

participate in this chapter. Those 31 households in three residential apartment 

buildings in Seoul, South Korea, were selected (Figure 2.1). The number of 

residences in each household was collected through a survey. All households were 

naturally ventilated, apart from the temporarily running exhaust ventilation from the 

kitchen hood and bathroom vents. The outside noise problem was negligible with 

low traffic on nearby roads and a large height of five or more floors of households. 

In addition, the entire building was non-smoking, so no constraints on window 

opening were imposed. In each household, fluorescent lights are installed on the 

ceilings of all rooms, and depending on the household, separate lighting fixtures are 

installed as well. The AC is based on the device installed in the living room of each 

household and is also autonomously controlled by the occupants in terms of on/off, 

set point, and operation mode. The boiler operates as a water heating and floor 

heating system, and the occupants in each household autonomously control the 

on/off, set point, and operating modes. It is unknown whether separate 

heating/cooling devices such as fans or electric heating mats exist in the households, 

as this information was not collected. 
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(a) Exterior view (Bldg. A, B, and C from right to left) 

 

 

(b) Site plan of the three apartment buildings 
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(c) Elevation of the three apartment buildings 

Figure 2.1 Target buildings 

 

 

2.2 Sensor installation for measuring occupant and 

environmental data  

USM-300-ZB multi-sensors (Figure 2.2(g), developed by Shinasys) were installed 

in all living spaces (Figure 2.4, three(four) bedrooms and a living room) to measure 

indoor temperature, humidity, illuminance, and occupant presence. The indoor 

environmental data were recorded using sensors in the living room adjacent to the 

balcony. The USM sensor employs a PIR sensor that detects occupant presence. The 

USM sensors were installed in all living spaces, e.g., three(four) bedrooms and a 

living room (Figures 2.4(a)–(c)). Because the kitchen can be regarded as part of the 
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living room, therefore one USM sensor was installed in the living room. Based on 

the measured data, it was found that the PIR sensor could detect occupant presence 

in the nocturnal periods. If occupant movement was detected by any USM sensor in 

the living spaces of the corresponding household, it was recorded that occupants 

were in their homes. Finally, it was assumed that occupants were present in the space 

when any movement was recorded at least once during the sampling interval of 

temporal resolution.  

The window states (0: closed, 1: open) of each household were recorded using 

DSM-300-ZB window sensors (Figure 2.2(d), developed by Shinasys). The DSM 

sensor was installed only on the openable window outside the main balcony (Figures 

2.4 and 2.5). Each balcony space is isolated from the interior space with inner walls 

and glass doors with weak insulation and airtightness performance. Therefore, the 

opening and closing of the external window considerably affect the indoor 

environment. 

The states of the living room ceiling light (0: off, 1: on) in each household were 

recorded using the STM-300-W smart lighting controller (Figure 2.2(e), developed 

by Shinasys). Although occupants control the ceiling lights in all rooms through the 

controller, only the living room lighting was considered to simplify the prediction 

model.  

The CCM-300-W (Figure 2.2(c), developed by Shinasys) measures the power 

consumption of each electrical outlet, and based on the power consumption of the 

outlet connected to the AC, it determines the control states (0: off, 1: on) of the AC. 

If the power consumption of that outlet exceeded 30W, it was recorded as the air 

conditioner in operation. Notably, the power consumption difference between when 
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the AC is in operation and when it is not is distinct, rendering the threshold value 

less meaningful. 

The boiler is used for both supplying hot water and floor heating within each 

household. The BCM-300-W records the operating mode set by occupants (only hot 

water supply, only floor heating, both hot water supply and floor heating). The author 

extracted the state when the switch is turned on, and floor heating is in progress (0: 

off, 1: on). 

The indoor CO2 and PM2.5 concentrations were recorded using AQM-300-W air 

quality sensors (Figure 2.2(a), developed by Shinasys), installed next to each USM 

sensor. Figure 2.3 illustrates the data collection process of the sensors. Figure 2.4 

shows the specific locations of each sensor type. Figure 2.5 shows sensor installation 

and location in an experimental space of household #4. Outdoor temperature and 

humidity data were provided by the Korea Meteorological Administration weather 

data service. Each outdoor environmental sensor works at the ground level in Seoul, 

South Korea, within 15 km of the target buildings. Table 2.1 specifies sensors used 

for measuring occupant and environmental data. 
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(a) AQM-300-W 

 

(b) BCM-300-W 

 

(c) CCM-300-W 

 

(d) DSM-300-ZB 

 

(e) STM-300-W 

 

(g) USM-300-ZB 

Figure 2.2 Photos of sensors used for measuring occupant and environmental 

data 
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Figure 2.3 Data collection process from installed sensors 
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(a) Plan of Bldg. A 
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(b) Plan of Bldg. B 
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(c) Plan of Bldg. C 

Figure 2.4 Building plans and location of each sensor (the unit of measure shown 

in mm) 
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Figure 2.5 Sensor installation locations and the experimental space 
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Table 2.1 Specification of sensors used for measuring occupant and 

environmental data 

Sensor Variable 
Sampling 

time 
Range Resolution Accuracy 

BCM-300-W Boiler switch 

1 min 

0 or 1 - ≥99% 

CCM-300-W AC switch 0 or 1 - ≥99% 

DSM-300-

ZB 
Window state 0 or 1 - ≥99% 

STM-300-W Light switch 0 or 1 - ≥99% 

USM-300-

ZB 

Indoor 

temperature 
0–50 ℃ 0.1 ℃ ±0.5 ℃ 

Indoor 

humidity 

 0–100% 

RH 
1% RH ±2% RH 

Indoor 

illuminance 
1–65,528 lx 1 lx - 

Occupant 

presence (PIR) 
0 or 1 - 

Detecting 

occupant 

movement 

≥99.5% 

AQM-300-W 

Indoor CO2 

concentration 

0–10,000 

ppm 
1 ppm ±30 ppm 

Indoor PM2.5 

concentration 

0–500 𝝁𝐠/

𝐦𝟑 
1 𝝁𝐠/𝐦𝟑 - 

Metallic 

temperature 

sensor 

Outdoor 

temperature 

−40 to 

60 ℃ 
0.1 ℃ ±0.3 ℃ 

Capacitive 

humidity 

sensor 

Outdoor 

humidity 

0–100% 

RH 
0.1% RH ±3% RH 
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Table 2.2 The statistical description of the monitored outdoor environmental 

variables 

Environmental variables Mean 
Standard 

deviation 
Max Min 

Outdoor temperature (℃) 13.5 11.1 36.1 −15.5 

Outdoor relative humidity (%) 64.8 18.4 100.0 15.0 
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Chapter 3. Predictability quantification of occupant 

presence 

 

 

3.1 Introduction 

Current modeling approaches utilize rule-based, stochastic, data-driven, or agent-

based approaches. The rule-based approach includes but is not limited to, time-

dependent user profiles, as defined by Lee and Kim (2017). Stochastic models 

probabilistically define OB and are the result of multiple contextual factors, such as 

habitual behaviors and adaptive triggers that evolve over time (Frontczak et al., 2012; 

Li and Dong, 2017; Altomeonte and Schiavon, 2013; Carlucci et al., 2020). The data-

driven approach is described as a black-box model derived from relevant input and 

output data. Using machine learning (ML) methods, a data-driven model is 

implemented without in-depth domain knowledge or an understanding of OB 

(Carlucci et al., 2020; Hong et al., 2017; Brager et al., 2004). Finally, the agent-based 

approach models individual “agent” behavior. While other approaches assume an 

“average occupant” in the space of multiple persons, agent-based models aim to 

describe the interaction between each occupant (Robinson et al., 2011). 

These approaches are based on the hypothesis that sufficient data and knowledge 

can provide reliable prediction models. In other words, most of the previous OB 

studies have been conducted based on the premise that OB can be predictable. In 

contrast, studies based on the random walk approach (Ahn and Park, 2016; Ahn et 

al., 2017; Ahn and Park, 2019; Kim and Park, 2022) reported that in certain types of 
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buildings/spaces, occupant behavior follows a “random walk” pattern, which is 

difficult to predict. The random walk hypothesis was utilized to investigate the 

predictability of the time-series data, with the degree of randomness being 

determined by the normalized cumulative periodogram (NCP) and Bartlett’s test. In 

this thesis, predictability means quantifying the possibility of whether the next state 

of occupancy can be predicted from the present and past states of occupancy. 

In Ahn and Park (2016), the authors observed the occupancy and behavior in a 

university laboratory occupied by seven people. It was shown that occupancy in the 

university laboratory was random, and the variance of their behavior had no 

particular frequency. In Ahn et al. (2017), the predictability of occupancy in 

laboratories and reading rooms was investigated. It was found that it is difficult to 

apply a stochastic occupancy model in random walk-driven buildings and can result 

in a significant performance gap. In Ahn and Park (2019), occupancy data were 

observed in six rooms of a university library building for 16 days. It was investigated 

whether temporal and spatial resolutions influence the predictability of occupancy. 

In addition, it was shown that the number of occupants dominantly drove such 

predictability.  

In previous studies (Ahn and Park, 2016; Ahn et al., 2017; Ahn and Park, 2019), 

the authors analyzed predictability using the random walk approach focused on 

university buildings, which have been classified as random walk-driven building 

types (Ahn and Park, 2016). In contrast, Ahn and Park (2016) hypothesized that 

residential buildings would have process-driven occupancy patterns that could be 

easily predicted.  

In this chapter, the author delves into the concept of temporal diversity by 
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employing the random walk theory to quantify the consistency of occupant behavior 

through the analysis of autocorrelation in time-series data. The primary focus is 

investigating the predictability, or autocorrelation, of occupant presence to 

demonstrate and quantify temporal diversity. 

The main objectives of this chapter are as follows: (1) examining whether 

occupant presence in specific households within residential buildings follows a 

random walk pattern, which implies unpredictability; (2) quantifying the 

predictability of occupant presence at different temporal and spatial resolutions; and 

(3) assessing the degree of variation in predictability across households. 

To achieve these objectives, collected occupant presence data for 147 days from 

31 households in residential apartment buildings in Seoul, South Korea, were used. 

The author adopted methodologies utilized in previous studies, such as the random-

walk hypothesis, Normalized Cumulative Periodogram (NCP), and Bartlett's test 

(Ahn and Park, 2016; Ahn et al., 2017; Ahn and Park, 2019) to analyze the data. 

By investigating the predictability of occupant presence in real-life scenarios, this 

chapter aims to provide insights into the temporal variations and patterns of occupant 

behavior, thus establishing empirical evidence for temporal diversity (Kim and Park, 

2022). 
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3.2 Random walk approach 

This section presents the methodology of predictability analysis depicted in Figure 

3.1. In this chapter, it was hypothesized that the predictability of occupant presence 

could be influenced by temporal resolution, spatial resolution, and the length of 

measurement periods. Thus, the author quantified the predictability of occupant 

presence in the residential buildings in terms of temporal resolution (from one 

minute to 120 minutes), measurement periods (from one day to 147 days), day types 

(weekdays, weekends), spatial resolution (from one household to 31 households). 

The predictability was analyzed with the two popular tests: NCP and Bartlett’s test. 

 

Figure 3.1 Predictability analysis process (Kim and Park, 2022) 
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Thirty-one households in three residential apartment buildings in Seoul, South 

Korea, were selected (Figure 3.2). Occupancy data (0: absence, 1: presence) 

measured for 147 days (2021.08.03-2021.12.27) were used. 

 

Figure 3.2 The 31 households selected 

 

3.2.1 Mathematical form 

A random walk is the mathematical formalization of a path consisting of a 

succession of random steps. The term, first introduced by Pearson (1905), has been 

used in many fields (e.g., ecology, economics, and psychology) to explain the 

observed behavior of time-series data. Figure 3.3 shows an example of 10 random 

walk-driven time series in one dimension. The mathematical form of a random walk 

for time-series data can be expressed as shown in Equations 3.1 and 3.2 (Ahn and 
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Park, 2019; Kim and Park, 2022). 

 𝑥𝑘+1 = 𝑥𝑘 + 𝑤𝑘 Equation 3.1 

 𝑤𝑘 = 𝑥𝑘+1 − 𝑥𝑘 Equation 3.2 

where 𝑥𝑘 is the state of the kth time step; 𝑥𝑘+1 is the state of the (k+1)th time 

step; and 𝑤𝑘  is the difference between 𝑥𝑘  and 𝑥𝑘+1 , representing the state 

fluctuation over time. According to the random walk hypothesis, if the change (𝑤𝑘) 

in presence data is a random value with a uniform probability distribution, occupant 

presence (𝑥𝑘) is deemed unpredictable (Ahn and Park, 2019). 

 

Figure 3.3 Example of ten random walks (Ahn and Park, 2019) 

 

3.2.2 Normalized Cumulative Periodogram (NCP) 

The NCP is a common method for identifying a given time series's periodicity 

(randomness) in the frequency domain (Newton, 1988). For a given n stationary time 

series (𝑥𝑘), the periodogram function (𝑓(𝜔𝑗)), which shows the spectral density of 

the time series at each frequency, is calculated using Equation 3.3 (Ahn and Park, 

2019): 
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𝑓(𝜔𝑗) =
1

𝑛
|∑ 𝑥(𝑡)𝑒2𝜋𝑖(𝑡−1)𝜔𝑗

𝑛

𝑙=1

|

2

 Equation 3.3 

where 𝜔𝑗 = (𝑗 − 1)/𝑛 is the 𝑗th frequency (𝑗 = 1, … , q), 𝑛 is the length of the 

time series, q = [
n

2
] + 1, 𝑓(𝜔𝑗) is the periodicity spectrum at a frequency of 𝜔𝑗, 

and 𝑥(𝑡) is the time series data at time 𝑡. The periodogram provides a graphical 

representation of the frequency distribution of the time-series data.  

Two thousand random numbers were generated by the random module in Python 

and recorded to represent random time series on the periodogram. The periodograms 

of the periodic data and random time series are shown in Figure. 3.4(a). The random 

time series are not concentrated at a few specific frequencies but are uniformly 

distributed over the entire frequency domain. Therefore, a random time series is 

understood as white noise or a random signal having equal intensity at different 

frequencies (Diggle and Fisher, 1991). On the other hand, for the periodic data, 

because the peak frequency is 0.1 Hz, the representative period is verified as 10 s 

(Figure 3.4(b)) (Kim and Park, 2022).  

 

(a) Random numbers 
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(b) Random numbers + 0.1 Hz sine wave 

Figure 3.4 Example of periodogram of time series for 1000 s (sampling time: 1 

s) (Kim and Park, 2022) 

 

NCP is a cumulative form based on the periodogram 𝑓(𝜔𝑗) as follows (Newton, 

1988): 

 
�̂�(𝜔𝑘) = 

∑ �̂�(𝜔𝑗)𝑘
𝑗=1

∑ �̂�(𝜔𝑗)
𝑞
𝑗=1

, k = 1, … , q Equation 3.4 

where �̂�(𝜔𝑘)  is the NCP at the frequency 𝜔𝑘 . Note that �̂�(0) = 0  and 

�̂�(𝜔𝑞) = 1.  

Figure 3.5 shows the NCP for a random time series (bold blue line), where the red 

area indicates the 99% confidence intervals for testing the random walk. Presumably, 

the time series data follows a random walk if the bold blue line is drawn within a 

confidence interval with a straight line joining (0, 0) and (0.5, 1) in the NCP (Figure 

3.5(a)). The confidence interval lines (dotted lines) are drawn at vertical distances 

± 
𝐾𝑒

[
𝑛−1

2
]
 above and below the straight line joining (0, 0) and (0.5, 1), where [

𝑛−1

2
] 

denotes taking only the integer portion of the number of brackets and 𝐾𝑒 , a 
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parameter for determining confidence limits in the cumulative periodogram, is set to 

1.63 with a 99% confidence interval (Hipel and McLeod, 1994). The NCP can be 

used to qualitatively evaluate whether the time-series data have periodicity 

(predictable) or not (not predictable) (Ahn and Park, 2019). 

 

(a) Random numbers 

 

(b) Random numbers + 0.1 Hz sine wave 

Figure 3.5 Example of NCP of time series for 1000 s (sampling time: 1 s) (Ahn 

and Park, 2019) 

 

3.2.3 Bartlett’s test 

Bartlett’s test (Bartlett, 1967) is a common method for testing the null hypothesis 

that data are derived from white noise. Bartlett’s test statistic B and the 𝑝-value were 

calculated, as shown in Equations 3.5 and 3.6 (Ahn and Park, 2019; Nason and 

Savchev, 2014). 
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B =  √𝑞 max
1≤𝑘≤𝑞

|�̂�(𝜔𝑘) −
𝑘

𝑞
|, k = 1, … , q Equation 3.5 

𝑝 − value = 1 − ∑ (−1)𝑗𝑒−2𝐵2𝑗2

∞

𝑗=−∞

 
Equation 3.6 

As mentioned above, �̂�(𝜔𝑘) is the NCP at the frequency 𝜔𝑘, where 𝜔𝑘 = (𝑘 −

1)/𝑛 is the kth frequency (𝑘 = 1, … , q), and q = [
n

2
] + 1. Bartlett’s test statistic B 

is defined as the deviation of �̂�(𝜔𝑘) from a straight line in the NCP. The null 

hypothesis of white noise is rejected if the 𝑝-value calculated from Bartlett’s test 

statistic B is less than a specified significance level α (Kim and Park, 2022). In this 

chapter, the calculation was performed using the Bartlett B. test function in R. 

 

 

3.3 Results 

3.3.1 NCPs of 31 households 

Figure 3.6 shows the NCPs of 31 households. Each line represents the NCP of the 

occupant presence in each household. If the presence corresponding to a household 

was located within the red-colored band, it was considered unpredictable at a 

significance level of 0.01 (Hipel and McLeod, 1994). In the relatively short 

measurement period (7 days), occupant presence in half of the households proved to 

be unpredictable. In contrast, in the NCP of 147 days (Figure 3.6(d)), the occupant 

presence of all households was indicated as predictable. This was substantiated by 

Bartlett’s test (Section 3.3.2). In addition, the difference in the NCPs between 

households indicates a difference in the predictability of the occupant presence. 
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(a) 7 days 

 

(b) 14 days 

 

(c) 28 days 
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(d) 147 days 

Figure 3.6 NCPs of 31 households according to measurement periods (each line 

represents each household’s measured occupant presence) (sampling time = 60 

min) 

 

3.3.2 Predictability with varying measurement periods 

Table 3.1 shows the results of Bartlett’s test for the NCPs in Figure 3.6. By 

comparing Bartlett’s test statistic for each household with the reference value (1.63, 

significance level of 0.01), it is possible to identify the predictability of occupant 

presence. Alternatively, the presence is deemed unpredictable when the p-value is 

greater than the significance level of 0.01 (red-colored), indicating a 1% risk of 

concluding that a difference from white noise exists when there is none (Hipel and 

McLeod, 1994). Please note that there is no set-in-stone rule or universal rule for 

determining the significance level. However, the significance level of 0.01 has been 

widely used, as addressed in (Hipel and McLeod, 1994). Accordingly, 17 households 

whose presence was unpredictable within 7 days of the measurement period were 

identified. Approximately five households were identified as unpredictable within 

14 days, and three were identified as unpredictable within 28 days. No households 

were identified as unpredictable within 147 days. For a long measurement period of 
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nearly five months, all households were found to be predictable. In addition, it can 

be inferred that longer measurement periods increased the predictability of occupant 

presence. 

Figure 3.7 shows the results of the correlation analysis between the presence 

predictability and measurement periods. Each line represents Bartlett’s test results 

for each household. When Bartlett’s test statistic was less than 1.63, the presence of 

the household was determined to be unpredictable at a significance level of 0.01 

(Nason and Savchev, 2014). Bartlett’s test statistics tended to be proportional to the 

measurement period in most households. Even households whose presence was 

unpredictable could be changed to predictable by extending the measurement period. 

In general, the results exhibited a monotonic increase. However, for cases of 

surge/decrease, an alteration in the presence pattern was estimated.  

Moreover, the graphs of each household show a significant difference in their 

gradients (Figure 3.7). The last household (household #23) could be predicted with 

86 days of data. While households with high gradients can secure high predictability 

with relatively short measurement periods, households with low gradients require 

longer periods to acquire the same level of predictability. 
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Table 3.1 Bartlett’s test statistic and p-value of 31 households according to 

measurement periods (text in red indicating unpredictable) 

Household # 
7 days 14 days 28 days 147 days 

statistic p-value statistic p-value statistic p-value statistic p-value 

1 1.443 0.035 3.284 0.000 4.199 0.000 9.865 0.000 

2 1.262 0.100 1.619 0.011 2.584 0.000 8.151 0.000 

3 1.080 0.202 2.893 0.000 3.171 0.000 7.845 0.000 

4 1.390 0.045 1.821 0.003 2.812 0.000 5.956 0.000 

5 1.492 0.029 3.133 0.000 3.992 0.000 8.038 0.000 

6 2.226 0.000 3.422 0.000 4.638 0.000 9.433 0.000 

7 1.130 0.166 2.071 0.000 3.149 0.000 8.713 0.000 

8 2.073 0.000 3.298 0.000 4.056 0.000 10.203 0.000 

9 1.852 0.002 2.827 0.000 3.921 0.000 9.822 0.000 

10 0.627 0.840 3.829 0.000 2.665 0.000 4.045 0.000 

11 1.400 0.047 1.279 0.086 3.137 0.000 10.999 0.000 

12 0.627 0.840 1.407 0.039 1.556 0.016 8.423 0.000 

13 1.458 0.031 2.030 0.001 2.305 0.000 6.690 0.000 

14 1.653 0.009 2.380 0.000 3.575 0.000 7.298 0.000 

15 2.840 0.000 3.455 0.000 4.938 0.000 10.374 0.000 

16 2.353 0.000 2.546 0.000 2.389 0.000 6.088 0.000 

17 2.361 0.000 3.317 0.000 4.671 0.000 10.278 0.000 

18 1.550 0.017 2.571 0.000 2.647 0.000 4.222 0.000 

19 0.627 0.840 0.680 0.749 0.754 0.624 5.054 0.000 

20 1.691 0.009 2.396 0.000 1.900 0.002 9.513 0.000 

21 2.921 0.000 3.774 0.000 4.764 0.000 8.279 0.000 

22 1.949 0.001 3.670 0.000 3.474 0.000 7.714 0.000 

23 0.627 0.840 0.858 0.463 0.842 0.486 2.525 0.000 

24 1.227 0.103 2.054 0.000 2.740 0.000 8.300 0.000 

25 1.532 0.020 2.148 0.000 2.457 0.000 4.400 0.000 

26 1.608 0.013 2.105 0.000 2.464 0.000 7.702 0.000 

27 2.636 0.000 3.635 0.000 4.993 0.000 11.185 0.000 

28 1.949 0.001 2.718 0.000 4.139 0.000 10.039 0.000 

29 1.870 0.002 2.281 0.000 2.568 0.000 8.713 0.000 

30 1.311 0.075 3.459 0.000 3.721 0.000 5.996 0.000 

31 2.559 0.000 3.468 0.000 4.952 0.000 10.066 0.000 
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Figure 3.7 Predictability of occupant presence with varying measurement 

periods (each line represents each household’s measured occupant presence) 

(sampling time = 60 min) 

 

3.3.3 Predictability between weekdays/weekends 

Figure 3.8 compares each household’s predictability (Bartlett’s test statistic) on 

weekdays and weekends (including holidays). For a fair comparison, both data sets 

were analyzed for the same number of days (30 days). Both cases were almost 

predictable, with a significance level of 0.01. On weekdays, the occupant presence 

of four households (#10, #12, #19, #23) was proven to be unpredictable. One 

household was unpredictable on weekends and holidays (household #23). The 

predictability between weekdays and weekends is similar in most households, but 

there are significant differences between several households. For households #3, #10, 

#12, #20, #24, and #30, occupant presence patterns differed between weekdays and 

weekends. In other words, it is essential to develop a separate presence-prediction 

model. 
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Figure 3.8. Predictability of occupant presence on weekdays/weekends for 30 

days (sampling time = 60 min) 

 

3.3.4 Predictability with varying temporal and spatial resolutions 

Figure 3.9 shows Bartlett’s test results with varying sampling times and numbers 

of households. As shown in Figure 3.9(a), the shorter the sampling time, the greater 

the predictability of occupant presence. Figure 3.9(b) shows the changes in 

predictability as the number of households aggregates. Python’s random module was 

used in the households’ aggregation process. In other words, no special grouping 

was applied, e.g., in terms of buildings (A, B, C) or plan type (A, B, C) (Figure 2.4). 

In addition, 7 days of the presence data of selected multiple households were 

summed. Presence data with a value of 0 or 1 have a value between 0 and N (the 

number of aggregated households) after aggregation.  

Figure 3.9(b) suggests that predicting the occupant presence of multiple 

(aggregated) households is more difficult than individual households. In other words, 

it may be easier to predict occupant presence in small spaces, for example, several 

rooms or a single floor, than to predict the occupant presence of the whole building. 
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(a) Predictability of occupant presence in terms of sampling time (each line 

represents the measured occupant presence of each household) 

 

(b) Predictability of occupant presence in terms of the number of aggregated 

households (sampling time = 60 min) 

Figure 3.9 Predictability of occupant presence with varying temporal and spatial 

resolutions (7 days’ measured data) 
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3.4 Summary 

This chapter investigates the predictability of occupant presence in residential 

buildings regarding temporal diversity. Presence data from 31 households were 

collected for 147 days, and NCP analysis and Bartlett’s test were used to examine 

the predictability of occupant presence.  

The findings are summarized graphically in Figure 3.10. Data features, such as the 

measurement period and temporal/spatial resolution, significantly influence the 

predictability of occupant behavior. Three analyses regarding the variation in the 

predictability of occupant presence are presented as follows: (1) with different 

measurement periods (Figure 3.10(a)), (2) with different sampling times (Figure 

3.10(b)), and (3) individual vs. aggregated households (Figure 3.10(c)).  

The measurement period significantly influenced the predictability of the 

occupant presence. In general, the longer the presence data are collected, the higher 

the predictability. Therefore, securing a sufficient measurement period is 

recommended to predict occupant presence better. Notably, the degree of 

predictability increase varies according to occupant characteristics. Second, it was 

found that the shorter the sampling time is, the greater the predictability of the 

occupant presence. Finally, predicting the occupant presence of multiple or 

aggregated households would be much more difficult than that of an individual 

household. Additionally, the predictability between weekdays and weekends is 

similar in most households but differs in multiple households. Thus, developing a 

separate presence prediction model for weekdays and weekends is essential. 

In summary, the occupant presence of specific households followed a random 

walk pattern for short measurement periods, which means there is significant 
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temporal diversity of occupant presence. The predictability of occupant presence 

differs significantly between households, and the degree of variation is shown in 

Figure 3.7. Notably, the predictability of occupant presence in residential buildings 

cannot be defined as a single state and varies widely according to occupant features 

(e.g., number of family members and occupancy patterns). Therefore, to implement 

a reliable OB model, it is necessary to check whether it applies to each occupant and 

building/space. In other words, the findings of this chapter are limited by the 

information of the householders (Kim and Park, 2022).  

 

(a) Measurement period vs. predictability of occupant presence 

 

(b) Sampling time vs. predictability of occupant presence 
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(c) Number of aggregated households versus predictability of occupant presence 

Figure 3.10 Variation of predictability of occupant presence with varying data 

features (Kim and Park, 2022) 
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Chapter 4. Feature influence quantification in window 

adjustment behavior using XAI 

 

4.1 Introduction 

Window adjustment is one of the most common ways employed by occupants to 

control the indoor environment, and window adjustment behavior (WAB) is known 

to be a crucial factor for predicting building energy consumption. WAB in a dynamic 

manner is triggered by various influencing factors, such as indoor/outdoor 

temperature, CO2 concentration, and time of day (Plieninger et al., 2016; Wei el al., 

2014; Hong et al., 2015; Stazi et al., 2017; Fabi et al., 2012). In recent decades, many 

attempts have been made to develop reliable WAB models by finding correlations 

between environmental and non-environmental factors and WAB. For instance, 

Andersen et al. (2013) developed a WAB model for Danish dwellings and proposed 

four models of the window opening and closing behavior patterns based on measured 

environmental data. A probabilistic approach using logistic regression was applied. 

Cali et al. (2016) investigated the time of day as the most common driver to open a 

window by comparing German households using logistic regression. An artificial 

neural network (ANN) model with higher accuracy than traditional stochastic 

approaches was proposed by Wei et al. (2019). Better interpretability of influencing 

factors was also demonstrated compared to the logistic regression and Markov 

models. Zhou et al. (2021) proposed other machine-learning models. The random 

forest algorithm was compared with two other machine learning models: support 

vector machine (SVM) and extreme gradient boost (XGBoost) algorithms. For 
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stochastic modeling, a Bayesian network was suggested with its applicability to 

capture the complicated underlying relationships between various influencing 

factors and WAB (Barthelmes et al., 2017).  

Similarly, a large number of WAB models have been developed based on occupant 

responses to environmental and non-environmental factors. However, crucial topics 

still need to be considered to achieve reliable WAB modeling, but many studies 

ignore them (Liu et al., 2022; Kim and Park, 2023). This chapter proposes a novel 

approach to WAB modeling to address the following three issues. 

First, most of the studies have ignored the variability of individual preferences 

(spatial diversity) and treated it in an “average occupant” fashion. It was reported 

that the average occupant approach is detrimental to understanding the differences 

in people’s behaviors and can result in a performance gap between the actual and 

predicted building energy consumption (Liu et al., 2022; Liu et al., 2022). 

Customized models that reflect individual preferences can be applied as a solution 

rather than a universal WAB model. On the other hand, several studies have focused 

on behavioral diversity and attempted to characterize occupant WAB patterns (Haldi 

and Robinson, 2009; Yun et al., 2009; D’Oca and Hong, 2014). Haldi and Robinson 

(2009) classified their sample into “active” and “passive” types based on the 

proportion of window opening time. D’Oca and Hong (2014) clustered patterns of 

WAB in 16 offices along four dimensions (motivation, opening duration, 

interactivity, and position) based on association rule mining techniques. The studies 

mentioned above provide an initial understanding to explain the spatial diversity of 

WAB better. However, further evaluation is necessary if it is possible to apply it to 

external data and define specific criteria (Kim and Park, 2023). 



 

 ４３ 

The second issue is analyzing the impact of each factor, which is a fundamental 

consideration for making the prediction model more realistic. Many studies have 

analyzed the feature impact based on the interaction between environmental factors 

and WAB, but they have different opinions on influencing factors. For instance, in 

(Liu et al., 2022), the outdoor temperature was considered the most dominant factor 

for WAB. However, other factors, such as indoor temperature (Anderson et al., 2013; 

Yun and Steemers, 2008; Yun and Steemers, 2010), humidity (Sun et al., 2018), 

outdoor PM2.5 concentration (Gu et al., 2021), and time of day (Cali et al., 2016), 

were also shown to have significant influences in some instances. Therefore, WAB 

cannot be described by only one specific environmental factor because it is a 

response to the interaction of multiple factors. Moreover, occupants behave 

differently even in the same environment, depending on their individual perspectives 

of the environment and energy demand. Previous studies quantified randomness as 

the influence of non-environmental factors such as occupancy, time of day, building 

characteristics, and personal preferences (Stazi et al., 2017; Fabi et al., 2012; Pan et 

al., 2018). Therefore, it is worth discussing how to reveal different responses of 

occupants to multiple factors (including unknown factors), select the appropriate 

factors for different cases, and improve the model's reliability (Kim and Park, 2023). 

Finally, diverse modeling approaches have been used to calculate the correlation 

between WAB and its influencing factors accurately. In recent decades, studies have 

modeled the state probability of WAB rather than using fixed schedules. Logistic 

regression is the most widely used model for predicting the probability of a window 

state (Liu et al., 2022). Nicol (2001) first presented a coherent probability 

distribution for the predicted window state as logit functions of outdoor and indoor 
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temperatures. Logistic regression was also used to quantify the feature impact with 

the correlation coefficients of its formula and categorize the patterns of occupant 

responses (Anderson et al., 2013; Cali et al., 2016; Pan et al., 2018). Several 

machine-learning algorithms have also been introduced to obtain a model with a 

relatively higher performance than logistic regression models (Wei et al., 2019; Zhou 

et al., 2021; Mo et al., 2019; Pan et al., 2019; Han et al., 2020; Niu et al., 2022; Park 

et al., 2021). Park et al. (2021) compared six machine learning algorithms (KNN, RF, 

ANN, CART, CHAID, and SVM) with a logistic regression model to predict the 

window state. In addition to machine learning algorithms, deep learning algorithms 

have been proposed for WAB (Markovic et al., 2018; Markovic et al., 2019). 

However, such data-driven models depend highly on their datasets, and their 

applicability to external data is unknown. In the case of black-box models, the 

influence of each factor cannot be identified, and sufficient explanation, such as 

feature selection, is not provided for model validation. Therefore, the current data-

driven approaches must overcome the lack of explainability and reliability. In 

summary, the aforementioned modeling approaches have their advantages, but their 

disadvantages are also obvious (Kim and Park, 2023).  

To address the aforementioned three issues, this chapter focuses on explainable 

artificial intelligence (XAI), which adds explainability to existing machine learning 

models. In terms of feature influence, the XAI technique explains how each variable 

affects the prediction results of the model. Consequently, it quantifies the 

individual’s perception and the spatial diversity that causes the occupant responses. 

This chapter applies the XAI to develop a reliable WAB model that considers 

individual differences. The three main objectives are as follows: (1) to quantify the 
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diversity of preferences of individual occupants concerning WAB; (2) to reveal 

relevant information on occupant perceptions and behavioral patterns regarding 

indoor environment control; and (3) to present a practical approach for developing a 

reliable WAB model based on multiple influencing factors.  

The author used occupant data (occupant presence and window state) and 

environmental data (temperature, humidity, CO2 concentration, PM2.5 concentration, 

illuminance, and time of day) from 12 households for one year. Three XAI 

approaches, logistic regression, XGBoost classifier, and Shapley additive 

explanations (SHAP), were introduced to analyze the interaction between WAB 

influencing factors and occupant behavioral patterns. 

 

 

4.2 Feature influence analysis 

This section introduces three XAI approaches, namely, logistic regression, 

XGBoost classifier, and SHAP, to analyze the interaction between environmental 

factors and occupant behavioral patterns (Figure 4.1). 
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Those 12 households were selected for the experiment (Figure 4.2). Occupant data 

(occupant presence and window state) and environmental data (indoor/outdoor 

temperature, indoor/outdoor humidity, indoor CO2 concentration, indoor PM2.5 

concentration, indoor illuminance, and time of day) from 12 households for one year 

were used. 

 

Figure 4.2 The 12 households selected 

 

4.2.1 XAI 

The term XAI was first defined by Van Lent et al. (2004), who pointed out that 

while computing systems are becoming more complex, their self-explanatory 

functions are not evolving. The evaluation functions of existing machine learning 

algorithms only present generalized results for the entire dataset and do not provide 
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intuitive evidence of how the model can be improved. However, XAI interprets how 

the model accepts the data after implementation. Therefore, XAI can present various 

reasonable perspectives by providing new information about the existing models, as 

indicated in Figure 4.3. Table 4.1 provides examples of renowned XAI algorithms. 

Each shows the relationship between the input and output data in different ways. In 

particular, XAI, in the case of modeling occupant behavior, can provide a better 

understanding of the interaction between the environment and occupants by 

quantifying the impacts of influencing factors (Kim and Park, 2023). 

 

Figure 4.3 Model performance versus explainability (modified from Gunning 

(2017)) 
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Table 4.1 Renowned XAI algorithms and their characteristics (Gorissen et al., 

2009) 

Algorithm Linearity Monotone Objectives 

Linear regression O O Regression 

Logistic regression  O Classification 

Decision tree  Partial 
Classification, 

regression 

Naïve Bayes   Classification 

K-nearest neighbor 

(KNN) 
  

Classification, 

regression 

 

Outdoor/indoor temperature, outdoor/indoor humidity, indoor illuminance, indoor 

CO2 concentration, indoor PM2.5 concentration, and occupant presence were 

measured as influencing factors of WAB for 12 households. The influence of each 

feature on the WAB of each household was analyzed. In addition, two window state 

models were implemented using the logistic regression and XGBoost classifier. 

 

4.2.2 Logistic regression 

Logistic regression (Hastie, 2017) is the most popular stochastic method for 

analyzing and modeling binary variables (e.g., the state of a window and window-

opening/closing behavior). Logistic regression is based on a sigmoid function 

(Equation 4.1), normalizing multiple parameters into a binary result as 0 or 1. Using 

the definition of logistic regression, Equation 4.1 can be transformed into Equation 

4.2. 
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 𝑝 =
1

1 + 𝑒−(𝛼+𝛽𝑥)
 Equation 4.1 

 log (
𝑝

1 − 𝑝
) = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 Equation 4.2 

where 

 𝑝 is the probability that the state of the window is open (0: closed, 1: open) 

 𝛼 is the intercept 

 𝛽𝑖 are coefficients 

 𝑥𝑖  are explanatory variables (e.g., indoor/outdoor temperature and 

occupant presence) 

 𝑛 is the number of explanatory variables 

 When 𝑝 is greater than 0.5, the window state is assumed to be open; otherwise, 

it is assumed to be closed. The scales of each explanatory variable were normalized 

in the range of 0 to 1 using a min-max scaler. The intercept and coefficients were 

then estimated using the maximum likelihood method. The magnitude of each 

coefficient represents the impact of determining the window state of each feature. 

Therefore, logistic regression effectively reveals the correlation between the 

environmental factors and WAB and provides quantitative evidence (Wei et al., 

2019).  

 

4.2.3 XGBoost classifier  

XGBoost is a scalable machine-learning system for tree boosting (Chen and 

Guestrin, 2016). It has been widely used in many applications, such as window 

behavior modeling (Mo et al., 2019), prediction of building cooling loads (Fan et al., 

2017), and fault detection for HVAC systems (Chakraborty and Elzarka, 2019). The 
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boosting method predicts accuracy by integrating the predictions of weak classifiers 

into a robust classifier via a serial training process. The computational process of 

XGBoost is given by Equation 4.3. 

 ŷ𝑖 = ∑ 𝑓𝑘(𝑥𝑖),   𝑓𝑘 ∈ 𝐹

𝐾

𝑘=1

 Equation 4.3 

where ŷ𝑖  is the final tree model, 𝑓𝑘(𝑥𝑖) are weak classifiers (base tree models) 

organizing model 𝐹 , 𝑥𝑖  is the 𝑖 th dataset, and 𝐾  is the total number of weak 

classifiers. The objective function of model 𝐹 is expressed as Equation 4.4. 

 Obj = ∑ 𝑙(𝑦𝑖 ,

𝑛

𝑖=1

ŷ𝑖) + ∑ Ω(𝑓𝑘)

𝐾

𝑘=1

 Equation 4.4 

where 𝑙(𝑦𝑖 , ŷ𝑖) is a loss function that calculates errors between the actual (𝑦𝑖) and 

predicted (ŷ𝑖) values, and Ω(𝑓𝑘) is a complexity function that controls the weights 

of each tree (𝑓𝑘). The parameters of the XGBoost model are specified in Table 2. 

XGBoost is a type of tree algorithm; hence, it supports the feature importance 

method, a technique for analyzing the degree of each data feature’s effect on the 

exact classification of algorithms. Feature importance determines the variable with 

the most significant influence on the prediction by permuting variables. This is a 

powerful method for measuring the feature influence; however, the importance may 

vary due to the degree of permutation and error-based estimation limitations. In 

addition, feature importance neglects the dependence between features (Kim and 

Park, 2023). 
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Table 4.2 Parameters of implemented XGBoost model 

Parameter Value 

booster gbtree 

max depth 9 

gamma 0 

objective binary: logistic 

 

4.2.4 Shapley additive explanations 

SHAP, first introduced by Lundberg et al. (2018), uses the Shapley value (Shapley, 

1953) to numerically express the contribution of each feature to predict the overall 

results. The formula for the Shapley value is given by Equation 4.5. 

 𝜙𝑖(𝑣) = ∑
|𝑆|! (𝑛 − |𝑆| − 1)!

𝑛!
(

𝑆∈𝑁\{𝑖}

𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)) Equation 4.5 

where 

 𝜙𝑖 is the Shapley value of the 𝑖th feature 

 𝑛 is the number of features 

 𝑆 is the subset of the entire set (𝑁), excluding the 𝑖th feature 

 𝑣(𝑆) is the contribution of the subset S 

The Shapley value is calculated for each time step. The average Shapley value 

during the entire period is calculated in calculating the feature influence. Notably, 

SHAP does not form a model by itself but decomposes the output of the existing 

model into contributions of each feature (Figure 4.4). In this chapter, the XGBoost 

classifier model was used as the target model for the feature influence analysis. The 

Shapley value can be negative, meaning that the specific feature negatively affects 

the prediction (Kim and Park, 2023). 
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Figure 4.4 Decomposition of the result of model 𝑓 by features (𝜙𝑖) (Lundberg 

et al., 2018)  

 

 

4.3 Results 

4.3.1 Analysis of measured window state by households 

This section presents an overview of the measured window data and simple 

visualizations of the correlation with environmental data. Figure 4.5 displays the 

proportion of windows in the open or closed state for the 12 households. The 

household with the highest open ratio (household #6) kept the window open for 93% 

of the year, whereas the lowest (household #2) kept the window open for only 1%. 

There is a significant variation in the proportion between households relative to the 

perception of residents on indoor environment control and energy saving. 
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Figure 4.5 Proportion of windows in open/closed state of the 12 households for 

one year 

 

Figure 4.6 illustrates the correlation between the probability of windows in the 

open state and outdoor temperature. In most households, the probability varies 

significantly depending on the outdoor temperature. The probability increases as the 

outdoor temperature increases from −10 °C to 30 °C. However, at high temperatures 

over 30 °C, the residents in several households tended to close their windows 

(households #2, #4, #8, and #11). In addition, all households kept their windows 

closed at low outdoor temperatures below −10 ℃. 
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Figure 4.6 Outdoor temperature versus probability of windows in the open state 

of the 12 households for one year 

 

Figure 4.7 depicts the correlation between the probability of windows in the open 

state and indoor temperature. Compared to the outdoor temperature, the tendency 

between households differs considerably. The probability monotonically increases 

as the room temperature increases in four households (households #3, #5, #10, and 

#11). Other households tend to decrease and then increase at a specific temperature. 

For this reason, different from the outdoor temperature, the indoor temperature 

directly and immediately affects the thermal comfort of the occupants and is changed 
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by the opening and closing of windows. However, the probability varies significantly 

depending on the indoor temperature, influencing the window state prediction. 

 

Figure 4.7 Indoor temperature versus probability of windows in the open state of 

the 12 households for one year 

 

In addition to thermal comfort, the occupants open or close windows to improve 

indoor air quality. It has been reported that indoor CO2 and PM2.5 concentrations 

significantly influence the window-opening/closing behavior compared to the 

window's state (Anderson et al., 2013; Cali et al., 2016; Fabi et al., 2015). Figure 4.8 

displays the correlation between the probability of occupant window-opening 
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behavior and indoor CO2 concentration. As shown, the occupants do not respond in 

low concentrations, but it appears that the probability of taking action to open the 

window increases above 1000 ppm. A threshold value of approximately 1000 ppm 

is indicated, similar to the results of previous studies (Yao and Zhao, 2017; Li et al., 

2015; Persily, 2015). Similarly, for the indoor PM2.5 concentration, a threshold value 

of approximately 100 𝜇g/m3 is indicated (Figure 4.9). 

 

Figure 4.8 Indoor CO2 concentration versus probability of window-opening 

behavior of the 12 households for one year 
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Figure 4.9 Indoor PM2.5 concentration versus probability of window-opening 

behavior of the 12 households for one year 

  

Figure 4.10 illustrates the correlation between the probability of windows in the 

open state and the time of day. The probability tends to increase during the daytime 

in several households (households #1, #3, #4, #7, #9, and #11). However, no 

particular tendency is observed in other households.  
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Figure 4.10 Time of day versus probability of windows in the open state of the 

12 households for one year 

 

4.3.2 Implementing window state models 

Table 4.3 presents the prediction accuracy of the window state models with the 

logistic regression and XGBoost classifier implemented for each of the 12 

households. The logistic regression models show an accuracy between 79.9% and 

99.3%, whereas the XGBoost models have a relatively high accuracy of ≥98.6%. 

The prediction accuracy is the lowest in household #7 for both models. This may be 

due to the influence of unknown factors that have not been collected or considered 

in the models. The analysis of the unknown factors will be covered in Section 4.4. 
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Table 4.3 Prediction accuracy of window state models using logistic regression 

and XGBoost (%) 

Household # 1 2 3 4 5 6 7 8 9 10 11 12 

Logistic 

regression 
80.9 99.3 91.5 91.1 91.0 92.7 79.9 98.3 89.5 80.3 85.2 89.5 

XGBoost 99.4 100.0 99.4 99.5 99.7 99.8 98.6 100.0 99.7 99.4 99.1 99.4 

 

Figure 4.11 visualizes the measured and predicted window states through two 

models in a specific scenario. As evident from the figure, the XGBoost model, used 

for prediction, captures the temporary window opening behavior of occupants to 

some extent, whereas the logistic regression prediction model consistently predicts 

closed states. XGBoost is a well-known model for high prediction accuracy, and it 

demonstrates better performance in prediction accuracy compared to logistic 

regression. 

 

(a) Measured window state 
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(b) Predicted window state with logistic regression 

 

 

(c) Predicted window state with XGBoost classifier 

Figure 4.11 Measured and predicted window state in a specific scenario 

(household #1, January 1, 2022, to January 3, 2022) 
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4.3.3 Feature influence quantification 

Figure 4.12 depicts the influence of each feature on the prediction of the window 

states of the 12 households by applying three different XAI methods to the 

aforementioned models. Figures 4.12(a), (b), and (c) display the results of the logistic 

regression, XGBoost with the feature importance method, and XGBoost with SHAP, 

respectively. The blue color of the cell indicates that the larger the corresponding 

feature value, the higher the probability of predicting the window in an open state. 

Conversely, the red color indicates that the larger the corresponding feature value, 

the higher the probability of predicting the window in a closed state. Notably, Figure 

4.12(c) illustrates the mean Shapley value for the entire period. Different Shapley 

values can be obtained for the prediction of each time step. 

Based on the results, the outdoor temperature and CO2 concentration exhibit the 

largest positive and negative influences, respectively, in most households. The 

higher the outdoor temperature, the greater the number of households maintaining 

the window in the open state, and the higher the CO2 concentration, the greater the 

number of households maintaining the window in the closed state. The indoor 

temperature also has a considerable positive or negative influence, depending on the 

household. The time of day has a significant influence only on specific households 

(Figures 4.12(b) and (c); households #4 and #6). 

Comparing the three XAI methods, different results of the feature influence 

analysis are shown. Feature influence analysis using the coefficients of the logistic 

regression model makes it possible to quantify positive and negative influences 

based on a simple formula. However, the accuracy of the model is lower than that of 

the XGBoost model (Table 4.3), and a high intercorrelation between two or more 
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independent features can lead to skewed or misleading results. The feature 

importance method supported by XGBoost has a reasonable model accuracy and low 

computational complexity. A significant limitation of the XGBoost feature 

importance method is that it cannot distinguish whether the feature has a positive or 

negative impact. SHAP compensates for the weaknesses of the previous two 

methods. SHAP can distinguish between positive and negative impacts and quantify 

the feature influence by considering the dependence between variables. In addition, 

SHAP can be applied to complex models, such as deep learning algorithms, known 

as unexplainable black-box models. However, the computational complexity of 

SHAP is high, so the time required is a hundredfold compared to that of the other 

two methods. Overall, SHAP is the most effective XAI technique for analyzing 

feature influence on predicting the window state, and it is recommended for 

quantifying occupant individual preferences (Kim and Park, 2023). 
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(a) Logistic regression 

 

(b) XGBoost and feature importance method 
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(c) XGBoost and SHAP 

Figure 4.12 Quantified feature influence on window state prediction in the 12 

households using SHAP (blue indicates a positive effect for windows in the open 

state) 

 

4.4 Discussion 

In this section, the author presents solutions or directions to address the three 

issues mentioned in Section 4.1, based on the results of the feature influence analysis 

of occupant behavior through the XAI methods. 

First, there is significant spatial diversity of WAB among households. Specifically, 

the occupant's personal preferences vary from household to household. In Figure 

4.12(c), each feature has either a positive or negative influence depending on the 

household, and this characteristic is prominent in the case of indoor temperature. In 

other words, the WAB, according to environmental/non-environmental variables, 

cannot be predicted deterministically, but it is important to quantify these 
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probabilistic characteristic values, such as feature influence, with probabilistic 

specifications. In addition, it is difficult to describe the behavior of all occupants 

using one universal model. It is better to customize individual households.  

Second, the occupant's preferences for WAB cannot be defined using only a single 

environmental parameter. WAB is a response to the interaction of environmental, 

non-environmental, and unknown factors. Furthermore, occupants behave 

differently, even in practically the same environment. Figure 4.13 shows the 

temporary feature influences when the window's state changes for 10 min. In this 

case, the occupants kept the window open for 30 h and then closed it. Therefore, the 

model prediction results can be interpreted as the positive effect of the reduced 

relatively low outdoor temperature, thus adjusting the window in the closed state. 

However, it is worth noting that the results of the feature influence analysis could be 

different from the actual intentions of the occupants. Table 4.3 indicates that the 

measured variables are practically the same. It is assumed that there are unknown or 

random factors not reflected in this study, such as psychological and social factors, 

which work in combination with other physical factors (Kim and Park, 2023). 
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(a) 2021-08-06 09:20 

 

(b) 2021-08-06 09:30 (10 min after) 

Figure 4.13 Quantified temporary feature influence on window state prediction 

in household #7 using SHAP 
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Table 4.4 Variables in the situation presented in Figure 4.13 

Time 2021-08-06 09:20 2021-08-06 09:30 

Window state Open Closed 

Predicted window state Open Closed 

Occupant presence Present Present 

Outdoor temperature (℃) 29.7 29.9 

Indoor temperature (℃) 30.4 30.4 

Indoor illuminance (lx) 13 6 

PM2.5 concentration (𝜇g/m3) 10 8 

CO2 concentration (ppm) 513 511 

Indoor humidity (% RH) 68 68 

Outdoor humidity (% RH) 69 68 

Air conditioner state Off Off 

 

Finally, similar to logistic regression models, the current complex black-box 

models can also be described by applying the XAI techniques regarding feature 

influence. The approach presented in this chapter increases the computational 

complexity, but it can provide meaningful information for decision-making. 

Furthermore, the possibility of quantifying the diversity of occupant behavior by 

investigating individual preferences can be verified. 

For future occupant behavior research, it should be recognized that there are 

unknown factors, and sufficient consideration should be given to such factors in the 
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modeling process. Additionally, owing to the limitation of data collection, the 

average occupant was modeled on a household basis in this thesis. If it can be 

modeled based on each individual, the individual indoor environmental perception 

and its diversity can be analyzed.  

 

4.5 Summary 

This chapter implemented WAB models and quantified the individual preferences 

of households by analyzing the feature influence. Environmental data (temperature, 

humidity, CO2 concentration, PM2.5 concentration, illuminance, and time of day) and 

occupant data (occupant presence and window state) from 12 households were 

collected for one year. A logistic regression model and XGBoost classifier model 

were presented for window state prediction, and logistic regression, feature 

importance, and SHAP were used to examine the feature influence of WAB. 

As a result of the preliminary analysis, the occupants adjusted the state of the 

window with different responses for each variable. Notably, the occupants did not 

react sensitively to low CO2 concentrations, but a high CO2 concentration of over 

1000 ppm could trigger window-opening behavior. A similar result was observed for 

the PM2.5 concentration, with a threshold value of 100 𝜇g/m3. 

Window state prediction models were implemented using logistic regression and 

the XGBoost classifier. Logistic regression models exhibit an accuracy between 79.9% 

and 99.3%, whereas the XGBoost models have a relatively high accuracy of ≥98.6%. 

Three XAI methods, namely, logistic regression, feature importance, and SHAP, 

were applied to the two aforementioned prediction models to examine the effect of 
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each variable on the prediction outcome. As a result, the outdoor temperature and 

CO2 concentration were found to have the largest positive and negative influences, 

respectively, in most households. The indoor temperature has a significant influence 

as well, either positive or negative, depending on the household. Each XAI method 

has advantages and disadvantages, but SHAP is recommended to compensate for the 

disadvantages of the other two methods.  

Regarding feature influence analysis, the following findings can provide insights 

into the issues in the current WAB research. First, different people have different 

personal preferences for using windows. Applying customized WAB models rather 

than a universal one is better. Second, the personal preferences of occupants on WAB 

cannot be defined using only a single environmental variable. WAB is a response to 

the interaction of environmental, non-environmental, and unknown factors. Finally, 

the current complex black-box models can also be described by applying XAI 

techniques regarding feature influence. 

In summary, this chapter introduced a novel approach that quantifies and proves 

the spatial diversity of WAB.  
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Chapter 5. Multinomial occupant behavior model 

 

 

5.1 Introduction 

As mentioned in Section 1.2, occupant diversity encompasses three types: 

temporal, spatial, and behavioral. Previous studies have demonstrated temporal 

diversity (Ahn and Park, 2016; Ahn et al., 2017; Ahn and Park, 2019; Kim and Park, 

2022). Similarly, spatial diversity has been explicitly acknowledged in the literature 

(Wang et al., 2022; O’Brian et al., 2017; Happle et al., 2020; D’Oca and Hong, 2014; 

Haldi et al., 2017; Liu et al., 2022; Yun et al., 2009; Markovic et al., 2018). 

However, a limited number of studies modeled multiple behaviors (Dong et al., 

2022). Verifying behavioral diversity is challenging due to privacy concerns and 

other reasons. It is crucial to validate whether reproducibility can be achieved when 

modeling different occupant behaviors based on the same environmental data. 

Therefore, the objectives of this chapter are as follows: 

 Implement a multinomial occupant behavior (OB) model using a deep-

learning algorithm. 

 Validate the reproducibility of the model when different behaviors are 

modeled using the same environmental data and algorithm. 

 Analyze mutual information to quantify the degree of dependence 

between different behaviors with the results obtained from the 

implemented OB model. 

By pursuing these objectives, this chapter aims to contribute to understanding 
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behavioral diversity and investigate the potential for reproducibility in modeling 

diverse occupant behaviors. Furthermore, the analysis of mutual information 

provides insights into the intercorrelationships among behavior types and their 

impact on the performance of the OB model. 

 

 

5.2 Modeling multinomial OB using LSTM 

This section introduces the multinomial OB modeling method and analysis 

techniques. For sequence data-based multi-output label modeling, LSTM was 

utilized. Individual LSTM models were constructed for each household. Mutual 

information was employed to investigate the degree of dependence among the 

predicted behavior types. 

In this chapter, six households in three residential apartment buildings in Seoul, 

South Korea, were selected (Figure 5.1). Occupant and environmental data measured 

for one year (August 3, 2021, to August 2, 2022) were used (Table 5.1).  

The implemented model predicts occupants’ behavior for the next one minute 

based on the environmental data input with a 60-minute timestep sequence. The data 

is sliced using the moving window technique (Figure 5.2). The sliced dataset is 

randomly split into training and testing data using a 7:3 ratio. 
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Figure 5.1 The six households selected 

 

Table 5.1 Input and output data 

Data type Label 
Sampling 

time 

Sequence 

length 

Number 

of datasets 

Input 

Outdoor temperature 

Indoor temperature 

Outdoor humidity 

Indoor humidity 

Indoor illuminance 

Indoor CO2 concentration 

Indoor PM2.5 concentration 

Time of day 

Month 

1 min 60 min  

Output 

Presence 

Window state 

Light switch 

AC switch 

Boiler switch 

1 min 1 min  
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Figure 5.2 Dataset preparation for multinomial OB modeling 

 

5.2.2 LSTM 

LSTM stands for Long Short-Term Memory [Hochreiter, 1997], a recurrent neural 

network (RNN) type used in deep learning. LSTM is designed to handle the 

vanishing gradient problem that can occur in traditional RNNs when trying to learn 

long-term dependencies. 

LSTM uses a memory cell and three gates (input gate, forget gate, and output gate) 

to control the flow of information within the network (Figure 5.3). The memory cell 



 

 ７５ 

can store information over long periods, and the gates regulate the information flow 

into and out of the memory cell. This allows the network to selectively remember or 

forget information based on its relevance to the task and hand. 

Figure 5.4 shows the whole structure of the LSTM model. The model receives 

nine input labels, then processed through two LSTM layers. The output values for 

the five occupant behaviors are then extracted through the dense layer. To avoid 

overfitting, a dropout layer is added after each LSTM layer. This helps to reduce the 

likelihood of the model becoming too closely fitted to the training data, which can 

lead to poor performance on new data. 

During the model training process, the binary cross-entropy loss function was 

utilized. The loss function is commonly used in binary classification tasks in machine 

learning. The cross-entropy between two probability distributions 𝑝  and 𝑞  is 

defined as: 

 H(𝑃, 𝑄) = −E𝑝[log 𝑞(𝑥)] =  − ∑ 𝑝(𝑥)log 𝑞(𝑥)

𝑥∈𝑋

 Equation 5.1 

where 𝑝(𝑥)  is the true probability distribution and 𝑞(𝑥)  is the predicted 

probability distribution over a set of possible outcomes. It measures the dissimilarity 

between the predicted probability distribution and the true binary output. This is 

repeated for each example in the training dataset, and the average loss is then used 

to update the model parameters during training. 
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5.2.3 Mutual information 

The mutual information (MI) of two variables represents the mutual dependence 

between the two variables (Figure 5.5). It is used to identify the amount of 

information one variable provides about the other variable. Claude Shannon first 

introduced the quantity [C.E. Shannon, 1948], expressed as Equation 5.2. 

 I(𝑋; 𝑌) =  ∑ ∑ 𝑃(𝑋,𝑌)(𝑥, 𝑦)log (
𝑃(𝑋,𝑌)(𝑥, 𝑦)

𝑃𝑋(𝑥)𝑃𝑌(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 Equation 5.2 

Where (𝑋, 𝑌) is a pair of random variables, 𝑃(𝑋,𝑌) is the joint probability mass 

function of X and Y, and 𝑃𝑋 and 𝑃𝑌 are the marginal probability mass functions of 

X and Y, respectively. Notably, I(𝑋; 𝑌) is non-negative and equal to zero precisely 

when the joint distribution coincides with the product of the marginal, i.e., when X 

and Y are independent. 

 

Figure 5.5 Mutual information and conditional entropy 
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5.3 Results 

5.3.1 Analysis of measured occupant behavior by households 

This section presents an overview of the measured occupant data. Figure 5.6 

displays the proportion of the state of each behavior type for the six households. The 

household occupancy rates range from 0.75 to 0.91, showing relatively similar levels 

to other behavior types. However, there is a significant variation in the proportions 

of window and boiler states among the households. Regarding AC usage, it is 

observed that the proportion of the “on” state is relatively low compared to other 

behavior types. This is due to the temporary operation of the AC during the cooling 

season. 

The household proportions' differences reflect their varying preferences and 

perceptions regarding indoor environment control and energy saving. For example, 

household #1 appears to prefer active indoor thermal environment control (AC and 

boiler) rather than relying on natural ventilation for temperature regulation. 

Conversely, in the case of household #4, there is a preference for utilizing natural 

ventilation by keeping the windows open for indoor environment control. 
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Figure 5.6 Proportion of measured state of each occupant behavior among six 

households (Presence: Presence, Window state: Open, Light switch: On, AC 

switch: On, Boiler switch: On) 

 

5.3.2 Implementing multinomial OB model 

The implemented multinomial OB model based on environmental variables 

demonstrates a high level of predictability, achieving label accuracies of 95% or 

higher (Table 5.3). However, the accuracy of predicting occupant presence and light 

switch state is relatively lower than other behaviors. The total accuracy, which 

represents the proportion of correctly predicted labels for all behaviors, ranges from 

88.2% (household #2) to 97.7% (household #3) and varies among households. There 

is a noticeable trend of decreased total accuracy in households where specific labels 

exhibit significantly lower accuracy. 

Notably, the model's accuracy varies depending on the specific behavior type and 

the households. Despite being based on the same environmental data, different 
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behavior types and individual household characteristics contribute to the variation in 

accuracy. 

 

Table 5.2 Prediction accuracies of implemented multinomial occupant behavior 

model using LSTM 

Household # 

Label accuracy 

Total 

accuracy 
Loss 

Presence 
Window 

state 

Light 

switch 

AC 

switch 

Boiler 

switch 

1 0.966 0.998 0.966 0.997 0.990 0.919 0.041 

2 0.956 0.988 0.948 0.991 0.992 0.882 0.063 

3 0.995 0.997 0.988 0.998 0.999 0.977 0.013 

4 0.982 0.997 0.983 1.000 0.990 0.954 0.029 

5 0.981 0.969 0.963 0.998 0.992 0.911 0.055 

6 0.988 0.996 0.986 0.996 0.999 0.965 0.020 

 

5.3.3 Mutual information analysis 

Figure 5.7 displays the calculated mutual information between the multinomial 

OB model output labels for each household. There is a clear variation in the tendency 

of mutual information among the households. In general, occupant presence shows 

a relatively high level of dependence on other behaviors across all households. Two 

households (households #4 and #5) exhibit the highest dependence on occupant 

presence and window state. Another two households (households #1 and #3) show 

the highest dependence between window state and boiler switch. The remaining two 

households (households #2 and #6) demonstrate the highest dependence between 

occupant presence and light switch. 

Overall, a mathematical correlation exists between the total accuracy (Table 5.3) 

and the mutual information. For instance, household #2 has relatively lower mutual 
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information than other households, which is interpreted as lower total accuracy than 

label accuracy. Further detailed interpretation of the results will be discussed in 

Section 5.4. 

 

Figure 5.7 Degree of dependence between different behavior types in six 

households 

 

5.4 Discussion 

In this section, the author presents insights based on the results obtained from the 

implemented prediction model and mutual information analysis discussed in Section 
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5.3. These findings address the potential challenges that may arise in multinomial 

OB modeling. By leveraging the prediction model’s outcomes and mutual 

information metrics, the author suggests a guidance for enhancing the understanding 

and interpretation of occupant behavior in real-world settings. 

 The accuracy of the prediction model varies across different behavior 

types, with occupant presence and light switch demonstrating relatively 

lower label accuracy, primarily due to the heavy reliance on thermal 

environmental variables for model training. In the case of the light switch, 

excluding the indoor illuminance variable, no other significant predictors 

are available for reliable prediction. To improve the model performance, 

it is suggested to incorporate additional factors that influence each 

specific behavior type as input data. Moreover, the behavior diversity is 

evident, as observed from the modeling conducted using the same dataset. 

Interestingly, even within the same model framework, noticeable 

performance discrepancies arise. This suggests behavioral diversity can 

hinder reproducibility, as it introduces variations in the model’s 

predictive performance.  

 The proportion of each behavior type, label accuracies, and degree of 

dependence among behaviors vary across households, which can be 

attributed to the differences in energy efficacy among households. The 

spatial diversity within households contributes to the model's prediction 

performance variations. Unique characteristics of each household likely 

impact the modeling results, highlighting the importance of considering 

household-specific factors when developing predictive models for 
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occupant behavior. By accounting for these spatial diversities and 

tailoring the model to individual households, it is possible to improve the 

prediction performance and capture the nuances of occupant behavior 

more accurately. 

 As mentioned in Section 5.3, the results of mutual information analysis 

indicate that occupant presence exhibits a high degree of dependence on 

other behavior types. Therefore, when occupant presence is measurable, 

incorporating it as an input variable in the model can potentially improve 

the model’s performance. Additionally, considering the causal 

relationships among variables, models such as Bayesian Neural 

Networks (BNN) that can be structured with multiple layers could be a 

promising avenue for improvement. By leveraging such models, the 

accuracy and interpretability of the predictions can be enhanced, thereby 

addressing the limitations of the current modeling approach. 

 

5.5 Summary 

This chapter implemented a multinomial OB model and quantified the degree of 

dependences among behavior types of households by analyzing the mutual 

information. Environmental data (temperature, humidity, CO2 concentration, PM2.5 

concentration, illuminance, time of day, and month) and occupant data (occupant 

presence, window state, light switch, AC switch, boiler switch) from six households 

were collected for one year. An LSTM model was presented for multinomial OB 

prediction, and mutual information was utilized to assess the degree of dependence 

between different behavior types. 
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Preliminary observation revealed significant variations in behavior types among 

households. While the occupancy rate showed relatively minor differences, the 

proportion of the window state exhibited a wide range of values from 0.01 to 0.93. 

These differences in proportions reflect varying preferences and perceptions 

regarding indoor environment control and energy conservation. 

Moreover, the LSTM model demonstrated a high prediction accuracy of over 94.8% 

for each label. The accuracy varied depending on the label, indicating the presence 

of behavioral diversity. The total accuracy differed across households, ranging from 

88.2% to 97.7%, showing a notable decrease in households where specific labels 

exhibited lower accuracy. 

The mutual information analysis revealed that occupant presence had a high 

degree of dependence on other variables, suggesting that measuring or predicting 

occupant presence may be essential for modeling other behaviors. Additionally, the 

degree of dependence between behavior types differed among households, 

suggesting various perspectives and user efficacy for each behavior. 

This chapter conducted multinomial OB modeling from the perspective of 

occupant diversity, providing evidence and quantification of behavior diversity. 

While there is a limitation in the number of households studied, the methodology 

and findings of this research can be applied to other OB modeling studies, 

contributing to the field.  
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Chapter 6. Conclusion 

 

 

In conclusion, this thesis conducted three studies to analyze occupant diversity: 

(1) Predictability quantification in occupant presence, (2) Feature influence 

quantification in window adjustment behavior using XAI, and (3) Multinomial 

occupant behavior model. The experiments were conducted in three residential 

buildings in Seoul, South Korea, with 31 households selected for data collection. The 

collected data included various aspects of occupant behavior such as occupant 

presence, window state, light switch, AC switch, and Boiler switch. Environmental 

data deemed influential on occupant behavior, including indoor and outdoor 

temperature, indoor and outdoor humidity, indoor CO2 concentration, indoor PM2.5 

concentration, and indoor illuminance, were also collected. 

Firstly, the study revealed that occupant presence in specific households followed 

a random walk pattern for short measurement periods, indicating the presence of 

significant temporal diversity in occupant behavior. The predictability of occupant 

presence varied significantly between households, and the degree of variation is 

shown in Figure 3.7. It is important to note that the predictability of occupant 

presence in residential buildings cannot be generalized as a single state and varies 

widely based on occupant features such as the number of family members and 

occupancy patterns. Therefore, to implement a reliable occupant behavior model, it 

is necessary to assess its applicability to each occupant and building/space in terms 

of spatial diversity. 
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Second, the analysis of feature influence provided insights into the current 

research on window adjustment behavior (WAB). It was observed that individuals 

have different personal preferences for using windows, suggesting the need for 

customized models rather than a universal approach. Furthermore, the personal 

preferences of occupants regarding WAB cannot be solely defined based on a single 

environmental variable. A combination of environmental, non-environmental, and 

unknown factors influences WAB. Applying XAI techniques to understand feature 

influence can help describe complex black-box models.  

Lastly, significant variations in behavior types were observed among households. 

While the occupancy rate showed relatively minor differences, the proportion of 

window states exhibited a wide range of values, indicating varying preferences and 

perceptions regarding indoor environment control and energy conservation. The 

mutual information analysis highlighted a high degree of dependence between 

occupant presence and other variables, suggesting the importance of measuring or 

predicting occupant presence when modeling other behaviors. Moreover, the degree 

of dependence between behavior types varied among households, indicating diverse 

perspectives and user efficacy for each behavior. 

Overall, this thesis has thoroughly analyzed the causes behind the performance 

gap in building simulations resulting from occupant behavior modeling. The insights 

gained from this research highlight the importance of considering temporal, spatial, 

and behavioral diversity in occupant modeling to enhance the accuracy and 

effectiveness of building performance simulations. 

Future research in this field can build upon these findings and focus on developing 

occupant models that are more reliable, reproducible, and replicable by incorporating 
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occupant diversity. The author anticipates that the outcomes of this thesis will 

contribute significantly to understanding occupant behavior and bridging the gap 

between actual and simulated building energy use. 
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국문 초록 

재실자 행동 모델링을 위한 재실자 다양성 분석 

 

김승현 

건축학과 건축공학전공 

서울대학교 대학원 

 

 

재실자 행동은 건물 에너지 시뮬레이션에서 주요한 불확실성 요소 중 

하나로 간주되며, 건물 내 재실자의 다양한 행동 양상을 정확하게 모델

링하는 것은 건물 내 환경 제어와 에너지 수요 예측을 위하여 필수적이

다. 이 연구는 건물 내 재실자 행동의 다양성이 재실자 모델링에서 미치

는 영향을 조사하고자 한다. 이를 위하여 이전 연구들에서 제안된 재실

자 행동 모델링 접근 방식들을 검토하고, 건물 에너지 시뮬레이션에서의 

재현성과 복제성을 어떻게 보완할 수 있는지에 대해 탐구한다. 이를 위

해 본 연구에서는 서울시 소재 3개의 주거 건물에서 31개 세대를 선정하

여 데이터를 수집하였다. 수집된 데이터는 재실자의 재실 상태, 창문 상

태, 조명 스위치, 에어컨 스위치, 보일러 스위치의 다양한 재실자 행동 

유형 데이터와 함께, 실내 및 실외 온도, 습도, 이산화탄소 농도, 미세먼

지 농도, 조도의 재실자 행동에 영향을 미치는 환경 데이터도 수집되었

다. 

연구 결과, 재실자의 재실 상태는 짧은 측정 기간 동안 특정 가구에서 

무작위한 이동 패턴을 보였으며, 이는 재실자 행동의 시간적 다양성을 

나타내는 것으로 해석 가능하다. 재실자 재실 상태 예측의 정확도는 세

대마다 큰 차이를 보이며, 신뢰할 수 있는 재실자 행동 모델을 구현하기 

위해서는 공간적 다양성 측면에서 특정 재실자 및 건물/공간에 대한 적

용 가능성을 평가하는 것이 필요하다. 

또한, 창문 조절 행동에 대한 특성 영향 분석 결과 각 세대는 창문 사
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용에 대한 개인적인 선호가 존재하며, 일반적인 접근 방식보다는 세대별 

맞춤형 모델이 필요함을 시사한다. 창문 조절 행동에 영향을 미치는 요

인은 단일 환경 변수에만 근거할 수 없으며, 환경, 비환경 및 알려지지 

않은 요소들의 조합이 영향을 미친다. 

마지막으로, 행동 유형 간 차이가 크게 나타났다. 서로 다른 행동 유형 

간에는 세대에 따라 종속성의 정도가 다르며, 이는 각 세대들의 다양한 

관점과 사용자의 에너지 유효성을 나타낸다. 

본 논문에서는 건물 에너지 시뮬레이션에서 재실자 행동 모델링으로 

인한 성능 차이의 원인을 분석하였다. 연구 결과는 재실자의 시간적, 공

간적, 행동적 다양성을 고려하는 것이 건물 에너지 시뮬레이션의 정확성

과 효과성을 향상시키는데 중요함을 강조한다. 앞으로의 재실자 연구는 

이러한 결과를 바탕으로 재실자 다양성을 포함한 더 신뢰성 있고 재현 

가능한 재실자 모델을 개발할 수 있을 것이다. 이를 통해 건물의 실제 

에너지 사용과 시뮬레이션 결과의 일치를 높일 수 있는 재실자 행동 이

해에 기여할 것으로 기대된다. 

 

주요어: 재실자 행동, 재실자 다양성, 주거 건물, 재실자 모델링, 건물 

에너지 시뮬레이션 
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