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Abstract

Occupant behavior (OB) plays a crucial role in building performance simulations,
but its complexity and variability pose challenges for accurate modeling. This thesis
emphasizes the importance of reproducibility and replicability in OB models and
explores the impact of occupant diversity on building energy control and prediction.
Three types of occupant diversity are identified: temporal, spatial, and behavioral. In
this thesis, in-situ experiments were conducted in three residential buildings in Seoul,
South Korea, involving 31 households to investigate occupant diversity. Various
aspects of occupant behavior, including occupant presence, window state, light
switch, AC switch, and Boiler switch, as well as indoor and outdoor environmental
data were collected.

The results showed significant temporal diversity in occupant presence,
highlighting the need for considering the temporal variability of behavior in OB
models. The analysis of window adjustment behavior revealed individual
preferences and the influence of multiple factors. Furthermore, variations in behavior
types among households demonstrated diverse perspectives on indoor environment
control and energy conservation. To address the performance gap in building
simulations resulting from occupant behavior modeling, this research underscores
the importance of considering occupant diversity to improve the accuracy and
effectiveness of building performance simulations. Future research should focus on
developing more reliable and reproducible occupant models incorporating occupant

diversity, bridging the gap between actual and simulated building energy use.
i
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Chapter 1. Introduction

1.1. Background

Occupant behavior (OB), which describes occupant interactions with buildings, is
one of the main sources of uncertainty in building performance simulations (Yan et
al., 2017; O’Brian et al., 2020; Dong et al., 2022). Understanding and accurately
modeling occupant behavior is crucial to achieving occupant-centric building energy
control and predicting energy demand (Yang et al., 2022; O’Brian et al., 2017; Ahn
etal., 2017; Carlucci et al., 2020; D’Oca et al., 2018; Wagner et al., 2018; Norouziasl
etal., 2021).

Many attempts have been made to develop OB models, for example, utilizing
occupant presence, window operation, shading operation, lighting control,
thermostat adjustment, appliance use, and clothing (Page et al., 2008; Wang et al.,
2011; Salimi et al., 2019; Langevin et al., 2015; Park et al., 2019; Yilmaz et al., 2017;
Quetal., 2021). Page et al. (Page et al., 2008) developed an occupant presence model
with Markov chain transition probabilities to generate a time-series for each
occupancy in a single zone. The model can reproduce key occupancy properties,
such as arrival and departure times. Wang et al. (2011) modeled the occupant
movement occurring in the spaces inside and outside a building. The Markov chain
approach was used to simulate the stochastic movement of the occupants. Salimi et
al. (2019) enhanced occupancy modeling using an inhomogeneous Markov chain

prediction model based on real occupancy data. Further, the agent-based thermal

1



adjustment has been simulated (Langevin et al., 2015), focusing on unconstrained
adaptive behaviors to maintain thermal sensation, for example, the occupants’ fan,
heater, and window use. Park et al. (2019) developed a lighting control model based
on reinforcement learning (RL) and trained on individual occupant behavior and
indoor environmental conditions to determine personalized set points. Yilmaz et al.
(2017) simulated three appliance operations using stochastic processes to capture
daily variations in appliance occupant behavior. Qu et al. (2021) modeled a logistic
outdoor clothing adjustment based on the assumption that local past temperatures
influenced it. A four-parameter logistic function was used for the logistic regression.

However, despite the scientific evidence indicating that OB models contribute to
the performance gap, they are still occasionally used in building energy control and
predicting energy usage. Many simulation programs like EnergyPlus default to
deterministic OB schedules, which simplify considering occupant preferences in
indoor environments and energy control processes. These simplified approaches
often rely on predefined schedules or simplified occupancy models that do not fully
capture the complexity and variability of occupant behavior. This oversimplification
of occupant preferences and behavior can lead to discrepancies between simulated
and actual energy consumption, as well as suboptimal indoor comfort and energy
efficiency (Azar et al., 2012). It highlights the need for more sophisticated and
realistic modeling approaches that better represent the diverse range of occupant
behaviors and preferences. Previous research attributes this phenomenon to the lack
of OB model standardization and clear documentation (Dong et al., 2018; Luo et al.,
2021), which results in models’ limited reproducibility and replicability (Dong et al.,

2022).



In this thesis, the author emphasizes the importance of reproducibility and
replicability, concepts that are often overlooked in current research practices.
Reproducibility refers to the ability to obtain consistent results using the same input
data, while replicability refers to obtaining consistent results across studies that aim
to address the same scientific questions but employ different data (Dong et al., 2022).
Through the pursuit of reproducibility and replicability, current researches can
address the performance gap in OB models and establish a more reliable and
trustworthy foundation for building energy control and prediction.

In addition, it is widely believed that OB patterns in residential buildings would
follow a regular pattern (Aragon et al., 2019; Richardson et al., 2008). However,
other studies have emphasized that because occupants have diverse occupant profiles,
describing OB in residential buildings is complicated (Balvedi et al., 2018; Li and
Dong, 2017; Carlucci et al., 2016). In such residential buildings, whether occupant
behavior is predictable and whether similar results are found for each household

remains indeterminate.

1.2. Main objectives

In this thesis, the author argues that occupant diversity hinders reproducibility and
replicability, resulting in a performance gap in OB models. For example, assuming
an average occupant or using deterministic patterns can be problematic. The author
categorizes occupant diversity into tree types as follows (Figure 1.1):

Temporal diversity: Occupants exhibit different behaviors in the same

environment at different times. This emphasizes the need to consider the
3



temporal variability of occupant behavior and capture its dynamics in OB
models.

Spatial diversity: Occupants in different spaces, such as different
households or buildings, demonstrate varying behavior patterns.
Recognizing spatial diversity is crucial for developing accurate OB
models that reflect occupants' specific characteristics and preferences in
different contexts.

Behavioral diversity: Different types of behaviors, such as occupancy,
window states, light switches, etc., require distinct modeling approaches.
Considering the unique characteristics and dependencies among various
behavior types is essential for improving the fidelity and performance of
OB models.

In this thesis, the author aims to demonstrate the existence and quantify the three
types of occupant diversity mentioned above. By doing so, the thesis highlights the
importance of considering occupant diversity in OB models and its impact on
reproducibility and replicability. Through empirical analysis and data-driven
approaches, the research provides evidence for the variability and heterogeneity of

occupant behavior across different temporal, spatial, and behavioral contexts.



Behavioral diversity

AVA

Figure 1.1 Three types of occupant diversity and performance gap of OB models

To implement the OB model and investigate occupant diversity, the author
conducted in-situ experiments in three residential buildings in Seoul, South Korea.
A total of 31 households were selected for data collection.

The collected data encompassed various aspects of occupant behavior, including
occupant presence, window state, light switch, AC switch, and Boiler switch. In
addition to occupant behavior data, environmental data deemed influential on
occupant behavior were also collected (Wei et al., 2014). This included indoor and
outdoor temperature, indoor and outdoor humidity, indoor CO2 concentration,

indoor PM2.5 concentration, and indoor illuminance.



1.3 Thesis organization

Chapter 1: Provides an introduction to the background and objectives of
the thesis. Defines occupant diversity into three types: temporal, spatial,
and behavioral.

Chapter 2: Describes the data collection process, focusing on the target
residential buildings and sensor information utilized in the research.
Chapter 3: Examines temporal diversity by employing random walk
theory to identify the presence of occupancy patterns within each
household over time. Demonstrates the existence and quantification of
temporal diversity and presents guidelines for mitigating its impact.
Chapter 4: Investigates spatial diversity using Explainable Al (XAI)
techniques to model occupants' window adjustment behavior (WAB).
Quantifies the feature influence of various environmental and occupant
factors, highlighting the variation in environmental perception across
different households.

Chapter 5: Develops a multinomial OB model using LSTM (Long
Short-Term Memory) to explore behavioral diversity. Analyzes the
diversity of occupant behavior types and quantifies the degree of
dependence between different behaviors. Addresses potential issues in
multinomial OB modeling.

Chapter 6: Concludes the thesis by addressing the findings of this thesis

and presenting future research directions.
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Chapter 2. Experiments

2.1 Target buildings

The author conducted a pre-survey and selected 31 households who agreed to
participate in this chapter. Those 31 households in three residential apartment
buildings in Seoul, South Korea, were selected (Figure 2.1). The number of
residences in each household was collected through a survey. All households were
naturally ventilated, apart from the temporarily running exhaust ventilation from the
kitchen hood and bathroom vents. The outside noise problem was negligible with
low traffic on nearby roads and a large height of five or more floors of households.
In addition, the entire building was non-smoking, so no constraints on window
opening were imposed. In each household, fluorescent lights are installed on the
ceilings of all rooms, and depending on the household, separate lighting fixtures are
installed as well. The AC is based on the device installed in the living room of each
household and is also autonomously controlled by the occupants in terms of on/off,
set point, and operation mode. The boiler operates as a water heating and floor
heating system, and the occupants in each household autonomously control the
on/off, set point, and operating modes. It is unknown whether separate
heating/cooling devices such as fans or electric heating mats exist in the households,

as this information was not collected.
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Figure 2.1 Target buildings

2.2 Sensor installation for measuring occupant and

environmental data

USM-300-ZB multi-sensors (Figure 2.2(g), developed by Shinasys) were installed
in all living spaces (Figure 2.4, three(four) bedrooms and a living room) to measure
indoor temperature, humidity, illuminance, and occupant presence. The indoor
environmental data were recorded using sensors in the living room adjacent to the
balcony. The USM sensor employs a PIR sensor that detects occupant presence. The
USM sensors were installed in all living spaces, e.g., three(four) bedrooms and a
living room (Figures 2.4(a)—(c)). Because the kitchen can be regarded as part of the

- ko o
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living room, therefore one USM sensor was installed in the living room. Based on
the measured data, it was found that the PIR sensor could detect occupant presence
in the nocturnal periods. If occupant movement was detected by any USM sensor in
the living spaces of the corresponding household, it was recorded that occupants
were in their homes. Finally, it was assumed that occupants were present in the space
when any movement was recorded at least once during the sampling interval of
temporal resolution.

The window states (0: closed, 1: open) of each household were recorded using
DSM-300-ZB window sensors (Figure 2.2(d), developed by Shinasys). The DSM
sensor was installed only on the openable window outside the main balcony (Figures
2.4 and 2.5). Each balcony space is isolated from the interior space with inner walls
and glass doors with weak insulation and airtightness performance. Therefore, the
opening and closing of the external window considerably affect the indoor
environment.

The states of the living room ceiling light (0: off, 1: on) in each household were
recorded using the STM-300-W smart lighting controller (Figure 2.2(e), developed
by Shinasys). Although occupants control the ceiling lights in all rooms through the
controller, only the living room lighting was considered to simplify the prediction
model.

The CCM-300-W (Figure 2.2(c), developed by Shinasys) measures the power
consumption of each electrical outlet, and based on the power consumption of the
outlet connected to the AC, it determines the control states (0: off, 1: on) of the AC.
If the power consumption of that outlet exceeded 30W, it was recorded as the air
conditioner in operation. Notably, the power consumption difference between when

11
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the AC is in operation and when it is not is distinct, rendering the threshold value
less meaningful.

The boiler is used for both supplying hot water and floor heating within each
household. The BCM-300-W records the operating mode set by occupants (only hot
water supply, only floor heating, both hot water supply and floor heating). The author
extracted the state when the switch is turned on, and floor heating is in progress (0:
off, 1: on).

The indoor CO, and PM_5 concentrations were recorded using AQM-300-W air
quality sensors (Figure 2.2(a), developed by Shinasys), installed next to each USM
sensor. Figure 2.3 illustrates the data collection process of the sensors. Figure 2.4
shows the specific locations of each sensor type. Figure 2.5 shows sensor installation
and location in an experimental space of household #4. Outdoor temperature and
humidity data were provided by the Korea Meteorological Administration weather
data service. Each outdoor environmental sensor works at the ground level in Seoul,
South Korea, within 15 km of the target buildings. Table 2.1 specifies sensors used

for measuring occupant and environmental data.
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(a) AQM-300-W (b) BCM-300-W
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Figure 2.2 Photos of sensors used for measuring occupant and environmental
data
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Table 2.1 Specification of sensors used for measuring occupant and

environmental data

Sensor Variable Sai?r[;gng Range Resolution  Accuracy
BCM-300-W  Boiler switch Oorl - >99%
CCM-300-W AC switch Oorl - >99%

DSM-300- )
Window state Oor1l - >99%
ZB
STM-300-W Light switch Oorl - >99%
Indoor
0-50 °C 0.1 °C 10.5 °C
temperature
Indoor 0-100%
o 1% RH +2% RH
humidity RH
Indoor
USM-300- 77 1-65,528 Ix 11x -
7B illuminance
. Detecting
1 min
Occupant Dot occupant
or -
presence (PIR) movement
>99.5%
Indoor CO; 0-10,000
. 1 ppm +30 ppm
concentration ppm
AQM-300-W
Indoor PM2 5 0-500 ug/
: 1 pg/m? -
concentration m3
Metallic
Outdoor —40to
temperature . 0.1 °C +0.3 °C
temperature 60 °C

sensor

Capacitive
o Outdoor 0-100%

humidity . 0.1% RH +3% RH

humidity RH

sensor
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Table 2.2 The statistical description of the monitored outdoor environmental

variables
Environmental variables Mean Sta'ﬁ‘d"?‘fd Max Min
deviation
Outdoor temperature (°C) 13.5 11.1 36.1 =155
Outdoor relative humidity (%) 64.8 18.4 100.0 15.0
20



Chapter 3. Predictability quantification of occupant

presence

3.1 Introduction

Current modeling approaches utilize rule-based, stochastic, data-driven, or agent-
based approaches. The rule-based approach includes but is not limited to, time-
dependent user profiles, as defined by Lee and Kim (2017). Stochastic models
probabilistically define OB and are the result of multiple contextual factors, such as
habitual behaviors and adaptive triggers that evolve over time (Frontczak et al., 2012;
Liand Dong, 2017; Altomeonte and Schiavon, 2013; Carlucci et al., 2020). The data-
driven approach is described as a black-box model derived from relevant input and
output data. Using machine learning (ML) methods, a data-driven model is
implemented without in-depth domain knowledge or an understanding of OB
(Carlucci et al., 2020; Hong et al., 2017; Brager et al., 2004). Finally, the agent-based
approach models individual “agent” behavior. While other approaches assume an
“average occupant” in the space of multiple persons, agent-based models aim to
describe the interaction between each occupant (Robinson et al., 2011).

These approaches are based on the hypothesis that sufficient data and knowledge
can provide reliable prediction models. In other words, most of the previous OB
studies have been conducted based on the premise that OB can be predictable. In
contrast, studies based on the random walk approach (Ahn and Park, 2016; Ahn et

al., 2017; Ahn and Park, 2019; Kim and Park, 2022) reported that in certain types of
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buildings/spaces, occupant behavior follows a “random walk™ pattern, which is
difficult to predict. The random walk hypothesis was utilized to investigate the
predictability of the time-series data, with the degree of randomness being
determined by the normalized cumulative periodogram (NCP) and Bartlett’s test. In
this thesis, predictability means quantifying the possibility of whether the next state
of occupancy can be predicted from the present and past states of occupancy.

In Ahn and Park (2016), the authors observed the occupancy and behavior in a
university laboratory occupied by seven people. It was shown that occupancy in the
university laboratory was random, and the variance of their behavior had no
particular frequency. In Ahn et al. (2017), the predictability of occupancy in
laboratories and reading rooms was investigated. It was found that it is difficult to
apply a stochastic occupancy model in random walk-driven buildings and can result
in a significant performance gap. In Ahn and Park (2019), occupancy data were
observed in six rooms of a university library building for 16 days. It was investigated
whether temporal and spatial resolutions influence the predictability of occupancy.
In addition, it was shown that the number of occupants dominantly drove such
predictability.

In previous studies (Ahn and Park, 2016; Ahn et al., 2017; Ahn and Park, 2019),
the authors analyzed predictability using the random walk approach focused on
university buildings, which have been classified as random walk-driven building
types (Ahn and Park, 2016). In contrast, Ahn and Park (2016) hypothesized that
residential buildings would have process-driven occupancy patterns that could be
easily predicted.

In this chapter, the author delves into the concept of temporal diversity by

22
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employing the random walk theory to quantify the consistency of occupant behavior
through the analysis of autocorrelation in time-series data. The primary focus is
investigating the predictability, or autocorrelation, of occupant presence to
demonstrate and quantify temporal diversity.

The main objectives of this chapter are as follows: (1) examining whether
occupant presence in specific households within residential buildings follows a
random walk pattern, which implies unpredictability; (2) quantifying the
predictability of occupant presence at different temporal and spatial resolutions; and
(3) assessing the degree of variation in predictability across households.

To achieve these objectives, collected occupant presence data for 147 days from
31 households in residential apartment buildings in Seoul, South Korea, were used.
The author adopted methodologies utilized in previous studies, such as the random-
walk hypothesis, Normalized Cumulative Periodogram (NCP), and Bartlett's test
(Ahn and Park, 2016; Ahn et al., 2017; Ahn and Park, 2019) to analyze the data.

By investigating the predictability of occupant presence in real-life scenarios, this
chapter aims to provide insights into the temporal variations and patterns of occupant
behavior, thus establishing empirical evidence for temporal diversity (Kim and Park,

2022).
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3.2 Random walk approach

This section presents the methodology of predictability analysis depicted in Figure
3.1. In this chapter, it was hypothesized that the predictability of occupant presence
could be influenced by temporal resolution, spatial resolution, and the length of
measurement periods. Thus, the author quantified the predictability of occupant
presence in the residential buildings in terms of temporal resolution (from one
minute to 120 minutes), measurement periods (from one day to 147 days), day types
(weekdays, weekends), spatial resolution (from one household to 31 households).

The predictability was analyzed with the two popular tests: NCP and Bartlett’s test.

Temporal resolution > Predictability
Sampling time analysis
Section 3.34 Measurement Period
i 1da
24 Y Random walk
min
Monitored :ays
data ¥
Sampling time = 60 min
omw
Day type y
> Section 3.3.3
| Weekends | NCP
| Weekdays |
Sampling time = 60 min
_,| Spatialresolution | |
Number of households
Section 3.3.4 A 4
1
3 Bartlett’s test
31

Sampling time = 60 min

Figure 3.1 Predictability analysis process (Kim and Park, 2022)
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Thirty-one households in three residential apartment buildings in Seoul, South
Korea, were selected (Figure 3.2). Occupancy data (0: absence, 1: presence)

measured for 147 days (2021.08.03-2021.12.27) were used.

201 2F
IF

Bldg. A Bldg. B Bldg. C

Figure 3.2 The 31 households selected

3.2.1 Mathematical form

A random walk is the mathematical formalization of a path consisting of a
succession of random steps. The term, first introduced by Pearson (1905), has been
used in many fields (e.g., ecology, economics, and psychology) to explain the
observed behavior of time-series data. Figure 3.3 shows an example of 10 random
walk-driven time series in one dimension. The mathematical form of a random walk

for time-series data can be expressed as shown in Equations 3.1 and 3.2 (Ahn and
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Park, 2019; Kim and Park, 2022).
X1 = X + Wy Equation 3.1
Wi = X1 — Xg Equation 3.2
where x;, is the state of the kth time step; xj,q is the state of the (k+1)th time
step; and wj is the difference between x;, and xj,;, representing the state
fluctuation over time. According to the random walk hypothesis, if the change (wy)
in presence data is a random value with a uniform probability distribution, occupant

presence (x) is deemed unpredictable (Ahn and Park, 2019).

T I
0 50 100 150 200
time [timestep]

Figure 3.3 Example of ten random walks (Ahn and Park, 2019)

3.2.2 Normalized Cumulative Periodogram (NCP)

The NCP is a common method for identifying a given time series's periodicity
(randomness) in the frequency domain (Newton, 1988). For a given n stationary time
series (xy), the periodogram function (f (w]-)), which shows the spectral density of

the time series at each frequency, is calculated using Equation 3.3 (Ahn and Park,

2019):
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n 2

1 z x(t)eZn'i(t—l)wj
n

=1

Equation 3.3

where w; = (j —1)/n isthe jthfrequency (j = 1,...,q), n isthe length of the
time series, q = E] +1, f(w;) is the periodicity spectrum at a frequency of w;,

and x(t) is the time series data at time t. The periodogram provides a graphical
representation of the frequency distribution of the time-series data.

Two thousand random numbers were generated by the random module in Python
and recorded to represent random time series on the periodogram. The periodograms
of the periodic data and random time series are shown in Figure. 3.4(a). The random
time series are not concentrated at a few specific frequencies but are uniformly
distributed over the entire frequency domain. Therefore, a random time series is
understood as white noise or a random signal having equal intensity at different
frequencies (Diggle and Fisher, 1991). On the other hand, for the periodic data,
because the peak frequency is 0.1 Hz, the representative period is verified as 10 s

(Figure 3.4(b)) (Kim and Park, 2022).
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(a) Random numbers
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10

Spectral density [dB/Hz]

Frequency [Hz]

(b) Random numbers + 0.1 Hz sine wave
Figure 3.4 Example of periodogram of time series for 1000 s (sampling time: 1
s) (Kim and Park, 2022)

NCP is a cumulative form based on the periodogram f(a)j) as follows (Newton,
1988):

Z?=1 f(“)j)

F = =
() 2;‘I=1 f(“)jy

=1,..,q Equation 3.4

where F(w;) is the NCP at the frequency w, . Note that F(0) =0 and
ﬁ(wq) =1.

Figure 3.5 shows the NCP for a random time series (bold blue line), where the red
area indicates the 99% confidence intervals for testing the random walk. Presumably,
the time series data follows a random walk if the bold blue line is drawn within a
confidence interval with a straight line joining (0, 0) and (0.5, 1) in the NCP (Figure

3.5(a)). The confidence interval lines (dotted lines) are drawn at vertical distances

+ K_i above and below the straight line joining (0, 0) and (0.5, 1), where [nT_l]

2

denotes taking only the integer portion of the number of brackets and K., a
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parameter for determining confidence limits in the cumulative periodogram, is set to
1.63 with a 99% confidence interval (Hipel and McLeod, 1994). The NCP can be
used to qualitatively evaluate whether the time-series data have periodicity

(predictable) or not (not predictable) (Ahn and Park, 2019).

T T
0.0 0.1 0.2 03 0.4 0.5
Frequency [Hz]

(a) Random numbers

- T I
0.0 0.1 0.2 03 0.4 0.5
Frequency [Hz]

(b) Random numbers + 0.1 Hz sine wave
Figure 3.5 Example of NCP of time series for 1000 s (sampling time: 1 s) (Ahn
and Park, 2019)

3.2.3 Bartlett’s test

Bartlett’s test (Bartlett, 1967) is a common method for testing the null hypothesis
that data are derived from white noise. Bartlett’s test statistic B and the p-value were
calculated, as shown in Equations 3.5 and 3.6 (Ahn and Park, 2019; Nason and

Savchev, 2014).
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B = \/5115\95); |ﬁ(wk) - §| k=1,..,q Equation 3.5

> Equation 3.6
p—value=1-— Z (_1)je—232j2 a

Jj=—00

As mentioned above, F(w;) isthe NCP at the frequency wy, where w;, = (k —
1)/n isthe k" frequency (k = 1,...,q),and q = [2] + 1. Bartlett’s test statistic B

is defined as the deviation of F(w,) from a straight line in the NCP. The null
hypothesis of white noise is rejected if the p-value calculated from Bartlett’s test
statistic B is less than a specified significance level a (Kim and Park, 2022). In this

chapter, the calculation was performed using the Bartlett B. test function in R.

3.3 Results

3.3.1 NCPs of 31 households

Figure 3.6 shows the NCPs of 31 households. Each line represents the NCP of the
occupant presence in each household. If the presence corresponding to a household
was located within the red-colored band, it was considered unpredictable at a
significance level of 0.01 (Hipel and McLeod, 1994). In the relatively short
measurement period (7 days), occupant presence in half of the households proved to
be unpredictable. In contrast, in the NCP of 147 days (Figure 3.6(d)), the occupant
presence of all households was indicated as predictable. This was substantiated by
Bartlett’s test (Section 3.3.2). In addition, the difference in the NCPs between

households indicates a difference in the predictability of the occupant presence.
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Period [hour]

(a) 7 days

Period [hour]

(b) 14 days

Period [hour]

(c) 28 days
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Period [hour]

(d) 147 days
Figure 3.6 NCPs of 31 households according to measurement periods (each line
represents each household’s measured occupant presence) (sampling time = 60

min)

3.3.2 Predictability with varying measurement periods

Table 3.1 shows the results of Bartlett’s test for the NCPs in Figure 3.6. By
comparing Bartlett’s test statistic for each household with the reference value (1.63,
significance level of 0.01), it is possible to identify the predictability of occupant
presence. Alternatively, the presence is deemed unpredictable when the p-value is
greater than the significance level of 0.01 (red-colored), indicating a 1% risk of
concluding that a difference from white noise exists when there is none (Hipel and
McLeod, 1994). Please note that there is no set-in-stone rule or universal rule for
determining the significance level. However, the significance level of 0.01 has been
widely used, as addressed in (Hipel and McLeod, 1994). Accordingly, 17 households
whose presence was unpredictable within 7 days of the measurement period were
identified. Approximately five households were identified as unpredictable within
14 days, and three were identified as unpredictable within 28 days. No households

were identified as unpredictable within 147 days. For a long measurement period of
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nearly five months, all households were found to be predictable. In addition, it can
be inferred that longer measurement periods increased the predictability of occupant
presence.

Figure 3.7 shows the results of the correlation analysis between the presence
predictability and measurement periods. Each line represents Bartlett’s test results
for each household. When Bartlett’s test statistic was less than 1.63, the presence of
the household was determined to be unpredictable at a significance level of 0.01
(Nason and Savchev, 2014). Bartlett’s test statistics tended to be proportional to the
measurement period in most households. Even households whose presence was
unpredictable could be changed to predictable by extending the measurement period.
In general, the results exhibited a monotonic increase. However, for cases of
surge/decrease, an alteration in the presence pattern was estimated.

Moreover, the graphs of each household show a significant difference in their
gradients (Figure 3.7). The last household (household #23) could be predicted with
86 days of data. While households with high gradients can secure high predictability
with relatively short measurement periods, households with low gradients require

longer periods to acquire the same level of predictability.
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Table 3.1 Bartlett’s test statistic and p-value of 31 households according to

measurement periods (text in red indicating unpredictable)

7 days 14 days 28 days 147 days
Household #
statistic p-value statistic p-value statistic p-value statistic p-value
1 1443  0.035 3284 0000 4199 0.000 9.865 0.000
2 1.262 0.100 1.619 0.011 2.584 0.000 8.151 0.000
3 1.080 0.202 2.893 0.000 3.171 0.000 7.845 0.000
4 1390 0.045 1821 0.003 2812 0.000 5956  0.000
5 1492  0.029 3133 0.000 3.992 0.000 8.038  0.000
6 2226 0.000 3422 0.000 4638 0.000 9.433  0.000
7 1130 0.166 2071 0.000 3149 0.000 8713  0.000
8 2.073 0.000 3298 0.000 4.056 0.000 10.203 0.000
9 1.852  0.002 2827 0.000 3.921 0.000 9.822  0.000
10 0.627  0.840 3.829 0.000 2.665 0.000 4.045 0.000
11 1400 0.047 1279 0.086 3.137 0.000 10.999  0.000
12 0.627  0.840 1407 0.039 1556 0.016 8423  0.000
13 1458 0.031 2030 0001 2305 0.000 6.690 0.000
14 1653 0.009 2380 0.000 3575 0.000 7.298  0.000
15 2.840 0.000 3455 0.000 4938 0.000 10.374 0.000
16 2.353 0.000 2.546 0.000 2.389 0.000 6.088 0.000
17 2.361 0.000 3.317 0.000 4.671 0.000 10.278 0.000
18 1550 ~ 0.017 2571 0.000 2647 0.000 4.222  0.000
19 0.627 0.840 0.680 0749 0.754  0.624 5.054  0.000
20 1.691 0.009 2.396 0.000 1.900 0.002 9.513 0.000
21 2.921 0.000 3.774 0.000 4.764 0.000 8.279 0.000
22 1949 0.001 3670 0.000 3474 0000 7.714  0.000
23 0.627 0.840 0.858 0463 0.842 0486 2525 0.000
24 1.227 0.103 2.054 0.000 2.740 0.000 8.300 0.000
25 1.532 0.020 2.148 0.000 2.457 0.000 4.400 0.000
26 1608 0.013 2105 0.000 2464 0000 7.702  0.000
27 2.636 0000 3635 0.000 4993 0.000 11.185 0.000
28 1.949 0.001 2.718 0.000 4.139 0.000 10.039  0.000
29 1.870 0.002 2.281 0.000 2.568 0.000 8.713 0.000
30 1311  0.075 3459 0.000 3721 0.000 5.996  0.000
31 2559  0.000 3468 0.000 4952 0.000 10.066 0.000
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Figure 3.7 Predictability of occupant presence with varying measurement
periods (each line represents each household’s measured occupant presence)

(sampling time = 60 min)

3.3.3 Predictability between weekdays/weekends

Figure 3.8 compares each household’s predictability (Bartlett’s test statistic) on
weekdays and weekends (including holidays). For a fair comparison, both data sets
were analyzed for the same number of days (30 days). Both cases were almost
predictable, with a significance level of 0.01. On weekdays, the occupant presence
of four households (#10, #12, #19, #23) was proven to be unpredictable. One
household was unpredictable on weekends and holidays (household #23). The
predictability between weekdays and weekends is similar in most households, but
there are significant differences between several households. For households #3, #10,
#12, #20, #24, and #30, occupant presence patterns differed between weekdays and
weekends. In other words, it is essential to develop a separate presence-prediction

model.
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Figure 3.8. Predictability of occupant presence on weekdays/weekends for 30

days (sampling time = 60 min)

3.3.4 Predictability with varying temporal and spatial resolutions

Figure 3.9 shows Bartlett’s test results with varying sampling times and numbers
of households. As shown in Figure 3.9(a), the shorter the sampling time, the greater
the predictability of occupant presence. Figure 3.9(b) shows the changes in
predictability as the number of households aggregates. Python’s random module was
used in the households’ aggregation process. In other words, no special grouping
was applied, e.g., in terms of buildings (A, B, C) or plan type (A, B, C) (Figure 2.4).
In addition, 7 days of the presence data of selected multiple households were
summed. Presence data with a value of 0 or 1 have a value between 0 and N (the
number of aggregated households) after aggregation.

Figure 3.9(b) suggests that predicting the occupant presence of multiple
(aggregated) households is more difficult than individual households. In other words,
it may be easier to predict occupant presence in small spaces, for example, several

rooms or a single floor, than to predict the occupant presence of the whole building.
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Figure 3.9 Predictability of occupant presence with varying temporal and spatial

resolutions (7 days’ measured data)
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3.4 Summary

This chapter investigates the predictability of occupant presence in residential
buildings regarding temporal diversity. Presence data from 31 households were
collected for 147 days, and NCP analysis and Bartlett’s test were used to examine
the predictability of occupant presence.

The findings are summarized graphically in Figure 3.10. Data features, such as the
measurement period and temporal/spatial resolution, significantly influence the
predictability of occupant behavior. Three analyses regarding the variation in the
predictability of occupant presence are presented as follows: (1) with different
measurement periods (Figure 3.10(a)), (2) with different sampling times (Figure
3.10(b)), and (3) individual vs. aggregated households (Figure 3.10(c)).

The measurement period significantly influenced the predictability of the
occupant presence. In general, the longer the presence data are collected, the higher
the predictability. Therefore, securing a sufficient measurement period is
recommended to predict occupant presence better. Notably, the degree of
predictability increase varies according to occupant characteristics. Second, it was
found that the shorter the sampling time is, the greater the predictability of the
occupant presence. Finally, predicting the occupant presence of multiple or
aggregated households would be much more difficult than that of an individual
household. Additionally, the predictability between weekdays and weekends is
similar in most households but differs in multiple households. Thus, developing a
separate presence prediction model for weekdays and weekends is essential.

In summary, the occupant presence of specific households followed a random

walk pattern for short measurement periods, which means there is significant
38
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temporal diversity of occupant presence. The predictability of occupant presence
differs significantly between households, and the degree of variation is shown in
Figure 3.7. Notably, the predictability of occupant presence in residential buildings
cannot be defined as a single state and varies widely according to occupant features
(e.g., number of family members and occupancy patterns). Therefore, to implement
a reliable OB model, it is necessary to check whether it applies to each occupant and
building/space. In other words, the findings of this chapter are limited by the

information of the householders (Kim and Park, 2022).

Predictability

Measurement period

(a) Measurement period vs. predictability of occupant presence

Predictability

Sampling time

(b) Sampling time vs. predictability of occupant presence
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Predictability

Number of aggregated households

(c) Number of aggregated households versus predictability of occupant presence
Figure 3.10 Variation of predictability of occupant presence with varying data
features (Kim and Park, 2022)
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Chapter 4. Feature influence quantification in window

adjustment behavior using XAl

4.1 Introduction

Window adjustment is one of the most common ways employed by occupants to
control the indoor environment, and window adjustment behavior (WAB) is known
to be a crucial factor for predicting building energy consumption. WAB in a dynamic
manner is triggered by various influencing factors, such as indoor/outdoor
temperature, CO, concentration, and time of day (Plieninger et al., 2016; Wei el al.,
2014; Hong et al., 2015; Stazi et al., 2017; Fabi et al., 2012). In recent decades, many
attempts have been made to develop reliable WAB models by finding correlations
between environmental and non-environmental factors and WAB. For instance,
Andersen et al. (2013) developed a WAB model for Danish dwellings and proposed
four models of the window opening and closing behavior patterns based on measured
environmental data. A probabilistic approach using logistic regression was applied.
Cali et al. (2016) investigated the time of day as the most common driver to open a
window by comparing German households using logistic regression. An artificial
neural network (ANN) model with higher accuracy than traditional stochastic
approaches was proposed by Wei et al. (2019). Better interpretability of influencing
factors was also demonstrated compared to the logistic regression and Markov
models. Zhou et al. (2021) proposed other machine-learning models. The random
forest algorithm was compared with two other machine learning models: support

vector machine (SVM) and extreme gradient boost (XGBoost) algorithms. For
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stochastic modeling, a Bayesian network was suggested with its applicability to
capture the complicated underlying relationships between various influencing
factors and WAB (Barthelmes et al., 2017).

Similarly, a large number of WAB models have been developed based on occupant
responses to environmental and non-environmental factors. However, crucial topics
still need to be considered to achieve reliable WAB modeling, but many studies
ignore them (Liu et al., 2022; Kim and Park, 2023). This chapter proposes a novel
approach to WAB modeling to address the following three issues.

First, most of the studies have ignored the variability of individual preferences
(spatial diversity) and treated it in an “average occupant” fashion. It was reported
that the average occupant approach is detrimental to understanding the differences
in people’s behaviors and can result in a performance gap between the actual and
predicted building energy consumption (Liu et al.,, 2022; Liu et al., 2022).
Customized models that reflect individual preferences can be applied as a solution
rather than a universal WAB model. On the other hand, several studies have focused
on behavioral diversity and attempted to characterize occupant WAB patterns (Haldi
and Robinson, 2009; Yun et al., 2009; D’Oca and Hong, 2014). Haldi and Robinson
(2009) classified their sample into “active” and “passive” types based on the
proportion of window opening time. D’Oca and Hong (2014) clustered patterns of
WAB in 16 offices along four dimensions (motivation, opening duration,
interactivity, and position) based on association rule mining techniques. The studies
mentioned above provide an initial understanding to explain the spatial diversity of
WAB better. However, further evaluation is necessary if it is possible to apply it to

external data and define specific criteria (Kim and Park, 2023).
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The second issue is analyzing the impact of each factor, which is a fundamental
consideration for making the prediction model more realistic. Many studies have
analyzed the feature impact based on the interaction between environmental factors
and WAB, but they have different opinions on influencing factors. For instance, in
(Liu et al., 2022), the outdoor temperature was considered the most dominant factor
for WAB. However, other factors, such as indoor temperature (Anderson et al., 2013;
Yun and Steemers, 2008; Yun and Steemers, 2010), humidity (Sun et al., 2018),
outdoor PM, s concentration (Gu et al., 2021), and time of day (Cali et al., 2016),
were also shown to have significant influences in some instances. Therefore, WAB
cannot be described by only one specific environmental factor because it is a
response to the interaction of multiple factors. Moreover, occupants behave
differently even in the same environment, depending on their individual perspectives
of the environment and energy demand. Previous studies quantified randomness as
the influence of non-environmental factors such as occupancy, time of day, building
characteristics, and personal preferences (Stazi et al., 2017; Fabi et al., 2012; Pan et
al., 2018). Therefore, it is worth discussing how to reveal different responses of
occupants to multiple factors (including unknown factors), select the appropriate
factors for different cases, and improve the model's reliability (Kim and Park, 2023).

Finally, diverse modeling approaches have been used to calculate the correlation
between WAB and its influencing factors accurately. In recent decades, studies have
modeled the state probability of WAB rather than using fixed schedules. Logistic
regression is the most widely used model for predicting the probability of a window
state (Liu et al., 2022). Nicol (2001) first presented a coherent probability

distribution for the predicted window state as logit functions of outdoor and indoor
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temperatures. Logistic regression was also used to quantify the feature impact with
the correlation coefficients of its formula and categorize the patterns of occupant
responses (Anderson et al.,, 2013; Cali et al.,, 2016; Pan et al.,, 2018). Several
machine-learning algorithms have also been introduced to obtain a model with a
relatively higher performance than logistic regression models (Wei et al., 2019; Zhou
etal., 2021; Mo et al., 2019; Pan et al., 2019; Han et al., 2020; Niu et al., 2022; Park
etal., 2021). Park et al. (2021) compared six machine learning algorithms (KNN, RF,
ANN, CART, CHAID, and SVM) with a logistic regression model to predict the
window state. In addition to machine learning algorithms, deep learning algorithms
have been proposed for WAB (Markovic et al., 2018; Markovic et al., 2019).
However, such data-driven models depend highly on their datasets, and their
applicability to external data is unknown. In the case of black-box models, the
influence of each factor cannot be identified, and sufficient explanation, such as
feature selection, is not provided for model validation. Therefore, the current data-
driven approaches must overcome the lack of explainability and reliability. In
summary, the aforementioned modeling approaches have their advantages, but their
disadvantages are also obvious (Kim and Park, 2023).

To address the aforementioned three issues, this chapter focuses on explainable
artificial intelligence (XAI), which adds explainability to existing machine learning
models. In terms of feature influence, the XAl technique explains how each variable
affects the prediction results of the model. Consequently, it quantifies the
individual’s perception and the spatial diversity that causes the occupant responses.
This chapter applies the XAI to develop a reliable WAB model that considers

individual differences. The three main objectives are as follows: (1) to quantify the
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diversity of preferences of individual occupants concerning WAB; (2) to reveal
relevant information on occupant perceptions and behavioral patterns regarding
indoor environment control; and (3) to present a practical approach for developing a
reliable WAB model based on multiple influencing factors.

The author used occupant data (occupant presence and window state) and
environmental data (temperature, humidity, CO, concentration, PM, s concentration,
illuminance, and time of day) from 12 households for one year. Three XAI
approaches, logistic regression, XGBoost classifier, and Shapley additive
explanations (SHAP), were introduced to analyze the interaction between WAB

influencing factors and occupant behavioral patterns.

4.2 Feature influence analysis

This section introduces three XAI approaches, namely, logistic regression,
XGBoost classifier, and SHAP, to analyze the interaction between environmental

factors and occupant behavioral patterns (Figure 4.1).
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Figure 4.1 Feature influence analysis process (Kim and Park, 2023)
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Those 12 households were selected for the experiment (Figure 4.2). Occupant data
(occupant presence and window state) and environmental data (indoor/outdoor
temperature, indoor/outdoor humidity, indoor CO2 concentration, indoor PM2.5

concentration, indoor illuminance, and time of day) from 12 households for one year

were used.
1901 | 1902 1903 1904 | 1905 1907 1908 1909 1910 1901 | 1902 | 19F
1801 | 1802 | 1803 | 1804 1805 1807 1808 1809 1810 1801 | 1802 | 18F
1701 | 1702 | 1703 | 1704 = 1705 1707 1708 1709 1710 1711 1701 | 1702 | 17F
1601 | 1602 | 1603 || 1604 | 1605 @ 1606 1607 1608 1609 1610 1611 1601 || 1602 16F
1501 | 1502 | 1503 | 1504 | 1505 1505 1507 1508 1509 1510 1511 1501 || 1502 | 15F
1401 | 1402 = 1403 || 1404 | 1405 1406 1407 1408 | 1409 | 1410 1411 1401 || 1402 14F
[ 1301 | 1302 | 1303 | 1304 | 1305 | 1306 1307 1308 1309 1310 1311 1301 | 1302 | 13F
1201 | 1202 || 1203 | 1204 | 1205 | 1206 1207 1208 1209 1210 1211 1201 || 1202 | 12F
1102 | 1103 | 1104 | 1105 | 1106 1107 1108 1109 1110 1111 1101 | 1102 | 11F
1001 | 1002 || 1003 | 1004 | 1005 | 1006 1007 1008 1009 1010 1011 1001 | 1002 10F
902 | 903 | 904 | 905 @ 906 907 908 909 910 911 901 | %02 | 9F
801 802 | 803 805 806 807 808 809 810 811 801 g2 | 8F
701 || 702 | 703 || 704 | 705 | 706 707 708 710 711 701 TF
601 | 602 | 603 | 604 | 605 606 607 608 609 610 611 601 || 602 G6F
501 503 | 504 | 505 | s06 507 508 509 510 511 so1 | s02 | SF
401 | 402 | 403 || 404 | 405 @ 406 407 408 409 410 411 401 4F
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200 | 202 || 203 | 204 | 205 | 206 207 208 209 210 21 201 || 202 | 2F
101 102 | 103 104 106 107 108 109 110 11 101 102 | IF
Bldg. A Bldg. B Bldg. C

Figure 4.2 The 12 households selected

4.2.1 XAI

The term XAl was first defined by Van Lent et al. (2004), who pointed out that
while computing systems are becoming more complex, their self-explanatory
functions are not evolving. The evaluation functions of existing machine learning

algorithms only present generalized results for the entire dataset and do not provide
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intuitive evidence of how the model can be improved. However, XAl interprets how
the model accepts the data after implementation. Therefore, XAl can present various
reasonable perspectives by providing new information about the existing models, as
indicated in Figure 4.3. Table 4.1 provides examples of renowned XAl algorithms.
Each shows the relationship between the input and output data in different ways. In
particular, XAl, in the case of modeling occupant behavior, can provide a better
understanding of the interaction between the environment and occupants by

quantifying the impacts of influencing factors (Kim and Park, 2023).

To-be with XAI

Performance

As-is

\ 4

Explainability (notional)

Figure 4.3 Model performance versus explainability (modified from Gunning
(2017))
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Table 4.1 Renowned XAl algorithms and their characteristics (Gorissen et al.,

2009)

Algorithm Linearity Monotone Objectives
Linear regression 0] @) Regression
Logistic regression @) Classification

Decision tree Partial CIaSS|f|ca_1t|on,
regression

Nave Bayes Classification

K-nearest neighbor Classification,
(KNN) regression

Outdoor/indoor temperature, outdoor/indoor humidity, indoor illuminance, indoor
CO: concentration, indoor PM2zs concentration, and occupant presence were
measured as influencing factors of WAB for 12 households. The influence of each
feature on the WAB of each household was analyzed. In addition, two window state

models were implemented using the logistic regression and XGBoost classifier.

4.2.2 Logistic regression

Logistic regression (Hastie, 2017) is the most popular stochastic method for
analyzing and modeling binary variables (e.g., the state of a window and window-
opening/closing behavior). Logistic regression is based on a sigmoid function
(Equation 4.1), normalizing multiple parameters into a binary result as 0 or 1. Using
the definition of logistic regression, Equation 4.1 can be transformed into Equation

4.2.
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1

p

log (%) — @+ Buxy + By + - + B Equation 4.2
where

p isthe probability that the state of the window is open (0: closed, 1: open)

a is the intercept

B; are coefficients

x; are explanatory variables (e.g., indoor/outdoor temperature and
occupant presence)

n is the number of explanatory variables

When p is greater than 0.5, the window state is assumed to be open; otherwise,

it is assumed to be closed. The scales of each explanatory variable were normalized
in the range of 0 to 1 using a min-max scaler. The intercept and coefficients were
then estimated using the maximum likelihood method. The magnitude of each
coefficient represents the impact of determining the window state of each feature.
Therefore, logistic regression effectively reveals the correlation between the
environmental factors and WAB and provides quantitative evidence (Wei et al.,

2019).

4.2.3 XGBoost classifier

XGBoost is a scalable machine-learning system for tree boosting (Chen and
Guestrin, 2016). It has been widely used in many applications, such as window
behavior modeling (Mo et al., 2019), prediction of building cooling loads (Fan et al.,

2017), and fault detection for HVAC systems (Chakraborty and Elzarka, 2019). The
50
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boosting method predicts accuracy by integrating the predictions of weak classifiers
into a robust classifier via a serial training process. The computational process of

XGBoost is given by Equation 4.3.

K
yi = z fr(x), fr€F Equation 4.3
k=1

where §; is the final tree model, f;(x;) are weak classifiers (base tree models)
organizing model F, x; is the ith dataset, and K is the total number of weak

classifiers. The objective function of model F is expressed as Equation 4.4.

n K
Obj = Z 1(y;,9:) + Z Q(fi) Equation 4.4
i=1 k=1

where [(y;,¥;) isa loss function that calculates errors between the actual (y;) and
predicted (§;) values,and Q(f) isacomplexity function that controls the weights
of each tree (f}). The parameters of the XGBoost model are specified in Table 2.
XGBoost is a type of tree algorithm; hence, it supports the feature importance
method, a technique for analyzing the degree of each data feature’s effect on the
exact classification of algorithms. Feature importance determines the variable with
the most significant influence on the prediction by permuting variables. This is a
powerful method for measuring the feature influence; however, the importance may
vary due to the degree of permutation and error-based estimation limitations. In
addition, feature importance neglects the dependence between features (Kim and

Park, 2023).
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Table 4.2 Parameters of implemented XGBoost model

Parameter Value
booster gbtree
max depth 9
gamma 0
objective binary: logistic

4.2.4 Shapley additive explanations
SHAP, first introduced by Lundberg et al. (2018), uses the Shapley value (Shapley,
1953) to numerically express the contribution of each feature to predict the overall
results. The formula for the Shapley value is given by Equation 4.5.
S|t (n = IS| = 1)!

¢:i(v) = Z . (v(SU{ih) —v(S))  Equation 4.5
SEN\{i} '

where

¢, isthe Shapley value of the ith feature

n is the number of features

S is the subset of the entire set (N), excluding the ith feature

v(S) is the contribution of the subset S

The Shapley value is calculated for each time step. The average Shapley value

during the entire period is calculated in calculating the feature influence. Notably,
SHAP does not form a model by itself but decomposes the output of the existing
model into contributions of each feature (Figure 4.4). In this chapter, the XGBoost
classifier model was used as the target model for the feature influence analysis. The
Shapley value can be negative, meaning that the specific feature negatively affects

the prediction (Kim and Park, 2023).
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0 E[f(x)] E[f(x) | x] fx) E[f(x) | x1,x2]

— >
$o —— P
¢3
Figure 4.4 Decomposition of the result of model f by features (¢;) (Lundberg
etal., 2018)
4.3 Results

4.3.1 Analysis of measured window state by households

This section presents an overview of the measured window data and simple
visualizations of the correlation with environmental data. Figure 4.5 displays the
proportion of windows in the open or closed state for the 12 households. The
household with the highest open ratio (household #6) kept the window open for 93%
of the year, whereas the lowest (household #2) kept the window open for only 1%.
There is a significant variation in the proportion between households relative to the

perception of residents on indoor environment control and energy saving.
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Figure 4.5 Proportion of windows in open/closed state of the 12 households for

one year

Figure 4.6 illustrates the correlation between the probability of windows in the
open state and outdoor temperature. In most households, the probability varies
significantly depending on the outdoor temperature. The probability increases as the
outdoor temperature increases from —10 °C to 30 °C. However, at high temperatures
over 30 °C, the residents in several households tended to close their windows
(households #2, #4, #8, and #11). In addition, all households kept their windows

closed at low outdoor temperatures below —10 °C.
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Figure 4.6 Outdoor temperature versus probability of windows in the open state

of the 12 households for one year

Figure 4.7 depicts the correlation between the probability of windows in the open

state and indoor temperature. Compared to the outdoor temperature, the tendency

between households differs considerably. The probability monotonically increases

as the room temperature increases in four households (households #3, #5, #10, and

#11). Other households tend to decrease and then increase at a specific temperature.

For this reason, different from the outdoor temperature, the indoor temperature

directly and immediately affects the thermal comfort of the occupants and is changed
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by the opening and closing of windows. However, the probability varies significantly

depending on the indoor temperature, influencing the window state prediction.
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Figure 4.7 Indoor temperature versus probability of windows in the open state of
the 12 households for one year

In addition to thermal comfort, the occupants open or close windows to improve
indoor air quality. It has been reported that indoor CO2 and PM2.5 concentrations
significantly influence the window-opening/closing behavior compared to the
window's state (Anderson et al., 2013; Cali et al., 2016; Fabi et al., 2015). Figure 4.8

displays the correlation between the probability of occupant window-opening
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behavior and indoor CO- concentration. As shown, the occupants do not respond in
low concentrations, but it appears that the probability of taking action to open the
window increases above 1000 ppm. A threshold value of approximately 1000 ppm
is indicated, similar to the results of previous studies (Yao and Zhao, 2017; Li et al.,
2015; Persily, 2015). Similarly, for the indoor PM s concentration, a threshold value

of approximately 100 ug/m? is indicated (Figure 4.9).
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Figure 4.9 Indoor PM_ 5 concentration versus probability of window-opening

behavior of the 12 households for one year

Figure 4.10 illustrates the correlation between the probability of windows in the
open state and the time of day. The probability tends to increase during the daytime
in several households (households #1, #3, #4, #7, #9, and #11). However, no

particular tendency is observed in other households.
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Figure 4.10 Time of day versus probability of windows in the open state of the

12 households for one year

4.3.2 Implementing window state models

Table 4.3 presents the prediction accuracy of the window state models with the
logistic regression and XGBoost classifier implemented for each of the 12
households. The logistic regression models show an accuracy between 79.9% and
99.3%, whereas the XGBoost models have a relatively high accuracy of >98.6%.
The prediction accuracy is the lowest in household #7 for both models. This may be
due to the influence of unknown factors that have not been collected or considered

in the models. The analysis of the unknown factors will be covered in Section 4.4.
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Table 4.3 Prediction accuracy of window state models using logistic regression
and XGBoost (%)

Household # 1 2 3 4 5 6 7 8 9 10 11 12

Logistic

. 80.9 99.3 915 91.1 910 92.7 799 98.3 895 80.3 852 895
regression

XGBoost  99.4 100.0 99.4 995 99.7 99.8 98.6 100.0 99.7 99.4 99.1 994

Figure 4.11 visualizes the measured and predicted window states through two
models in a specific scenario. As evident from the figure, the XGBoost model, used
for prediction, captures the temporary window opening behavior of occupants to
some extent, whereas the logistic regression prediction model consistently predicts
closed states. XGBoost is a well-known model for high prediction accuracy, and it
demonstrates better performance in prediction accuracy compared to logistic

regression.

State of the window
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Time (day)

(a) Measured window state
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(b) Predicted window state with logistic regression

State of the window
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(c) Predicted window state with XGBoost classifier
Figure 4.11 Measured and predicted window state in a specific scenario
(household #1, January 1, 2022, to January 3, 2022)
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4.3.3 Feature influence quantification

Figure 4.12 depicts the influence of each feature on the prediction of the window
states of the 12 households by applying three different XAl methods to the
aforementioned models. Figures 4.12(a), (b), and (c) display the results of the logistic
regression, XGBoost with the feature importance method, and XGBoost with SHAP,
respectively. The blue color of the cell indicates that the larger the corresponding
feature value, the higher the probability of predicting the window in an open state.
Conversely, the red color indicates that the larger the corresponding feature value,
the higher the probability of predicting the window in a closed state. Notably, Figure
4.12(c) illustrates the mean Shapley value for the entire period. Different Shapley
values can be obtained for the prediction of each time step.

Based on the results, the outdoor temperature and CO; concentration exhibit the
largest positive and negative influences, respectively, in most households. The
higher the outdoor temperature, the greater the number of households maintaining
the window in the open state, and the higher the CO; concentration, the greater the
number of households maintaining the window in the closed state. The indoor
temperature also has a considerable positive or negative influence, depending on the
household. The time of day has a significant influence only on specific households
(Figures 4.12(b) and (c); households #4 and #6).

Comparing the three XAl methods, different results of the feature influence
analysis are shown. Feature influence analysis using the coefficients of the logistic
regression model makes it possible to quantify positive and negative influences
based on a simple formula. However, the accuracy of the model is lower than that of
the XGBoost model (Table 4.3), and a high intercorrelation between two or more
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independent features can lead to skewed or misleading results. The feature
importance method supported by XGBoost has a reasonable model accuracy and low
computational complexity. A significant limitation of the XGBoost feature
importance method is that it cannot distinguish whether the feature has a positive or
negative impact. SHAP compensates for the weaknesses of the previous two
methods. SHAP can distinguish between positive and negative impacts and quantify
the feature influence by considering the dependence between variables. In addition,
SHAP can be applied to complex models, such as deep learning algorithms, known
as unexplainable black-box models. However, the computational complexity of
SHARP is high, so the time required is a hundredfold compared to that of the other
two methods. Overall, SHAP is the most effective XAl technique for analyzing
feature influence on predicting the window state, and it is recommended for

quantifying occupant individual preferences (Kim and Park, 2023).
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(c) XGBoost and SHAP
Figure 4.12 Quantified feature influence on window state prediction in the 12

households using SHAP (blue indicates a positive effect for windows in the open

state)

4.4 Discussion

In this section, the author presents solutions or directions to address the three
issues mentioned in Section 4.1, based on the results of the feature influence analysis
of occupant behavior through the XAl methods.

First, there is significant spatial diversity of WAB among households. Specifically,
the occupant's personal preferences vary from household to household. In Figure
4.12(c), each feature has either a positive or negative influence depending on the
household, and this characteristic is prominent in the case of indoor temperature. In
other words, the WAB, according to environmental/non-environmental variables,

cannot be predicted deterministically, but it is important to quantify these
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probabilistic characteristic values, such as feature influence, with probabilistic
specifications. In addition, it is difficult to describe the behavior of all occupants
using one universal model. It is better to customize individual households.

Second, the occupant's preferences for WAB cannot be defined using only a single
environmental parameter. WAB is a response to the interaction of environmental,
non-environmental, and unknown factors. Furthermore, occupants behave
differently, even in practically the same environment. Figure 4.13 shows the
temporary feature influences when the window's state changes for 10 min. In this
case, the occupants kept the window open for 30 h and then closed it. Therefore, the
model prediction results can be interpreted as the positive effect of the reduced
relatively low outdoor temperature, thus adjusting the window in the closed state.
However, it is worth noting that the results of the feature influence analysis could be
different from the actual intentions of the occupants. Table 4.3 indicates that the
measured variables are practically the same. It is assumed that there are unknown or
random factors not reflected in this study, such as psychological and social factors,

which work in combination with other physical factors (Kim and Park, 2023).
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(b) 2021-08-06 09:30 (10 min after)
Figure 4.13 Quantified temporary feature influence on window state prediction
in household #7 using SHAP
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Table 4.4 Variables in the situation presented in Figure 4.13

Time 2021-08-06 09:20 2021-08-06 09:30
Window state Open Closed
Predicted window state Open Closed
Occupant presence Present Present
Outdoor temperature (°C) 29.7 29.9
Indoor temperature (°C) 30.4 30.4
Indoor illuminance (Ix) 13 6
PM_ s concentration (ug/m3) 10 8
CO; concentration (ppm) 513 511
Indoor humidity (% RH) 68 68
Outdoor humidity (% RH) 69 68
Air conditioner state Off Off

Finally, similar to logistic regression models, the current complex black-box
models can also be described by applying the XAl techniques regarding feature
influence. The approach presented in this chapter increases the computational
complexity, but it can provide meaningful information for decision-making.
Furthermore, the possibility of quantifying the diversity of occupant behavior by
investigating individual preferences can be verified.

For future occupant behavior research, it should be recognized that there are

unknown factors, and sufficient consideration should be given to such factors in the
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modeling process. Additionally, owing to the limitation of data collection, the
average occupant was modeled on a household basis in this thesis. If it can be
modeled based on each individual, the individual indoor environmental perception

and its diversity can be analyzed.

4.5 Summary

This chapter implemented WAB models and quantified the individual preferences
of households by analyzing the feature influence. Environmental data (temperature,
humidity, CO- concentration, PM. s concentration, illuminance, and time of day) and
occupant data (occupant presence and window state) from 12 households were
collected for one year. A logistic regression model and XGBoost classifier model
were presented for window state prediction, and logistic regression, feature
importance, and SHAP were used to examine the feature influence of WAB.

As a result of the preliminary analysis, the occupants adjusted the state of the
window with different responses for each variable. Notably, the occupants did not
react sensitively to low CO; concentrations, but a high CO, concentration of over
1000 ppm could trigger window-opening behavior. A similar result was observed for
the PM,s concentration, with a threshold value of 100 ug/mS3.

Window state prediction models were implemented using logistic regression and
the XGBoost classifier. Logistic regression models exhibit an accuracy between 79.9%
and 99.3%, whereas the XGBoost models have a relatively high accuracy 0of>98.6%.
Three XAl methods, namely, logistic regression, feature importance, and SHAP,

were applied to the two aforementioned prediction models to examine the effect of

69



each variable on the prediction outcome. As a result, the outdoor temperature and
CO-, concentration were found to have the largest positive and negative influences,
respectively, in most households. The indoor temperature has a significant influence
as well, either positive or negative, depending on the household. Each XAl method
has advantages and disadvantages, but SHAP is recommended to compensate for the
disadvantages of the other two methods.

Regarding feature influence analysis, the following findings can provide insights
into the issues in the current WAB research. First, different people have different
personal preferences for using windows. Applying customized WAB models rather
than a universal one is better. Second, the personal preferences of occupants on WAB
cannot be defined using only a single environmental variable. WAB is a response to
the interaction of environmental, non-environmental, and unknown factors. Finally,
the current complex black-box models can also be described by applying XAl
techniques regarding feature influence.

In summary, this chapter introduced a novel approach that quantifies and proves

the spatial diversity of WAB.
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Chapter 5. Multinomial occupant behavior model

5.1 Introduction

As mentioned in Section 1.2, occupant diversity encompasses three types:
temporal, spatial, and behavioral. Previous studies have demonstrated temporal
diversity (Ahn and Park, 2016; Ahn et al., 2017; Ahn and Park, 2019; Kim and Park,
2022). Similarly, spatial diversity has been explicitly acknowledged in the literature
(Wang et al., 2022; O’Brian et al., 2017; Happle et al., 2020; D’Oca and Hong, 2014;
Haldi et al., 2017; Liu et al., 2022; Yun et al., 2009; Markovic et al., 2018).

However, a limited number of studies modeled multiple behaviors (Dong et al.,
2022). Verifying behavioral diversity is challenging due to privacy concerns and
other reasons. It is crucial to validate whether reproducibility can be achieved when
modeling different occupant behaviors based on the same environmental data.

Therefore, the objectives of this chapter are as follows:

Implement a multinomial occupant behavior (OB) model using a deep-
learning algorithm.

Validate the reproducibility of the model when different behaviors are
modeled using the same environmental data and algorithm.

Analyze mutual information to quantify the degree of dependence
between different behaviors with the results obtained from the
implemented OB model.

By pursuing these objectives, this chapter aims to contribute to understanding
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behavioral diversity and investigate the potential for reproducibility in modeling
diverse occupant behaviors. Furthermore, the analysis of mutual information
provides insights into the intercorrelationships among behavior types and their

impact on the performance of the OB model.

5.2 Modeling multinomial OB using LSTM

This section introduces the multinomial OB modeling method and analysis
techniques. For sequence data-based multi-output label modeling, LSTM was
utilized. Individual LSTM models were constructed for each household. Mutual
information was employed to investigate the degree of dependence among the
predicted behavior types.

In this chapter, six households in three residential apartment buildings in Seoul,
South Korea, were selected (Figure 5.1). Occupant and environmental data measured
for one year (August 3, 2021, to August 2, 2022) were used (Table 5.1).

The implemented model predicts occupants’ behavior for the next one minute
based on the environmental data input with a 60-minute timestep sequence. The data
is sliced using the moving window technique (Figure 5.2). The sliced dataset is

randomly split into training and testing data using a 7:3 ratio.
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Figure 5.1 The six households selected

Table 5.1 Input and output data

Sampling  Sequence Number

Data type Label time length of datasets

Outdoor temperature
Indoor temperature
Outdoor humidity
Indoor humidity
Input Indoor illuminance 1 min 60 min
Indoor CO, concentration
Indoor PM, < concentration
Time of day
Month

Presence
Window state
Output Light switch 1 min 1 min
AC switch
Boiler switch
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Dataset 1

Input layer
Environmental data

60 min sequence |

Output layer
Occupant data

Dataset 2

Input layer B
Environmental data

_________________________________________ |
60 min sequence |

Output layer
Occupant data

Dataset n

Environmental data

60 min sequence |
Output layer
Occupant data

Figure 5.2 Dataset preparation for multinomial OB modeling

5.2.2 LSTM

LSTM stands for Long Short-Term Memory [Hochreiter, 1997], a recurrent neural
network (RNN) type used in deep learning. LSTM is designed to handle the
vanishing gradient problem that can occur in traditional RNNs when trying to learn
long-term dependencies.

LSTM uses a memory cell and three gates (input gate, forget gate, and output gate)

to control the flow of information within the network (Figure 5.3). The memory cell
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can store information over long periods, and the gates regulate the information flow
into and out of the memory cell. This allows the network to selectively remember or
forget information based on its relevance to the task and hand.

Figure 5.4 shows the whole structure of the LSTM model. The model receives
nine input labels, then processed through two LSTM layers. The output values for
the five occupant behaviors are then extracted through the dense layer. To avoid
overfitting, a dropout layer is added after each LSTM layer. This helps to reduce the
likelihood of the model becoming too closely fitted to the training data, which can
lead to poor performance on new data.

During the model training process, the binary cross-entropy loss function was
utilized. The loss function is commonly used in binary classification tasks in machine
learning. The cross-entropy between two probability distributions p and g is

defined as:

H(P,Q) = —Ep[logg(x)] = — Z p(x)log q(x) Equation 5.1

XEX

where p(x) is the true probability distribution and q(x) is the predicted
probability distribution over a set of possible outcomes. It measures the dissimilarity
between the predicted probability distribution and the true binary output. This is
repeated for each example in the training dataset, and the average loss is then used

to update the model parameters during training.
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5.2.3 Mutual information

The mutual information (MI) of two variables represents the mutual dependence
between the two variables (Figure 5.5). It is used to identify the amount of
information one variable provides about the other variable. Claude Shannon first

introduced the quantity [C.E. Shannon, 1948], expressed as Equation 5.2.

(x,y)
I(X;Y) = ;;P(X r)(x, y)log (P;)((Y;Py(y)) Equation 5.2

Where (X,Y) is a pair of random variables, P(yy) is the joint probability mass
function of X and Y, and Py and Py are the marginal probability mass functions of
X and Y, respectively. Notably, I(X;Y) is non-negative and equal to zero precisely
when the joint distribution coincides with the product of the marginal, i.e., when X

and Y are independent.

Entropy H(X) Entropy H(Y)

Mutual

Conditional Entropy Information

H(X]Y)

Conditional Entropy
H(Y|X)

I(X,Y)

Figure 5.5 Mutual information and conditional entropy
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5.3 Results

5.3.1 Analysis of measured occupant behavior by households

This section presents an overview of the measured occupant data. Figure 5.6
displays the proportion of the state of each behavior type for the six households. The
household occupancy rates range from 0.75 to 0.91, showing relatively similar levels
to other behavior types. However, there is a significant variation in the proportions
of window and boiler states among the households. Regarding AC usage, it is
observed that the proportion of the “on” state is relatively low compared to other
behavior types. This is due to the temporary operation of the AC during the cooling
season.

The household proportions' differences reflect their varying preferences and
perceptions regarding indoor environment control and energy saving. For example,
household #1 appears to prefer active indoor thermal environment control (AC and
boiler) rather than relying on natural ventilation for temperature regulation.
Conversely, in the case of household #4, there is a preference for utilizing natural

ventilation by keeping the windows open for indoor environment control.
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Figure 5.6 Proportion of measured state of each occupant behavior among six
households (Presence: Presence, Window state: Open, Light switch: On, AC

switch: On, Boiler switch: On)

5.3.2 Implementing multinomial OB model

The implemented multinomial OB model based on environmental variables
demonstrates a high level of predictability, achieving label accuracies of 95% or
higher (Table 5.3). However, the accuracy of predicting occupant presence and light
switch state is relatively lower than other behaviors. The total accuracy, which
represents the proportion of correctly predicted labels for all behaviors, ranges from
88.2% (household #2) to 97.7% (household #3) and varies among households. There
is a noticeable trend of decreased total accuracy in households where specific labels
exhibit significantly lower accuracy.

Notably, the model's accuracy varies depending on the specific behavior type and

the households. Despite being based on the same environmental data, different

" A2 of &



behavior types and individual household characteristics contribute to the variation in

accuracy.

Table 5.2 Prediction accuracies of implemented multinomial occupant behavior
model using LSTM

Label accuracy

Household # Presence Window Light AC Bo.iler acfl(:?;lcy Loss
state switch switch switch
1 0.966 0.998 0.966 0.997 0.990 0.919 0.041
2 0.956 0.988 0.948 0.991 0.992 0.882 0.063
3 0.995 0.997 0.988 0.998 0.999 0.977 0.013
4 0.982 0.997 0.983 1.000 0.990 0.954 0.029
5 0.981 0.969 0.963 0.998 0.992 0911 0.055
6 0.988 0.996 0.986 0.996 0.999 0.965 0.020

5.3.3 Mutual information analysis

Figure 5.7 displays the calculated mutual information between the multinomial
OB model output labels for each household. There is a clear variation in the tendency
of mutual information among the households. In general, occupant presence shows
a relatively high level of dependence on other behaviors across all households. Two
households (households #4 and #5) exhibit the highest dependence on occupant
presence and window state. Another two households (households #1 and #3) show
the highest dependence between window state and boiler switch. The remaining two
households (households #2 and #6) demonstrate the highest dependence between
occupant presence and light switch.

Overall, a mathematical correlation exists between the total accuracy (Table 5.3)

and the mutual information. For instance, household #2 has relatively lower mutual
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information than other households, which is interpreted as lower total accuracy than

label accuracy. Further detailed interpretation of the results will be discussed in

Section 5.4.
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Figure 5.7 Degree of dependence between different behavior types in six

households

5.4 Discussion

In this section, the author presents insights based on the results obtained from the

implemented prediction model and mutual information analysis discussed in Section

8 2 1 A



5.3. These findings address the potential challenges that may arise in multinomial
OB modeling. By leveraging the prediction model’s outcomes and mutual
information metrics, the author suggests a guidance for enhancing the understanding
and interpretation of occupant behavior in real-world settings.
The accuracy of the prediction model varies across different behavior
types, with occupant presence and light switch demonstrating relatively
lower label accuracy, primarily due to the heavy reliance on thermal
environmental variables for model training. In the case of the light switch,
excluding the indoor illuminance variable, no other significant predictors
are available for reliable prediction. To improve the model performance,
it is suggested to incorporate additional factors that influence each
specific behavior type as input data. Moreover, the behavior diversity is
evident, as observed from the modeling conducted using the same dataset.
Interestingly, even within the same model framework, noticeable
performance discrepancies arise. This suggests behavioral diversity can
hinder reproducibility, as it introduces variations in the model’s
predictive performance.
The proportion of each behavior type, label accuracies, and degree of
dependence among behaviors vary across households, which can be
attributed to the differences in energy efficacy among households. The
spatial diversity within households contributes to the model's prediction
performance variations. Unique characteristics of each household likely
impact the modeling results, highlighting the importance of considering

household-specific factors when developing predictive models for
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occupant behavior. By accounting for these spatial diversities and
tailoring the model to individual households, it is possible to improve the
prediction performance and capture the nuances of occupant behavior
more accurately.

As mentioned in Section 5.3, the results of mutual information analysis
indicate that occupant presence exhibits a high degree of dependence on
other behavior types. Therefore, when occupant presence is measurable,
incorporating it as an input variable in the model can potentially improve
the model’s performance. Additionally, considering the causal
relationships among variables, models such as Bayesian Neural
Networks (BNN) that can be structured with multiple layers could be a
promising avenue for improvement. By leveraging such models, the
accuracy and interpretability of the predictions can be enhanced, thereby

addressing the limitations of the current modeling approach.

5.5 Summary

This chapter implemented a multinomial OB model and quantified the degree of

dependences among behavior types of households by analyzing the mutual

information. Environmental data (temperature, humidity, CO, concentration, PMzs

concentration, illuminance, time of day, and month) and occupant data (occupant

presence, window state, light switch, AC switch, boiler switch) from six households

were collected for one year. An LSTM model was presented for multinomial OB

prediction, and mutual information was utilized to assess the degree of dependence

between different behavior types.
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Preliminary observation revealed significant variations in behavior types among
households. While the occupancy rate showed relatively minor differences, the
proportion of the window state exhibited a wide range of values from 0.01 to 0.93.
These differences in proportions reflect varying preferences and perceptions
regarding indoor environment control and energy conservation.

Moreover, the LSTM model demonstrated a high prediction accuracy of over 94.8%
for each label. The accuracy varied depending on the label, indicating the presence
of behavioral diversity. The total accuracy differed across households, ranging from
88.2% to 97.7%, showing a notable decrease in households where specific labels
exhibited lower accuracy.

The mutual information analysis revealed that occupant presence had a high
degree of dependence on other variables, suggesting that measuring or predicting
occupant presence may be essential for modeling other behaviors. Additionally, the
degree of dependence between behavior types differed among households,
suggesting various perspectives and user efficacy for each behavior.

This chapter conducted multinomial OB modeling from the perspective of
occupant diversity, providing evidence and quantification of behavior diversity.
While there is a limitation in the number of households studied, the methodology
and findings of this research can be applied to other OB modeling studies,

contributing to the field.
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Chapter 6. Conclusion

In conclusion, this thesis conducted three studies to analyze occupant diversity:
(1) Predictability quantification in occupant presence, (2) Feature influence
quantification in window adjustment behavior using XAl, and (3) Multinomial
occupant behavior model. The experiments were conducted in three residential
buildings in Seoul, South Korea, with 31 households selected for data collection. The
collected data included various aspects of occupant behavior such as occupant
presence, window state, light switch, AC switch, and Boiler switch. Environmental
data deemed influential on occupant behavior, including indoor and outdoor
temperature, indoor and outdoor humidity, indoor CO2 concentration, indoor PM2.5
concentration, and indoor illuminance, were also collected.

Firstly, the study revealed that occupant presence in specific households followed
a random walk pattern for short measurement periods, indicating the presence of
significant temporal diversity in occupant behavior. The predictability of occupant
presence varied significantly between households, and the degree of variation is
shown in Figure 3.7. It is important to note that the predictability of occupant
presence in residential buildings cannot be generalized as a single state and varies
widely based on occupant features such as the number of family members and
occupancy patterns. Therefore, to implement a reliable occupant behavior model, it
IS necessary to assess its applicability to each occupant and building/space in terms

of spatial diversity.
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Second, the analysis of feature influence provided insights into the current
research on window adjustment behavior (WAB). It was observed that individuals
have different personal preferences for using windows, suggesting the need for
customized models rather than a universal approach. Furthermore, the personal
preferences of occupants regarding WAB cannot be solely defined based on a single
environmental variable. A combination of environmental, non-environmental, and
unknown factors influences WAB. Applying XAl technigues to understand feature
influence can help describe complex black-box models.

Lastly, significant variations in behavior types were observed among households.
While the occupancy rate showed relatively minor differences, the proportion of
window states exhibited a wide range of values, indicating varying preferences and
perceptions regarding indoor environment control and energy conservation. The
mutual information analysis highlighted a high degree of dependence between
occupant presence and other variables, suggesting the importance of measuring or
predicting occupant presence when modeling other behaviors. Moreover, the degree
of dependence between behavior types varied among households, indicating diverse
perspectives and user efficacy for each behavior.

Overall, this thesis has thoroughly analyzed the causes behind the performance
gap in building simulations resulting from occupant behavior modeling. The insights
gained from this research highlight the importance of considering temporal, spatial,
and behavioral diversity in occupant modeling to enhance the accuracy and
effectiveness of building performance simulations.

Future research in this field can build upon these findings and focus on developing

occupant models that are more reliable, reproducible, and replicable by incorporating
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occupant diversity. The author anticipates that the outcomes of this thesis will
contribute significantly to understanding occupant behavior and bridging the gap

between actual and simulated building energy use.
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