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Abstract

Energy-Based Probabilistic Models for
Epistemic Uncertainty Quantification

Sangwoong Yoon

Department of Mechanical Engineering

Seoul National University

Probability is a principled measure of uncertainty. Particularly, the probability

of input data p(x) in machine learning serves as a useful measure of epistemic

uncertainty. The accurate estimation of the data probability can benefit multi-

ple epistemic uncertainty quantification applications, such as detecting anoma-

lous samples, avoiding over-confident predictions, and obtaining informative

unlabeled samples. However, recent deep learning approaches for estimating

the input data probability, often referred to as deep generative modeling, have

shown limited uncertainty quantification capabilities, despite their impressive

performance in synthesizing realistic samples. The failure of deep generative

modeling has spurred skepticism on whether the modeling the data probability

is a valid approach for capturing uncertainties.

In this thesis, we demonstrate that modeling the probability of data is es-

sential for uncertainty quantification. We focus on autoencoders and Gaussian

processes, popular algorithms for anomaly detection and decision-making under

uncertainty, and show that incorporating generative modeling improves their

performance. Both algorithms are non-generative and do not include input data

probability in their formulation, leading to critical failure modes due to not
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correctly reflecting the data probability distribution. We address these failure

modes by introducing novel probabilistic formulations with generative model-

ing for autoencoders and Gaussian processes. The proposed methods are based

on the energy-based model framework, which defines a probability distribution

using an unnormalized scalar function called energy, where we introduce novel

designs of energy functions built from autoencoders and Gaussian processes.

While introducing novel interpretations of autoencoders and Gaussian pro-

cesses as generative models, we introduce additional contributions regarding

energy-based modeling. First, we present a novel training algorithm for energy-

based generative models that leverages the low-dimensional structure of data.

The proposed algorithm can effectively suppress spuriously high likelihood in

generative models and the resulting energy-based models show strong anomaly

detection performance. Second, we also investigate the connection between ad-

versarial attack and energy-based model formulation. We propose a generative

adversarial attack algorithm for out-of-distribution detectors where the attack

is formulated as sampling from an energy-based distribution.

Quantifying epistemic uncertainty is essential for robots and artificial in-

telligence agents to interact with the world safely and effectively. This paper

demonstrated that the problem of quantifying epistemic uncertainty can be

solved through probabilistic models. The energy-based probabilistic model tech-

niques and algorithms discussed in this paper are expected to be widely applied

to various applications in robotics and artificial intelligence systems.

Keywords: Generative Models, Energy-Based Models, Uncertainty Quantifi-

cation, Anomaly Detection, Density Estimation, Epistemic Uncertainty

Student Number: 2020-38989
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Chapter 1

Introduction

We can even say, strictly speaking, that almost

all our knowledge is only probable.

—Pierre-Simon Laplace,

Théorie analytique des probabilités (1812)

Generative modeling, a task of learning the underlying probability distri-

bution from observed data, is a fundamental problem in statistics and machine

learning. The most popular and successful application of generative modeling

has been the synthesis task, where the goal is to draw novel examples from the

learned distribution. In recent years, substantial progress has been made in the

synthesis application through the incorporation of large-scale deep neural net-

work models and vast amounts of data. These deep generative models exhibit

remarkable performance in generating realistic artificial sensory signals, such as

images and texts.

Besides the synthesis task, another important application of generative mod-

els is uncertainty quantification. In essence, probability measures the level of

surprise after observing a data point. Thus, an accurately estimated probability

can offer valuable information about how eccentric or informative a given obser-

vation is. Leveraging such information is critical in modern real-world machine

learning, where reliability and adpatibility of a machine learning system is of

1



high value.

Unfortunately, modern deep generative models struggle to perform uncer-

tainty quantification effectively, despite their astonishing synthesis quality. They

either are not capable of evaluating the probability of a datum, such as GAN

or diffusion models, or assigns spuriously high likelihood to outliers, for in-

stance VAE, normalizing flows, and autoregressive models. Some might ques-

tion the effectiveness of generative approach for uncertainty quantification and

even argued that the probability density is no longer an effective measure of

uncertainty.

In this dissertation, we aim to demonstrate that generative modeling is still

an essential component for effective uncertainty quantification. Our approach

consists of three steps.

1. We find a well-established uncertainty quantification algorithm that does

not incorporate generative modeling in its formulation.

2. We look for the systematic failure cases in uncertainty quantification task

of the algorithm.

3. We introduce a novel generative formulation for the algorithm that can

resolve the failure cases.

Using this strategy, we analyze autoencoders, a popular anomaly detection algo-

rithm, and Gaussian processes, an algorithm that is widely used in applications

where uncertainty-aware decisions are made. Both algorithms are not genera-

tive models and their formulations does not include any procedure of estimating

the probability of data, at least explicitly.

Interestingly, we were able to find critical failure modes in both autoencoders

and Gaussian processes. An autoencoder-based anomaly detection algorithm is
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supposed to produce a large reconstruction error for outliers. However, we find

that there is outlier reconstruction phenomenon, where autoencoders giving an

unexpectedly small reconstruction error for an obvious outliers. In Gaussian

processes, the predictive variance serves as the measure of uncertainty that is

used for a number of downstream tasks, such as active learning and Bayesian

optimization. We find that the predictive variance is often over-smoothed, giving

uninformative uncertainty quantification useless in downstream applications.

The oversmoothing is caused by the hyperparameters only optimized for the

conditional likelihood of labels p(y|x) and ignoring the likelihood of input data

p(x).

To remedy these failures, we propose improvements of these algorithms

through a novel view of them as generative models. We employ the energy-

based model framework where a probability distribution is defined from an

unnormalized scalar function called energy. The energy-based model allows a

great flexibility in the design of a probabilistic model through the choice of the

energy function, and we leverage the flexibility to design novel energy functions

for autoencoders and Gaussian processes. For autoencoders, we propose Nor-

malized Autoencoders (NAE), an energy-based model with the reconstruction

error as the energy function. Outlier reconstruction is significantly For Gaus-

sian processes, we propose Generative Gaussian processes, also an energy-based

model with the predictive variance as the energy. The resulting algorithms, nor-

malized autoencoders and generative Gaussian processes, effectively resolves the

problems of outlier reconstruction and over-smoothed variance.

This thesis makes additional contributions to anomaly detection by ex-

tending the probabilistic view on autoencoder-based anomaly detection. First,

we propose a novel training algorithm for energy-based models that lever-

ages the low-dimensional structure of data. The proposed algorithm, Manifold
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projection-diffusion Recovery (MPDR), first perturbs a training datum along

a pre-defined manifold and then trains the energy function through the pro-

cess of recovering the original data from the perturbed data point. We show

that the energy functions trained by MPDR is particularly effective at anomaly

detection and MPDR is highly compatible with NAE. Second, we investigate

the problem of measuring the robustness of an anomaly detection algorithm.

We propose a novel type of adversarial attack that is formulated as sampling

from an energy-based model defined on a manifold of plausible samples. Adver-

sarial Generation on Manifold (AGOM) method is able to discover interesting

and previously unexplored failure modes of state-of-the-art anomaly detection

algorithms.
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Chapter 2

Generative Modeling and Epistemic
Uncertainty Quantification

Humans and animals can be surprised, but you can not surprise a computer,

yet. In fact, the ability to be surprised reflects a notable level of intelligence.

A surprisal is a result of inference judging whether a sensory signal is within

expectation, and this inference requires an internal statistical model built from

the past experience. However, modern machine learning systems have limited

ability to construct an accurate model of the sensory inputs, unable to recognize

what is surprising.

Building a statistical model of the world is the ultimate goal of generative

modeling, which construct a probabilistic distribution model P (X) from a

finite set of empirical observations {Xi}Ni=1. With an accurate generative model,

we can measure how expected a signal x is by computing the probability density

p(x) or log-density log p(x), where a smaller value indicates a larger degree of

surprisal.

Such a surprising signal is said to have high epistemic uncertainty, which

means there is limited previous experience regarding that signal. This uncer-

tainty is originated from the lack of experience, and therefore is different from

aleatoric uncertainty, caused by the inherent randomness of the data gen-

eration process. There can be multiple ways to quantify epistemic uncertainty.
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Figure 2.1 Illustrations of aleatoric uncertainty and epistemic uncertainty.

However, since the probability estimated by a generative model naturally mea-

sures how surprising a signal is, the probability is a natural measure of epistemic

uncertainty.

In this chapter, we discuss the tight relationship between epistemic uncer-

tainty and probability in detail.

2.1 Uncertainty Quantification in Machine Learning

The term uncertainty quantification covers a wide range of scientific method-

ologies for characterizing the uncertainties in observations or computations.

Uncertainty quantification plays an important role in diverse fields of science

and engineering, particularly when the risk of being wrong needs to be managed.

Prediction Problem Here, we focus on a specific setting which is relevant

to typical machine learning scenarios. Consider a prediction problem, where
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we want to predict outcome random variable Y from our observation on input

random variable X using a predictor Y = fθ(X).

X
fθ−→ Y. (2.1)

The predictor fθ has a parameter θ that has to be determined from previous

observations D = {(Xi, Yi)}Ni=1 through the training phase. During the testing

phase, we are asked to provide the prediction for a newly observed input.

Uncertainty of Y In machine learning, what we are typically interested in

is the uncertainty of our prediction on Y given a new input X. The uncertainty

of the prediction can be naturally quantified as the expected prediction error.

The larger the uncertainty is, the larger the prediction error we expect.

The uncertainty of the prediction, i.e., the potential prediction error, can

be originated from two sources, which give us two categories of uncertainties.

The first source is the inherent randomness involved in the process X → Y . For

example, an outcome of a coin toss or a die roll is inherently random. This type

of uncertainty is called aleatoric uncertainty. Even in a deterministic world,

a process can be observed to be stochastic when there are unobserved variables

affecting Y . The aleatoric uncertainty can be represented as P (Y |X), where

this probability indicates the true probability in the data generating process.

The second origin of uncertainty is the fact that we have only a finite number

of data. This uncertainty is called epistemic uncertainty. With an infinite

number of data, the predictor fθ can converge to the optimal predictor which

achieves the smallest possible error caused by aleatoric uncertainty. As the

training dataset size becomes smaller than the infinity, we expect larger errors

in prediction.

If we view the uncertainty as expected error, it becomes immediately clear

that the accurate estimation of the uncertainty is very difficult. Uncertainty
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Figure 2.2 An illustration of the discrete input space regression example.

quantification is equivalent to estimation of test error, which is only possi-

ble under strong assumptions. Therefore, for practical epistemic uncertainty

quantification, we need a proxy measure that approximately captures the un-

certainty.

2.2 Probability is Relative Epistemic Uncertainty

In this section, we show that the input data probability P (X) is a good proxy

for quantifying epistemic uncertainty. In fact, what P (X) reflects is relative

epistemic uncertainty. Given two points X1 and X2, We can tell X1 is higher in

epistemic uncertainty than X2 if P (X1) is lower than P (X2). It is our intuition

that tells us the prediction will be relatively more accurate near our training

data and it is more likely to be wrong on X that is far from our training data.

In the following, we show an example where the relationship between relative

epistemic uncertainty and the input data probability can be derived exactly.

Example: Discrete Input Space Consider a regression problem where the

input variable has a discrete set of possible values, for example, X ∈ {1, 2, 3}.
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Each X is associated with bounded Y ∈ [0, 1]. We are interested in building a

predictor of Y and quantifying its epistemic uncertainty. This setting is illus-

trated in Fig. 2.2.

In this setting, empirical mean is a natural choice for the predictor, as it

provides an unbiased estimate. Suppose we have nk number of observations For

X = k. The empirical mean is then given as µk = 1
nk

∑nk
i=1 Y

(i)
k , where Y

(i)
k is

Y value of i-th observation.

The epistemic uncertainty of estimation can be represented by a confidence

interval, and Hoeffding’s inequality is a popular method for computing a con-

fidence interval of mean estimation. Hoeffding’s inequality gives the interval

around the estimated mean where the true mean is located with the high prob-

ability. If we write the width of a confidence interval for prediction at X = k

as tk, Hoeffding’s inequality is written as follows.

P

(∣∣∣∣∣ 1nk
nk∑
i=1

Y
(i)
k − µk

∣∣∣∣∣ > tk
2

)
≤ 2 exp(−nkt2k/2). (2.2)

where µk is the true mean. Let us denote the right-hand side of the inequality

as δ. Then, we can express the relationship between the number of observation

nk and the confidence interval width tk.

2 exp(−nkt2k/2) = δ, (2.3)

nkt
2
k = 2 log(2/δ), (2.4)

tk =

√
2 log(2/δ)

nk
=

√
2 log(2/δ)

N · P (X = k)
, (2.5)

where P (X = k) = nk/N is the marginal probability estimate for X = k

and N =
∑
nk is the total number of observations. We can see that the rela-

tionship between the confidence interval width and the input data probability:

tk ∝ N−1/2P (X = k)−1/2. From this relationship, we can see that P (X = k)
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determines relative epistemic uncertainty. Altering P (X = k) while N fixed

changes the relative sizes of confidence intervals. Meanwhile, increasing N while

fixing P (X = k) values for all k will narrow confidence intervals for all X’s.
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Chapter 3

Normalized Autoencoders: A
Probabilistic View on
Autoencoder-Based Anomaly
Detection

3.1 Introduction

An autoencoder [3] is a neural network trained to reconstruct samples from

a training data distribution. Since in principle the quality of reconstruction is

expected to be poor for inputs that deviate significantly from the training data,

autoencoders are widely used in outlier detection [4], in which an input with

a large reconstruction error is classified as out-of-distribution (OOD). Autoen-

coders for outlier detection have been applied in domains ranging from video

surveillance [5] to medical diagnosis [6].

However, autoencoders have been known to reconstruct outliers consistently

across a wide range of experimental settings [7, 8, 9, 10]. Figure 3.1 shows

further examples of some outliers reconstructed by an autoencoder trained with

MNIST data; the autoencoder is able to reconstruct a wide range of OOD

inputs, including constant black pixels, Omniglot characters, and fragments of

MNIST digits. The early works on regularized autoencoders [11, 12, 13] focus

for the most part on preventing the autoencoder from turning into an identity

mapping that reconstructs every input. Nonetheless, outlier reconstruction can
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Figure 3.1 Examples of reconstructed outliers. The last two rows show the recon-

structions from a conventional autoencoder (AE) and NAE. Both autoencoders

are trained on MNIST, and other inputs are outliers. The architecture of the

two autoencoders is identical. Successful detection of an outlier is highlighted

with blue solid rectangles, while detection failures due to the reconstruction of

outliers are denoted with an orange dotted rectangle. Note that AE is not the

identity mapping, as it fails to reconstruct the shirt.
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still occur even when the autoencoder is not the identity. Not surprisingly,

outlier reconstruction is a leading cause of autoencoder’s detection failure.

On the other hand, in a normalized probabilistic model, it is known that

maximum likelihood learning suppresses the assignment of probability mass

in OOD regions in order to keep the model normalized. Thus, the likelihood

is widely used as a predictor for outlier detection [14]. An autoencoder does

not have such a suppression mechanism that inhibits the reconstruction of an

OOD input, because an autoencoder moreover is also not a generative model

of the data. Therefore, the reconstruction error of an autoencoder usually lacks

a meaningful probabilistic interpretation.

This paper formulates an autoencoder as a normalized probabilistic model

to introduce a mechanism for preventing outlier reconstruction. In our for-

mulation, which we call the Normalized Autoencoder (NAE), the recon-

struction error is re-interpreted as an energy function, i.e., the unnormalized

negative log-density, and defines a probabilistic model from an autoencoder.

During maximum likelihood learning of the model, normalization constraint is

naturally enforced by increasing the reconstruction error of samples generated

from the model. When the model distribution deviates from the data distri-

bution, the generated samples can have low reconstruction error but are from

OOD regions. Since the reconstruction of the samples from OOD regions are

suppressed, NAE is significantly less prone to reconstruct outliers, as shown in

Figure 3.1.

Samples used in training of NAE are generated via Markov Chain Monte

Carlo (MCMC). As running MCMC until convergence for every training step

is computationally infeasible, approximate sampling strategies have to be em-

ployed. However, we observe that training with popular sampling strategies

such as Contrastive Divergence (CD; [15]) and Persistent CD (PCD; [16]) may
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often produce poor density estimates. For improved training, we propose on-

manifold initialization (OMI), a method of selecting a good initial state for

the MCMC chain in NAE. OMI draws an initial state in a high-density region

by leveraging the manifold structure learned by an autoencoder. Trained with

high-quality samples generated by OMI, NAE can accurately recover the data

density and thus become an effective outlier detector.

Intriguingly, although technically a normalized probabilistic model, the vari-

ational autoencoder (VAE; [17]) also reconstructs outliers and assigns a spuri-

ously high likelihood on OOD data [18] for reasons that are as-yet unclear.

Our main contributions can be summarized as follows:

• We propose NAE, a novel generative model constructed from an autoencoder;

• We propose OMI, a sampling strategy tailored for NAE;

• We empirically show that NAE is highly effective for outlier detection and

can perform other generative tasks.

3.2 Background

3.2.1 Autoencoders

Autoencoders are neural networks trained to reconstruct an input datum x ∈

X ⊂ RDx . For an input x, the quality of its reconstruction is measured in

reconstruction error lθ(x), where θ denotes parameters in an autoencoder. The

loss function of an autoencoder LAE for training is the expected reconstruction

error of training data. Gradient descent training is performed via computing

the gradient of L with respect to model parameters θ:

LAE = Ex∼p(x)[lθ(x)], (3.1)

∇θLAE = Ex∼p(x)[∇θlθ(x)], (3.2)
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where ∇θ is the gradient operator with respect to θ and p(x) denotes the data

density.

Architecture An autoencoder consists of two submodules, an encoder and

a decoder. An encoder fe(x) : RDx → RDz maps an input x to a corresponding

latent representation vector z ∈ Z ⊂ RDz , and a decoder fd(z) : RDz → RDx

maps a latent vector z back to the input space. Then, the reconstruction error

lθ(x) is given as:

lθ(x) = dist(x, fd(fe(x))), (3.3)

where dist(·, ·) is a distance-like function measuring the deviation between an

input x and a reconstruction fd(fe(x)). A typical choice is the squared L2

distance, i.e., dist(x1,x2) = ||x1 − x2||22. Other possible choices include L1

distance, dist(x1,x2) = |x1−x2|, and the structural similarity (SSIM; [19, 20]).

Note that the reconstruction error (Eq. (3.3)) is not a likelihood of a datum,

and therefore the minimization of the reconstruction error does not correspond

to the maximization of the likelihood. Without modification, an autoencoder

per se is not a probabilistic model.

Outlier Detection and Outlier Reconstruction A datum is an outlier

or called OOD if it lies in the ρ-sublevel set of a data density {x|p(x) ≤ ρ}

[21]. May ρ be set 0, an outlier is defined as an input from the outside of the

support.

In the autoencoder-based outlier detection [4], an input is classified as OOD

if its reconstruction error lθ(x) is greater than a threshold τ : lθ(x) > τ . The

outlier reconstruction indicates that there exists an input x∗ with p(x∗) ≤ ρ,

but lθ(x
∗) < τ .
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3.2.2 Energy-based Models

Unlike autoencoders, energy-based models (EBMs) are valid models for a nor-

malized probability distribution. The EBM represents a probability distribution

through the unnormalized negative log probability, also called the energy func-

tion Eθ(x). Here, θ denotes the model parameters.

For a continuous input x ∈ X ⊂ RDx , Eθ(x) defines the model density

function pθ(x) through Gibbs distribution:

pθ(x) =
1

Ωθ
exp(−Eθ(x)/T ), (3.4)

where T ∈ R+ is called the temperature and is often ignored by setting T = 1.

Ωθ is the normalization constant and is defined as:

Ωθ =

∫
X
exp(−Eθ(x)/T )dx <∞. (3.5)

The computation of Ωθ is usually difficult for high-dimensional x. However,

maximum likelihood learning can still be performed without the explicit eval-

uation of Ωθ. The gradient of negative log likelihood of data is given as follows

[22]:

Ex∼p(x)[−∇θ log pθ(x)]

=Ex∼p(x)[∇θEθ(x)]/T +∇θ log Ωθ (3.6)

=Ex∼p(x)[∇θEθ(x)]/T − Ex′∼pθ(x)[∇θEθ(x
′)]/T (3.7)

∇θ log Ωθ in Eq. (3.6) is evaluated from the energy gradients of samples x′

generated from the model in Eq. (3.7). The samples from pθ(x) are often called

”negative” samples.

In Eq. (3.7), the first term decreases the energy of the training data, or

“positive” samples, while the second term increases the energy of the generated
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samples, or “negative” samples. The training converges when pθ(x) becomes

identical to p(x), as the two gradient terms cancel out. In practice, the two

expectations in Eq. (3.7) are approximated with a mini-batch of samples during

each iteration.

Langevin Monte Carlo (LMC) The negative samples are generated us-

ing MCMC. LMC ([23, 24]) is a simple yet effective MCMC method used in

recent work on deep EBMs [25, 26, 27]. In LMC, a starting point x0 is drawn

from a noise distribution p0(x), typically a Gaussian or uniform distribution.

Starting from x0, a Markov chain evolves as follows:

xt+1 = xt + λx∇x log pθ(xt) + σxϵt, (3.8)

where ϵt ∼ N (0, I). λx and σx are the step size and the noise parameters, re-

spectively. A theoretically motivated choice is 2λx = σ2x, but the parameters are

often tweaked separately for better performance [25, 26, 27]. As ∇x log pθ(x) =

−∇xE(x)/T , tweaking the step size can be seen as adjusting the temperature

T .

To ensure the convergence of the chain, either Metropolis-Hastings rejection

[28] or annealing of the noise parameter to zero [29] may be employed, but often

omitted in practice.

We discuss specific strategies to evaluate the second term in Eq. (3.7) in

Section 3.4. For a comprehensive review on various strategies for training an

EBM, readers may refer to [30].

3.2.3 Outlier Reconstruction

The outlier reconstruction is a phenomenon that an autoencoder unexpectedly

succeeds in reconstructing an input even though it is located outside of the

training distribution. In this section, we provide illustrative examples that show
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Figure 3.2 AE and NAE trained on a bi-modal distribution. Here, NAE is

trained with its decoder fixed. The green lines denotes the decoder manifolds.

The dotted lines link inputs and their reconstructions.

that outlier reconstruction is a consequence from the inductive biases of an

autoencoder.

Multi-modal data When the training data distribution consists of multi-

ple clusters, the outliers from the region between the clusters are likely to be

reconstructed. Figure 3.2 depicts 2D synthetic data generated from a mixture

of two disconnected uniform distributions and their reconstruction from au-

toencoders with one-dimensional latent space. The outliers (red crosses) from

the middle of two clusters show reconstruction errors (the length of thin black

lines) smaller than some inliers (blue dots). [8] noted this type of outlier recon-

struction and mentioned that outliers “close to the mean” of data or “in the

convex hull” of data are likely to be reconstructed.

This phenomenon arises from the inductive bias of an autoencoder that its

encoder and decoder are smooth mappings. The extreme case of this inductive

bias can be found in linear principal component analysis (PCA). PCA, a linear

counterpart of an autoencoder [31], would reconstruct any outliers which reside

on the principal axis. Note that this phenomenon is consistent with the objective
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function of an autoencoder and PCA, as the objective does not penalize the

reconstruction of outliers.

Compositionality When there is a compositional structure in data, we

can still observe a reconstructed outlier even if it lies outside of the convex

hull of training data. The data are compositional if each datum can be broken

down into smaller reusable components; For example, MNIST can be consid-

ered highly compositional, since a digit image can be decomposed into smaller

sub-patterns, such as straight lines and curves. An outlier can be successfully

reconstructed when composed of a subset of components existing in the training

data.

HalfMNIST and ChimeraMNIST datasets are constructed to demonstrate

the effect of compositionality in outlier reconstruction. Although these images

are not in the convex hull of MNIST digits, they share components found

in MNIST. As shown in Figure 3.1, an autoencoder trained on MNIST have

no problem reconstructing them and achieves poor AUC scores in classifying

HalfMNIST and ChimeraMNIST from MNIST (See Table 3.3).

It seems that an autoencoder learns to reconstruct each part of an image

separately but is not able to judge whether the combination of the parts is

valid as a whole. This compositional way of processing facilitates generalization

of a model [32], but the generalization of reconstruction in OOD inputs is not

desirable for an autoencoder-based outlier detector.

Distributed representation We suspect the outlier reconstruction due to

compositional processing may be attributed to the distributed representation

[33] used in an autoencoder. To show the effect of the distributed representation,

we train autoencoders on MNIST with the digit 9 excluded (MNISTnot9) and

measure the reconstruction error of the digit 9 (MNIST9) under multiple values

of latent dimensionality Dz. Figure 3.3 shows the result. We observe the outlier
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Figure 3.3 Detecting hold-out digit 9 from the rest of MNIST. Reconstruction

errors and AUC scores are shown across multiple values of Dz. The error bars

denote 80-percentile around the means.

reconstruction of 9 possibly due to the compositional processing mentioned

above. However, the outlier reconstruction occurs only when Dz is large. The

latent representation is more distribution for large Dz, as a larger number of

hidden neurons are used to represent an input. This observation suggests that

the distributed representation used in an autoencoder enables the compositional

processing and thus facilitates outlier reconstruction.

3.3 Normalized Autoencoders

3.3.1 Definition

We propose Normalized Autoencoder (NAE), a normalized probabilistic

model defined from an autoencoder. The probability density of NAE pθ(x) is

defined as a Gibbs distribution (Eq. (3.4)) the energy of which is defined as the

reconstruction error of an autoencoder:

Eθ(x) = lθ(x). (3.9)

Thus, the model density of NAE is given as

pθ(x) =
1

Ωθ
exp(−lθ(x)/T ), (3.10)
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where Ωθ is defined as in Eq. (3.5). Due to the normalization constant, pθ(x) is

a properly normalized probability density.

As a probabilistic model, NAE is trained to maximize the likelihood of data.

The loss function to be minimized is the negative log-likelihood of data:

Ex∼p(x)[− log pθ(x)] = Ex∼p(x)[lθ(x)]/T + logΩθ. (3.11)

The gradient for the negative log-likelihood is evaluated as in conventional

EBMs (Eq. (3.7)).

Ex∼p(x)[−∇θ log pθ(x)]

= Ex∼p(x)[∇θlθ(x)]/T − Ex′∼pθ(x)[∇θl(x
′)]/T. (3.12)

Therefore, each gradient step decreases the reconstruction error of training data

x, while increasing the reconstruction error of negative samples x′ generated

from pθ(x).

3.3.2 Remarks

Normalization as Regularization In NAE, enforcement of normalization

can be viewed as a regularizer for the reconstruction loss (3.1). A typical for-

mulation for a regularized autoencoder is given as L = LAE+Lreg, where Lreg is

a regularizer. By setting the loss function of NAE as L = TEx∼p(x)[− log pθ(x)],

we have L = LAE+T log Ωθ. Therefore, the normalization constant contributes

as a regularizer: Lreg = T log Ωθ.

Suppression of Outlier Reconstruction During the training of NAE,

the reconstruction of an outlier is inhibited by enforcing the normalization con-

straint. Given a successful sampling process, the negative samples should cover

all high density regions of pθ(x). A sample from a high density region of pθ(x)

has a low lθ(x) by definition (Eq. (3.9)). Hence, if there exist a reconstructable
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outlier, which has high pθ(x) due to low lθ(x), it will appear as a negative

sample from MCMC. As the gradient update given in Eq. (3.12) increases the

reconstruction error of negative samples, the reconstruction quality of a recon-

structable outlier will be degraded. As a result, the reconstruction error of NAE

becomes a more informative predictor that discriminates outliers from inliers

than that of a conventional autoencoder.

Outlier Detection with Likelihood NAE bridges the two popular outlier

detection criteria, namely, the reconstruction error [4] and the likelihood [14].

The reconstruction error criterion classifies an input with a large reconstruction

error as OOD lθ(x) > τ , whereas the likelihood criterion predicts an input as

an outlier if the log-likelihood is smaller than the threshold log pθ(x) < τ ′.

These two criteria are equivalent in NAE for appropriately set τ and τ ′, as the

reconstruction error and the log-likelihood has a linear relationship: log pθ(x) =

−lθ(x)− log Ωθ. Note that the two criteria rarely coincide in other models, for

example, denoising autoencoders (DAE, [11]), VAE [17]), and DSEBMs [34],

causing confusion on which of the decision rules should be employed for outlier

detection.

Sample Generation Samples from pθ(x) are generated through MCMC.

Unlike VAE, the forward pass of a decoder should not be considered as sample

generation.

3.4 On-Manifold Initialization

The main challenge in the training of NAE through Eq. (3.12) is that each

iteration requires negative sample generation using MCMC, which is computa-

tionally expensive. In this section, we first discuss the failure modes of popu-

lar approximate sampling strategies for EBMs, namely Contrastive Divergence
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Figure 3.4 Density estimates and negative samples from NAEs trained by var-

ious approximate sampling methods. The generated samples (blue dots) are

visualized along with the true density, a 2D mixture of 8 Gaussians. (CD) The

learned density has a spurious mode, marked by an arrow. The black crosses de-

note training data. (PCD without restart) The highly correlated samples result

in an oscillating density estimate. (PCD with restart) Despite the good quality

of sampling, the density is poorly estimated. (On-manifold) Both density esti-

mation and sample generation are performed well. More details are specified in

Section 3.4.1 and Section 3.6.2.

(CD; [15]) and Persistent CD (PCD; [16]). We argue that the method on how

the initial state of MCMC is chosen have incurred such failure modes. Then, we

propose on-manifold initialization, an approximate sampling strategy effective

in training the NAE. On-manifold initialization provides a better initial state

for MCMC by leveraging the structure of an autoencoder.

There exist other training methods for EBMs which do not rely on MCMC,

for example denoising score matching [35] or noise contrastive estimation [36],

and they may also be applicable to NAE. We leave application of such methods

on NAE as future work.
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3.4.1 Failure Modes of CD and PCD

Failure Mode of CD CD, often called CD-k, draws a negative sample by first

initializing a Markov chain of MCMC at a training data point, then proceeding

k steps of MCMC transitions. The strength of CD is that the number of steps

k can be radically smaller, e.g., k = 1, than the usual number of steps required

in a convergent MCMC run, significantly reducing the amount of computation.

However, when k is small, CD-k is not able to suppress a spuriously high

mode in the model density pθ(x) located far from the data distribution p(x),

because negative samples are only generated in the vicinity of training data.

Figure 3.4 shows an instance of a spurious mode in the model density. Negative

samples (blue dots) are close to training data (black crosses) so that they do

not reach for the density mode in the middle. As a result, the mode is not

suppressed. Such a spurious mode will result in outlier detection failures and,

in case of NAE, reconstructed outliers. The possibility of accidentally assigning

high density in the unvisited area was acknowledged in the original article (Sec-

tion 3 of [15]). Spurious modes are also observed in DAE, where a corrupted

datum is located only in the neighborhood of a training data point [37]. Increas-

ing k will decrease the chance of have spurious modes, but the computational

advantage of CD will be lost when k is large.

Failure Mode of PCD An initial state of MCMC in PCD is given as

the negative sample generated from MCMC in the previous training iteration.

PCD was originally implemented using fully persistent MCMC [16]. However,

without a restart, MCMC chains in a mini-batch may become highly correlated

to each other. When pθ(x) is multi-modal, the correlated chains yield degener-

ate negative samples which only cover a subset of density modes as in Figure

3.4. The degenerate samples make the density estimate oscillatory, slowing the
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Figure 3.5 An illustration of the on-manifold initialization. The one-dimensional

latent space Z and the two-dimensional input space X are shown. The red star is

the on-manifold initialized state. The cross denotes a negative sample obtained

at the end of the whole process.

convergence of the model.

The degeneracy between chains can be mitigated by randomly resetting the

initial state to a sample from the noise distribution p0(x) with a small proba-

bility (typically 5%) [25, 26]. However, learning with PCD still fails to yield an

accurate density estimate (Figure 3.4). This failure mode can be explained by

the study of [27]: When a short MCMC chain initialized from p0(x) is used in

training, an EBM simply learns a flow that maps p0(x) to p(x), and the energy

no longer models the data density. Using a restart drives an EBM to become

such a flow, as restarted chains are short and start from p0(x).

In summary, CD initializes MCMC from the data distribution pθ(x), and

PCD initializes MCMC from a noise distribution p0(x). The convergence of

MCMC is independent of its initialization in theory, but the initialization

method can be crucial in practice, as shown in Figure 3.4. When pθ(x), from

which we want to sample, deviates significantly from pθ(x) or p0(x), these ini-

tialization methods may lead to a poor density estimate and a suboptimal

performance in outlier detection.
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3.4.2 On-Manifold Initialization

We propose on-manifold initialization (OMI), a novel MCMC initialization

strategy which eventually leads to a significantly better density estimate. We

aim to initialize a MCMC chain from a high-density region of pθ(x) instead of

p0(x) or p(x). While finding a high-density region given an energy function is

difficult in general, it is possible for NAE’s distribution, since we can exploit

the structure of an autoencoder. For a sufficiently well-trained autoencoder, a

point with high pθ(x), i.e., a small reconstruction error, will lie near the decoder

manifold, which we define as:

M = {x|x = fd(z), z ∈ Z}. (3.13)

In on-manifold initialization, we initialize MCMC from a point in the decoder

manifold x0 ∈M.

Not all points in M have high pθ(x). To find points with high pθ(x), we

run a preliminary MCMC named as latent chain in the latent space Z. The

latent chain generates a sample from on-manifold density qθ(z) defined from

on-manifold energy Hθ(z).

qθ(z) =
1

Ψθ
exp(−Hθ(z)/Tz), (3.14)

Hθ(z) =Eθ(fd(z)), (3.15)

where Ψθ =
∫
exp(−Hθ(z)/Tz)dz is the normalization constant and Tz is the

temperature. A latent vector x with a small Hθ(z) will result in a small Eθ(x)

when it is mapped to the input space by x = fd(z). Thus, Hθ(z) guides the

latent chain to find z which produce x0 ∈ M which has a small energy, i.e., a

small reconstruction error.

Similarly to Eq. (3.8), we use LMC to run the latent chain. An initial state

z0 is drawn from a noise distribution defined on the latent space. Then the state
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propagates as:

zt+1 = zt + λz∇z log qθ(zt) + σzϵt, (3.16)

where λz and σz are the step size and the noise parameters as in Eq. (3.8). A

sample replay buffer [25] is applicable in the latent chain. Figure 3.5 illustrates

negative sample generation process using the on-manifold initialization.

3.5 Related Work

Autoencoders There have been several attempts to formulate a probabilistic

model from an autoencoder. VAE uses a latent variable model by introducing a

prior distribution p(z). However, the prior may deviate from the actual distri-

bution of data in Z, which may cause problems. GPND [38] models probability

density by factorizing into on- and off-manifold components but still requires a

prior distribution.M-flow [39] only defines a probability density on the decoder

manifold and does not assign a likelihood to off-manifold data. DAE models a

density by learning the gradient of log-density [37].

MemAE [10] is a rare example that directly tackles the outlier reconstruction

problem. MemAE employs a memory module that memorizes training data to

prevent outlier reconstruction, but in this case, the reconstruction error for an

inlier can be large because the model’s generalization ability is also limited.

Design of Energy Functions Specifying the class of Eθ(x) not only has

computational consequences but alters the inductive bias that an EBM encodes.

Feed-forward convolutional networks are used in [25] and [26] and are shown to

effectively model the distribution of images. The energy can also be modeled in

an auto-regressive manner [40, 41]. Auto-regressive energy functions are very

flexible and thus are capable of modeling high-frequency patterns in data.
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Table 3.1 MNIST hold-out class detection AUC scores. The intervals denote

the standard error of mean after 10 training runs.

Hold-out: 0 1 2 3 4 5 6 7 8 9 avg

NAE-OMI
.989

±.002

.919

±.013

.992

± .001

.949

±.004

.949

±.005

.978

± .003

.938

±.004

.975

±.024

.929

±.004

.934

±.005

.955

NAE-CD .799 .098 .878 .769 .656 .806 .874 .537 .876 .500 .679

NAE-PCD .745 .114 .879 .754 .690 .813 .872 .509 .902 .544 .682

AE .819 .131 .843 .734 .661 .755 .844 .542 .902 .537 .677

DAE .769 .124 .872 .935 .884 .793 .865 .533 .910 .625 .731

VAE(R) .954 .391 .978 .910 .860 .939 .916 .774 .946 .721 .839

VAE(L) .967 .326 .976 .906 .798 .927 .928 .751 .935 .614 .813

WAE .817 .145 .975 .950 .751 .942 .853 .912 .907 .799 .805

GLOW .803 .014 .624 .625 .364 .561 .583 .326 .721 .426 .505

PXCNN++ .757 .030 .663 .663 .483 .642 .596 .307 .810 .497 .545

IGEBM .926 .401 .642 .644 .664 .752 .851 .572 .747 .522 .672

DAGMM .386 .304 .407 .435 .444 .429 .446 .349 .609 .420 .423

The reconstruction error of an autoencoder is used as a discriminator in

EBGAN [34]. Although the reconstruction error was called “energy” in EBGAN,

the formulation is clearly different from NAE. EBGAN does not utilize Gibbs

distribution formulation (Eq. (3.4)) to model a distribution, and samples are

generated from a separate generator network. In DSEBM [34], the difference

between an input and its reconstruction is interpreted as the gradient of log-

density.
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3.6 Experiments

3.6.1 Technicalities for NAE Training

Pre-training as a Conventional Autoencoder NAE can be pre-trained as

a conventional autoencoder by minimizing the reconstruction error following

Eq. (3.2), before the main training. By providing a good initialization for net-

work weights and the decoder manifold, pre-training greatly reduces the number

of NAE training iterations (Eq. (3.12)) required until convergence. Pre-training

is not always necessary: In our experiments, we observe that NAE can be trained

successfully without pre-training for synthetic data. However, pre-training was

essential to obtain decent results for larger scale data, such as MNIST and

CIFAR-10.

Latent Space Structure The configuration of the latent space is impor-

tant in the stable learning using on-manifold initialization. We found the two

configurations that work: the unbounded real space RDz and the surface of a

hypersphere SDz−1. When Z = RDz , a linear layer is used as the output of

an encoder. q0(z) is set as N (0, I). The squared norm of the latent vectors are

added to the loss function as a regularizer so that z’s concentrate near the origin

[42]. For Z = SDz−1 [43, 44, 45], the output of an encoder is projected to the

surface of a unit ball through the division by its norm: z← z/||z||. In Langevin

dynamics, a sample is projected to SDz−1 at the end of each step. q0(z) is set

to a uniform distribution on SDz−1.

Regularizing Negative Sample Energy As introduced in [25], we reg-

ularize the energy of negative samples to prevent its divergence. We add the

average squared energy of negative samples in a mini-batch to the loss function:

L = LNAE + α
∑B

i=1E(x′
i)
2/B for the batch size B and the hyperparameter α.

We set α = 1.
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Figure 3.6 Estimating 8 Gaussians using various autoencoders. The density of an

autoencoder (AE) is computed from Eq. (3.10). AE gives a significant amount

of probability to low-data-density area. VAE also assigns some probability mass

in between Gaussians. Meanwhile, the density estimate from NAE agrees well

with the data distribution.

3.6.2 2D Density Estimation

We demonstrate the density estimation capability of NAE with a two-dimensional

mixture of 8 Gaussians. First, we benchmark negative sample generation strate-

gies for NAE, including CD, PCD with and without restart, and on-manifold

initialization. The results are shown in Figure 3.4 and discussed in Section 3.4.1

in detail.

Second, we compare NAE trained with the on-manifold initialization to a

conventional autoencoder and VAE (Figure 3.6). An autoencoder assigns high

densities on regions between Gaussian modes, meaning that an autoencoder

gives a small reconstruction error from a points from the region. For the over-

complete case (Dz = 3 > Dx), an autoencoder almost becomes the identity

map, and its reconstruction error is not an informative predictor for an outlier.
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VAE and NAE learn a non-identity function under the overcomplete setting,

showing the effectiveness of their regularizers.

In the experiments, the identical network architecture is used, and the tem-

perature is optimized by gradient descent. In on-manifold initialization, tem-

perature values are shared by the main MCMC and the latent chain. When

performing MCMC in X , Metropolis-Hastings rejection is applied to ensure the

detailed balance but is not applied in the latent chain. For visualization, the

normalization constants for an autoencoder and NAE are computed by numer-

ically integrating over the domain, [−4, 4]2.

3.6.3 Outlier Detection

Experimental Setting We empirically demonstrate the effectiveness of NAE

as an outlier detector. In outlier detection tasks, an outlier detector is trained

only using inlier data and then asked to discriminate outliers from inliers during

test phase. Given an input, a detector is assumed to produce a scalar decision

function which indicates the outlierness of the input. We measure the detection

performance in AUC, i.e., the area under the receiver operating characteristic

curve. Following the protocol of [46] and [47], we use an OOD dataset dif-

ferent from the datasets used in test phase to tune model hyperpamraeters.

Additional details on model implementation and datasets can be found in the

supplementary material.

The identical networks architectures are used for all autoencoder-based

methods. The reconstruction error is used as the decision function, except for

VAE. For deep generative models, PixelCNN++ (PXCNN++, [48]), Glow [49]

and a feed-forward EBM (IGEBM, [25]), we use the negative log-likelihood (i.e.,

the energy) as the decision function. For VAE, we show two results from us-

ing the reconstruction error (R) or the negative log-likelihood (L) as decision
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functions.

MNIST Hold-Out Class Detection One class from MNIST is set as the

outlier class and the rest as the inlier class. Then, the procedure is repeated for

all ten classes in MNIST. ConstantGray dataset is used for model selection.

This problem is not as easy as it seems, as confirmed in the very low per-

formance of various algorithms in Table 3.1. When a class is held out from

MNIST, the remaining 9 classes may contain a set of visual features sufficient

to reconstruct the hold-out class, i.e., the outlier reconstruction occurs. The

outlier reconstruction is particularly severe for the digit 1, 4, 7 and 9, possibly

because their shape can be reconstructed from the recombination of other digits.

For example, overlapping 4 and 7 produces a shape similar to 9. Interestingly,

most of the other baseline algorithms also show poor performance when 1, 4,

7 or 9 are held out as the outlier. NAE shows the highest AUC score for all

classes and effectively suppresses the reconstruction of the outlier class (Figure

3.7).

We also compare CD and PCD along with OMI in training NAEs. Using CD

and PCD show poor outlier detection performance, although given the identical

set of MCMC parameters.

Out-of-Distribution Detection The samples from different datasets are

used as the outlier class. We test two inlier datasets, CIFAR-10 or ImageNet

32×32 (ImageNet32). Zero-padded 32×32 MNIST images are used for model

selection. Results are shown in Table 3.2.

It is known that constant images and SVHN images are particularly difficult

outliers for generative models trained on a set of images with rich visual features

[18, 50]. However, NAE detect such difficult outliers successfully. All models are

able to discriminate noise outliers, indicating that their poor performance is not

from the failure of training.
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Figure 3.7 MNIST hold-out class detection examples from four different hold-

out settings (1, 4, 7 and 9). The bottom two rows depict the reconstructions from

four autoencoders (AE) and four NAEs trained on each setting. AEs reconstruct

the outlier class well, while NAEs selectively reconstruct only inliers.

3.6.4 Sample Generation

Samples are generated from NAE using MCMC with OMI. Figure 3.9 shows

the samples from NAEs trained on MNIST and on CelebA 64×64. The random

initial states of the latent chain (z0) map to unrecognizable images. After the

latent chain, OMI produces somewhat realistic images. MCMC on X refines the

OMI images. Although quantitative image quality metric for samples generated

from NAE is not on a par with that of generative models which specialize in

sampling, but the generated samples are indeed visually sensible.

We generate 50,000 samples from NAE trained on CelebA 64×64 and com-

pute FID score [51]. We also visualize some of images generated by NAE in

Figure 3.8. While FID score of NAE was not as low as ones from models spe-

cialized in generation, such as NCSN [52], FID score of NAE resides in a ballpark

of what is achievable by autoencoder-based methods. We believe that tuning

network architecture and sampling procedure will result in enhanced samples.
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Figure 3.8 More samples from NAE trained on CelebA 64×64. While most

of the samples are visually sensible, a few generation failures can be spotted.

Improving the sample generation process will be able to eliminate such non-

realistic images.
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Table 3.2 OOD detection performance in AUC.

In: CIFAR-10 ConstantGray FMNIST SVHN CelebA Noise

NAE .923 .819 .818 .789 1.0

AE .006 .650 .175 .655 1.0

DAE .001 .671 .175 .669 1.0

VAE(R) .002 .700 .191 .662 1.0

VAE(L) .002 .767 .185 .684 1.0

WAE .000 .649 .168 .652 1.0

GLOW .384 .222 .260 .419 1.0

PXCNN++ .000 .013 .074 .639 1.0

IGEBM .192 .216 .371 .477 1.0

In: ImageNet32 ConstantGray FMNIST SVHNCelebA Noise

NAE .966 .994 .985 .949 1.0

AE .005 .915 .102 .325 1.0

DAE .069 .991 .102 .426 1.0

VAE(R) .030 .936 .132 .501 1.0

VAE(L) .028 .950 .132 .545 1.0

WAE .069 .991 .081 .364 1.0

GLOW .413 .856 .169 .479 1.0

PXCNN++ .000 .004 .027 .238 1.0

3.7 Discussion

3.7.1 Comparison to Other EBMs

NAE uses Gibbs distribution to define a density function as in other EBMs

(Eq. 3.4). The main difference between NAE and other EBMs is the choice of

an energy function. However, this difference results in significant theoretical and

practical consequences. First, we naturally incorporate the manifold hypothesis,

i.e. the assumption that high-dimensional data lie on a low-dimensional mani-

fold, into a model. Second, the energy function of NAE can be pre-trained as a
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Table 3.3 FID score of 50,000 images generated from a model trained on CelebA

64×64. A low FID score indicates that the generated images have similar statis-

tics to the real images in Inception network’s feature space.

Model FID

NAE 94.00

From [42]

AE 127.85

AE-L2 346.29

VAE 48.12

RAE-GP 116.30

RAE-L2 51.13

RAE-SN 44.74

From [52]

NCSN (w/ denoising) 26.89

NCSNv2 (w/ denoising) 10.23

conventional autoencoder. Third, more effective sampling can be performed by

using OMI, leading to a more accurate density estimate.

3.7.2 Likelihood-based Outlier Detection

[18] reported that deep generative models, such as VAEs, autoregressive models,

and normalizing flows, fail at outlier detection by producing spuriously high

likelihoods for OOD data, which are also observed in our experiments. This

observation raised skepticism on the likelihood-based outlier detection, leading

to the proposal of alternative metrics to the likelihood, e.g., [46]. However,

we speculate that the failure of outlier detection should be attributed to the

specifics of the models and not to the use of the likelihood as a metric. EBMs
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Figure 3.9 Sampling with NAEs trained on MNIST and CelebA 64×64. (z0)

The random initialization of the latent chain. We visualize fd(z0). (OMI) Images

after OMI. (Samples) Samples obtained after MCMC starting from OMI. OMI

images and Samples corresponds to the red start and the green cross in Figure

3.5, respectively.

have been shown to be effective in outlier detection [25, 26], even though the

model uses the likelihood as a decision function. The experimental results from

NAE further confirms the effectiveness of the likelihood in outlier detection.

3.7.3 Analytic Solution for Linear Case

Linear NAEs reduce to Gaussian distributions. Consider fe(x) = Wx and

fd(z) =W⊤z withW ∈ RDz×Dx . Given the squared L2 distance reconstruction

error, the density of NAE is written as:

pθ(x) = exp(−x⊤Σ−1x/2)/Ωθ, (3.17)

where Σ−1 = 2(I−W⊤W )2/T . When the determinant of I−W⊤W is non-zero,

pθ(x) becomes a well-defined Gaussian. Under certain conditions, the maximum
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likelihood estimate of Σ becomes the empirical covariance of data, as in a usual

Gaussian distribution.

It is interesting to note that a linear VAE also reduces into a Gaussian, as it

is equivalent to probabilistic PCA[17]. On the other hand, a linear autoencoder

is equivalent to PCA [31], which is not a generative model.

We provide a more detailed derivation for linear NAE. When a linear over-

complete autoencoder is used, NAE reduces into a Gaussian distribution. Con-

sider a linear deterministic encoder fe(x) = Wx and a decoder fd(z) = W⊤z,

where W ∈ RDz×Dx . For the squared L2 distance reconstruction error,

l(x) = ||x−W⊤Wx||2 (3.18)

= x⊤(I −W⊤W )2x, (3.19)

and therefore the density of NAE can be written as:

pθ(x) =
1

Ωθ
exp(−x⊤Σ−1x/2), (3.20)

where Σ−1 = 2(I −W⊤W )2/T .

Eq. (3.20) is a Gaussian distribution with zero mean and Σ covariance. For

this Gaussian to be well-defined, the normalization constant should be finite

Ωθ < ∞. To the covariance positive definite, we need that the determinant of

(I−W⊤W ) is non-zero, i.e., no eigenvalue of W⊤W should be one. This means

that the autoencoder should not be the identity along any of orthogonal bases.

As an interesting special case, considerW = 0. This zero-autoencoder is un-

informative, since all inputs are mapped to the origin, but it still defines a valid

probability distribution. In fact, pθ(x) becomes a standard normal distribution.

Now, we consider the overcomplete setting, where Dz ≥ Dx, and look for

the maximum likelihood parameter estimate. When Dz ≥ Dx, the matrix (I −

W⊤W )2 spans all positive semidefinite matrices. Given a zero-centered dataset
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D = {xi}Ni=1, Σ that maximizes the the likelihood of data is the empirical

covariance ΣML =
∑N

i=1 xix
⊤
i /N . Therefore, NAE trained to maximum the

likelihood of data is identical to a Gaussian distribution fitted via maximum

likelihood.

Recall that a conventional linear autoencoder becomes the identity when

Dz ≥ Dx.

3.8 Conclusion

We have introduced a novel interpretation of the reconstruction error as an

energy function. Our interpretation leads to a novel class of probabilistic au-

toencoders, which shows impressive OOD detection performance and bridges

EBMs and autoencoders.

39



Chapter 4

Manifold Projection-Diffusion
Recovery: Leveraging Manifold
Structure in Energy-Based Model
Training

4.1 Introduction

The unsupervised detection of anomalous data is a task appearing frequently in

practical applications, such as industrial surface inspection [53], machine fault

detection [54], and particle physics [55]. Modeling the probability distribution

of normal data pdata(x) is a principled approach for anomaly detection [14].

Anomalies, often called outliers, lie outside of the data distribution and thus

can be characterized by low probability under the distribution. However, many

deep generative models capable of evaluating the likelihood of data, including

variational autoencoders (VAE), autoregressive models, and flow-based models

are known to perform poorly on well-known anomaly detection benchmarks

such as CIFAR-10 (in) vs SVHN (out), by assigning high likelihood on seemingly

trivial outliers [47, 18].

On the other hand, deep energy-based models (EBMs) have demonstrated

notable improvement in anomaly detection compared to other deep generative

models [25]. While the specific reason for the superior performance of EBMs

has not been formally analyzed, one probable factor is the explicit mechanism
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employed in EBM’s maximum likelihood training that reduces the likelihood

of negative samples. These negative samples are generated from the model

distribution pθ(x) using Markov Chain Monte Carlo (MCMC). Since modern

EBMs operate in high-dimensional data spaces, covering the entire space with

a Markov chain of finite length is an extremely difficult task. Generating neg-

ative samples has been a significant obstacle in EBM training, leading to the

development of several heuristics such as using truncated chains [27], persistent

chains [16], sample replay buffers [25], and data augmentation in the middle of

the chain [56].

Instead of requiring a Markov chain to cover the entire space, EBM can be

trained with MCMC running within the vicinity of each training datum. Con-

trastive Divergence (CD; [15]) uses a short Markov chain initialized on training

data to generates negative samples close to the training distribution. Diffu-

sion Recovery Likelihood (DRL; [1]) lets MCMC focus on the neighborhood

of training data by employing the recovery likelihood as the objective function

for EBM training. Recovery likelihood pθ(x|x̃) is the conditional probability of

training datum x given the observation of its copy x̃ perturbed with a Gaussian

noise. Training of DRL requires sampling from the recovery likelihood distribu-

tion pθ(x|x̃), which is easier than drawing samples from the model distribution

pθ(x), as pθ(x|x̃) is close to uni-modal and concentrated near x. While CD and

DRL significantly stabilize the negative sampling process, the resulting EBMs

exhibit limited anomaly detection performance due to the insufficient coverage

of negative samples in the input space.

In this paper, we present a novel training algorithm for EBM that does

not require MCMC covering the entire space while achieving accurate density

estimation needed for anomaly detection. The proposed algorithm, Manifold

Projection-Diffusion Recovery (MPDR), extends the recovery likelihood
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Figure 4.1 (Left) An illustration of Manifold Projection-Diffusion. A datum

x is first projected into the latent space Z through the encoder fe(x) and

then diffused with a local noise, such as Gaussian. The perturbed sample x̃

is obtained by projecting it back to the input space X through the decoder

fd(z). (Right) Comparison between the perturbations in MPDR and DRL [1]

on CIFAR-10 examples.

framework by replacing Gaussian noise with Manifold Projection-Diffusion

(MPD), a novel perturbation operation that reflects low-dimensional structure

of data. In MPD, a training datum is projected onto a smooth low-dimensional

manifold that approximately spans the training data and then diffused along

the manifold, where we employ an autoencoder to obtain the manifold. Com-

pared to Gaussian noise, MPD captures relevant modes of variation in data,

such as change in in colors or shapes in an image, as shown in Fig. 4.1. A

MPD-perturbed sample serves as an informative starting point for MCMC that

generates a negative sample, teaching EBM to discriminate challenging outliers

that has partial similarity to training data.

With MPD-perturbed datum x̃, EBM is trained by maximizing the recov-

ery likelihood p(x|x̃), where the maximization requires negative samples drawn

from p(x|x̃). We derive a simple expression for evaluating p(x|x̃) in MPDR and
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propose an efficient two-stage MCMC strategy for sampling from p(x|x̃). Our

sampling strategy first uses the latent space of the autoencoder for faster explo-

ration and then perform MCMC in the input space for exploring off-manifold

region.

MPDR presents a novel way of employing encoder-decoder modules in EBM

training. Compared to existing autoencoder-based EBM training methods such

as VAEBM [57], Flow Contrastive Estimation [58], and Divergence Triangle

[59, 60], MPDR not only show stronger performance in anomaly detection tasks

but also provides some practical advantages. First, MPDR performs well with

lightweight autoencoders that has significantly fewer parameters than NVAE

[61] or Glow [49]. Second, the formulation of MPDR naturally supports the use

of multiple autoencoders during training. Ensembling over multiple autoencoder

manifolds improves the performance and also reduces the risk of not choosing

the best autoencoder.

Our contributions can be summarized as follows:

• We propose Manifold Projection-Diffusion Recovery, a novel objective func-

tion for training EBMs which gives consistent estimation of density. MPDR

is the recovery likelihood with a manifold-informed perturbation.

• We provide a suite of practical strategies for achieving successful anomaly

detection with MPDR, including two-stage sampling, energy function design,

and perturbation ensemble.

• We demonstrate the effectiveness of MPDR on unsupervised anomaly de-

tection tasks with various data types, including images, high-dimensional

representations, and acoustic signals collected from machines.
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4.2 Preliminaries

Energy-Based Models (EBM) An energy-based generative model, or an

unnormalized probabilistic model, represents a probability density function us-

ing a scalar energy function Eθ : X → R, where X denotes the domain of data.

The energy function Eθ defines a probability density function pθ through the

following relationship:

pθ(x) ∝ exp(−Eθ(x)). (4.1)

The parameters θ can be learned by maximum likelihood estimation given iid

samples from the underlying data distribution pdata(x). The gradient of the

log-likelihood for a training sample x is well-known [15] and can be written as

follows:

∇θ log pθ(x) = ∇θEθ(x)− Ex−∼pθ(x)[∇θEθ(x
−)], (4.2)

where x− denotes a “negative” sample drawn from the model distribution pθ(x).

Typically, x− is generated using Langevin Monte Carlo (LMC). In LMC, points

are initialized arbitrarily and then iteratively updated in a stochastic manner

to simulate independent sampling from pθ(x). For each time step t, a point x(t)

is updated by x(t+1) = x(t)−λ1∇xEθ(x
(t))+λ2ϵ

(t), for ϵ(t) ∼ N (0, I). The step

size λ1 and the noise scale λ2 are often tuned separately in practice. Since LMC

needs to be performed in every iteration of training, it is infeasible to run the

sampling until convergence, and a compromise must be made. Popular heuristics

include initializing MCMC on training data [15], using short-run LMC [27], and

utilizing replay buffer [16, 25].

Recovery Likelihood [62, 1] Instead of directly maximizing the likelihood

(Eq. (4.2)), θ can be learned through the process of denoising data from artifi-

cially injected Gaussian noises. Denoising corresponds to maximizing recovery
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likelihood p(x|x̃), the probability of recovering data x from its noise-corrupted

version x̃ = x+ σϵ, where ϵ ∼ N (0, I).

pθ(x|x̃) ∝ pθ(x)p(x̃|x) ∝ exp

(
−Eθ(x)−

1

2σ2
||x− x̃||2

)
, (4.3)

where Bayes’ rule is applied. The model parameter θ is estimated by maximiz-

ing the log recovery likelihood, i.e., maxθ Ex,x̃[log pθ(x|x̃)], for x ∼ pdata(x), x̃ ∼

p(x̃|x), where p(x̃|x) = N (x, σ2I). This estimation is shown to be consis-

tent under the same conditions where maximum likelihood estimation is con-

sistent (Appendix A.2 in [1]). DRL [1] uses a slightly modified perturbation

x̃ =
√
1− σ2x + σϵ in training EBM, following [63]. This change introduces

minor modification of Eq. (4.3).

The recovery likelihood pθ(x|x̃) (Eq. 4.3) can be viewed as another EBM

with the energy Ẽθ(x|x̃) = Eθ(x) + ||x − x̃||2/2σ2. Therefore, the gradient

∇θ log pθ(x|x̃) has the same form with the log-likelihood gradient of EBM

(Eq. (4.2)), except that negative samples are drawn from pθ(x|x̃) instead of

pθ(x):

∇θ log pθ(x|x̃) = ∇θEθ(x)− Ex−∼pθ(x|x̃)[∇θEθ(x
−)], (4.4)

from ∇θẼθ(x|x̃) = ∇θEθ(x) as p(x|x̃) is independent of θ. Unlike pθ(x) which

may be highly multi-modal, pθ(x|x̃) is more likely to be concentrated near x

and thus sampling using MCMC is more stable [1]. However, it is questionable

whether Gaussian noise is the most informative way to perturb the data in a

high-dimensional space.

4.3 Manifold Projection-Diffusion Recovery

We introduce the Manifold Projection-Diffusion Recovery (MPDR) algorithm,

which trains EBM by recovering from perturbations that are more informative
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than Gaussian noise. We first propose Manifold Projection-Diffusion (MPD), a

novel perturbation operation leveraging the low-dimensional structure inherent

in the data. Then, we derive the recovery likelihood for MPD.We also provide an

efficient sampling strategy and practical implementation techniques for MPDR.

Autoencoders MPDR assumes that a pretrained autoencoder approximat-

ing the training data manifold is given. The autoencoder consists of an encoder

fe : X → Z and a decoder fd : Z → X , both are assumed to be deterministic

and differentiable. The latent space is denoted as Z. The dimensionalities of X

and Z are denoted as Dx and Dz, respectively. We assume fe and fd as typical

deep neural networks jointly trained to reduce the training data’s reconstruction

error l(x), where l(x) is typically an l2 error, l(x) = ||x− fd(fe(x))||2.

4.3.1 Manifold Projection-Diffusion

We propose a novel perturbation operation, Manifold Projection-Diffusion

(MPD). Instead of adding Gaussian noise directly to a datum x
+σϵ−−→ x̃ as in the

conventional recovery likelihood, MPD first encodes x using the autoencoder

and then applies a noise in the latent space:

x
fe−→ z

+σϵ−−→ z̃
fd−→ x̃, (4.5)

where z = fe(x), z̃ = z + σϵ, and x̃ = fd(z̃). The noise magnitude σ is a

predefined constant and ϵ ∼ N (0, I). The first step projects x into Z, and

the second step diffuses the encoded vector z. When decoded through fd, the

resulting perturbation x̃ always lies on the decoder manifold M = {x|x =

fd(z), z ∈ Z}, which is the collection of all possible outputs from the decoder

fd(z). The process is visualized in the left panel of Fig. 4.1.

Since z serves as a coordinate ofM, a Gaussian noise in Z corresponds to

perturbation of data along the manifold M, reflecting more relevant mode of
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pdata Data x & Manifold MPD-Perturbed x After Latent Chain xO Negative Sample x  

Figure 4.2 Negative sample generation process in MDPR.

variations in data than Gaussian perturbation in X (Fig. 4.1). Note that MPD

reduces to the conventional Gaussian perturbation if we set Z = X and set fe

and fd as the identity mappings.

4.3.2 Manifold Projection-Diffusion Recovery Likelihood

We define the recovery likelihood for MPD as the probability of x given the

perturbed latent vector z̃.

pθ(x|z̃)
(i)
∝p(z̃|x)pθ(x) =

(∫
p(z̃|z)p(z|x)dz

)
pθ(x) (4.6)

(ii)
=p(z̃|z)pθ(x) ∝ exp(−Eθ(x) + log p(z̃|z)). (4.7)

In (i), we apply Bayes’ rule. In equality (ii), we use the fact that the encoder

is deterministic and thus p(z|x) can be treated as δz(·), a Dirac measure on Z

at z = fe(x). Since the perturbation probability p(z̃|z) is an isotropic Gaussian

distribution with standard deviation σ, the log recovery likelihood is evaluated

as: log pθ(x|z̃) = −Ẽθ(x|z̃) + const = −Eθ(x)− 1
2σ2 ||z̃− fe(x)||2 + const.

Now, Eθ(x) is trained by maximizing log pθ(x|z̃). The gradient with respect

to θ results in the same form with the log likelihood gradient (Eq. 4.2) and the

log recovery likelihood gradient (Eq. 4.4) but with a different negative sample

distribution pθ(x|z̃):

∇θ log pθ(x|z̃) = ∇θEθ(x)− Ex−∼pθ(x|z̃)[∇θEθ(x
−)]. (4.8)
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Negative samples x− are drawn from pθ(x|z̃) using LMC.

An alternative definition for the recovery likelihood is p(x|x̃), which becomes

equivalent to p(x|z̃) when fd is an injective function, i.e., no two instances of

z̃ map to the same x̃. However, if fd is not injective, additional information

loss may occur and becomes difficult to compute. As a result, p(x|z̃) serves as

a more general and also convenient choice for the recovery likelihood.

4.3.3 Consistency of MPDR

Maximizing log p(x|z̃) results in a consistent estimation of θ, regardless of the

choice of fe, fd and σ. The required assumptions are similar to those for max-

imum likelihood estimation, such as infinite data, identifiable and correctly

specified model. The key additional assumption for achieving consistency is the

independence of p(z̃) from θ. This can be ensured by maintaining constant val-

ues for all parameters of fe, fd, and the magnitude of σ throughout the training

procedure.

Let us denote our model for recovery likelihood as p(x|z̃; θ). We assume

that this model is identifiable (different model parameters correspond to differ-

ent distribution) and correctly specified (there exists θ∗ such that p(x|z̃; θ∗) =

pdata(x|z̃)). We also assume that p(x|z̃; θ) is non-zero for all x, z̃, and θ. Our ob-

jective is to maxθ
1
N

∑N
i=1 log p(xi|z̃i; θ) where (xi, z̃i) ∼ p(x, z̃) = pdata(x)p(z̃|x).

In the limit ofN →∞, the average converges to the expectation 1
N

∑N
i=1 log p(xi|z̃i; θ)→

E(x,x̃)[log p(x|z̃; θ)]. If we subtract E(x,x̃)[log p(x|z̃; θ∗)] which is constant with

respect to θ, then the expression can be written with respect to KL divergence

as follows:

E(x,x̃)[log p(x|z̃; θ)− log p(x|z̃; θ∗)] =
∫
p(x, z̃) log

p(x|z̃; θ)
p(x|z̃; θ∗)

dxdz̃ (4.9)

= −
∫
p(z̃) KL(p(x|z̃; θ∗)||p(x|z̃; θ))dz̃ (4.10)
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MPDR-S
E = Scalar

 l1 Error: 0.018

MPDR-R
E = AE

 l1 Error: 0.012

Figure 4.3 2D density estimation with a scalar energy function (left) and an

autoencoder-based energy function (right).

The maximum of Eq. 4.10 is 0, as the minimum of KL divergence is 0. The

maximum is achieved if and only if θ = θ∗. Note that p(z̃) is assumed to be

constant with respect to θ.

Since we did not rely on the specifics of how a perturbation p(z̃|x) is actually

performed, this consistency result holds for any choices of the encoder fe and the

noise magnitude σ, as long as the recovery likelihood p(x|z̃; θ) remains non-zero

for all x, z̃, and θ.

Algorithm 1 Manifold Projection-Diffusion Recovery

1: while converged do

2: Sample a mini-batch of positive samples x

3: Compute z̃ = fe(x) + σϵ

4: Sample z− from energy H̃θ(z|z̃) with LMC on Z starting from z̃

5: Sample x− from energy Ẽθ(x|z̃) with LMC

on X starting from x−
0 = fd(z

−)

6: Update θ with the gradient: − ∂
∂θEθ(x) +

∂
∂θEθ(x

−)

7: end while
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4.3.4 Two-Stage Sampling

A default method for drawing x− from pθ(x|z̃) is to execute LMC on X , starting

from x̃, as done in DRL [1]. While this visible chain should suffice in principle

with infinite chain length, sampling can be improved by leveraging the latent

space Z, as demonstrated in [64, 57, 60]. For MPDR, we propose a latent

chain, a short LMC operating on Z that generates a better starting point

x−
0 for the visible chain. We first define the auxiliary latent energy H̃θ(z) =

Ẽθ(fd(z)|z̃), the pullback of the recovery energy through the decoder fd(z).

Next, we run a latent LMC that samples from a probability density proportional

to exp(−H̃θ(z)). The latent chain’s outcome, z−0 , is fed to the decoder to produce

the visible chain’s starting point x−
0 = fd(z), which is likely to have a smaller

Ẽ value than x̃. Introducing a small steps of a latent chain improves anomaly

detection performance in our experiments. A similar latent-space LMC method

appears in [64] but requires a sample replay buffer not used in MPDR. Fig.4.2

illustrates the sampling procedure, and Algorithm1 summarizes the training

algorithm.

4.3.5 Perturbation Ensemble

Although the consistency of estimation is independent of the specifics of the

perturbation, the design of perturbation, such as perturbation magnitude σ

and the architecture of an autoencoder, plays an important role in achieving

practical performance. To mitigate the risk of adhering to a single choice of

perturbation operation, we propose to employ multiple perturbation operations

simultaneously during training. Perturbation ensemble retains the consistency

of MPDR while improves training stability and anomaly detection performance

significantly in our experiments.
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Noise Magnitude Ensemble We randomly draw the perturbation mag-

nitude σ from a uniform distribution over a pre-defined interval for each sample

in a mini-batch. In our implementation, we draw σ from the interval [0.05, 0.3]

throughout all the experiments.

Manifold Ensemble We can also utilize multiple autoencoder manifolds

M in MPD. GivenK autoencoders, a mini-batch is divided intoK equally sized

groups. For each group, negative samples are separately generated using the

corresponding autoencoder. The resulting negative samples are then aggregated

again to a mini-batch for model update. Only a minimal increase in training

time is observed asK increases, since each autoencoder processes a smaller mini-

batch. Memory overhead does exist, as multiple autoencoders must be loaded

onto the GPU. However, this overhead is manageable, since MPDR achieves

good performance with relatively smaller autoencoders.

Among multiple possible options for constructing a manifold ensemble, an

effective strategy is to utilize autoencoders with varying latent space dimen-

sionalities Dz. For high-dimensional data, such as images,M with different Dz

tend to capture different mode of variation in data. A perturbation onM with

small Dz corresponds to low-frequency variation in X , whereas for M with

large Dz, it corresponds to higher-frequency variation. Using multiples Dz’s

in MPDR gives us more diverse x− and eventually better anomaly detection

performance.

4.3.6 Energy Function Design

MPDR is a versatile training algorithm for general EBMs, compatible with

various types of energy functions. The design of an energy function plays a

crucial role in anomaly detection performance, as the inductive bias of an en-

ergy governs its behavior in out-of-distribution regions. We primarily explore

51



Table 4.1 MNIST hold-out digit detection. Performance is measured in AUPR.

Standard deviation of AUPR is computed over the last 10 epochs. The largest

mean value is marked in bold, while the second-largest is underlined.

Hold-Out Digit 1 4 5 7 9

AE 0.062 ± 0.000 0.204 ± 0.003 0.259 ± 0.006 0.125 ± 0.003 0.113 ± 0.001

IGEBM 0.101 ± 0.020 0.106 ± 0.019 0.205 ± 0.108 0.100 ± 0.042 0.079 ± 0.015

MEG [65] 0.281 ± 0.035 0.401 ± 0.061 0.402 ± 0.062 0.290 ± 0.040 0.324 ± 0.034

BiGAN-σ [66] 0.287 ± 0.023 0.443 ± 0.029 0.514 ± 0.029 0.347 ± 0.017 0.307 ± 0.028

Latent EBM[60] 0.336 ± 0.008 0.630 ± 0.017 0.619 ± 0.013 0.463 ± 0.009 0.413 ± 0.010

VAE+EBM [59] 0.297 ± 0.033 0.723 ± 0.042 0.676 ± 0.041 0.490 ± 0.041 0.383 ± 0.025

NAE [64] 0.802 ± 0.079 0.648 ± 0.045 0.716 ± 0.032 0.789 ± 0.041 0.441 ± 0.067

MPDR-S (ours) 0.764 ± 0.045 0.823 ± 0.018 0.741 ± 0.041 0.857 ± 0.022 0.478 ± 0.048

MPDR-R (ours) 0.844 ± 0.030 0.711 ± 0.029 0.757 ± 0.024 0.850 ± 0.014 0.569 ± 0.036

two designs for energy functions: MPDR-Scalar (MPDR-S), a feed-forward

neural network that takes input x and produces a scalar output, and MPDR-

Reconstruction (MPDR-R), the reconstruction error from an autoencoder,

Eθ(x) = ||x − gd(ge(x))||2, for an encoder ge and a decoder gd. The autoen-

coder (ge, gd) is separate from the autoencoder used in MPD. First proposed

in [64], an reconstruction-based energy function has an inductive bias towards

assigning high energy values to off-manifold regions (Fig. 4.3). Training such

an energy function using conventional techniques like CD [15] or persistent

chains [16, 25] is reported to be challenging [64]. However, MPDR effectively

trains both scalar and reconstruction energies. Additionally, in Sec. 4.4.4, we

demonstrate that MPDR is also compatible with an energy function based on

a masked autoencoder.
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Table 4.2 MNIST OOD detection performance measured in AUPR. We test

models from hold-out digit 9 experiment (Table 1). The overall performance is

high, as detecting these outliers is easier than identifying the hold-out digit.

KMNIST EMNIST Omniglot FashionMNIST Constant

AE 0.999 0.977 0.947 1.000 0.954

IGEBM 0.990 0.923 0.845 0.996 1.000

NAE 1.000 0.993 0.997 1.000 1.000

MPDR-FF 0.999 0.995 0.994 0.999 1.000

MPDR-AE 0.999 0.989 0.997 0.999 0.990

4.4 Experiment

4.4.1 Implementation of MPDR

An autoencoder (fe, fd) is trained by minimizing the reconstruction error of the

training data and remains fixed during the training of Eθ(x). When using an

ensemble of manifolds, each autoencoder is trained independently. For anomaly

detection, the energy value Eθ(x) serves as an anomaly score which assigns a

high value for anomalous x. All optimizations are performed using Adam with

a learning rate of 0.0001. Each run is executed on a single Tesla V100 GPU.

Spherical Latent Space In all our implementations of autoencoders,

we utilize a hyperspherical latent space Z = SDz−1 [43, 44, 45]. The encoder

output is projected onto SDz−1 via division by its norm before being fed into

the decoder. Employing SDz−1 standardizes the length scale of Z, allowing us to

use the same value of σ across various data sets and autoencoder architectures.

Meanwhile, the impact of SDz−1 on the reconstruction error is minimal.

Regularization For a scalar energy function, MPDR-S, we add Lreg =

Eθ(x)
2+Eθ(x

−)2 to the loss function, as proposed by [25]. For a reconstruction
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energy function, MPDR-R, we add Lreg = Eθ(x
−)2, following [64].

Scaling Perturbation Probability Applying regularization to an energy

restricts its scale, causing a mismatch in scales between the two terms in the

recovery likelihood (Eq. (4.3.2)). To remedy this mismatch, we heuristically

introduce a scale factor γ < 1 to log p(z|z̃), resulting in the modified recov-

ery energy Ẽ
(γ)
θ (x|z̃) = Eθ(x) +

γ
2σ2 ||z̃ − fe(x)||2. We use γ = 0.0001 for all

experiments.

4.4.2 2D Density Estimation

We show MPDR’s ability to estimate multi-modal density using a mixture of

eight circularly arranged 2D Gaussians (Fig. 4.2). We construct an autoencoder

with S1 latent space, which approximately captures the circular arrangement.

The encoder and the decoder are MLPs with two layers of 128 hidden neurons.

To show the impact of the design of energy functions, we implement both scalar

energy and reconstruction energy. Three-hidden-layer MLPs are used for the

scalar energy function, and the encoder and the decoder in the reconstruction

energy function. Note that the network architecture of the reconstruction en-

ergy is not the same as the autoencoder used for MPD. The density estimation

results are presented in Fig. 4.3. We quantify density estimation performance

using l1 error. After numerically normalizing the energy function and true den-

sity on the visualized bounded domain, we compute the l1 error at 10,000 grid

points. While both energies capture the overall landscape of the density, the re-

construction energy achieves a smaller error by suppressing probability density

at off-manifold regions.
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4.4.3 Image Out-of-Distribution Detection

MNIST Hold-Out Digit Detection Following the protocol of [65, 66],

we evaluated the performance of MPDR on MNIST hold-out digit detection

benchmark, where one of the ten digits in the MNIST dataset is considered

anomalous, and the remaining digits are treated as in-distribution. This is a

challenging task due to the diversity of the in-distribution data and a high

degree of similarity between target anomalies and inliers. In particular, selecting

digits 1, 4, 5, 7, and 9 as anomalous is known to be especially difficult. The

results are shown in Table 4.1.

In MPDR, we use a single autoencoder (fe, fd) with Dz = 32. The energy

function of MPDR-S is initialized from scratch, and the energy function of

MPDR-R is initialized from the (fe, fd) used in MPD. Even without a mani-

fold ensemble, MPDR shows significant improvement over existing algorithms,

including ones leveraging an autoencoder in EBM training [59, 64].

MNIST OOD Detection To ensure that MPDR is not overfitted to the

hold-out digit, we test MPDR in detecting five non-MNIST outlier datasets

(Table 4.2). The results demonstrated that MPDR excels in detecting a wide

range of outliers, surpassing the performance of naive algorithms such as au-

toencoders (AE) and scalar EBMs (IGEBM). Although MPDR achieves high

overall detection performance, MPDR-R exhibits slightly weaker performance

on EMNIST and Constant datasets. This can be attributed to the limited flex-

ibility of the autoencoder-based energy function employed in MPDR-R.

CIFAR-10 OOD Detection We evaluate MPDR on the CIFAR-10 inliers,

a standard benchmark for EBM-based OOD detection. The manifold ensemble

includes three convolutional autoencoders, with Dz = 32, 64, 128. MPDR-S uses
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Table 4.3 OOD detection with CIFAR-10 as in-distribution. AUROC values

are presented. The largest value in the column is marked as boldface, and the

second and the third largest values are underlined.

SVHN Textures Constant CIFAR100 CelebA

PixelCNN++ [48] 0.32 0.33 0.71 0.63 -

GLOW [49] 0.24 0.27 - 0.55 0.57

IGEBM [25] 0.63 0.48 0.39 -

NVAE [61] 0.42 - - 0.56 0.68

VAEBM [57] 0.83 - - 0.62 0.77

JEM [26] 0.67 0.60 - 0.67 0.75

Improved CD [56] 0.7843 0.7275 0.8000 0.5298 0.5399

NAE [64] 0.9352 0.7472 0.9793 0.6316 0.8735

DRL [1] 0.8816 0.4465 0.4377 0.6398

CLEL [67] 0.9848 0.9437 - 0.7161 0.7717

MPDR-S (ours) 0.9860 0.6583 0.9996 0.5576 0.7313

MPDR-R (ours) 0.9807 0.7978 0.9996 0.6354 0.8282

56



Table 4.4 OOD detection on pretrained ViT-B 16 representation with CIFAR-

100 as in-distribution. Performance is measured in AUROC.

CIFAR10 SVHN CelebA

Supervised

MD [68] 0.8634 0.9638 0.8833

RMD [69] 0.9159 0.9685 0.4971

Unsupervised

AE 0.8580 0.9645 0.8103

NAE 0.8041 0.9082 0.8181

IGEBM 0.8217 0.9584 0.9004

MPDR-S 0.8338 0.9911 0.9183

MPDR-R 0.8626 0.9932 0.8662

a ResNet energy function used in IGEBM [25]. MPDR-R adopts the ResNet-

based autoencoder architecture used in NAE [64].

Table 4.3 compares MPDR to state-of-the-art EBMs. MPDR-R shows com-

petitive performance across five OOD datasets, while MPDR-S also achieves

high AUROC on SVHN and Constant. As both MPDR-R and NAE use the

same autoencoder architecture for the energy, the discrepancy in performance

can be attributed to the MPDR training algorithm. MPDR-R outperforms

NAE on four out of five OOD datasets. Comparison between MPDR-S and

DRL demonstrates the effectiveness of non-Gaussian manifold-aware perturba-

tion used in MPDR. CLEL shows strong overall performance, indicating that

learning semantic information is important in this benchmark. Incorporating

contrastive learning into MPDR framework is an interesting future direction.
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CIFAR-100 OOD Detection on Pretrained Representation In Table

4.4, we test MPDR on OOD detection with CIFAR-100 inliers. To model a

distribution of diverse images like CIFAR-100, we follow [68] and apply gener-

ative modeling in the representation space from a large-scale pretrained model.

As we assume an unsupervised setting, we use pretrained representations with-

out fine-tuning. Input images are transformed into 768D vectors by ViT-B 16

model [70]. ViT outputs are normalized with its norm and projected onto a

hypersphere. We observe that adding a small Gaussian noise of 0.01 to training

data improves stability of all algorithms. We use MLP for all energy functions

and autoencoders. In MPDR, the manifold ensemble comprises three autoen-

coders with Dz = 128, 256, 1024. We also implement supervised baselines (MD

[68] and RMD [69]). The spherical projection is not applied for MD and RMD

to respect their original implementation.

MPDR demonstrates strong anomaly detection performance in the rep-

resentation space, with MPDR-S and MPDR-R outperforming IGEBM and

AE/NAE, respectively. This success can be attributed to the low-dimensional

structure often found in the representation space of in-distribution data, as ob-

served in [71]. MPDR’s average performance is nearly on par with supervised

methods, MD and RMD, which utilize class information. Note that EBM in-

puts are no longer images, making previous EBM training techniques based on

image transformation [56, 67] inapplicable.

4.4.4 Acoustic Anomaly Detection

We apply MPDR to anomaly detection with acoustic signals another non-image

data. We use DCASE 2020 Challenge Task 2 dataset [72], which contains

recordings from six different machines, with three to four instances per ma-

chine type. The task is to detect anomalous sounds from deliberately damaged
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machines, which are unavailable during training. Following the standard pre-

processing [72], each 10s audio clip in the dataset is splitted into 64ms frames

and transformed into 128-dimensional Mel spectrogram feature vectors. Each

model prediction is based on five consecutive frames which is a 640-dimensional

vector. Many challenge submissions exploit dataset-specific heuristics and en-

sembles for high performance, e.g., [73, 74]. Rather than competing, we focus on

demonstrating MPDR’s effectiveness in improving common approaches, such as

autoencoder-based anomaly detection and Interpolation Deep Neural Network

(IDNN) [75].

IDNN is an instance of a masked autoencoder which predicts the middle (the

third) frame given the remaining frames. Similarly to autoencoders, IDNN pre-

dicts an input as anomaly when the prediction error is large. We first train AE

and IDNN for 100 epochs and then apply MPDR by treating the reconstruction

(or prediction) error as the energy. Manifold ensemble consists of autoencoders

with Dz = 32, 64, 128.

Table 4.7 shows that MPDR improves anomaly detection performance for

both AE and IDNN. The known failure mode of AE and IDNN is producing

unexpected low prediction error for anomalous inputs. By treating the pre-

diction error as the energy and applying generative training through MPDR

suppresses low prediction error for anomalies, resulting in improved anomaly

detection performance.

4.4.5 Ablation Study

Table 4.3 and 4.4 also report the results from single-manifold MPDR-R with

varying latent dimensionality Dz to show MPDR’s sensitivity to a choice of an

autoencoder manifold. Manifold ensemble effectively hedges the risk of relying

on a single autoencoder which may not be optimal for detecting all types of
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outliers. Furthermore, manifold ensemble often achieves better AUROC score

than each component autoencoder. First, we examine the sensitivity of MPDR

to noise magnitude σ and the effectiveness of the noise magnitude ensemble.

Second, we investigate the effect to scaling parameter γ and show that the

training is unstable when γ is too large. Third, we also explore multiple choices

of autoencoder design.

Sensitivity to Dz As an ablation study for manifold ensemble, we investigate

the sensitivity of MPDR to the choice of the latent space dimensionality of

the autoencoder. We evaluate the OOD detection performance of MPDR-S

on the MNIST hold-out digit 9 setting with varying values of Dz. Table 4.6

presents the results. Consequently, MPDR runs stably for a large range of Dz,

producing decent OOD performance. One hypothesis is that, for MNIST, it

is relatively easy for these autoencoders to capture the manifold structure of

MNIST sufficiently well.

Meanwhile, we do observe that the choice of Dz affects OOD performance

in an interesting way. Increasing Dz enhances AUPR for certain OOD datasets

but deteriorates AUPR for others. For example, AUPR of Omniglot is increased

with larger Dz, but AUPR of EMNIST, FashionMNIST, and Constant dataset

decreases. No single autoencoder is optimal for detecting all outlier datasets.

This observation motivates the use of manifold ensemble, employed in non-

MNIST MPDR experiments.
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Table 4.5 Sensitivity to σ. MPDR-S is run with an autoencoder with varying

values of noise magnitude σ. AUPR against various outlier datasets are pre-

sented. For MNIST 9, we present the standard deviation computed over the

last 10 epochs.

σ MNIST 9 KMNIST EMNIST Omniglot FashionMNIST Constant

0.01 0.098 ± 0.009 0.667 0.827 0.940 0.944 0.895

0.1 0.330 ± 0.063 0.983 0.995 0.971 0.994 0.998

0.2 0.522 ± 0.053 0.999 0.993 0.997 0.999 1.000

0.3 0.558 ± 0.039 1.000 0.990 0.997 1.000 1.000

Ens. 0.478 ± 0.048 0.999 0.995 0.994 0.999 1.000

Table 4.6 Sensitivity to Dz. MPDR-S is run with an autoencoder with varying

values of Dz. AUPR against various outlier datasets are presented. For MNIST

9, we present the standard deviation computed over the last 10 epochs. Noise

magnitude ensemble is applied.

Dz MNIST 9 KMNIST EMNIST Omniglot FashionMNIST Constant

16 0.611 ± 0.041 0.979 0.996 0.958 0.999 1.000

32 0.525 ± 0.039 0.999 0.994 0.994 0.999 1.000

64 0.512 ± 0.048 0.999 0.993 0.998 0.998 0.999

128 0.505 ± 0.051 0.999 0.991 0.999 0.988 0.946

256 0.590 ± 0.041 0.996 0.983 0.996 0.958 0.866
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Table 4.7 Acoustic anomaly detection on DCASE2020 Track 2 Dataset. AUROC and pAUROC (in parenthesis)

are displayed per cent.

Toy Car Toy Conveyor Fan Pump Slider Valve

AE [72] 75.40 (62.03) 77.38 (63.02) 66.44 (53.40) 71.42 (61.77) 89.65 (74.69) 72.52 (52.02)

MPDR-R 81.54 (68.21) 78.61 (63.99) 71.72 (55.95) 78.27 (68.14) 90.91 (76.58) 75.23 (51.04)

IDNN [75] 76.15 (72.36) 78.87 (62.50) 72.74 (54.30) 73.15 (61.25) 90.83 (74.16) 90.27 (69.46)

MPDR-IDNN 78.53 (73.34) 79.54 (65.35) 73.27 (54.57) 76.58 (66.49) 91.56 (75.19) 91.10 (70.87)
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Figure 4.4 Mode collapse experiment. (First) Samples drawn from 25 Gaussians.

(Second) Samples from GAN. The figure is adopted from [2]. (Third) Samples

generated from MPDR. Samples generated from a vanilla EBM trained with

short-run MCMC are distributed similarly. (Fourth) Density estimated by EBM

trained with short-run MCMC. (Last) Density estimated using MPDR.

4.4.6 Mode Collapse

We investigate whether MPDR can cover multiple modes of a data distribution.

Some generative models, such as generative adversarial networks (GAN) are

prone to exhibit the mode collapse phenomenon, where a model only covers a

subset of modes in a data distribution. This phenomenon is demonstrated in

the second figure of Fig. 4.4.

We train MPDR on 25 Gaussians dataset, a standard synthetic dataset for

demonstrating the mode collapsing behavior. GAN is known to fail at covering

all 25 modes of data [2]. We find that MPDR as well as a vanilla EBM trained

with short-run MCMC are capable of generating samples covering all modes of

data. However, the vanilla EBM does not produce an accurate density estimate.

Meanwhile, MPDR produces a density estimate that captures all 25 modes.

63



Figure 4.5 Visualization of ||∇x log p(x)|| from a vanilla EBM (left) and MPDR

(right).

4.4.7 Comparison to Score-Based OOD Detection

We check whether the norm of score ||∇x log pθ(x)|| can be a better OOD score.

The score norm is shown to improve OOD detection performance in some cases

[26]. The score norm can be easily computed as the norm of energy ||∇xEθ(x)||.

Fig 4.5 visualizes ||∇xEθ(x)|| of a vanilla EBM and MPDR, trained in Fig 4.4.

As can be seen in the figure, the region with high score norm does not overlap

with the high density region. Therefore, ||∇xEθ(x)|| is not a good OOD score

in 2D setting.

We also investigate whether the score norm is effective in higher-dimensional

problems. We compute ||∇xEθ(x)|| of MPDR trained on CIFAR-10. The result

is shown in Table 4.8. Replacing the OOD score from Eθ(x) to ||∇xEθ(x)||

degrades OOD detection performance in all tested OOD datasets.

4.5 Conclusion

Contributions In this paper, we proposed MPDR, a novel objective func-

tion for EBM, which leverages the low-dimensional structure of data. MPDR
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MPDR-R SVHN Texture constant CIFAR-100 CelebA

Eθ(x) 0.9807 0.7978 0.9996 0.6354 0.8282

||∇xEθ(x)|| 0.7895 0.6450 0.2638 0.5758 0.7543

Table 4.8 CIFAR-10 OOD detection experiment with the score norm as OOD

score.

achieves strong out-of-detection performance while circumventing the need for

entire-space MCMC by employing recovery likelihood formulation, perturbation

ensemble, and autoencoder-based energy functions. Our work serves as a con-

tribution towards building generative models capable of identifying anomalies

in high-dimensional data.

Limitations First, the theory behind the MPDR algorithm does not offer

specific guidance on designing the autoencoder for optimal anomaly detection

performance, resulting in some degree of uncertainty. To mitigate the risk of

selecting a suboptimal autoencoder, we introduce the perturbation ensemble

technique and provide guidance based on our experimental findings. Second,

not all data exhibit a distinct low-dimensional structure. More challenging data

types, such as high-resolution images or texts, may lack a single pronounced

manifold structure or, at the very least, may not be effectively modeled by

an autoencoder. In such cases, generative approaches, including MPDR, might

be more successful in the representation space learned by a separate model,

potentially trained with a larger dataset.
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Table 4.9 Hyperparameters for LMC. Latent chain hyperparameters are denoted by Z and X indicates visible chain

hyperparameters. “scale (γ)” refers to the multiplicative scale factor on the perturbation probability.

Experiment Z Steps Z Step Size Z Noise Z scale (γ) X Steps X Step Size X Noise X scale (γ)

MNIST

MPDR-S 2 0.05 0.02 0.0001 5 10 0.005 0

MPDR-R 5 0.1 0.02 0.0001 5 10 0.005 0

CIFAR-10

MPDR-S 10 0.1 0.01 0.0001 20 10 0.005 0

MPDR-R 10 0.1 0.01 0.0001 20 10 0.005 0

CIFAR-100 + ViT

MPDR-S 0 - - - 30 1 0.005 0.0001

MPDR-R 0 - - - 30 1 0.005 0.0001

DCASE 2020 (Toy Car, Toy Conveyor, Pump)

MPDR-R 0 - - - 5 10 0.005 0.0001

MPDR-IDNN 0 - - - 5 10 0.005 0.0001

DCASE 2020 (Fan, Slider, Valve)

MPDR-R 0 - - - 5 10 0.005 0.0001

MPDR-IDNN 20 0.1 0.01 0.0001 20 10 0.005 0.0001
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4.6 Experimental Details and Additional Results

In this section, we provide detailed information on how each experiment is

conducted and also provide some additional supporting experimental results.

The hyperparameters related to LMC is summarized in Table 4.9. ConvNet

architectures are provided in Table 4.10. The contents are organized by the

training dataset.

4.6.1 MNIST

Datasets

All input images are 28×28 grayscale, and each pixel value is represented as

a floating number between [0, 1]. Models are trained on the training split of

MNIST1, excluding the digit designated to be held-out. The training split con-

tains 60,000 images, and the hold-out procedure reduces the training set to

approximately 90%. We evaluate the models on the test split of MNIST, which

contains a total of 10,000 images. For non-MNIST datasets used in evaluation,

we only use their test split. All non-MNIST datasets used in the experiment

also follow the 28×28 grayscale format, similar to MNIST.

• KMNIST (KMNIST-MNIST) [76] 2 contains Japanese handwritten letters,

pre-processed into the same format as MNIST. The license of KMNIST is

CC BY-SA 4.0.

• EMNIST (EMNIST-Letters) [77] contains grayscale handwritten English al-

phabet images. Its test split contains 20,800 samples. No license information

is available.

• For the Omniglot [78] dataset, the evaluation set is used. The set consists of

1http://yann.lecun.com/exdb/mnist/
2https://github.com/rois-codh/kmnist
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13,180 images. No license information is available.

• We use the test split of FashionMNIST [79], which contains 10,000 images.

The dataset is made public under the MIT license.

• Constant dataset is a synthetic dataset that contains 28×28 images, where

all pixels have the same value. The value is randomly drawn from a uniform

distribution over [0, 1]. We use 4,000 constant images.

Autoencoder Implementation and Training

The encoder and the decoder used in MPDR, fe and fd, have the architecture

of MNIST Encoder and MNIST Decoder, provided in Table 4.10, respectively.

We use the spherical latent space SDz−1 where Dz = 32 for the main experi-

ment. The autoencoder is trained to minimize the l2 reconstruction error of the

training data for 30 epochs with Adam of learning rate 1 × 10−4. The batch

size is 128 and no data augmentation is applied. The l2 norm of the encoder is

regularized with the coefficient of 1 × 10−4. The same autoencoder is used for

both MPDR-S and MPDR-R.

MPDR Implementation and Training

In MPDR-S, the energy function Eθ has the architecture of MNIST Encoder

(Table 4.10) with Dz = 1. The network is randomly initialized from PyTorch

default setting and the spectral normalization is applied. The energy function

is trained with MPDR algorithm for 50 epochs. The learning rate is 1× 10−4.

The batch size is 128. The perturbation probability scaling factor γ for the

visible LMC chain is set to zero. For an image-like data such as MNIST, the

gradient of perturbation probability ∇x(||z̃ − fe(x)||2) introduces non-smooth

high-frequency patterns resembling adversarial noise, harming the stability of

the training. Therefore, we only use non-zero γ in latent chains in MNIST and
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CIFAR-10 experiments.

For MPDR-R, the energy function is initialized from (fe, fd) and then

trained through MPDR algorithm. The learning rate is set to 1 × 10−5. All

the other details are identical to the MPDR-S case.

Table 4.10 Convolutional neural network architectures used in experiments. The
parenthesis following the network name indicates the activation function used
in the network.

MNIST Encoder (ReLU)

Conv3(1, 32)
Conv3(32, 64)
MaxPool(2x)
Conv3(64, 64)
Conv3(64, 128)
MaxPool(2x)

Conv4(128, 1024)
FC(1024, Dz)

MNIST Decoder (ReLU)

ConvT4(Dz, 128)
Upsample(2x)

ConvT3(128, 64)
ConvT3(64, 64)
Upsample(2x)
ConvT3(64, 32)
ConvT3(32, 1)

Sigmoid()

CIFAR-10 Encoder 1

Conv4(3, 32, stride=2)
Conv4(32, 64, stride=2)
Conv4(64, 128, stride=2)
Conv2(128, 256, stride=2)

FC(256, Dz)

CIFAR-10 Decoder 1

ConvT8(Dz, 256)
ConvT4(256, 128, stride=2, pad=1)
ConvT4(128, 64, stride=2, pad=1)

ConvT1(64, 3)
Sigmoid()

CIFAR-10 Encoder 2

Conv3(3, 128, pad=1)
ResBlock(128, 128, down=True)

ResBlock(128, 128)
ResBlock(128, 256, down=True)

ResBlock(256, 256)
ResBlock(256, 256, down=True)

ResBlock(256, 256)
GlobalAvgPool()
FC(256, Dz)

CIFAR-10 Decoder 2

ConvT4(Dz, 128)
ResBlock(128, 128, up=True)
ResBlock(128, 128, up=True)
ResBlock(128, 128, up=True)

Conv3(128, 3, pad=1)

4.6.2 Sensitivity to σ

As an ablation study for noise magnitude ensemble, we perform single-noise-

magnitude experiment for MPDR and examine MPDR’s sensitivity to the noise

magnitude σ. We evaluate the OOD detection performance of MPDR-S on the
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MNIST hold-out digit 9 setting with varying values of σ. Results are shown in

Table 4.5.

The choice of σ has a significant impact on MPDR’s OOD detection perfor-

mance. In Table 4.5, σ = 0.01 gives poor OOD detection performance, particu-

larly with respect to the hold-out digit. The performance generally improves as

σ grows larger, but a large σ is not optimal for detecting EMNIST. Selecting a

single optimal σ will be very difficult, and therefore, we employ noise magnitude

ensemble which can hedge the risk of choosing a suboptimal value for σ.

Note on Reproduction

For an autoencoder-based outlier detector, denoted as “AE” in Table 4.1, we

use the same autoencoder used in MPDR with Dz.

NAE is reproduced based on its public code base3.

We tried to reproduce DRL on MNIST but failed to train it stably. The

original paper and the official code base also does not provide a guidance on

training DRL on MNIST.

4.6.3 CIFAR-10 OOD Detection

Datasets

All data used in CIFAR-10 experiment are in the 32× 32 RGB format. Models

are only trained on CIFAR-10 training set, and evaluated on the testing set of

each dataset.

• CIFAR-10 [80] contains 60,000 training images and 10,000 testing images.

Models are trained on the training set. We don’t use its class information, as

we consider only unsupervised setting. No license information available.

3https://github.com/swyoon/normalized-autoencoders
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• SVHN [81] is a set of digit images. Its test set containing 26,032 is used in

the experiment. The dataset is non-commercial use only.

• Texture [82] dataset, also called Describable Textures Dataset (DTD), con-

tains 1,880 test images. The images are resized into 32×32. No license infor-

mation available.

• CelebA [83]4 is a dataset of cropped and aligned human face images. The

test set contains 19,962 images. The dataset is for non-commercial research

purposes only. We center-crop each image into 140 × 140 and then resize it

into 32× 32.

• Constant dataset is a synthetic dataset that contains 4,000 32×32 RGB

monochrome image. All 32×32 pixels have the same RGB value which is

drawn uniform-randomly from [0, 1]3.

• CIFAR-100 [80] contains 60,000 training images and 10,000 testing images.

No license information available.

Autoencoder Implementation and Training

The autoencoders for CIFAR-10 experiment have an architecture of “CIFAR-10

Encoder 1” and “CIFAR-10 Decoder 1” in Table 4.10 with Dz = 32, 64, 128.

Each autoencoder is trained for 40 epoch with learning rate 1×10−4 and batch

size 128. During training the autoencoders, we apply the following data aug-

mentation operations: random horizontal flipping with the probability of 0.5,

random resize crop with the scale parameter [0.08, 1] with the probability 0.2,

color jittering with probability of 0.2, random grayscale operation with the prob-

ability 0.2. The color jittering parameters are the same with the one used in

SimCLR [84] (brightness 0.8, contrast 0.8, saturation 0.8, hue 0.4, with respect

to torchvision.transorms.ColorJitter implementation). The l2 norm of an

4https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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encoder is regularized with the coefficient of 0.00001. The same autoencoder is

used for both MPDR-S and MPDR-R.

MPDR Implementation and Training

The energy function in MPDR-S is “CIFAR-10 Encoder 2” with Dz = 1. The

energy function in MPDR-R is “CIFAR-10 Encoder 2” and “CIFAR-10 Decoder

2” with Dz = 1. In MPDR-R, the energy function is pre-trained by minimizing

the reconstruction error of the training data for 40 epochs. Only random hori-

zontal flip is applied and no other data augmentation is used. Similarly to the

MNIST case, we set γ = 0 for the visible LMC chain.

Note on Reproduction

For Improved CD, we train a CIFAR-10 model from scratch using the training

script provided by the authors without any modification 5. We use the model

with the best Inception Score to compute AUROC scores.

For DRL, we use the official checkpoint for T6 CIFAR-10 model 6 and

compute its energy to perform OOD detection.

Also for NVAE, we use the official CIFAR-10 checkpoint provided in the

official repository 7. We use negative log-likelihood as the outlier score. Due to

computational budget constraint, we could only set the number of importance

weighted sample to be one --num iw samples=1.

As in MNIST, we use the official CIFAR-10 checkpoint of NAE provided by

the authors.

5https://github.com/yilundu/improved_contrastive_divergence
6https://github.com/ruiqigao/recovery_likelihood
7https://github.com/NVlabs/NVAE
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4.6.4 CIFAR-100 OOD Detection on Pretrained Representa-
tion

Datasets

CIFAR-100, CIFAR-10, SVHN, and CelebA datasets are used and are described

in the previous section. Each image is resized to 224× 224 and fed to ViT-B 16

to produce a 768-dimensional vector. MD and RMD operate with this vector.

For other methods, the 768D vector is projected onto a hypersphere.

Autoencoder Implementation and Training

Each encoder and decoder is an MLP with two hidden layers where each layer

contains 1024 hidden neurons. The leaky ReLU activation function is used in

all hidden layers. We use Dz = 128, 256, 1024. The autoencoders are trained

to minimize the reconstruction error of the training data. During training, the

Gaussian noise with the standard deviation of 0.01 is added to each training

sample. The l2 norm of the encoder’s weights are regularized with the coefficient

of 1× 10−6.

MPDR Implementation and Training

The energy functions are also MLPs. The energy function of MPDR-S has the

same architecture as the encoder of the autoencoder with Dz = 1. The energy

function of MPDR-R is an autoencoder with the latent dimensionality of 1024.

The energy functions are trained for 30 epochs with the learning rate of 1×10−4.

Sensitivity to γ

We examine how γ affects MPDR’s performance. As seen in Table 4.11, MPDR

shows the best performance on the small γ regime, roughly from 0.0001 to

0.001. Setting too large γ is detrimental for the performance and often even

incurs training instabilities. It is interesting to note that γ = 0 also gives a
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decent result. One possible explanation is that γ = 0 reduces the negative

sample distribution pθ(x|z̃) to the model distribution pθ(x), which is still a

valid negative sample distribution for training an EBM.

Table 4.11 Sensitivity of γ, demonstrated in CIFAR-100 experiment. AUROC
values are displayed.

γ CIFAR10 SVHN CelebA

0 0.8580 0.9931 0.8456
0.0001 0.8626 0.9932 0.8662
0.001 0.8639 0.9918 0.8625
0.01 0.8496 0.9894 0.8576
0.1 0.8186 0.9424 0.8511

4.6.5 Acoustic Anomaly Detection

Dataset

The dataset consists of audio recordings with a duration of approximately 10

seconds, obtained through a single channel and downsampled to 16kHz. Each

recording includes both the operational sounds of the target machine and back-

ground noise from the surrounding environment. The addition of noise was

intended to replicate the conditions of real-world inspections, which often oc-

cur in noisy factory environments. The dataset covers six types of machinery,

including four sampled from the MIMII Dataset (i.e., valve, pump, fan, and slide

rail) and two from the ToyADMOS dataset (i.e., toy-car and toy-conveyor).

Preprocessing

We follow the standard preprocessing scheme used in the challenge baseline and

many of challenge participants. The approach involves the use of Short Time

Fourier Transform (STFT) to transform each audio clip into a spectrogram,

which is then converted to Mel-scale. We set the number of Mel bands as 128,
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the STFT window length as 1024, and the hop length (i.e., the number of audio

samples between adjacent STFT columns) as 512. This configuration results in

a spectrogram with 128 columns that represented the number of Mel bands. To

construct the final spectrogram, the mel spectra of five consecutive frames are

collected and combined to form a single row, resulting in a spectrogram with

640 columns. Each row of the spectrogram is sampled and used as input to the

models under investigation, with a batch size of 512, meaning that 512 rows

were randomly selected from the spectrogram at each iteration. We standardize

all data along the feature dimension to zero mean and unit variance.

Performance Measure

We refer to the scoring method introduced in [72] and use the area under the re-

ceiver operating characteristic curve (AUROC) and partial-AUROC (pAUROC)

as a quantitative measure of performance. pAUROC measures the AUC over

the area corresponding to the false positive rate from 0 to a reasonably small

value p, which we set in all our experiments as 0.1. Each measure is defined as

follows:

AUROC =
1

N−N+

N−∑
i=1

N+∑
i=j

H(Aθ(x+j )−Aθ(x
−
i )) (4.11)

pAUROC =
1

⌊pN−⌋N+

⌊pN−⌋∑
i=1

N+∑
i=j

H(Aθ(x+j )−Aθ(x
−
i )) (4.12)

where {x−i }
N−
i=1 and {x+j }

N+

j=1 are normal and anomalous samples, respec-

tively, ⌊·⌋ indicates the flooring function, and H(·) represents a hard-threshold

function whose output is 1 for a positive argument and 0 otherwise.
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Implementation of Models

We utilize a standard autoencoder model provided by DCASE 2020 Challenge

organizers and compare it to our approach. The model comprises a symmetri-

cal arrangement of fully-connected layers in the encoder and decoder; 5 fully

connected hidden layers in the input and 5 in the output, with 128-dimensional

hidden layers and 32-dimensional latent space. In addition, we incorporate the

IDNN model, which predicts the excluded frame using all frames except the

central one instead of reconstructing the entire sequence. The IDNN model

outperforms the autoencoder on non-stationary sound signals, i.e., sounds with

short durations. The model consists of a encoder and decoder, which is similar

to the components of an autoencoder but has an asymmetric layout; 3 fully-

connected hidden layers that contract in dimension (64, 32, 16) are used in the

encoder and 3 layers that expand in dimension (16, 32, 64) compose the de-

coder. The architectural design of each model follows the specifications outlined

in their respective papers.

The MPDR models used for the experiment, MPDR-R and MPDR-IDNN,

consists of an ensemble of autoencoders and an energy function, where the terms

”R” and ”IDNN” specify whether an autoencoder of IDNN is used to compute

the energy, respectively. Each autoencoder consists of an encoder, spherical

embedding layer, decoder; the encoder and decoder consist of 3 fully-connected

layers each, with 1024-dimensional hidden space and a latent space with a

dimension chosen among 32, 64, or 128. The autoencoder energy function used

in the experiment is built using layers 5 fully-connected encoder layers and 5

decoder layers, whose hidden layers have 128 nodes and latent layer is composed

of 32 nodes. The layers of IDNN are indentical to that of the autoencoder

version, except for the input and output layers whose dimensions differ and
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add up to the total number of sampled frames. LMC hyperparameters used are

listed in Table 4.9.

4.7 Empirical Guidelines for Implementing MPDR

Here, we present empirical tips and observations we found useful in achieving

competitive OOD detection performance with MPDR. The list also includes

heuristics that did not work when we tried.

• The training progress can be monitored by measuring an OOD detection

metric (i.e., AUROC) computed between test (or validation) inliers and syn-

thetic samples uniformly sampled over the autoencoder manifoldM. During

a successful and stable run, this score tends to increase smoothly.

• Metropolis-style adjustment for LMC [28] did not improve OOD performance.

• The choice of activation function in the energy function affects the OOD

detection performance significantly. We found that ReLU and LeakyReLU

provide good results in general.

• In image datasets, stopping the training of the autoencoder manifold before

convergence improves OOD detection performance.

• A longer Markov chains, both visible and latent, do not always lead to better

OOD detection performance.

• A larger autoencoder does not always lead to better OOD detection perfor-

mance.

• A larger energy function does not always lead to better OOD detection per-

formance.
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Chapter 5

Generating Adversarial Outliers with
Energy-Based Models

5.1 Introduction

Outlier detection, also called out-of-distribution (OOD) detection, is concerned

with determining whether an input lies outside the training data distribution

[85, 86]. An OOD detector is an essential component of a trustworthy machine

learning system, since it can prevent erroneously overconfident predictions, en-

able the detection of distribution shift, and facilitate active or continual learning

[87]. Due to its significance, there has been increasing amount of attention has

been devoted to building a reliable OOD detector.

The performance of OOD detection has been improved rapidly in recent

years. There are a number of OOD detectors achieving AUROC higher than

0.99 on the popular CIFAR-10 (in) vs SVHN (out) benchmark which was once

known to be difficult. It is tempting to conclude that the OOD detectors are

good enough for the given setting and move our attention to more challenging

benchmarks, for example, large-scale problems with a greater diversity among

inliers [71], or near-OOD problems where outliers look more similar to inliers

[68].

However, these excellent OOD detection results are often fragile, and care

must be taken before we declare a detector to be reliable solely based on a high
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All Possible Data 𝒳

Inlier Space 𝑆𝑖𝑛
Outlier Space 𝑆𝑜𝑢𝑡

Adversarial Noise

Outlier Manifold (Instance-Conditional)

Outlier Manifold
(Unconditional)

Figure 5.1 Illustration of outlier manifolds. Real images are highlighted with
frames, and synthetic images are shown without frame. An instance-conditional
outlier manifold is constructed from a real test outlier and spans the possible
transformations of the sample. An unconditional outlier manifold is learned
from multiple outliers. AGOM searches an outlier manifold for the “worst-case”
outlier that fools a given OOD detector most strongly.

AUROC score. It is known that an OOD detector may misclassify an outlier

as in-distribution when the outlier is corrupted (for example, blurred) [88] or

perturbed with an adversarially generated noise [89]. Since the content of an

outlier image will remain the same as OOD after these perturbations, these

cases are obvious failure modes in OOD detection and are addressed in recent

work [90, 91, 92, 93]. Meanwhile, these perturbation modes only represent a

small fraction of possible perturbations that might occur to an outlier image.

In this paper, we question whether previously studied perturbations can val-

idate the reliability of OOD detectors. In principle, the prediction from an OOD

detector should be robust against any perturbation that preserves the outlier-

ness of a datum. Although it may be infeasible to construct all such perturba-
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tions, we believe that it is still important to investigate as many outlier-ness-

preserving perturbations as possible to eventually obtain more reliable OOD

detectors. The underlying premise behind our construction of the outlier man-

ifold is that there exist outlier-ness-preserving visual perturbations described

by a small number of continuous factors, motivated by the idea that variations

in perceptual stimuli often form a continuous manifold [94]. Specifically, in our

experiments, we construct outlier manifolds by using well-known data transfor-

mation operations, such as affine and color transforms, as well as a generative

model, such as generative adversarial networks (GAN), that can learn the man-

ifold of data. However, AGOM is not limited to a particular choice of outlier

manifold and hence highly extensible.

The process of verifying an OOD detector’s robustness with respect to an

outlier manifold is formulated as an optimization problem, similar to adversarial

attacks. On a given outlier manifold, AGOM searches for the outlier that is

most confidently misclassified as in-distribution by the detector being tested.

We address the optimization problem by employing an ensemble of gradient-

free and gradient-based Markov Chain Monte Carlo (MCMC) methods. We

find MCMC being highly effective in the optimization in AGOM, probably

because the optimization problem in a low-dimensional manifold has multiple

local optima and the ergodicity of MCMC helps to find a better optimum.

We apply AGOM on OOD detectors having AUROC scores near 1.0 on test

OOD datasets and find that AGOM can successfully generate outlier images

misclassified as in-distribution for all detectors. The OOD detectors are shown

to be a different degree of vulnerability against AGOM, while the detector based

on the vision transformer (ViT) [68] being the most robust one. Deeper analysis

on the worst-case outliers found by AGOM reveals that many of OOD detectors

have “blind spots”, a certain visual feature in an outlier image that makes an
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OOD detector mistake the outlier as an inlier.

AGOM addresses a different type of vulnerabilities in an OOD detector

from adversarial noises, such as l∞ attack. While an adversarial noise is indis-

tinguishable and high-dimensional, perturbations generated from AGOM are

low-dimensional and visually salient. Interestingly, improving robustness on

one type of attack does not necessarily translate into the robustness to the

other. Our experimental results indeed show that the OOD detectors trained

with techniques for improving the robustness against adversarial noises exhibit

limited robustness against AGOM (Table 1 and 2). On the other hand, ViT,

possessing promising robustness against AGOM, is still susceptible to adversar-

ial noises, according to [95]. We believe AGOM and the noise-like attacks are

complementary to each other, and an ideal OOD detector should be robust to

both types of attacks.

Our contributions can be summarized as follows:

• We propose Adversarial Generation of Outliers on Manifolds (AGOM), a

novel generative attack to evaluate the robustness of OOD detection with

respect to perceptually plausible variations of a given outlier dataset.

• We provide extensive benchmark on the existing OOD detectors using AGOM

and show that the existing OOD detectors are vulnerability to AGOM.

• The results from AGOM reveal the previously unexplored failure mode of

OOD detectors and provide insights on methods that make OOD detection

more robust.

5.2 Related Work

OOD detection. The task of recognizing samples not from the training dis-

tribution has been referred to as outlier detection [85], novelty detection [96],

one-class classification [21], and OOD detection [86]. We defer a comprehensive
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review to a recent good survey [97]. While a large number of OOD detection

methods have been proposed, there are several common high-level ideas. Find-

ing out which approach yields the best robustness is one of our key interest.

OOD detection is often performed based on the information in the output layer,

e.g., the logits and the probabilities [86, 47, 98, 71]. Auxiliary OOD datasets

can be used to calibrate OOD detectors [89, 91, 99, 88]. When a strong rep-

resentation is available, Mahalanobis distance in the feature space can be a

good OOD detector [100, 69, 68]. The disagreement among separately trained

classifiers can also be used for OOD detection [101]. The effectiveness of self-

supervised learning is investigated in [102, 103, 93]. Using synthetic outlier data

during training can be beneficial for OOD detection. Synthetic outliers may be

generated in the data space using GAN [104] or in a feature space in [105].

Robustness of OOD Detectors. The robustness of an OOD detector is

measured by the amount of degradation in performance under perturbation on

test outliers. Small-normed adversarial perturbations are the most extensively

studied mode of perturbation. Most OOD detectors mistake an outlier as in-

distribution when the outlier is perturbed with an adversarial noise, unless they

are specifically trained to be robust to the attack. The perturbation is synthe-

sized through an optimization method which may utilize the gradient of an

OOD detector. The resulting perturbation is often constrained to have a very

small norm, typically measured in l∞ norm, so that the perturbed outlier looks

visually the same to human eyes. Various techniques have been proposed to im-

prove the robustness against adversarial perturbations, for example, adversarial

training [89, 88], interval bound propagation [91], an informative outlier mining

method combined with adversarial training [88], and a hybrid model with prov-

able binary classifier [92]. Another class of perturbations used to benchmark

the robustness in OOD detection is image corruption operations, such as JPEG
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compression and Gaussian blur, proposed in [106]. When applied to outliers,

the corruptions can significantly degrade OOD detection [88, 93]. Still, these

corruptions are controlled by discrete parameters, unlike AGOM where visual

perturbations are parametrized by continuous parameters.

Generative Models in Generating Perturbations. Recall that adver-

sarially perturbed images are actually synthetic images. It is a natural extension

to exploit more diverse synthetic data to evaluate the model’s robustness. In

[107, 108, 109, 110, 111], GAN is employed to generate adversarial examples to

generate adversarial samples to fool a classifier. The paper show that a model

robust to noise-like attack is not necessarily robust to other types of attack. The

ideas of adversarially manipulating an image in a semantic code space [112] and

finding adversarial image transformation [113, 114] are investigated in the con-

text of adversarial attack towards supervised classifiers. However, these ideas

has rarely been applied to OOD detection.

5.3 Robustness in OOD Detection

5.3.1 Out-of-Distribution Detection

OOD detection, or also called outlier detection, is a binary classification problem

of discriminating in- and out-of-distribution samples. First of all, we represent

a datum as a D-dimensional real-valued vector x ∈ X ⊂ RD, where X is the

set of all possible values of a valid datum. We mainly consider image data and

assume pixels have values between 0 and 1. Therefore, X = [0, 1]D.

A vector x is defined as an in-distribution sample or an inlier, when the

vector is in the inlier space x ∈ Sin. Similarly, x is an out-of-distribution

(OOD) sample or an outlier, when the vector belongs to the outlier space

x ∈ Sout. The union of the inlier set and the outlier set is the whole data space

X = Sin∪Sout. We assume no overlap between inliers and outliers Sin∩Sout = ∅.
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See Fig. 5.1 for the illustration. In OOD detection, we do not know the boundary

between Sin and Sout and are only given a finite set of training in-distribution

samples.

An OOD detector f : RD → R is a function which outputs a larger value

for an input more likely to be an outlier. A test sample x∗ is classified as OOD

if f(x∗) > ηf for some threshold ηf . The function value f(x) will be referred

to as an outlier score from the detector. We shall assume f(x) is bounded.

An OOD detector is trained from the in-distribution training set and does not

have an access to test outliers. However, some OOD detectors, such as [47], use

a dataset of auxiliary outliers during training. The detector f(x) may or may

not be differentiable. Some OOD detectors are not readily differentiable due

to operations used in their forward pass. The performance of OOD detector is

measured in metrics such as the area under the receiver operating characteristic

curve (AUROC or AUC) or the false positive rate at the threshold of 95% of

true positive rate (FPR95). Such metrics are computed from a pair of a test

inlier dataset and a test OOD dataset Dout ⊂ Sout.

5.3.2 Robustness of OOD Detectors

The robustness of a machine learning model can be quantified by the worst-case

performance under perturbations applied to input data. While the perturbation

can be applied to both inliers and outliers, in this paper, we will only focus on

perturbations on outliers for two reasons. First, the confident misclassification

of an outlier is often more dangerous. For example, classifying a broken battery

as normal in a manufacturing line may lead to an accidents such as explosion.

Second, it is unclear whether an inlier sample can remain in-distribution after

a perturbation, because we do not know the exact boundary of Sin.

A threat model T is a set of possible perturbed data. When T is generated by
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perturbing a single instance, then we call this threat model instance-conditional.

A threat model can also be constructed from multiple instances, then we call the

threat model unconditional. One of the most widely studied instance-conditional

threat model is l∞-ball around each datum: T∞(xout) = {x| ∥x− xout∥∞ ≤ ϵ},

where ∥·∥∞ denotes l∞ norm and ϵ > 0 is a radius of the ball. In the evaluation

of an OOD detector’s robustness, we require and assume T to contain outliers

only. We shall revisit this point in Sec. 5.4.1.

The robustness of an OOD detector f under a threat model T is evaluated

by finding the worst-case outlier in T that has the lowest outlier score.

xadv = argmin
x

f(x) such that x ∈ T . (5.1)

We may call xadv an adversarial sample. The robustness is measured by how

low f(xadv) is compared to the outlier scores of the in-distribution test samples.

If T is instance-conditional, it is common to collect multiple xadv and compute

a binary classification metric such as AUROC. A larger drop in AUROC score

after a perturbation indicates more significant vulnerability.

Despite the flexibility in the choice of T , very limited choices of T have been

investigated in OOD detection so far. Our key contribution is investigation of

the unexplored choices of T which can reflect more diverse and realistic visual

variations that might occur to outliers.

5.4 Adversarial Generation of Outliers on Manifolds

Here, we introduce Adversarial Generation of Outliers on Manifold, a

generative attack algorithm designed for OOD detectors. AGOM follows the

formulation introduced in Eq. 5.1 and therefore is characterized by a threat

model T and an optimization method to find an adversarial outlier xadv within

T . The novelty of AGOM lies in the design of T particularly relevant to OOD
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detection and the choice of an effective approach for optimization.

Given an OOD detector f(·) and a test OOD dataset Dout, AGOM synthe-

sizes an outlier xadv that is misclassified as in-distribution with strong confi-

dence by f , i.e., having low outlier scores. The adversarial outliers xadv gener-

ated by AGOM reveal the unexplored weaknesses in highly competitive OOD

detectors, demonstrating the significance of AGOM. Examples of xadv will be

provided in Sec. 5.5. As software, AGOM is an off-the-shelf tool to assess the

robustness of an OOD detector and is applicable to a wide range of OOD de-

tectors with significantly different designs.

5.4.1 Outlier Manifolds

We aim to build a threat model T that only contains OOD data while covers

a significant degree of visual variations. To that end, we propose to enforce a

threat model to have a low dimensionality. The low-dimensionality constraint

is effective in suppressing a threat model from accidentally overlaps with the

inlier space Sin, while preserving the ability to represent plausible variations in

visual features [94].

The outlier manifold, a threat model we present, is a set that is con-

structed from a low-dimensional latent factor z ∈ RD′
(D′ < D) and a contin-

uous and differentiable generator g(·):

Tg = {x = g(z)| z ∈ Z}. (5.2)

where the careful choice of g(z) based on domain knowledge ensures Tg does not

contain in-distribution data. We identify two classes of visual operations that

ensure the generated sample is OOD and build g(z) to represent such operations

(Fig. 5.2): identity-preserving transforms and novel attribute combinations.

Identity-Preserving Transforms (IPT). IPT is an operation that alters

the lower-level visual characteristics of an image but leaves the identity and the
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high-level information unchanged. IPTs are widely used as data augmentation

technique in classification [115], generative modeling [116], and self-supervised

learning [84]. In IPT, the generator is conditioned on each outlier datum and

therefore the resulting outlier manifold is instance-conditional :

x = g(z;xout), xout ∈ Dout. (5.3)

We implement two IPT outlier manifolds, Affine and Color. Affine is a five-

dimensional outlier manifold which spans images transformed by rotation, trans-

lation (x, y), scaling, and shear operation. Color outlier manifold contains im-

ages transformed in brightness, contrast, saturation and hue from xout. Even

though visual variations that Affine and Color introduce might look trivial, our

experiment shows that many of existing OOD detectors are not robust to these

elementary transforms.

Novel Attribute Combination (NAC). Instead of perturbing a single

outlier, we may leverage multiple outliers to build an outlier manifold. NAC uses

OOD dataset Dout to construct a manifold of possible outliers by recombining

visual features present in Dout. Imagine a manifold of cat images generated by

all possible combinations of attributes such as fur color (Fig. 5.2). Synthesizing

a new example with a high fidelity is generally a difficult task, but recent

developments in generative modeling provide strong tools, such as GANs [117].

We construct GAN outlier manifold, using StyleGAN2 generator [118] as g(x).

GAN outlier manifold is unconditional. We train g(x) with Projected GAN

technique [119] (See 5.5.1). Note that we define the outlier manifold in the

“Z-space” of a stylegan generator, which resides before the mapping network,

instead of “W -space” which are more frequently used in GAN inversion. Using

Z-space significantly reduces the risk of accidentally generating an inlier.

GAN is one of multiple possible choices for constructing a NAC outlier
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Identity-Preserving Transforms

Novel Attribute Combinations

Outlier Dataset 𝒟𝑜𝑢𝑡

Figure 5.2 Two classes of outlier manifolds considered in AGOM.

manifold and is chosen from practical considerations over other options. An

autoencoder [17] can be used in principle, but its generation quality is limited,

and it may generate samples far from its training data [64]. Diffusion models

[120] and flow-based models [49] are strong generative models, but they do

not exploit the low-dimensional structure and are too slow in their generation,

making optimization in Eq. 5.4 difficult. We also set the truncation parameter

ψ less than 1 in StyleGAN2 to keep the generation faithful to the given dataset.

5.4.2 Adversarial Generation via MCMC Ensemble

With an outlier manifold Tg, the robustness evaluation (Eq. 5.1) can now be

conducted in the low-dimensional space of the latent codes Z ⊂ RD′
:

zadv = argmin
z∈Z

f(g(z)); xadv = g(zadv). (5.4)

We find that a naive application of a gradient-based optimizer to Eq. 5.4 gives

a limited success, due to the severe local optima problem.

We approach this optimization with an ensemble of three optimizers: ran-

dom search [122], gradient-free MCMC (Metropolis-Hastings; MH; [123]), and

gradient-based MCMC (Langevin Monte Carlo; LMC; [28]). Having a suite of
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Metric AUC MinRank

OOD SVHN CelebA SVHN CelebA

Threat Clean Affine Color GAN Clean Affine Color GAN Clean GAN Clean GAN

Weak Detectors
GLOW [49] .069 .008 .000 .000 .542 .056 .001 .036 8 1 177 24
PIXELCNN [48] .076 .002 .000 .000 .639 .062 .003 .109 0 0 391 369
AE [3] .080 .011 .000 .000 .533 .055 .001 .036 0 0 18 75

Strong Detectors
NAE [64] .935 .755 .703 .104 .874 .706 .339 .092 11 11 616 48
GOOD [91] .943 .565 .659 .474 .939 .685 .662 .551 2141 1249 3558 2741
ACET [89] .966 .753 .868 .465 .986 .798 .904 .724 3414 1598 4845 4549
CEDA [89] .979 .636 .913 .555 .981 .798 .906 .635 3348 0 3200 2936
SSD [103] .989 .631 .936 .396 .780 .578 .676 .301 4132 223 2331 1669
MD [100] .993 .747 .495 .159 .796 .294 .056 .082 69 3 5 3
SNGP [121] .994 .761 .885 .395 .882 .404 .601 .056 2427 178 8 0
PROOD [92] .995 .898 .964 .755 .996 .819 .977 .942 4683 791 6896 4535
ATOM [88] .996 .908 .977 .661 .998 .911 .975 .848 6203 3002 7517 3634
OE [47] .997 .751 .964 .742 .992 .766 .919 .565 5636 3049 5217 2248
ROWL [99] .997 .675 .970 .469 .991 .778 .931 .513 5213 799 2454 1467
CSI [102] .998 .940 .992 .943 .890 .778 .863 .519 8208 7670 3727 3225
ViT [68] 1.000 .978 .988 .816 1.000 .963 .988 .928 7218 5607 8870 6596

Table 5.1 CIFAR-10 experiment. Clean indicates the test split of a test OOD
dataset. AUC scores are evaluated using 10,000 inliers and 1,000 outliers. Min-
Rank is computed from a run which consists of 1,000 independent MCMC
chains. The boldface are the largest numbers and the underlined are the small-
est numbers among strong detectors.

optimizers makes the optimization robust across a wide variety of OOD detec-

tors which are built based on distinct inductive biases and architectures.

Gradient-free and gradient-based MCMC is a key component in our opti-

mizer suite. We employ MCMC because of its capability to traversing multiple

local optima thanks to the ergodicity of a Markov chain. To apply MCMC, we

define an auxiliary distribution constructed from f and T , from which MCMC

will generate samples:

pf (z) =
1

Z
exp(−f(g(z))/T ), (5.5)

where T > 0 is the temperature. Z is the normalization constant Z =
∫
Z exp(−f(g(z))/T )dz.

This formulation can be commonly found in simulated annealing techniques

[124, 125]. For optimization, we take the sample z with the lowest f(g(z)) value

among the trajectory of MCMC.
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We first run MH and then run LMC from the best point found from MH. In

a black-box setting where the gradient information is unavailable, we only use

the random search and MH. In fact, we find that MH is often very competitive

and robust, especially in outlier manifolds in AGOM where the dimensionality

is not too high. We defer the comparison of these three optimizers to Appendix.

The optimization problem in Eq. (5.4) can be approached in a number of

other ways. Black-box global optimization methods, such as Bayesian optimiza-

tion [126], are applicable, and there are other choices for MCMC samplers as

well, for example, Hamiltonian Monte Carlo and Gibbs sampling. However, we

aim to provide a simple and robust method that works.

5.5 Experiments

In our experiments, we evaluate the robustness of the state-of-the-art OOD de-

tectors using AGOM. We deliberately chose OOD detection benchmarks where

existing OOD detectors already achieved AUROC near 1.0 in order to test

how robust the score is. AGOM is able to generate synthetic outliers that are

misclassified by the detectors with high confidence.

5.5.1 Experimental Settings

Datasets. We use CIFAR-10 (32×32 RGB; [80]) and Restricted ImageNet

(RImgNet; 224×224; [127]) as in-distribution datasets. CIFAR-10 is the most

extensively studied dataset where a number of OOD detectors demonstrate AU-

ROC near 1.0. RImgNet is a subset of ImageNet-1k that only contains animals

(including insects). The original ImageNet labels are aggregated into 9 animal

categories. RImgNet gives a relatively clear definition for in-distribution data,

and therefore it is easier for a human to qualitatively inspect each cases in the

benchmark.
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For CIFAR-10 experiment, we use SVHN [81] and CelebA [83] as test OOD

datasets. CIFAR-10 (in) vs SVHN (out) dataset pair becomes popular after the

observation that deep generative models, such as PixelCNN++ or Glow, classi-

fies SVHN examples are more likely to be CIFAR-10 than the actual CIFAR-10

samples [47, 18], i.e., producing AUC scores close to 0. Now, there are a num-

ber of OOD detectors that achieves very high OOD detection score in this

benchmark (Table 5.1).

For RImgNet experiment, we use FGVC Aircraft [128], Oxford Flowers [129],

and EuroSAT [130]. For Flowers dataset, we find that there can be some class

overlap between RImgNet, since some flower images contain an insect or a

bird. We manually inspect all test images and remove 219 images and will

release this list. EuroSAT is a collection of satellite images from Sentinel-2

satellite. EuroSAT has a significantly different visual characteristic to FGVC

and Flowers.

OOD Detectors. We reproduce or re-implement 16 OOD detectors for

CIFAR-10 experiment and 4 OOD detectors for RImgNet. While implement-

ing detectors, we try to diversify the idea which OOD detectors are based on.

We also intentionally include weak OOD detectors as well. All OOD detectors

are implemented in PyTorch. We use the pre-trained model from the publi-

cation whenever possible. Detailed information on OOD detectors and their

implementation can be found in Appendix.

Evaluation Metrics. We compute AUC score when we measure how well

an OOD detector separates inliers and outliers. When a perturbations is applied

to a group of outliers, their AUC typically drops. The magnitude of the drop

quantifies the vulnerability of an OOD detector to the perturbations.

Since we are interested in the worst-case performance of OOD detection,

we also compute a new metric, MinRank. By rank, we refer the rank of an
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Figure 5.3 The images that Glow believes to be CIFAR-10, synthesize by
AGOM. Glow trained on CIFAR-10 has an blind spot of misclassifying low-
complexity images as CIFAR-10. Therefore, AGOM maximizes the size of the
black area (Affine) or turns images into grayscale (Color). The numbers indi-
cate the rank of outlier score among test inliers.
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outlier score f(x) among the outlier scores of the test in-distribution samples.

The lowest rank is 0, which indicates that the detector believes the outlier is

more likely to be in-distribution than any of test inliers. The number of test

samples in CIFAR-10 is 10,000 and 10,150 for RImgNet, providing the upper

bound of the rank. MinRank is the minimum rank among a group of outliers

and it indicates how strong the detector is fooled in the worst case situation.
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Metric AUC MinRank

OOD FGVC Flowers EuroSat FGVC Flowers EuroSat

Threat Clean Affine Color Clean Affine Color Clean Affine Color Clean Affine Color GAN Clean Affine Color GAN Clean Affine Color GAN

MSP .927 .697 .770 .918 .707 .747 .987 .859 .684 3390 1418 2001 1306 3367 1871 2825 1833 8183 7018 1213 4461
OE .998 .948 .978 .968 .857 .889 .976 .936 .908 8650 5490 8813 8084 1256 825 1207 1384 7545 7907 6993 7763
PROOD .998 .960 .974 .967 .860 .874 .975 .924 .877 9333 6490 7395 6707 4531 2742 1861 718 7836 8035 4897 7534
ViT 1.000 .998 0.999 .998 .992 .986 .999 .993 .995 10075 9571 10059 9549 9715 9715 8328 7100 8149 8149 8149 8005

Table 5.2 RImgNet Experiment. AGOM is applied to 4 OOD detectors. Other conditions are the same as Table
5.1.
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Outlier Manifolds. We use Affine (5D), Color (4D), and GAN (16D and

64D) outlier manifolds. The first two are instance-conditional, and GAN is

an unconditional outlier manifolds. Operations in Affine and Color are imple-

mented to be differentiable by Kornia [131]. For GAN outlier manifolds, we

train StyleGAN2 generator with Projected GAN discriminator on the test split

of OOD datasets. Projected GAN enables data-efficient GAN training by uti-

lizing representations from a pre-trained network. We are aware that using a

pre-trained network may introduce a bias in FID score [132]. Nonetheless, we

proceed with Projected GAN because it gives perceptually better samples and

measuring FID score is not our goal. We train two GANs with two different

latent dimensionalities, 16D and 64D. We ensemble the results by taking the

most strong adversarial sample.

MCMC. To deal with the scale difference in scores f(x), the scores are

standardized to have the zero mean and the variance of one, when evaluated

on test in-distribution data. For all experiments, the temperature is set T = 1.

MH algorithm with Gaussian proposal distribution, where the standard de-

viation of the proposal distribution is fixed to 0.1. A proposal is stochastically

accepted based on Metropolis’ criterion. For LMC, we set the step size as 0.05

and the standard deviation of the noise as 0.1. We find that the gradient clipping

at 0.1 gives more stable results. Each MH chain runs for 2,000 steps, where each

step corresponds to a single detector evaluation. Following a MH chain, LMC

chain runs for 200 steps. We do not apply LMC on a black-box OOD detector

which is MD in our experiment. For instance-conditional outlier manifolds, we

use the first 1,000 examples of a test OOD dataset. Among the visited states

in a trajectory, the sample with the smallest f(x) is selected.
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Figure 5.4 Adversarial samples from GAN outlier manifold. A subset of OOD
detectors are shown due to the space contraint.
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5.5.2 CIFAR-10 Experiment

AGOM with Affine, Color, and GAN outlier manifolds is applied to 16 OOD

detectors. Table 5.1 provides the results. Overall, all OOD detectors exhibit

drops in OOD detection performance upon the perturbation from AGOM. Also,

AGOM is able to synthesizes pathological outliers which has a significantly

low rank score. Overall, CSI, and ViT show better robustness than others al-

though there exist several adversarial outliers found by AGOM that can fool

CSI and ViT. We suspect that self-supervised learning and transformer archi-

tecture trained with a large body of data provide provide representation robust

to low-level variation irrelevant to semantics.

Weak Detectors.We confirm the effectiveness of AGOM by applying them

on the weak detectors, Glow, PixelCNN, and AE, where the weaknesses have

already been analyzed. It is known that Glow, PXCNN, and AE erroneously

classify low-complexity images, such as monotone images or highly blurry im-

ages, as in-distribution [50, 64]. The known failure mode can be clearly observed

from Figure 5.3.

Effectiveness of Low-Dimensional Variation. Considering their low

dimensionality, Affine and Color variation models are surprisingly effective at

finding failure modes for some models. GOOD, ACET, and CEDA, the detec-

tors trained to be robust against l∞ threat model, show significant degree of

vulnerability under Affine. This indicates that optimizing for the robustness

against one threat model does not necessarily improve the robustness against

other threat models. Meanwhile, CSI show strong robustness against Affine and

Color, probably because transformations similar to Affine and Color are used

during its training.

Characteristic Failure Modes. Adversarial samples found by AGOM
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Figure 5.5 Adversarial samples from AGOM in RImgNet experiment. More
examples can be found in Appendix. (Top two rows) Affine (Bottom) GAN.
Even adversarial color distortion can fool an OOD detector that is designed to
have improved robustness against l∞ attack.

reveals blind spots in OOD detection. For example, there is a color bias in

MD, as demonstrated by samples in Figure 5.4. MD classifies an image as in-

distribution when there is vivid magenta, green or blue colors. GOOD and SSD

classify blond women as CIFAR-10. Even though ViT shows a decent degree

of robustness across outlier manifolds, it isclassifies digit ”4” as in-distribution

with confidence. In fact, we find that this example is indeed classified as air-

plane and its representation in ViT is very close to an in-distribution airplane

image (details in Appendix). This example illustrates the importance of learning

robust and accurate representation in reliable OOD detection.

5.5.3 RImgNet Experiment

We apply AGOM to 4 OOD detectors trained on RImgNet. The results are

shown in Table 5.2. Maximum Softmax Probability (MSP; [86]) shows a signif-

icant degree of vulnerability to AGOM, despite its fair OOD detection AUC.

OE and ProoD are particularly susceptible to Affine and Color outlier mani-

fold, showing low MinRanks. Examples are shown in Fig. 5.5. It is interesting
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OOD FGVC Flowers EuroSAT

Threat Clean l∞ Clean l∞ Clean l∞

MSP .926 .007 .918 .130 .986 .007
OE .998 .015 .968 .007 .976 .000
Prood .998 .680 .967 .564 .975 .429
ViT .999 .067 .998 .312 .999 .037

Table 5.3 Robustness to l∞ attack, measured in AUC.

to note that an OOD detector can be fooled by color jittering. Unlike l∞ at-

tack, AGOM can not turn any given image into an adversarial sample, as can

be seen in relatively high AUC in Table 5.2. However, AGOM can search for

unexpected failure cases which has low rank score.

ViT shows an excellent degree of overall robustness. However, AGOM re-

veals some of its failure modes. For example, MinRank of ViT for Flowers-Color

is 8328, which is lower than the most commonly used 95% true-positive rate

threshold. ViT is also fooled by images synthesized from GAN outlier manifold

(Fig. 5.5).

For comparison, we also evaluate l∞ robustness of OOD detectors following

the protocol of [92]. The results are shown in Table 5.3. ProoD, a model with

the improved l∞ robustness has a limited AGOM-robustness, while ViT, having

a good AGOM-robustness, is susceptible to l∞ attack.

5.6 Discussion

Generative Attacks in Supervised Setting. The idea of using generative

models [107, 108, 109, 110, 111] or image transformations [113, 114, 133] in

adversarial attack are mainly investigated only in supervised learning setting,

where a generative method modifies or generates adversarial in-distribution

samples. However, it is problematic that a generation method can sometimes fail
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and produce low-quality images that may not be considered as in-distribution.

For example, suppose a human face is highly distorted by an adversarial trans-

form so that the face is barely recognizable. It is questionable if a face recogni-

tion algorithm is supposed to classify such an example correctly, as the trans-

formed sample can be considered OOD. Generation failure is a less critical

problem when generative methods are applied to generate OOD samples, as

in AGOM, because the distorted OOD images are still OOD that should be

detected by OOD detectors.

Limitations First, we can only prove that an OOD detector has not achieved

the robustness. Even though an OOD detector is shown to be robust to AGOM,

the detector may be susceptible to other threat models or other OOD data. How-

ever, this limitation is fundamental to all empirical evaluation methods not just

to AGOM. Second, AGOM relies heavily on human domain knowledge when

constructing an outlier manifold. Application of AGOM to other OOD detec-

tion domains such as sound [134] may require an expert supervision. Third,

building a GAN outlier manifold may require a non-trivial number of outlier

data points which are not always available in practice. However, by leveraging

recent techniques enabling GAN training with a small number of data, AGOM

can operate even when only a few thousand data are given, as in our RImgNet

experiment, where there are only 3334 samples in the FGVC test set.

Ethics Statement. Our main ethical concern is that a subset of OOD de-

tectors used in our experiment, OE, CEDA, ACET, GOOD, ProoD are trained

using 80 Million Tiny Images dataset [135], which is retracted by authors over

ethical concerns. While we were aware of the issue of the dataset, the use of

models trained on the dataset was inevitable because of the reproducibility. To

minimize the effect of the retracted dataset, the dataset was never used directly.

We only used the publicly available model checkpoints, and did not download
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or access to a copy of dataset.

5.7 Conclusion

In this paper, we have addressed the limitations of the current robustness eval-

uation protocol and proposed a novel framework, Adversarial Generation of

Outliers on Manifolds, which utilize a generative approach to investigate the

failure modes of OOD detectors beyond noise-like perturbations or preset cor-

ruptions.

AGOM implies an interesting connection between generative modeling and

the model evaluation process. Conventionally, models are only evaluated using

real samples which are scarce. Since our ability to generate realistic synthetic

data is improving rapidly [136, 137], we now have an access to the essentially

infinite number of realistic synthetic data. As in AGOM, the synthetic data

and its generator can help revealing the hidden weaknesses of machine learning

models that were not previously not accessible due to the lack of real test data.
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Chapter 6

Generative Gaussian Process:
Gaussian Process as an Energy-Based
Model

6.1 Introduction

Gaussian Process Regression (GP) is a non-parametric Bayesian regression algo-

rithm that supports the analytic evaluation of predictive variance. The variance

of the predictive distribution p(y|x) is often considered a proxy for how uncer-

tain the prediction is, making GP an attractive choice for applications that

require uncertainty quantification, such as bandit optimization, active learning

[138], black-box optimization [139], and robust control.

A careful observation will tell us that the predictive variance of GP ap-

proximately reflects the scarcity of data around the point of prediction. The

predictive variance will be likely to have a large value when the point is far

from the training data and will have a small value as the point comes closer to

the training data. This behavior justifies the use of predictive variance as the

measure of uncertainty, as it is intuitive to be more sure about our prediction

near the training data. Meanwhile, how densely populated data are can also

be measured in a different yet well-established technique of density estimation.

However, to the best of our knowledge, the connection between GP’s predictive

variance and density estimation has not been investigated yet.
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In this chapter, we reveal that computing the predictive variance of GP

is indeed equivalent to a certain form of density estimation. From the inves-

tigation of GP’s predictive variance expression, we show that the predictive

variance can be seen as the likelihood of a Gaussian distribution defined on the

feature space of GP. The predictive variance will be large if the likelihood of this

Gaussian distribution is small. However, performing density estimation on the

feature space, not the original input space, may cause problems in uncertainty

quantification under the current practice of GP. The input data density can be

arbitrarily distorted in the feature space. A low-input-density point may have

a large density when mapped into the feature space. In such case, GP produces

a narrow predictive variance and becomes overconfident about its prediction

on an obviously unexplored input point. This problem can be exacerbated un-

der the current training algorithm of GP, where model is only optimized for

predictive marginal likelihood p(y|x) and ignores the input data density p(x).

To address this need, we propose Generative GP (GenGP), which treats GP

as an energy-based generative model trained to model the joint distribution of

data. GenGP offers significantly better epistemic uncertainty estimates while

maintaining the predictive performance of GP, while effectively remedies the

overconfidence problem.

Our contributions are summarized as follows:

1. We analyze Gaussian Process Regression and reveal that computing the

predictive variance can be seen as a form of density estimation.

2. We show that the predictive variance can be a misleading indicator of

epistemic uncertainty under the current discriminative training scheme of

GP.

3. We propose Generative Gaussian Process Regression (GenGP), which of-
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fers improved epistemic uncertainty estimation and competitive perfor-

mance in applications requiring accurate uncertainty quantification.

Figure 6.1 The connection between the predictive variance of GPR and density
estimation. The predictive variance of GPR is decomposed into epistemic and
aleatoric uncertainties. The epistemic variance σ2ep has a linear relationship
with the log-density of a Gaussian distribution pϕ which estimates the density
of regression inputs in the feature space.

6.2 Gaussian Processes Are Density Estimators

Here, we analyze the predictive variance of GP and show its connection to the

estimation of input data density p(x). The connection is revealed by viewing

the predictive variance from the feature space of GP. Computing the predictive

variance of GP is equivalent to computing the negative log-likelihood, i.e., the

energy, of a Gaussian distribution in GP’s feature space.

Gaussian Process Regression We first review GP. As a stochastic pro-

cess, GP is completely defined by specifying a mean function m(x) and a

positive semi-definite covariance kernel k(x,x′). Given the training dataset

D = {(xi, yi)}Ni=1 where xi ∈ RD and yi ∈ R and a test point x, the predictive

distribution p(y|x,D) of GP is a Gaussian N (µ(x), σ2(x)) where its mean µ(x)
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and variance σ2(x) are written as follows:

µ(x) = m(x) + k(x)⊤(K + σ2nI)
−1(y −m), (6.1)

σ2(x) = σ2n + σ2ep(x) and σ2ep(x) = k(x,x)− k(x)⊤(K + σ2nI)
−1k(x), (6.2)

where k(x) = [k(x,x1), . . . , k(x,xN )]
⊤ ∈ RN is a kernel vector and K ∈ RN×N

is a pairwise kernel matrix with (K)i,j = k(xi,xj) for i, j = 1, . . . , N . Also, y =

[y1, . . . , yN ]
⊤ ∈ RN is the concatenated targets andm = [m(x1), . . . ,m(xN )]

⊤ ∈

RN is the concatenated means. The hyperparameter σ2n represents the observa-

tion noise which is often referred to as aleatoric uncertainty.

Since σ2n is independent of x, i.e., homoscedastic, the epistemic uncertainty

σ2ep(x) is actually responsible for determining the predictive uncertainty. We can

observe that σ2ep behaves as if it encodes the information of probability of p(x).

First, σ2ep(x) is (negatively) correlated with how densely populated xi’s are.

Second, σ2ep(x) only encodes the information about xi’s and is independent of

yi’s. We will see that computing σ2ep(x) is indeed related to density estimation.

Feature Space View We now view σ2ep(x) (Eq. 6.2) from the feature space

associated with GP. It is well known that a positive semi-definite kernel can be

expressed in an inner product of a feature mapping ϕ : RD → RD′
, and we can

write k(x,x′) = ϕ(x)⊤ϕ(x′). Therefore,

k(x,x) = ϕ(x)⊤ϕ(x), k(x) = Φ⊤ϕ(x), K = Φ⊤Φ (6.3)

where Φ = [ϕ(x1), · · · , ϕ(xN )] ∈ RD′×N . Plugging these expressions into σ2ep(x)

(Eq. (6.2)) and applying Woodbury matrix identity, we can express σ2ep(x) with

respect to feature vectors.

σ2ep(x) = ϕ(x)⊤
(

1

σ2n
ΦΦ⊤ + I

)−1

ϕ(x) =
σ2n
N
ϕ(x)⊤Σ−1

ϕ ϕ(x) (6.4)
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Figure 6.2 1D regression example where epistemic uncertainty quantification of
vanilla GPR fails.

where we set Σϕ = 1
NΦΦ⊤ + σ2

n
N I. Note that Σϕ can be seen as an empirical

covariance of ϕ(xi)’s with the regularization of σ2n/N . While the first equality

in Eq. (6.4) is well-known [140], we provide detailed derivation in the appendix

to be self-contained.

A Gaussian in Feature Space Now we present a novel interpretation of

Eq. (6.4). Consider a Gaussian parametric density model N (ϕ(x);0,Σ) defined

on ϕ-space. Its mean is fixed as zero and only Σ is estimated from ϕ(xi)’s. If we

apply the diagonal regularization (σ2n/N)I, then we obtain Σϕ as an estimate

for Σ.

Then, the log-likelihood is given as logN (ϕ(x);0,Σϕ) = −1
2ϕ(x)

⊤Σ−1
ϕ ϕ(x)−

1
2 log 2π −

1
2 log |Σϕ|. Rearranging with Eq. (6.4), we obtain the following ex-

pression:

σ2ep(x) = −
2σ2n
N

[logN (ϕ(x);0,Σϕ) + C] (6.5)

Therefore, computing σ2ep(x) in GP is equivalent to evaluating the energy, i.e.,

the negative log-likelihood of a zero-mean Gaussian distribution in the feature

space. This relationship is graphically illustrated in Fig. 6.1.
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6.3 Density Estimators in Gaussian Processes May
Mislead

As we show in Proposition 1, GP uses the density estimator in the feature space

pϕ(ϕ(x)) to measure the epistemic uncertainty at x. However, the epistemic

uncertainty provided by pϕ(ϕ(x)) can be significantly misleading, particularly

under the current practices of GP.

Condition for good epistemic uncertainty indicator As an epistemic

uncertainty indicator, pϕ(ϕ(x)) should be able to identify the points with low

pdata(x) where few training data are around and thus epistemic uncertainty is

high. To identify such points, we need to infer the relative ordering of pdata(x)

among x’s using pϕ(ϕ(x)). If the inference on the relative ordering is possible,

we shall say the two densities are aligned. Two density functions pϕ(ϕ) and

pdata(x) are aligned when for any x1 and x2 in the support of pdata(x), with

ϕ1 = ϕ(x1) and ϕ2 = ϕ(x2), the following is satisfied:

pϕ(ϕ1) ≤ pϕ(ϕ2) iff pdata(x1) ≤ pdata(x2). (6.6)

However, depending on the choice of ϕ, pϕ(ϕ(x)) and pdata(x) may not be

aligned. If the feature mapping ϕ is not injective, i.e., maps two x’s into the

same ϕ, the information loss occurs and the ordering of pdata(x) can not be

recovered from pϕ(ϕ(x)). This phenomenon is often called the feature collapse.

Even for an invertible ϕ which preserves information, pdata(x) can be distorted

arbitrarily in the feature space.

A misaligned pϕ(ϕ(x)) will mislead epistemic uncertainty quantification.

Suppose there are two points xout and xin where pdata(xout) < pdata(xin).

A successful epistemic uncertainty indicator should able to tell the epistemic

uncertainty of xout is higher. However, the misalignment makes pϕ(ϕ(x1)) <

pϕ(ϕ(x2)), and hence σ2ep(x1) > σ2ep(x2). For example, if such misaligned GP is
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applied in an active learning scenario where unlabeled x with high epistemic

uncertainty is queried for labeling will result in querying data with no additional

information.

Misalignment in GP The risk of misalignment is significant in most GP

practices where kernel hyperparameters are optimized. Since a kernel implic-

itly determines the feature space, the hyperparameter optimization actually

optimizes the feature space.

The most common objective function for the hyperparameter optimization

is the marginal likelihood of regression p(D) = p(y|x1, . . . ,xN ). Nonetheless,

a feature space optimal for regression is not necessarily optimal for density

estimation and density alignment.

6.4 Generative Gaussian Process Regression

Two aspects of GP contribute to the failure of epistemic uncertainty quantifi-

cation. First, the training, i.e., hyperparameter optimization, ignores density

estimation. Second, the same hyperparameters are used for both regression

and density estimation. Here, we address these points by proposing Genera-

tive Gaussian Process Regression (GenGP), where we introduce the generative

training and decoupling density estimation from regression. GenGP achieves the

same predictive performance with conventional GP by design, while providing

significantly better epistemic uncertainty estimate.

GP as A Generative Model GP is conventionally viewed as a discrim-

inative model which only models p(y|x). Since the predictive variance of GP

contains density information, we propose to treat GP as a generative model

which models p(x, y). The feature space density estimator pϕ(ϕ(x)) is not a

valid probability density in the input space. Hence, we re-normalize pϕ(ϕ(x))
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in the input space to form a probabilistic model p(x) in the input space.

pGP (x) =
1

Z
exp(−E(x)/T ), E(x) = σ2ep(x), Z =

∫
exp(−E(x))dx (6.7)

We propose to train GP in a generative manner by modeling the joint distri-

bution p(x, y). From the factorization log p(x, y) = log p(y|x) + log p(x), maxi-

mizing the joint log-likelihood leads to the introduction of an additional term

log p(x) representing the likelihood of inputs.

6.5 Bayesian Regressors Are Approximately Density
Estimators

We can generalize the connection between the predictive variance and density

estimation to a general Bayesian regression algorithms. Consider a Bayesian

regression algorithm f(x,w) which models the conditional mean of y given x

using a likelihood p(y|x,w) = N (f(x,w), σ2n). We show that the variance of

the conditional mean is approximately a form of a density estimator.

Consider the first-order Taylor expansion of f(x,w) around the posterior

mean of the parameter w = Ep(w|D)[w]:

f(x,w) = f(x,w) + (w −w)⊤∇wf(x,w) + o(|w −w|) (6.8)

where (∇wf(x,w))i =
∂
∂wi

f(x,w)|w=w. Then, the variance of the prediction

f(x,w) with respect to the posterior p(w|D) is given as:

Varp(w|D)[f(x,w)] = Varp(w|D)[(w −w)⊤∇wf(w,w)] (6.9)

= ∇wf(x,w)⊤Ep(w|D)

[
(w −w)(w −w)⊤

]
∇wf(x,w)

(6.10)

= ∇wf(x,w)⊤Covp(w|D) [w]∇wf(x,w) (6.11)

Now, we assume that the number of data is large enough so that we can lever-

age the asymptotic normality (sometimes called Bernstein-von Mises theorem)
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of the posterior p(w|D). The posterior can be approximated as a Gaussian

distribution where the posterior mean w is the mode of the distribution.

p(w|D) ≈ N (w, A−1), A = −∇∇w log p(w|D) (6.12)

The covariance of w is A−1.

A = ∇∇w log p(w|D) (6.13)

= ∇∇w log p(w) +

N∑
i=1

∇∇w log p(yi|xi,w) (6.14)

≈ ∇∇w log p(w) +N · Ex,y [∇∇w log p(y|x,w)] (6.15)

where we apply the law of large numbers in the last line. The

∇w log p(y|x,w) = − 1

σ2n
(y − f(x,w))∇wf(x,w) (6.16)

∇∇w log p(y|x,w) =
1

σ2n
∇wf(x,w)∇wf(x,w)⊤ − 1

σ2n
(y − f(x,w))∇∇wf(x,w)

(6.17)

Ex,y[∇∇w log p(y|x,w)] =
1

σ2n
Ex

[
∇wf(x,w)∇wf(x,w)⊤

]
(6.18)

− 1

σ2n
Ex [(Ey[y|x]− f(x,w))∇∇wf(x,w)] (6.19)

≈ 1

σ2n
Ex

[
∇wf(x,w)∇wf(x,w)⊤

]
(6.20)

where we assume that the prediction error of the regression algorithm is very

small Ey[y|x]− f(x,w) ≈ 0.

A = ∇∇w log p(w) +
N

σ2n
Ex

[
∇wf(x,w)∇wf(x,w)⊤

]
(6.21)

If we write ψ(x) = ∇wf(x,w), then

Varp(w|D)[f(x,w)] =
σ2n
N
ψ(x)⊤Σ−1

ψ ψ(x) (6.22)

Bayesian prediction algorithms implicitly estimate the joint distribution of

data p(x, y) when there is a large number of data.
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6.6 Experiment

6.6.1 Oversmoothed Predictive Variance

We demonstrate that GP may produce predictive variance that does not faith-

fully reflect epistemic uncertainty. When the function being predicted has a rel-

atively long length scale, i.e., the function varies slowly, the predictive variance

of GP can be low even though the point being predicted has a high epistemic un-

certainty. Fig. 6.2 shows an 1D example. A vanilla GP produces high predictive

variance near the boundary of the domain, where a large number of training

data already exist. This unexpectedly high predictive variance, if utilized in

applications in active learning or Bayesian Optimization, will produce mislead-

ing exploration and suboptimal performance. Meanwhile, Decoupled Generative

GP gives correctly identified epistemic uncertainty estimate.

A 2D example is provided in Fig. 6.3. Similarly to 1D case, a vanilla GP

optimized for predictive marginal likelihood gives predictive variance that is too

small at the center of the domain where no data is present. In other words, GP is

highly over-confident even though it have not observed anything in this region.

This over-confidence is remedied in Decoupled GenGP by optimizing the model

parameters with the generative objective function. Note that the kernel length

scale determined through optimization is 0.21, which is significantly smaller

than the length scale (3.0) of the vanilla GP.

6.7 Active Learning

Active learning is one of the popular applications of GP. We show that the gen-

erative training for GP can benefit active learning performance. We test vanilla

GP and Decoupled GenGP on 2D binary classification problem. The results are

shown in Fig. 6.4. Each experiment is initialized with 5 labelled samples and
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Figure 6.3 Generative GP in 2D. (First column) The true data distribution and
the true function to be predicted. Data points are visualized as dots. (Second
column) Prediction from a vanilla GP trained to maximize the marginal likeli-
hood. (Third column) Prediction from a decoupled GenGP.

112



Figure 6.4 Active learning experiment. (Upper left) The distribution of unla-
belled data. (Upper right) Active learning result averaged over 100 runs. (Lower
left) Samples collected by vanilla GP. (Lower right) Samples collected by De-
coupled GenGP.

995 unlabelled samples. In each active learning iteration, the most informative

sample is selected and appended to training dataset. The hyper parameters

of GP are updated every iteration. AUROC score of Decoupled GenGP grows

faster than GP. The collected samples from GenGP, when visualized, located

more evenly near the decision boundary, indicating that the informativeness of

each sample is maximized.
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Chapter 7

Conclusion

7.1 Summary and Key Takeaways

This dissertation demonstrates the significance of generative modeling for ef-

fective uncertainty quantification by analyzing and enhancing widely-used al-

gorithms such as autoencoders and Gaussian processes. The study identifies

critical failure modes in these algorithms and proposes improvements by pre-

senting a novel perspective on them as generative models within the energy-

based model framework. The resulting algorithms, normalized autoencoders

and generative Gaussian processes, effectively address the issues of outlier re-

construction and over-smoothed variance. Furthermore, the thesis contributes

to anomaly detection by introducing a novel training algorithm for energy-based

models, Manifold Projection-Diffusion Recovery (MPDR), and investigating the

robustness of anomaly detection algorithms through the Adversarial Generation

on Manifold (AGOM) method.

Three general insights are derived from this work. First, good generative

modeling enhances uncertainty quantification. While not all generative models

lead to improved uncertainty quantification, as evidenced by previous failures of

deep generative models, properly executed generative modeling can serve as a

guiding principle for building and optimizing superior uncertainty quantification

algorithms.
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Second, well-designed energy functions improve generative modeling. The

flexibility in designing energy functions is a strength of energy-based models

that has not yet been fully utilized. By exploring various energy function de-

signs in different settings, we demonstrate the benefits of well-crafted energy

functions.

Lastly, Bayesian predictive uncertainty may be connected to generative

modeling. Our work reveals a previously undiscovered connection between gen-

erative modeling and Bayesian predictive uncertainty quantification, which is

often taken for granted without deeper justification.

7.2 Future Directions

Our work, situated at the intersection of energy-based generative modeling and

uncertainty quantification, offers multiple avenues for exciting future research.

Here, we highlight a few possibilities.

First, developing improved training algorithms for energy-based models is

a promising direction. Despite the existence of several proposed training al-

gorithms, energy-based model training remains sensitive and unstable. Many

training algorithms involve non-convergent Langevin Monte Carlo, which is

difficult to tune. A possible theoretical approach to enhancing energy-based

model training is to leverage connections to optimal control or reinforcement

learning.

Second, the concept of using generative modeling for uncertainty quantifi-

cation can be expanded and applied to trustworthy machine learning. This idea

has already proven effective in out-of-distribution detection in our experiments

with normalized autoencoders and MPDR.

Lastly, advancements in uncertainty quantification methods can be em-

ployed in robotics applications. Accurate uncertainty assessment is essential
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in various robotics tasks, where either collecting large quantities of real-world

experience is challenging or the risk associated with poor actions is consid-

erable. Potential applications include active perception and uncertainty-aware

planning and control.
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국문초록

확률은 불확실성을 측정하는 수단이다. 특히 기계 학습에서의 입력 데이터의 확

률은 인식론적 불확실성을 측정하는 유용한 척도이다. 입력 데이터의 확률을 정

확하게 추정할 수 있다면, 불확실성을 정량화해야하는 다양한 종류의 응용문제에

유용하게 활용될 수 있다. 그러나 딥러닝을 이용하여 입력 데이터 확률을 추정하

는 딥 생성 모형은, 그럴듯한 데이터를 생성하는 데에 있어서는 인상적인 성능을

보였지만불확실성정량화능력이제한적이라는것이알려져있다.딥생성모형의

실패는 데이터 확률을 학습하는 것이 불확실성을 포착하는 유효한 접근 방법인지

에 대한 회의론을 불러일으켰다.

이논문에서는데이터의확률분포를추정하는것이불확실성정량화에중요한

접근 방법임을 논한다. 우리는 이상 검출과 불확실성 하에서의 의사결정 문제에서

널리 사용되는 알고리즘인 오토인코더와 가우시안 프로세스에 초점을 맞추어, 생

성 모형의 접근 방법을 도입하면 이들의 성능을 향상시킬 수 있다는 것을 보인다.

오토인코더와가우시안프로세스모두데이터의확률분포를명시적으로학습하지

않는다.따라서데이터확률분포를정확히반영하지못함으로인해심각한실패를

일으킬 수 있다. 우리는 이러한 실패 사례를 보고하고, 이를 해결하기 위해 오토

인코더와 가우시안 프로세스를 위한 새로운 생성 모형 기반 형식화를 도입한다.

제안된 방법들에서는 에너지 함수를 이용하여 확률 분포를 표현하는 에너지 기반

모형 방법론에 기반하여, 오토인코더와 가우시안 프로세스를 에너지 기반 확률

모형으로 새롭게 해석한다.

추가적으로, 본 논문에서는 에너지 기반 모형 기법에 관한 추가적인 아이디어

들을 제시한다. 첫째, 데이터의 저차원 구조를 활용하는 에너지 기반 생성 모형의

새로운 학습 알고리즘을 제시한다. 제안된 알고리즘은 생성 모형이 학습 데이터가
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아닌 곳에 높은 우도를 부여하는 현상을 효과적으로 억제할 수 있으며, 결과적으

로 이러한 에너지 기반 모형들은 강력한 이상 탐지 성능을 보여준다. 둘째, 적대적

공격과 에너지 기반 모형 기법 사이의 연결을 탐색한다. 이러한 연결관계에 기

반하여 이상치 탐지기를 위한 새로운 적대적인 생성 공격 알고리즘을 제안한다.

제안된 알고리즘은 에너지 기반 분포에서 샘플링하는 과정을 통해 적대적 공격을

수행한다.

인식론적 불확실성 정량화는 로봇 및 인공지능 에이전트가 세상과 안전하고

효과적으로 상호작용하는 데에 필수적인 요소이다. 이 논문에서는 확률 모형을

통해 인식론적 불확실성 정량화 문제를 해결할 수 있다는 것을 보였으며, 이 논

문에서 논의된 에너지 기반 확률모형 기법과 알고리즘들은 로보틱스 및 인공지능

시스템의 다양한 응용에 널리 적용될 것으로 기대된다.

주요어: 생성모형, 에너지기반 모형, 불확실성 정량화, 이상탐지, 확률밀도 추정,

인식론적 불확실성

학번: 2020-38989
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