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Abstract 

 
A cross-linked polymer network immersed in a solvent will absorb 

molecules from its surroundings, leading to transient swelling. The 

entropy-driven mixing behavior makes the solvent molecules flow in the 

network and fill its pores, increasing the pore pressure. The network is 

then stretched, increasing the pores’ size and allowing for more solvent 

to flow inward. The permeability of the gel should increase with the pores’ 

size, affecting the kinetics of the swelling process. When an equilibrium is 

reached between the energetically-favorable mixing and the energetically-

unfavorable stretching, the swelling stops. Under the constraint of a semi-

permeable membrane, the system will swell less and grow a larger internal 

pressure in return. No theoretical analysis of the constrained growth has 

existed so far. We use a nonlinear poroelastic theory to model the kinetics 

of swelling under constraint and find the simulation results agree well with 

our experimental data from hydrogel beads made of a mixture of 3-

sulfopropyl acrylate potassium salt and acrylamide, bathed in water. 

Understanding and predicting the response time and the actuation stress 

developed during the swelling of constrained hydrogels help the design 

of polymer-based soft actuators. 

 

Keyword : Hydrogel, membrane, swelling, hyperlinear, kinetics 

Student Number : 2021-22015 



 

 ii 

Table of Contents 

 

 

 

Chapter 1. Introduction ................................................................... １ 

1.1. Study Background ......................................................................................... １ 

1.2. Purpose of Research ..................................................................................... ３ 

Chapter 2. Overview of the theory ............................................... ７ 

2.1. Geometry .......................................................................................................... ７ 

2.2. Free energy density ...................................................................................... ８ 

2.3. Stress tensor and chemical potential ............................................... １０ 

2.4. Kinetic law ..................................................................................................... １１ 

Chapter 3. Simulation .................................................................. １４ 

3.1. Numerical scheme ..................................................................................... １４ 

3.2. Explanation of the process .................................................................... １８ 

Chapter 4. Materials and method ............................................. ３１ 

4.1. Materials ........................................................................................................ ３１ 

4.2. Fabrication of the hydrogel .................................................................. ３２ 

4.3. Tensile tests .................................................................................................. ３３ 

4.4. Compressive tests ...................................................................................... ３４ 

4.5. Swelling rate measurement ................................................................... ３５ 

4.6. Validation ....................................................................................................... ３６ 

Conclusion ...................................................................................... ４３ 

Bibliography ................................................................................... ４４ 

Abstract in Korean ........................................................................ ４６ 

 

 



 

 １ 

Chapter 1. Introduction 

 

1.1. Study Background 

 

A three-dimensional polymer network can be created by cross-linking long 

polymers. Immersed in a solvent, this network may absorb molecules from 

its surroundings, thus creating a mixture called polymer gel. If the solvent 

is water, it is referred to as a hydrogel. Bathed in a solvent and under no 

external constraint, the gel will swell by absorbing new solvent molecules 

until it reaches equilibrium. Gels are widely used in micromechanical 

systems as autonomous flow controllers(1), pH sensors(2) or actuators(3); in 

biology for injury repair(4) or as carriers for drug delivery(5) and in soft 

robotic as stimuli-responsive muscle-like systems(6). They are 

biocompatible, similar to living tissues and adjustable in shapes and 

chemical properties(7). Their major flaw, namely their slow response time, 

can be enhanced using electro-osmosis(3), for example. 

Historically, one of the first attempts to model the kinetics of swelling of 
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hydrogels was conducted by Tanaka et al.(8-9), using constitutive equations 

from linear elasticity and modelling only the polymer network, not the 

fluid flowing inside it. This framework has been subject to some 

criticisms(10), mainly due to its lack of physical foundations and its bold 

assumption of small deformations. Furthermore, this theory is unable to 

predict complex behaviors of hydrogels such as pH-driven phase transition. 

Hence, Hong et al.(11) proposed a hyperlinear theory for elastomers. From 

a thermodynamic point of view, two processes are dominant in the 

energetic balance of the swelling. The absorption of water molecules 

makes the hydrogel swell and the polymer network is stretched in return. 

When an energetic equilibrium is reached between the energetically-

favorable absorption and the energetically-unfavorable stretching, the 

swelling stops. An important aspect of hydrogels is that, as they swell, 

their pores expand. Hence, as the size of the pores is used to characterize 

the permeability, it should increase throughout the process, drastically 

affecting the dynamics of the swelling. Hong et al. built a theory for large 
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deformations using a thermodynamic approach, based on the works of 

Flory(12) for the mixing part, Huggins(13) for the stretching part and 

Grattoni(14) for the deformation-dependent permeability, among others. 

 

1.2. Purpose of Research 

 

This study aims at analyzing the kinetics of the constrained swelling of a 

hydrogel wrapped by a relatively stiff membrane. When absorbing new 

water molecules through the membrane, the wrapped hydrogel will only 

swell slightly due to the constraint by the membrane and an important 

internal pressure will develop(3). First, we will tackle the problem of the 

kinetics of free swelling, that is to say the swelling of the hydrogel without 

the membrane. Then, we will consider the same question with a wrapped 

hydrogel. On the one hand, the addition of a membrane leads to a smaller 

final swelling ratio. On the other hand, an important internal pressure 

driven by the osmotic mixing potential of the polymer will grow, which 

can be of interest in many applications of soft actuators 
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In the following, the first part will be devoted to the theoretical analysis. 

Then, further insights of the internal behaviour during the swelling process 

will be presented through simulations. The experimental setup will be 

presented and the simulated results will be compared with experimental 

data.  

  



 

 ５ 

 

Fig. 1 Sample of swelling experiments for the free case. Pictures are 

taken at logarithmically-spaced time intervals (3.9 min, 7.8 min, 16 min, 

39 min, 1.6h, 3.4h, 7.6h and 17h, respectively) and from a top view. 

Surface instabilities, which we neglected in this study, can be seen in the 

beginning of the experiments. Each grid measures 5 mm. 

 

 

 

 

 

Fig. 2 Sample of swelling experiments for the constrained case. Pictures 

are taken at logarithmically-spaced time (8.7 min, 17 min, 52 min, 1.4h, 

2.6h, 4.6h, 8.2h and 15h, respectively) intervals and from a top view. 

Surface instabilities, which we neglected in this study, can be seen in the 

beginning of the experiments. Each grid measures 5 mm. 
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Fig. 3 Schematics of the inhibition process. The mixture swells because of 

the absorption of new solvent molecules which fill and expand the pores 

of the polymer network. In the constrained case, the gel swells less than 

in the free case.  
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Chapter 2. Overview of the theory 

 

This section is a combination of the theoretical frameworks proposed by 

Engelsberg et al.(15) and Bertrand et al.(16), which themselves are based on 

the fundamental work of Hong et al.(11). 

 

2.1. Geometry 

 

We consider the problem of the swelling of a hydrogel sphere, first freely 

swelling in pure water and then constrained by a membrane. Let's consider 

a spherical sphere of initial radius a, the dry state being our reference 

state. If �⃗� = 𝑅𝑒 𝑟 is the position vector in the reference state and 𝑟 =

𝑟(𝑅, 𝑡)𝑒 𝑟 is the position vector in the current state at time t, we define the 

eigenvalues of the deformation tensor F = 𝜕𝑟 𝜕�⃗� ⁄ , which are the stretches 

in the three principal directions, as: 

𝜆𝑟 = 𝜕𝑟 𝜕𝑅⁄ , 𝜆𝜃 = 𝜆𝛷 = 𝑟 𝑅⁄ , 

and the Jacobian determinant, which is the swelling ratio, as: 

J = det(F) = 𝜆𝑟𝜆𝜃𝜆𝛷 = 𝜆𝑟𝜆𝜃
2 = 1 𝜑⁄ , 
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where 𝜑 is the volume fraction of polymer in the mixture. 

 

2.2. Free energy density 

 

The basic assumption of the ideal elastomeric gel theory is that the mixing 

and the stretching part can be totally separated in the computation of the 

free energy density W. The stretching part will only depend on the three 

eigenvalues of the deformation tensor F, and the mixing part will only 

depend on the number of additional water molecules per unit volume of 

dry polymer C: 

W = 𝑊𝑠𝑡𝑟𝑒𝑡𝑐ℎ
(𝐹) + 𝑊𝑚𝑖𝑥(𝐶) + p (1 +ΩC − det(F)), 

where we further added a microscopic incompressibility condition using a 

Lagrangian multiplier p, which states that the increasing in volume of the 

system can only be due to absorption of additional solvent molecules of 

individual volume Ω. 

𝑊𝑠𝑡𝑟𝑒𝑡𝑐ℎ models the elastic contribution to the free energy of an arbitrarily 

deformed network of cross-linked polymers, ignoring the influence of the 
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fluid on the network. The term is usually derived using a Gaussian-chain 

elastic model, which yields 

𝑊𝑠𝑡𝑟𝑒𝑡𝑐ℎ =
𝑁𝑘𝐵𝑇

2
[𝜆𝑟

2 + 𝜆𝜃
2 + 𝜆𝛷

2 − 3 − 2ln(𝜆𝑟𝜆𝜃𝜆𝛷)], 

where N is the number of chains per unit volume of dry polymer, 𝑘𝐵 is 

the Boltzmann constant and T is the temperature. 

𝑊𝑚𝑖𝑥  models the contribution to the free energy of the mixing of 

polymers and water molecules, ignoring the elastic response of the 

polymer network. The term is usually derived from the Flory-Huggins 

lattice theory, which yields 

𝑊𝑚𝑖𝑥 =
𝑘𝐵𝑇

Ω𝜑
[(1 − 𝜑) ln(1 − 𝜑) +

𝜑
𝛼 ln(𝜑)

+𝜒𝜑(1 − 𝜑)],

 

where α is the ratio of the volume of a polymer molecule to that of a 

solvent molecule and the constant χ  is called the Flory-Huggins 

interaction parameter, or simply the mixing parameter. The first two terms 

are entropic in nature and the term containing χ is enthalpic. If χ < 0 the 

enthalpic contribution of the mixing is energetically favorable, but it is not 

if χ > 0. 
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2.3. Stress tensor and chemical potential 

 

From there we can compute the true stress as 

𝜎𝑖 =
𝜆𝑖

𝐽
(
𝜕𝑊

𝜕𝜆𝑖
)
𝑇,𝐶,𝜆𝑗 

𝑤𝑖𝑡ℎ 𝑗 ≠ 𝑖, 

and the chemical potential as 

μ = (
𝜕𝑊

𝜕𝐶
)
𝑇,𝜆𝑖 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖. 

The elastic contribution to the true stress, 𝜎′
𝑖
, and the Lagrange multiplier 

which can be interpreted as the pore pressure, p, thus relate to the total 

stress following the usual form of Biot's theory of poroelasticity:𝜎𝑖 = 𝜎′
𝑖
−

𝑝. Similarly, the chemical potential is interpreted as the sum of the osmotic 

pressure, Π, being the mixing contribution, and the pore pressure, p, 

being the mechanical contribution: 𝜇 Ω⁄ = 𝛱 + 𝑝. This yields 

𝜎𝑖 = 𝑁𝑘𝐵𝑇 (
𝜆𝑖
2 − 1

𝐽
) − p, 

μ

Ω
=

𝑘𝐵𝑇

Ω
[𝑙𝑛 (

𝐽 − 1

𝐽
) +

1 − 1 𝛼⁄

𝐽
+

𝜒

𝐽2
] + 𝑝. 

 



 

 １１ 

2.4. Kinetic law 

 

We consider a model where the kinetic behavior of water molecules in the 

gel is driven by the gradient of chemical potential. The flux of water 

molecules assumes the form of Darcy law with a deformation-dependent 

permeability which accounts for the fact that the mean cross section of 

the pores of the polymer network should increase with the swelling. The 

conservation of water molecules yields 

∂C

∂t
+ 𝛻𝑅 . 𝑗 𝑅 = 0, 

with 𝑗 
𝑅
 the nominal flux of water molecules and the divergence being 

taken with respects to the coordinate in the reference state. The true 

deformation-dependent Darcy's law (with 𝑗 
𝑟
 the true flux of solvent) is 

𝑗 
𝑟
= −

𝑐𝐷(𝐽)

𝑘𝐵𝑇
𝛻𝑟μ, 

where c = 𝐶 𝐽⁄  is the true concentration of water molecules. The 

deformation-dependent permeability takes the usual form derived from 

Gratonni’s work: 

D(J) = 𝐷0

𝐽 − 1

𝐽
𝐽𝛽 , 
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where the permeability parameter 𝐷0 will be used as a fitting parameter 

and 𝛽 = 1.5 is fixed according to the literature. We consider a situation 

with no external volumetric forces. Thus, the mechanical equilibrium 

requires that 𝛻𝑟. 𝜎 = 0. 

We can now wrap everything up and proceed to non-dimensionalize the 

governing equation, introducing the non-dimensionalized variables ρ =

𝑅 𝑎⁄  and τ = 𝐷𝑡 𝑎2⁄ . Note that the value of the effective permeability D(J) 

will be different for the two cases: D should be smaller in the constrained 

case than in the free case. That being said, we can derive the final 

governing equation: 

∂J

∂τ
=

1

ρ
2

𝜕

𝜕ρ
(ρ

2

(J - 1)𝐽𝛽−1 {
𝜆𝜃
4

𝐽4
[1 +

𝐽 − 1

𝛼
− 2𝜒

𝐽 − 1

𝐽
+ 𝑁Ω(J - 1) (1 +

𝐽2

𝜆𝜃
4)]

𝜕𝐽

𝜕ρ

+
2𝑁Ω

ρ

J - 1

𝐽2
(
𝐽2

𝜆𝜃
3 − 𝜆𝜃

3) −
4𝑁Ω

𝜆𝜃

J - 1

𝐽

𝜕𝜆𝜃

𝜕ρ
}), 

with the last closing condition 

𝜆𝜃 =
1

ρ
[∫ 3𝑥2𝐽 (𝑥, τ)

ρ

0

𝑑𝑥]

1/3

. 

We want the boundary of the gel to be in equilibrium with the surrounding 
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fluid, namely pure water, so that the chemical potential on the boundary 

𝜇𝑏 is expressed as 

𝜇𝑏 = 𝛱 +
𝑁𝑘𝐵𝑇Ω

𝐽
(
𝐽2

𝜆𝜃
4 − 1) + 2𝐺𝑚

ℎ

𝑎
Ω(𝜆𝜃

2 − 𝜆𝜃
−4) = 0, 

where 𝐺𝑚 is the shear modulus of the membrane  and h is its thickness. 

The radial stress-radial stretch relation is computed for the case of an 

incompressible Neo-Hookean thin shell. Finally, the condition of no flux of 

solvent molecules at the center of the sphere is satisfied by imposing 

(𝜕𝜆𝜃 𝜕ρ⁄ )(ρ = 0, τ) = (𝜕𝐽 𝜕ρ⁄ )(ρ = 0, τ) = 0. 
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Chapter 3. Simulation 

 

3.1. Numerical scheme 

 

To integrate the governing equation, we use the Crank-Nicolson 

discretization method for the temporal derivative with a first-order finite 

difference discretization scheme for the spatial derivative. This method 

being semi-implicit and the governing equation being non-linear, we solve 

the problem by, at each time step, computing the values of J and 𝜆𝜃 at 

every spatial step at once, using the Newton-Raphson's method to find 

the root of the residue function. 
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Fig. 4 Radius over initial radius 𝜆𝜃 against the non-dimensionalized radius 

ρ, at various time steps for the free (in blue) and the constrained (in red) 

cases.  
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Fig. 5 Fluid volume fraction φ𝑓 against the non dimensionalized radius ρ, 

at various time steps for the free (in blue) and the constrained (in red) 

cases.  
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Fig. 6 Normalized chemical potential 𝜇 (Ω𝑁𝑘𝐵𝑇)⁄  against the non-

dimensionalized radius ρ, at various time steps for the free (in blue) and 

the constrained (in red) cases.  
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3.2. Explanation of the process 

 

The governing equation is then integrated to understand in more depth 

the swelling process in both cases. We proceed to plot several variables 

against the non-dimensionalized radius ρ (ρ = 0 refers to the center of 

the sphere and ρ = 1 to its boundary, at all time). We plot them for both 

the free and the most constrained case of our experiments, at different 

time steps, logarithmically spaced between t = 0 h  and t ≃ 20 h . 

Parameters used in this simulation are either fixed, computed from 

experiments or fitted to experimental data. 
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Fig. 7 Elastic radial stress 𝜎′𝑟 against the non-dimensionalized radius ρ, 

at various time steps for the free (in blue) and the constrained (in red) 

cases. 
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Fig. 8 Elastic azimuthal stress 𝜎′𝜃 against the non-dimensionalized radius 

ρ, at various time steps for the free (in blue) and the constrained (in red) 

cases. 
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Fig. 9 Pore pressure p  against the non-dimensionalized radius ρ , at 

various time steps for the free (in blue) and the constrained (in red) cases.  
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Fig. 10 Normalized osmotic pressure 𝛱 (𝑁𝑘𝐵𝑇)⁄  against the non-

dimensionalized radius ρ, at various time steps for the free (in blue) and 

the constrained (in red) cases.  
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Figs.4-5-6 show that the hydrogel swells from its boundary to its center, 

solvent diffusion being driven by the chemical potential gradient. The gel’s 

radius increases by a factor slightly larger than three in the free case and 

by a factor slightly lower than two in the constrained case (Fig.4). The final 

state in the free case is almost fully swollen with a final value of the fluid 

volume fraction 𝜑𝑓 ≃ 0.97  while 𝜑𝑓 ≃ 0.74  in the constrained case, 

showing the non-negligible presence of polymers in the final mixture 

(Fig.5). The chemical potential rises until it reaches a value of equilibrium 

almost equal to that of the solvent in the case of high swelling ratio, and 

lower than the said value in the constrained case to account for the non-

negligible polymer presence in the mixture. Hence there is a jump in 

chemical potential across the boundary of the gel. It rises rapidly near the 

boundary, reaching almost immediately its final value, and more slowly 

inside due to the slow diffusion-like process (Fig.6). 

Solvent inhibited through the boundary of the gel either stays near the 

boundary and inflates this region or diffuses toward the center. Figs.7-8-
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9-10 underline the mechanical properties of the hydrogel and especially 

the balance between elastic stresses and the pore pressure. The elastic 

stresses are always and everywhere tensile, because the polymer network 

has to be stretched in all directions throughout the whole swelling process 

to leave space for the solvent molecule to flow in the mixture (Figs.7-8). 

On the one hand, in the free swelling case the fluid volume fraction 

increases sharply near the boundary leading to the fast growth of the 

outer pores and to the comparatively slow diffusion of the solvent to the 

inner regions. Thus, pore expansion near the boundary is dominant over 

the diffusion towards the central regions, leading to a core-shell 

structure(16). On the other hand, in the constrained case the same 

phenomenon is witnessed, with values of the elastic radial and azimuthal 

stresses slightly higher but of the same order, but the final state is reached 

at a lower fluid volume fraction, i.e. at a lower swelling ratio due to the 

presence of the membrane. As the outer part of the gel rapidly reaches 

its final state in the constrained case, this core-shell structure is less visible 
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and the process is closer to a uniform volumetric expansion. Mechanical 

balance is ensured by the pore pressure, which grows largely in the 

constrained case and remains negligible in the free case where the 

polymer network can be largely stretched and its pores expanded, making 

room for the newly absorbed solvent. Hence, as the volume of the pores 

increases, their pressure decreases leading to a comparatively low pore 

pressure. Whereas in the constrained case, the stiffness of the membrane 

forces the gel to swell less (the osmotic pressure thus remains non-

negligible) and the pores to remain small (the pore pressure thus becomes 

large), as expected (Fig.9). In both cases, the gel absorbs solvent molecules 

due to chemical affinity. Indeed, the study of the decomposition of the 

chemical potential in terms of osmotic pressure and pore pressure in 

Eq.(11) shows that the driving phenomena in both cases, even though the 

increase of the pore pressure in the constrained case helps the diffusion 

process by adding a mechanical forcing, is the entropic mixing part, i.e. 

the osmotic pressure (Fig.10). Figs.11-12-13-14 put the emphasis on the 



 

 ２６ 

mechanical aspect of the actuation, studying the developed true stresses. 

The combination of the two contributions in the Biot’s expression of the 

total stresses in Eq.(11) shows that the latter get highly compressive in the 

constrained case due to the large pore pressure (Figs. 11-12). On the 

boundary, the total stress remains equal to 0 in the free swelling case as 

expected(3), with the pore pressure compensating the elastic radial stress. 

The pore pressure decreases in the free case, as the swelling of the pores 

occurs. In the constrained case, it sharply becomes compressive as a result 

of the membrane resistance. This time, the pore pressure increases 

because the swelling of the pores cannot occur. Both cases show a sharp 

increase of the elastic radial stress at the beginning of the swelling, when 

the outer layer is swelling while being stuck to the inner core not yet 

inhibited, followed by a slow decrease as the inner part becomes swollen 

(Fig.13). The comparison of the contributions to the total chemical 

potential of the osmotic pressure and the pore pressure further supports 

the analysis that the mixing is mainly entropic for both cases (Fig.14).  
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Fig. 11 Total radial stress 𝜎𝑟 against the non-dimensionalized radius ρ, at 

various time steps for the free (in blue) and the constrained (in red) cases.   
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Fig. 12 Total azimuthal stress 𝜎𝜃 against the non-dimensionalized radius 

ρ, at various time steps for the free (in blue) and the constrained (in red) 

cases.  
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Fig. 13 Total radial stress on the boundary 𝜎𝑟(ρ = 1) against time for the 

free (in blue) and the constrained (in red) cases. Dashed lines are the two 

components of the total radial stress. 
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Fig. 14 Normalized chemical potential on the boundary �̃�(ρ = 1) against 

time for the free (in blue) and the constrained (in red) cases. Dashed lines 

are the two components of the chemical potential.  
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Chapter 4. Materials and method 

 

4.1. Materials 

 

3-sulfopropyl acrylate potassium salt (SPA; Sigma-Aldrich 251631) and 

acrylamide (AAm; Sigma-Aldrich A8887) were used as monomers for the 

core copolymer hydrogel network. N,N’-methylenebisacrylamide (MBAAm; 

Sigma-Aldrich M7279) and 1-Hydroxy-cyclohexyl-phenyl-ketone (Irgacure 

184; Sigma-Aldrich 405612) were respectively used as a cross-linking 

agent and a photoinitiator. Poly(vinyl alcohol) (PVA, Mw 146,000-186,000, 

99+% hydrolyzed; Sigma-Aldrich 363065) and Alginic acid (Alg, medium 

viscosity; Sigma-Aldrich A2033) were used as monomers for shell hydrogel 

that is coated onto core hydrogels. Calcium chloride (CaCl2; Sigma-Aldrich 

C4901) was used to physically crosslink the Alg chain. Ecoflex (00-10; 

Smooth-On Inc.) was used as a mold for core hydrogel.  

Deionized water filtered with a Direct-Q®3 machine (Merck Millipore) was 

used to make the electrolyte solution. All chemical reagents were used 



 

 ３２ 

without further purification. 

 

4.2. Fabrication of the hydrogel 

 

Unless otherwise specified, the precursor solution of the core hydrogel 

P(AAm-co-SPA) was prepared with a molar ratio of 272 : 2727 : 10 : 1 = 

SPA : AAm : MBAAm : Irgacure 184, where the molar concentration of 

AAm and SPA monomer were respectively 0.272 M and 2.727 M. The 

precursor solution was poured into a spherical mold made of Ecoflex, then 

exposed to 365 nm UV irradiation (CL-1000L UVP) for 10 minutes. The 

diameter of the core hydrogel sphere was fixed at 5 mm. To fabricate the 

core-shell hydrogel, first, the coating solution was prepared by dissolving 

Alg and PVA with a weight ratio of 2 and 3 wt% respectively in deionized 

water under stirring and heating (90 °C). After degassing by sonication 

for 1 h, a clear solution was obtained. The core hydrogel that contains 

multivalent ions can physically crosslink the Alg chain, therefore the core 

hydrogel was immersed in 3.0 M CaCl2 solution for 1 min and the excess 
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solution on the surface was completely dried by air blower. Then, the 

spherical hydrogel was immersed into the coating solution (PVA-Alg) and 

the pre-gel grows from the surface of the core hydrogel with 

corresponding coating time. The pre-coated hydrogel was vigorously 

cleaned with deionized water to remove excessive uncrosslinked polymers. 

The pre-gel is composed of crosslinked Alg and entangled PVA, so the 

mechanical strength is very weak to endure the swelling of core-hydrogel. 

To strengthen the shell hydrogel, the pre-coated hydrogel was annealed 

in a 120°C oven for 2 hours. The densification of the polymer chain makes 

the additional hydrogen bonding, which enhances the mechanical 

properties of the shell. For further enhancement by salting-out, the 

annealed core-shell hydrogel was immersed into 2.0 M ZnSO4 for 15 min. 

 

4.3. Tensile tests 

 

The square-shaped shell hydrogels were prepared following the above 

procedure and the pre-gel sheets were cut into dog-bone shaped 
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specimens with a gauge width of 2 mm. The thickness of the individual 

specimens was varied with coating time and measured with a Vernier 

caliper. The force-displacement data were obtained using a universal 

testing machine (1 kN load cell; Instron 3343) at the constant strain rate 

(10 mm/min). To generate the stress-strain curves, the measured force was 

divided by the initial gauge cross-sectional area and the measured 

displacement was divided by the initial clamp distance. 

 

4.4. Compressive tests 

 

The disk-shaped core hydrogels were prepared by using an acrylic mold 

with a diameter of 10 mm and thickness of 2 mm, followed by UV 

irradiation for 10 min. The swelling ratios of the specimens were controlled 

by making the gel swollen in a specific amount of deionized water. The 

specimens were kept inside a humid chamber for 24 hours to reach the 

equilibrium state without evaporation. The densities of the hydrogels were 

obtained by dividing the weight of the measured sample by the volume 
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calculated from the diameter and thickness of the samples. The 

compressive force-displacement data were obtained using a universal 

testing machine (1 kN load cell; Instron 3343) at the constant strain rate 

(1 mm/min). During the tests, the specimens were placed between the 

stage and load cell filled with mineral oil to prevent evaporation and 

minimize the friction between the specimens and the load cell. The shear 

modulus was obtained from the true stress-strain curve where the 

measured force was divided by the instantaneous cross-sectional area and 

the measured displacement was divided by the initial thickness. 

 

4.5. Swelling rate measurement 

 

Before measuring the swelling rate of the spherical core-shell hydrogels, 

the samples were fully dried at room temperature for 1 day. The swelling 

ratio-time curves were obtained from the diameters of the core-shell 

hydrogels from the time-lapse images taken by handheld digital 

microscope (Dinolite AM4815ZT) during the gels swelled in a bath with a 
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large amount of deionized water. The swelling ratio was obtained by 

dividing the measured diameter at a specific swelling time by the initial 

diameter of the core-shell hydrogel.  

 

4.6. Validation 

 

We conducted experiments on hydrogel spheres of initial radius a = 2 mm. 

We first aim at fitting the final swelling ratio for the free swelling case. 

From our experimental measurements of shear modulus and using Eq.(6) 

at T = 298 K and J = 32, the number of chains per unit volume of dry 

polymer is fixed at N = 1.849 × 1025 𝑚−3 for a shear modulus of G =

23.89 kPa. The value of G is in agreement with usual values from the 

literature. That of N is roughly one order of magnitude larger than usual 

values. Indeed, the goal of the present study was not to reach very high 

swelling ratio and we needed the membrane to withstand the stress 

induced by the swelling, thus leading to the choice of a denser hydrogel. 

Hence, the final swelling ratio for the free swelling case now only depends 
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on χ
0
 and χ

1
, which are fitted to match the experimental results. It gives 

χ
0
= 0.49 and χ

1
= 0.04. We note that the coordination number z ≃ 6 is 

reasonable with respects to that of a simple 3D square lattice. We also 

underline the fact that, even though the expression of the mixing 

parameter in this study is different with respect to the constant 

approximation classically used, the value of χ still lies within the generally 

accepted range 0.49 − 0.51 for polyacrylamide hydrogels, with the value 

of χ being generally higher in the more constrained case. 
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Fig. 15 Comparison between experiments averaged over three to four 

samples (circles) and simulations (full lines). 
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Fig. 16 Simulated total radial compressive stress produced on the 

boundary in the same three cases as previously. 
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Fig. 17 Strain against time in logarithmic scale. Dashed lines underline the 

power law behaviour at early time and are fitted to the experimental values. 
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We next consider the final swelling ratio for the constrained swelling case, 

with membranes of measured initial thickness h = 250 μm. From tensile 

tests performed on the membranes, we fitted the true stress-stretch curves 

to the theoretical expression 𝜎𝑟(𝜆𝜃) = 𝐺𝑚(𝜆𝜃
2 − 𝜆𝜃

−4) . That way, we 

computed their shear moduli 𝐺𝑚 , which are of the order of the MPa, 

depending on the membrane. 

Lastly the permeability parameter 𝐷0 is fitted to match the time scales of 

the experiments, which leads to 𝐷0 = 5.76 × 10−11  𝑚2 𝑠⁄ . The non-

dimensionalization step done is conducted using the value of the effective 

permeability D = 1.02 × 10−8 𝑚2 𝑠⁄  for the free case, which is of the same 

order of magnitude of values from other studies(15-16), and D = 4.53 ×

10−10 𝑚2 𝑠⁄  or D = 3.19 × 10−10 𝑚2 𝑠⁄  for the constrained cases. These 

values correspond to their respective final values, when the mixture has 

reached its equilibrium state. We note that the value of D increases 

throughout the swelling process by roughly two orders of magnitude in 

the free case and only one in the constrained cases. 
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The simulation is then compared to the experimental data, as shown in 

Fig.15. We obtain a satisfying fit both in terms of prediction of the final 

swelling ratio and prediction of the kinetics of the two processes. The 

theoretical model then allow use to compute the actuating pressure inside 

of the gel. As expected, the more constrained the gel is, the larger internal 

pressure it builds. The negative values of 𝜎𝑟 indicate that the stress is 

compressive (Fig.16). In all cases, at early times the power law behaviour 

resembles that of a diffusive process with an exponent close to 0.5. The 

seemingly increasing exponent (with respect to the constraint) may be 

purely artificial, as the fitting to a power law seems to get less and less 

relevant as the gel gets more constrained (Fig.17). 
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Conclusion 

 

We studied the kinetics of swelling of constrained hydrogel spheres using 

a thermodynamic approach based on the theory of Hong et al. After 

having built the theoretical framework, we used it to perform simulations 

and understand in more depth the swelling process. To validate the 

simulations, we conducted free and constrained swelling experiments with 

two different membranes. Using experimentally measured, fixed, or fitted 

parameters, we simulated the process and it matched satisfactorily well 

the experimental results. This work aims at helping the design of future 

soft actuators by understanding the behavior and the role of the different 

aspects of the swelling process. 
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Abstract in Korean 

 

용매에 담근 가교 폴리머 네트워크는 주변 분자를 흡수하여 일시적인 팽

창을 일으킵니다. 엔트로피에 의한 혼합 거동으로 인해 용매 분자가 네

트워크 내에서 흐르고 기공을 채우면서 기공 압력이 증가합니다. 그런 

다음 네트워크가 늘어나서 기공의 크기가 커지고 더 많은 용매가 안쪽으

로 흐르게 됩니다. 젤의 투과성은 모공의 크기에 따라 증가하여 팽창 과

정의 동역학에 영향을 미칩니다. 에너지적으로 유리한 혼합과 에너지적

으로 불리한 연신 사이에 평형에 도달하면 팽창이 멈춥니다. 반투과성 

멤브레인의 제약 하에서 시스템은 덜 팽창하고 그 대가로 더 큰 내부 압

력을 증가시킵니다. 제약된 성장에 대한 이론적 분석은 지금까지 존재하

지 않았습니다. 우리는 비선형 포로엘라스틱 이론을 사용하여 제약 조건 

하에서 팽창의 동역학을 모델링하고 시뮬레이션 결과가 3-설포프로필 아

크릴산 칼륨 염과 아크릴아마이드의 혼합물로 만든 하이드로젤 비드의 

실험 데이터와 잘 일치한다는 것을 발견했습니다. 제한된 하이드로젤이 

팽창하는 동안 발생하는 응답 시간과 작동 응력을 이해하고 예측하면 폴

리머 기반 소프트 액추에이터를 설계하는 데 도움이 됩니다. 
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