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Abstract

Data-Driven Optimal Control for Linear Systems with

Arbitrary Initial Policy and Application to Nonlinear

Systems Using Koopman Operators

Seong-hun Kim

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

A model-free off-policy reinforcement learning algorithm is proposed for

solving optimal control problems for dynamic systems. The algorithm is de-

signed to converge to not only the optimal but also stabilizing policy, which is

one of the most critical concerns in designing the controller for safety-critical

systems such as unmanned aerial vehicles. Unlike typical approximate dynamic

programming methods, an initial stabilizing policy is not required by the pro-

posed algorithm, which is a key advantage.

In the first part of the dissertation, a data-driven surrogate Q-leaning algo-

rithm is proposed for linear systems based on the extended Kleinman iteration

that solves algebraic Riccati equation. To allow an initial unstable policy, the

value function is redefined implicitly to evaluate the performance index of the

unstable policy. Based on this implicit value function, an action-value function

called the surrogate Q-function is proposed by augmenting virtual control dy-

namics in the state space to properly define values of state and control input

pairs. An off-policy data-driven method called the surrogate Q-learning is then

provided based on the surrogate Q-function, which enables the reuse of data
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obtained from an arbitrary control sources, e.g., trained human experts or fine-

tuned PID controllers. The convergence of the extended Kleinman iteration to

the unique positive definite solution, which yields the optimal stabilizing pol-

icy, is proven based on matrix inertia theory since the surrogate Q-learning is

equivalent to the extended Kleinman iteration.

The second part of the dissertation is devoted to an application of the

proposed reinforcement learning algorithm to nonlinear systems. The Koop-

man operator theory is employed to linearize nonlinear systems in an infinite-

dimensional space, called the Koopman lifting linearization. The controllability

and observability of linearized systems are investigated by assuming that there

exists a finite-dimensional invariant subspace of the Koopman operator spanned

by a mapping called the lifting. The equivalence between two optimal control

problems for the original nonlinear system and the linearized system is shown

under several conditions on the lifting. To find the lifting satisfying all of the

conditions, a diffeomorphic lifting approximation by coupling flow-based invert-

ible deep neural network is employed. A meta-learning framework is proposed

to train the network to approximate a common lifting for a group of systems,

and therefore the mode-free surrogate Q-learning can be applied to uncertain

systems.

Numerical simulations using illustrative nonlinear systems with known op-

timal controllers are used to demonstrate the feasibility of the proposed frame-

work, along with practical considerations and implementation details.

Keywords: Reinforcement Learning, Data-Driven Control, Learning-Based Con-

trol, Automatic Control System, Optimal Control, Algebraic Riccati Equation

Student Number: 2015-20765
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Chapter 1

Introduction

1.1 Problem Statement

Data-driven control refers to a type of control that utilizes data acquired

from various sources related to the system of interest. Unlike traditional feed-

back control methods, which utilizes the system dynamics to design a controller

and the data obtained from sensors for feedback, the main difference of the data-

driven control is that the data is accumulated over a period of time to achieve

a specific control objective.

The data-driven control encompasses several promising approaches such as

solving optimal control problems using methods like reinforcement learning

(RL) or approximate dynamic programming (ADP). The RL algorithms are

typically applied to the problems where the reward function for selecting a con-

trol input at each state is unknown. In contrast, data-driven optimal control

methods concentrate on addressing model-free problems that are character-

ized by a lack of knowledge about the system dynamics. This is because the

reward function in optimal control problems is typically specified by a given

performance index but constructing the dynamic model of systems can be a

time-consuming and expensive process.
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There are two main categories of RL methods: on-policy and off-policy meth-

ods. On-policy methods require a dataset obtained by applying the control pol-

icy being learned, while off-policy methods do not. Although on-policy methods

typically converge faster, off-policy methods are more data efficient because they

can reuse the dataset. Furthermore, the data acquisition process of the on-policy

methods can be dangerous for the safety critical systems such as the unmanned

aerial vehicles (UAVs) because the control policy being learned cannot guar-

antee the stability of the closed-loop system. The off-policy methods, however,

can utilize the datasets obtained using independent control sources such as hu-

man experts, proportional-integral-derivative (PID) controllers, adaptive con-

trollers, etc. In this study, the model-free and off-policy optimal control problem

is considered for both linear and nonlinear continuous-time systems, where the

trained control policy is stable, and the dataset acquisition process is safe.
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1.2 Background, Motivation, and Necessities

The optimal control problems can be formulated as dynamic programming

problems, which is to find the optimal control policy that optimizes a given

performance index subject to the system dynamics. Dynamic programming is

a fundamental concept in optimal control theory, and its essence can be cap-

tured by the Bellman equation. The optimal value function of the state can

then be defined by a function that satisfies the Bellman optimality equation

for discrete-time systems or the Hamilton-Jacobi-Bellman (HJB) equation for

continuous-time systems. The HJB equation is nonlinear partial differential

equations, which is difficult to solve analytically especially for complex systems.

Therefore, numerical techniques such as finite difference methods or approxima-

tion algorithms are often used to obtain approximate solutions to the optimal

control problem, which are the ADP methods.

Solving the HJB equation with ADP methods is classified into two strate-

gies. The first strategy is policy iteration-based ADP, which iteratively evaluates

the current policy and updates the policy for the next iteration using the eval-

uated value function. However, the evaluation process requires the existence of

the value function corresponding to the current policy, making the policy it-

eration method dependent on admissible policies. The second strategy is value

iteration-based ADP, which directly improves the value function and does not

require admissible policies. However, value iteration-based ADP methods typ-

ically involve additional assumptions on the problem and incorporate complex

numerical integration processes.

In general, value iteration-based ADP methods require more computational

resources compared to policy iteration-based ADP methods due to the direct
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improvement of the value function using numerical integrations. Furthermore,

the stability of the policy based on the value function being learned is not guar-

anteed, and additional techniques such as regularization or constraints are often

necessary to ensure the policy’s stability. On the other hand, policy iteration-

based ADP methods can be considered more appropriate for UAVs because

they update the policy and the value function in an iterative manner, ensuring

that the policy is admissible at each iteration by assuming that the initial pol-

icy is admissible. However, this assumption may not be practical or effective for

model-free problems where the system dynamics are unknown or complex. In

such cases, the knowledge of the initial admissible policy can be a form of sys-

tem knowledge, which may not be readily available. This poses a challenge for

policy iteration-based ADP methods, because they require an initial admissible

policy even for linear systems, which is a long-standing restriction that stems

from the Kleinman iteration [1].

The Kleinman iteration is an algorithmic approach for solving the continuous-

time algebraic Riccati equation (ARE), which corresponds to the HJB equation

for linear systems. This algorithm serves as the basis for most ADP methods [2]

due to the ability to converge in quadratic rates and the possibility of extension

to data-driven model-free reinforcement learning methods [3, 4]. The require-

ment for admissibility of all policies, including the initial guess, in the Kleinman

iteration, arises from the need for the value function of the policy to be positive

semidefinite. This condition is essential in the evaluation process, where the

iteration repeatedly assesses the policy using the Lyapunov equation. However,

this assumption may be too restrictive for data-driven model-free optimal con-

trol problems, especially in situations where the system dynamics are unknown.
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Therefore, alternative algorithms are needed that can bypass this limitation and

allow for more flexible policy initialization.

In the context of nonlinear systems, employing Kleinman iteration requires

function approximators that can effectively approximate the value functions and

the policy functions in the state-feedback form. Most ADP methods utilize lin-

ear parameterized hand-crafted basis functions to approximate those unknown

functions, although the hand-crafted basis functions can be regarded as a form

of prior knowledge. Using deep neural networks as the function approximators

offers greater flexibility due to their universal function approximation property.

However, it should be noted that training neural networks typically demands

a substantial amount of data and time, which may limit their suitability for

model-free ADP methods in complicated applications including UAV control

design.
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1.3 Literature Review

1.3.1 Iterative Methods for Solving AREs

The algebraic Riccati equation, which arises in linear quadratic regulation

(LQR) problems, has been extensively studied for several decades [5]. AREs

can have multiple solutions that can be real, complex, symmetric, and non-

symmetric. Among those, the positive semidefinite solution is of interest in

general because it can be used to obtain a stable feedback gain and represent

the optimal value function [6, 7]. However, the stabilizing solution is difficult

to obtain analytically, and therefore many iterative algorithms have been de-

veloped to approximate the solution, for example, eigenvector-based method

using Pontryagin’s maximum principle [8], the Schur vector method, which is

a numerically sustainable variant of the eigenvector-based method [9], and the

matrix sign function-based methods [10,11].

Kleinman proposed a Newton method to iteratively solve the AREs [1],

which has received a great attention due to its quadratic convergence rate given

a good initial guess making closed-loop system stable [12–15]. In the Kleinman

iteration, a Lyapunov equation is solved at each iteration step, and the feedback

gain matrix for the next iteration step is determined based on the solution to

the Lyapunov equation. This procedure can be considered as a variation of the

policy iteration method described by Howard [16], which involves performing

policy evaluation steps (i.e., solving Lyapunov equations) and policy improve-

ment steps (i.e., finding the gain matrix for the next step) iteratively. Although

the convergence to the optimal stabilizing solution is theoretically guaranteed, it

requires an initial stabilizing feedback gain matrix. Several automatic stabilizing
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procedures have been developed to generate the initial stabilizing gain [17–19].

However, all of these methods, including the Kleinman iteration, require the

complete knowledge of the system dynamics, which is not available for model-

free problems.

1.3.2 Model-Free Policy Iteration Methods

To alleviate the requirements of the system dynamics, Murray et al. pro-

posed the adaptive dynamic programming method for continuous-time non-

linear systems utilizing a dataset collected from the system [20]. Because this

method iteratively approximates the solution to the Lyapunov equation corre-

sponding to the stable policy using a set of data including the state, control

input, and the time-derivative of the state, it can be considered as a data-

driven approach of the Kleinman iteration. Vrabie et al. extended this method

to avoid the state derivatives in the dataset using integration of the cost for a

fixed time-step, called the integral reinforcement learning (IRL) [3]. For linear

quadratic regulator problems, the authors demonstrated the equivalence be-

tween the IRL and the Kleinman iteration. However, the above methods still

require the knowledge of control input matrices for linear systems. Jiang and

Jiang proposed a data-driven method to completely remove the requirements

on the knowledge of the system by solving the Lyapunov equation and updating

the control input at once [4]. This method is also the off-policy method that

allows for the addition of exploration noises to the control input while avoiding

contamination of the true value function to be approximated. While the main

goal of the aforementioned methods is to establish a model-free framework for

solving AREs or HJB equations with the aid of a dataset, it should be noted
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that all of these methods rely on having prior knowledge of an initial stable or

admissible policy.

1.3.3 ADP Methods Without Initial Admissible Policies

Recent research has focused on developing ADP methods that do not re-

quire an initial admissible policy. This is motivated by the observation that

it is impossible to evaluate an unstable policy using the Lyapunov equation

in policy iteration. The fundamental idea behind these methods is to imple-

ment the value iteration developed by Bellman [21], which does not require any

explicit policy to be evaluated and drops the requirement of an initial stabiliz-

ing policy. Bian and Jiang implemented the value iteration for continuous-time

systems [22, 23]. This method iteratively approximates the finite-horizon value

function backward in time, and the convergence to the optimal stabilizing so-

lution is guaranteed. Lee et al. proposed a generalized policy iteration method

for continuous-time linear systems by introducing the update horizon [24]. Both

methods employ a positive (semi)definite matrix as an initial estimate of the

value function and iteratively refine the approximation by incorporating addi-

tional integration steps. However, the inclusion of these integration steps may

introduce numerical and algorithmic complexities that can affect the efficiency

and accuracy of the method.

1.3.4 The Koopman Operator for Control

Recently, the Koopman operator has gained a lot of attention as an effec-

tive tool for predicting the behavior of complex nonlinear dynamic systems.

This technique interprets the evolution of state variables by employing infinite-
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dimensional linear operators on transformed state variables through a mapping

called the observable, instead of relying on the trajectories of ordinary differen-

tial equations. It has been studied in various fields ranging from fluid dynamics

to power systems and UAV path-following problems [25]. Developing a method

for interpreting stable and unstable subspaces using zero level sets of Koopman

eigenfunctions has provided a foundation for the stability analysis of linearized

systems and the operator-theoretic optimal control theory [26].

Williams et al. developed data-driven extended dynamics mode decompo-

sition (EDMD) algorithms to efficiently approximate the infinite-dimensional

linear Koopman operator for high-dimensional systems [27] and systems with

exogenous control inputs [28]. The performance of approximating nonlinear

systems with finite-dimensional linear systems using EDMD and designing con-

trollers based on this has been experimentally demonstrated for robotic sys-

tems [29]. Brunton et al. proposed a linear optimal control approach by includ-

ing the state variables in the observables, although only a restricted class of

nonlinear systems with a single isolated fixed point can be considered and the

nonlinear optimality of the controller was not proven [30].

Generalizations of the Koopman operator with control inputs were proposed

by several studies, where the Koopman operator is also applied to the control

inputs [31, 32]. In [31], it was demonstrated that the output space of the gen-

eralized Koopman operator can be restricted to a subspace of the observable

space. Rather than using bilinear predictors [33,34], Korda and Mezić [35] em-

phasized the feasibility of linear predictors, where the linear control techniques

such as model predictive control (MPC) can be exploited. The approach of the

Koopman operator-based MPC [36–38] was validated through numerical simu-
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lations [39] and hardware experiments [40]. Comprehensive reviews of Koopman

operators and their applications can be found in [41,42].

1.3.5 Learning-Based Koopman Operator Applications

As machine learning techniques continue to advance, there has been in-

creasing interest in using deep neural networks to represent the observables

and learn them together with the Koopman operator. Yeung et al. successfully

simulated the responses of high-dimensional complex nonlinear systems using

the learned linear systems by applying the deep neural network-based learning

technique to EDMD [43]. Folkestad et al. proposed a similar idea of using deep

neural networks, but instead of directly learning the observables, the authors

trained the Koopman eigenfunctions and identified important observables using

their spectral information, which were then used in EDMD [44]. This approach

addressed the issue of non-linear dynamics being approximated by excessively

high-dimensional linear systems, resulting in increased computational efficiency

for calculating optimal control inputs through methods such as MPC. Krolicki

et al. demonstrated that the optimal value function and optimal control inputs

can be represented by the Koopman operator [45]. They showed that the op-

timal solutions can be obtained using Kleinman iteration based on EDMD. In

addition to the studies mentioned above, there are active research efforts to

apply deep neural networks and learning techniques to Koopman operator for

control system design [46,47].

10



1.4 Objectives and Contributions

1.4.1 Objectives

The objective of this study is to establish a theoretical foundation for the

utilization of data-driven reinforcement learning techniques in optimal control

problems, and to develop effective and practical algorithms for this purpose.

The overarching goals of this study can be stated as follows:

• Development of a model-free reinforcement learning method for optimal

control problems that does not require any knowledge of the system dy-

namics including an initial admissible policy

• Mathematically rigorous analysis of the convergence to stable optimal so-

lutions and associated characteristics of the proposed reinforcement learn-

ing algorithm

• Safe acquisition and minimization of data required for optimal controller

learning

In addition, the aim of this study is to propose a control design framework that

can utilize data from other (similar) systems or virtual simulation data, instead

of relying on actual data of the target system, which is typically required in the

conventional control system design process.

1.4.2 Contributions

Model-Free Policy Iteration Without Initial Admissible Policies

To overcome the limitations of existing policy iteration methods, which can-

not perform policy evaluation for unstable control inputs due to the ill-defined
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value function, this study defined a value function implicitly, where the exis-

tence and uniqueness conditions are provided for linear systems. The proposed

implicit value function reveals that the matrix inertia preservation property of

the Lyapunov equation is the reason for the lack of convergence of the Kleinman

iteration for unstable initial polices. A virtual control input dynamics is intro-

duced to circumvent this problem, and an implicit value function for state-input

pairs augmenting this virtual dynamics is defined. The surrogate Q-learning al-

gorithm is proposed, where the control policy is evaluated using the implicit

value function, and the policy improvement step is constructed based on a neces-

sary condition for optimal control inputs. The surrogate Q-learning is inherently

an off-policy method, and therefore it can exploit data from various control re-

sources including human experts or fine-tuned experimental controllers, which

renders data acquisition processes safe.

Mathematical Convergence Analysis

Using the matrix inertia theory and monotone convergence theory, it is

proven that the surrogate Q-learning always converges to a stable optimal con-

trol policy, even when an unstable initial policy is used. First, the extended

Kleinman iteration based on the matrix equation, which is equivalent to the

surrogate Q-learning, is formalized. It is shown that if a solution to the ini-

tial Lyapunov equation exists uniquely, regardless of the stability of the initial

feedback gain, it is easy to find the design parameters that make solutions to

Lyapunov equations unique in all subsequent policy evaluation steps. Next, us-

ing the matrix inertia theory, it is proven that the number of eigenvalues with

the positive real part of the closed-loop system matrix monotonically decreases
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as the iteration progresses. This implies that the feedback control system is

monotonically stabilized as the iteration progresses. Based on this observation,

local stability analysis around the solution of the algebraic Riccati equation

and monotone convergence theory completes the convergence proof that the

feedback gain becomes completely stable within a finite number of steps and

consequently converges to the optimal stable solution.

Meta-Learning Framework for Koopman Operator

A meta-learning framework is proposed that combines Koopman operator

theory with the proposed surrogate Q-learning to minimize the amount of re-

quired data and reduce the learning time for deep reinforcement learning for

nonlinear systems. It is shown that the nonlinear optimal control is equivalent

to the linear optimal control for the Koopman lifting linearization, if it exists.

For the existence of the linear optimal control, the controllability and observ-

ability of the linearized system are investigated. Based on these analyses, six

sufficient conditions for the lifting have been established for the optimal control

obtained from the Koopman lifting linearization to be the same as the nonlinear

optimal control of the original nonlinear system. A meta-learning problem is

formulated for a specific group of nonlinear systems to find a common lifting

that satisfies all of the above conditions, so that any nonlinear system within

the group can be represented solely by linear system matrices. Once the meta-

learning process is completed offline, the proposed framework allows obtaining

nonlinear optimal control using the common lifting and surrogate Q-learning

with actual data, for any uncertain nonlinear system in the group.

In summary, the proposed reinforcement learning achieves theoretically guar-
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anteed convergence to the optimal stable solution for completely unknown linear

systems, exploiting safely acquired real data. For nonlinear systems, the com-

mon lifting obtained from the proposed meta-learning enables rapid training of

the nonlinear optimal control with a minimal data.
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1.5 Dissertation Outline

The organization of this dissertation is as follows:

In Chapter 1, the backgrounds, motivations, and necessitates of this study

are described, and a comprehensive review of existing literatures on data-driven

optimal control methods is presented. Based on these, the objectives of this

study is clearly stated, and the contributions are presented.

In Chapter 2, mathematical preliminaries on the matrix inertia theory, the

Fréchet derivative, and the Koopman operator are summarized. Brief introduc-

tions to linear system theory, the Kleinman iteration, and the meta-learning

framework are presented.

The main algorithms and analytical contributions of this study are de-

scribed in Chapters 3 and 4. In Chapter 3, the off-policy model-free surrogate

Q-learning is proposed based on a virtual control input dynamics and an im-

plicit value function of a state-action pair. The extended Kleinman iteration,

which is equivalent to the surrogate Q-learning for linear systems, is formu-

lated And, the rigorous convergence analysis along with monotonic stabilizing

property is provided.

In Chapter. 4, the meta-learning framework to obtain the nonlinear optimal

control is developed based on the Koopman operator theory. The equivalence

between the nonlinear optimal control and the linear optimal control is revealed,

and the controllability and observability are investigated. The meta-learning

problem is formulated based on these observations.

In Chapter 5, the detailed implementation of the proposed meta-learning

framework is presented. The feasibility and efficacy of the proposed reinforce-

ment learning framework are demonstrated by numerical simulations for a group
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of illustrative nonlinear systems that possess a common invariant subspace of

the Koopman operator.

In Chapter 6, the summary of the main results of this dissertation and

suggestions for future work are provided.
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Chapter 2

Theoretical Backgrounds

This section introduces notations used in this study. The mathematical pre-

liminaries to understand the theoretical proofs and the formal definitions of the

problems are introduced.

2.1 Notation

Suppose that all matrices considered in this study have real entries, except

where explicitly noted. The set of real matrices of dimensions n × m is de-

noted by Rn×m. The identity matrix in Rn×n is denoted by In. Let Sn ⊂ Rn×n,

Sn+ ⊂ S, and Sn++ ⊂ S+ denote the set of real symmetric matrices, real sym-

metric positive semidefinite matrices, and real symmetric positive definite ma-

trices, respectively. Let F ≻ 0 (F ⪰ 0) denote that F is symmetric positive

(semi)definite, and F ≻ G (F ⪰ G) means that F −G ≻ 0 (F −G ⪰ 0). Given

a square matrix A, the set of eigenvalues of A is denoted by σ(A), and the

spectral radius of A is denoted by ρ(A). The Frobenius norm of a matrix A is

denoted by ∥A∥F . If a symmetric matrix F is bounded, it means ∥F∥F ≤ c for

some c ≥ 0. Given a vector v ∈ Rn, ∥v∥ denotes the Euclidean norm.
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2.2 Mathematical Preliminaries

2.2.1 The Matrix Inertia Theorem

Definition 2.1 (Matrix inertia). The inertia of a square matrix A, denoted by

In(A), is defined by

In(A) := (π(A), ν(A), δ(A)), (2.1)

where the elements, π(A), ν(A), and δ(A), are the number of eigenvalues of A

with positive, negative, and zero real parts, respectively.

Given two square matrices A and B of the same dimensions, let the equality

In(A) = In(B) imply π(A) = π(B), ν(A) = ν(B), and δ(A) = δ(B).

Definition 2.2 (Matrix congruence). Given real symmetric matrices A and

B of the same dimensions, if there exists a nonsingular matrix S such that

A = SBST , then A and B are said to be congruent.

Theorem 2.3 (Sylvester’s law of inertia). If real symmetric matrices A and B

are congruent, then In(A) = In(B).

2.2.2 Fréchet Derivatives

The Fréchet derivative of a matrix function f : Rm×n → Rp×q at a point

K ∈ Rm×n in the direction E ∈ Rm×n is a linear mapping, denoted by Lf (K,E),

that satisfies [48]

lim
∥E∥F→0

∥f(K + E)− f(K)− Lf (K,E)∥F
∥E∥F

= 0 (2.2)

for all E ∈ Rm×n.
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Given a matrix function f , if the Fréchet derivative exists at a point K, then

the function f is said to be Fréchet differentiable. The following properties of

the Fréchet derivative are borrowed from [48]:

Theorem 2.4 (Sum rule [48, Theorem 3.2]). If g : Rm×n → Rp×q and h :

Rm×n → Rp×q are Fréchet differentiable at K ∈ Rm×n, then so is f = αg + βh

and Lf (K,E) = αLg(K,E) + βLh(K,E) for any scalars α ∈ R and β ∈ R.

Theorem 2.5 (Product rule [48, Theorem 3.3]). If g : Rm×n → Rp×q and

h : Rm×n → Rq×r are Fréchet differentiable at K ∈ Rm×n, then so is f = gh

and Lf (K,E) = Lg(K,E)h(K) + g(K)Lh(K,E).

Theorem 2.6 (Chain rule [48, Theorem 3.4]). If g : Rm×n → Rr×s and

h : Rr×s → Rp×q are Fréchet differentiable at K ∈ Rm×n and g(K) ∈ Rr×s,

respectively, then so is f = h ◦ g and Lf (K,E) = Lh(g(K), Lg(K,E)).

2.2.3 The Koopman Operator

Consider a class of nonlinear autonomous systems given by

ẋ = f(x), (2.3)

where f : X → Rn is a continuously differentiable function on a compact set

X ⊂ Rn. Because f ∈ C1(X), there exists a unique solution x(t0 + t) for

any initial state x(t0) ∈ X and t ≥ 0. Therefore, an operator ξt : X → X

can be defined, which maps any initial state to the state for time t following

the dynamics in (2.3), i.e., ξt(x(t0)) = x(t0 + t). Note that the family
{
ξt
}

associated with the system (2.3) is a one-parameter semigroup [49, Definition

13.34], because ξ0 = I, where I denotes the identity operator on X, and ξt+s =

ξtξs = ξsξt for all t, s ≥ 0.
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Consider a Banach space F of functions ϕ : X → R, and further assume

that F ⊂ C1(X,R). Any function ϕ ∈ F is referred to as an observable be-

cause it represents the measurement obtained from a sensor [25]. It is worth

noting that the definition of observables in Koopman operator theory should be

distinguished from the observability in control theory. The Koopman operator

associated with (2.3) is defined on F as follows.

Definition 2.7 (Koopman operators [50]). The family of Koopman operators

Kt : F → F associated with the family of maps ξt, t ≥ 0, is defined by

Ktϕ = ϕ ◦ ξt, ∀ϕ ∈ F . (2.4)

Note that
{
Kt

}
t≥0

is also a one-parameter semigroup, called the Koopman

semigroup of operators, because K0ϕ = ϕ ◦ ξ0 = ϕ by construction and

Kt+sϕ = ϕ ◦ ξt+s = ϕ ◦
(
ξt ◦ ξs

)
= Ktϕ ◦ ξs = KtKsϕ, (2.5)

for all t, s ≥ 0. The Koopman operator is linear, i.e., Kt(α1g1 + α2g2) =

α1Ktg1 + α2Ktg2 for all g1, g2 ∈ F , α1, α2 ∈ R, and t ≥ 0.

Due to the continuity of the solution of (2.3) and of the observables ϕ, the

Koopman semigroup of operators has an additional property of strong continu-

ity, which can be stated as

lim
t→0

∥∥Ktϕ− ϕ
∥∥ = 0, ∀ϕ ∈ F . (2.6)

Then, associate
{
Kt

}
t≥0

with the operator Aε by

Aεϕ =
1

ε
(Kεϕ− ϕ), ∀ϕ ∈ F ,∀ε > 0, (2.7)

and define an operator A by

Aϕ = lim
ε→0

Aεϕ (2.8)
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for all ϕ ∈ D(A), i.e., for all ϕ where the limit in (2.8) exists in the norm

topology of F . The operator A, which is essentially d
dtK0, is called the infinites-

imal generator of the semigroup
{
Kt

}
t≥0

[49, Theorem 13.35]. Moreover, from

Ktϕ(x0) = ϕ(ξt(x0)) = ϕ(x(t)), where x(0) = x0, and from the assumption that

ϕ ∈ C1(X,R), Theorem 13.35 in [49] implies that

d

dt
ϕ(x(t)) = Aϕ(x(t)) = ∇ϕ(x(t))T f(x(t)) (2.9)

for all t ≥ 0. It is clear that D(A) is a subspace of F and that A is thus a linear

operator in F .
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2.3 Linear System Theory

Consider a linear system given by

ẋ(t) = Ax(t) +Bu(t), (2.10)

where A ∈ Rn×n and B ∈ Rn×m denote the system matrices, x(t) ∈ Rn is the

state vector, and u(t) ∈ Rm is the control input vector.

2.3.1 Controllability and Observability

Definition 2.8 (Controllability). The linear system (2.10) or the matrix pair

(A,B) is called controllable if an input function u : [0,∞) → Rm exists to

transfer the initial state x(0) = x0 ∈ Rn to any final state x1 ∈ Rn within

a finite time. Conversely, if there does not exist such an input function, the

system (2.10) or the pair (A,B) is called uncontrollable.

Consider an output equation given by

y(t) = Cx(t), (2.11)

where C ∈ Rq×n denotes the observer matrix, and y(t) ∈ Rq is the output

vector.

Definition 2.9 (Observability). The linear system (2.10) or the matrix pair

(A,C) is called observable with respect to the output y(t) in (2.11) if there

exists a finite time interval [0, t1] for any unknown initial state x(0) ∈ Rn,

such that the knowledge of input u(t) and output y(t) during this interval is

enough to uniquely determine x(0). If such a time interval does not exist, the

system (2.10) or the pair (A,C) is said to be unobservable with respect to the

output.

22



The following theorem states the duality between the controllability and the

observability.

Theorem 2.10 ([51, Theorem 6.5]). The pair (A,B) is controllable if and only

if the pair (AT , BT ) is observable.

In the following, useful properties of preserving controllability and observ-

ability are presented.

Proposition 2.11 ([52, Corollary 4.1.3]). If C ≻ 0, then (A,B) is controllable

if and only if (A,BCBT ) is controllable.

Lemma 2.12 ([53, Lemma 2.1]). For any K, if (A,B) is controllable, then

(A−BK,B) is controllable.

Theorem 2.13 ([53, Theorem 3.6]). If Q ⪰ 0 and (A,Q) is observable, then

for all R ≻ 0 and all B, K, the pair (A−BK,Q+KTRK) is observable.

Proof. From Proposition 2.11 and the duality from Theorem 2.10, the pair

(A,Q) is observable if and only if (A,
√
Q) is observable. Then, from [53, The-

orem 3.6. ii.], the pair (A−BK,
√
Q+KTRK) is observable, which completes

the proof by applying Proposition 2.11 and Theorem 2.10 once again.

2.3.2 Algebraic Riccati Equations

The ARE arises in the infinite-horizon optimal control problem for linear

systems in (2.10) with a performance index given by

J(x0;u) =

∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt , (2.12)

where Q ∈ Sn+ and R ∈ Sm++ denote the weighting matrices, and the x(t) is

the state trajectory of the system in (2.10) with x(0) = x0 and the control
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input function u. The infinite-horizon optimal control problem minimizing the

performance index J in (2.12) is given by

inf
u
J(x;u), ∀x ∈ Rn, (2.13)

and it corresponds to the ARE, which is a matrix equation of a variable P ∈

Rn×n, given by

R(P ) := PA+ATP +Q− PBR−1BTP = 0, (2.14)

whereR denotes the Riccati operator. The ARE possesses a unique positive def-

inite solution in the class of positive semidefinite matrices under controllability

and observability conditions which are typically assumed in control problems.

Theorem 2.14 ([53, Theorem 4.1]). If (A,B) is controllable and (A,Q) is

observable, then the ARE in (2.14) has a unique solution P ∗ ∈ Sn++ in the class

of Sn+, and A−BR−1BTP ∗ is Hurwitz.

Under the hypotheses of Theorem 2.14, the optimal control input solv-

ing (2.13) can be represented by [54, Theorem 6.1]

u∗ = −R−1BTP ∗x =: −K∗x (2.15)

for K∗ ∈ Rm×n, and the corresponding closed-loop-loop system is stable, i.e.,

A − BK∗ is Hurwitz, by Theorem 2.14. Moreover, the optimal performance

index J∗(x) defined by

J∗(x) := J(x;u∗) = min
u
J(x;u) (2.16)

can be represented by a quadratic form of the state x as

J∗(x) = xTP ∗x. (2.17)
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2.3.3 Lyapunov Equations

The Lyapunov equation is a matrix equation of a variable X defined by

XA+ATX +M = 0, (2.18)

where A and M are real square matrices of the same dimensions. In what

follows, two useful theorems are introduced corresponding to the existence and

the inertia property of the solution X to the Lyapunov equation in (2.18).

Theorem 2.15 ([5, Corrollary 8.2.1]). Given real square matrices A and M ,

the Lyapunov equation in (2.18) has a unique solution X = XT if and only if

σ(A) ∩ σ(−A) = ∅.

Theorem 2.16 ([55, Theorem 4.6]). Given real square matrices A and M ⪰ 0,

suppose that (A,M) is observable. If X = XT is a solution to the Lyapunov

equation in (2.18), then δ(A) = 0 and In(A) = In(−X).

Theorem 2.15 implies that the Lyapunov equation in (2.18) can have either

many solutions or no solution if σ(A) ∩ σ(−A) ̸= ∅. Further assuming the

observability of the pair (A,M), the following lemma characterizes that the

solution set can only be empty.

Lemma 2.17. Given real square matrices A and M ⪰ 0, suppose that (A,M)

is observable. Then, a solution X = XT to the Lyapunov equation in (2.18)

exists if and only if σ(A) ∩ σ(−A) = ∅.

Proof. The “if” part is a direct result of Theorem 2.15. To prove the “only if”

part, suppose that σ(A)∩σ(−A) ̸= ∅. Let x and y be the left eigenvectors of A

and −A associated with the common eigenvalue λ of A and −A, respectively, as
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xTA = λxT and yTA = −λyT . Put X1 = xyT +yxT . To obtain a contradiction,

suppose that there is a solution X0 to (2.18), which is nonsingular as (A,M)

is observable from Theorem 2.16. Then, X = X0 + αX1 for any α ∈ C is a

solution to (2.18). It follows that

δ(−A) = δ(X0) = δ(X0 + αX1) = 0 (2.19)

from Theorem 2.16. Since there always exists α ∈ C such that det(X0 + αX1) =

0, or equivalently δ(X0+αX1) > 0. This contradicts (2.19), which implies that

there is no solution X0 to (2.18).
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2.4 The Kleinman Iteration

The Kleinman iteration solves a series of Lyapunov equations to obtain the

optimal stabilizing solution P ∗ ≻ 0 asymptotically, where P ∗ is the solution to

R(P ∗) = 0 in (2.14). The convergence of the Kleinman iteration is ensured by

the following theorem [1].

Theorem 2.18 (The Kleinman iteration). Let K0 be any stabilizing feedback

gain matrix, and let Pk be the symmetric positive definite solution to the Lya-

punov equation given by

Pk(A−BKk) + (A−BKk)
TPk +Q+KT

k RKk = 0, (2.20)

where Kk is defined recursively by

Kk+1 = R−1BTPk, (2.21)

for all k = 0, 1, . . . . Then, the following properties hold.

1. A−BKk is Hurwitz,

2. Pk ⪰ Pk+1 ⪰ P ∗,

3. limk→∞Kk = K∗, and limk→∞ Pk = P ∗.

Theorem 2.18 requires that the initial feedback gainK0 stabilizes the closed-

loop system for the Kleinman iteration, i.e., A − BK0 must be Hurwitz. The

subsequent lemma demonstrates that the Kleinman iteration preserves the iner-

tia of closed-loop system matrices. This elucidates why the Kleinman iteration

fails to converge to the optimal stabilizing solution when initiated with an un-

stable feedback gain.
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Lemma 2.19. In the Kleinman iteration, given an initial feedback gain K0,

suppose that there exists a unique symmetric solution P0. Then,

In(A−BK0) = In(A−BKk) (2.22)

for all k = 1, 2, . . . .

Proof. Let Ak = A − BKk. The proof is by induction on k. It is shown that

if Ak is unstable and there exists a unique symmetric Pk, then Ak+1 is also

unstable and there exists a unique symmetric Pk+1. Let Qk := Q + KT
k RKk.

Because Pk satisfies

PkAk +AT
k Pk +Qk = 0, (2.23)

and the pair (Ak, Qk) is observable from Theorem 2.13, it follows that

In(Ak) = In(−Pk) (2.24)

from Theorem 2.16. Rewrite (2.23) using (2.21) as

PkAk+1 +AT
k+1Pk + Q̃k = 0, (2.25)

where

Q̃k := Q+ (Kk+1 −Kk)
TR(Kk+1 −Kk) +KT

k+1RKk+1. (2.26)

Because the pair (Ak+1, Q̃k) is also observable from Theorem 2.13, it follows

from Theorem 2.16 that

In(Ak+1) = In(−Pk). (2.27)

From (2.24) and (2.27), In(Ak) = In(Ak+1), which implies that Ak+1 is unstable.

Since Pk is a symmetric solution to (2.25), it follows that

σ(Ak+1) ∩ σ(Ak+1) = ∅ (2.28)
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by Lemma 2.17. Then, it can be concluded that Pk+1 also exists. This completes

the proof by induction.

The inherent property of inertia preservation in the Kleinman iteration by

Lemma 2.19 reveals that if π(A − BK0) > 0, indicating the initial closed-

loop system matrix is unstable, then all subsequent closed-loop system matrices

satisfy π(A−BKk) > 0 for k = 1, 2, . . . , meaning they are all unstable.
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2.5 Meta-Learning

Meta-learning is the process of acquiring knowledge or experience about how

to learn, aimed at improving the efficiency and efficacy of learning new tasks. It

consists of two key learning components: a base learner that is utilized for each

specific task and a meta learner that enhances the base learner’s capabilities to

improve its efficiency and effectiveness for learning new tasks. The goal of the

meta learner may differ from that of the base learner due to varying objectives

including rapid adaptation to a new task or the reduction of computational

burden [56].

2.5.1 Optimization Problem Formulations

The parameter of the meta learner, denoted by w, can be any of several

components of the base learner, including but not limited to an optimization

solver, a loss function, initial parameters, or pre-trained networks employed for

input embedding. The meta learner optimizes w over a task distribution p(T )

based on a loss function L, where a task Ti ∼ p(T ) is composed of a loss function

Li and a dataset Di := (Dtrain
i ,Dval

i ) with the training and validation datasets.

Then, the meta-learning algorithm can be interpreted as the following bi-level

optimization problem:

w∗ = argmin
w

ETi∼p(T )

[
L
(
Dval

i ;w∗
i (w), w

)]
, (2.29)

w∗
i (w) = argmin

wi

Li

(
Dtrain

i ;wi, w
)
, (2.30)

where the meta and base learners correspond to the optimization problems

in (2.29) and (2.30), respectively. Here, wi denotes the parameter of the base

learner for Ti. It is important to emphasize that the parameters w and wi
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used to represent the meta-learner and base-learner parameters are conceptual

notations and do not necessarily represent specific vectors or matrices. They

serve as placeholders to denote the trainable parameters in the meta-learning

framework without implying a specific mathematical form. More comprehensive

understanding of meta-learning can be found in Hospedales et al. [57].

2.5.2 Closed-Form Base Learners

Selecting appropriate base learners is crucial for successful meta-learning.

In [58], the feasibility of utilizing fast solvers with closed-form solutions as

the base learner was investigated to enhance the efficiency of adapting to new

learning problems. In this framework, a linear predictor Fiϕ(x;w) ∈ Rno and a

least-square loss function

Li

(
Dtrain

i ;wi, w
)
=

Ni∑
j=1

∥Fiϕ(xj ;w)− yj∥2 (2.31)

with a dataset Dtrain
i = {(xj , yj)}Ni

j=1 is assigned to the base learner for each task

Ti, where yj ∈ Rno is the output vector, ϕ(xj ;w) ∈ Rne is an embedding function

of the input xj parameterized by the meta-learner parameter w, and the matrix

Fi ∈ Rno×ne denotes the base-learner parameter wi. Then, the closed-form

solution F ∗
i (w) for the base-learner problem in (2.30) is given by

F ∗
i (w) =

[
y1 · · · yNi

] [
ϕ(x1;w) · · · ϕ(xNi ;w)

]†
, (2.32)

where (·)† denotes the Moore-Penrose inverse. With the aid of the closed-form

solution in (2.32), the gradient of F ∗
i (w) with respect to w can be readily

computed using standard automatic differentiation packages, such as PyTorch

Autograd. This gradient can be utilized in the backpropagation procedure to

solve (2.29).
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Chapter 3

Data-Driven Optimal Control for
Unknown Linear Systems

This section describes a policy iteration scheme for unknown linear systems,

which allows an unstable initial policy. An implicit value function is proposed

to replace the value function for an unstable policy, and the uniqueness and

existence of the implicit value function are investigated under a mild condition

of the closed-loop system.

3.1 Implicit Value Functions

Let us consider a linear autonomous system

ẋ(t) = Acx(t), (3.1)

where x(t) ∈ Rn is the state vector, and Ac ∈ Rn×n is the system matrix. A

closed-loop system matrix for (2.10) with a linear feedback control u = −Kx is

given by A−BK which can be regarded as the system matrix Ac in (3.1).

The performance index J(x0;u) in (2.12) is typically considered as a value

of the initial state x0 using the control input function u. In the ADP literature,

J(x0;u) is typically defined as the value function which is a functional of a

state x0 ∈ Rn and an input function u : [0,∞) → Rm. If u = −Kx, the value
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function can be rewritten as

Jc(x0) := J(x0;−Kx) =
∫ ∞

0
x(t)TQcx(t) dt , (3.2)

where Qc = Q + KTRK. In this definition, the value function Jc(x0) can be

infinite if the closed-loop system matrix Ac = A − BK is not Hurwitz, which

renders the requirement of the admissible control input for the value function

being well-defined [59]. Therefore, it is necessary to define a different value

function well-defined even for unstable Ac’s.

Definition 3.1 (Implicit value functions). Suppose that there exists P ∈ Sn

such that a quadratic function of the state x0 ∈ Rn given by V (x0) = xT0 Px0

satisfies

V (x0)− V (x(t)) =

∫ t

0
x(τ)TQcx(τ) dτ (3.3)

for all x0 ∈ Rn and for all t ≥ 0, where Qc ∈ Sn and x(·) is the state trajectory

of (3.1) with x(0) = x0. Then, the function V is called the implicit value

function for the system (3.1).

If Ac is Hurwitz, then the implicit value function V (x0) is consistent with

the value function Jc(x0) in (3.2). In particular, if Ac is Hurwitz, the linear

system in (3.1) is exponentially stable, and thus limt→∞ x(t) = 0, which is

followed by limt→∞ V (x(t)) = 0. Moreover, it is well-known that there exists

PJ ∈ Sn++ such that Jc(x0) = xT0 PJx0 for all x0 ∈ Rm if and only if Ac is

Hurwitz [1]. Since the implicit value function V (x0) satisfies (3.3) for all t ≥ 0,

it follows that

V (x0) = lim
t→∞

(
V (x(t)) +

∫ t

0
x(τ)TQcx(τ) dτ

)
=

∫ ∞

0
x(τ)TQcx(τ) dτ = xT0 PJx0

(3.4)
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for all x0 ∈ Rn, which implies P = PJ .

To examine the existence of the implicit value function for an arbitrary Ac

that may not necessarily be Hurwitz, consider the Lyapunov equation of P ∈ Sn

for the system in (3.1), given by

L(P ) := PAc +AT
c P +Qc = 0, (3.5)

where L is called the Lyapunov operator.

Proposition 3.2 (Existence). For the system (3.1), if σ(Ac) ∩ σ(−Ac) = ∅,

there exists an implicit value function.

Proof. From σ(Ac) ∩ σ(−Ac) = ∅, Theorem 2.15 implies that there exists a

matrix P ∈ Sn which is a solution to L(P ) = 0 in (3.5). Consider the state

transition matrix of (3.1) defined by Φ(τ) = eAcτ for any τ ≥ 0, which has the

following properties: x(τ) = Φ(τ)x(0) and

Φ(τ)Ac = AcΦ(τ) =
d

dτ
Φ(τ). (3.6)

It follows from (3.5) that

Φ(τ)TL(P )Φ(τ) = d

dτ

(
Φ(τ)TPΦ(τ)

)
+Φ(τ)TQcΦ(τ) = 0. (3.7)

Integrating (3.7) yields

Φ(0)TPΦ(0)− Φ(t)TPΦ(t) =

∫ t

0
Φ(τ)TQcΦ(τ) dτ (3.8)

for any t ≥ 0. Pre-multiplying x(0)T and post-multiplying x(0) to (3.8) yields (3.3),

which completes the proof.

It is important to note that the implicit equation presented in (3.3) needs

to hold true for all time instances t ≥ 0, in contrast to the typical Bellman
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equation which is applicable for a fixed time step t > 0. This difference implies

that the implicit value function can be uniquely defined for unstable control

input at least for linear systems.

Proposition 3.3 (Uniqueness). Given the linear system in (3.1), suppose that

σ(Ac)∩σ(−Ac) = ∅. Then, there exists a unique implicit value function in (3.3)

with the unique solution P to L(P ) = 0 in (3.5).

Proof. From Proposition 3.2 and Theorem 2.15, there is an implicit value func-

tion V̄ (x0) with P̄ which is a unique solution to L(P ) = 0. Suppose that there

is another implicit value function V (x0) with P ̸= P̄ ∈ Sn. Consider the same

state transition matrix Φ(τ) defined in the proof of Proposition 3.2. Because

the implicit value function V (x0) satisfies (3.3) for all x0, it follows that

P − Φ(t)TPΦ(t) =

∫ t

0
Φ(τ)TQcΦ(τ) dτ . (3.9)

Using the property of Φ(τ) in (3.6), pre-multiplying AT
c and post-multiplying

Ac to (3.9) yield

(
P − Φ(t)TPΦ(t)

)
Ac +AT

c

(
P − Φ(t)TPΦ(t)

)
=

∫ t

0

(
Φ(τ)TQcΦ(τ)Ac +AT

c Φ(τ)
TQcΦ(τ)

)
dτ

=

∫ t

0

d

dτ

(
Φ(τ)TQcΦ(τ)

)
dτ

= Φ(t)TQcΦ(t)− Φ(0)TQcΦ(0).

(3.10)

Because the inverse of a state transition matrix exists for all t ≥ 0, rearrang-

ing (3.10) using (3.5) yields

L(P )Φ(t)−1 − Φ(t)TL(P ) = 0 (3.11)
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for any t ≥ 0, which can be regarded as a Sylvester equation of the variable

L(P ). Because the Lyapunov equation L(P ) = 0 has the unique solution P ̸=

P̄ , the Sylvester equation (3.11) has a non-trivial solution L(P̄ ) ̸= 0, which

implies that the two matrices Φ(t)−1 and Φ(t)T share one or more eigenvalues [5,

Theorme 8.2.1] for all t ≥ 0.

By the definition of the state transition matrix Φ(t), it follows that

σ
(
Φ(t)T

)
=

{
eλt | λ ∈ σ(Ac)

}
, (3.12)

σ
(
Φ(t)−1

)
=

{
eλt | λ ∈ σ(−Ac)

}
, (3.13)

for any t > 0. Therefore, if there exists µ ∈ σ
(
Φ(t)T

)
∩ σ

(
Φ(t)−1

)
, then λ =

t−1 log(µ) ∈ σ(Ac) ∩ σ(−Ac), which contradicts the assumption that σ(Ac) ∩

σ(−Ac) = ∅.

From Propositions 3.2 and 3.3, it can be confirmed that the solution to Lya-

punov equation in the Kleinman iteration in (2.23) corresponds to the implicit

value function of the feedback gain Kk. Because the Kleinman iteration pre-

serves the inertia of the closed-loop system matrix by Lemma 2.19 even when

the implicit value function is well-defined, it can be inferred that the issue lies

in the policy improvement step.
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3.2 The Surrogate Q-Learning

This section provides the main algorithm, called the surrogate Q-learning,

based on the concept of the implicit value function introduced in Section 3.1.

The proposed algorithm is a reinforcement learning algorithm that solves the

infinite-horizon optimal control problem in (2.13) for the linear system given

by (2.10). It is also a data-driven model-free algorithm that does not require any

knowledge of the system, namely the system matrices A and B, and an initial

admissible policy. Moreover, the algorithm is off-policy, allowing the utilization

of any behavior policies to obtain the necessary dataset for the proposed data-

driven method.

The problem of obtaining an optimal control input using data, without

knowledge of the system matrices A and B, has been extensively studied using

policy iteration-based ADP techniques [2, 60]. However, these techniques are

fundamentally based on the Kleinman iteration [1], which requires knowledge

of an initial admissible control input [20]. The proposed algorithm offers a sig-

nificant advantage, i.e., not requiring any information on the initial admissible

control inputs, despite being a policy iteration method by nature.

First, a continuous-time action-value function is defined using the concept

of implicit value function. Then, a policy iteration algorithm is proposed where

the policies are improved based on the extremum of the implicit value function.

3.2.1 Surrogate Q-Functions for Continuous-Time Systems

For discrete-time systems, the Q-function plays a vital role in the off-policy

temporal difference RL, often called the Q-learning [61]. The Q-function de-

pends on a policy to be trained, called the training policy, and takes the state
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and control input variables at the current time-step and evaluates the expected

cumulative cost following the training policy after the current time-step. For

continuous-time systems, however, it is ambiguous how to separate the input

in the current time step from the subsequent time steps.

To avoid this ambiguity, an alternative concept is introduced to evaluate

the value of the current state and control input. For the linear system in (2.10),

suppose that a policy u = −Kx is given, where the closed-loop system matrix

A − BK is allowed to be unstable. For each state x0 ∈ Rn and each control

input u0 ∈ Rm, consider a virtual linear autonomous system with ξ(0) = x0

and µ(0) = u0. Now, the control input augmented dynamics is given byξ̇(t)
µ̇(t)

 =

 A B

−KA− sK −KB − sIm

ξ(t)
µ(t)

 , (3.14)

where the scalar s > 0 is the design parameter which will be discussed later.

An implicit value function, called the surrogate Q-function, is introduced

for (3.14) corresponding to the infinite-time horizon optimal control problem

in (2.13). The surrogate Q-function is defined by a function Q(x0, u0) that

satisfies

Q(x0, u0)−Q(ξ(t), µ(t)) =

∫ t

0

(
ξ(τ)TQξ(τ) + µ(τ)TRµ(τ)

)
dτ (3.15)

for all t ≥ 0, where Q ∈ Sn+ and R ∈ Sm++ are the same as in (2.12). The following

proposition presents some conditions for the existence and the uniqueness of the

implicitly defined surrogate Q-function.

Proposition 3.4. Suppose that the sets σ(A − BK), σ(−A + BK), and {s}

are disjoint, and that (A,Q) is observable. Then, there exists a unique surrogate
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Q-function satisfying (3.15), given by

Q(x0, u0) =
[
xT0 uT0

]
M

x0
u0

 (3.16)

for some M ∈ Sn+m.

Proof. Define a matrix U ∈ R(n+m)×(n+m) which is invertible for anyK ∈ Rm×n

as

U =

 In 0

−K Im

 , U−1 =

In 0

K Im

 . (3.17)

Then, the corresponding equivalence transform [51, Definition 4.1] yields

Ā := U−1A◦U =

A−BK B

0 −sIm

 , Q̄ := Q◦U =

Q 0

0 R

 , (3.18)

where

A◦ =

 A B

−KA− sK −KB − sIm

 , Q◦ =

Q 0

0 R

 . (3.19)

Because σ(A◦) = σ(Ā) = σ(A − BK) ∪ {−s}, the hypothesis that the sets

σ(A−BK), σ(−A+BK), and {s} are disjoint implies that σ(A◦)∩σ(−A◦) = ∅.

Consequently, applying Propositions 3.2 and 3.3 for the autonomous system

in (3.14) and the implicit equation in (3.15) completes the proof.

The surrogate Q-function presented in this study is designed for continuous-

time systems. Although it shares some similarities with the action-value func-

tion or Q-function for discrete-time systems, it is not exactly the same. There-

fore, the surrogate Q-function is introduced as an approximation of the Q-

function for continuous-time systems.
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The relationship between the surrogate Q-function and the (implicit) value

function of continuous-time systems is distinguished from that of discrete-time

systems. In particular, if a linear feedback u = −Kx is evaluated using the

implicit value function V (x0;u) in (3.3), it is the actual control input applied

to the system dynamics in (2.10). However, the matrix K evaluated in (3.15)

serves as a target control input µT (t) := −Kξ(t). It can be seen from (3.14) as

d

dt
(µ(t)− µT (t)) = −s(µ(t)− µT (t)), (3.20)

which implies that the error µ(t)− µT (t) exponentially converges to zero from

u0 +Kx0. Therefore, Q(x0, u0) evaluates the pair of a state x0 and an instant

control input u0 using the infinite-horizon integral of the quadratic cost by

assuming that the rest of the state trajectory x(t) is obtained by a control input

u(t) that exponentially converges to −Kx(t) with x(0) = x0 and u(0) = u0.

Given a policy µ, the performance index J(x0;µ) of the optimal control

problem in (2.13) can be defined only if µ is admissible. On the other hand, the

surrogate Q-function corresponding to J can only be defined for autonomous

systems, regardless of whether the system is stable or not. The following propo-

sition presents a relationship between the surrogate Q-function and the perfor-

mance index.

Proposition 3.5. Given a policy u = −Kx, the corresponding surrogate Q-

function Q in (3.15) and a performance index J(x0;u + ν), where ν(t) =

e−st(u0 +Kx0), satisfy

Q(x0, u0) = J(x0;u+ ν) (3.21)

for any (x0, u0) ∈ Rn × Rm, where J(x0;u+ ν) exists.
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Proof. From (3.20) with µT = −Kξ, it follows that

µ(t) = −Kξ(t) + e−st(µ(0) +Kξ(0)) = −Kξ(t) + ν(t) (3.22)

using µ(0) = u0 and ξ(0) = x0. Then, the dynamics of ξ(t) in (3.14) is identical

to (2.10) with the control input µ = u+ ν, i.e., x(t) = ξ(t) for all t ≥ 0, which

completes the proof using the definition in (2.12).

Note that Q(x0, u0) corresponding to a policy u = −Kx, and J(x0;u) are

different in general, except for the case when u0 = −Kx0. Indeed, in this case,

ν(t) = 0 in Proposition 3.5, which implies Q(x0, u0) = J(x0;u). Nevertheless,

the surrogate Q-function is utilized to obtain the optimal control input in (2.15)

using a policy iteration method introduced in the following section.

3.2.2 The Surrogate Q-Learning Algorithm

The surrogate Q-function is a policy iteration method that iteratively evalu-

ates the policy using the surrogate Q-function and improves the policy according

to the evaluation for the next iteration.

The Policy Evaluation

Let Qk(x0, u0) be the surrogate Q-function of the state x0 ∈ Rn and the

control input u0 ∈ Rm for the policy u = −Kkx, where Kk ∈ Rm×n denotes

the gain matrix at the k-th iteration for the design parameter sk > 0. By

differentiating (3.15) with respect to t at t = 0, it follows that Qk(x0, u0)

should satisfy

∇xQk(x0, u0)
T ξ̇(0) +∇uQk(x0, u0)

T µ̇(0) + xT0Qx0 + uT0Ru0 = 0 (3.23)
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for all (x0, u0) ∈ Rn × Rm, where ξ̇(0) and µ̇(0) can be obtained from (3.14)

with K = Kk as a linear function of x0 and u0. As discussed in Section 3.2.1,

Q(x0, u0) represents the infinite-horizon cost of the policy u = −Kkx, where

the virtual autonomous system (3.14) with (ξ(0), µ(0)) = (x0, u0).

The Policy Improvement

Once the policy u = −Kkx is evaluated by Qk(x0, u0), the policy improve-

ment is defined by finding a new policy u = −Kk+1x for Kk+1 ∈ Rm×n that

satisfies

∇uQk(x0, u)|u=−Kk+1x0 = 0 (3.24)

for all x ∈ Rn. The improved control input u = −Kk+1x0 is an extremum

point of Qk(x0, u) for each x0 ∈ Rn with respect to u but is not necessarily a

minimum point.

To investigate the role of (3.24), let us consider the optimal stable policy

u∗ = −K∗x, where K∗ denotes the optimal stable gain of the optimal control

problem in (2.12). Fix the design parameters as sk = sk+1 = s, and let

Kk = Kk+1 = K∗. (3.25)

The policy u∗ is admissible, and therefore the corresponding performance index

J(x0;u
∗) in (2.12) is well-defined for all x0 ∈ Rn. It follows that there exists a

small neighborhood N ⊂ Rm around u∗0 := −K∗x0, such that for any u0 ∈ N ,

the performance index J(x0;u
∗ + ν) in Proposition 3.5 is well-defined, where

ν(t) = e−st(u0 − u∗). It follows that

Q(x0, u0) = J(x0;u
∗ + ν) ≥ min

u0∈N
J(x0;u

∗ + ν) (3.26)
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for any (x0, u0) ∈ Rn ×N , where the equality is satisfied if u0 = u∗0. Therefore,

the condition (3.24) can be regarded as a locally necessary condition for Kk =

Kk+1 = K∗.

The Equivalent Matrix Iteration

If the hypotheses of Proposition 3.4 are satisfied for K = Kk, there exists a

unique surrogate Q-function Qk(x0, u0) given by

Qk(x0, u0) =
[
xT0 uT0

]
Mk

x0
u0

 (3.27)

for some Mk ∈ Sn+m, which satisfies the policy evaluation equation in (3.23)

for all (x0, u0) ∈ Rn × Rm. Substituting (3.27) into (3.23) yields

2
[
xT0 uT0

]
Mk

ξ̇(0)
µ̇(0)

+
[
xT0 uT0

]
Q◦

x0
u0

 = 0, (3.28)

where Q◦ is defined in (3.19). From (3.14) with K = Kk, it follows thatξ̇(0)
µ̇(0)

 =

 A B

−KkA− skKk −KkB − skIm

x0
u0

 =: A◦
k

x0
u0

 . (3.29)

Substituting (3.29) into (3.28) and requiring that (3.28) holds for all (x0, u0)

yield the following matrix equation:

MkA
◦
k +A◦

k
TMk +Q◦ = 0. (3.30)

Let us define a matrix Uk ∈ R(n+m)×(n+m), which is invertible for any Kk ∈

Rm×n, as

Uk =

 In 0

−Kk Im

 , U−1
k =

 In 0

Kk Im

 . (3.31)
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Pre-multiplying UT
k and post-multiplying Uk to the both sides of (3.30) yield

an equivalent matrix equation to the policy evaluation in (3.23) given by

HkSk + ST
k Hk +Qk = 0, (3.32)

where Hk := UT
k MkUk ∈ Sn+m, and

Sk :=

A−BKk B

0 −skIm

 , Qk :=

Q+KT
k RKk −KT

k R

−RKk R

 (3.33)

using the facts that U−1
k A◦

kUk = Sk and UT
k Q

◦Uk = Qk.

On the other hand, substituting (3.27) into (3.24) and using (3.31) yield

[
0 Im

]
Mk

 In

−Kk+1

x0 = [
0 Im

]
Hk

 In

Kk −Kk+1

x0 = 0 (3.34)

for all x0 ∈ Rn, which yields an equivalent matrix equation to the policy im-

provement in (3.24) as

Kk+1 = Kk +G−1
k Wk, (3.35)

where the matrix Hk is decomposed as

Hk =

Pk W T
k

Wk Gk

 (3.36)

for Pk ∈ Rn×n, Wk ∈ Rm×n, and Gk ∈ Rm×m.

Consequently, the convergence of the surrogate Q-learning represented by

the policy evaluation in (3.23) and the policy improvement in (3.24) is equivalent

to the convergence of the iteration composed of matrix equations in (3.32)

and (3.35). This iteration is referred to as the extended Kleinman iteration.

The next section will introduce the off-policy and model-free extension of the

surrogate Q-learning before presenting the detailed convergence analysis of the

extended Kleinman iteration.
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3.2.3 The Data-Driven Surrogate Q-Learning

Let us first assume that the hypotheses of Proposition 3.4 with K = Kk and

s = sk are satisfied for all iteration step k ≥ 0 in this section. Note that this

assumption will be relaxed in the subsequent section. Under this assumption, for

any k ≥ 0, there exist a unique solutionMk to (3.30) and the corresponding Hk

in (3.32). Although, the next-step policy Kk+1 in (3.35) can be obtained using

onlyHk andKk, the matrixMk in (3.30) for calculatingHk fromHk = UT
k MkUk

requires the knowledge of system matrices A and B, which contradicts the

objective of developing a model-free method. The typical approach to relieve

this requirement in the literature of ADP methods is utilizing a dataset acquired

from the system [2].

Rearranging (3.14) at t = 0 yields

ξ̇(0) = Ax0 +Bu0 =: ẋ0, (3.37a)

µ̇(0) = −Kkẋ0 − sk(u0 +Kkx0), (3.37b)

which implies that a tuple (x0, u0, ẋ0) can fully determine the vectors in (3.28),

which is required to calculate the matrixMk. For a dataset D = {(xi, ui, ẋi)}nd
i=1,

the i-th tuple (xi, ui, ẋi) in the dataset is considered as the initial point of the

corresponding virtual trajectories of ξ(i)(t) and µ(i)(t) satisfying ξ(i)(0) = xi

and µ(i)(0) = ui in (3.14), and ξ̇(i)(0) = ẋi which can be obtained by exerting

ui to the system (2.10) at the state xi.

For the i-th tuple (xi, ui, ẋi) in the dataset D, let

ζi :=

xi
ui

 , ζ̇i :=

 ẋi

−Kkẋi − sk(ui +Kkxi)

 . (3.38)
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Then, (3.28) can be rewritten as

{(
ζ̇Ti ⊗ ζTi

)
+
(
ζTi ⊗ ζ̇Ti

)}
vec(Mk) = −

(
ζTi ⊗ ζTi

)
vec(Q◦), (3.39)

where ⊗ denotes the Kronecker product, and vec(·) denotes the vectorization

operator. Let

Xk :=


(
ζ̇T1 ⊗ ζT1

)
+
(
ζT1 ⊗ ζ̇T1

)
...(

ζ̇Tnd
⊗ ζTnd

)
+
(
ζTnd

⊗ ζ̇Tnd

)
 , Z :=


ζT1 ⊗ ζT1

...

ζTnd
⊗ ζTnd

 vec(Q◦). (3.40)

Then, the solution Mk can be obtained from the following data-driven policy

evaluation:

vec(Mk) = X†
kZ ∈ R(n+m)×(n+m). (3.41)

By construction of the matrices Xk and Z using the Kronecker product, the

element of vec(Mk) inherently produces the symmetric matrixMk provided that

there exist nd ≥ (n+m)(n+m+ 1)/2 independent rows in Xk, which are the

data points. Each row corresponds to a data tuple in the dataset, indicating that

the proposed algorithm ultimately requires a minimum of (n+m)(n+m+1)/2

data points. Although this data requirement is larger than n(n + 1)/2, which

is the minimum number of data required for Kleinman iteration-based ADP

technique [2], it can be seen as a trade-off for stabilizing the initial unstable

control inputs.

It should be noted that the process of obtaining Mk using the data-driven

policy evaluation steps as defined by (3.41) does not require knowledge of the

system matrices A and B, thereby making it a model-free method. Additionally,

any control input ui can be utilized to construct the dataset D, resulting in
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the acquisition of the data tuple (xi, ui, ẋi). Consequently, this method can be

categorized as an off-policy approach.
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3.3 The Extended Kleinman Iteration

This section presents a detailed analysis of the extended Kleinman itera-

tion introduced in Section 3.2.2, including the proof of convergence. Similar to

the Kleinman iteration, each iteration of the algorithm consists of two steps:

the policy evaluation step (3.32) and the policy improvement step (3.35). The

proposed method, however, converges to the optimal stabilizing solution with

both stable and unstable initial gains under a minimal assumption for solving

the initial policy evaluation step.

The formal definition of the extended Kleinman iteration is given below.

Definition 3.6 (The extended Kleinman iteration). Given matrices A ∈ Rn×n,

B ∈ Rn×m,Q ∈ Sn+, R ∈ Sm++, andK0 ∈ Rm×n, the extended Kleinman iteration

recursively solves the following Lyapunov equation of Hk ∈ Sn+m, called the

policy evaluation step:

HkSk + ST
k Hk +Qk = 0, (3.42)

and finds the next-step policy Kk+1, called the policy improvement step, as

follows:

Kk+1 = Kk +G−1
k Wk, (3.43)

for all k = 0, 1, . . . , where Sk and Qk are defined in (3.33), and Gk and Wk are

defined in (3.36).

The conditions for the existence of the solutions are presented in the next

section. First, the existence of the optimal stabilizing solution to the ARE is

revisited, and then mild conditions for solving (3.42) to obtain Hk for all steps

k ≥ 0 are revealed based on the matrix inertia theorem.
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3.3.1 Existence of Solutions

The Optimal Stabilizing Solution

In the extended Kleinman iteration, the optimal stabilizing solution is de-

fined by P ∗ ∈ Sn++ that satisfies R(P ∗) = 0 in (2.14). Theorem 2.14 guarantees

the existence of P ∗ if (A,B) is controllable and (A,Q) is observable, and more-

over, the optimal stabilizing feedback gain defined by K∗ = R−1BTP ∗ satisfies

that A∗
c := A−BK∗ is Hurwitz. Although there is a result for the existence of

the optimal stabilizing solution under much relaxed conditions that (A,B) is

stabilizable and that (A,Q) is detectable [53], this extension is out of the scope

of the dissertation.

Solutions to Policy Iteration Steps

At each step k ≥ 0, a feedback gain Kk ∈ Rm×n is given, and the corre-

sponding closed-loop system matrix is denoted by Ak := A − BKk. Let the

design parameter sk in (3.33) be chosen from a set Sk defined by

Sk := {s ∈ R | s > 0, s /∈ σ(Ak), δ(Gk) = 0}, (3.44)

where the set {s ∈ R | s > 0, s /∈ σ(Ak)} is always nonempty for any finite-

dimensional matrix Ak ∈ Rn×n. Note that given sk ∈ Sk, σ(Sk)∩σ(−Sk) = ∅ if

and only if σ(Ak)∩σ(−Ak) = ∅. Therefore, there exists a unique solution Hk ∈

Sn+m to the Lyapunov equation in the policy evaluation step (3.42) if and only

if σ(Ak)∩σ(−Ak) = ∅ by Theorem 2.15. On the other hand, by partitioning Hk

as in (3.36), the next-step policy Kk+1 in the policy improvement step in (3.43)

exists if and only if the matrix Gk is nonsingular, i.e, δ(Gk) = 0.
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In summary, each iteration step requires that σ(Ak)∩σ(−Ak) = ∅ and that

Gk is nonsingular. The next lemma states that whenever the solution to (3.42)

exists at the initial step, k = 0, the solutions to the subsequent iteration steps

are all well-defined under some mild assumptions.

Lemma 3.7. In the extended Kleinman iteration, suppose that (A,Q) is ob-

servable. Given K0 satisfying σ(A0) ∩ σ(−A0) = ∅, if sk ∈ Sk for all k ≥ 0,

then the following conditions hold for all k ≥ 0.

(i) σ(Ak) ∩ σ(−Ak) = ∅.

(ii) there is a unique nonsingular solution Hk to (3.42).

(iii) In(Pk) = In(−Ak).

Proof. Note that the Lyapunov equation in (3.42) can be equivalently expressed

as

PkAk +AT
k Pk +Q+KT

k RKk = 0, (3.45)

Wk(Ak − skIn) +BTPk −RKk = 0, (3.46)

WkB +BTW T
k − 2skGk +R = 0. (3.47)

Since σ(A0) ∩ σ(−A0) = ∅, the proof is by induction on k. Let σ(Ak) ∩

σ(−Ak) = ∅ for some k > 0. Because sk /∈ σ(Ak), it follows that σ(Sk) ∩

σ(−Sk) = ∅. Then, there exists a unique nonsingular Hk by applying The-

orem 2.16 to (3.42). Similarly, σ(Ak) ∩ σ(−Ak) = ∅ implies that In(Pk) =

In(−Ak) from Theorem 2.16. Hence, the conditions (ii) and (iii) are direct re-

sults of the condition (i).

Since Gk is invertible by sk ∈ Sk, Kk+1 is well-defined from (3.43), and the

Schur complement of Gk in Hk can be defined by Hk/Gk = Pk −W T
k G

−1
k Wk.
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From (3.45) to (3.47), it can be observed that Hk/Gk satisfies

(Hk/Gk)Ak+1 +AT
k+1(Hk/Gk) +Q+KT

k+1RKk+1 = 0, (3.48)

which implies that Hk/Gk is a solution to (3.45) with k + 1. It follows that

σ(Ak+1) ∩ σ(−Ak+1) = ∅ from Lemma 2.17, which completes the proof.

3.3.2 Selection of Design Parameters

Consider the following simple rule for the choice of sk ∈ Sk.

s0 ∈ S0, sk =


sk−1 if sk−1 /∈ Sk,

s+k ∈ Gk otherwise,

(3.49)

where Gk := {s ∈ Sk | ν(Gk) ≥ 1} ⊂ Sk, which implies that sk remains constant

unless it becomes one of the eigenvalues of Ak.

It rarely happens that sk−1 ∈ σ(Ak) in practice. Even if it happens, however,

the following lemma ensures that the set Gk is nonempty in the neighbor of sk−1

that does not contain sk−1, denoted by N (sk−1) ⊂ Sk. Therefore, s
+
k can be

easily selected around sk−1 by inspecting ν(Gk).

Lemma 3.8. In the extended Kleinman iteration, suppose that the hypotheses

of Lemma 3.7 hold and that (A,B) is controllable. If sk−1 ∈ σ(Ak), then Gk ∩

N (sk−1) ̸= ∅.

Proof. At the step k, Kk satisfies σ(Ak) ∩ σ(−Ak) = ∅ by Lemma 3.7 (i),

and therefore Pk is well-defined from (3.45) regardless of the choice of sk.

However, Wk and Gk depend on the choice of sk from (3.46) and (3.47).

From (3.46), (3.47), and (3.53), it follows that

2skGk = 2λGk−1 + (λ+ sk)Vk + (λ+ sk)V
T
k , (3.50)
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where Vk :=Wk−1(Ak − skIn)
−1B, and 0 < λ = sk−1 ∈ σ(Ak). Let the spectral

decomposition of Ak be given by Ψ−TΛΨT , where (j, j)-element of Λ is λ. Put

ej := [0, . . . , 0, 1, 0, . . . , 0]T , with a plus one in the j-th component and zeros

elsewhere, so that Ψej = ψ, where ψT is the left eigenvector of Ak associated

with λ. Since (A,B) is controllable, (Ak, B) is also controllable [62, Theorem

1.1], which implies that ψTB ̸= 0. Then, for all w ∈ W := {w ∈ Rm | ψTBw ̸=

0}, which is nonempty, it follows that

lim
sk→λ

(λ− sk)w
TVkw = wTWk−1Ψ

−T lim
sk→λ

(λ− sk)(Λ− skIn)
−1ΨTBw

= wTWk−1Ψ
−T eje

T
j Ψ

TBw

= wTWk−1vψ
TBw,

(3.51)

where v := Ψ−T ej = Ψ−TΨ−1ψ is the right eigenvector of Ak associated with

λ. If Wk−1v = 0, then

λv = Akv = Ak−1v −BG−1
k−1Wk−1v = Ak−1v, (3.52)

which contradicts λ = sk−1 /∈ σ(Ak−1). Therefore, Wk−1v ̸= 0, and there

exists w ∈ W such that wTWk−1v ̸= 0 and that the limit of (λ − sk)w
TGkw

is nonzero as sk approaches λ from (3.50) and (3.51). This implies that there

exists s+k ∈ N (λ) such that wTGkw < 0, which completes the proof.
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3.4 Convergence Analysis

The convergence analysis of the extended Kleinman iteration is presented in

this section. The investigation starts with the analysis of the monotonic stabi-

lization property in the sense of the matrix inertia. Then, the local convergence

is analyzed using the Fréchet derivatives, and finally the proof of the following

global convergence theorem is presented using the local convergence property.

Theorem 3.9. In the extended Kleinman iteration with the design parameter

selection rule in (3.49), suppose that (A,B) is controllable and (A,Q) is ob-

servable. If K0 satisfies σ(A0)∩ σ(−A0) = ∅, and sk ∈ Sk, there exists a finite

integer N ≥ 0 such that the following properties hold for all k ≥ N .

1. Ak is Hurwitz,

2. Pk ⪰ Pk+1 ⪰ P ∗,

3. limk→∞Kk = K∗ and limk→∞ Pk = P ∗,

where P ∗ is a unique positive definite solution to R(P ) = 0, and K∗ = R−1BTP ∗.

Proof. The proof is given in Section 3.4.3.

It is assumed, without loss of generality, that B has full column rank

throughout the convergence analysis.

3.4.1 Monotonic Stabilization

From (3.48), it can be observed that Hk/Gk = Pk+1, and further,

Pk+1 = Pk −W T
k G

−1
k Wk =: Pk −Dk (3.53)
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using (3.45) to (3.47). Note that if Gk ≻ 0, Pk is monotonically decreasing as

Pk ⪰ Pk+1, which is the similar result of the Kleinman iteration when Pk ≻ 0 for

all k ≥ 0, but gives little information when ν(Pk) ≥ 1. Following lemma demon-

strates an interesting property of the update law in (3.43), showing that ν(Pk),

or equivalently π(Ak) according to Lemma 3.7 (iii), monotonically decreases.

Lemma 3.10. Under the hypotheses of Lemma 3.7, π(Ak+1) = π(Ak)− ν(Gk)

for all k ≥ 0.

Proof. From (3.42) and Theorem 2.16, it follows that

ν(Hk) = ν(−Sk) = π(Ak). (3.54)

Since Gk is nonsingular for all k by sk ∈ Sk, applying Haynsworth’s inertia

theorem [63, Theorem 1] yields In(Hk) = In(Gk)+In(Hk/Gk), which is followed

by ν(Pk+1) = ν(Hk) − ν(Gk) = π(Ak) − ν(Gk) from (3.53) and (3.54). Then,

Lemma 3.7 (iii) gives ν(Pk+1) = π(Ak+1), which completes the proof.

Although Lemma 3.10 guarantees that π(Ak) is monotonically decreasing

for any choice of sk ∈ Sk and provides a strict decreasing condition, which

is given by ν(Gk) ≥ 1, it is desirable for the proposed iteration algorithm to

have that π(Ak) decreases to 0, or equivalently, Ak becomes Hurwitz, in a finite

number of iterations. Theorem 3.9 states that the extended Kleinman iteration

with the mild assumptions for the existence of the solutions in Section 3.3.1 is

enough to guarantee that π(Ak) = 0 in a finite number of iterations and that

Pk and Kk converge to their optimal stable solution.

Remark 3.11. Unlike inexact Kleinman iteration methods such as [64], In(Ak)

can be directly obtained from In(Pk) by Lemma 3.7 (iii). Hence, it can be de-

termined when Ak becomes Hurwitz by examining In(Pk). This is important
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because whenever Ak is Hurwitz, the subsequent Ak’s are all Hurwitz by The-

orem 3.9.

Remark 3.12. The Kleinman iteration is a Newton method, and therefore it

has a quadratic convergence rate, while the proposed policy iteration does not

possess such a fast convergence property. However, the proposed method con-

verges with an arbitrary initial feedback gain, and from Theorem 3.9, the policy

will be stable in a finite number of iterations. Therefore, for a better conver-

gence speed, it is recommended to consider a hybrid approach: use the extended

Kleinman iteration first, and switch to the Kleinman iteration once the policy

becomes stable.

3.4.2 Local Convergence

This section presents that the proposed algorithm converges locally to the

optimal stabilizing solution in terms of discrete-time Lyapunov stability. A se-

quence of Kk generated by Theorem 3.9 can be regarded as the solution to a

nonlinear discrete-time system determined by the initial state. Given an equilib-

rium point of the discrete-time system, the local convergence of the equilibrium

point can be evaluated by the spectral radius of the linearized system matrix.

Following proposition gives the stability relation between linearized continuous-

time and discrete-time system matrices, when the two matrices have a relation

similar to the bilinear transformation.

Proposition 3.13. Given two matrices A1, A2 ∈ Rn×n, suppose that a scalar

s > 0 satisfies A2 = (A1 + sIn)(A1 − sIn)
−1, and that s is not an eigenvalue of

A1. Then, A1 is Hurwitz if and only if ρ(A2) < 1.
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Following lemma states that the optimal stabilizing solution P ∗ is the only

locally stable equilibrium point under the extended Kleinman iteration.

Lemma 3.14. Under the hypotheses of Theorem 3.9, K∗ := R−1BTP ∗ is the

unique locally stable equilibrium of Kk, where P
∗ is the positive definite solution

of R(P ) = 0.

Proof. The subsequent Kk is completely determined by an initial gain K0 and

a sequence {sk} under the policy iteration (3.42) and (3.43). Therefore, Kk can

be viewed as a solution to a discrete-time nonlinear dynamical system. It will

be shown that K∗ is the unique locally stable equilibrium of the discrete-time

system.

To find all the equilibriums of the system, suppose that there exists N ≥ 0

such that for all k ≥ N , Kk+1 = Kk =: K. Since σ(Ak) is unchanged for

all k ≥ N , it follows that sk+1 = sk =: s. Then, let Hk = H be the unique

symmetric solution to (3.42), which is given by

H =

P W T

W G

 . (3.55)

From (3.43), it follows that G−1W = G−1
k Wk = Kk+1 − Kk = 0. Because

G is nonsingular from s ∈ Sk, it follows that W = 0, hence K = R−1BTP

from (3.46). Substituting K into (3.45) yields that P is a symmetric solution

to R(P ) = 0.

It is now shown that only K∗ = R−1BTP ∗ is locally stable among the

equilibriums corresponding to the symmetric solutions of R(P ) = 0. By conti-

nuity, there exists δ > 0 such that s /∈ σ(A− BK − BEk) for all Ek satisfying

∥Ek∥F < δ. Put Kk = K +Ek, where ∥Ek∥F < δ ≪ 1, and let sk = s. Because
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Wk and Gk are the functions of Kk, which can be deduced from (3.42), let us

define a function f : Rm×n → Rm×n to be f(Kk) = Kk+G
−1
k Wk, which implies

that Kk+1 = f(Kk) from (3.43). The first-order Taylor expansion of f at K

using the Fréchet derivative is given by

f(Kk) ≃ f(K) + Lf (K,Ek) = K +D[f ] (3.56)

by denoting D[·] = L(·)(K,Ek) for short. Let Ac := A − BK. From (3.45), Pk

is a matrix function of Kk, and therefore it follows that

D[Pk]Ac +AT
c D[Pk] = 0, (3.57)

from D
[
KT

k RKk

]
= ET

k RK + KTREk. Then, (3.57) becomes the Lyapunov

equation which only has the unique trivial solution D[Pk] = 0 because σ(Ac) ∩

σ(−Ac) = ∅ from Lemma 3.7 (i).

Meanwhile, it follows that

D[Wk(Ak − sIn)] = D[Wk](Ac − sIn) (3.58)

using W = 0, and therefore

D[Wk] = REk(Ac − sIn)
−1 (3.59)

using Wk(Ak − sIn) = RKk −BTPk from (3.46) and D[Kk] = Ek. Using (3.59)

and R = 2sG from (3.47), it follows that

D[f ] = Ek +D
[
G−1

k

]
W +G−1D[Wk]

= Ek + 2sEk(Ac − sIn)
−1. (3.60)

From (3.56) and (3.60), the update law for Ek can be rewritten as follows.

Ek+1 = Ek(Ac + sIn)(Ac − sIn)
−1. (3.61)
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From Proposition 3.13, Ek, and therefore Kk, is locally stable if and only if

Ac is Hurwitz, or equivalently when P = P ∗, which is the unique stabilizing

solution to R(P ) = 0.

Remark 3.15. As shown in the proof of Lemma 3.14, all symmetric solutions

of R(P ) = 0 are also equilibriums, although the stabilizing solution P ∗ is only

stable. Therefore, the iteration may become stuck on trivial unstable solutions,

which areWk = 0 and not positive definite Pk. However, whenever the iteration

is stuck with Wk = 0, it can be checked if Pk ≻ 0, and if not, the iteration can

be reinitialized with different K0. In the following section, it is assumed that

the iteration is not stuck on trivial unstable solutions.

Lemma 3.14 can only guarantee the local convergence. However, this result

will be used to prove the global convergence of the extended Kleinman iteration

in the next section.

3.4.3 Global Convergence

The proof of global convergence is be divided into two steps. First, it will

be shown that Ak becomes Hurwitz in a finite number of iterations, and then

Pk and Kk converge to their optimal stable solutions, respectively.

For the first step, it is sufficient to show that for all integer ki ≥ 0 such that

Aki is unstable, there exists an integer Ni ≥ ki satisfying ν(GNi) ≥ 1. Hence,

the objective of the global convergence proof is to show that it is impossible to

have Gk ≻ 0 for all k ≥ ki when Aki is not Hurwitz, or equivalently, π(Ak+1) =

π(Ak) ≥ 1 for all k ≥ ki. Whenever sk−1 ∈ σ(Ak), the scalar sk ∈ Gk yields

ν(Gk) ≥ 1 by definition, which implies π(Ak+1) ≤ π(Ak)− 1. Therefore, in the

remainder of this section, it is assumed that sk = s and ki = 0 without loss of
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generality to prove the first step.

Let P ∗ be the symmetric, positive definite solution to R(P ) = 0, and A∗
c =

A−BK∗, where K∗ = R−1BTP ∗. Since π(A∗
c) = 0, it follows that (A∗

c − sIn)
−1

is nonsingular for any s > 0, and therefore an auxiliary matrix Ḡk can be defined

by

Ḡk := CT
k GkCk, (3.62)

where Ck := Im − (Kk −K∗)U , and U := (A∗
c − sIn)

−1.

If Ck is singular, then there exists a nonzero vector v ∈ Rm such that

Ckv = 0. Because BCk = (Ak − sIn)U , and B has full column rank, it follows

that Uv is an eigenvector of Ak with an eigenvalue s. This contradicts s /∈ σ(Ak),

which implies that Ck is nonsingular. It follows that the two real symmetric

matrices Ḡk and Gk are congruent from (3.62), and therefore

In(Ḡk) = In(Gk) (3.63)

from Sylvester’s law of inertia in Theorem 2.15.

The auxiliary matrix Ḡk can be further rewritten using (3.45) to (3.47) as

Ḡk = UT (Pk − P )U + 1
2sR, which has the following update equation.

Ḡk+1 = Ḡk − UTDkU. (3.64)

Lemma 3.16. Under the hypotheses of Theorem 3.9, suppose that there exists

a sequence of Kk, for k = 0, 1, . . . , and the corresponding Pk, which is the

solution to (3.45). If the sequence of Pk is bounded, then the sequence of ∥Kk∥F
is also bounded.

Proof. Suppose that ∥Kk∥F is not bounded, and let βk := ∥Kk∥F . Put Yk :=

Kk/βk, which is bounded and satisfies limk→∞ Yk ̸= 0. Dividing both sides
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of (3.45) by β2k, it follows that

Pk

(
1

β2k
A− 1

βk
BYk

)
+

(
1

β2k
A− 1

βk
BYk

)T

Pk +
1

β2k
Q+ Y T

k RYk = 0. (3.65)

Because Pk and Yk are bounded and limk→∞ βk = ∞, it can be concluded that

lim
k→∞

Y T
k RYk = 0, (3.66)

which contradicts limk→∞ Yk ̸= 0.

Lemma 3.17. Given U ∈ Rn×m such that (Ak, U) is controllable, suppose that

there is a sequence of Kk such that the unique symmetric solution Pk to (3.45)

exists, and the sequence of UTPkU is bounded. Then, the sequence of Pk is also

bounded.

Proof. Suppose that Pk is not bounded. Since UTPkU is bounded, there is an

orthonormal basis (Vk1, Vk2, Vk3) such that Im(U) = Im(Vk1), and that Pk can

be decomposed as

Pk =
[
Vk1 Vk2 Vk3

]

Σk1 0 0

0 Σk2 0

0 0 Σk3



V T
k1

V T
k2

V T
k3

 , (3.67)

where Σk1 and Σk2 are bounded, but Σk3 is not bounded. From [65, Lemma

2.1], Pk satisfies

PkA
i
k +

(
Ai

k

)T
Pk + ηi(Kk) = 0 (3.68)

for all i ≥ 1, where ηi is a polynomial function, which is bounded when ∥Kk∥F
is bounded.

If ∥Kk∥F is bounded, it follows from (3.68) that V T
k3A

i
kU vanishes for all

i ≥ 1, which contradicts the assumption that (Ak, U) is controllable. Hence,
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∥Kk∥F is unbounded, and therefore Ak has at least one unbounded eigenvalue

since B has full column rank.

Let the real Schur decomposition of Ak to be

Ak =
[
Ψk ψk

]Tk tk

0 λk

ΨT
k

ψT
k

 , (3.69)

where λk is the unbounded eigenvalue with the left eigenvector ψT
k , Tk is an

upper triangular matrix whose diagonal elements are the remaining eigenvalues,

and [Ψk ψk] is a unitary matrix.

From (3.45) and (3.67), since Σk1 is bounded, V T
k1AkVk1 is also bounded by

Lemma 3.16. Consequently, it follows that ψT
k Vk1 = 0 from (3.69). It follows

that ψT
k U = 0, which contradicts that (Ak, U) is controllable. This completes

the proof.

Lemma 3.18. Under the hypotheses of Theorem 3.9, Gk ≻ 0 for all k ≥ 0 if

and only if A0 is Hurwitz.

Proof. First, it is proven that if A0 is Hurwitz, then Gk ≻ 0 for all k ≥ 0. From

Lemma 3.7 (iii), ν(P0) = π(A0) = 0. From Lemma 3.10, ν(Pk) = π(Ak) = 0 for

all k ≥ 0, and therefore ν(Gk) = ν(Pk+1)− ν(Pk) = 0 for all k ≥ 0.

To prove that if Gk ≻ 0 for all k ≥ 0, then A0 is Hurwitz, consider the

contrapositive: if A0 is not Hurwitz, then there exists a finite integer N ≥ 0

satisfying ν(GN ) > 0. Conversely, suppose that Gk ≻ 0 for all k ≥ 0. Because

A0 is not Hurwitz, it follows that

ν(P0) = π(A0) > 0, (3.70)

from Lemma 3.7 (iii). Then, ν(Pk) = ν(P0) > 0 for all k ≥ 0 from Lemma 3.10.

Also,Dk ⪰ 0 fromGk ≻ 0 and (3.53). From the update law (3.64), the congruent
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matrix Ḡk ≻ 0 from (3.63). From (3.64), both Ḡk and
∑k

i=0 U
TDiU converge

to a positive definite matrix and a positive semidefinite matrix, respectively. It

follows that UTPkU also converges from (3.53). Since (Ak, U) is controllable [62,

Theorem 1.1], Pk is also bounded by Lemma 3.17, and therefore the decreasing

sequence of Pk converges as limk→∞ Pk = P0−
∑∞

i=0Di =: P̄ , which is followed

by

lim
k→∞

Dk = lim
k→∞

(Kk+1 −Kk)
TGk(Kk+1 −Kk) = 0. (3.71)

From (3.46) with bounded ∥Kk∥F and Pk, it follows that ∥Wk∥F is also bounded.

Hence, Gk is bounded by (3.47), which implies that limk→∞ (Kk+1 −Kk) = 0

by (3.71). Using ∥Kk∥F is bounded, it can be concluded that limk→∞Kk = K̄.

However, from Lemma 3.14, K̄ must beR−1BT P̄ where P̄ is the positive definite

solution of R(P ) = 0, contrary to (3.70).

Remark 3.19. Because the iteration, (3.42) and (3.43), starts with an arbitrary

initial gain K0, Lemma 3.18 states that for any ki ≥ 0, if Aki is Hurwitz, then

Gk ≻ 0 for all k ≥ ki. And conversely, if Aki is not Hurwitz, then there exists a

finite integer Ni ≥ ki such that GNi is a symmetric non-positive definite matrix,

or equivalently ν(GNi) ≥ 1.

Finally, the proof of Theorem 3.9 is given below.

Proof of Theorem 3.9. The first step of the proof shows that for any K0, there

exists a finite integer N ≥ 0 such that Pk ≻ 0, Gk ≻ 0 and Ak is Hurwitz for

all k ≥ N . If A0 = A − BK0 is Hurwitz, Pk ≻ 0 and Ak is Hurwitz for all

k ≥ 0 by Lemma 3.10, and therefore N = 0. If A0 is not Hurwitz, π(A0) > 0

and there exists an integer N0 ≥ 0 such that GN0 is not positive definite by

Lemma 3.18. Because GN0 is nonsingular by sk ∈ Sk, it follows that ν(GN0) ≥ 1.
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By Lemma 3.10, π(Ak) is strictly decreasing between the steps N0 and N0 + 1

as π(AN0+1) = π(AN0)− ν(GN0) < π(AN0). By induction, it can be concluded

that there exists an integer N ≥ N0 such that π(AN ) = 0, or equivalently AN is

Hurwitz since δ(AN ) = 0 from Lemma 3.7 (i). Similarly, it follows that Pk ≻ 0,

Gk ≻ 0, and Ak is Hurwitz for all k ≥ N by sk ∈ Sk and Lemma 3.18.

Next, it is proven that Pk ⪰ Pk+1 ⪰ P ∗, limk→∞Kk = K∗, and limk→∞ Pk =

P ∗ for all k ≥ N . Since Gk ≻ 0 for all k ≥ N , it follows that Pk ⪰ Pk+1 ≻ 0

from (3.53), and therefore limk→∞ Pk =: P̄ ≻ 0. It follows that limk→∞Kk =

R−1BT P̄ =: K̄, similar to the analysis in the proof of Lemma 3.18. Conse-

quently, P̄ = P ∗ and K̄ = K∗ by Lemma 3.14, which completes the proof.
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3.5 Illustrative Numerical Examples

3.5.1 Validation of the Extended Kleinman Iteration

In this section, the extended Kleinman iteration is validated using a lin-

earized model of the short-period dynamics of AFTI/F-16 aircraft which has

unstable short period mode [66, Example 5.2-3]. The system matrices of the

linear system

ẋ = Ax+Bu (3.72)

are given by

A =



−1.341 0.9933 0 −0.1689 −0.2518

43.223 −0.8693 0 −17.251 −1.5766

1.341 0.0067 0 0.1689 0.2518

0 0 0 −20 0

0 0 0 0 −20


, B =



0 0

0 0

0 0

20 0

0 20


. (3.73)

The weight matrices for the linear quadratic regulator are defined as

Q = I5, R = I2. (3.74)

Because A has two unstable eigenvalues at 0 and 5.4514, simply choosing

K0 = 0 cannot satisfy σ(A0)∩σ(−A0) = ∅. Instead, an arbitrary initial K0 ̸= 0

is chosen as follows:

K0 =

8.4 −5.1 −4.1 −1.1 0.4

5.8 −7.4 3.1 −5.2 −5.1

 , (3.75)

which is one of the extreme cases in which all the eigenvalues of A−BK0 have

positive real parts.
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Three algorithms are compared: the Kleinman iteration, the extended Klein-

man iteration, and the hybrid approach discussed in Remark 3.12. All three

algorithms use the same initial gain K0 in (3.75). The hybrid approach uses

the proposed algorithm until ν(Pk) = 0 and switches to the Kleinman iteration

to exploit the quadratic convergence rate of the Newton method. The design

parameter s0 is simply set to be 1, which is not an eigenvalue of A−BK0.

The convergence history of Pk and Kk to their optimal values, P ∗ and K∗,

respectively, for each algorithm is presented in Fig. 3.1. The Kleinman iteration

does not converge to the optimal stable solution, while the proposed methods

converge. Because the extended Kleinman iteration ensures that the feedback

gain becomes stable in a finite number of iterations, switching to the Kleinman

iteration shows much faster convergence. The history of π(Ak) for each algo-

rithm is shown in Fig. 3.2. It can be confirmed that Pk does not monotonically

converge to P ∗ when Ak is unstable under the proposed algorithms. But after

a few steps, the closed-loop system eventually becomes stable, or equivalently,

π(Ak) = 0.

3.5.2 Validation of the Data-Driven Surrogate Q-Learning

The extended Kleinman iteration can be identical to the surrogate Q-learning

if the system matrices are available, as discussed in Section 3.2.2. When there

is no prior knowledge of the system, the data-driven surrogate Q-learning pro-

posed in Section 3.2.3 can be utilized with a dataset D = {(xi, ui, ẋi)} obtained

from the system. However, the dataset may be prone to corruption due to noise,

especially in the state derivative xi. To demonstrate the efficacy of the proposed

data-driven surrogate Q-learning, numerical simulations are conducted by in-
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troducing noise into the dataset and validating the algorithm.

The same short-period model and initial unstable feedback gain K0 in Sec-

tion 3.5.1 are used. The state xi and the control input ui are uniformly sampled

from the set [−3, 3]5 × [−3, 3]2, and the state derivative ẋi is sampled as

ẋi ∼ N (Axi +Bui, 0.1), (3.76)

where N denotes the normal distribution. Total 1,000 data tuples are collected

for the dataset. For comparison of algorithms, an off-policy data-driven ADP is

used [2, Algorithm 2.3.10] to represent the Kleinman iteration. The value of the

design parameter for the data-driven surrogate Q-learning is set to s = 1. The

hybrid approach switches to the data-driven surrogate Q-learning if π(Ak) = 0

and ∥Kk −Kk−1∥F < 10−5.

Figures 3.3 and 3.4 present the convergence history of Pk and Kk as well

as the history of π(Ak) for each algorithm. An important consideration in the

Kleinman iteration-based ADP method is the stability of the initial gain; if the

initial gain is unstable, the method may fail to converge or stabilize, rendering

the approach ineffective. In contrast, the proposed data-driven surrogate Q-

learning is demonstrated to be robust to moderate noise and converges to a

stabilizing feedback gain. In addition, the results obtained from the hybrid

approach indicate that the extended Kleinman iteration proposed in this study

is more robust to noise compared to the conventional Kleinman iteration.

However, it has been observed that when a certain level of noise is present,

neither the existing Kleinman iteration-based ADP nor the proposed data-

driven surrogate Q-learning methods can converge to optimal controllers or

stabilize the control gains. The main reason is that the Gaussian noise applied

to the derivative of the state variables follows a different distribution when solv-
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ing the Lyapunov equation in the policy evaluation stage, which makes noise

removal through pseudo-inverse less effective.
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Chapter 4

Application to Nonlinear Optimal
Control Problems

In this chapter, the proposed surrogate Q-learning is applied to solve the

infinite-horizon optimal control problems of nonlinear systems. The convergence

proof of the extended Kleinman iteration is relied on linear algebra, and there-

fore the extension of the algorithm for the application of nonlinear systems is

not straightforward. To overcome this difficulty, the Koopman operator theory

is utilized. The Koopman lifting linearization can transform the nonlinear sys-

tem into a linear system using nonlinear mappings called the lifting. Recently,

various linear control syntheses for the Koopman lifting linearized system were

proposed. However, not much research has been done on the controllability

and observability of the Koopman lifting linearized system, which are sufficient

conditions to apply the linear optimal control theory.

In this chapter, several conditions of the lifting are first provided for the

controllability and observability of the Koopman lifting linearized system to

apply the proposed surrogate Q-learning. Finding such lifting is very difficult

in general, and therefore a meta-learning framework is proposed to train deep

neural networks representing the lifting.
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4.1 Nonlinear Optimal Control Problems

Consider a class of nonlinear dynamic systems with an affine control input

given by

ẋ = f(x) +G(x)u, (4.1)

where x ∈ Rn is the state vector, u ∈ Rm is the control input, and the functions

f ∈ C1(Rn) and G ∈ C1(Rn,Rn×m). Without loss of generality, assume that

f(0) = 0, which implies that (x, u) = (0, 0) is an equilibrium point of (4.1). It

is assumed that the nonlinear system (4.1) is controllable [67, Definition 11.1],

which means that for any x0, x1 ∈ Rn, there exists a control input u that steers

the state from x0 to x1 in a finite time.

The design objective is to find an optimal control input function u∗o that

minimizes a performance index or a value function for the system in (4.1). The

value function of a state variable x0 ∈ Rn is defined by

Vo(x0;u) =

∫ ∞

0

(
yo(t)

T yo(t) + u(t)TRu(t)
)
dt , (4.2)

where R ∈ Sm++,

yo(t) = h(x(t)) ∈ Rq (4.3)

denotes the performance output, and the function h : Rn → Rq satisfies h(0) =

0. The state trajectory x(t) follows (4.1) with the initial state x(0) = x0 and the

control input function u : [0,∞) → Rm. Assume that the nonlinear system (4.1)

is zero-state observable [68, Definition 6.5] with respect to the output yo(t),

which means that for u ≡ 0, the output trajectory yo ≡ 0 implies x ≡ 0.

It is further assumed that there exists an optimal control input u∗o that is
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the solution to the following optimal control problem:

u∗o = arg inf
u
Vo(x;u) (4.4)

for all x ∈ Rn. Because R ∈ Sm++ in (4.2), the optimal control input can be

represented by a state-feedback form as

u∗o(x) = −1

2
R−1G(x)T∇V ∗

o (x) (4.5)

with a slight abuse of notation, and V ∗
o ∈ C1(Rn,R) is a solution to the

Hamilton-Jacobi-Bellman (HJB) equation given by

0 = yTo yo + u∗o(x)
TRu∗o(x) +∇V ∗

o (x)
T (f(x) +G(x)u∗o(x)) (4.6)

for all x ∈ Rn with a boundary condition V ∗
o (0) = 0. The function V ∗

o is indeed

the optimal value function as

V ∗
o (x) = Vo(x;u

∗
o) = min

u
Vo(x;u) (4.7)

for all x ∈ Rn [54].

75



4.2 Koopman Operators for Optimal Control Prob-

lems

As described in Section 4.1, the nonlinear optimal control input can be found

as (4.5) when a solution V ∗
o to the HJB equation (4.6) is obtained. However, it

is difficult to find the solution to the HJB equation, because it is a nonlinear

partial differential equation. Several studies reported workaround methods using

a linear optimal control for a finite-dimensional linear system obtained by the

Koopman operator [30].

This section provides mathematically rigorous conditions for constructing a

linear system of which the linear optimal control is identical to the nonlinear

optimal control in (4.5). Moreover, a sufficient condition is introduced to ensure

the controllability and observability of the linear system.

4.2.1 Koopman Lifting Linearization

Consider a nonlinear autonomous system

ẋ = f(x), (4.8)

which is the system (4.1) with u ≡ 0. Assume that there exists a N -dimensional

invariant subspace of the infinitesimal generator of the Koopman operator for

the system (4.8) [41].

Definition 4.1 (The lifting). Given an infinitesimal generator of the Koopman

operator for the nonlinear autonomous system (4.8), suppose that there exist

ϕi ∈ F , i = 1, . . . , N , spanning the invariant subspace of the infinitesimal

generator. Then, a vector-valued function

ϕ(x) = [ϕ1(x), . . . , ϕN (x)]T ∈ RN (4.9)
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of x ∈ Rn is called the lifting of (4.1), if ∇ϕ(x)T ∈ RN×n is injective for all

x ∈ Rn.

If there exists a lifting of (4.1), then the elements of the lifting are observ-

ables of the infinitesimal generator satisfying (2.9). Therefore, there exists a

matrix A ∈ RN×N such that [41]

d

dt
ϕ(x(t)) = Aϕ(x(t)) = ∇ϕ(x)T f(x(t)), (4.10)

where x(t) is the state trajectory of (4.8) with any initial state x(0) ∈ Rn.

Note that the dynamics f(x) can be recovered from d
dtϕ(x) because ∇ϕ(x)T is

injective.

Consider a linear system of a state vector z ∈ RN with the same system

matrix A in (4.10) given by

ż = Az. (4.11)

The above linear system yields the state trajectory z(t) = ϕ(x(t)) for all t ≥ 0

if and only if z(0) = ϕ(x(0)). In other words, the state z(t) of (4.11) with an

arbitrary initial state z(0) = z0 ∈ RN may not necessarily satisfy z(t) = ϕ(x)

for any x ∈ Rn. However, it is still useful to analyze the state z(t) of the linear

system (4.11) to describe the nonlinear behavior of the state x(t) of the original

system (4.8).

Definition 4.2 (The Koopman lifting linearization). The Koopman lifting lin-

earization of (4.1) is defined by a linear system

ż = Az +Bu, (4.12)

where z ∈ RN is the lifted state vector, and A ∈ RN×N and B ∈ RN×m, if the

lifted state trajectory z(t) satisfies z(t) = ϕ(x(t)); ϕ(x) is a lifting of (4.1) and
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x(t) is the state trajectory of (4.1) with the initial state x(0) ∈ Rn and any

control input function u(t).

The linear control affine term Bu in (4.12) is necessary to facilitate linear

optimal control theories while it requires an additional condition for the lifting

ϕ(x).

Proposition 4.3 ([41]). Given a nonlinear system (4.1) and a corresponding

lifting ϕ(x), the dynamics of z(t) = ϕ(x(t)) can be represented by the Koopman

lifting linearization (4.12) if and only if ∇ϕ(x)TG(x) ∈ RN×m is constant for

all x ∈ Rn.

4.2.2 Equilibrium Points

Suppose that (xe, ue) is an equilibrium point of (4.1) such that f(xe) +

G(xe)ue = 0. Subtracting it from (4.1) yields

˙̃x = f(x)− f(xe) +G(x)u−G(xe)ue = f̃(x̃) + G̃(x̃)ũ, (4.13)

where f̃(x̃) := f(x̃+ xe)− f(xe) +G(x̃+ xe)ue −G(xe)ue, G̃(x̃) := G(x̃+ xe),

x̃ := x − xe, and ũ := u − ue. On the other hand, if u(t) ≡ ue and x(0) = xe,

then x(t) ≡ xe and z(t) ≡ ϕ(xe) for all t ≥ 0, and therefore ż ≡ 0. It follows

from (4.12) that Aϕ(xe) +Bue = 0, which implies

˙̃z = Az̃ +Bũ (4.14)

from (4.12), where z̃(t) := ϕ(x)− ϕ(xe). Since the Koopman operator is linear,

if ϕ(x) is a lifting of (4.1), then ϕ(x)−ϕ(xe) is also a lifting of (4.1). By defining

ϕ̃(x̃) = ϕ(x̃+xe)−ϕ(xe), the dynamics of z̃ = ϕ̃(x̃) can be represented by (4.14)

by Proposition 4.3 using the fact that

∇ϕ̃(x̃)
T
G̃(x̃) = ∇ϕ(x̃+ xe)

TG(x̃+ xe) = ∇ϕ(x)TG(x), (4.15)
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which is also constant. Therefore, in the rest of this study, it is assumed without

loss of generality that the equilibrium of the nonlinear system in (4.1) is at the

origin, or equivalently, f(0) = 0.

4.2.3 Lifted Optimal Control Problems

This section provides a rigorous theoretical proof that the optimal controller

obtained using the Koopman lifting linearized system (4.12) is indeed the non-

linear optimal controller (4.5) for the original nonlinear system (4.1) under mild

assumptions for constructing the lifting ϕ(x).

The lifted performance index for the Koopman lifting linearized system (4.12)

corresponding to (4.2) is defined as

V (z0;u) =

∫ ∞

0

(
z(t)TQz(t) + u(t)TRu(t)

)
dt , (4.16)

where z(0) = z0, the matrix R is defined in (4.2), and the matrix Q ∈ SN+

satisfies Q = CTC for a matrix C satisfying the assumption given below.

Assumption 4.4. Given a lifting ϕ(x) of (4.1), there exists a matrix C ∈ Rq×N

such that Cϕ(x) = h(x) for all x ∈ Rn with h(x) defined in (4.3).

Under Assumption 4.4, consider the performance output of the lifted per-

formance index (4.16) defined by

y(t) = Cz(t) (4.17)

for all t ≥ 0. If z(0) = ϕ(x(0)), then y(t) = yo(t) for all t ≥ 0. However,

y(t) ̸= yo(t) in general, which implies that the zero-state observability of the

original nonlinear system (4.1) with the performance output (4.3) does not
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imply the observability of the Koopman lifting linearized system (4.12), or

equivalently, a matrix pair (A,C).

The optimal control input u∗ of the system (4.12) minimizing the perfor-

mance index (4.16) can be obtained by solving the following lifted optimal

control problem:

u∗ = arg inf
u
V (z0;u) (4.18)

for all z0 ∈ RN . As discussed in Section 4.2.1, the state trajectory z(t) of (4.12)

may not be relevant to x(t) unless z0 = ϕ(x(0)), and moreover the optimal

control input u∗ may not exist for all z0 ∈ RN even if u∗o in (4.5) exists for

all x0 ∈ Rn. The following proposition states that if there exists u∗, then the

nonlinear optimal control u∗o for any initial state x0 ∈ Rn can be obtained

using (4.12) with the initial state z0 = ϕ(x0).

Proposition 4.5. Suppose that there exists an optimal control u∗ that solves

the lifted optimal control problem (4.18) for all z0 ∈ RN . Then, for any x0 ∈ Rn,

the optimal control u∗o of (4.4) satisfies u∗o = u∗ if z0 = ϕ(x0).

Proof. Suppose that u∗ ̸= u∗o. Then,

Vo(x0;u
∗
o) < Vo(x0;u

∗) (4.19)

from (4.4). Because z(0) = ϕ(x0), it follows that z(t) = ϕ(x(t)), which implies

z(t)TQz(t) = ϕ(x(t))TCTCϕ(x(t)) = y(t)T y(t) (4.20)

by Assumption 4.4. Therefore, from (4.2) and (4.16), it can be concluded that

V (z0;u) = Vo(x0;u) for any u. From (4.19), it follows that

V (z0;u
∗
o) = Vo(x0;u

∗
o) < Vo(x0;u

∗) = V (z0;u
∗), (4.21)

which contradicts (4.18).
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The infinite-horizon optimal control u∗ for (4.18) is indeed a linear quadratic

regulator for the linear system (4.12) and the lifted performance function with

the quadratic cost as defined in (4.16). Therefore, a sufficient condition for the

existence of u∗ is that a matrix pair (A,B) is controllable and a matrix pair

(A,C) is observable. As discussed above, however, it is not clear to guarantee

that the Koopman lifting linearized system is controllable and observable for

an arbitrary lifting ϕ(x) of (4.1).

The following two lemmas provide an equivalent condition of ϕ(x) to the

controllability of (A,B) and a sufficient condition of ϕ(x) for the observability

of (A,C).

Lemma 4.6. Suppose that the nonlinear system (4.1) is controllable. Then, the

Koopman lifting linearized system (4.12) is controllable if and only if the lifting

ϕ(x) of (4.1) is surjective.

Proof. First, it is shown that if the lifting ϕ(x) of (4.1) is surjective, then a

matrix pair (A,B) of (4.12) is controllable. For any z0, z1 ∈ RN , there exist

x0, x1 ∈ Rn such that

z0 = ϕ(x0), z1 = ϕ(x1). (4.22)

Because the nonlinear system (4.1) is controllable, there exists a control in-

put u1(t) satisfying x(0) = x0 and x(t1) = x1 for some t1 ≥ 0. It follows

from (4.22) that the same control input u1(t) steers the state of (4.12) from

z(0) = ϕ(x(0)) = z0 to z(t1) = ϕ(x(t1)) = z1, which implies that the sys-

tem (4.12) is controllable.

To show the converse, consider an arbitrary vector z2 ∈ RN . Because the

system (4.12) is controllable, for any x0 ∈ Rn, there exists a control input
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u2(t) satisfying z(0) = ϕ(x0) and z(t2) = z2 for some t2 > 0. Let x(t) be the

state trajectory of (4.1) using the same control input u2(t) with an initial state

x(0) = x0, and let x2 = x(t2) ∈ Rn. Since ϕ(x(0)) = z(0) by construction, it

follows that z2 = z(t2) = ϕ(x(t2)) = ϕ(x2). Therefore, it can be concluded that

for any z2 ∈ RN , there exists x2 ∈ Rn such that ϕ(x2) = z2, which completes

the proof.

Lemma 4.7. Suppose that the nonlinear system (4.1) is zero-state observable

with the output (4.3), the corresponding lifting ϕ(x) is surjective, and Assump-

tion 4.4 holds. Then, the Koopman lifting linearized system (4.12) is observable

with the output (4.17) if and only if ϕ(0) = 0.

Proof. First, it is shown that if ϕ(0) = 0, then a matrix pair (A,C) of (4.12)

is observable. Suppose that (A,C) is not observable. Then, a matrix-valued

function of t ≥ 0 defined by

WO(t) =

∫ t

0
eA

T τCTCeAτ dτ (4.23)

satisfies that WO(t1) is singular for some t1 > 0 [51, Theorem 6.4]. It follows

that there exists a vector z0 ̸= 0 ∈ RN such that zT0 WO(t1)z0 = 0, which implies

that

CeAtz0 = 0, ∀t ∈ [0, t1]. (4.24)

Because ϕ(x) is surjective and ϕ(0) = 0, for the nonzero vector z0, there exists

x0 ̸= 0 ∈ Rn such that ϕ(x0) = z0. Then, with a control input u ≡ 0, the state

z(t) of (4.12) with an initial state z(0) = z0 satisfies z(t) = eAtz0 = ϕ(x(t)) for

all t ∈ [0, t1]. From (4.24) and Assumption 4.4, it follows that y(t) = Cϕ(x(t)) =

yo(t) = 0 for all t ∈ [0, t1], which contradicts the zero-state observability of the

original nonlinear system.
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To show the converse, suppose that (A,C) is observable but ϕ(0) = z0 ̸= 0.

Since x ≡ 0 if u ≡ 0 and x(0) = 0 from (4.12), it follows that z(t) = z0, thus

ż(t) = 0 for all t ≥ 0. Therefore, it can be concluded that z0 ∈ ker(A). On the

other hand, from Assumption 4.4 and the definition of h in (4.3), it follows that

Cz0 = Cϕ(0) = h(0) = 0, (4.25)

which implies z0 ∈ ker(C) ∩ ker(A). This contradicts that (A,C) is observable,

which completes the proof.

Now, it is clear that the sufficient condition of ϕ(x) for the controllability

and observability of (4.12) is that ϕ(x) is surjective. If this is the case and the

matrices A and B are known, the unique optimal control input u∗ can be found

using the ARE [54].

The next theorem summarizes the conditions for finding nonlinear optimal

control input using the Koopman lifting linearization.

Theorem 4.8. Suppose that the system (4.1) is controllable and zero-state

observable with the performance output yo(t) = h(x(t)) (4.3), and that A is

the infinitesimal generator of the Koopman operator for (4.1). If there exist a

mapping ϕ : Rn → RN and a matrix C ∈ Rq×N such that

C1: the mapping ϕ is surjective,

C2: the matrix ∇ϕ(x)T is injective for all x ∈ Rn,

C3: the mapping ϕ spans the invariant subspace of A,

C4: ∇ϕ(x)TG(x) is constant for all x ∈ Rn,

C5: ϕ(0) = 0, and

C6: Cϕ(x) = h(x) for all x ∈ Rn,
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then the optimal control u∗o in (4.4) is given by

u∗o(t) = −R−1BTPϕ(x(t)), (4.26)

where P ∈ SN++ is the unique positive definite solution to the algebraic Riccati

equation given by

PA+ATP +Q− PBR−1BTP = 0 (4.27)

corresponding to a Koopman lifting linearization (4.12) and the lifted optimal

control problem (4.18).

Proof. Since the lifting ϕ(x) is surjective and ϕ(0) = 0, the matrix pairs (A,B)

and (A,C) of (4.12) are controllable and observable, respectively, by Lem-

mas 4.6 and 4.7. Then, there exist a unique symmetric positive definite solution

P to (4.27) and a unique optimal control u∗ for (4.18), which has the linear

state feedback form u∗(t) = −R−1BTPz(t) [54, Theorem 6.1]. Then, by Propo-

sition 4.3, the optimal control u∗o for (4.4) is identical to u
∗ with z(0) = ϕ(x(0)),

and from z(t) = ϕ(x(t)), it can be concluded that u∗o has the form in (4.26).
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4.3 The Meta-Learning Framework

In this section, a meta-learning framework is proposed to train a lifting

of (4.1) to satisfy all of the conditions in Theorem 4.8 for a group of uncertain

systems. In the Koopman lifting linearization (4.12), there are three components

that define the system dynamics: the system matrices A, B, and the lifting

ϕ(x). Because the Koopman operator can represent dynamic characteristics of

systems, the group of uncertain systems is defined by a set of systems that share

a common Koopman invariant subspace, but possibly have different system

matrices. If the common lifting is known for the group, the model-free data-

driven surrogate Q-learning algorithm proposed in Section 3.2 can be applied

even when the system matrices and an initial admissible policy are uncertain for

each system in the group. Therefore, the proposed framework can be categorized

as a meta-learning method due to its strategy of identifying a common feature

among a group of systems and utilizing it to quickly adapt to a new uncertain

system within the same group.

4.3.1 Koopman Groups and Common Liftings

Definition 4.9 (Koopman groups). A set of dynamical systems is said to be a

Koopman group if there exists a common mapping, called the common lifting of

the group, that satisfies the conditions C1–C6 in Theorem 4.8 for each system

in the set.

Let G be the Koopman group of nonlinear systems, where the system Sp ∈ G

indexed by an integer p has the nonlinear dynamics similar to (4.1) as

ẋ = fp(x) +Gp(x)u, (4.28)
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where x ∈ Rn is the state vector, and u ∈ Rm is the control input vector.

Let ϕ : Rn → RN be the common lifting of the Koopman group G. Because ϕ

satisfies the conditions C2–C4 in Theorem 4.8 for all systems in G, there exists

a Koopman lifting linearization (4.12) for a system Sp ∈ G by Proposition 4.3,

which can be represented by

d

dt
ϕ(x) = Apϕ(x) +Bpu, (4.29)

where the constant matrices Ap ∈ RN×N and Bp ∈ RN×m depend on the

system Sp. Figure 4.1 illustrates the relationship between the Koopman group,

the common lifting, and the systems in the group.

Given a Koopman group of uncertain systems, applying a known lifting ϕ(x)

can effectively mitigate the associated uncertainties. Specifically, if the lifting

is already known, the only sources of uncertainty for such systems would be

the system matrices Ap and Bp. However, it is generally difficult to find such

a common lifting. In following sections, a meta-learning framework is proposed

to train deep neural networks that can approximate the common lifting, if it

exists.

4.3.2 Diffeomorphic Lifting Approximation

The conditions C1 and C2 in Theorem 4.8 are sufficient for the controlla-

bility and observability of the Koopman lifting linearization in the Koopman

group. These conditions are automatically satisfied with a special class of the

lifting ϕ(x).

Proposition 4.10. If a continuously differentiable mapping ϕ : Rn → Rn is

a global diffeomorphism, then it satisfies the conditions C1 and C2 in Theo-

rem 4.8.
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Figure 4.1 A diagram of a Koopman group.

Proof. The diffeomorphism ϕ is surjective because there is an inverse mapping

by definition, and the Jacobian ∇ϕ(x)T ∈ Rn×n is invertible, and thus injective

for all x ∈ Rn [69].

The use of diffeomorphisms to represent the infinitesimal generators of

Koopman operators has received increasing attention in recent research [70,71].

It has been shown that diffeomorphic liftings preserve the stability of the origi-

nal autonomous nonlinear systems [72]. Bevanda et al. utilized invertible neural

networks (INNs) [72], specifically the coupling flow-based INNs (CF-INNs) [73],

to realize diffeomorphic liftings because CF-INNs can universally approximate

diffeomorphisms [74].

In this study, the generative flow (Glow) [75] is employed to realize the

diffeomorphic lifting. The Glow is a CF-INN with trainable convolution-based
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permutations. The single-scale Glow approach is implemented using K-step

Flows, with each Flow step consisting of an activation normalization layer, an

1 × 1 convolution layer with LU decomposition, and an affine coupling layer,

which are all invertible. In addition to the output, each layer returns the log-

determinant to calculate the probability density of the input data. The detailed

implementation of the Glow can be found in Appendix A.

Let ϕ̂(x;wϕ) denote the Glow, which is used to approximate the common

lifting ϕ(x), where wϕ is the network parameters to be trained. By denoting

each Flow by ϕ̂i for i = 1, . . . ,K, the Glow can be written as

ϕ̂ = ϕ̂K ◦ · · · ◦ ϕ̂2 ◦ ϕ̂1. (4.30)

And, the probability density of the input x, called the log-likelihood of x, is

given by

log p(x) = log p(z) +

K∑
i=1

log

∣∣∣∣det( ∂zi
∂zi−1

)∣∣∣∣, (4.31)

where zi := ϕ̂i(zi−1;wϕi
) for i = 0, . . . ,K, z := zK = ϕ̂(x), and z0 := x. The

probability density function p(z) is typically chosen as the probability density

function of a simple distribution such as the Gaussian distribution N (0, 1).

Maximizing the log-likelihood, or minimizing the negative log-likelihood, can be

regarded as approximation of the data distribution in the dataset. In the context

of the diffeomorphic lifting approximation, this implies that the resulting lifting

maps the original state distribution to the predefined simple distribution in

the lifted state space, which may help the data-driven surrogate Q-learning

implementation in the lifted state space.

It follows from Proposition 4.10 that using the Glow for diffeomorphic lifting

approximation guarantees the satisfaction of the conditions C1 and C2 in The-
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orem 4.8. The remaining conditions C3–C6 are considered in the meta-learning

framework. In particular, the base learner is formulated for the conditions C3

and C4, and the meta learner trains the network to satisfy the conditions C5

and C6.

4.3.3 Base Learner Formulation

Given a dataset Dp = {(xi, ui, ẋi)}np

i=1 acquired from a system Sp ∈ G, if

there is a hand-crafted lifting ϕ(x) of Sp, extended dynamic mode decomposition

(EDMD) methods [28,32] are commonly used to find Ap and Bp in (4.29). The

EDMD method can be represented by the following optimization problem:

min
Ap,Bp

1

np

np∑
i=1

∥∥∇ϕ(xi)
T ẋi −Apϕ(xi)−Bpui

∥∥2. (4.32)

Several studies synthesized optimization problems using deep neural networks

ϕ̂(x;wϕ) to approximate liftings as follows [46,76]:

min
Ap,Bp,wϕ

1

np

np∑
i=1

∥∥∥∇ϕ̂(xi;wϕ)
T ẋi −Apϕ̂(xi;wϕ)−Bpui

∥∥∥2. (4.33)

The above methods are designed to obtain a Koopman lifting linearization

for a single system, Sp. However, as discussed in Section 4.3.1, a meta-learning

framework is proposed in this study to obtain a common lifting for a Koopman

group. By applying the proposed framework to multiple systems within the

group, a single diffeomorphism can be learned to represent the common lifting.

By observing the similarity between the closed-form base learner problem

in Section 2.5.2 and the optimization problem for Koopman lifting lineariza-

tion (4.33), the base learner problem is proposed as follows:

min
Fp

Lbase(Dp;Fp, wϕ) = min
Ap,Bp

1

np

np∑
i=1

∥∥∥ ˙̂
ϕi(wϕ)−Apϕ̂i(wϕ)−Bpui

∥∥∥2, (4.34)
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where Fp = [Ap, Bp] ∈ Rn×(n+m) and

ϕ̂i(wϕ) := ϕ̂(xi;wϕ), (4.35)

˙̂
ϕi(wϕ) := ∇ϕ̂(xi;wϕ)

T ẋi (4.36)

for i = 1, . . . , np.

Given a system Sp ∈ G, if there exists a network parameter wϕ such that

min
Fp

Lbase(Dp;Fp, wϕ) = 0 (4.37)

for any dataset Dp acquired from the system Sp, the network ϕ̂(x;wϕ) satis-

fies the conditions C3 and C4 in Theorem 4.8. Moreover, if the network is a

diffeomorphism, it follows from Propositions 4.3 and 4.10 that there exists a

Koopman lifting linearization (4.12) of Sp with

[A,B] = F ∗
p (wϕ) := argmin

Fp

Lbase(Dp;Fp, wϕ). (4.38)

Considering wϕ as a meta-learner parameter, the optimization problem (4.34)

has a closed-form solution as in Section 2.5.2, given by

F ∗
p (wϕ) = Yp(wϕ)Ψp(wϕ)

† =:
[
A∗

p(wϕ), B
∗
p(wϕ)

]
, (4.39)

where

Yp(wϕ) =
[
˙̂
ϕ1(wϕ) · · · ˙̂

ϕnp(wϕ)

]
, (4.40a)

Ψp(wϕ) =

ϕ̂1(wϕ) · · · ϕ̂np(wϕ)

u1 · · · unp

 , (4.40b)

which implies that it can be used as the closed-form base-learner problem (2.31)

to obtain the approximated common lifting for the Koopman group within a

meta-learning framework.
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4.3.4 Meta-Learner Formulation

The overarching purpose of the meta learner is to obtain the common lifting

that not only allows the Koopman lifting linearization for each system of the

Koopman group but also ensures that the linearized system is controllable and

observable with the output y(t) defined in (4.17).

Suppose that the p-th task Tp of the meta-learning problem is defined as the

dataset Dp obtained from the system Sp ∈ G, because the loss functions for the

base learner are the same for all systems as defined in (4.34). Let p(G) be the

distribution of the task Tp = Dp in the Koopman group G. The meta-learner

problem (2.29) is formulated as follows:

min
wϕ

EDp∼p(G)
[
Lmeta

(
Dp;F

∗
p (wϕ), wϕ

)]
, (4.41)

where Lmeta denotes the meta-learner loss function for the common lifting, wϕ

is the parameter of the diffeomorphic lifting approximation network, which is

regarded as the meta-learner parameters, and F ∗
p (wϕ) is the closed-form solution

of the base learner given in (4.39). The meta-learner loss Lmeta is composed of

four losses as

Lmeta = ηlinLlin + ηorigLorig + ηoutLout + ηnllLnll, (4.42)

where Llin denotes the Koopman lifting linearization loss, Lorig denotes the

origin loss, Lout denotes the output representation loss, Lnll denotes the negative

log-likelihood loss, and η(·) are the weights of the corresponding losses.

The Koopman lifting linearization loss Llin encourages that a common lifting

ϕ̂(x;wϕ) satisfies the conditions C3 and C4 in Theorem 4.8 for all systems in

the Koopman group, defined by

Llin(Dp;F
∗
p (wϕ), wϕ) =

∥∥F ∗
p (wϕ)Ψp(wϕ)− Yp(wϕ)

∥∥2
F
, (4.43)
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where F ∗
p (wϕ) is the closed-form solution defined in (4.39), and the functions

Ψp and Yp are defined in (4.40). All of these functions depend on the dataset

Dp which involves the dynamics information of Sp.

The origin loss Lorig is designed to ensure the condition C5, defined by

Lorig(wϕ) =
∥∥∥ϕ̂(0;wϕ)

∥∥∥2, (4.44)

which is independent of the dataset Dp, thus it can be considered as regular-

ization of the network ϕ̂(x;wϕ).

The output representation loss Lout is defined to enforce the condition C6

in Theorem 4.8. It is defined by using the closed-form solution C∗(wϕ) as

Lout(Dp;wϕ) =
1

np

np∑
i=1

∥∥∥h(xi)− C∗(wϕ)ϕ̂i(wϕ)
∥∥∥2, (4.45)

where C∗(wϕ) ∈ Rq×n is defined by

C∗(wϕ) =
[
h(x1) · · · h(xnp)

] [
ϕ̂1(wϕ) · · · ϕ̂np(wϕ)

]†
. (4.46)

Although the loss Lout includes the state xi from the dataset Dp, the dynamics

information of Sp is not involved. In other words, the state xi need not belong

to the dataset Dp but may be any real vector in Rn.

Along with a diffeomorphic lifting approximation ϕ̂(x;wϕ), the losses Llin,

Lorig and Lout are designed to satisfy the conditions C1–C6 in Theorem 4.8.

Therefore, the optimal control u∗o is equivalent to the lifted optimal control u∗

of the lifted optimal control problem, given in (4.18). Using the data-driven

surrogate Q-learning method proposed in Chapter 3, the lifted optimal control

can be learned using a dataset Dlift :=
{(
ϕ̂i, ui,

˙̂
ϕi
)}

. Therefore, the performance

of the data-driven surrogate Q-learning is heavily dependent on the distribution
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of the data points in Dlift in the sense of regression theory. The negative log-

likelihood loss Lnll is introduced in this perspective, defined by

Lnll(Dp;wϕ) = − 1

np

np∑
i=1

log p(xi), (4.47)

where the log-likelihood log p(x) is defined in (4.31).

4.3.5 Offline and Online Learning Synthesis

The reinforcement learning framework utilizing meta-learning proposed in

this study is divided into two stages: offline learning and online learning. In

offline learning, diffeomorphic lifting approximation is learned through meta-

learning using a dataset obtained from any system belonging to the Koopman

group, as discussed above. This dataset can be obtained through experiments

or numerical simulations based on knowledge of the dynamics of similar sys-

tems. The advantage of the proposed meta-learning framework is that it can

utilize data obtained by various controllers or tuned controllers in various en-

vironments. The learned diffeomorphic lifting approximation is then installed

in the online learning system in the actual system. The parameters of the dif-

feomorphic lifting approximation are fixed in the online learning stage. The

online learning requires actual data for the system being controlled. However,

the proposed surrogate Q-learning can quickly learn the optimal controller with

very little data, as described in Section 3.2.3, compared to general reinforce-

ment learning algorithms. The overall procedure of online and offline learning

is illustrated in Fig. 4.2.
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Chapter 5

Numerical Simulation

In this chapter, numerical simulation is performed to demonstrate the ef-

fectiveness of the method proposed in this study.

5.1 Koopman Group of Nonlinear Systems

Consider a nonlinear system given by

ẋ1 = x31 + x2 + u,

ẋ2 = p1x1 +
(
p2 − 3x21

)(
x31 + x2

)
+
(
1− 3x21

)
u,

(5.1)

where p1 and p2 are constant parameters satisfying

(p1, p2) ∈ {(p1, p2) | 1 ≤ p1 ≤ 2, 1 ≤ p2 ≤ 2} =: P. (5.2)

Let a system with a parameter tuple p := (p1, p2) be denoted by Sp, and let the

group of such systems be G. Consider the following optimal control problem:

inf
u

∫ ∞

0

(
x1(t)

2 + u(t)2
)
dt (5.3)

for any x0 ∈ R2. The performance output is given by

yo(t) = h(x(t)) = x1(t), (5.4)

where x = [x1, x2]
T .
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Let a mapping ϕ : R2 → R2 be given by

ϕ(x) =

 x1

x31 + x2

 , (5.5)

which is surjective (C1) and satisfies ϕ(0) = 0 (C5) by construction. It can be

easily confirmed that the Jacobian

∇ϕ(x)T =

 1 0

3x21 1

 (5.6)

is injective for all x ∈ R2 (C2). The mapping ϕ(x) in (5.5) transforms the

system (5.1) into a linear system given by

ϕ̇ =

 0 1

p1 p2

ϕ+

1
1

u =: Apϕ+Bpu, (5.7)

for any Sp ∈ G, which implies that ϕ(x) satisfies the conditions C3 and C4.

Finally, for any x ∈ R2,

h(x) =
[
1 0

]
ϕ(x) =: Cϕ(x), (5.8)

where h(x) is given in (5.4), which implies C6. It follows that all of the con-

ditions C1–C6 of Theorem 4.8 are satisfied with ϕ(x), and therefore it can be

confirmed that G is the Koopman group and ϕ(x) is the common lifting for the

group. Furthermore, (Ap, Bp) is controllable and (Ap, C) is observable for all

p ∈ P.

By Theorem 4.8, the solution to the optimal control problem (5.3) for the

nonlinear system Sp (5.1) is given by

u∗p(x) = −BT
p P

∗
p ϕ(x), (5.9)
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where P ∗
p is the positive definite solution to the ARE given by

P ∗
pAp +AT

p P
∗
p + CTC − P ∗

pBpB
T
p P

∗
p = 0 (5.10)

with Ap and Bp in (5.7), and C in (5.8).
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5.2 The Meta-Learning Stage

5.2.1 Meta-Learning Setups

The single-scale Glow in Section 4.3.2 is implemented for the diffeomorphic

lifting approximation, where the detailed hyper-parameters are presented in

Table 5.1. The glow is constructed by 8 Flows connected sequentially. Two fully

connected deep neural networks are employed for each affine coupling layer. For

each layer in the fully connect networks, the exponential linear unit (ELU) is

used for the activation function for differentiability.

At each iteration of the meta-training stage, 16 tasks (systems) are randomly

generated using the parameter set P defined in (5.2). For each task, 1,000 pairs

of (xi, ui, ẋi) are generated by uniformly sampling xi from [−1, 1]×[−1, 1] and ui

from [−6, 6]. The meta-learner loss Lmeta (4.42) is averaged over all the sampled

task dataset, and back-propagated using the Adam optimizer [77]. The iteration

is repeated 3,000 times.

The number of Flows and the size of the deep neural networks in each

affine coupling layer significantly affect the representational power of the dif-

feomorphic lifting approximation. Generally, a larger number of Flows and a

larger-sized deep neural network can effectively model complex nonlinear dy-

namics, but beyond a certain level, there is little difference in representational

power. Furthermore, increasing the number of Flows or the size of the deep

neural network prolongs the time required for the meta-learning process and

the computation of actual control inputs. Therefore, it is important to strike

a balance between having adequate representational power and avoiding overly

deep networks.
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The weights for each loss determine the order in which the losses decrease

during the initial stages of meta-learning. However, as the training time in-

creases, all losses converge to very small values, resulting in less pronounced

impact of the weight proportions on each loss.

5.2.2 Meta-Learning Results

Numerical results in this section demonstrate the feasibility of finding the

common lifting for the Koopman group using the proposed meta-learning frame-

work.

After the meta-learning, the approximated common lifting ϕ̂(x;wϕ) is ob-

tained. Let

ϕ̂(x;wϕ) =:

ϕ̂1(x;wϕ)

ϕ̂2(x;wϕ)

 . (5.11)

Each component of ϕ̂(x;wϕ) is presented in Fig. 5.1. Because the lifting is

approximated by differentiable invertible neural networks, the diffeomorphism

between x and ϕ̂ can be observed, which implies that the conditions C1 and C2

are satisfied.

To demonstrate the Koopman lifting linearization performance of the pro-

posed meta-learning framework, the parameter tuple is randomly sampled from

P, where the corresponding system is denoted by Sp ∈ G. Indeed, the sampled

parameter tuple is p = (1.55, 1.72). From (5.1), let

f(x) =

 x31 + x2

p1x1 +
(
p2 − 3x21

)(
x31 + x2

)
 =:

f1(x)
f2(x)

 , (5.12)

G(x) =

 1

1− 3x21

 =:

G1(x)

G2(x)

 , (5.13)
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Table 5.1 Meta-learning parameters.

Description Variable Value

Number of Flows - 8

Units of hidden layers1 - [16, 64, 64]

Weights of losses

ηlin 10

ηorig 1

ηout 5

ηnll 1

Learning rate - 10−3

Weight decay - 10−5

Number of batch tasks - 16

Size of a dataset np 103

1 For both of two fully connected layers, s(x1;ws)

and t(x1;wt), in each affine coupling layers. See Ap-

pendix A.1.3.
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Figure 5.1 The approximated common lifting.

using the expression in (4.1). Figures 5.2 and 5.3 illustrate the functions f(x)

and G(x), which demonstrate that the system dynamics is highly nonlinear.

According to the Koopman lifting linearization loss Llin (4.43), the dynamics

of the lifting

d

dt
ϕ̂(x;wϕ) = ∇ϕ̂(x;wϕ)

T (f(x) +G(x)u) (5.14)

should be linearized as

d

dt
ϕ̂ = Âpϕ̂+ B̂pu (5.15)

with some matrices Âp ∈ R2×2 and B̂p ∈ R2×1. In other words, the followings

should be satisfied for the learned lifting ϕ̂(x;wϕ):

∇ϕ̂(x;wϕ)
T f(x) = Âpϕ̂(x;wϕ), (5.16)

∇ϕ̂(x;wϕ)
TG(x) = B̂p. (5.17)

These expectations can be confirmed in Figs. 5.4 and 5.5. The straight contours

in Fig 5.4 imply that the function ∇ϕ̂(x;wϕ)
T f(x) is linear to ϕ̂(x;wϕ). The

function ∇ϕ̂(x;wϕ)
TG(x) is almost constant for all ϕ̂(x;wϕ) as illustrated in

Fig. 5.5.

101



x1
−1

0
1

x2

−1
0

1

f1(x)

−2

−1

0

1

2

x1
−1

0
1

x2

−1
0

1

f2(x)

−2

−1

0

1

2

Figure 5.2 The functions f1(x) and f2(x).
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Figure 5.3 The functions G1(x) and G2(x).
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Figure 5.4 The contour plots of ∇ϕ̂1(x;wϕ)
T f(x) and ∇ϕ̂2(x;wϕ)

T f(x).
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Figure 5.5 The functions ∇ϕ̂1(x;wϕ)
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TG(x).
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Table 5.2 Mean-square linearization errors.

System Parameter Nonlinear System KLL

Sp1 (1.77, 1.81) 9.97 1.09× 10−3

Sp2 (1.28, 1.32) 10.0 8.6× 10−4

Sp3 (1.57, 1.00) 10.2 8.6× 10−4

The mean-square errors of least-square linearization for both of the nonlin-

ear system (5.1) and the Koopman lifting linearization (KLL) (5.14) are given

in Table 5.2 with three different randomly sampled systems, Sp1 , Sp2 and Sp3 .

It can be confirmed that the meta-learned common lifting can linearize an ar-

bitrary system in the group, which implies that the condition C3 and C4 are

satisfied. In addition, the condition C5 can be confirmed from

ϕ̂(0;wϕ) = (0.0021,−0.0013). (5.18)

Finally, Fig. 5.6 indicates the satisfaction of the last condition C6, which

implies that the performance output y = x1 can be recovered from the lifting.

The mean-square error of h(x)−Cϕ̂(x;wϕ) is 3.92× 10−7, where the matrix C

is

C =
[
−0.140 0.147

]
. (5.19)

As demonstrated above, the trained diffeomorphic lifting approximation sat-

isfies the conditions C1–C6 of Theorem 4.8 under small linearization errors pre-

sented in Table 5.2. This means that an arbitrary system in the Koopman group

follows the dynamics in (5.15) with some unknown matrices Âp and B̂p.
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Figure 5.6 The performance output of the nonlinear system and the Koopman

lifting linearization.

5.3 The Surrogate Q-Learning Stage

5.3.1 Surrogate Q-Learning Setups

After meta-learning stage, diffeomorphic lifting approximation ϕ̂(x;wϕ) and

the corresponding output matrix C are obtained. The data-driven surrogate Q-

learning is performed for the randomly sampled systems with Q◦ in (3.39) is

constructed as

Q◦ =

CTC 0

0 1

 . (5.20)

The surrogate Q-learning parameter is set as sk = 1 for all k ≥ 0, and the

initial feedback gain K0 is set to zero.

For each system, 10,000 data points of (xi, ui, ẋi) are collected, and the
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diffeomorphic lifting approximation ϕ̂(x;wϕ) transforms the dataset into

Dp =
{(
ϕ̂(xi;wϕ), ui,∇ϕ̂(xi;wϕ)

T ẋi
)}

=:
{(
ϕi, ui, ϕ̇i

)}
. (5.21)

Note that the tuple
(
ϕi, ui, ϕ̇i

)
satisfies the linear dynamics (5.15). The surro-

gate Q-learning iteration is performed for 50 steps, although the solutions are

converged much earlier.

5.3.2 Surrogate Q-Learning Results

To demonstrate the performance of the surrogate Q-learning, 20 systems

are randomly sampled from the Koopman group G, and run the surrogate Q-

learning for each system. Figure 5.7 presents the learning history of the sur-

rogate Q-learning for all systems in terms of ν(Pk), which is the number of

eigenvalues with the negative real part of Pk, and the differences between each

element of the learned feedback gains and the optimal gain, where

Kk =:
[
Kk,1 Kk,2

]
, K∗ =:

[
K∗

1 K∗
2

]
. (5.22)

The upper plot in Fig. 5.7 illustrates that the initially unstable initial feedback

gain is monotonically stabilized as the iteration progresses The simulation re-

sults demonstrate that the proposed surrogate Q-learning quickly stabilizes the

feedback gain within a small number of iterations less than 5. The convergence

of Kk can be confirmed from the middle and lower plots in Fig. 5.7. Figure 5.8

shows the full history of the differences |Kk,1 −K∗
1 | and |Kk,2 −K∗

2 | in a log

scale. It can be observed that the control gain converges within approximately

25 steps with an error of around 10−10.

To confirm that the surrogate Q-learning converged to the optimal control,

the analytic optimal control inputs u∗p(x) (5.9), the trained control inputs ûp(x),
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and the errors between the two control inputs are presented in Fig. 5.9 for the

systems Sp1 to Sp3 in Table 5.2. Figure 5.10 illustrates the phase portraits of

the closed-loop systems using the analytic optimal controller u∗p(x) and the

trained controller ûp(x) for each system. The results show that the surrogate

Q-learning closely converges to the analytically optimal controller for arbitrary

systems using only the dataset acquired from each system.
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Figure 5.7 The learning history of the surrogate Q-learning for 20 different

randomly sampled systems. The upper plot presents the median number of
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present the median error between the learned feedback gains and the optimal

gain. The shaded area in each plot denotes the interquartile range (IQR).
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Chapter 6

Conclusion

6.1 Concluding Remarks

A reinforcement learning algorithm for optimal control problems of dynamic

systems is proposed utilizing a model-free off-policy approach. Widely acknowl-

edged limitation in policy iteration regarding the use of unstable initial poli-

cies can be successfully overcome by the proposed policy iteration algorithm

while maintaining the advantage of easy implementation. This substantial ad-

vancement will considerably broaden the scope of the reinforcement learning

algorithm to accommodate a wide range of dynamic systems including inher-

ently unstable systems. Moreover, meta-learning synthesis can be facilitated

rapid acquisition of nonlinear optimal controllers by the proposed reinforce-

ment learning algorithm, requiring only a small amount of actual data.

In this dissertation, the policy iteration algorithm is improved to accom-

modate unstable policies by redesigning the policy evaluation steps based on

implicitly defined value functions. In the case of linear systems, the implicit

value function corresponds to the unique symmetric solution of a Lyapunov

equation. It is observed that the Kleinman iteration fails to stabilize the un-

stable initial policy. To overcome this limitation, the surrogate Q-learning is

113



introduced based on the implicit value function. The off-policy property of the

proposed method enables the use of real data acquired from various control

resources, such as human experts or experimentally obtained stable controllers,

which makes the dataset acquisition processes much safer for dynamic systems

including the aerospace systems.

The aforementioned characteristics and the convergence of the proposed al-

gorithm are thoroughly examined through rigorous theoretical analysis, specif-

ically for linear systems. The monotonic stabilization property of the extended

Kleinman iteration is revealed using the matrix inertia theorem, where the

closed-loop system can be stabilized in a finite number of iterations. The global

convergence to the unique optimal stabilizing solution is rigorously proved based

on the monotonic convergence theorem and the analysis of the local behavior of

the iteration near the symmetric solutions to the ARE. In addition to these the-

oretical guarantee, the convergence property of the algorithm is demonstrated

through illustrative numerical examples, which exhibits rapid convergence in

only a few iterations.

The meta-learning framework is synthesized to apply the proposed reinforce-

ment learning algorithm for linear systems to nonlinear systems. The proper-

ties of Koopman lifting linearization are thoroughly investigated to obtain the

equivalence between the optimal control in the linearized system and in the

original nonlinear system. Based on the theoretical findings, several conditions

for the lifting were presented, and the diffeomorphic lifting approximation and

meta-learning losses are proposed to satisfy the conditions. The feasibility and

the efficacy of the proposed meta-learning framework are demonstrated using

illustrative numerical simulations.
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6.2 Direction for Further Research

The directions that follow are proposed as potential ways to extend and

build upon the research presented in this dissertation.

Robustness Analysis of Surrogate Q-Learning

As discussed in Section 3.5.2, the proposed data-driven surrogate Q-learning

algorithm possesses a certain level of robustness, although the exact level is un-

clear. The proposed algorithm requires state derivative data that is vulnerable

to external disturbances and estimation noise. Therefore, analyzing the robust-

ness of the algorithm is an important area for future research. The Moore-

Penrose pseudo-inverse currently used in the policy evaluation stage ensures

that the linear equation solution has a minimum norm error. It is necessary to

analyze the physical significance of the surrogate Q-function obtained from the

linear system and determine its impact on algorithm convergence and mono-

tonic stabilization performance.

Relaxed Conditions for the Extended Kleinman Iteration

The analysis of the extended Kleinman iteration currently resides on the

controllability and observability assumptions for the linear systems. However,

it is well-known that the more relaxed stabilizability and detectability assump-

tions are enough to find a stable optimal controller [53]. Several iterative meth-

ods have been developed for the relaxed conditions, although they still require

initial stable policies, see [78] and references therein. This relaxation can be

particularly useful for the Koopman lifting linearization in a higher dimension,

because the linearized system becomes uncontrollable with the mapping that is
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not surjective by Lemma 4.6.

Koopman Groups Identification

The proposed meta-learning framework assumes the existence of a common

subspace that is invariant to the Koopman operator for all systems in the

group. Although uncertainties in the system dynamics, for example, variations

in mass or moment of inertia in aerospace systems, are expected to satisfy this

assumption to a sufficient degree, it is important from a practical control design

perspective to verify whether this assumption holds for the implementation of

the proposed framework.

Meta-Learning Framework for Adaptive Control Synthesis

Even if the Koopman group assumption is satisfied, the nature of deep neu-

ral network learning can leave some residual error in the Koopman lifting lin-

earization. This may cause a performance degradation in surrogate Q-learning

or even make the learned controller unstable. Therefore, it is practical to use

traditional control techniques that can compensate for some level of system un-

certainty when the trained controller is implemented, even after all the learning

processes from meta-learning to surrogate Q-learning are completed. The devel-

opment of a meta-learning framework for adaptive control synthesis is expected

to enable the design of reliable learning-based controllers.
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[76] Han, Y., Hao, W., and Vaidya, U., “Deep Learning of Koopman Repre-

sentation for Control,” 59th IEEE Conference on Decision and Control

(CDC), Jeju Island, Republic of Korea, Dec. 2020.

DOI:10.1109/CDC42340.2020.9304238

[77] Kingma, D. P., and Ba, J., “Adam: A Method for Stochastic Optimiza-

tion,” 3rd International Conference on Learning Representations, San

Diego, CA, May 2015.

[78] Benner, P., Hernández, V., and Pastor, A., “The Kleinman Iteration for

Nonstabilizable Systems,” Mathematics of Control, Signals and Systems,

Vol. 16, No. 1, 2003, pp. 76–93.

DOI:10.1007/s00498-003-0130-z

129

http://dx.doi.org/10.1109/CDC42340.2020.9304238
http://dx.doi.org/10.1007/s00498-003-0130-z




Appendix A

The Glow Implementation

The single-scale Glow used in this study has a simple form, without the

stepwise scale expansion part for image processing, proposed in the multi-scale

Glow [75]. As shown in Fig. A.1, the Glow has a structure where multiple layers

called Flows are connected in succession.

A.1 Flows

Each Flow of the Glow network is composed of three invertible neural net-

works, which implies that the Flow itself is invertible. The architecture of one

Flow is illustrated in Fig. A.2. In the following section, a detailed description

is provided for each layer that constitutes the Flow.

A.1.1 Activation Layers

Given an input x ∈ Rn, the output of the activation layer is defined by

y = s⊙ x+ b, (A.1)

where s ∈ Rn and b ∈ Rn are trainable network parameters, and ⊙ denotes

the element-wise product. Given y ∈ Rn, the inverse network produces x ∈ Rn
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Figure A.1 The architecture of the Glow.

Figure A.2 The architecture of a Flow.

132



given by

x = (y − b)⊘ s, (A.2)

where ⊘ is the element-wise division. The log-determinant is given by

log

∣∣∣∣det(∂y∂x
)∣∣∣∣ = n∑

i=1

log |si|, (A.3)

where s =: [s1, . . . , sn]
T .

A.1.2 1× 1 Convolution Layers

Given an input x ∈ Rn, the output y ∈ Rn of the 1× 1 convolution layer is

defined by

y =Wx, (A.4)

and the inverse is given by

x =W−1y. (A.5)

Here, the invertible matrix W ∈ Rn×n denotes the weight matrix of the convo-

lution network, which is given by its LU decomposition as

W = P (L+ In)(U + diag(s)), (A.6)

where P ∈ Rn×n is the permutation matrix, L ∈ Rn×n and U ∈ Rn×n are the

lower and upper triangular matrices with zero diagonal entries, respectively, and

s ∈ Rn. The trainable network parameters are L, U , and s. The log-determinant

is given by

log

∣∣∣∣det(∂y∂x
)∣∣∣∣ = n∑

i=1

log |si|, (A.7)

where s =: [s1, . . . , sn]
T .
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A.1.3 Affine Coupling Layers

Given an input x ∈ Rn, affine coupling layers first partition it with a fixed

size p < n as

x =

x1
x2

 , (A.8)

where x1 ∈ Rp and x2 ∈ Rn−p. There are two deep neural networks in an affine

coupling layer: s(·;ws) : Rp → Rp and p(·;wp) : Rp → Rp, where ws and wp

are the trainable network parameters. Then, the output y ∈ Rn is given by

y = [yT1 , y
T
2 ]

T , where

y1 = x1 (A.9)

y2 = exp(s(x1;ws))⊙ x2 + t(x1;wt). (A.10)

Given y, the inverse of the network can be obtained as

x1 = y1, (A.11)

x2 = (y2 − t(y1;wt))⊘ exp(s(y1;ws)). (A.12)

The log-determinant is given by

log

∣∣∣∣det(∂y∂x
)∣∣∣∣ = p∑

i=1

log |si|, (A.13)

where s(x1;ws) =: [s1, . . . , sp].
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국문초록

본 논문에서는 최적제어 문제를 해결하기 위해 비모델(model-free) 강화학습

알고리듬을 제안하였다. 제어 시스템의 안정성은 제어기 설계 시 필수적으로 고

려되어야 할 사항으로 본 논문에서 제안한 알고리듬은 학습되는 제어기가 최적일

뿐만 아니라 안정한 제어기로 수렴하도록 설계되었다. 기존의 근사 동적 프로그래

밍기법들과는달리,제안한알고리듬은안정한초기제어기를필요로하지않는데,

이는 불안정한 평형점을 가지는 시스템의 비모델 학습 관점에서 주요한 장점이다.

논문의 전반부에서는 데이터만을 이용해 선형 시스템의 안정한 최적제어기를

학습할 수 있는 새로운 형태의 Q-학습 알고리듬을 제안한다. 초기 불안정한 제어

입력을 허용하기 위해 성능지수를 평가하기 위한 가치함수를 음함수 형태 재정의

하고, 선형 시스템에 대해 존재성과 유일성을 보였다. 가상의 제어 동역학을 상

태변수에 추가한 확장된 상태공간에서의 가치 음함수로 Q-함수를 정의하고, 이를

기반으로하는정책반복법기반의 Q-학습알고리듬을제안하였다.이알고리듬은

학습중인제어기로부터데이터를얻을필요가없는 off-policy기법으로,시스템의

숙련된 운영자나 실험적으로 설계된 PID 제어기를 통해 얻은 데이터를 사용할 수

있다는장점이있다.제안한 Q-러닝알고리듬을이용하면학습되는제어기가유한

단계 이내에 안정화 되며, 최종적으로 대수적 리카티(Riccati) 방정식의 안정한

선형 최적해로 수렴함을 행렬 관성 이론을 기반으로 증명하였다.

논문의 후반부는 제안된 강화학습 알고리즘을 비선형 시스템에 적용하는 문

제를 다룬다. 이를 위해 비선형 시스템을 무한 차원 공간에서 선형화하는 쿠프

만(Koopman) 연산자 이론을 활용한다. 리프팅(lifting)이라 불리는 매핑에 의해

생성되는 쿠프만 연산자의 유한 차원의 불변 부분공간이 존재한다고 가정할 때,
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선형화된 시스템의 최적제어를 위해 가제어성과 가관측성을 가지기 위한 조건

을 정립한다. 리프팅에 대한 여러 조건을 바탕으로 기존 비선형 시스템 최적제어

문제와 선형화된 시스템의 최적제어 문제 간의 동치성을 증명하고, 앞서 제안한

강화학습 알고리즘을 사용할 수 있는 이론적 근거를 마련한다. 모든 조건을 만

족하는 리프팅을 찾기 위해 가역 심층신경망을 활용한 미분동형(diffeomorphic)

리프팅 근사법을 제안한다. 특정 시스템 그룹에 대해 공통된 리프팅이 존재한다면

그룹 내의 불확실한 시스템에 대해 제안한 비모델 강화학습을 활용할 수 있다는

점에 착안하여, 공통 리프팅을 학습하는 메타 러닝(meta learning) 프레임워크를

개발하였다.

마지막으로이미알려진최적제어기와비선형동역학을갖는비선형시스템을

사용하여 수치 시뮬레이션을 수행하고, 제안된 프레임워크의 타당성과 구현 세부

사항을 살펴보았다.

주요어: 강화 학습, 데이터 기반 제어, 학습 기반 제어, 자동 제어 시스템, 최적

제어, 대수적 리카티 방정식

학번: 2015-20765
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