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Abstract

Data-Driven Optimal Control for Linear Systems with
Arbitrary Initial Policy and Application to Nonlinear
Systems Using Koopman Operators

Seong-hun Kim
Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

A model-free off-policy reinforcement learning algorithm is proposed for
solving optimal control problems for dynamic systems. The algorithm is de-
signed to converge to not only the optimal but also stabilizing policy, which is
one of the most critical concerns in designing the controller for safety-critical
systems such as unmanned aerial vehicles. Unlike typical approximate dynamic
programming methods, an initial stabilizing policy is not required by the pro-
posed algorithm, which is a key advantage.

In the first part of the dissertation, a data-driven surrogate Q-leaning algo-
rithm is proposed for linear systems based on the extended Kleinman iteration
that solves algebraic Riccati equation. To allow an initial unstable policy, the
value function is redefined implicitly to evaluate the performance index of the
unstable policy. Based on this implicit value function, an action-value function
called the surrogate Q-function is proposed by augmenting virtual control dy-
namics in the state space to properly define values of state and control input
pairs. An off-policy data-driven method called the surrogate Q-learning is then

provided based on the surrogate Q-function, which enables the reuse of data



obtained from an arbitrary control sources, e.g., trained human experts or fine-
tuned PID controllers. The convergence of the extended Kleinman iteration to
the unique positive definite solution, which yields the optimal stabilizing pol-
icy, is proven based on matrix inertia theory since the surrogate Q-learning is
equivalent to the extended Kleinman iteration.

The second part of the dissertation is devoted to an application of the
proposed reinforcement learning algorithm to nonlinear systems. The Koop-
man operator theory is employed to linearize nonlinear systems in an infinite-
dimensional space, called the Koopman lifting linearization. The controllability
and observability of linearized systems are investigated by assuming that there
exists a finite-dimensional invariant subspace of the Koopman operator spanned
by a mapping called the lifting. The equivalence between two optimal control
problems for the original nonlinear system and the linearized system is shown
under several conditions on the lifting. To find the lifting satisfying all of the
conditions, a diffeomorphic lifting approximation by coupling flow-based invert-
ible deep neural network is employed. A meta-learning framework is proposed
to train the network to approximate a common lifting for a group of systems,
and therefore the mode-free surrogate Q-learning can be applied to uncertain
systems.

Numerical simulations using illustrative nonlinear systems with known op-
timal controllers are used to demonstrate the feasibility of the proposed frame-

work, along with practical considerations and implementation details.

Keywords: Reinforcement Learning, Data-Driven Control, Learning-Based Con-
trol, Automatic Control System, Optimal Control, Algebraic Riccati Equation
Student Number: 2015-20765
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Chapter 1

Introduction

1.1 Problem Statement

Data-driven control refers to a type of control that utilizes data acquired
from various sources related to the system of interest. Unlike traditional feed-
back control methods, which utilizes the system dynamics to design a controller
and the data obtained from sensors for feedback, the main difference of the data-
driven control is that the data is accumulated over a period of time to achieve

a specific control objective.

The data-driven control encompasses several promising approaches such as
solving optimal control problems using methods like reinforcement learning
(RL) or approximate dynamic programming (ADP). The RL algorithms are
typically applied to the problems where the reward function for selecting a con-
trol input at each state is unknown. In contrast, data-driven optimal control
methods concentrate on addressing model-free problems that are character-
ized by a lack of knowledge about the system dynamics. This is because the
reward function in optimal control problems is typically specified by a given
performance index but constructing the dynamic model of systems can be a

time-consuming and expensive process.



There are two main categories of RL methods: on-policy and off-policy meth-
ods. On-policy methods require a dataset obtained by applying the control pol-
icy being learned, while off-policy methods do not. Although on-policy methods
typically converge faster, off-policy methods are more data efficient because they
can reuse the dataset. Furthermore, the data acquisition process of the on-policy
methods can be dangerous for the safety critical systems such as the unmanned
aerial vehicles (UAVs) because the control policy being learned cannot guar-
antee the stability of the closed-loop system. The off-policy methods, however,
can utilize the datasets obtained using independent control sources such as hu-
man experts, proportional-integral-derivative (PID) controllers, adaptive con-
trollers, etc. In this study, the model-free and off-policy optimal control problem
is considered for both linear and nonlinear continuous-time systems, where the

trained control policy is stable, and the dataset acquisition process is safe.



1.2 Background, Motivation, and Necessities

The optimal control problems can be formulated as dynamic programming
problems, which is to find the optimal control policy that optimizes a given
performance index subject to the system dynamics. Dynamic programming is
a fundamental concept in optimal control theory, and its essence can be cap-
tured by the Bellman equation. The optimal value function of the state can
then be defined by a function that satisfies the Bellman optimality equation
for discrete-time systems or the Hamilton-Jacobi-Bellman (HJB) equation for
continuous-time systems. The HJB equation is nonlinear partial differential
equations, which is difficult to solve analytically especially for complex systems.
Therefore, numerical techniques such as finite difference methods or approxima-
tion algorithms are often used to obtain approximate solutions to the optimal
control problem, which are the ADP methods.

Solving the HJB equation with ADP methods is classified into two strate-
gies. The first strategy is policy iteration-based ADP, which iteratively evaluates
the current policy and updates the policy for the next iteration using the eval-
uated value function. However, the evaluation process requires the existence of
the value function corresponding to the current policy, making the policy it-
eration method dependent on admissible policies. The second strategy is value
iteration-based ADP, which directly improves the value function and does not
require admissible policies. However, value iteration-based ADP methods typ-
ically involve additional assumptions on the problem and incorporate complex
numerical integration processes.

In general, value iteration-based ADP methods require more computational

resources compared to policy iteration-based ADP methods due to the direct



improvement of the value function using numerical integrations. Furthermore,
the stability of the policy based on the value function being learned is not guar-
anteed, and additional techniques such as regularization or constraints are often
necessary to ensure the policy’s stability. On the other hand, policy iteration-
based ADP methods can be considered more appropriate for UAVs because
they update the policy and the value function in an iterative manner, ensuring
that the policy is admissible at each iteration by assuming that the initial pol-
icy is admissible. However, this assumption may not be practical or effective for
model-free problems where the system dynamics are unknown or complex. In
such cases, the knowledge of the initial admissible policy can be a form of sys-
tem knowledge, which may not be readily available. This poses a challenge for
policy iteration-based ADP methods, because they require an initial admissible
policy even for linear systems, which is a long-standing restriction that stems

from the Kleinman iteration [1].

The Kleinman iteration is an algorithmic approach for solving the continuous-
time algebraic Riccati equation (ARE), which corresponds to the HJB equation
for linear systems. This algorithm serves as the basis for most ADP methods [2]
due to the ability to converge in quadratic rates and the possibility of extension
to data-driven model-free reinforcement learning methods [3,4]. The require-
ment for admissibility of all policies, including the initial guess, in the Kleinman
iteration, arises from the need for the value function of the policy to be positive
semidefinite. This condition is essential in the evaluation process, where the
iteration repeatedly assesses the policy using the Lyapunov equation. However,
this assumption may be too restrictive for data-driven model-free optimal con-

trol problems, especially in situations where the system dynamics are unknown.



Therefore, alternative algorithms are needed that can bypass this limitation and
allow for more flexible policy initialization.

In the context of nonlinear systems, employing Kleinman iteration requires
function approximators that can effectively approximate the value functions and
the policy functions in the state-feedback form. Most ADP methods utilize lin-
ear parameterized hand-crafted basis functions to approximate those unknown
functions, although the hand-crafted basis functions can be regarded as a form
of prior knowledge. Using deep neural networks as the function approximators
offers greater flexibility due to their universal function approximation property.
However, it should be noted that training neural networks typically demands
a substantial amount of data and time, which may limit their suitability for
model-free ADP methods in complicated applications including UAV control

design.



1.3 Literature Review

1.3.1 Iterative Methods for Solving AREs

The algebraic Riccati equation, which arises in linear quadratic regulation
(LQR) problems, has been extensively studied for several decades [5]. AREs
can have multiple solutions that can be real, complex, symmetric, and non-
symmetric. Among those, the positive semidefinite solution is of interest in
general because it can be used to obtain a stable feedback gain and represent
the optimal value function [6,7]. However, the stabilizing solution is difficult
to obtain analytically, and therefore many iterative algorithms have been de-
veloped to approximate the solution, for example, eigenvector-based method
using Pontryagin’s maximum principle [8], the Schur vector method, which is
a numerically sustainable variant of the eigenvector-based method [9], and the

matrix sign function-based methods [10,11].

Kleinman proposed a Newton method to iteratively solve the AREs [1],
which has received a great attention due to its quadratic convergence rate given
a good initial guess making closed-loop system stable [12-15]. In the Kleinman
iteration, a Lyapunov equation is solved at each iteration step, and the feedback
gain matrix for the next iteration step is determined based on the solution to
the Lyapunov equation. This procedure can be considered as a variation of the
policy iteration method described by Howard [16], which involves performing
policy evaluation steps (i.e., solving Lyapunov equations) and policy improve-
ment steps (i.e., finding the gain matrix for the next step) iteratively. Although
the convergence to the optimal stabilizing solution is theoretically guaranteed, it

requires an initial stabilizing feedback gain matrix. Several automatic stabilizing



procedures have been developed to generate the initial stabilizing gain [17-19].
However, all of these methods, including the Kleinman iteration, require the
complete knowledge of the system dynamics, which is not available for model-

free problems.

1.3.2 Model-Free Policy Iteration Methods

To alleviate the requirements of the system dynamics, Murray et al. pro-
posed the adaptive dynamic programming method for continuous-time non-
linear systems utilizing a dataset collected from the system [20]. Because this
method iteratively approximates the solution to the Lyapunov equation corre-
sponding to the stable policy using a set of data including the state, control
input, and the time-derivative of the state, it can be considered as a data-
driven approach of the Kleinman iteration. Vrabie et al. extended this method
to avoid the state derivatives in the dataset using integration of the cost for a
fixed time-step, called the integral reinforcement learning (IRL) [3]. For linear
quadratic regulator problems, the authors demonstrated the equivalence be-
tween the TRL and the Kleinman iteration. However, the above methods still
require the knowledge of control input matrices for linear systems. Jiang and
Jiang proposed a data-driven method to completely remove the requirements
on the knowledge of the system by solving the Lyapunov equation and updating
the control input at once [4]. This method is also the off-policy method that
allows for the addition of exploration noises to the control input while avoiding
contamination of the true value function to be approximated. While the main
goal of the aforementioned methods is to establish a model-free framework for

solving AREs or HJB equations with the aid of a dataset, it should be noted



that all of these methods rely on having prior knowledge of an initial stable or

admissible policy.

1.3.3 ADP Methods Without Initial Admissible Policies

Recent research has focused on developing ADP methods that do not re-
quire an initial admissible policy. This is motivated by the observation that
it is impossible to evaluate an unstable policy using the Lyapunov equation
in policy iteration. The fundamental idea behind these methods is to imple-
ment the value iteration developed by Bellman [21], which does not require any
explicit policy to be evaluated and drops the requirement of an initial stabiliz-
ing policy. Bian and Jiang implemented the value iteration for continuous-time
systems [22,23]. This method iteratively approximates the finite-horizon value
function backward in time, and the convergence to the optimal stabilizing so-
lution is guaranteed. Lee et al. proposed a generalized policy iteration method
for continuous-time linear systems by introducing the update horizon [24]. Both
methods employ a positive (semi)definite matrix as an initial estimate of the
value function and iteratively refine the approximation by incorporating addi-
tional integration steps. However, the inclusion of these integration steps may
introduce numerical and algorithmic complexities that can affect the efficiency

and accuracy of the method.

1.3.4 The Koopman Operator for Control

Recently, the Koopman operator has gained a lot of attention as an effec-
tive tool for predicting the behavior of complex nonlinear dynamic systems.

This technique interprets the evolution of state variables by employing infinite-



dimensional linear operators on transformed state variables through a mapping
called the observable, instead of relying on the trajectories of ordinary differen-
tial equations. It has been studied in various fields ranging from fluid dynamics
to power systems and UAV path-following problems [25]. Developing a method
for interpreting stable and unstable subspaces using zero level sets of Koopman
eigenfunctions has provided a foundation for the stability analysis of linearized

systems and the operator-theoretic optimal control theory [26].

Williams et al. developed data-driven extended dynamics mode decompo-
sition (EDMD) algorithms to efficiently approximate the infinite-dimensional
linear Koopman operator for high-dimensional systems [27] and systems with
exogenous control inputs [28]. The performance of approximating nonlinear
systems with finite-dimensional linear systems using EDMD and designing con-
trollers based on this has been experimentally demonstrated for robotic sys-
tems [29]. Brunton et al. proposed a linear optimal control approach by includ-
ing the state variables in the observables, although only a restricted class of
nonlinear systems with a single isolated fixed point can be considered and the

nonlinear optimality of the controller was not proven [30].

Generalizations of the Koopman operator with control inputs were proposed
by several studies, where the Koopman operator is also applied to the control
inputs [31,32]. In [31], it was demonstrated that the output space of the gen-
eralized Koopman operator can be restricted to a subspace of the observable
space. Rather than using bilinear predictors [33,34], Korda and Mezi¢ [35] em-
phasized the feasibility of linear predictors, where the linear control techniques
such as model predictive control (MPC) can be exploited. The approach of the

Koopman operator-based MPC [36-38] was validated through numerical simu-



lations [39] and hardware experiments [40]. Comprehensive reviews of Koopman

operators and their applications can be found in [41,42].

1.3.5 Learning-Based Koopman Operator Applications

As machine learning techniques continue to advance, there has been in-
creasing interest in using deep neural networks to represent the observables
and learn them together with the Koopman operator. Yeung et al. successfully
simulated the responses of high-dimensional complex nonlinear systems using
the learned linear systems by applying the deep neural network-based learning
technique to EDMD [43]. Folkestad et al. proposed a similar idea of using deep
neural networks, but instead of directly learning the observables, the authors
trained the Koopman eigenfunctions and identified important observables using
their spectral information, which were then used in EDMD [44]. This approach
addressed the issue of non-linear dynamics being approximated by excessively
high-dimensional linear systems, resulting in increased computational efficiency
for calculating optimal control inputs through methods such as MPC. Krolicki
et al. demonstrated that the optimal value function and optimal control inputs
can be represented by the Koopman operator [45]. They showed that the op-
timal solutions can be obtained using Kleinman iteration based on EDMD. In
addition to the studies mentioned above, there are active research efforts to
apply deep neural networks and learning techniques to Koopman operator for

control system design [46,47].

10 -



1.4 Objectives and Contributions

1.4.1 Objectives

The objective of this study is to establish a theoretical foundation for the
utilization of data-driven reinforcement learning techniques in optimal control
problems, and to develop effective and practical algorithms for this purpose.

The overarching goals of this study can be stated as follows:

e Development of a model-free reinforcement learning method for optimal
control problems that does not require any knowledge of the system dy-

namics including an initial admissible policy

e Mathematically rigorous analysis of the convergence to stable optimal so-
lutions and associated characteristics of the proposed reinforcement learn-

ing algorithm

e Safe acquisition and minimization of data required for optimal controller

learning

In addition, the aim of this study is to propose a control design framework that
can utilize data from other (similar) systems or virtual simulation data, instead
of relying on actual data of the target system, which is typically required in the

conventional control system design process.

1.4.2 Contributions
Model-Free Policy Iteration Without Initial Admissible Policies

To overcome the limitations of existing policy iteration methods, which can-

not perform policy evaluation for unstable control inputs due to the ill-defined

11 :



value function, this study defined a value function implicitly, where the exis-
tence and uniqueness conditions are provided for linear systems. The proposed
implicit value function reveals that the matrix inertia preservation property of
the Lyapunov equation is the reason for the lack of convergence of the Kleinman
iteration for unstable initial polices. A virtual control input dynamics is intro-
duced to circumvent this problem, and an implicit value function for state-input
pairs augmenting this virtual dynamics is defined. The surrogate Q-learning al-
gorithm is proposed, where the control policy is evaluated using the implicit
value function, and the policy improvement step is constructed based on a neces-
sary condition for optimal control inputs. The surrogate Q-learning is inherently
an off-policy method, and therefore it can exploit data from various control re-
sources including human experts or fine-tuned experimental controllers, which

renders data acquisition processes safe.

Mathematical Convergence Analysis

Using the matrix inertia theory and monotone convergence theory, it is
proven that the surrogate Q-learning always converges to a stable optimal con-
trol policy, even when an unstable initial policy is used. First, the extended
Kleinman iteration based on the matrix equation, which is equivalent to the
surrogate Q-learning, is formalized. It is shown that if a solution to the ini-
tial Lyapunov equation exists uniquely, regardless of the stability of the initial
feedback gain, it is easy to find the design parameters that make solutions to
Lyapunov equations unique in all subsequent policy evaluation steps. Next, us-
ing the matrix inertia theory, it is proven that the number of eigenvalues with

the positive real part of the closed-loop system matrix monotonically decreases

12



as the iteration progresses. This implies that the feedback control system is
monotonically stabilized as the iteration progresses. Based on this observation,
local stability analysis around the solution of the algebraic Riccati equation
and monotone convergence theory completes the convergence proof that the
feedback gain becomes completely stable within a finite number of steps and

consequently converges to the optimal stable solution.

Meta-Learning Framework for Koopman Operator

A meta-learning framework is proposed that combines Koopman operator
theory with the proposed surrogate Q-learning to minimize the amount of re-
quired data and reduce the learning time for deep reinforcement learning for
nonlinear systems. It is shown that the nonlinear optimal control is equivalent
to the linear optimal control for the Koopman lifting linearization, if it exists.
For the existence of the linear optimal control, the controllability and observ-
ability of the linearized system are investigated. Based on these analyses, six
sufficient conditions for the lifting have been established for the optimal control
obtained from the Koopman lifting linearization to be the same as the nonlinear
optimal control of the original nonlinear system. A meta-learning problem is
formulated for a specific group of nonlinear systems to find a common lifting
that satisfies all of the above conditions, so that any nonlinear system within
the group can be represented solely by linear system matrices. Once the meta-
learning process is completed offline, the proposed framework allows obtaining
nonlinear optimal control using the common lifting and surrogate Q-learning

with actual data, for any uncertain nonlinear system in the group.

In summary, the proposed reinforcement learning achieves theoretically guar-

13 -



anteed convergence to the optimal stable solution for completely unknown linear
systems, exploiting safely acquired real data. For nonlinear systems, the com-
mon lifting obtained from the proposed meta-learning enables rapid training of

the nonlinear optimal control with a minimal data.
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1.5 Dissertation Outline

The organization of this dissertation is as follows:

In Chapter 1, the backgrounds, motivations, and necessitates of this study
are described, and a comprehensive review of existing literatures on data-driven
optimal control methods is presented. Based on these, the objectives of this
study is clearly stated, and the contributions are presented.

In Chapter 2, mathematical preliminaries on the matrix inertia theory, the
Fréchet derivative, and the Koopman operator are summarized. Brief introduc-
tions to linear system theory, the Kleinman iteration, and the meta-learning
framework are presented.

The main algorithms and analytical contributions of this study are de-
scribed in Chapters 3 and 4. In Chapter 3, the off-policy model-free surrogate
Q-learning is proposed based on a virtual control input dynamics and an im-
plicit value function of a state-action pair. The extended Kleinman iteration,
which is equivalent to the surrogate Q-learning for linear systems, is formu-
lated And, the rigorous convergence analysis along with monotonic stabilizing
property is provided.

In Chapter. 4, the meta-learning framework to obtain the nonlinear optimal
control is developed based on the Koopman operator theory. The equivalence
between the nonlinear optimal control and the linear optimal control is revealed,
and the controllability and observability are investigated. The meta-learning
problem is formulated based on these observations.

In Chapter 5, the detailed implementation of the proposed meta-learning
framework is presented. The feasibility and efficacy of the proposed reinforce-

ment learning framework are demonstrated by numerical simulations for a group

15 -



of illustrative nonlinear systems that possess a common invariant subspace of
the Koopman operator.
In Chapter 6, the summary of the main results of this dissertation and

suggestions for future work are provided.
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Chapter 2

Theoretical Backgrounds

This section introduces notations used in this study. The mathematical pre-
liminaries to understand the theoretical proofs and the formal definitions of the

problems are introduced.

2.1 Notation

Suppose that all matrices considered in this study have real entries, except
where explicitly noted. The set of real matrices of dimensions n x m is de-
noted by R™*™. The identity matrix in R"*" is denoted by I,,. Let S™ C R™*",
S C S, and S, C S; denote the set of real symmetric matrices, real sym-
metric positive semidefinite matrices, and real symmetric positive definite ma-
trices, respectively. Let F' > 0 (F = 0) denote that F' is symmetric positive
(semi)definite, and F' > G (F = G) means that F'— G > 0 (F — G = 0). Given
a square matrix A, the set of eigenvalues of A is denoted by o(A), and the
spectral radius of A is denoted by p(A). The Frobenius norm of a matrix A is
denoted by ||A||z. If a symmetric matrix F' is bounded, it means ||F||, < ¢ for

some ¢ > 0. Given a vector v € R™, ||v|| denotes the Euclidean norm.
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2.2 Mathematical Preliminaries

2.2.1 The Matrix Inertia Theorem

Definition 2.1 (Matrix inertia). The inertia of a square matrix A, denoted by

In(A), is defined by

In(A) = (r(A), v(A), 5(A)), (2.1)

where the elements, 7(A), v(A), and d(A), are the number of eigenvalues of A

with positive, negative, and zero real parts, respectively.

Given two square matrices A and B of the same dimensions, let the equality

In(A) = In(B) imply 7(A) = n(B), v(A) = v(B), and 6(A) = §(B).

Definition 2.2 (Matrix congruence). Given real symmetric matrices A and
B of the same dimensions, if there exists a nonsingular matrix S such that

A= SBST then A and B are said to be congruent.

Theorem 2.3 (Sylvester’s law of inertia). If real symmetric matrices A and B

are congruent, then In(A) = In(B).

2.2.2 Fréchet Derivatives

The Fréchet derivative of a matrix function f : R™*™ — RP*? at a point
K € R™*™in the direction £ € R™*™ is a linear mapping, denoted by L;(K, E),
that satisfies [48]

I (K + E) = f(K) — Ly (K, B)|p _
I1E|| 0 1]

0 (2.2)

for all £ € R™*™,
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Given a matrix function f, if the Fréchet derivative exists at a point K, then
the function f is said to be Fréchet differentiable. The following properties of

the Fréchet derivative are borrowed from [48]:

Theorem 2.4 (Sum rule [48, Theorem 3.2]). If g : R"™*" — RP*? qnd h :
R™*™ — RP*? qre Fréchet differentiable at K € R™*", then so is f = ag+ Bh

and L¢(K,E) = aLy(K, E) + L,(K, E) for any scalars o € R and § € R.

Theorem 2.5 (Product rule [48, Theorem 3.3]). If g : R™*" — RP*? and
h : Rm*"™ — RI*" qre Fréchet differentiable at K € R™*™, then so is f = gh

and L(K,E) = Ly(K, E)W(K) + g(K)Ly (K, E).

Theorem 2.6 (Chain rule [48, Theorem 3.4]). If g : R™*" — R"™*® and
h : R™5 — RP*? gre Fréchet differentiable at K € R™*™ and g(K) € R"™*5,

respectively, then so is f = hog and Ly(K, E) = Ly(g(K), Ly(K, E)).

2.2.3 The Koopman Operator

Consider a class of nonlinear autonomous systems given by

= f(x), (2.3)

where f : X — R" is a continuously differentiable function on a compact set
X C R™ Because f € C'(X), there exists a unique solution z(tq + t) for
any initial state x(to) € X and t > 0. Therefore, an operator &' : X — X
can be defined, which maps any initial state to the state for time ¢ following
the dynamics in (2.3), i.e., {(z(to)) = z(to + t). Note that the family {¢'}
associated with the system (2.3) is a one-parameter semigroup [49, Definition
13.34], because £ = I, where I denotes the identity operator on X, and £+% =

£tes = ¢3¢t for all t, 5 > 0.
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Consider a Banach space F of functions ¢: X — R, and further assume
that 7 C C*(X,R). Any function ¢ € F is referred to as an observable be-
cause it represents the measurement obtained from a sensor [25]. It is worth
noting that the definition of observables in Koopman operator theory should be
distinguished from the observability in control theory. The Koopman operator

associated with (2.3) is defined on F as follows.

Definition 2.7 (Koopman operators [50]). The family of Koopman operators

Kt : F — F associated with the family of maps &/, ¢t > 0, is defined by
Kl =¢o&l, Vo¢cF. (2.4)

Note that {ICt is also a one-parameter semigroup, called the Koopman

Tz

semigroup of operators, because K2¢ = ¢ o £° = ¢ by construction and
lct-i-sqb:gboé-t-i-s:qso(é-toé-s) :Kt¢ofs:Kth¢, (25)

for all t,s > 0. The Koopman operator is linear, i.e., K!(a1g1 + aogo) =
a1Klgr + asKlgs for all g1, g2 € F, a1, 0 €R, and t > 0.

Due to the continuity of the solution of (2.3) and of the observables ¢, the
Koopman semigroup of operators has an additional property of strong continu-

ity, which can be stated as

lim ||[K'¢ — ¢|| =0, Vo€ F. (2.6)

t—0

Then, associate {lCt with the operator A. by

}t20
1

A°¢ = g(lCEQS—gé), Yo € F,Ve >0, (2.7)

and define an operator A by

Ag = lim A% (2.8)
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for all ¢ € D(A), i.e., for all ¢ where the limit in (2.8) exists in the norm
topology of F. The operator A, which is essentially %ICO, is called the infinites-
imal generator of the semigroup {K*} >0 [49, Theorem 13.35]. Moreover, from
Ktp(xo) = ¢(E(x0)) = p(x(t)), where z(0) = xp, and from the assumption that

¢ € C1(X,R), Theorem 13.35 in [49] implies that

S6a(1) = Ad( (1)) = Vola() f(a(0) (29)

for all ¢ > 0. It is clear that D(.A) is a subspace of F and that A is thus a linear

operator in F.
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2.3 Linear System Theory

Consider a linear system given by
x(t) = Az(t) + Bu(t), (2.10)

where A € R™*" and B € R™*™ denote the system matrices, z(¢) € R™ is the

state vector, and u(t) € R™ is the control input vector.

2.3.1 Controllability and Observability

Definition 2.8 (Controllability). The linear system (2.10) or the matrix pair
(A, B) is called controllable if an input function u : [0,00) — R™ exists to
transfer the initial state 2(0) = x9 € R™ to any final state 7 € R™ within
a finite time. Conversely, if there does not exist such an input function, the

system (2.10) or the pair (A, B) is called uncontrollable.

Consider an output equation given by

y(t) = Cx(t), (2.11)

where C' € R?7*™ denotes the observer matrix, and y(¢f) € R? is the output

vector.

Definition 2.9 (Observability). The linear system (2.10) or the matrix pair
(A, C) is called observable with respect to the output y(¢) in (2.11) if there
exists a finite time interval [0,¢;] for any unknown initial state x(0) € R™,
such that the knowledge of input u(t) and output y(¢) during this interval is
enough to uniquely determine x(0). If such a time interval does not exist, the
system (2.10) or the pair (A4, C) is said to be unobservable with respect to the

output.
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The following theorem states the duality between the controllability and the

observability.

Theorem 2.10 ([51, Theorem 6.5]). The pair (A, B) is controllable if and only

if the pair (AT, BT) is observable.

In the following, useful properties of preserving controllability and observ-

ability are presented.

Proposition 2.11 ([52, Corollary 4.1.3]). If C > 0, then (A, B) is controllable
if and only if (A, BCBT) is controllable.

Lemma 2.12 ([53, Lemma 2.1]). For any K, if (A, B) is controllable, then
(A — BK, B) is controllable.

Theorem 2.13 ([53, Theorem 3.6]). If Q@ > 0 and (A, Q) is observable, then
for all R = 0 and all B, K, the pair (A — BK,Q + KT RK) is observable.

Proof. From Proposition 2.11 and the duality from Theorem 2.10, the pair
(A, Q) is observable if and only if (A, /Q) is observable. Then, from [53, The-
orem 3.6. ii.], the pair (A — BK, \/m ) is observable, which completes
the proof by applying Proposition 2.11 and Theorem 2.10 once again. O

2.3.2 Algebraic Riccati Equations

The ARE arises in the infinite-horizon optimal control problem for linear

systems in (2.10) with a performance index given by

J(zo;u) = /000 (:U(t)TQ:c(t) + u(t)TRu(t)) dt, (2.12)

where Q € S and R € ST, denote the weighting matrices, and the () is

the state trajectory of the system in (2.10) with 2(0) = x¢ and the control
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input function w. The infinite-horizon optimal control problem minimizing the

performance index J in (2.12) is given by
inf J(z;u), VzeR", (2.13)

and it corresponds to the ARE, which is a matrix equation of a variable P €

R™ " given by
R(P):=PA+AT"P+Q - PBR'BTP =0, (2.14)

where R denotes the Riccati operator. The ARE possesses a unique positive def-
inite solution in the class of positive semidefinite matrices under controllability

and observability conditions which are typically assumed in control problems.

Theorem 2.14 ([53, Theorem 4.1]). If (A, B) is controllable and (A, Q) is
observable, then the ARE in (2.14) has a unique solution P* € S} | in the class

of S?, and A — BR™'BT P* is Hurwitz.

Under the hypotheses of Theorem 2.14, the optimal control input solv-

ing (2.13) can be represented by [54, Theorem 6.1]
u* = —-RIBTP'z = —K*z (2.15)

for K* € R™*" and the corresponding closed-loop-loop system is stable, i.e.,
A — BK* is Hurwitz, by Theorem 2.14. Moreover, the optimal performance
index J*(x) defined by

J* () = J(x;u*) = min J(x; u) (2.16)
can be represented by a quadratic form of the state x as

J*(z) = 2T P*x. (2.17)
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2.3.3 Lyapunov Equations

The Lyapunov equation is a matrix equation of a variable X defined by
XA+ ATX + M =0, (2.18)

where A and M are real square matrices of the same dimensions. In what
follows, two useful theorems are introduced corresponding to the existence and

the inertia property of the solution X to the Lyapunov equation in (2.18).

Theorem 2.15 ([5, Corrollary 8.2.1]). Given real square matrices A and M,
the Lyapunov equation in (2.18) has a unique solution X = X7 if and only if
oc(A)No(—A4) =2.

Theorem 2.16 ([55, Theorem 4.6]). Given real square matrices A and M * 0,
suppose that (A, M) is observable. If X = X7 is a solution to the Lyapunov
equation in (2.18), then §(A) =0 and In(A) = In(—X).

Theorem 2.15 implies that the Lyapunov equation in (2.18) can have either
many solutions or no solution if 0(A) N o(—A) # @. Further assuming the
observability of the pair (A, M), the following lemma characterizes that the

solution set can only be empty.

Lemma 2.17. Given real square matrices A and M > 0, suppose that (A, M)
is observable. Then, a solution X = X' to the Lyapunov equation in (2.18)

exists if and only if c(A)No(—A) = 2.

Proof. The “if” part is a direct result of Theorem 2.15. To prove the “only if”
part, suppose that o(A)No(—A) # &. Let = and y be the left eigenvectors of A

and — A associated with the common eigenvalue X\ of A and — A, respectively, as
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2T A= 2T and yTA = —\yT. Put X; = 2y” +yz”. To obtain a contradiction,
suppose that there is a solution X to (2.18), which is nonsingular as (A4, M)
is observable from Theorem 2.16. Then, X = Xy + aX; for any a € C is a
solution to (2.18). It follows that

5(—14) :5(X0) :5(X0—|—04X1) =0 (2.19)

from Theorem 2.16. Since there always exists a € C such that det(Xy + aX;) =

0, or equivalently §(Xo+ aX1) > 0. This contradicts (2.19), which implies that
there is no solution Xy to (2.18). O

26



2.4 The Kleinman Iteration

The Kleinman iteration solves a series of Lyapunov equations to obtain the
optimal stabilizing solution P* > 0 asymptotically, where P* is the solution to
R(P*) =0 in (2.14). The convergence of the Kleinman iteration is ensured by

the following theorem [1].

Theorem 2.18 (The Kleinman iteration). Let K¢ be any stabilizing feedback
gain matriz, and let Py be the symmetric positive definite solution to the Lya-

punov equation given by
Py(A— BEy) + (A= BK)" Py + Q + K RK;, =0, (2.20)
where Ky, is defined recursively by
Ki1 =R 'BTP, (2.21)

for allk =0,1,.... Then, the following properties hold.
1. A — BK;. is Hurwitz,
2. Py = Py = P,

3. limkﬁoo Kk = K*, and limkﬁoo Pk = P*.

Theorem 2.18 requires that the initial feedback gain K stabilizes the closed-
loop system for the Kleinman iteration, i.e., A — BKy must be Hurwitz. The
subsequent lemma demonstrates that the Kleinman iteration preserves the iner-
tia of closed-loop system matrices. This elucidates why the Kleinman iteration
fails to converge to the optimal stabilizing solution when initiated with an un-

stable feedback gain.
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Lemma 2.19. In the Kleinman iteration, given an initial feedback gain K,

suppose that there exists a unique symmetric solution Py. Then,
In(A — BKy) = In(A — BKy,) (2.22)
forallk=1,2,....

Proof. Let Ay = A — BKj. The proof is by induction on k. It is shown that
if A is unstable and there exists a unique symmetric Py, then Agy; is also
unstable and there exists a unique symmetric Pyyi. Let Qr = Q + KkTRKk.
Because P, satisfies

PuAr + AP 4+ Q. =0, (2.23)
and the pair (Ag, Q) is observable from Theorem 2.13, it follows that
In(Ag) = In(—P) (2.24)
from Theorem 2.16. Rewrite (2.23) using (2.21) as
PyArs1 + Af 1 P+ Qp =0, (2.25)
where
Qr = Q + (Kpt1 — Kp)"R(Kjp1 — Kp,) + Kf  RKp 1. (2.26)

Because the pair (Ag1, Qk) is also observable from Theorem 2.13, it follows
from Theorem 2.16 that
In(Agy1) = In(—Py). (2.27)

From (2.24) and (2.27), In(Aj) = In(Ag+1), which implies that Ay is unstable.

Since Py is a symmetric solution to (2.25), it follows that

O'(Ak+1) N U(Ak+1) =9 (2.28)
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by Lemma 2.17. Then, it can be concluded that Py also exists. This completes

the proof by induction. d

The inherent property of inertia preservation in the Kleinman iteration by
Lemma 2.19 reveals that if 7(A — BKy) > 0, indicating the initial closed-
loop system matrix is unstable, then all subsequent closed-loop system matrices

satisfy m(A — BKy) > 0 for k = 1,2,..., meaning they are all unstable.
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2.5 Meta-Learning

Meta-learning is the process of acquiring knowledge or experience about how
to learn, aimed at improving the efficiency and efficacy of learning new tasks. It
consists of two key learning components: a base learner that is utilized for each
specific task and a meta learner that enhances the base learner’s capabilities to
improve its efficiency and effectiveness for learning new tasks. The goal of the
meta learner may differ from that of the base learner due to varying objectives
including rapid adaptation to a new task or the reduction of computational

burden [56].

2.5.1 Optimization Problem Formulations

The parameter of the meta learner, denoted by w, can be any of several
components of the base learner, including but not limited to an optimization
solver, a loss function, initial parameters, or pre-trained networks employed for
input embedding. The meta learner optimizes w over a task distribution p(7)
based on a loss function £, where a task 7; ~ p(T) is composed of a loss function
L; and a dataset D; = (D*" DYal) with the training and validation datasets.
Then, the meta-learning algorithm can be interpreted as the following bi-level

optimization problem:
w* = argmin Er. 7 [L’ (D;-’al; w; (w), w)} , (2.29)
w

w; (w) = argmin £; (Dgram; w;, w), (2.30)

where the meta and base learners correspond to the optimization problems
in (2.29) and (2.30), respectively. Here, w; denotes the parameter of the base

learner for 7;. It is important to emphasize that the parameters w and w;
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used to represent the meta-learner and base-learner parameters are conceptual
notations and do not necessarily represent specific vectors or matrices. They
serve as placeholders to denote the trainable parameters in the meta-learning
framework without implying a specific mathematical form. More comprehensive

understanding of meta-learning can be found in Hospedales et al. [57].

2.5.2 Closed-Form Base Learners

Selecting appropriate base learners is crucial for successful meta-learning.
In [58], the feasibility of utilizing fast solvers with closed-form solutions as
the base learner was investigated to enhance the efficiency of adapting to new
learning problems. In this framework, a linear predictor F;¢(x;w) € R™ and a

least-square loss function
N;
(D wiw) = 3 | Fig(agsw) — yy)* (231)
j=1

with a dataset D8t = {(z;, y])};\[:’1 is assigned to the base learner for each task
7, where y; € R™ is the output vector, ¢(z;;w) € R™ is an embedding function
of the input x; parameterized by the meta-learner parameter w, and the matrix
F; € R™*" denotes the base-learner parameter w;. Then, the closed-form

solution F}*(w) for the base-learner problem in (2.30) is given by

i
Frw) =y - yn] [plasw) - oleniw)] (2.32)

where (-) denotes the Moore-Penrose inverse. With the aid of the closed-form
solution in (2.32), the gradient of F}*(w) with respect to w can be readily
computed using standard automatic differentiation packages, such as PyTorch
Autograd. This gradient can be utilized in the backpropagation procedure to
solve (2.29).
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Chapter 3

Data-Driven Optimal Control for
Unknown Linear Systems

This section describes a policy iteration scheme for unknown linear systems,
which allows an unstable initial policy. An implicit value function is proposed
to replace the value function for an unstable policy, and the uniqueness and
existence of the implicit value function are investigated under a mild condition

of the closed-loop system.

3.1 Implicit Value Functions
Let us consider a linear autonomous system
z(t) = Acx(t), (3.1)

where z(t) € R" is the state vector, and A. € R™™" is the system matrix. A
closed-loop system matrix for (2.10) with a linear feedback control u = — K=z is
given by A — BK which can be regarded as the system matrix A, in (3.1).
The performance index J(zp;u) in (2.12) is typically considered as a value
of the initial state xg using the control input function w. In the ADP literature,
J(zp;u) is typically defined as the value function which is a functional of a

state g € R™ and an input function « : [0,00) — R™. If u = — Kz, the value
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function can be rewritten as

Je(xo) = J(x0; —Kzx) = /000 ()T Q.x(t) dt, (3.2)

where Q. = Q + KTRK. In this definition, the value function .J.(zg) can be
infinite if the closed-loop system matrix A. = A — BK is not Hurwitz, which
renders the requirement of the admissible control input for the value function
being well-defined [59]. Therefore, it is necessary to define a different value

function well-defined even for unstable A.’s.

Definition 3.1 (Implicit value functions). Suppose that there exists P € S”
such that a quadratic function of the state xg € R™ given by V(xg) = ngxo

satisfies
t
V(o) — V(a(t)) = / 2(1) Qo (r) dr (3.3)
0
for all zp € R™ and for all ¢ > 0, where Q. € S™ and z(+) is the state trajectory

of (3.1) with z(0) = xo. Then, the function V is called the implicit value

function for the system (3.1).

If A, is Hurwitz, then the implicit value function V(xg) is consistent with
the value function J.(z¢) in (3.2). In particular, if A, is Hurwitz, the linear
system in (3.1) is exponentially stable, and thus lim;_, z(¢) = 0, which is
followed by lim; oo V(2(t)) = 0. Moreover, it is well-known that there exists
P; € S%, such that J.(zo) = xl Pyxg for all xp € R™ if and only if A, is
Hurwitz [1]. Since the implicit value function V' (z) satisfies (3.3) for all ¢ > 0,

it follows that

V(zo) = lim <V(:z(t)) + /0 tx(T)TQCx(T) dT>

t—o0

— /00 x(T)Tch(T) dr = $gPJ$()
0
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for all g € R™, which implies P = Pj.
To examine the existence of the implicit value function for an arbitrary A,
that may not necessarily be Hurwitz, consider the Lyapunov equation of P € S"

for the system in (3.1), given by
L(P) = PA.+ AP + Q. =0, (3.5)
where L is called the Lyapunov operator.

Proposition 3.2 (Existence). For the system (3.1), if 0(Ac;) No(—A.) = @,

there exists an implicit value function.

Proof. From o(A;) N o(—A;) = @, Theorem 2.15 implies that there exists a
matrix P € S™ which is a solution to £(P) = 0 in (3.5). Consider the state
transition matrix of (3.1) defined by ®(7) = e<” for any 7 > 0, which has the

following properties: z(7) = ®(7)x(0) and

O(1)A. = AD(7) = (%@(T). (3.6)
It follows from (3.5) that
o(r)TL(P)®(r) = %(@(T)Tpcb(r)) +o(1)TQ.2(r) = 0. (3.7)
Integrating (3.7) yields
®(0)TPo(0) — ®(t)TPO(t) = /O t@(T)TQC(P(T) dr (3.8)

for any ¢ > 0. Pre-multiplying 2(0)” and post-multiplying x(0) to (3.8) yields (3.3),

which completes the proof. O

It is important to note that the implicit equation presented in (3.3) needs

to hold true for all time instances ¢ > 0, in contrast to the typical Bellman
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equation which is applicable for a fixed time step ¢ > 0. This difference implies
that the implicit value function can be uniquely defined for unstable control

input at least for linear systems.

Proposition 3.3 (Uniqueness). Given the linear system in (3.1), suppose that
o(Ac.)No(—A.) = @. Then, there exists a unique implicit value function in (3.3)

with the unique solution P to L(P) =0 in (3.5).

Proof. From Proposition 3.2 and Theorem 2.15, there is an implicit value func-
tion V(o) with P which is a unique solution to £(P) = 0. Suppose that there
is another implicit value function V(zg) with P # P € S™. Consider the same
state transition matrix ®(7) defined in the proof of Proposition 3.2. Because

the implicit value function V'(zg) satisfies (3.3) for all zy, it follows that
t
P—-at)TPO(t) = / o(r)T'Q.®(r)dr. (3.9)
0

Using the property of ®(7) in (3.6), pre-multiplying A and post-multiplying
A. to (3.9) yield

(P — () Po(t) A + AL (P — 2(1)" PO(t))

_ / (®(r)TQu®(r) A, + ATD()T QB (7)) dr
0 (3.10)

¢
d
- /O E((I)(T)TQCCI)(T)) dr

= 2(t)" Qc®(t) — 2(0)" Qc®(0).
Because the inverse of a state transition matrix exists for all ¢ > 0, rearrang-

ing (3.10) using (3.5) yields

LP)t) Lt —dt)TL(P)=0 (3.11)
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for any ¢ > 0, which can be regarded as a Sylvester equation of the variable
L(P). Because the Lyapunov equation £(P) = 0 has the unique solution P #
P, the Sylvester equation (3.11) has a non-trivial solution £(P) # 0, which
implies that the two matrices ®(¢)~! and ®(¢)” share one or more eigenvalues [5,
Theorme 8.2.1] for all ¢ > 0.

By the definition of the state transition matrix ®(t), it follows that

a(@t)’) ={eM|Nea(A)}, (3.12)

o(@t) ) = {eM | N ea(-A)}, (3.13)

for any t > 0. Therefore, if there exists p € o(®(t)7) N o (®(t)~!), then A =
t~tlog(u) € o(A:) No(—A.), which contradicts the assumption that o(A.) N
o(—A;) =@. O

From Propositions 3.2 and 3.3, it can be confirmed that the solution to Lya-
punov equation in the Kleinman iteration in (2.23) corresponds to the implicit
value function of the feedback gain Kj. Because the Kleinman iteration pre-
serves the inertia of the closed-loop system matrix by Lemma 2.19 even when
the implicit value function is well-defined, it can be inferred that the issue lies

in the policy improvement step.
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3.2 The Surrogate Q-Learning

This section provides the main algorithm, called the surrogate Q-learning,
based on the concept of the implicit value function introduced in Section 3.1.
The proposed algorithm is a reinforcement learning algorithm that solves the
infinite-horizon optimal control problem in (2.13) for the linear system given
by (2.10). It is also a data-driven model-free algorithm that does not require any
knowledge of the system, namely the system matrices A and B, and an initial
admissible policy. Moreover, the algorithm is off-policy, allowing the utilization
of any behavior policies to obtain the necessary dataset for the proposed data-
driven method.

The problem of obtaining an optimal control input using data, without
knowledge of the system matrices A and B, has been extensively studied using
policy iteration-based ADP techniques [2,60]. However, these techniques are
fundamentally based on the Kleinman iteration [1], which requires knowledge
of an initial admissible control input [20]. The proposed algorithm offers a sig-
nificant advantage, i.e., not requiring any information on the initial admissible
control inputs, despite being a policy iteration method by nature.

First, a continuous-time action-value function is defined using the concept
of implicit value function. Then, a policy iteration algorithm is proposed where

the policies are improved based on the extremum of the implicit value function.

3.2.1 Surrogate Q-Functions for Continuous-Time Systems

For discrete-time systems, the Q-function plays a vital role in the off-policy
temporal difference RL, often called the Q-learning [61]. The Q-function de-

pends on a policy to be trained, called the training policy, and takes the state
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and control input variables at the current time-step and evaluates the expected
cumulative cost following the training policy after the current time-step. For
continuous-time systems, however, it is ambiguous how to separate the input
in the current time step from the subsequent time steps.

To avoid this ambiguity, an alternative concept is introduced to evaluate
the value of the current state and control input. For the linear system in (2.10),
suppose that a policy u = —Kz is given, where the closed-loop system matrix
A — BK is allowed to be unstable. For each state xp € R™ and each control
input up € R™, consider a virtual linear autonomous system with £(0) = xg
and p(0) = ug. Now, the control input augmented dynamics is given by

il [ a 5 [ew] )

[(t) —KA—-sK —KB—sly| |u(t)

where the scalar s > 0 is the design parameter which will be discussed later.
An implicit value function, called the surrogate Q-function, is introduced

for (3.14) corresponding to the infinite-time horizon optimal control problem

in (2.13). The surrogate Q-function is defined by a function Q(xg,uo) that

satisfies

(w0, o) — Q(€(0)u0) = | (DT QE) + p(r) Ru(r) dr (3.15)

for all ¢ > 0, where @ € S™} and R € S, are the same as in (2.12). The following
proposition presents some conditions for the existence and the uniqueness of the

implicitly defined surrogate Q-function.

Proposition 3.4. Suppose that the sets 0(A — BK), o(—A + BK), and {s}

are disjoint, and that (A, Q) is observable. Then, there exists a unique surrogate

39



Q-function satisfying (3.15), given by
Q(wo, uo) = [xOT uﬂ M (3.16)

for some M € S™t™,

Proof. Define a matrix U € R("t7)*(+m) which is invertible for any K € R™*™

as

I, 0 L |0
U= . UTl= . (3.17)

-K I, K I,

Then, the corresponding equivalence transform [51, Definition 4.1] yields

) X A-BK B _ Q 0
A=U""A°U = , Q=Q°U = , (3.18)
0 —sl, 0 R
where
A B Q 0
A° = . Q0= . (3.19)
—-KA—-sK —-KB-sl, 0 R

Because 0(A°) = 0(A) = (A — BK) U {—s}, the hypothesis that the sets
0(A—BK), o(—A+BK), and {s} are disjoint implies that o(A°)No(—A°) = @.
Consequently, applying Propositions 3.2 and 3.3 for the autonomous system

in (3.14) and the implicit equation in (3.15) completes the proof. O

The surrogate Q-function presented in this study is designed for continuous-
time systems. Although it shares some similarities with the action-value func-
tion or Q-function for discrete-time systems, it is not exactly the same. There-
fore, the surrogate Q-function is introduced as an approximation of the Q-

function for continuous-time systems.
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The relationship between the surrogate Q-function and the (implicit) value
function of continuous-time systems is distinguished from that of discrete-time
systems. In particular, if a linear feedback v = — Kz is evaluated using the
implicit value function V(xg;u) in (3.3), it is the actual control input applied

to the system dynamics in (2.10). However, the matrix K evaluated in (3.15)

serves as a target control input up(t) = —K¢(t). It can be seen from (3.14) as
d
S (ult) — () = —s(u(t) — pr (1), (3.20)

which implies that the error u(t) — pur(t) exponentially converges to zero from
ug + Kxg. Therefore, Q(xg,ug) evaluates the pair of a state 2y and an instant
control input wg using the infinite-horizon integral of the quadratic cost by
assuming that the rest of the state trajectory x(t) is obtained by a control input
u(t) that exponentially converges to —Kx(t) with 2(0) = x¢ and u(0) = uy.
Given a policy p, the performance index J(xo;p) of the optimal control
problem in (2.13) can be defined only if 4 is admissible. On the other hand, the
surrogate Q-function corresponding to J can only be defined for autonomous
systems, regardless of whether the system is stable or not. The following propo-
sition presents a relationship between the surrogate Q-function and the perfor-

mance index.

Proposition 3.5. Given a policy u = —Kux, the corresponding surrogate Q-
function Q in (3.15) and a performance index J(xo;u + v), where v(t) =

e (up + Kxo), satisfy
Q(xo, up) = J(zo;u + v) (3.21)

for any (xo,up) € R™ x R™, where J(xo;u + v) exists.

41



Proof. From (3.20) with ur = —K¢, it follows that
p(t) = —K&(t) + e (u(0) + K€(0)) = —K&(t) + v(t) (3.22)

using 1(0) = up and £(0) = xg. Then, the dynamics of £(¢) in (3.14) is identical
to (2.10) with the control input p = u + v, i.e., x(t) = £(¢) for all t > 0, which

completes the proof using the definition in (2.12). O

Note that Q(zp,up) corresponding to a policy v = —Kx, and J(zo;u) are
different in general, except for the case when ug = —Kxg. Indeed, in this case,
v(t) = 0 in Proposition 3.5, which implies Q(zo,up) = J(zo;u). Nevertheless,
the surrogate Q-function is utilized to obtain the optimal control input in (2.15)

using a policy iteration method introduced in the following section.

3.2.2 The Surrogate Q-Learning Algorithm

The surrogate Q-function is a policy iteration method that iteratively evalu-
ates the policy using the surrogate Q-function and improves the policy according

to the evaluation for the next iteration.

The Policy Evaluation

Let Qp(zo,up) be the surrogate Q-function of the state zp € R™ and the
control input ug € R™ for the policy u = —Kjx, where K; € R™*™ denotes
the gain matrix at the k-th iteration for the design parameter s; > 0. By
differentiating (3.15) with respect to t at ¢ = 0, it follows that Qg (zo,uo)

should satisfy

V. Qk(xo, uo)Té(O) + V. Qk(xo, uo)T,[L(O) + :UOTQ:EO + uE‘)FRuo =0 (3.23)
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for all (z9,up) € R” x R™, where £(0) and 7(0) can be obtained from (3.14)
with K = K}, as a linear function of g and ug. As discussed in Section 3.2.1,
Q(zg, up) represents the infinite-horizon cost of the policy u = — Kz, where

the virtual autonomous system (3.14) with (£(0), £(0)) = (xo, uo).

The Policy Improvement

Once the policy u = —Kjx is evaluated by Qg (g, ug), the policy improve-
ment is defined by finding a new policy u = —Kj 1z for Kiiq € R™*" that

satisfies

Vqu(x07u)‘u:—Kk+1$() =0 (324)

for all x € R™. The improved control input u = —Kj 129 is an extremum
point of Q(zg,u) for each xyp € R™ with respect to u but is not necessarily a
minimum point.
To investigate the role of (3.24), let us consider the optimal stable policy
%

u* = —K*x, where K* denotes the optimal stable gain of the optimal control

problem in (2.12). Fix the design parameters as s = si11 = S, and let
Ky = Ky = K™ (3.25)

The policy u* is admissible, and therefore the corresponding performance index
J(zp;u*) in (2.12) is well-defined for all 2o € R™. It follows that there exists a
small neighborhood N' C R™ around uf := —K*z0, such that for any ug € N,
the performance index J(xo;u* + v) in Proposition 3.5 is well-defined, where
v(t) = e 5 (ug — u*). It follows that

Q(zo,up) = J(xo;u™ +v) > min J(zg;u* + v) (3.26)

uo eN
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for any (zg,up) € R™ x N, where the equality is satisfied if ug = uf;. Therefore,
the condition (3.24) can be regarded as a locally necessary condition for K} =

Kk+1 = K*

The Equivalent Matrix Iteration

If the hypotheses of Proposition 3.4 are satisfied for K = K}, there exists a

unique surrogate Q-function Qg (xg,up) given by
Qk(z0,u0) = [xOT uOT} My, (3.27)
Uo
for some M) € S which satisfies the policy evaluation equation in (3.23)

for all (xp,up) € R™ x R™. Substituting (3.27) into (3.23) yields

T
+ [a:g ug] Q° =0, (3.28)
11(0) Uo

(0 A B x x
O _ ol = a2 . (3.29)
M(O) —KkA - SkKk —KkB - Skfm UuQ ug

Substituting (3.29) into (3.28) and requiring that (3.28) holds for all (xg,uo)

yield the following matrix equation:
MAS + A" My, +Q° =0, (3.30)

Let us define a matrix U, € Rtm)x(n+m) - which is invertible for any Kj €

Rmxn, as

Uy = , Ul = . (3.31)
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Pre-multiplying Ul and post-multiplying Uy to the both sides of (3.30) yield

an equivalent matrix equation to the policy evaluation in (3.23) given by
HSy + SFH;, + Q. =0, (3.32)
where Hy, := Ul MUy, € S"™™, and

A— BK B Q+ KI'RK, —-K!'R
S = g . Qn = REE TR (3.33)
0 —Sklm —RKj}, R
using the facts that U,:lAzUk = S5 and U,?QOUk = Q.

On the other hand, substituting (3.27) into (3.24) and using (3.31) yield

I, I

xo = [0 Im] Hj, zg=0 (3.34)

[0 Im] M,
— K1 Ky — Ki41

for all g € R™, which yields an equivalent matrix equation to the policy im-
provement in (3.24) as

Kip1 = Ky + G Wy, (3.35)
where the matrix Hj is decomposed as

P, Wl

Hj, (3.36)

Wir Gy
for P, € R™™, W) € R™*" and G} € R™*™,

Consequently, the convergence of the surrogate Q-learning represented by
the policy evaluation in (3.23) and the policy improvement in (3.24) is equivalent
to the convergence of the iteration composed of matrix equations in (3.32)
and (3.35). This iteration is referred to as the extended Kleinman iteration.
The next section will introduce the off-policy and model-free extension of the
surrogate Q-learning before presenting the detailed convergence analysis of the

extended Kleinman iteration.
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3.2.3 The Data-Driven Surrogate Q-Learning

Let us first assume that the hypotheses of Proposition 3.4 with K = K}, and
s = s are satisfied for all iteration step k& > 0 in this section. Note that this
assumption will be relaxed in the subsequent section. Under this assumption, for
any k > 0, there exist a unique solution My to (3.30) and the corresponding Hy,
in (3.32). Although, the next-step policy K41 in (3.35) can be obtained using
only Hy, and K}, the matrix My, in (3.30) for calculating Hy, from Hy = U,CTMkUk
requires the knowledge of system matrices A and B, which contradicts the
objective of developing a model-free method. The typical approach to relieve
this requirement in the literature of ADP methods is utilizing a dataset acquired
from the system [2].

Rearranging (3.14) at ¢t = 0 yields

£(0) = Axo + Bug =: o, (3.37a)

,u(O) = —Kpxg — sk(uo + Kkl‘o), (3.37b)

which implies that a tuple (z, ug, o) can fully determine the vectors in (3.28),
which is required to calculate the matrix Mj,. For a dataset D = {(x;, u;, &;) };2,
the i-th tuple (z;, u;, ;) in the dataset is considered as the initial point of the
corresponding wvirtual trajectories of £ (t) and p((t) satisfying £ (0) = z;
and 1 (0) = u; in (3.14), and £ (0) = &; which can be obtained by exerting
u; to the system (2.10) at the state ;.

For the i-th tuple (x;, u;, ;) in the dataset D, let

G = , o Go= . (3.38)
u; — Ky — sp(u; + Kia;)
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Then, (3.28) can be rewritten as

{(Ted) + (¢ ) pvec(My) = — (¢ @ ¢ )vee(@Q°), (3.39)

where ® denotes the Kronecker product, and vec(-) denotes the vectorization

operator. Let

(Fed)+(ded) ded
X = : , 2= : vec(Q°).  (3.40)

o)+ (¢F all) :ye)

Then, the solution M}, can be obtained from the following data-driven policy

evaluation:

vee(My) = X[ Z e RvFm)x(ntm), (3.41)

By construction of the matrices X, and Z using the Kronecker product, the
element of vec(Mp,) inherently produces the symmetric matrix My, provided that
there exist ng > (n+ m)(n +m + 1)/2 independent rows in X}, which are the
data points. Each row corresponds to a data tuple in the dataset, indicating that
the proposed algorithm ultimately requires a minimum of (n+m)(n+m+1)/2
data points. Although this data requirement is larger than n(n + 1)/2, which
is the minimum number of data required for Kleinman iteration-based ADP
technique [2], it can be seen as a trade-off for stabilizing the initial unstable
control inputs.

It should be noted that the process of obtaining M) using the data-driven
policy evaluation steps as defined by (3.41) does not require knowledge of the
system matrices A and B, thereby making it a model-free method. Additionally,

any control input u; can be utilized to construct the dataset D, resulting in
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the acquisition of the data tuple (z;,u;, #;). Consequently, this method can be

categorized as an off-policy approach.
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3.3 The Extended Kleinman Iteration

This section presents a detailed analysis of the extended Kleinman itera-
tion introduced in Section 3.2.2, including the proof of convergence. Similar to
the Kleinman iteration, each iteration of the algorithm consists of two steps:
the policy evaluation step (3.32) and the policy improvement step (3.35). The
proposed method, however, converges to the optimal stabilizing solution with
both stable and unstable initial gains under a minimal assumption for solving
the initial policy evaluation step.

The formal definition of the extended Kleinman iteration is given below.

Definition 3.6 (The extended Kleinman iteration). Given matrices A € R"*",
BeR™™ QeSY,ReST, , and Ko € R™*", the extended Kleinman iteration
recursively solves the following Lyapunov equation of H € S"™™ called the

policy evaluation step:
HypSk+ S{He + Qi = 0, (3.42)

and finds the next-step policy Kjy1, called the policy improvement step, as
follows:

Ki1 = Ky, + Gy ' W, (3.43)

for all k =0,1,..., where S and @y, are defined in (3.33), and Gy and W}, are
defined in (3.36).

The conditions for the existence of the solutions are presented in the next
section. First, the existence of the optimal stabilizing solution to the ARE is
revisited, and then mild conditions for solving (3.42) to obtain Hj, for all steps

k > 0 are revealed based on the matrix inertia theorem.
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3.3.1 Existence of Solutions
The Optimal Stabilizing Solution

In the extended Kleinman iteration, the optimal stabilizing solution is de-
fined by P* € S, that satisfies R(P*) = 0 in (2.14). Theorem 2.14 guarantees
the existence of P* if (A, B) is controllable and (A, Q) is observable, and more-
over, the optimal stabilizing feedback gain defined by K* = R~!BT P* satisfies
that A} .= A — BK™ is Hurwitz. Although there is a result for the existence of
the optimal stabilizing solution under much relaxed conditions that (A, B) is
stabilizable and that (A, Q) is detectable [53], this extension is out of the scope

of the dissertation.

Solutions to Policy Iteration Steps

At each step k > 0, a feedback gain K € R™*" is given, and the corre-
sponding closed-loop system matrix is denoted by A = A — BKj. Let the

design parameter si in (3.33) be chosen from a set Sy defined by

Sk ={seR|s>0, s¢ o(Ax), 6(Gx) =0}, (3.44)

where the set {s € R | s > 0,s ¢ 0(Ax)} is always nonempty for any finite-
dimensional matrix Ay € R™*". Note that given s;, € Sk, 0(Sx)No(=Sk) = @ if
and only if 0(A;)No(—Ay) = . Therefore, there exists a unique solution Hy, €
S"*t™ to the Lyapunov equation in the policy evaluation step (3.42) if and only
if o(Ar)No(—Ag) = @ by Theorem 2.15. On the other hand, by partitioning Hy,
as in (3.36), the next-step policy Kj+1 in the policy improvement step in (3.43)

exists if and only if the matrix Gy, is nonsingular, i.e, §(Gy) = 0.
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In summary, each iteration step requires that o(Ay)No(—Ax) = @ and that
G, is nonsingular. The next lemma states that whenever the solution to (3.42)
exists at the initial step, k = 0, the solutions to the subsequent iteration steps

are all well-defined under some mild assumptions.

Lemma 3.7. In the extended Kleinman iteration, suppose that (A, Q) is ob-
servable. Given K satisfying o(Ag) No(—Ay) = &, if s € Sk for all k > 0,

then the following conditions hold for all k > 0.

(i) o(Ax) No(—Ay) = 2.

(i) there is a unique nonsingular solution Hy, to (3.42).
(#ii) In(Py) = In(—Ag).

Proof. Note that the Lyapunov equation in (3.42) can be equivalently expressed

as
PyAp + AIP +Q + K RK, =0, (3.45)
Wi(Ay — sil,) + BT P, — RK;, = 0, (3.46)
WiB + BTW] — 25,G, + R = 0. (3.47)

Since o(Ap) N o(—Ag) = @, the proof is by induction on k. Let o(Ag) N
o(—Ag) = @ for some k > 0. Because s; ¢ o(Ag), it follows that o(Sk) N
0(—Sg) = @. Then, there exists a unique nonsingular Hy by applying The-
orem 2.16 to (3.42). Similarly, o(Ax) N o(—Ax) = @ implies that In(P;) =
In(—Ag) from Theorem 2.16. Hence, the conditions (ii) and (iii) are direct re-
sults of the condition (i).

Since Gy, is invertible by s € Sk, K41 is well-defined from (3.43), and the

Schur complement of G in Hj, can be defined by Hy /Gy = Py, — WEG;IW;@.
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From (3.45) to (3.47), it can be observed that Hy /G, satisfies
(Hi/Gr) A1 + Afpr (Hi/Gr) + Q + K R = 0, (3.48)

which implies that Hy/Gj is a solution to (3.45) with k& + 1. It follows that

0(Ags1) No(—Agt+1) = @ from Lemma 2.17, which completes the proof. O

3.3.2 Selection of Design Parameters

Consider the following simple rule for the choice of s € Sy.

Sk—1 if sp_1 & Sk,
So € S(), Sk = (3.49)

.ﬁ € G, otherwise,
where Gy, := {s € S, | ¥(Gg) > 1} C Sk, which implies that s, remains constant
unless it becomes one of the eigenvalues of Ay.
It rarely happens that si_1 € 0(Ag) in practice. Even if it happens, however,
the following lemma ensures that the set Gy is nonempty in the neighbor of s;_1
+

that does not contain si_1, denoted by N(sx_1) C Sg. Therefore, s, can be

easily selected around s;_; by inspecting v(Gy).

Lemma 3.8. In the extended Kleinman iteration, suppose that the hypotheses
of Lemma 3.7 hold and that (A, B) is controllable. If sy_1 € o(Ag), then Gi N
N(sg-1) # 2.

Proof. At the step k, K} satisfies 0(Ax) No(—Ar) = @ by Lemma 3.7 (i),
and therefore Py is well-defined from (3.45) regardless of the choice of sg.
However, W}, and G} depend on the choice of s; from (3.46) and (3.47).
From (3.46), (3.47), and (3.53), it follows that

25kGE = 20Gh1 + (A4 81) Vi + (A + s1) Vi, (3.50)
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where Vi, := Wi_1(Ag — skln)_lB, and 0 < A\ = sp_1 € o(Ag). Let the spectral
decomposition of Az be given by W~TAUT | where (j, j)-element of A is \. Put
ej =10,...,0,1,0,... ,0]", with a plus one in the j-th component and zeros
elsewhere, so that We; = 1, where YT is the left eigenvector of Aj, associated
with A. Since (A, B) is controllable, (A, B) is also controllable [62, Theorem
1.1], which implies that 17 B # 0. Then, for all w € W = {w € R™ | T Bw #

0}, which is nonempty, it follows that

lim (A — sp)w? Viw = w' Wi_1 @7 lim (A — s3) (A — s31,) @7 Bw

Sk—>)\ sk—>)\
= wTWk,llll_Teje;fF\I/TBw (3.51)
= w! Wi_10¢T Bw,

where v = \I/*Tej = U~TW¥14) is the right eigenvector of A, associated with

A If Wi_qv =0, then
A= Apv = Ap_1v — BG;_IIWk,lv = Ap_qv, (3.52)

which contradicts A\ = sx_1 ¢ 0(Ak_1). Therefore, Wi_1v # 0, and there
exists w € W such that w! Wj,_1v # 0 and that the limit of (A — sx)w! Grw
is nonzero as sy approaches A from (3.50) and (3.51). This implies that there

exists s: € N'(A) such that w? Gjw < 0, which completes the proof. O
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3.4 Convergence Analysis

The convergence analysis of the extended Kleinman iteration is presented in
this section. The investigation starts with the analysis of the monotonic stabi-
lization property in the sense of the matrix inertia. Then, the local convergence
is analyzed using the Fréchet derivatives, and finally the proof of the following

global convergence theorem is presented using the local convergence property.

Theorem 3.9. In the extended Kleinman iteration with the design parameter
selection rule in (3.49), suppose that (A, B) is controllable and (A, Q) is ob-
servable. If Ky satisfies 0(Ag) No(—Ag) = &, and sy € Sk, there exists a finite

integer N > 0 such that the following properties hold for all k > N.
1. Ay is Hurwitz,
2. Py = Py = P,

3. limg_oo K = K* and limy_,oo P, = P*,

where P* is a unique positive definite solution to R(P) = 0, and K* = R~ BT P*,

Proof. The proof is given in Section 3.4.3. O

It is assumed, without loss of generality, that B has full column rank

throughout the convergence analysis.

3.4.1 Monotonic Stabilization

From (3.48), it can be observed that Hy/Gj = Pyy1, and further,

Pyy1 = P, — WG, "W, = P, — Dy, (3.53)
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using (3.45) to (3.47). Note that if Gy, > 0, Py is monotonically decreasing as
Py > Py, which is the similar result of the Kleinman iteration when P, > 0 for
all k£ > 0, but gives little information when v(Py) > 1. Following lemma demon-
strates an interesting property of the update law in (3.43), showing that v(Py),

or equivalently m(Ay) according to Lemma 3.7 (iii), monotonically decreases.

Lemma 3.10. Under the hypotheses of Lemma 3.7, 7(Agk+1) = w(Ax) —v(Gg)
for all k > 0.

Proof. From (3.42) and Theorem 2.16, it follows that

Since Gy, is nonsingular for all £ by si € Sg, applying Haynsworth’s inertia
theorem [63, Theorem 1] yields In(Hy) = In(G)+In(Hy/Gy), which is followed
by v(Pit1) = v(Hy) — v(Gk) = 7(Ag) — v(Gg) from (3.53) and (3.54). Then,

Lemma 3.7 (iii) gives v(Py41) = m(Ag+1), which completes the proof. O

Although Lemma 3.10 guarantees that m(Ag) is monotonically decreasing
for any choice of s € S and provides a strict decreasing condition, which
is given by v(Gj) > 1, it is desirable for the proposed iteration algorithm to
have that 7w(Ay) decreases to 0, or equivalently, A; becomes Hurwitz, in a finite
number of iterations. Theorem 3.9 states that the extended Kleinman iteration
with the mild assumptions for the existence of the solutions in Section 3.3.1 is
enough to guarantee that m(Ax) = 0 in a finite number of iterations and that

P, and K}, converge to their optimal stable solution.

Remark 3.11. Unlike inexact Kleinman iteration methods such as [64], In(Ay)
can be directly obtained from In(P;) by Lemma 3.7 (iii). Hence, it can be de-

termined when Aj becomes Hurwitz by examining In(Py). This is important
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because whenever Ay is Hurwitz, the subsequent Ay’s are all Hurwitz by The-

orem 3.9.

Remark 3.12. The Kleinman iteration is a Newton method, and therefore it
has a quadratic convergence rate, while the proposed policy iteration does not
possess such a fast convergence property. However, the proposed method con-
verges with an arbitrary initial feedback gain, and from Theorem 3.9, the policy
will be stable in a finite number of iterations. Therefore, for a better conver-
gence speed, it is recommended to consider a hybrid approach: use the extended
Kleinman iteration first, and switch to the Kleinman iteration once the policy

becomes stable.

3.4.2 Local Convergence

This section presents that the proposed algorithm converges locally to the
optimal stabilizing solution in terms of discrete-time Lyapunov stability. A se-
quence of Kj, generated by Theorem 3.9 can be regarded as the solution to a
nonlinear discrete-time system determined by the initial state. Given an equilib-
rium point of the discrete-time system, the local convergence of the equilibrium

point can be evaluated by the spectral radius of the linearized system matrix.

Following proposition gives the stability relation between linearized continuous-

time and discrete-time system matrices, when the two matrices have a relation

similar to the bilinear transformation.

Proposition 3.13. Given two matrices A1, Ay € R™ ™, suppose that a scalar
s > 0 satisfies Ay = (A1 + sIp,) (A1 — sIn)fl, and that s is not an eigenvalue of
Ai. Then, Ay is Hurwitz if and only if p(As) < 1.
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Following lemma states that the optimal stabilizing solution P* is the only

locally stable equilibrium point under the extended Kleinman iteration.

Lemma 3.14. Under the hypotheses of Theorem 3.9, K* = R™'BT P* is the
unique locally stable equilibrium of Ki, where P* is the positive definite solution

of R(P) = 0.

Proof. The subsequent K, is completely determined by an initial gain Ky and
a sequence {si} under the policy iteration (3.42) and (3.43). Therefore, K can
be viewed as a solution to a discrete-time nonlinear dynamical system. It will
be shown that K* is the unique locally stable equilibrium of the discrete-time
system.

To find all the equilibriums of the system, suppose that there exists N > 0
such that for all &k > N, K1 = K, = K. Since o(A) is unchanged for
all k > N, it follows that spy 1 = s = s. Then, let Hy = H be the unique

symmetric solution to (3.42), which is given by

H = powr . (3.55)
w G

From (3.43), it follows that G™'W = Gl,;lT/V/f = Kii1 — K = 0. Because
G is nonsingular from s € Sy, it follows that W = 0, hence K = R™'BTP
from (3.46). Substituting K into (3.45) yields that P is a symmetric solution

to R(P) = 0.
It is now shown that only K* = R™'BTP* is locally stable among the
equilibriums corresponding to the symmetric solutions of R(P) = 0. By conti-
nuity, there exists 6 > 0 such that s ¢ 0(A — BK — BE},) for all Ej, satisfying

| Bkl < 9. Put K = K + Ej, where ||Eg||p < d < 1, and let s, = s. Because
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Wy and Gy, are the functions of K}, which can be deduced from (3.42), let us
define a function f : R™*"™ — R™*™ to be f(Kj) = Kk—i—G,;ka, which implies
that K1 = f(Kj) from (3.43). The first-order Taylor expansion of f at K

using the Fréchet derivative is given by
f(Ky) ~ f(K) + Ly (K, Ey) = K + D[f] (3.56)

by denoting D[] = L(.y(K, Ey) for short. Let A. == A — BK. From (3.45), Py

is a matrix function of Kj, and therefore it follows that
D[Py)A. + ATD[P,] = 0, (3.57)

from D[KERKk] = EkTRK + KTRE),. Then, (3.57) becomes the Lyapunov
equation which only has the unique trivial solution D[Py] = 0 because o(A.) N
o(—A;) = @ from Lemma 3.7 (i).

Meanwhile, it follows that
DWi(Ay — sly)] = DIWi](Ac — sln) (3.58)
using W = 0, and therefore
D[Wi] = REy(A, — sI,,) ! (3.59)

using Wy (Ay, — sl,,) = RK}, — BT P, from (3.46) and D[K}] = E}. Using (3.59)
and R = 2sG from (3.47), it follows that

D[f] = Ey, + D[G'[W + G~'D[Wy]

= By, + 2sEp (A, — sl,) . (3.60)
From (3.56) and (3.60), the update law for Ej can be rewritten as follows.

Epy1 = Ep(Ac + sI,) (A — sI,) L. (3.61)
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From Proposition 3.13, Ej, and therefore Kj, is locally stable if and only if
A, is Hurwitz, or equivalently when P = P*, which is the unique stabilizing

solution to R(P) = 0. O

Remark 3.15. As shown in the proof of Lemma 3.14, all symmetric solutions
of R(P) = 0 are also equilibriums, although the stabilizing solution P* is only
stable. Therefore, the iteration may become stuck on trivial unstable solutions,
which are Wy, = 0 and not positive definite P. However, whenever the iteration
is stuck with Wy = 0, it can be checked if Py > 0, and if not, the iteration can
be reinitialized with different K. In the following section, it is assumed that

the iteration is not stuck on trivial unstable solutions.

Lemma 3.14 can only guarantee the local convergence. However, this result
will be used to prove the global convergence of the extended Kleinman iteration

in the next section.

3.4.3 Global Convergence

The proof of global convergence is be divided into two steps. First, it will
be shown that A becomes Hurwitz in a finite number of iterations, and then
P and K}, converge to their optimal stable solutions, respectively.

For the first step, it is sufficient to show that for all integer k; > 0 such that
Ay, is unstable, there exists an integer N; > k; satisfying v(Gy,) > 1. Hence,
the objective of the global convergence proof is to show that it is impossible to
have G}, > 0 for all k£ > k; when Ay, is not Hurwitz, or equivalently, m(Ag4+1) =
m(Ag) > 1 for all k& > k;. Whenever sp_1 € o(Ag), the scalar s € Gy yields
v(Gy) > 1 by definition, which implies 7(Ag+1) < m(Ag) — 1. Therefore, in the

remainder of this section, it is assumed that s = s and k; = 0 without loss of
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generality to prove the first step.

Let P* be the symmetric, positive definite solution to R(P) = 0, and A} =
A— BK*, where K* = R~'BT P*. Since 7(A%) = 0, it follows that (A% — sI,,)~"
is nonsingular for any s > 0, and therefore an auxiliary matrix G, can be defined

by
ék = CZGka, (3.62)

where Cy, := I, — (K — K*)U, and U := (A% — sI,,)"".

If C is singular, then there exists a nonzero vector v € R™ such that
Crv = 0. Because BCy, = (A — sI,)U, and B has full column rank, it follows
that Uv is an eigenvector of Ay with an eigenvalue s. This contradicts s ¢ o(Ag),
which implies that C} is nonsingular. It follows that the two real symmetric

matrices Gy and G} are congruent from (3.62), and therefore
In(G}) = In(Gy) (3.63)

from Sylvester’s law of inertia in Theorem 2.15.
The auxiliary matrix G, can be further rewritten using (3.45) to (3.47) as

Gy =UT (P, — P)U + Q%R, which has the following update equation.
Gri1=Gr —UTDLU. (3.64)

Lemma 3.16. Under the hypotheses of Theorem 3.9, suppose that there exists
a sequence of Ky, for k = 0,1,..., and the corresponding Pk, which is the
solution to (3.45). If the sequence of Py, is bounded, then the sequence of || K|l

18 also bounded.

Proof. Suppose that || K| is not bounded, and let 5y = || K| . Put Yy =

K}/ Bk, which is bounded and satisfies limg_,o, Y3 # 0. Dividing both sides
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of (3.45) by /32, it follows that

1 1 1 1 T 1
P.| = A - —BY, +<A—BY> P.+—Q+Y! RY,=0. (3.65
k<ﬁ,§ B ’“) g T g B ) Pet QY Y =0 (3.65)

Because Py, and Y} are bounded and limy_,., 8; = oo, it can be concluded that

lim ;' RY} = 0, (3.66)
k—o0
which contradicts limg_, ., Yz # 0. O

Lemma 3.17. Given U € R™ ™ such that (Ax,U) is controllable, suppose that
there is a sequence of Ky, such that the unique symmetric solution Py to (3.45)

exists, and the sequence of UL P,U is bounded. Then, the sequence of Py is also

bounded.

Proof. Suppose that P, is not bounded. Since UT P,U is bounded, there is an
orthonormal basis (Vi1, Via, Vi) such that Im(U) = Im(Vj1), and that Py can

be decomposed as

Yo 0 0 (VY
P, = |:Vk1 Vie Vis 0 Yo 0 thg , (3.67)
0 0 N |Vis
where ¥j; and Yo are bounded, but X3 is not bounded. From [65, Lemma
2.1], Py satisfies
PLAL + (A4)" Pe+ 1:(Ky) = 0 (3.68)
for all ¢ > 1, where 7); is a polynomial function, which is bounded when || K| -
is bounded.

If |Ky|  is bounded, it follows from (3.68) that V;5ALU vanishes for all

i > 1, which contradicts the assumption that (Ag,U) is controllable. Hence,
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| Kk || is unbounded, and therefore Ay has at least one unbounded eigenvalue
since B has full column rank.

Let the real Schur decomposition of Ay to be

T. t 7
Ak:[\pk M Bk :’; , (3.69)

where Ay is the unbounded eigenvalue with the left eigenvector 1/1%, Ty, is an
upper triangular matrix whose diagonal elements are the remaining eigenvalues,
and [Wy 1x] is a unitary matrix.

From (3.45) and (3.67), since X is bounded, VleAkal is also bounded by
Lemma 3.16. Consequently, it follows that ¢{ V;; = 0 from (3.69). It follows
that 9] U = 0, which contradicts that (A, U) is controllable. This completes

the proof. O

Lemma 3.18. Under the hypotheses of Theorem 3.9, G = 0 for all k > 0 if

and only if Ag is Hurwitz.

Proof. First, it is proven that if A is Hurwitz, then Gy > 0 for all £ > 0. From
Lemma 3.7 (iii), v(FPp) = 7(Ap) = 0. From Lemma 3.10, v(Py) = m(Ax) = 0 for
all k£ > 0, and therefore v(Gy) = v(Py4+1) — v(Px) = 0 for all k£ > 0.

To prove that if G = 0 for all £k > 0, then Ay is Hurwitz, consider the
contrapositive: if Ay is not Hurwitz, then there exists a finite integer N > 0
satisfying v(Gpy) > 0. Conversely, suppose that G > 0 for all £ > 0. Because

Ay is not Hurwitz, it follows that
v(Po) = m(Ao) > 0, (3.70)

from Lemma 3.7 (iii). Then, v(Py) = v(P) > 0 for all £ > 0 from Lemma 3.10.

Also, Dy, = 0 from G, > 0 and (3.53). From the update law (3.64), the congruent
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matrix Gy = 0 from (3.63). From (3.64), both G and Zf:o UTD,;U converge
to a positive definite matrix and a positive semidefinite matrix, respectively. It
follows that UT P,U also converges from (3.53). Since (A, U) is controllable [62,
Theorem 1.1], Py is also bounded by Lemma 3.17, and therefore the decreasing
sequence of Py, converges as limy_,oo P, = Py— > ooy Di = P, which is followed
by

lim Dy = lim (Kj1 — K" Gr(Ki1 — Ky) = 0. (3.71)

k—o0
From (3.46) with bounded || K} || » and Py, it follows that ||| » is also bounded.
Hence, Gy, is bounded by (3.47), which implies that limy_ o (Kg+1 — Kx) =0
by (3.71). Using || K| is bounded, it can be concluded that limg_,o, Ki = K.
However, from Lemma 3.14, K must be R~ BT P where P is the positive definite

solution of R(P) = 0, contrary to (3.70). O

Remark 3.19. Because the iteration, (3.42) and (3.43), starts with an arbitrary
initial gain Ky, Lemma 3.18 states that for any k; > 0, if Ay, is Hurwitz, then
Gy, > 0 for all kK > k;. And conversely, if Ay, is not Hurwitz, then there exists a
finite integer IV; > k; such that Gy, is a symmetric non-positive definite matrix,

or equivalently v(Gy,) > 1.

Finally, the proof of Theorem 3.9 is given below.

Proof of Theorem 8.9. The first step of the proof shows that for any Ky, there
exists a finite integer N > 0 such that P, = 0, G = 0 and Aj is Hurwitz for
all k > N. If Ag = A — BKj is Hurwitz, P, > 0 and Aj is Hurwitz for all
k > 0 by Lemma 3.10, and therefore N = 0. If Ay is not Hurwitz, m(A4g) > 0
and there exists an integer Ng > 0 such that Gy, is not positive definite by

Lemma 3.18. Because Gy, is nonsingular by s € Sy, it follows that v(Gy,) > 1.
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By Lemma 3.10, w(Ay) is strictly decreasing between the steps Ny and Ny + 1
as m(Any+1) = 7(An,) — ¥(Gn,) < m(An,). By induction, it can be concluded
that there exists an integer N > Ny such that 7(Ax) = 0, or equivalently Ay is
Hurwitz since §(Ax) = 0 from Lemma 3.7 (i). Similarly, it follows that Py > 0,
G = 0, and Ay is Hurwitz for all £ > N by s; € S, and Lemma 3.18.

Next, it is proven that P, = Piy1 = P*, limg_, o K = K*, and limg_, Py, =
P* for all kK > N. Since Gi, > 0 for all k > N, it follows that Py = Pxy1 > 0
from (3.53), and therefore limy_,o, Pp = P = 0. It follows that limy_,o K} =
R™'BTP =: K, similar to the analysis in the proof of Lemma 3.18. Conse-

quently, P = P* and K = K* by Lemma 3.14, which completes the proof. [J

64



3.5 Illustrative Numerical Examples
3.5.1 Validation of the Extended Kleinman Iteration

In this section, the extended Kleinman iteration is validated using a lin-
earized model of the short-period dynamics of AFTI/F-16 aircraft which has
unstable short period mode [66, Example 5.2-3]. The system matrices of the

linear system

& = Ax + Bu (3.72)
are given by
—1.341 0.9933 0 —-0.1689 —0.2518 0 0
43.223 —0.8693 0 —17.251 —1.5766 0 0
A=11341 0.0067 0 0.1689 02518 |, B=|0 0 (3.73)
0 0 0 -20 0 20 0
0 0 0 0 -20 | |0 20]
The weight matrices for the linear quadratic regulator are defined as
Q=1 R=I. (3.74)

Because A has two unstable eigenvalues at 0 and 5.4514, simply choosing
Ky = 0 cannot satisfy 0(Ag)No(—Ag) = . Instead, an arbitrary initial Ky # 0

is chosen as follows:

84 —51 —41 —-11 04
Ko = : (3.75)
58 —74 31 -52 —5.1

which is one of the extreme cases in which all the eigenvalues of A — BK( have

positive real parts.
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Three algorithms are compared: the Kleinman iteration, the extended Klein-
man iteration, and the hybrid approach discussed in Remark 3.12. All three
algorithms use the same initial gain Ky in (3.75). The hybrid approach uses
the proposed algorithm until v(P;) = 0 and switches to the Kleinman iteration
to exploit the quadratic convergence rate of the Newton method. The design
parameter sg is simply set to be 1, which is not an eigenvalue of A — BKj.

The convergence history of P, and K}, to their optimal values, P* and K*,
respectively, for each algorithm is presented in Fig. 3.1. The Kleinman iteration
does not converge to the optimal stable solution, while the proposed methods
converge. Because the extended Kleinman iteration ensures that the feedback
gain becomes stable in a finite number of iterations, switching to the Kleinman
iteration shows much faster convergence. The history of w(Ay) for each algo-
rithm is shown in Fig. 3.2. It can be confirmed that Py does not monotonically
converge to P* when Aj is unstable under the proposed algorithms. But after

a few steps, the closed-loop system eventually becomes stable, or equivalently,

w(Ag) = 0.

3.5.2 Validation of the Data-Driven Surrogate Q-Learning

The extended Kleinman iteration can be identical to the surrogate Q-learning
if the system matrices are available, as discussed in Section 3.2.2. When there
is no prior knowledge of the system, the data-driven surrogate Q-learning pro-
posed in Section 3.2.3 can be utilized with a dataset D = {(z;, u;, ;) } obtained
from the system. However, the dataset may be prone to corruption due to noise,
especially in the state derivative x;. To demonstrate the efficacy of the proposed

data-driven surrogate Q-learning, numerical simulations are conducted by in-
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troducing noise into the dataset and validating the algorithm.
The same short-period model and initial unstable feedback gain Ky in Sec-
tion 3.5.1 are used. The state z; and the control input u; are uniformly sampled

from the set [—3,3]° x [—3,3]2, and the state derivative #; is sampled as
Ti ~ N(A.%'Z + Bu;, 0.1), (3.76)

where N denotes the normal distribution. Total 1,000 data tuples are collected
for the dataset. For comparison of algorithms, an off-policy data-driven ADP is
used [2, Algorithm 2.3.10] to represent the Kleinman iteration. The value of the
design parameter for the data-driven surrogate Q-learning is set to s = 1. The
hybrid approach switches to the data-driven surrogate Q-learning if m(Ag) = 0
and || Ky — K1 » < 1075.

Figures 3.3 and 3.4 present the convergence history of P, and K} as well
as the history of 7(Ay) for each algorithm. An important consideration in the
Kleinman iteration-based ADP method is the stability of the initial gain; if the
initial gain is unstable, the method may fail to converge or stabilize, rendering
the approach ineffective. In contrast, the proposed data-driven surrogate Q-
learning is demonstrated to be robust to moderate noise and converges to a
stabilizing feedback gain. In addition, the results obtained from the hybrid
approach indicate that the extended Kleinman iteration proposed in this study
is more robust to noise compared to the conventional Kleinman iteration.

However, it has been observed that when a certain level of noise is present,
neither the existing Kleinman iteration-based ADP nor the proposed data-
driven surrogate Q-learning methods can converge to optimal controllers or
stabilize the control gains. The main reason is that the Gaussian noise applied

to the derivative of the state variables follows a different distribution when solv-
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ing the Lyapunov equation in the policy evaluation stage, which makes noise

removal through pseudo-inverse less effective.
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Chapter 4

Application to Nonlinear Optimal
Control Problems

In this chapter, the proposed surrogate Q-learning is applied to solve the
infinite-horizon optimal control problems of nonlinear systems. The convergence
proof of the extended Kleinman iteration is relied on linear algebra, and there-
fore the extension of the algorithm for the application of nonlinear systems is
not straightforward. To overcome this difficulty, the Koopman operator theory
is utilized. The Koopman lifting linearization can transform the nonlinear sys-
tem into a linear system using nonlinear mappings called the lifting. Recently,
various linear control syntheses for the Koopman lifting linearized system were
proposed. However, not much research has been done on the controllability
and observability of the Koopman lifting linearized system, which are sufficient
conditions to apply the linear optimal control theory.

In this chapter, several conditions of the lifting are first provided for the
controllability and observability of the Koopman lifting linearized system to
apply the proposed surrogate Q-learning. Finding such lifting is very difficult
in general, and therefore a meta-learning framework is proposed to train deep

neural networks representing the lifting.

73 5



4.1 Nonlinear Optimal Control Problems

Consider a class of nonlinear dynamic systems with an affine control input

given by

&= f(z) + G(z)u, (4.1)

where z € R" is the state vector, u € R™ is the control input, and the functions
f € CL(R") and G € CHR"™, R™*™). Without loss of generality, assume that
f(0) = 0, which implies that (z,u) = (0,0) is an equilibrium point of (4.1). It
is assumed that the nonlinear system (4.1) is controllable [67, Definition 11.1],
which means that for any xg,x1 € R™, there exists a control input v that steers
the state from x¢ to x1 in a finite time.

The design objective is to find an optimal control input function u} that
minimizes a performance index or a value function for the system in (4.1). The

value function of a state variable zy € R” is defined by

Vo(xo;u) = /000 (yo(t)Tyo(t) + u(t)TRu(t)) dt, (4.2)

where R € ST, ,

yolt) = h(z(t)) € R (4.3)

denotes the performance output, and the function h : R™ — R? satisfies h(0) =
0. The state trajectory x(t) follows (4.1) with the initial state 2(0) = z¢ and the
control input function u : [0, 00) — R™. Assume that the nonlinear system (4.1)
is zero-state observable [68, Definition 6.5] with respect to the output y,(t),
which means that for u = 0, the output trajectory y, = 0 implies x = 0.

It is further assumed that there exists an optimal control input u} that is

74



the solution to the following optimal control problem:
u, = arginf V,(z;u) (4.4)
u

for all z € R". Because R € S, in (4.2), the optimal control input can be

represented by a state-feedback form as
1
up(@) = =5 R7IG(2) VY () (4.5)

with a slight abuse of notation, and V € C!(R",R) is a solution to the

Hamilton-Jacobi-Bellman (HJB) equation given by
0 = yo o + up(a)" Ruj(a) + VV; (2)" (f(2) + Gla)uy(2)) (4.6)

for all z € R™ with a boundary condition V;(0) = 0. The function V' is indeed

the optimal value function as
Vo (2) = Vo(z; u,) = min V(5 u) (4.7)

for all x € R™ [54].
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4.2 Koopman Operators for Optimal Control Prob-

lems

As described in Section 4.1, the nonlinear optimal control input can be found
as (4.5) when a solution V to the HJB equation (4.6) is obtained. However, it
is difficult to find the solution to the HJB equation, because it is a nonlinear
partial differential equation. Several studies reported workaround methods using
a linear optimal control for a finite-dimensional linear system obtained by the
Koopman operator [30].

This section provides mathematically rigorous conditions for constructing a
linear system of which the linear optimal control is identical to the nonlinear
optimal control in (4.5). Moreover, a sufficient condition is introduced to ensure

the controllability and observability of the linear system.

4.2.1 Koopman Lifting Linearization

Consider a nonlinear autonomous system

i = f(z), (4.8)

which is the system (4.1) with u = 0. Assume that there exists a N-dimensional
invariant subspace of the infinitesimal generator of the Koopman operator for

the system (4.8) [41].

Definition 4.1 (The lifting). Given an infinitesimal generator of the Koopman
operator for the nonlinear autonomous system (4.8), suppose that there exist
¢; € F, i = 1,...,N, spanning the invariant subspace of the infinitesimal

generator. Then, a vector-valued function

¢(x) = [¢1(2),...,on(2)]" € RY (4.9)
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of x € R" is called the lifting of (4.1), if qu(:E)T € RVNX" ig injective for all

r € R".

If there exists a lifting of (4.1), then the elements of the lifting are observ-
ables of the infinitesimal generator satisfying (2.9). Therefore, there exists a

matrix A € RV*N guch that [41]

%qb(w(t)) = Ap(x(t)) = V()" f(x(1)), (4.10)

where z(t) is the state trajectory of (4.8) with any initial state x(0) € R™.
Note that the dynamics f(x) can be recovered from %(ﬁ(x) because V(z)! is
injective.

Consider a linear system of a state vector z € RY with the same system

matrix A in (4.10) given by

i = Az (4.11)
The above linear system yields the state trajectory z(t) = ¢(z(t)) for all ¢ > 0
if and only if z(0) = ¢(x(0)). In other words, the state z(t) of (4.11) with an
arbitrary initial state 2(0) = zg € RY may not necessarily satisfy z(t) = ¢(z)
for any x € R™. However, it is still useful to analyze the state z(¢) of the linear

system (4.11) to describe the nonlinear behavior of the state x(t) of the original

system (4.8).

Definition 4.2 (The Koopman lifting linearization). The Koopman lifting lin-

earization of (4.1) is defined by a linear system
2 = Az + Bu, (4.12)
where z € RV is the lifted state vector, and A € RV*N and B € RV*™_if the

lifted state trajectory z(t) satisfies z(t) = ¢(x(t)); ¢(x) is a lifting of (4.1) and
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x(t) is the state trajectory of (4.1) with the initial state (0) € R™ and any

control input function u(t).

The linear control affine term Bu in (4.12) is necessary to facilitate linear

optimal control theories while it requires an additional condition for the lifting
p(x).

Proposition 4.3 ([41]). Given a nonlinear system (4.1) and a corresponding
lifting ¢(x), the dynamics of z(t) = ¢(x(t)) can be represented by the Koopman
lifting linearization (4.12) if and only if Vo(x)TG(x) € RNX™ is constant for

all z € R™.

4.2.2 Equilibrium Points

Suppose that (x.,ue) is an equilibrium point of (4.1) such that f(ze) +

G(z¢)ue = 0. Subtracting it from (4.1) yields
&= f(x) — f(ze) + Glz)u — Glae)ue = f(2) + G(2)a, (4.13)

where f(#) = f(Z + xc) — f(2e) + G(Z + ze)ue — G(xe)ue, G(7) == G(T + ),
T =1z — x, and U = u — ue. On the other hand, if u(t) = u. and z(0) = =z,
then z(t) = x. and z(t) = ¢(z.) for all £ > 0, and therefore Z = 0. It follows

from (4.12) that A¢(z.) + Bue = 0, which implies
Z= A% + B (4.14)

from (4.12), where Z(t) = ¢(x) — ¢(z.). Since the Koopman operator is linear,

if ¢(x) is a lifting of (4.1), then ¢(x) —p(x.) is also a lifting of (4.1). By defining
#(Z) = p(Z+xe) — d(xe), the dynamics of Z = ¢(Z) can be represented by (4.14)
by Proposition 4.3 using the fact that

V(@) G(&) = V(E + 2) G + o) = Vo(2)TG(), (4.15)
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which is also constant. Therefore, in the rest of this study, it is assumed without
loss of generality that the equilibrium of the nonlinear system in (4.1) is at the

origin, or equivalently, f(0) = 0.

4.2.3 Lifted Optimal Control Problems

This section provides a rigorous theoretical proof that the optimal controller
obtained using the Koopman lifting linearized system (4.12) is indeed the non-
linear optimal controller (4.5) for the original nonlinear system (4.1) under mild
assumptions for constructing the lifting ¢(x).

The lifted performance index for the Koopman lifting linearized system (4.12)

corresponding to (4.2) is defined as

Vi(zo;u) = /OOO (z(t)TQz(t) + u(t)TRu(t)) dt, (4.16)

where z(0) = zp, the matrix R is defined in (4.2), and the matrix @ € Sf

satisfies Q@ = CTC for a matrix C satisfying the assumption given below.

Assumption 4.4. Given a lifting ¢(z) of (4.1), there exists a matrix C € R?*V

such that C¢(z) = h(x) for all x € R™ with h(z) defined in (4.3).

Under Assumption 4.4, consider the performance output of the lifted per-

formance index (4.16) defined by
y(t) = Cz(t) (4.17)

for all ¢ > 0. If 2(0) = ¢(x(0)), then y(t) = yo(t) for all ¢ > 0. However,
y(t) # yo(t) in general, which implies that the zero-state observability of the

original nonlinear system (4.1) with the performance output (4.3) does not
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imply the observability of the Koopman lifting linearized system (4.12), or
equivalently, a matrix pair (A4, C).

The optimal control input u* of the system (4.12) minimizing the perfor-
mance index (4.16) can be obtained by solving the following lifted optimal
control problem:

u* = arg i%fV(zo; u) (4.18)
for all zg € RY. As discussed in Section 4.2.1, the state trajectory z(t) of (4.12)
may not be relevant to z(t) unless zp = ¢(x(0)), and moreover the optimal
control input u* may not exist for all zg € RY even if u? in (4.5) exists for
all zg € R™. The following proposition states that if there exists u*, then the
nonlinear optimal control u) for any initial state xp € R™ can be obtained

using (4.12) with the initial state zo = ¢(zp).

Proposition 4.5. Suppose that there exists an optimal control u* that solves
the lifted optimal control problem (4.18) for all zg € RYN. Then, for any xo € R",

the optimal control u} of (4.4) satisfies vl = u* if zo = P(xp).
Proof. Suppose that u* # u}. Then,
Vo(wo; uy) < Vo(wo; u®) (4.19)
from (4.4). Because z(0) = ¢(z), it follows that z(t) = ¢(x(t)), which implies
207 Q2(t) = ¢(a(H)TCTCo(a(t)) = () y(t) (4.20)

by Assumption 4.4. Therefore, from (4.2) and (4.16), it can be concluded that

V(zo;u) = Vo(xo; u) for any u. From (4.19), it follows that
V(20;uy) = Vo(wo; uy) < Vo(wo;u™) = V(205 u”), (4.21)

which contradicts (4.18). O
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The infinite-horizon optimal control u* for (4.18) is indeed a linear quadratic
regulator for the linear system (4.12) and the lifted performance function with
the quadratic cost as defined in (4.16). Therefore, a sufficient condition for the
existence of u* is that a matrix pair (A, B) is controllable and a matrix pair
(A, C) is observable. As discussed above, however, it is not clear to guarantee
that the Koopman lifting linearized system is controllable and observable for
an arbitrary lifting ¢(x) of (4.1).

The following two lemmas provide an equivalent condition of ¢(z) to the
controllability of (A, B) and a sufficient condition of ¢(z) for the observability
of (4,0).

Lemma 4.6. Suppose that the nonlinear system (4.1) is controllable. Then, the
Koopman lifting linearized system (4.12) is controllable if and only if the lifting

o(x) of (4.1) is surjective.

Proof. First, it is shown that if the lifting ¢(x) of (4.1) is surjective, then a
matrix pair (A, B) of (4.12) is controllable. For any zg,z; € RY, there exist

xg, 1 € R™ such that

20 = ¢(x0), 21 = ¢(x1). (4.22)

Because the nonlinear system (4.1) is controllable, there exists a control in-
put wu;(t) satisfying x(0) = xo and x(t1) = x; for some ¢; > 0. It follows
from (4.22) that the same control input uq(t) steers the state of (4.12) from
2(0) = ¢(z(0)) = 2o to z(t1) = ¢(x(t1)) = 21, which implies that the sys-
tem (4.12) is controllable.

To show the converse, consider an arbitrary vector zp € RY. Because the

system (4.12) is controllable, for any xy € R™, there exists a control input
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uz(t) satisfying z(0) = ¢(xp) and z(t3) = 22 for some to > 0. Let z(t) be the
state trajectory of (4.1) using the same control input ug(¢) with an initial state
z(0) = xo, and let x9 = z(t2) € R™. Since ¢(z(0)) = 2(0) by construction, it
follows that zo = z(t2) = ¢(z(t2)) = ¢(z2). Therefore, it can be concluded that
for any zo € RY, there exists 2o € R™ such that ¢(z2) = 2o, which completes

the proof. ]

Lemma 4.7. Suppose that the nonlinear system (4.1) is zero-state observable
with the output (4.3), the corresponding lifting ¢(x) is surjective, and Assump-
tion 4.4 holds. Then, the Koopman lifting linearized system (4.12) is observable
with the output (4.17) if and only if $(0) = 0.

Proof. First, it is shown that if ¢(0) = 0, then a matrix pair (A, C) of (4.12)
is observable. Suppose that (A,C) is not observable. Then, a matrix-valued

function of ¢t > 0 defined by

t
Wolt) = / e T CT e dr (4.23)
0

satisfies that W (1) is singular for some ¢; > 0 [51, Theorem 6.4]. It follows
that there exists a vector zg # 0 € RY such that zg Wo(t1)zo = 0, which implies
that

Cetzg =0, Vtel0,t] (4.24)

Because ¢(z) is surjective and ¢(0) = 0, for the nonzero vector zg, there exists
xo # 0 € R” such that ¢(xg) = zp. Then, with a control input v = 0, the state
2(t) of (4.12) with an initial state z(0) = zq satisfies z(t) = eAzy = ¢(x(t)) for
allt € [0,¢1]. From (4.24) and Assumption 4.4, it follows that y(t) = Cé(z(t)) =
Yo(t) = 0 for all ¢ € [0,¢1], which contradicts the zero-state observability of the

original nonlinear system.
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To show the converse, suppose that (A, C) is observable but ¢(0) = zy # 0.
Since x = 0 if uw = 0 and z(0) = 0 from (4.12), it follows that z(t) = 2o, thus
2(t) = 0 for all ¢ > 0. Therefore, it can be concluded that zy € ker(A). On the

other hand, from Assumption 4.4 and the definition of h in (4.3), it follows that
Czy = C¢(0) = h(0) =0, (4.25)

which implies zg € ker(C') Nker(A). This contradicts that (A, C) is observable,

which completes the proof. O

Now, it is clear that the sufficient condition of ¢(x) for the controllability
and observability of (4.12) is that ¢(z) is surjective. If this is the case and the
matrices A and B are known, the unique optimal control input u* can be found
using the ARE [54].

The next theorem summarizes the conditions for finding nonlinear optimal

control input using the Koopman lifting linearization.

Theorem 4.8. Suppose that the system (4.1) is controllable and zero-state
observable with the performance output y,(t) = h(x(t)) (4.3), and that A is
the infinitesimal generator of the Koopman operator for (4.1). If there exist a
mapping ¢ : R — RY and a matriz C € RN such that

C1: the mapping ¢ is surjective,

C2: the matriz Vé(x)T is injective for all x € R,

C3: the mapping ¢ spans the invariant subspace of A,

C4: Vo(x)'G(x) is constant for all x € R",

C5: ¢(0) =0, and

C6: Cop(x) = h(x) for all z € R™,
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then the optimal control v}, in (4.4) is given by

ul(t) = —R7'BT Pg(x(t)), (4.26)

o

where P € SL is the unique positive definite solution to the algebraic Riccati

equation given by
PA+ AP+ Q- PBR'BTP=0 (4.27)

corresponding to a Koopman lifting linearization (4.12) and the lifted optimal

control problem (4.18).

Proof. Since the lifting ¢(z) is surjective and ¢(0) = 0, the matrix pairs (A, B)
and (A,C) of (4.12) are controllable and observable, respectively, by Lem-
mas 4.6 and 4.7. Then, there exist a unique symmetric positive definite solution
P to (4.27) and a unique optimal control u* for (4.18), which has the linear
state feedback form u*(t) = —R~*BT Pz(t) [54, Theorem 6.1]. Then, by Propo-
sition 4.3, the optimal control  for (4.4) is identical to u* with z(0) = ¢(z(0)),

and from z(t) = ¢(x(t)), it can be concluded that u} has the form in (4.26). O
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4.3 The Meta-Learning Framework

In this section, a meta-learning framework is proposed to train a lifting
of (4.1) to satisfy all of the conditions in Theorem 4.8 for a group of uncertain
systems. In the Koopman lifting linearization (4.12), there are three components
that define the system dynamics: the system matrices A, B, and the lifting
¢(x). Because the Koopman operator can represent dynamic characteristics of
systems, the group of uncertain systems is defined by a set of systems that share
a common Koopman invariant subspace, but possibly have different system
matrices. If the common lifting is known for the group, the model-free data-
driven surrogate Q-learning algorithm proposed in Section 3.2 can be applied
even when the system matrices and an initial admissible policy are uncertain for
each system in the group. Therefore, the proposed framework can be categorized
as a meta-learning method due to its strategy of identifying a common feature
among a group of systems and utilizing it to quickly adapt to a new uncertain

system within the same group.

4.3.1 Koopman Groups and Common Liftings

Definition 4.9 (Koopman groups). A set of dynamical systems is said to be a
Koopman group if there exists a common mapping, called the common lifting of
the group, that satisfies the conditions C1-C6 in Theorem 4.8 for each system

in the set.

Let G be the Koopman group of nonlinear systems, where the system S, € G

indexed by an integer p has the nonlinear dynamics similar to (4.1) as

i = fol@) + Gylo)u, (4.28)
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where x € R" is the state vector, and u € R™ is the control input vector.
Let ¢ : R® — RY be the common lifting of the Koopman group G. Because ¢
satisfies the conditions C2—C4 in Theorem 4.8 for all systems in G, there exists
a Koopman lifting linearization (4.12) for a system S, € G by Proposition 4.3,

which can be represented by
d
&gb(x) = Apo(z) + Byu, (4.29)

where the constant matrices 4, € RY*N and B, € RY¥*™ depend on the
system S,. Figure 4.1 illustrates the relationship between the Koopman group,
the common lifting, and the systems in the group.

Given a Koopman group of uncertain systems, applying a known lifting ¢(x)
can effectively mitigate the associated uncertainties. Specifically, if the lifting
is already known, the only sources of uncertainty for such systems would be
the system matrices A, and B,. However, it is generally difficult to find such
a common lifting. In following sections, a meta-learning framework is proposed
to train deep neural networks that can approximate the common lifting, if it

exists.

4.3.2 Diffeomorphic Lifting Approximation

The conditions C1 and C2 in Theorem 4.8 are sufficient for the controlla-
bility and observability of the Koopman lifting linearization in the Koopman
group. These conditions are automatically satisfied with a special class of the
lifting ¢(z).

Proposition 4.10. If a continuously differentiable mapping ¢ : R™ — R" is
a global diffeomorphism, then it satisfies the conditions C1 and C2 in Theo-

rem 4.8.
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—— Koopman Group

System 1

Common lifting

System 3
System 2

Figure 4.1 A diagram of a Koopman group.

Proof. The diffeomorphism ¢ is surjective because there is an inverse mapping
by definition, and the Jacobian V¢(z)? € R™*" is invertible, and thus injective

for all z € R™ [69). 0

The use of diffeomorphisms to represent the infinitesimal generators of
Koopman operators has received increasing attention in recent research [70,71].
It has been shown that diffeomorphic liftings preserve the stability of the origi-
nal autonomous nonlinear systems [72]. Bevanda et al. utilized invertible neural
networks (INNs) [72], specifically the coupling flow-based INNs (CF-INNs) [73],
to realize diffeomorphic liftings because CF-INNs can universally approximate
diffeomorphisms [74].

In this study, the generative flow (Glow) [75] is employed to realize the

diffeomorphic lifting. The Glow is a CF-INN with trainable convolution-based
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permutations. The single-scale Glow approach is implemented using K-step
Flows, with each Flow step consisting of an activation normalization layer, an
1 x 1 convolution layer with LU decomposition, and an affine coupling layer,
which are all invertible. In addition to the output, each layer returns the log-
determinant to calculate the probability density of the input data. The detailed
implementation of the Glow can be found in Appendix A.

Let q@(w;w(b) denote the Glow, which is used to approximate the common
lifting ¢(z), where wy is the network parameters to be trained. By denoting

each Flow by gZA)Z fort=1,..., K, the Glow can be written as

~ A~

¢ =Ko 0dyod. (4.30)

And, the probability density of the input x, called the log-likelihood of z, is

det< Oz ) ’ (4.31)

0zi—1

given by

K
log p(z) = log p(z) + Z log
i=1

where z; = qgi(zi_l;w@) fori =0,...,K, z == zg = g%(x), and zg := z. The
probability density function p(z) is typically chosen as the probability density
function of a simple distribution such as the Gaussian distribution N(0,1).
Maximizing the log-likelihood, or minimizing the negative log-likelihood, can be
regarded as approximation of the data distribution in the dataset. In the context
of the diffeomorphic lifting approximation, this implies that the resulting lifting
maps the original state distribution to the predefined simple distribution in
the lifted state space, which may help the data-driven surrogate (Q-learning
implementation in the lifted state space.

It follows from Proposition 4.10 that using the Glow for diffeomorphic lifting

approximation guarantees the satisfaction of the conditions C1 and C2 in The-
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orem 4.8. The remaining conditions C3—-C6 are considered in the meta-learning
framework. In particular, the base learner is formulated for the conditions C3
and C4, and the meta learner trains the network to satisfy the conditions C5

and C6.

4.3.3 Base Learner Formulation

Given a dataset D, = {(7,u;,4;)}.7, acquired from a system S, € G, if
there is a hand-crafted lifting ¢(x) of S, extended dynamic mode decomposition
(EDMD) methods [28,32] are commonly used to find A, and B), in (4.29). The

EDMD method can be represented by the following optimization problem:

min — Z HVd) xi)d; — Apg(;) — BpuiHQ. (4.32)

Ap,Bp Nyp =
Several studies synthesized optimization problems using deep neural networks
QZ;(:E; wy) to approximate liftings as follows [46,76]:

2

min —
Ap,Bp yWe np

(4.33)

)V(Zs l‘l, w¢) T — p(lg(xﬁ wd>) - Bpui

The above methods are designed to obtain a Koopman lifting linearization
for a single system, S,. However, as discussed in Section 4.3.1, a meta-learning
framework is proposed in this study to obtain a common lifting for a Koopman
group. By applying the proposed framework to multiple systems within the
group, a single diffeomorphism can be learned to represent the common lifting.

By observing the similarity between the closed-form base learner problem
in Section 2.5.2 and the optimization problem for Koopman lifting lineariza-

tion (4.33), the base learner problem is proposed as follows:

AT - 2
r%ln Lyase(Dp; Fpawd)) = min — § ¢i(w¢) - Ap¢i(w¢) — Bpui|| , (4.34)
=1

p Ap,Bp np
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where F, = [A,, B,] € R™*("*™) and

Pi(wg) = p(zi3wg), (4.35)

~ ~

bi(wy) = V(xiwe) ! i (4.36)

fori=1,...,m,.

Given a system S, € G, if there exists a network parameter wg such that
n}win Liase(Dp; Fp,wg) =0 (4.37)
p

for any dataset D, acquired from the system S, the network é(m, wy) satis-
fies the conditions C3 and C4 in Theorem 4.8. Moreover, if the network is a
diffeomorphism, it follows from Propositions 4.3 and 4.10 that there exists a

Koopman lifting linearization (4.12) of S, with
[A, B] = F (wy) = arg H%’in Liase(Dp; Fp, wy). (4.38)
p

Considering wy as a meta-learner parameter, the optimization problem (4.34)

has a closed-form solution as in Section 2.5.2, given by

Fy(wg) = Yy(wg)Wp(wy)' = [Ap(ws), By (ws)], (4.39)
where
Vo) = [a(we) -+ by (ws)] (4.40a)
Uy(wg) = Ga(u) - Gny () , (4.40D)
w

D
which implies that it can be used as the closed-form base-learner problem (2.31)
to obtain the approximated common lifting for the Koopman group within a

meta-learning framework.
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4.3.4 Meta-Learner Formulation

The overarching purpose of the meta learner is to obtain the common lifting
that not only allows the Koopman lifting linearization for each system of the
Koopman group but also ensures that the linearized system is controllable and
observable with the output y(¢) defined in (4.17).

Suppose that the p-th task 7, of the meta-learning problem is defined as the
dataset D, obtained from the system S, € G, because the loss functions for the
base learner are the same for all systems as defined in (4.34). Let p(G) be the
distribution of the task 7, = D, in the Koopman group G. The meta-learner

problem (2.29) is formulated as follows:

min Ep y(g) [Lmeta (Dp; Fy (W), we)], (4.41)

We
where L eta denotes the meta-learner loss function for the common lifting, wg
is the parameter of the diffeomorphic lifting approximation network, which is
regarded as the meta-learner parameters, and F;(wy) is the closed-form solution
of the base learner given in (4.39). The meta-learner loss Lyeta is composed of

four losses as

Lmeta = MinLiin + norigﬁorig + 770ut£'out + L, (442)

where Ly, denotes the Koopman lifting linearization loss, Lorg denotes the
origin loss, Loyt denotes the output representation loss, £,,;; denotes the negative
log-likelihood loss, and 7.y are the weights of the corresponding losses.

The Koopman lifting linearization loss Lj;, encourages that a common lifting

¢(z; wy) satisfies the conditions C3 and C4 in Theorem 4.8 for all systems in

the Koopman group, defined by

Liin(Dy; Fy (wg),wg) = || By () Wy (wg) = Yp(w)| (4.43)
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where Fj(wg) is the closed-form solution defined in (4.39), and the functions
U, and Y, are defined in (4.40). All of these functions depend on the dataset
D,, which involves the dynamics information of S,.

The origin loss Lorig is designed to ensure the condition C5, defined by

2

Lons(ws) = |60:w5)]| (4.44)

which is independent of the dataset D, thus it can be considered as regular-
ization of the network ¢(x; We).
The output representation loss Loyt is defined to enforce the condition C6

in Theorem 4.8. It is defined by using the closed-form solution C*(wy) as

Lout(Dpiwy) = ni > || - C*(w¢)q§i(w¢)“2, (4.45)
Pi=1
where C*(wy) € RY*" is defined by
* R . T
C*(wg) = |h(z1) --- h(xnp)] [¢1(w¢) %p(wd))] ) (4.46)

Although the loss Lo, includes the state x; from the dataset D, the dynamics
information of S, is not involved. In other words, the state x; need not belong
to the dataset D, but may be any real vector in R".

Along with a diffeomorphic lifting approximation QZB(:I?, wg), the losses Ly,
Lorig and Loyt are designed to satisfy the conditions C1-C6 in Theorem 4.8.
Therefore, the optimal control u} is equivalent to the lifted optimal control u*
of the lifted optimal control problem, given in (4.18). Using the data-driven
surrogate Q-learning method proposed in Chapter 3, the lifted optimal control
can be learned using a dataset Dy == { ((Z)z, U, gZ;Z) } Therefore, the performance

of the data-driven surrogate Q-learning is heavily dependent on the distribution
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of the data points in Dy in the sense of regression theory. The negative log-

likelihood loss Ly is introduced in this perspective, defined by
1 &
Lon(Dp; wy) = - > logp(zi), (4.47)
P =1
where the log-likelihood log p(z) is defined in (4.31).

4.3.5 Offline and Online Learning Synthesis

The reinforcement learning framework utilizing meta-learning proposed in
this study is divided into two stages: offline learning and online learning. In
offline learning, diffeomorphic lifting approximation is learned through meta-
learning using a dataset obtained from any system belonging to the Koopman
group, as discussed above. This dataset can be obtained through experiments
or numerical simulations based on knowledge of the dynamics of similar sys-
tems. The advantage of the proposed meta-learning framework is that it can
utilize data obtained by various controllers or tuned controllers in various en-
vironments. The learned diffeomorphic lifting approximation is then installed
in the online learning system in the actual system. The parameters of the dif-
feomorphic lifting approximation are fixed in the online learning stage. The
online learning requires actual data for the system being controlled. However,
the proposed surrogate Q-learning can quickly learn the optimal controller with
very little data, as described in Section 3.2.3, compared to general reinforce-
ment learning algorithms. The overall procedure of online and offline learning

is illustrated in Fig. 4.2.
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Chapter 5

Numerical Simulation

In this chapter, numerical simulation is performed to demonstrate the ef-

fectiveness of the method proposed in this study.

5.1 Koopman Group of Nonlinear Systems

Consider a nonlinear system given by

. 3
Tl = 2] + 22 + u,

(5.1)
iy = pray + (p2 — 327) (2 + 22) + (1 — 32})w,
where p; and po are constant parameters satisfying
(p1,p2) € {(p1,p2) [ 1 <p1 <2,1 <pp <2} =P. (5.2)

Let a system with a parameter tuple p := (p1,p2) be denoted by S, and let the

group of such systems be G. Consider the following optimal control problem:

inf / (21()” + u(t)?) dt (5.3)
v Jo
for any zg € R%. The performance output is given by
Yo(t) = h(z(t)) = 21(2), (5-4)
where z = |11, 22]7 .
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Let a mapping ¢ : R? — R? be given by

oy =| ", (5.5)

3 + x

which is surjective (C1) and satisfies ¢(0) = 0 (C5) by construction. It can be

easily confirmed that the Jacobian

- 1 0
Vo(z)! = (5.6)
322 1
is injective for all z € R? (C2). The mapping ¢(z) in (5.5) transforms the

system (5.1) into a linear system given by

. 0 1 1
¢ = ¢+ u = Ap¢ + Byu, (5.7)
p1 P2 1

for any S, € G, which implies that ¢(x) satisfies the conditions C3 and C4.

Finally, for any = € R?,

hw) =1 0] é(x) = Co(a), (5.8)

where h(x) is given in (5.4), which implies C6. It follows that all of the con-
ditions C1-C6 of Theorem 4.8 are satisfied with ¢(z), and therefore it can be
confirmed that G is the Koopman group and ¢(x) is the common lifting for the
group. Furthermore, (A4,,B,) is controllable and (A4,,C) is observable for all
peP.

By Theorem 4.8, the solution to the optimal control problem (5.3) for the

nonlinear system S, (5.1) is given by

ui(z) = —BL Pro(x), (5.9)
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where P is the positive definite solution to the ARE given by
* T p* T * T p*x __
PyA,+ A, Py +C"C—P;B,B, P, =0 (5.10)

with A, and B), in (5.7), and C in (5.8).
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5.2 The Meta-Learning Stage

5.2.1 Meta-Learning Setups

The single-scale Glow in Section 4.3.2 is implemented for the diffeomorphic
lifting approximation, where the detailed hyper-parameters are presented in
Table 5.1. The glow is constructed by 8 Flows connected sequentially. T'wo fully
connected deep neural networks are employed for each affine coupling layer. For
each layer in the fully connect networks, the exponential linear unit (ELU) is

used for the activation function for differentiability.

At each iteration of the meta-training stage, 16 tasks (systems) are randomly
generated using the parameter set P defined in (5.2). For each task, 1,000 pairs
of (z;, u;, ;) are generated by uniformly sampling z; from [—1, 1] x[—1, 1] and u;
from [—6, 6]. The meta-learner loss Leta (4.42) is averaged over all the sampled
task dataset, and back-propagated using the Adam optimizer [77]. The iteration

is repeated 3,000 times.

The number of Flows and the size of the deep neural networks in each
affine coupling layer significantly affect the representational power of the dif-
feomorphic lifting approximation. Generally, a larger number of Flows and a
larger-sized deep neural network can effectively model complex nonlinear dy-
namics, but beyond a certain level, there is little difference in representational
power. Furthermore, increasing the number of Flows or the size of the deep
neural network prolongs the time required for the meta-learning process and
the computation of actual control inputs. Therefore, it is important to strike
a balance between having adequate representational power and avoiding overly

deep networks.
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The weights for each loss determine the order in which the losses decrease
during the initial stages of meta-learning. However, as the training time in-
creases, all losses converge to very small values, resulting in less pronounced

impact of the weight proportions on each loss.

5.2.2 Meta-Learning Results

Numerical results in this section demonstrate the feasibility of finding the
common lifting for the Koopman group using the proposed meta-learning frame-
work.

After the meta-learning, the approximated common lifting g%(a:, wg) is ob-

tained. Let
(;Aﬁ(x;wd)) = ?1(1'; we) : (5.11)
$a(z; wy)
Each component of q@(m;w(ﬁ) is presented in Fig. 5.1. Because the lifting is
approximated by differentiable invertible neural networks, the diffeomorphism
between x and d; can be observed, which implies that the conditions C1 and C2
are satisfied.
To demonstrate the Koopman lifting linearization performance of the pro-
posed meta-learning framework, the parameter tuple is randomly sampled from

P, where the corresponding system is denoted by S, € G. Indeed, the sampled

parameter tuple is p = (1.55,1.72). From (5.1), let

.%‘3 X X
f(@) = L =: fil@) : (5.12)
pra1 + (p2 — 321) (23 + 22) fa(z)
cw=| ' =9 (5.13)
_1—3:5% Ga(x)

99



Table 5.1 Meta-learning parameters.

Description Variable Value
Number of Flows - 8
Units of hidden layers! - [16, 64, 64]
Min 10
Tlorig 1
Weights of losses
Nout 5
Tl 1
Learning rate - 1073
Weight decay - 10-°
Number of batch tasks - 16
Size of a dataset Ny 103

! For both of two fully connected layers, s(z1;ws)

and t(z1;wy), in each affine coupling layers. See Ap-

pendix A.1.3.
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Figure 5.1 The approximated common lifting.

using the expression in (4.1). Figures 5.2 and 5.3 illustrate the functions f(z)
and G(x), which demonstrate that the system dynamics is highly nonlinear.
According to the Koopman lifting linearization loss Ly, (4.43), the dynamics
of the lifting
< b ws) = Vélrsw) (@) + Glau) (514)
should be linearized as
%Qz = A+ Byu (5.15)
with some matrices Ap € R?*2 and B’p € R?*!. In other words, the followings
should be satisfied for the learned lifting ¢(z; wg):

Vo (z;wy)T f(x) = Apd(a;wy), (5.16)

~ ~

Vo (x;wy) G(x) = By, (5.17)

These expectations can be confirmed in Figs. 5.4 and 5.5. The straight contours
in Fig 5.4 imply that the function V¢(z;wy)? f(x) is linear to ¢(z;wg). The
function Vg%(:c;w(j,)TG(ac) is almost constant for all g%(x;w¢) as illustrated in

Fig. 5.5.
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Vo (; swy) T f(x Vo (; swe)" f (x

11‘11)4) 11‘W¢

Figure 5.4 The contour plots of V¢ (z; wy) T f(z) and V s (; wy) L f(x).
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Figure 5.5 The functions V¢, (x; wy)TG(x) and Vg%g(a:;wd))TG(x).
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Table 5.2 Mean-square linearization errors.

System  Parameter Nonlinear System KLL
Sy, (1.77,1.81) 9.97 1.09 x 103
Sp,  (1.28,1.32) 10.0 8.6 x 107*
Sps (1.57,1.00) 10.2 8.6 x 1074

The mean-square errors of least-square linearization for both of the nonlin-
ear system (5.1) and the Koopman lifting linearization (KLL) (5.14) are given
in Table 5.2 with three different randomly sampled systems, S,,, Sp, and Sp,.
It can be confirmed that the meta-learned common lifting can linearize an ar-
bitrary system in the group, which implies that the condition C3 and C4 are

satisfied. In addition, the condition C5 can be confirmed from

$(0; wg) = (0.0021, —0.0013). (5.18)

Finally, Fig. 5.6 indicates the satisfaction of the last condition C6, which
implies that the performance output y = x1 can be recovered from the lifting.
The mean-square error of h(z) — Co(x; wy) is 3.92 x 1077, where the matrix C
is

C'=1-0.140 0.147|. (5.19)

As demonstrated above, the trained diffeomorphic lifting approximation sat-
isfies the conditions C1-C6 of Theorem 4.8 under small linearization errors pre-
sented in Table 5.2. This means that an arbitrary system in the Koopman group

follows the dynamics in (5.15) with some unknown matrices A, and B,.
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Figure 5.6 The performance output of the nonlinear system and the Koopman

lifting linearization.

5.3 The Surrogate Q-Learning Stage
5.3.1 Surrogate Q-Learning Setups

After meta-learning stage, diffeomorphic lifting approximation @(x, we) and
the corresponding output matrix C are obtained. The data-driven surrogate Q-
learning is performed for the randomly sampled systems with Q° in (3.39) is

constructed as
ctc o

Q° = . (5.20)
0 1

The surrogate Q-learning parameter is set as s = 1 for all £ > 0, and the

initial feedback gain K| is set to zero.

For each system, 10,000 data points of (x;,u;,4;) are collected, and the
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diffeomorphic lifting approximation ¢(z; wy) transforms the dataset into
D, = {((]B(azl, We), Ui, Vgg(xi; w¢)Tx'i)} = {((;SZ, u;, qb,) } (5.21)

Note that the tuple (gbz-, Uj, qﬁz) satisfies the linear dynamics (5.15). The surro-
gate Q-learning iteration is performed for 50 steps, although the solutions are

converged much earlier.

5.3.2 Surrogate Q-Learning Results

To demonstrate the performance of the surrogate Q-learning, 20 systems
are randomly sampled from the Koopman group G, and run the surrogate Q-
learning for each system. Figure 5.7 presents the learning history of the sur-
rogate Q-learning for all systems in terms of v(Py), which is the number of
eigenvalues with the negative real part of Py, and the differences between each

element of the learned feedback gains and the optimal gain, where
Ki= Ky Kpo|s K= K7 K| (5.22)

The upper plot in Fig. 5.7 illustrates that the initially unstable initial feedback
gain is monotonically stabilized as the iteration progresses The simulation re-
sults demonstrate that the proposed surrogate Q-learning quickly stabilizes the
feedback gain within a small number of iterations less than 5. The convergence
of K} can be confirmed from the middle and lower plots in Fig. 5.7. Figure 5.8
shows the full history of the differences |Kj; — K| and |Kj2 — K3| in a log
scale. It can be observed that the control gain converges within approximately
25 steps with an error of around 10710,

To confirm that the surrogate Q-learning converged to the optimal control,

the analytic optimal control inputs uj, () (5.9), the trained control inputs i, (z),
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and the errors between the two control inputs are presented in Fig. 5.9 for the
systems S, to Sp, in Table 5.2. Figure 5.10 illustrates the phase portraits of
the closed-loop systems using the analytic optimal controller uy(z) and the
trained controller 4y (z) for each system. The results show that the surrogate

Q-learning closely converges to the analytically optimal controller for arbitrary

systems using only the dataset acquired from each system.
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Figure 5.7 The learning history of the surrogate Q-learning for 20 different
randomly sampled systems. The upper plot presents the median number of
eigenvalues with the negative real part of Py, and the middle and lower plots
present the median error between the learned feedback gains and the optimal

gain. The shaded area in each plot denotes the interquartile range (IQR).
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Figure 5.8 The feedback gain convergence histories of the surrogate Q-learning
for 20 different randomly sampled systems. The median errors for each element
between the learned feedback gains and the optimal gain are presented, and the

shaded area denotes the IQR.
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Figure 5.9 The optimal control inputs (left), the learned control inputs (middle),

and the errors between the two (right) for the random systems S, (top) to Sy,

(bottom).
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Chapter 6

Conclusion

6.1 Concluding Remarks

A reinforcement learning algorithm for optimal control problems of dynamic
systems is proposed utilizing a model-free off-policy approach. Widely acknowl-
edged limitation in policy iteration regarding the use of unstable initial poli-
cies can be successfully overcome by the proposed policy iteration algorithm
while maintaining the advantage of easy implementation. This substantial ad-
vancement will considerably broaden the scope of the reinforcement learning
algorithm to accommodate a wide range of dynamic systems including inher-
ently unstable systems. Moreover, meta-learning synthesis can be facilitated
rapid acquisition of nonlinear optimal controllers by the proposed reinforce-

ment learning algorithm, requiring only a small amount of actual data.

In this dissertation, the policy iteration algorithm is improved to accom-
modate unstable policies by redesigning the policy evaluation steps based on
implicitly defined value functions. In the case of linear systems, the implicit
value function corresponds to the unique symmetric solution of a Lyapunov
equation. It is observed that the Kleinman iteration fails to stabilize the un-

stable initial policy. To overcome this limitation, the surrogate Q-learning is
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introduced based on the implicit value function. The off-policy property of the
proposed method enables the use of real data acquired from various control
resources, such as human experts or experimentally obtained stable controllers,
which makes the dataset acquisition processes much safer for dynamic systems
including the aerospace systems.

The aforementioned characteristics and the convergence of the proposed al-
gorithm are thoroughly examined through rigorous theoretical analysis, specif-
ically for linear systems. The monotonic stabilization property of the extended
Kleinman iteration is revealed using the matrix inertia theorem, where the
closed-loop system can be stabilized in a finite number of iterations. The global
convergence to the unique optimal stabilizing solution is rigorously proved based
on the monotonic convergence theorem and the analysis of the local behavior of
the iteration near the symmetric solutions to the ARE. In addition to these the-
oretical guarantee, the convergence property of the algorithm is demonstrated
through illustrative numerical examples, which exhibits rapid convergence in
only a few iterations.

The meta-learning framework is synthesized to apply the proposed reinforce-
ment learning algorithm for linear systems to nonlinear systems. The proper-
ties of Koopman lifting linearization are thoroughly investigated to obtain the
equivalence between the optimal control in the linearized system and in the
original nonlinear system. Based on the theoretical findings, several conditions
for the lifting were presented, and the diffeomorphic lifting approximation and
meta-learning losses are proposed to satisfy the conditions. The feasibility and
the efficacy of the proposed meta-learning framework are demonstrated using

illustrative numerical simulations.

114



6.2 Direction for Further Research

The directions that follow are proposed as potential ways to extend and

build upon the research presented in this dissertation.

Robustness Analysis of Surrogate Q-Learning

As discussed in Section 3.5.2, the proposed data-driven surrogate Q-learning
algorithm possesses a certain level of robustness, although the exact level is un-
clear. The proposed algorithm requires state derivative data that is vulnerable
to external disturbances and estimation noise. Therefore, analyzing the robust-
ness of the algorithm is an important area for future research. The Moore-
Penrose pseudo-inverse currently used in the policy evaluation stage ensures
that the linear equation solution has a minimum norm error. It is necessary to
analyze the physical significance of the surrogate Q-function obtained from the
linear system and determine its impact on algorithm convergence and mono-

tonic stabilization performance.

Relaxed Conditions for the Extended Kleinman Iteration

The analysis of the extended Kleinman iteration currently resides on the
controllability and observability assumptions for the linear systems. However,
it is well-known that the more relaxed stabilizability and detectability assump-
tions are enough to find a stable optimal controller [53]. Several iterative meth-
ods have been developed for the relaxed conditions, although they still require
initial stable policies, see [78] and references therein. This relaxation can be
particularly useful for the Koopman lifting linearization in a higher dimension,

because the linearized system becomes uncontrollable with the mapping that is
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not surjective by Lemma 4.6.

Koopman Groups Identification

The proposed meta-learning framework assumes the existence of a common
subspace that is invariant to the Koopman operator for all systems in the
group. Although uncertainties in the system dynamics, for example, variations
in mass or moment of inertia in aerospace systems, are expected to satisfy this
assumption to a sufficient degree, it is important from a practical control design
perspective to verify whether this assumption holds for the implementation of

the proposed framework.

Meta-Learning Framework for Adaptive Control Synthesis

Even if the Koopman group assumption is satisfied, the nature of deep neu-
ral network learning can leave some residual error in the Koopman lifting lin-
earization. This may cause a performance degradation in surrogate Q-learning
or even make the learned controller unstable. Therefore, it is practical to use
traditional control techniques that can compensate for some level of system un-
certainty when the trained controller is implemented, even after all the learning
processes from meta-learning to surrogate Q-learning are completed. The devel-
opment of a meta-learning framework for adaptive control synthesis is expected

to enable the design of reliable learning-based controllers.
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Appendix A

The Glow Implementation

The single-scale Glow used in this study has a simple form, without the
stepwise scale expansion part for image processing, proposed in the multi-scale
Glow [75]. As shown in Fig. A.1, the Glow has a structure where multiple layers

called Flows are connected in succession.

A.1 Flows

Each Flow of the Glow network is composed of three invertible neural net-
works, which implies that the Flow itself is invertible. The architecture of one
Flow is illustrated in Fig. A.2. In the following section, a detailed description

is provided for each layer that constitutes the Flow.

A.1.1 Activation Layers
Given an input x € R"™, the output of the activation layer is defined by

y=sox+b, (A.1)

where s € R™ and b € R™ are trainable network parameters, and ® denotes

the element-wise product. Given y € R"™, the inverse network produces x € R"
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Figure A.1 The architecture of the Glow.
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Figure A.2 The architecture of a Flow.
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given by

where © is the element-wise division. The log-determinant is given by

det< > ‘ Zlog |sil, (A.3)

log

where s =: [s1,...,5,]T.

A.1.2 1 x 1 Convolution Layers

Given an input z € R", the output y € R™ of the 1 x 1 convolution layer is

defined by

y=Wuz, (A.4)

and the inverse is given by

r=Wly. (A.5)

Here, the invertible matrix W € R™*™ denotes the weight matrix of the convo-

lution network, which is given by its LU decomposition as
W = P(L + I,)(U + diag(s)), (A.6)

where P € R™*" is the permutation matrix, L € R™*" and U € R™*" are the
lower and upper triangular matrices with zero diagonal entries, respectively, and
s € R™. The trainable network parameters are L, U, and s. The log-determinant
is given by

log

det( ) ‘ Zlog |sil, (A7)

where s =: [s1,..., 8,
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A.1.3 Affine Coupling Layers

Given an input z € R", affine coupling layers first partition it with a fixed

size p < n as

x = , (A.8)
Z2

where z1 € RP and xo € R"P. There are two deep neural networks in an affine
coupling layer: s(-;w,) : RP — RP and p(-;wp) : RP — RP, where w, and w,

are the trainable network parameters. Then, the output y € R" is given by

Yy = [yf,yg]T, where

y1 =11 (A.9)

y2 = exp(s(z1;ws)) © xo + t(x1; wy). (A.10)
Given y, the inverse of the network can be obtained as

1 = Y1, (A.ll)

x9 = (y2 — t(y1;wy)) @ exp(s(y1;ws)). (A.12)

The log-determinant is given by

oy\| P
det(ax> ‘ = ;mg |sil, (A.13)

where s(x1;ws) = [s1,...,8p).

log
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