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Abstract 

 

Auxetic metamaterials have garnered great interests of researchers due to their 

counter-intuitive property, a negative Poisson’s ratio. When an auxetic material is 

tensioned, the entire volume expands, whereas a conventional material contracts 

along its sides. This unique characteristic of auxetic metamaterial arises from auxetic 

deformation, where void spaces in unit cells expand under tension. When subjected 

to shear load, however, the materials undergo non-auxetic deformation mode that is 

similar to that of continuum. We focused on these distinct deformation modes of 

auxetic metamaterials to control two mechanical properties. A tension-related 

property would be adjusted by the auxetic deformation mode, whereas the other 

shear-dominant property could be controlled by the non-auxetic deformation mode. 

For the rotating rigid auxetic unit, we presented a design principle to 

simultaneously control in-plane tensile and shear stiffness of the auxetic pattern by 

analyzing the deformation mechanisms. The key design variables are the hinge 

thickness ratio (HR) and the aspect ratio (AR). They play different roles depending 

on the applied load, which enables simultaneous design of the two stiffnesses. 

Based on the design principle, we developed two additional design principles 

for meta-structures, auxetic meta-tube and auxetic meta-disk. The auxetic meta-tube 

was designed to be able to adjust bending and torsional stiffness of tubular structure. 

The numerical and experimental results confirm that the tube stiffness values can be 

independently controlled in a wide area. It can be used to improve the stability and 

performance of a concentric tube robot for minimal invasive surgery. The auxetic 

meta-disk is capable of simultaneous design of the flexural and torsional natural 

frequencies of disk structures, which is crucial in manipulating elastic wave 

propagation. Comprehensive finite element analyses verified that the wave 

propagation in pipes could be controlled over a broadband frequency range. An 

elastic wave mode filter was suggested as an application, which may be useful in 

non-destructive testing. 

The contribution of this work lies in its intuitiveness and applicability across 

various field. The proposed design principles can be easily extended to diverse 

mechanical properties and geometries, and we expect to enable the design of novel 

mechanical metamaterials through this approach. 

 

Keyword: Metamaterial, Auxetic material, Stiffness, Wave propagation 
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List of Figures 

 

Figure 1-1. Deformed configuration of materials subjected to tensile load. (a) 

Positive Poisson’s ratio, and (b) negative Poisson’s ratio. 

Figure 1-2. Auxetic deformation modes of three representative auxetic patterns. 

Deformed configurations of (a) reentrant, (b) rotating rigid unit, and (c) 

chiral auxetic patterns are shown under tensile loading. In auxetic 

deformation mode, the internal void space expands when subjected to 

tensile load to exhibit a negative Poisson’s ratio. 

Figure 1-3. Non-auxetic deformation mode of three representative auxetic patterns. 

Deformed configurations of (a) reentrant, (b) rotating rigid unit, and (c) 

chiral auxetic patterns are shown under shear loading.The unit cells are 

deformed similar to a continuum. 

 

Figure 2-1. Auxetic and non-auxetic deformation modes of rotating rigid auxetic 

patterns. Auxetic deformation modes of (a) rectangular, (b) triangular, 

and (c) hexa-triangular patterns and non-auxetic deformation modes of 

(d) rectangular, (e) triangular, and (f) hexa-triangular patterns are shown. 

Figure 2-2. Point hinge and slit-pattern auxextics. The hinges are applied by a certain 

width by perforating narrow slit holes. 

Figure 2-3. Auxetic deformation of slit-pattern auxetics. The auxetic deformation 

mode is sustained in the slit-pattern auxetics, where the rectangles rotate 

alternatively due to their geometrical connectivity under tension. 

Figure 2-4. Non-auxetic deformation of slit-pattern auxetics. The deformed 

configuration confirms that the non-auxetic deformation mode of the 

point hinge auxetics remains. A continuum-like shear deformation 

appear in both point hinge pattern and slit-pattern auxetics. 

Figure 2-5. Definition of slit-pattern auxetic unit cell. Four subunits consist in a 

auxetic unit cell, and each subunits are defined by two design variables, 

HR and AR. Slit thickness ratio is constant in this study as 0.1. The slit 

thickness is uniform so that the changes in the design variables do not 

affect the slit thickness. 
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Figure 2-6. Unit cell variation with changing design variables. (a) HR variation, and 

(b) AR variation. The unit length (w) is set as constant, so AR affects 

only its height. 

Figure 2-7. Definition of in-plane stiffness. (a) Tensile and (b) shear stiffness. In 

tensile case, the bottom edge is constrained and normal displacements 

are applied at the top of the material. In shear case, the outer edges are 

subjected to a shear displacement to represent pure shear deformation. 

Figure 2-8. Mechanism of auxetic and non-auxetic deformation modes of rotating 

rigid auxetic pattern. (a) Auxetic deformation mode, and (b) non-auxetic 

deformation mode. In the auxetic deformation mode, the rectangles 

rotate in the opposite direction with the adjacent rectangles, and in the 

non-auxetic deformation mode, the rectangles do not rotate but 

themselves deform. 

Figure 2-9. Schematics and unit cell shape according to the variation in HR in auxetic 

deformation mode. As HR increases, the rotational hinges become stiff. 

Example unit cell designs of (a) HR = 0.3, (b) HR = 0.5, and (c) HR = 

0.7 are shown. 

Figure 2-10. Illustration of relation between aspect ratio AR and rotation angle θ. 

Left figure represents the variables when the unit cell rotates. Each 

curve in the right figure shows the relations of AR and θ. AR* located 

on the lateral axis is an example of the limit aspect ratio of unit cell to 

generate specific elongation rate. 

Figure 2-11. Schematics and unit cell shape according to the variation in AR in 

auxetic deformation mode. As AR increases, larger rotation angle is 

required to reach a certain displacement. Example unit cell designs of 

(a) AR = 2-1, (b) AR = 20, and (c) AR = 21 are shown. 

Figure 2-12. Schematics and unit cell shape according to the variation in HR in non-

auxetic deformation mode. HR represents the length of connectors 

rather than rotational rigidity. Example unit cell designs of (a) HR = 0.3, 

(b) HR = 0.5, and (c) HR = 0.7 are shown 

Figure 2-13. Deformed shapes with the variation in AR. (a) As AR increases, the 

overall deformed shape of the unit cells becomes bending-like 
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configuration, which is flexible than pure shear deformation. (b) Clear 

difference of the side edges of the unit cells is observed in the scale-

down configurations. 

Figure 2-14. Schematics and unit cell shape according to the variation in AR in non-

auxetic deformation mode. AR determines the deformed shape of 

subunits. As AR value is apart from 20 further, subunits experience 

beam-like flexural shear deformation. Example unit cell designs of (a) 

AR = 2-2, (b) AR = 2-1, and (c) AR = 20 are shown. 

Figure 2-15. Mesh convergence test. (a) Strain energy graph as a function of the 

minimum mesh size ratio. (b) Mesh resolution. The minimum mesh 

ratio of 0.01 was enough for a converged solution. 

Figure 2-16. In-plane tensile stiffness adjustment by changing HR. Each curve 

corresponds to a constant AR value. The lateral and vertical axes 

represent the design variable HR and the normalized tensile stiffness, 

respectively. As HR increases, higher rigidity of rotational hinges is 

assumed, therefore the tensile stiffness increases. 

Figure 2-17. Schematics and normal stress distribution with the change in HR. 

Relative normal stress distribution in the y-direction is plotted next to 

schematic figure. (a) HR = 0.1, (b) HR = 0.3, and (c) HR = 0.5. The 

color map is ranged from blue for a negative stress, and to red for a 

positive stress. 

Figure 2-18. In-plane tensile stiffness adjustment by changing AR. Each curve 

corresponds to a constant HR value. As AR increases, larger rotational 

angle is required, therefore the tensile stiffness increases. 

Figure 2-19. Schematics and normal stress distribution with the change in AR. 

Relative normal stress distribution in the y-direction is plotted next to 

schematic figure. (a) AR = 2-2, (b) AR = 2-1, and (c) AR = 20. The color 

map is ranged from blue for a negative stress, and to red for a positive 

stress. 

Figure 2-20. In-plane shear stiffness adjustment by changing HR. Each curve 

corresponds to a constant AR value. As HR increases, longer connector 

width occupies, therefore the shear stiffness increases. 
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Figure 2-21. Schematics and shear stress distribution with the change in HR. Relative 

shear stress distribution is plotted next to schematic figure. (a) HR = 0.1, 

(b) HR = 0.3, and (c) HR = 0.5. The color map is ranged from blue for 

a negative stress, and to red for a positive stress. 

Figure 2-22. In-plane tensile stiffness adjustment by changing AR. Each curve 

corresponds to a constant HR value. As AR value is closer to 20, shear-

dominant deformation appears resulting a higher shear stiffness. 

Figure 2-23. Schematics and shear stress distribution with the change in AR. Relative 

shear stress distribution is plotted next to schematic figure. (a) AR = 2-

2, (b) AR = 2-1, and (c) AR = 20. The color map is ranged from blue for 

a negative stress, and to red for a positive stress. 

Figure 2-24. 45-degree rectangular pattern. (a) The original pattern. (b) 45-degree 

rectangular pattern. 

Figure 2-25. Force state of 45-degree pattern under tension. (a) In the original 

coordinate. (b) In the rotated coordinate. 

Figure 2-26. Force state of 45-degree pattern under shear. (a) In the original 

coordinate. (b) In the rotated coordinate. 

Figure 2-27. In-plane tensile stiffness adjustment of 45-degree pattern. The tensile 

stiffness adjustment according to the variation of (a) HR and (b) AR, 

and the shear stiffness adjustment according to the variation of (c) HR 

and (d) AR. 

Figure 2-28. Explanation of shear stiffness varation of 45-degree pattern. The 

varaition of the normal stiffness in (a) y-direction and (b) x-direction of 

the original pattern. (c) the variation of C33 component of elasticity 

matrix of the tilted patterns. 

Figure 2-29. Explanation of tensile stiffness varation of 45-degree pattern. (a) The 

varaition of the averaged normal stiffness, (b) the shear stiffness 

variation of the original pattern, and (c) the variation of C22 component 

of elasticity matrix of the tilted patterns. 

 

Figure 3-1. Loading status of cross-section of auxetic meta-tube. The deformed 

configuration of auxetic meta-tubes and the loading status of the cross-
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section are present for (a) bending, and (b) torsional deformation. 

Figure 3-2. Consisting of auxetic meta-disk. Six auxetic unit cell is arranged in the 

circumferential direction to build a auxetic unit layer, and the layers are 

stacked axially to form an auxetic meta-tube. 

Figure 3-3. Various examples of auxetic meta-tube. 

Figure 3-4. Convergence test on the number of unit cell in circumferential direction, 

n. The lateral axes represent n, which is double of the value of the 

number of the unit cells. n of 12 (six unit cells) was enough to minimize 

the curvature effect of the auxetic meta-tube. 

Figure 3-5. Convergence test on the number of unit cell layers, m. The lateral axis 

represent m, which is double of the value of the number of the unit layers. 

m of 80 (40 unit layers) for 1 m length tube was enough to ignore the 

boundary effect in the case of AR equal to 20. 

Figure 3-6. Analysis model of auxetic meta-disk. (a) Tie constraint connecting the 

master node and the top edges, (b) mesh resolution, and (c) six-node 

shell element. The bottom edges of the meta-tube were fixed, and small 

prescribed bending and torsional rotations are applied at the master node. 

Figure 3-7. Convergence test on the mesh size with varying the maximum element 

size. The left figure represents stiffness value convergence and the right 

figure shows the stiffness difference between the mesh sizes. 0.08 for 

the minimum mesh size was enough for a converged solution. 

Figure 3-8. Auextic meta-tube specimens. The auxetic meta-tubes are fabricated by 

high-resolution laser cutting. 

Figure 3-9. Bending modal test. An auxetic tube specimen is hung by two free-end 

hooks to produce free-end boundary condition. An accelerometer 

located at the center of the tube measures the responses produced by an 

impact hammer. 

Figure 3-10. Torsional modal test. The specimen is placed on two supports located 

at the end of the tube. Two magnetostrictive patch transducers are 

installed at one-third and two-thirds points along the tube length, one of 

which generates torsional impact pulses and the other one measures 

responses. 
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Figure 3-11. Adjustment of bending stiffness of auxetic meta-tube. Each curve 

represents a constant the other design variable. (a) HR variations, and 

(b) AR variations. X-markers denote the experimental results, and the 

color curve indicate the corresponding numerical results. 

Figure 3-12. Schematics and normal stress distribution with the change in design 

variables. (a) HR variations, and (b) AR variations. High level of stress 

occurs in the large HR unit cell and in the large AR unit cell. 

Figure 3-13. Adjustment of torsional stiffness of auxetic meta-tube. Each curve 

represents a constant the other design variable. (a) HR variations, and 

(b) AR variations. X-markers denote the experimental results, and the 

color curve indicate the corresponding numerical results. 

Figure 3-14. Schematics and shear stress distribution with the change in design 

variables. (a) HR variations, and (b) AR variations. High level of stress 

occurs in the large HR unit cell and in the unit cell of AR equal to 20. 

Figure 3-15. Designable tube stiffness area. Solid and dotted lines represent the 

constant HR and AR values, respectively. A wide designable stiffness 

area is achieved. 

Figure 3-16. Independent torsional stiffness control. (a) Bending stiffness contour, 

and (b) the examples of meta-tube designs, where the bending stiffness 

values are constant but the torsional stiffness values vary. 

Figure 3-17. Independent bending stiffness control. (a) Torsional stiffness contour, 

and (b) the examples of meta-tube designs, where the torsional stiffness 

values are constant but the bending stiffness values vary. 

Figure 3-18. Triangular and hexa-triangular rotating rigid unit cell. Eight triangular 

subunits compose (a) triangular unit cell, and two triangular and one 

hexagonal subunits constitute (b) hexa-triangular unit cell. Two design 

variables, HR and AR, define the unit cells. In both figures, the unit 

length was assumed to be 1 for simplicity. 

Figure 3-19. Independent torsional stiffness control with triangular pattern. (a) 

Bending stiffness contour, and (b) the examples of triangular pattern 

meta-tube designs. 

Figure 3-20. Independent bending stiffness control with triangular pattern. (a) 
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Torsional stiffness contour, and (b) the examples of triangular pattern 

meta-tube designs. 

Figure 3-21. Independent torsional stiffness control with hexa-triangular pattern. (a) 

Bending stiffness contour, and (b) the examples of hexa-triangular 

pattern meta-tube designs. 

Figure 3-22. Independent bending stiffness control with hexa-triangular pattern. (a) 

Torsional stiffness contour, and (b) the examples of hexa-triangular 

pattern meta-tube designs. 

Figure 3-23. Construction of auxetic meta-tube with tilted auxetic unit cell. 

Figure 3-24. Uncontinuity of hinges. 

Figure 3-25. Auxetic meta-tube with 45-degree pattern. (a) AR = 2-1, (b) AR = 20, 

and (c) AR = 21. 

Figure 3-26. Normalized bending and torsional stiffness adjustment of 45-degree 

pattern. The bending stiffness adjustment according to the variation of 

(a) HR and (b) AR, and the torsional stiffness adjustment according to 

the variation of (c) HR and (d) AR. 

 

Figure 4-1. Utilizing load-dependent deformation modes in vibration of disk 

sturcutre. The displacement fields of the flexural and torsional mode 

shapes of a disk structure are illustrated with quivers. Each colored 

square in the mode shapes denotes the unit cell showing its deformation 

type. 

Figure 4-2. Auxetic meta-disk composition. Two auxetic unit cell form a unit sector, 

which is arranged circumferentially to establish an auxetic meta-disk. 

The auxetic meta-disks are placed on a host pipe to form the entire meta-

structure. 

Figure 4-3. Definition of auxetic meta-disk. (a) Dimensions for the definition, the 

unit cell variation by the change in (b) AR, and (c) HR. Note that the 

height of a subunit (h) is set constant, so the circumferential length of 

the unit cell decreases as AR increases. 

Figure 4-4. FE model for normal mode analysis. (a) Finite element model of the 

auxetic meta-disk sector, (b) ten-node tetrahedral element, and (c) 
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resolution of the mesh. At the red-colored faces in both sides, cyclic 

symmetry condition is applied, and the inner faces are constrained. 

Figure 4-5. Mode shapes and natural frequency comparison between the full disk 

model and the sector disk model. The normalized total displacement 

distribution is plotted. The natural frequencies of the full and the sector 

models are almost coincident which ensures the validity of the usage of 

the sector model. 

Figure 4-6. FE model for dispersion analysis. The sector model of auxetic meta-disk 

is attached on a sector host pipe. Floquet periodic boundary condition 

for dispersion analysis is applied at the pink-colored faces at the front 

and the back of the sector pipe. 

Figure 4-7. Forming dispersion curves via dispersion analysis. (a) The results of 

dispersion analysis are obtained as eigenfrequencies and corresponding 

mode shapes for a given wavenumber. (b) The points whose mode is the 

same are connected to draw dispersion curves. 

Figure 4-8. Calculated mode shapes for an example wavenumber, 0.2 pi (rad/m). 

Each point which lies vertically is corresponding to each mode. (a) Out-

of-phase mode, (b) 2nd torsional mode, (c) 1st flexural mode, (d) out-

of-phasemode, (e) and (f) coupled mode. Note that the azimuthal mode 

number was set as one, so the mode shape of the entire disk has phase 

variance of 2 pi along to the circumferential direction. 

Figure 4-9. FE model for transmission analysis. From four to twelve auxetic meta-

disks with the host pipe are arranged. Waveguides are attached at the 

front and back of the meta-disk array. At the end of the waveguides, 

perfectly matched layer (PML) was applied to inhibit reflected wave. 

Figure 4-10. Convergence test on the minimum mesh size. The vertical and lateral 

axis represent the solution (reaction force) and 1/γ and corresponding 

the number of the used elements. 

Figure 4-11. Convergence test on the minimum mesh size. The vertical and lateral 

axis represent the solution (reaction force) and 1/γ and corresponding 

the number of the used elements. 

Figure 4-12. Adjustment of flexural natural frequency of auxetic meta-disk. Each 
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curve represents a constant the other design variable. (a) HR variations, 

and (b) AR variations. As HR and AR values increase, the flexural 

natural frequencies increase. 

Figure 4-13. Schematics and radial stress distribution with the change in design 

variables. (a) HR variations, and (b) AR variations. Higher level of 

stress occurs when HR and AR increase. 

Figure 4-14. Adjustment of torsional natural frequency of auxetic meta-disk. Each 

curve represents a constant the other design variable. (a) HR variations, 

and (b) AR variations. As HR increase and AR is closer to 20, the 

torsional natural frequencies increase. 

Figure 4-15. Schematics and shear stress distribution with the change in design 

variables. (a) HR variations, and (b) AR variations. Higher level of 

stress occurs when HR increase or AR is closer to 20. 

Figure 4-16. Bandgap formation. Band structures for (a) flexural and (b) torsional 

modes of an example meta-disk (AR=20 and HR=0.3). The blue and 

yellow areas correspond to the bandgaps. 

Figure 4-17. Mode shapes for the points located in the bandgaps. (a) Flexural, and 

(b) torsional modes. (iii) is the out-of-phase mode and (iv) is the radial 

mode which do not affect forming bandgaps. 

Figure 4-18. Designable bandgap range. The bandgaps in the two modes are denoted 

with blue and yellow color bar, respectively. The lower and upper 

frequencies of each bar represent the bandgap opening and closing 

frequency. The lateral axis represents the variation of AR and the values 

of HR are set constant in each subfigure as (a) 0.1, (b) 0.3, (c) 0.5, and 

(d) 0.7, respectively. 

Figure 4-19. Bandgap variation with the changes in the distance of auxetic meta-

disks. Band structures are plotted with bandgaps denoted with colored 

area for (a) flexural and (b) torsional mode. As the distance between the 

meta-disks increases, the mass ratio is reduced, resulting the bandgap 

closing frequency goes down. 

Figure 4-20. Bandgap comparison between the double distance model and the half 

thickness model. In the double distance model, the starting and ending 
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frequency of the bandgaps are (212 Hz, 270 Hz) and (120 Hz, 193 Hz) 

for flexural and torsional modes, respectively, and in the half thickness 

model, the bandgap frequencies are (211 Hz, 267 Hz) and (120 Hz, 192 

Hz) for flexural and torsional modes, respectively. 

Figure 4-21. Wave transmission in bandgaps. (a) Flexural and (b) torsional wave. It 

was observed that the transmission values were sharply reduced in the 

bandgaps, especially near the bandgap opening frequency. The out-of-

phase or radial mode existing in the bandgap do not significantly reduce 

the attenuation efficiency. 

Figure 4-22. FRF of the different number of meta-disks. (a) Flexural and (b) torsional 

responses calculated by transmission analysis are plotted. Larger 

number of the meta-disks produces lower transmission values. 

Figure 4-23. Elastic wave mode filtering application. (a) The meta-disk unit cell 

designs of the samples with the design parameters represented as a set 

of (AR, HR) and the bandgap formation of the samples are displayed, 

and (b) the deformed configurations with the normalized displacement 

distribution are illustrated. 

 

Figure A-1. Frequency Response Functions (FRFs) of the auxetic tubes imposed an 

impact force. The marked frequencies indicate the first mode bending 

natural frequencies of the tubes. The vertical axis refers magnitude in 

decibel unit. 

Figure A-2. Frequency Response Functions (FRFs) of the auxetic tubes imposed a 

torsional impact force. The marked frequencies indicate the first mode 

torsional natural frequencies of the tubes. 

Figure A-3. Normal stress distribution in auxetic tube unit cell under bending load. 

The sizes of the unit cells are normalized to be the same to the unit cell 

with AR = 20. 

Figure A-4. Normal stress distribution in auxetic tube unit cell under bending load 

(continued). 

Figure A-5. Shear stress distribution in auxetic tube unit cell under torsional load. 

Figure A-6 Shear stress distribution in auxetic tube unit cell under torsional load 
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(continued). 

Figure A-7. Frequency comparison between FE static, normal mode analysis and 

experiment. a) 1st bending mode frequencies, and b) 1st torsional mode 

frequencies. 

Figure A-8. Feasible stiffness region of rectangular unit auxetic tube. The solid and 

dashed lines indicate constant AR, and HR respectively. 

Figure A-9. Feasible stiffness region of triangular unit auxetic tube. 

Figure A-10. Feasible stiffness region of hexa-triangular unit auxetic tube. 

 

  



 

 １７ 

List of Tables 

 

Table 3-1. Comparison of numerical and experimental result of the natural 

frequencies of auxetic tubes. The subscripts B and T indicate the 

bending and torsional modes, respectively, and FE and EXP denote the 

numerical and experimental data, respectively. 

Table 3-2. Normalized tube stiffness and stiffness ratio. 

 

Table 4-1. Notated, actual AR values and corresponding the number of the unit cell 

in circumferential direction, nc. 

Table 4-2. Minimum and average transmission values in the bandgap. The design 

parameters are set as AR is equal to 20 and HR is 0.3. 

 

Table A-1. Normalized bending stiffness of rectangular pattern. 

Table A-2. Normalized torsional stiffness of rectangular pattern. 

Table A-3. Normalized bending stiffness of triangular pattern. 

Table A-4. Normalized torsional stiffness of triangular pattern. 

Table A-5. Normalized bending stiffness of hexa-triangular pattern. 

Table A-6. Normalized torsional stiffness of hexa-triangular pattern. 

Table A-7. Natural frequency and bandgap frequencies of the auxetic disk. HR is 

constant as 0.1. 

Table A-8. Natural frequency and bandgap frequencies of the auxetic disk. HR is 

constant as 0.3. 

Table A-9. Natural frequency and bandgap frequencies of the auxetic disk. HR is 

constant as 0.5. 

Table A-10. Natural frequency and bandgap frequencies of the auxetic disk. HR is 

constant as 0.7. 

 

  



 

 １８ 

Chapter 1. Introduction 

 

 

1.1. Background 

 

Auxetic material refers to a metamaterial that has been designed to possess a 

negative Poisson's ratio. This ratio is defined as the ratio of the displacement 

perpendicular to an applied force to the displacement in the direction of the force. 

While typical materials with a positive Poisson's ratio contract in the direction 

perpendicular to the applied force, auxetic materials with a negative Poisson's ratio 

expand in all directions, including the perpendicular direction. (Figure 1-1) This 

unique property of auxetic materials arises from the widening of empty spaces inside 

the material under tension1. 

 

 

Figure 1-1. Deformed configuration of materials subjected to tensile load. (a) 

Positive Poisson’s ratio, and (b) negative Poisson’s ratio. 

 

The special properties of auxetic materials have garnered the interest of many 

researchers. Since the first report of a foam structure with a negative Poisson's ratio2, 

materials with a negative Poisson's ratio have been named "auxetic materials”3, and 

various auxetic materials and fabrication methods have been reported4-10. In the 

scope of metamaterials, much research has been conducted to design auxetic unit 
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cell which are artificially designed to have a negative Poisson’s ratio. Representative 

auxetic unit cells of auxetic materials include reentrant, rotating rigid unit, and chiral 

structures, each with a different deformation mechanism under tensile loading as 

shown in Figure 1-2. For the reentrant structures, thin ribs are unfolded. Masters and 

Evans predicted elastic constants of reentrant honeycombs11, Theocaris et al. 

analytically investigated negative Poisson’s ratio of star-shaped reentrants12, and 

Smith et al. introduced reentrant model to explain a negative Poisson’s ratio of 

auxetic foams13. The rotating rigid units show polygonal unit cells rotating 

alternatively by point hinges. Grima et al. proposed analytical models of rotating 

rigid units for squares14, rectangles15, and triangles16, and a semi-rigid rotating unit 

was proposed by Grima17. Chiral structures have ligaments attached at cores, which 

bent under tensile load. Prall et al. proposed two dimensionally chiral honeycomb 

having a Poisson’s ratio of -1 in a wide strain range18, Grima et al. presented tetra-

chiral structure that has a negative Poisson’s ratio and investigated the variation of 

Poisson’s ratio while adjusting the unit cell design19, and Spadoni et al. analytically 

investigated elasto-static micropolar behavior of a chiral structure20. 

 

 

Figure 1-2. Auxetic deformation modes of three representative auxetic 

patterns. Deformed configurations of (a) reentrant, (b) rotating rigid unit, and (c) 

chiral auxetic patterns are shown under tensile loading. In auxetic deformation 

mode, the internal void space expands when subjected to tensile load to exhibit a 

negative Poisson’s ratio. 
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The utilization of the auxetic deformation mode to enhance various material 

properties has been explored in numerous applications. Analytical and numerical 

simulations of truss-like structures were carried out by Scarpa et al., investigating 

their mechanical properties in the context of structural stiffness adjustment21. Fu et 

al. put forward the concept of a reinforced reentrant unit cell with a rhombic 

honeycomb insert22, and Ren et al. developed metallic auxetic tubes with adjustable 

mechanical and buckling properties23. Rossiter et al. employed a shape memory 

polymer in auxetic structures to regulate their stiffness24, while Zhu et al. utilized 

composite materials for similar purposes25. A proposition for hierarchical auxetic 

meta-structures to reinforce the stiffness of auxetic lattices was made by Rayneau-

Kirkhope et al26. 

In terms of modulating dynamic characteristics, Javid et al. suggested the use 

of rotating rigid auxetic metamaterials with minimal porosity for vibration control, 

a concept which was experimentally verified27. A numerical study by Imbalzano et 

al. on the blast loading of an auxetic composite panel showed a reduction in impact 

energy by up to 70% in comparison to a monolithic panel28. Scarpa proposed a 

reentrant sandwich panel that demonstrated enhanced dynamic performance29. 

Auxetic deformation mode has also been employed to regulate wave 

propagation. Liu et al. put forward a chiral meta-composite that exhibited a low-

frequency bandgap30, while Deng et al. created a rotating rigid auxetic structure with 

copper inclusions to achieve non-dispersive elastic wave propagation31. Tee et al. 

proposed tetra-chiral auxetic structures with the ability to adjust the formation of 

bandgaps32. 
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1.2. Key idea 

 

Auxetic metamaterials have been designed to exhibit specific behaviors under 

tensile and compressive loads. They are extensively researched as a means of 

controlling structural rigidity using these specific behaviors. However, in many 

practical applications, besides tensile and compressive loads, shear deformation due 

to shear loads is also often required to be considered. Objects such as airplane airfoils, 

car suspensions, and robot arms are subjected to a combination of loads, including 

tension, compression, shear, bending, and twisting. Therefore, the consideration of 

the shear stiffness of auxetic metamaterials is an essential part of their design. 

While auxetic units are not designed to be deformed by shear loads, non-auxetic 

deformation similar to that of the continuum occurs during shear. For example, the 

auxetic deformation of the rotating rigid unit during tension is that the polygon of 

the unit is rigidly rotated to widen the internal space. However, during shear, the unit 

itself is deformed similar to the continuum, rather than undergoing auxetic 

deformation as shown in Figure 1-3. This deformation mode of the auxetic pattern 

shows load-dependent behavior in which the deformation mode varies depending on 

the direction of the load. 

 

 

Figure 1-3. Non-auxetic deformation mode of three representative auxetic 

patterns. Deformed configurations of (a) reentrant, (b) rotating rigid unit, and (c) 

chiral auxetic patterns are shown under shear loading.The unit cells are deformed 

similar to a continuum. 
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Utilizing this feature, the mechanical properties of auxetic metamaterials in 

both directions can be adjusted simultaneously using each deformation mode. Thus, 

the deformation mode of the auxetic pattern may play a crucial role in controlling 

the mechanical properties of auxetic metamaterials under combined loads. The 

consideration of the shear stiffness and load-dependent behavior of auxetic 

metamaterials may be crucial for their practical application in various fields. 
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1.3. Objectives 

 

In this study, the first objective is to derive a design principle that allows the 

simultaneous control of the mechanical properties in two directions of a structure 

using the load-dependent deformation mode of auxetic patterns. Two key design 

variables, HR and AR, were defined for the rotating rigid unit cell, taking into 

consideration the auxetic deformation. The deformation mechanism of the unit cell 

under tensile and shear load were investigated for adjustment of the stiffness. 

The second objective of this study is to design two meta-structures, auxetic 

meta-tubes and auxetic meta-disks, that can solve actual engineering problems based 

on the design methodology for independent control of mechanical properties. The 

auxetic meta-tube is made by perforating the surface of a tube with auxetic patterns, 

which allows for simultaneous control of its bending and torsional stiffness. The 

bending and torsional stiffness of the tube are known to play a crucial role in the 

stability and performance of concentric tube robots used in minimally invasive 

surgery. The auxetic meta-disk is a disk-shaped structure with holes in the axial 

direction of the auxetic pattern, allowing for simultaneous control of the natural 

frequencies of its flexural and torsional modes. It functions as a local resonator by 

being attached a host structure to form a bandgap which is a frequency range where 

wave cannot propagate. Independent adjustment of natural frequencies in the two 

modes enables to control the wave propagation in each mode, therefore, the meta-

disk can selectively control the transmission of elastic waves depending on the mode 

that excites in the host structure, functioning as a filter. 
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1.4. Research outline 

 

In Chapter 2, we propose the design principle of rotating rigid auxetic pattern 

for simultaneous control of its in-plane tensile and shear stiffness. We investigate the 

load-dependent deformation characteristics of the rotating rigid pattern, and suggest 

the definition of the slit-type auxetic unit cell. The auxetic and non-auxetic 

deformation modes are analyzed, and the design principle of the auxetic unit cell was 

proposed for each mode. We performed finite element analysis to validate the 

feasibility of the idea, and the results confirmed wide controllability of the two in-

plane stiffness values. 

In Chapter 3, the load-dependent deformation modes of auxetic pattern is 

utilized to simultaneously adjust bending and torsional stiffness of tubular structure. 

The necessity of controlling tube stiffness for biomedical devices is present. We 

suggest auxetic meta-tube which is composed by perforating auxetic pattern onto 

tube surface. Finite element analysis and modal test were employed to verify the 

concept, and a wide designable stiffness area was obtained and the design principle 

for independent tube stiffness control was presented. The generality of this design 

concept is demonstrated with additional tube designs utilizing other rotating rigid 

units. 

In Chapter 4, the concept of using load-dependent deformation modes is applied 

to manipulate elastic wave propagating in pipes. With the limitation of the existing 

previous research, we propose auxetic meta-disk which behaves as a local resonator 

on a pipe and enables to simultaneously control propagation of the elastic wave in 

flexural and torsional wave by generating forbidden bands, bandgaps. Background 

theory is present to understand the physics of wave propagation in a pipe with local 

resonators. The definition of the unit cell of the auxetic meta-disk is present, and the 

design principle to adjust the wave propagation characteristics is suggested. Finite 

element analysis result shows that the two wave modes can be effectively 

manipulated to be propagated or to be blocked. The factor to affect attenuation 

efficiency in a bandgap was also investigated. For a practical application, we suggest 
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an elastic wave mode filter and some examples are demonstrated. 
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Chapter 2. Simultaneous adjustment of in-plane 

stiffness of auxetic metamaterials 

 

 

2.1. Rotating rigid auxetic unit cell 

 

The auxetic deformation mode of auxetic patterns is designed to arise under 

tensile load. When an auxetic pattern is subjected to shear load, non-auxetic 

deformation mode which is similar to the behavior of continuum appear. Three 

representative auxetic patterns - reentrant, rotating rigid unit, and chiral - exhibit 

auxetic and non-auxetic deformations, as shown in Figures 1-2 and 1-3. Among them, 

the rotating rigid unit undergoes rigid body rotation of polygonal subunits due to 

hinge connectivity in auxetic deformation, while in non-auxetic deformation, the 

polygon itself deforms rather than the rigid body rotating. The other two patterns are 

connected by thin ligaments, which pose difficulties in achieving high stiffness or 

practical fabrication. However, the rotating rigid unit, with its interconnected 

polygons with areas, offers the advantage of achieving relatively high stiffness and 

ease of fabrication. 

The hinges connecting the polygons of the unit cell are basically point hinges, 

but the unit cell shape can be modified by applying a certain width to create a slit-

type auxetic pattern. In this case, auxetic pattern formation is possible by machining 

thin slit-shaped holes. Therefore, this study sets the rotating rigid unit as the basic 

auxetic unit cell. Rotating rigid units are formed by connecting the same or two or 

more types of polygons via hinges, and various auxetic patterns exist depending on 

the type of polygon. Figure 2-1 displays the auxetic and non-auxetic deformation 

modes of rectangular, triangular, and hexa-triangular patterns. 
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Figure 2-1. Auxetic and non-auxetic deformation modes of rotating rigid 

auxetic patterns. Auxetic deformation modes of (a) rectangular, (b) triangular, and 

(c) hexa-triangular patterns and non-auxetic deformation modes of (d) rectangular, 

(e) triangular, and (f) hexa-triangular patterns are shown. 

 

2.1.1. Conversion to slit-type rotating rigid auxetics 

 

The basic auxetic pattern consists of point hinges, which can be challenging to 

implement. Therefore, in this study, a certain width is applied to the hinge portion, 

and the space between the polygons is assumed to be a thin slit shape, utilizing slit 

pattern auxetics (Figure 2-2). The shape of the space between the polygons can be 

determined in various forms, including the slit shape hole used in this study, elliptical 

shape33, and peanut shape34. The slit shape hole has a lower porosity compared to 

other patterns, allowing for relatively higher stiffness. Additionally, its simple form 

and reduced cutting amount during drilling make fabrication relatively easier. 
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Figure 2-2. Point hinge and slit-pattern auxextics. The hinges are applied by a 

certain width by perforating narrow slit holes.  

 

The auxetic and non-auxetic deformation shapes of point hinge auxetics and 

slit-type auxetics are shown in Figures 2-3 and 2-4 below. It can be observed that the 

auxetic deformation mode, in which the polygon units rotate rigid-like around the 

hinge, is also present in slit pattern auxetics. In the non-auxetic deformation mode, 

the deformation of the polygons themselves can also be seen, similar to point hinge 

auxetics. Thus, it can be confirmed that the load-dependent deformation mode of 

auxetic patterns remain valid in the slit pattern auxetics. 
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Figure 2-3. Auxetic deformation of slit-pattern auxetics. The auxetic 

deformation mode is sustained in the slit-pattern auxetics, where the rectangles 

rotate alternatively due to their geometrical connectivity under tension. 

 

 

Figure 2-4. Non-auxetic deformation of slit-pattern auxetics. The deformed 

configuration confirms that the non-auxetic deformation mode of the point hinge 

auxetics remains. A continuum-like shear deformation appear in both point hinge 

pattern and slit-pattern auxetics. 
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2.1.2. Unit cell definition 

 

Considering the behavior of the unit cell during auxetic deformation, two key 

design variables, HR (hinge thickness ratio) and AR (aspect ratio), were defined as 

shown in Figure 2-5. During auxetic deformation, the rectangles within the unit cell 

rotate due to the rotational hinge, and the rotational rigidity of this hinge plays a 

crucial role in determining the stiffness of the auxetic deformation mode. The design 

variable HR is defined as tw/w or th/h, and as this value increases, the thickness of 

the hinge increases, leading to an increase in rotational rigidity. The definition of 

design variable HR and the changes in the unit cell shape due to variations in HR are 

shown in Figure 2-6a. 

The rotation angle of the rectangles within the unit cell will also determine the 

stiffness of the auxetic deformation mode. Even if two arbitrary unit cells have the 

same rotational rigidity, their stiffness will be proportional to the difference in 

rotation angles required to reach a certain displacement depending on the rectangle 

shape. The design variable AR determines the shape of the rectangle and is defined 

as h/w. The definition of AR and the changes in the unit cell shape due to variations 

in AR are shown in Figure 2-6b. 

 

 

Figure 2-5. Definition of slit-pattern auxetic unit cell. Four subunits consist in a 

auxetic unit cell, and each subunits are defined by two design variables, HR and 

AR. Slit thickness ratio is constant in this study as 0.1. The slit thickness is uniform 

so that the changes in the design variables do not affect the slit thickness. 
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AR =
h

w
 (1) 

HR =
tw

w
=

th

h
 (2) 

 

 

Figure 2-6. Unit cell variation with changing design variables. (a) HR variation, 

and (b) AR variation. The unit length (w) is set as constant, so AR affects only its 

height. 

 

The design variable determining the width of the narrow-slit holes is SR (slit 

thickness ratio). This variable may affect the rotational rigidity because the width of 

the slit is equal to the width of the hinges. Therefore, increasing SR may reduce the 

rotational rigidity of the hinge resulting lower tensile stiffness, however, we use the 

constant value of 0.1, so that the rotational rigidity would have been only affected 

by one design parameter, HR. 
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2.2. Definition of in-plane stiffness 

 

Rotating rigid auxetic unit cell is a 2D pattern formed in planes or curved planes. 

The in-plane tensile stiffness is defined as the effective normal stress divided by the 

effective normal strain when the top of the unit cell is subjected a small prescribed 

displacement in y-direction and the bottom are fixed, as shown in Figure 2-7a. We 

considered small displacement to limit the scope of this study as the linear regime, 

and further research can be followed to investigate nonlinear stiffness variation. The 

in-plane shear stiffness is defined by the effective shear stress divided by the 

effective shear strain when the unit cell is under pure shear state as shown in Figure 

2-7b. We utilized the homogenization method which applies periodic boundary 

condition with shear strain at a pair of edges of the unit cell. The displacements of 

the edges are assumed as the below Equations, 

 

usrc – udst  =  upre (3) 

vsrc – vdst  =  vpre (4) 

 

where u and v denote the displacement of nodes in the global x- and y-direction and 

the subscripts ‘src’ and ‘dst’ represent source and destination nodes, respectively, and 

‘pre’ denotes the prescribed displacement calculated by the applied strain multiplied 

by the distance between the source and the destination as shown below, 

 

upre  =  γ ∙ dTB (for the top and bottom pair) (5) 

vpre  =  γ ∗ dLR (for the left and right pair) (6) 

 

where γ represents the applied shear strain and dTB and dLR denote the distance 

between the top-bottom and left-right nodes, respectively. 
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Figure 2-7. Definition of in-plane stiffness. (a) Tensile and (b) shear stiffness. In 

tensile case, the bottom edge is constrained and normal displacements are applied 

at the top of the material. In shear case, the outer edges are subjected to a shear 

displacement to represent pure shear deformation. 
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2.3. Deformation mechanism analysis 

 

In this section, the deformation mechanism of the auxetic unit cell under tension 

and shear is analyzed for the original point-hinge rotating rigid auxetic pattern. 

Tensile loading induces auxetic deformation and shear loading causes non-auxetic 

deformation as shown in Figure 2-8. Firstly, we investigated the characteristics of 

each deformation mode under each loading condition, then we suggested a design 

direction for slit-pattern auxetics to adjust the two stiffness values. 

 

 

Figure 2-8. Mechanism of deformation modes of rotating rigid auxetic pattern. 

(a) Auxetic deformation mode, and (b) non-auxetic deformation mode. In the 

auxetic deformation mode, the rectangles rotate in the opposite direction with the 

adjacent rectangles, and in the non-auxetic deformation mode, the rectangles do not 

rotate but themselves deform. 

 

2.3.1. Auxetic deformation mode under tension 

 

When a tensile load is applied to the rotating rigid auxetic pattern, rotation 

moments occur in the squares inside the unit cell due to the connectivity of the hinges, 

causing them to rotate in opposite directions (Figure 2-8a). The rotation of the 

squares expands the empty space inside the unit cell, which is the auxetic 

deformation mode resulting in a negative Poisson's ratio. The stiffness in the auxetic 

deformation mode will be determined by the rotational rigidity of the point hinges 
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and the rotation angle of the squares within the unit cell. 

 

In the design of slit pattern auxetic unit cells, the design parameter 

corresponding to the stiffness of the point hinge is the thickness of the hinge 

connecting the squares, i.e., HR. Increasing HR corresponds to increasing the 

thickness of the hinge and the rotational rigidity of the point hinge, so a larger HR 

value should be set for high tensile stiffness (Figure 2-9). 

 

 

Figure 2-9. Schematics and unit cell shape according to the variation in HR in 

auxetic deformation mode. As HR increases, the rotational hinges become stiff. 

Example unit cell designs of (a) HR = 0.3, (b) HR = 0.5, and (c) HR = 0.7 are 

shown. 
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The rotation angle of the inner rectangular is determined by the design variable, 

AR. We establish an analytical model to explain it. Figure 2-10 shows the variance 

in the required rotation angle for a constant displacement according to the change in 

AR. h and h’ represent the un-deformed and deformed height, respectively, θ denotes 

the required angle, and ε indicates the strain calculated by the displacement divided 

by the height in original configuration, as shown in below Equation. 

 

𝜖 =
h′ − h

h
 (7) 

 

For the constant strain ε, the required rotational angle θ is increased. Therefore, 

AR value should be set larger for a higher tensile stiffness, as shown in Figure 2-11. 

 

 

Figure 2-10. Illustration of relation between aspect ratio AR and rotation 

angle θ. Left figure represents the variables when the unit cell rotates. Each curve 

in the right figure shows the relations of AR and θ. AR* located on the lateral axis 

is an example of the limit aspect ratio of unit cell to generate specific elongation 

rate. 
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Figure 2-11. Schematics and unit cell shape according to the variation in AR in 

auxetic deformation mode. As AR increases, larger rotation angle is required to 

reach a certain displacement. Example unit cell designs of (a) AR = 2-1, (b) AR = 

20, and (c) AR = 21 are shown. 
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2.3.2. Non-auxetic deformation mode under shear 

 

Tensile loading activated the auxetic deformation mode of the rotating rigid unit, 

so this unique deformation mode does not appear when the unit cell is subjected to 

shear load, instead, non-auxetic deformation which is similar to the deformation of 

continuum occurs. Therefore, the way to control stiffness with changing the design 

parameters in the non-auxetic deformation is distinct. Design parameter HR does not 

represent rotational rigidity anymore, but indicates the length of connector linking 

the rectangle subunits. The shear stiffness will be increased with the longer 

connectors, so for high shear stiffness, the value of HR should be set large (Figure 

2-12). 

 

 

Figure 2-12. Schematics and unit cell shape according to the variation in HR 

in non-auxetic deformation mode. HR represents the length of connectors rather 

than rotational rigidity. Example unit cell designs of (a) HR = 0.3, (b) HR = 0.5, 

and (c) HR = 0.7 are shown 

 

In the non-auxetic deformation mode, the rectangles within the unit cell do not 

exhibit rigid-like behavior, but rather undergo deformation themselves. The design 

variable AR determines the shape of these deforming rectangles. The shape of the 

rectangle is similar for unit cells with AR=2-x and AR=2x, where x is greater than or 

equal to 0, with AR=20 as the reference point. Since a pure shear state is assumed, 

the shear stiffness of the two unit cells is the same. Therefore, the mechanism 

description can be applied equally to unit cells when AR is greater or smaller than 
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20. In this section, we will only discuss cases where AR is greater than or equal to 20. 

As AR becomes larger than 20, the unit cell takes on a vertically elongated shape. 

As the unit cell becomes closer to an elongated rectangle, the deformation that occurs 

when subjected to shear force will resemble the bending of a beam, resulting in a 

lower stiffness compared to the shear-like deformation of a square unit cell. Figure 

2-13 below shows the change in the deformation shape of the unit cell with respect 

to the change in AR value under the same strain. For a clear comparison, each unit 

cell is scaled in the y-direction. As the unit cell becomes vertically elongated, 

bending-like deformation occurs on the side faces of the unit cell, indicating that the 

structure will become more flexible. 

Therefore, to increase the shear stiffness, the shape of the unit cell should be 

closer to a square, and the AR value should be closer to 20 (see Figure 2-14). 
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Figure 2-13. Deformed shapes with the variation in AR. (a) As AR increases, the 

overall deformed shape of the unit cells becomes bending-like configuration, which 

is flexible than pure shear deformation. (b) Clear difference of the side edges of the 

unit cells is observed in the scale-down configurations. 

 

 

Figure 2-14. Schematics and unit cell shape according to the variation in AR in 

non-auxetic deformation mode. AR determines the deformed shape of subunits. 

As AR value is apart from 20 further, subunits experience beam-like flexural shear 

deformation. Example unit cell designs of (a) AR = 2-2, (b) AR = 2-1, and (c) AR = 

20 are shown. 
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2.4. Finite element analysis 

 

We utilized a commercial multi-physics software, COMSOL 5.3, to investigate 

the in-plane tensile and shear stiffness of the auxetic pattern. We performed a 

comprehensive parametric study for the two design parameters HR and AR. HR is 

ranged from 0.1 to 0.7 with the interval of 0.1, and AR is distributed from 2-2 to 22 

with the interval of 0.2 in the exponent. 

The 2D auxetic pattern is discretized with six-node triangular plane-stress 

elements. We performed a study for the mesh size for a converged solution. For the 

ratio of the minimum size mesh divided by the unit length a, 0.01 was enough for 

the ratio for a converged solution as shown in Figure 2-15. 

 

 

Figure 2-15. Mesh convergence test. (a) Strain energy graph as a function of the 

minimum mesh size ratio. (b) Mesh resolution. The minimum mesh ratio of 0.01 

was enough for a converged solution. 

 

For the boundary condition to calculate the tensile stiffness of auxetic patterns, 

the bottom edges are fixed, and the top edges are subjected to prescribed 

displacement in y-direction. In the case of shear stiffness, we imposed a periodic 

boundary condition for the top-bottom edges pair and left-right edges pair as shown 

in Equations 1 and 2. We obtained resultant strain energy, SE, and calculated the two 

stiffness KT and KS with the below Equation, 
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SE =
1

2
𝐾𝜖2 (8) 

where ϵ represents the applied strain. The two stiffness values are then normalized 

by dividing them by the stiffness of a non-patterned solid unit, resulting 

dimensionless stiffness K*
T and K*

S. 
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2.5. Design principle for simultaneous control of in-plane 

stiffness 

 

This section includes the results of design of in-plane tensile and shear stiffness 

of the auxetic pattern. We investigated the effect of the design parameters on the 

stiffness of the corresponding deformation modes, based on the result of FE analysis. 

Then, we provide the design principle of the in-plane auxetic pattern by adjusting 

the key design variables. 

 

2.5.1. In-plane tensile stiffness control 

 

Design variable HR is a determining factor for the rigidity of the rotational 

hinge in the auxetic deformation mode. As a result, it was expected that a higher 

value of HR should be set for higher tensile stiffness in the previous section. Figure 

2-16 illustrates the change in dimensionless tensile stiffness, K*
T, as a function of 

HR. Each curve corresponds to a different value of design variable AR. It can be 

observed that as HR increases, K*
T also increases. Examining the y-direction normal 

stress distribution for the unit cells corresponding to the three black dots in the figure, 

as shown in Figure 2-17, it is evident that stress is concentrated at the hinge rather 

than the rectangles inside the unit cell. This indicates that the hinge acts as a 

rotational spring, while the internal rectangles undergo minimal deformation and 

rotate like rigid bodies. 
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Figure 2-16. In-plane tensile stiffness adjustment by changing HR. Each curve 

corresponds to a constant AR value. The lateral and vertical axes represent the 

design variable HR and the normalized tensile stiffness, respectively. As HR 

increases, higher rigidity of rotational hinges is assumed, therefore the tensile 

stiffness increases. 

 

 

Figure 2-17. Schematics and normal stress distribution with the change in HR. 

Relative normal stress distribution in the y-direction is plotted next to schematic 

figure. (a) HR = 0.1, (b) HR = 0.3, and (c) HR = 0.5. The color map is ranged from 

blue for a negative stress, and to red for a positive stress. 

 

Design variable AR is a parameter that determines the shape of the rectangles 

within the unit cell and is related to the required rotation angle of the rectangles in 

the auxetic deformation mode. As the shape of the rectangle becomes taller, the 
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required rotation angle to achieve a certain displacement increases. Consequently, it 

was anticipated in the previous section that for higher tensile stiffness, the value of 

AR should be set higher. 

Figure 2-18 depicts the change in dimensionless tensile stiffness, K*
T, as a 

function of AR, with each curve corresponding to a single value of HR. It can be 

observed that as AR increases, tensile stiffness monotonically increases. The normal 

stress distribution for the unit cells corresponding to the three black dots in the figure 

is shown in Figure 2-19. As AR increases, the stress magnitude occurring in the hinge 

part also increases. Since the hinge thickness for all three unit cells is the same, the 

cause of the increased stress is likely due to the increase in the rotation angle. 

 

 

Figure 2-18. In-plane tensile stiffness adjustment by changing AR. Each curve 

corresponds to a constant HR value. As AR increases, larger rotational angle is 

required, therefore the tensile stiffness increases. 
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Figure 2-19. Schematics and normal stress distribution with the change in AR. 

Relative normal stress distribution in the y-direction is plotted next to schematic 

figure. (a) AR = 2-2, (b) AR = 2-1, and (c) AR = 20. The color map is ranged from 

blue for a negative stress, and to red for a positive stress. 

 

The design parameters HR and AR play crucial roles in determining the tensile 

stiffness of the auxetic pattern. HR, which affects the rotational rigidity of the hinges, 

should be set higher to achieve increased tensile stiffness. Similarly, AR, which 

influences the shape of the rectangles within the unit cell and the required rotation 

angle in the auxetic deformation mode, should also be set higher to enhance tensile 

stiffness. 

 

2.5.2. In-plane shear stiffness control 

 

Under shear loading conditions that induce non-auxetic deformation modes, the 

design parameter HR determines the length of the connectors. As the length of the 

connectors increases, the shear stiffness of the unit cell also increases, as shown in 

Figure 2-20. The vertical axis of the graph represents the dimensionless shear 

stiffness K*
S. The unit cell shapes and shear stress distributions corresponding to the 

three black points on the graph are illustrated in Figure 2-21. As HR increases, higher 

levels of stress occur in the connectors and internal rectangles due to the larger forces 

generated during the same shear deformation. 
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Figure 2-20. In-plane shear stiffness adjustment by changing HR. Each curve 

corresponds to a constant AR value. As HR increases, longer connector width 

occupies, therefore the shear stiffness increases. 

 

 

Figure 2-21. Schematics and shear stress distribution with the change in HR. 

Relative shear stress distribution is plotted next to schematic figure. (a) HR = 0.1, 

(b) HR = 0.3, and (c) HR = 0.5. The color map is ranged from blue for a negative 

stress, and to red for a positive stress. 

 

The change in shear stiffness due to variations in the design parameter AR 

exhibits a different pattern compared to previous results. As discussed in the 

mechanism analysis, when the unit cell becomes a flatter or elongated shape in the 

vertical direction, bending-like shear deformation occurs, making shear deformation 

easier. Therefore, the highest stiffness is observed when AR is 20, as shown in Figure 
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2-22. The unit cell shapes and shear stress distributions for the three points on the 

graph are presented in Figure 2-23. As AR decreases, negative shear stresses occur 

near the edges of the unit cell, indicating that the edges of the unit cell deform with 

flexure. The negative shear stress distribution diminishes as AR approaches 20. 

 

 

Figure 2-22. In-plane tensile stiffness adjustment by changing AR. Each curve 

corresponds to a constant HR value. As AR value is closer to 20, shear-dominant 

deformation appears resulting a higher shear stiffness. 

 

 

Figure 2-23. Schematics and shear stress distribution with the change in AR. 

Relative shear stress distribution is plotted next to schematic figure. (a) AR = 2-2, 

(b) AR = 2-1, and (c) AR = 20. The color map is ranged from blue for a negative 

stress, and to red for a positive stress. 
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However, the analytical results reveal that the shear stiffness for the case of AR 

being 2-1 is similar to that when AR is 20. This similarity appears to originate from 

the definition of the unit cell in this study. Both horizontal and vertical hinge 

thicknesses are defined through a single design parameter, HR. As AR increases, the 

vertical length of the unit cell grows, and the length of the vertical hinges increases 

as well. This increase appears to enhance the stiffness of the unit cell due to the 

combined influence of these factors. 

The design parameters HR and AR significantly influence the shear stiffness of 

the unit cell, but in a different manner from the case of tension. An increase in HR, 

which determines the length of the connectors, leads to higher shear stiffness, as it 

results in larger forces during shear deformation and higher levels of stress in the 

connectors and internal rectangles. On the other hand, the shear stiffness is affected 

by AR in a non-linear manner; the highest stiffness is observed when AR is 20. This 

is due to the bending-like shear deformation that occurs when the unit cell takes a 

flatter or elongated shape in the vertical direction, making shear deformation easier. 

The combined effect of HR and AR plays a crucial role in controlling the in-plane 

shear stiffness of the unit cell. 
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2.5.3. Results of tilted rotating rigid auxetic pattern 

 

To confirm the potential for expanding the stiffness range achievable with a rotating 

rigid unit (RRU) pattern, we examined the feasibility using a model that rearranges 

the rectangular RRU pattern. Figure 2-24 shows the configuration of a rectangular 

pattern that has been rotated by 45 degrees. The 45-degree rectangular pattern was 

defined by the same design variables, hinge thickness ratio (HR), and aspect ratio 

(AR). 

 

 

Figure 2-24. 45-degree rectangular pattern. (a) The original pattern. (b) 45-degree 

rectangular pattern. 

 

The force experienced by the 45-degree tilted rectangular pattern under tensile and 

shear loading conditions can be easily understood through coordinate transformation. 

Firstly, when tensile loading is applied, the state of the force experienced by the 

original unit is transformed into a rotated coordinate system, resulting in the state of 

force shown in Figure 2-25. In this state, both shear stress and normal stress are 

experienced simultaneously. Therefore, the tensile stiffness change of the 45-degree 

tilted unit would depend on the changes in the normal and shear stiffness of the 

original unit. 
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Figure 2-25. Force state of 45-degree pattern under tension. (a) In the original 

coordinate. (b) In the rotated coordinate. 

 

When shear loading is applied to the tilted pattern, the principal axes are determined 

in the 45-degree direction, causing only normal stress as shown in Figure 2-26. Thus, 

the shear stiffness change in the tilted pattern will be dependent on the normal 

stiffness change in the original rectangular pattern. Note that both stiffnesses of the 

tilted pattern are related to the normal stiffness in both x- and y-directions of the 

original pattern. Therefore, unlike the previous section that only considered normal 

stiffness (tensile stiffness) in the y-direction, both stiffnesses must be considered. 

 

 

Figure 2-26. Force state of 45-degree pattern under shear. (a) In the original 

coordinate. (b) In the rotated coordinate. 

 

To investigate the stiffness changes of the tilted pattern, a periodic boundary 

condition was applied to the 45-degree rectangular unit, and the two in-plane 

stiffnesses were computed via simulation. For the two design variables, HR ranged 

from 0.3 to 0.7, and AR ranged from 2-2 to 22. As shown in Figure 2-27, both the 

tensile and shear stiffness increase as HR increases. This aligns with the result from 

the original pattern where stiffness increases with HR, regardless of the type of 
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stiffness. 

 

 

Figure 2-27. In-plane tensile stiffness adjustment of 45-degree pattern. The 

tensile stiffness adjustment according to the variation of (a) HR and (b) AR, and the 

shear stiffness adjustment according to the variation of (c) HR and (d) AR. 

 

However, an increase in AR displays a different pattern for both types of stiffness 

compared to the results from the original pattern. The shear stiffness of the tilted 

pattern changes symmetrically around AR = 20. When a pure shear load is applied, 

the principal axes are determined in the direction rotated by 45 degrees. Therefore, 

the shear stress τ in the global coordinate leads to the occurrence of normal stress of 

+ τ and - τ on each face of the tilted unit. The changes in the normal stiffness in the 

x and y directions of the original pattern are inversely related to changes in AR. For 
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example, the x-direction stiffness at AR=2-1 is identical to the y-direction stiffness at 

AR=21. Therefore, the shear stiffness of the tilted pattern varies symmetrically 

around AR = 20 as shown in Figure 2-28a, and 28b. The variation of C33 component 

of the elasticity matrix of the tilted patterns is shown in Figure 2-28c. It can be 

calculated by transforming the elasticity matrix of the original pattern by 45 degrees, 

or by directly performing analysis about the tilted pattern. 

 

 

Figure 2-28. Explanation of shear stiffness varation of 45-degree pattern. The 

varaition of the normal stiffness in (a) y-direction and (b) x-direction of the original 

pattern. (c) the variation of C33 component of elasticity matrix of the tilted patterns. 

 

In the case of tensile loading applied to the tilted pattern, the 45-degree tilted unit 

simultaneously receives normal and shear forces. Therefore, the tensile stiffness of 

the tilted pattern would be determined by the normal stiffness and shear stiffness of 

the original pattern. The changes in these two stiffnesses of the original patterns 

according to the AR values are shown in Figure 2-29a and 29b. Their variation is 

symmetry around AR = 20, so the tensile stiffness of the tilted pattern varies with 

symmetry. The variation of C33 component of the elasticity matrix of the tilted pattern 

is shown in Figure 2-29c. It also can be obtained by transforming the elasticity matrix 

of the original pattern by 45 degrees, or by directly performing analysis about the 

tilted pattern. 
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Figure 2-29. Explanation of tensile stiffness varation of 45-degree pattern. (a) 

The varaition of the averaged normal stiffness, (b) the shear stiffness variation of the 

original pattern, and (c) the variation of C22 component of elasticity matrix of the 

tilted patterns. 
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2.6. Conclusion 

 

In this chapter, we have presented a design methodology for the rotating rigid 

auxetic pattern that utilizes the load-dependency in the deformation modes of auxetic 

patterns, allowing the simultaneous design of two inherently coupled in-plane 

stiffness values (tensile and shear stiffness). We have selected the rotating rigid 

auxetic pattern as the basic design unit cell due to its ease of fabrication and broad 

stiffness tuning capability. Design parameters HR (hinge thickness ratio) and AR 

(aspect ratio) were defined to design the stiffness for the distinct auxetic and non-

auxetic deformation modes that occur under tensile and shear loads. Analytical and 

numerical approaches confirmed that the roles of the design variables differ 

depending on each deformation mode, and the two stiffness values can be adjusted 

simultaneously. 

The results discussed here concern the design of auxetic unit cells, which may 

have a broad applicability in creating various structures by arranging them in 

different geometry. Although only rectangular pattern unit cells have been discussed 

in this chapter, it is expected that stiffness control would be possible in a similar 

manner for rotating rigid unit cells composed of other polygonal shapes. Although 

the slit thickness ratio, one of the unit cell definitions, also seems to be involved in 

the stiffness control mechanism for adjusting both stiffness values, it has been set to 

a fixed value in this study for the sake of clarity in the stiffness control design 

methodology. Utilizing the slit thickness ratio as an additional design variable could 

expand the designable stiffness range. 
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Chapter 3. Simultaneous adjustment of tube 

stiffness: Auxetic meta-tube 

 

 

3.1. Introduction 

 

Utilizing the load-dependent behavior of auxetic patterns for the simultaneous 

control of tensile and shear stiffness allows for the design of meta-structures to 

address various real-world engineering problems. In this study, the first meta-

structure proposed is the auxetic meta-tube. The auxetic meta-tube is a tube with 

auxetic patterned holes, designed to enable the simultaneous control of the tube's 

bending and torsional stiffness. 

Simultaneous control of stiffnesses in the bending and torsional directions can 

be particularly useful in the field of biomedical robotics. One such application is the 

concentric tube robot, which consists of multiple pre-curved, thin tubes stacked 

together. By controlling the rotation of these tubes, the robot can achieve complex 

movements within the body. One critical issue that needs to be addressed for the 

effective use of this robot is instability. As rotation is applied to the tube, elastic 

energy accumulates, and when this energy reaches a certain level, a snap-through 

phenomenon occurs, causing a sudden release of energy. This instability can pose 

serious risks during operation, and to prevent it, the stability criterion is as follows35: 

 

Lκ√
𝐸𝐼

𝐺𝐽
<

𝜋

2
 

(9) 

 

where L denotes the tube length, κ indicates the tube curvature, and EI and GJ denote 

the bending and torsional rigidity of the tube, respectively. 

Analyzing the cross-sectional state of the tube when subjected to bending and 

torsional loads, as shown in Figure 3-1, tensile and compressive forces are applied 

on the top and bottom parts of the cross-section in bending. In contrast, the entire 
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cross-section is subjected to shear forces in torsional case. Therefore, we can design 

the bending stiffness of the tube by utilizing the auxetic deformation mode, and 

torsional stiffness with the non-auxetic deformation mode. Through the design of 

auxetic meta-tubes, we aim to explore ways to improve the stability of concentric 

tube robots. 

 

 

 

Figure 3-1. Loading status of cross-section of auxetic meta-tube. The deformed 

configuration of auxetic meta-tubes and the loading status of the cross-section are 

present for (a) bending, and (b) torsional deformation. 
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3.2. Auxetic meta-tube 

 

We present the definition of auxetic meta-tube in this section. The in-plane 

auxetic unit cell is transformed to form a tubular structure. The main design variables 

of the auxetic meta-tube are the same as the in-plane unit cell. We also investigated 

the effect of the other design variables. 

 

3.2.1. Definition of auxetic meta-tube 

 

The main design parameter of the auxetic meta-tube is the same with the in-

plane auxetic unit cell; AR and HR. Note that AR only affects the unit cell height, 

and the unit cell width is always decided by the diameter of the tube. The other design 

parameter, slit thickness ratio (SR), was set at 0.062 considering the fabrication 

resolution of the actual auxetic tube. HR is ranged from 0.1 to 0.9 with the interval 

of 0.1 and AR is distributed from 2-2 to 23 with the interval of 0.2 in the exponent. 

 

Regarding the main design parameters, AR and HR, a geometrical constraint 

exists when determining the auxetic meta-tube due to slit thickness, which limits the 

maximum value of the hinge thickness ratio (HR) as expressed in below Equations. 

The relatively short sides in a unit cell create the restriction, resulting in two 

conditions based on AR. In the design space, 12 cases do not meet the restriction, 

including AR=2-2 and 2-1.8 for HR=0.8, and AR=2-2, 2-1.8, …, 20 for HR=0.9. 

 

HR < 1 − SR (for AR ≥ 1) (10) 

HR < 1 −
SR

AR
 (for AR < 1) (11) 

 

Six auxetic unit cells is arranged in the circumferential direction to form a unit 

cell layer many of which are stacked to form an auxetic meta-tube as shown in Figure 

3-2. As mentioned before, the unit cell width is constant and the number of the unit 

layers varies depending on the design parameters AR for a given tube length. Various 



 

 ５９ 

design examples of auxetic meta-tubes are shown in Figure 3-3. 

 

 

Figure 3-2. Consisting of auxetic meta-disk. Six auxetic unit cell is arranged in 

the circumferential direction to build a auxetic unit layer, and the layers are stacked 

axially to form an auxetic meta-tube. 

 

 

Figure 3-3. Various examples of auxetic meta-tube. 
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3.2.2. Study for other design variables  

 

The auxetic meta-tube has seven design variables in total: tube length (L), tube 

thickness (t), unit cell aspect ratio (AR), unit cell hinge thickness ratio (HR), unit 

cell slit thickness ratio (SR), the number of unit cells in a unit layer (n), and the 

number of unit cell layers (m). The tube dimensions, with a height of 1 meter and 

thickness of 1 millimeter, determine L and t.  

 

The number of the unit cells in a unit layer (n) is determined by considering the 

curvature effect which comes from arranging the unit cells into the curved surface of 

tubes. We performed a convergence test for the number of unit cells in a layer to 

ensure little curvature effect, as shown in Figure 3-4. The vertical axis represents 

bending stiffness of meta-tubes, which will be introduced in the next section. We 

found the n value of six (or 12 subunits) would be enough for a converged solution. 

For the number of the unit layers in an auxetic meta-disk, a convergence test was 

performed to minimize an end effect, and the result confirmed that adequate number 

of the unit layer is 80 for the unit cell with AR of 20. 

 

 

Figure 3-4. Convergence test on the number of unit cell in circumferential 

direction, n. The lateral axes represent n, which is double of the value of the 

number of the unit cells. n of 12 (six unit cells) was enough to minimize the 

curvature effect of the auxetic meta-tube. 
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Figure 3-5. Convergence test on the number of unit cell layers, m. The lateral 

axis represent m, which is double of the value of the number of the unit layers. m of 

80 (40 unit layers) for 1 m length tube was enough to ignore the boundary effect in 

the case of AR equal to 20. 
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3.3. Finite element analysis 

 

The simultaneous adjustment of bending and torsional stiffness of the auxetic 

meta-tube was numerically verified by FE analysis. In this section, the FE model 

information about auxetic meta-tubes is included and the definition of tube stiffness 

is represented. Additionally, a convergence study result of the minimum size of the 

mesh for a converged solution is also contained. 

 

3.3.1. Analysis model 

 

We constructed a FE analysis model of the auxetic tubes by utilizing 6-node 

triangular shell elements. We conducted linear static analysis using the ADINA 9.0 

software, a commercial finite element analysis tool, to determine the values of 

bending and torsional stiffness. The bottom nodes of the tube were subjected to a 

fixed boundary condition, while the top nodes were connected through a rigid link 

to represent the loading condition depicted in Figure 3-6. By applying a prescribed 

rotation in either the y- or z-directions at the master node of the rigid links, we 

conducted the static deformation analysis. 

 

 

Figure 3-6. Analysis model of auxetic meta-disk. (a) Tie constraint connecting 

the master node and the top edges, (b) mesh resolution, and (c) six-node shell 

element. The bottom edges of the meta-tube were fixed, and small prescribed 

bending and torsional rotations are applied at the master node. 
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3.3.2. Definition of tube stiffness 

 

The reaction moment at the master node was obtained, and the rigidities of a 

tube in the two directions (EI and GJ) were calculated using Equations 12 and 13. 

 

EI =
MbL

θb
 (12) 

GJ =
MtL

θt
 (13) 

 

where Mb and Mt denote the reaction moment in the bending and torsional directions, 

and θb and θt indicate the prescribed rotation angle in the y- and z-direction, 

respectively. 

The bending stiffness (B) and the torsional stiffness (C) of tubes are defined as 

below, 

 

B =
EI

L
     (N ∙ m) (14) 

C =
GJ

L
     (N ∙ m) (15) 

 

and they are normalized by divided by the stiffness values of the non-patterned tube, 

resulting dimensionless bending and torsional stiffness B*, and C*. 

 

3.3.3. Convergence test 

 

We performed a convergence test for the size of the mesh to ensure a converged 

solution. We gradually reduced the minimum mesh size from 0.2 mm to 0.04 mm, 

and conclude that 0.08 mm was suitable for analysis, as shown in Figure 3-7. The 

applied mesh is shown in Figure 3-6. We applied a finer mesh around the hinges 

where stress concentration may occur. 
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Figure 3-7. Convergence test on the mesh size with varying the maximum 

element size. The left figure represents stiffness value convergence and the right 

figure shows the stiffness difference between the mesh sizes. It was confirm that 

the minimum mesh size of 0.08 was enough for a converged solution. 
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3.4. Experimental verification 

 

The information of fabrication of auxetic meta-tube, experimental procedure, 

and data processing method is presented in this section. For experimental validation, 

thirteen types of auxetic meta-tubes were fabricated. The design parameters of the 

specimens are shown in Table 3-1. 

 

3.4.1. Fabrication 

 

Aluminum tubes were selected, featuring dimensions of 48 mm diameter, 1 mm 

thickness, and 995 mm length, with a Young's modulus of 70 GPa, density of 2700 

kg/m³, and Poisson's ratio of 0.34. The auxetic patterns were engraved by high-

resolution laser machining. To minimize thermal distortion during the laser 

processing and to account for device resolution, we set slit widths as 0.77 mm. The 

tube specimens can be seen in Figure 3-8.  

 

 

Figure 3-8. Auextic meta-tube specimens. The auxetic meta-tubes are fabricated 

by high-resolution laser cutting. 
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3.4.2. Modal testing 

 

We employed a modal testing method to obtain the bending and torsional 

stiffnesses of the specimens. To conduct bending modal test, we applied an impact 

force with an impact hammer near the end of a tube. An accelerometer was affixed 

to the outer surface of the tube's center, as depicted in Figure 3-9, to capture the 

flexural vibratory signals. The output signals were processed to produce the 

frequency response function (FRF). The fundamental bending mode was identified 

as the frequency corresponding to the first peak in the FRF curves. The FRF curves 

for all specimens can be found in the Appendix. 

 

 

Figure 3-9. Modal test setting (bending). A meta-tube specimen is placed on free-

end hooks to assign free-free boundary condition to the auxetic tube. Impact 

hammer generates impact load and the resultant responses are measured from the 

accelerometer located at the center of the tube. 

 

We utilized magneto-strictive patch transducers in the testing of torsional 

modes to effectively induce and measure torsional vibrations in the tube. Two 

identical transducers were placed at locations that divide the length of the tube into 

thirds, as shown in Figure 3-10. One transducer converted an electronic impact signal 

into a mechanical torsional impact pulse, while the other transducer recorded the 

torsional vibratory signals. The resulting FRF was obtained, with the primary peak 
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frequency representing the fundamental torsional mode. In contrast to the modal 

testing for bending, smaller peaks were observed below the dominant peak frequency 

range during torsional modal testing. These smaller peaks corresponded to radial 

modes generated through coupling. 

 

 

Figure 3-10. Torsional modal test. An auxetic meta-tube is positioned on the two 

supports placed at the end of the tube. At one-third and two-thirds points along the 

tube length, two magnetostrictive patch transducers are installed. One of them 

produces torsional impact and the other measures the signals. 

 

In Table 3-1, we compared the numerical and experimental results of the modal 

frequencies. The numerically estimated frequencies (fB,FE and fT,FE) can be calculated 

using Equations 16 and 17, 

 

fB,FE =
λn,bπ

8L2
√

EI

ρA
, (λn,B = 3.0112) 

(16) 

fT,FE =
1

2L
√

GJ

λn,tρJ
, (λn,T = 1) 

(17) 

 

where ρ denotes the density, A indicates the area of the cross-section, and λn,B and 
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λn,T represent the constants for the first (n = 1) bending and torsional mode, 

respectively. The experimental frequency results can also be converted to stiffness 

values using those equations. 

 

Design case 1 2 3 4 5 6 7 8 9 10 11 12 13 

HR 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.7 0.3 0.3. 0.3 0.3 0.3 

AR 23 22 21 20 2-1 2-2 20 20 23 22 21 2-1 2-2 

fB,FE [Hz] 263 243 224 187 129 122 100 244 197 180 148 60 33 

fB,exp [Hz] 250 250 229 185 135 106 101 240 164 190 133 51 28 

fT,FE [Hz] 559 874 1049 1070 952 860 773 1343 384 621 765 735 625 

fT,exp [Hz] 540 849 1039 1095 949 864 764 1364 355 655 773 736 636 

Table 3-1. Comparison of numerical and experimental result of the natural 

frequencies of auxetic meta-tubes. The subscripts B and T indicate the bending 

and torsional modes, respectively, and FE and EXP denote the numerical and 

experimental data, respectively. 
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3.5. Design principle for simultaneous control of stiffness of 

auxetic meta-tube 

 

In this section, based on the mechanism analysis of the in-plane auxetic unit 

cell, we demonstrated a design principle for simultaneous control of bending and 

torsional stiffness of auxetic meta-tube. It was confirmed that a broadband 

controllability of the two stiffness can be accomplished by numerical and 

experimental verification. In the reachable stiffness range, independent control of 

one stiffness of the two can be possible and the design methodology for it and 

examples are provided. 

 

3.5.1. Bending stiffness (B) control 

 

When the auxetic tube is subjected to bending load, the auxetic deformation 

mode governs, and B* consistently increases with both HR and AR (Figure 3-11). In 

this mode, rectangular subunits rotate rigid-likely around hinges, functioning as 

rotational springs, as represented with the axial stress distribution within the unit cell. 

As HR grows, these rotational springs become stiffened, enhancing the bending 

stiffness of the tube, as demonstrated in Figure 3-12a. 

Using a larger AR causes the rectangular subunits of the unit cell to become 

taller along the tube axis. To achieve the same axial displacement, these taller 

subunits need to rotate more than their shorter counterparts, generating higher 

stresses around hinges (Figure 3-12b). Consequently, as AR increases, the unit cell 

becomes stiffer, making the bending stiffness of the tube increasing. 
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Figure 3-11. Adjustment of bending stiffness of auxetic meta-tube. Each curve 

represents a constant the other design variable. (a) HR variations, and (b) AR 

variations. X-markers denote the experimental results, and the color curve indicate 

the corresponding numerical results. 

  

 

Figure 3-12. Schematics and normal stress distribution with the change in 

design variables. (a) HR variations, and (b) AR variations. High level of stress 

occurs in the large HR unit cell and in the large AR unit cell. 

 

3.5.2. Torsional stiffness (C) control 

 

The torsional stiffness variation according to the change in the design variables 

is different from the bending case, since the non-auxetic deformation mode is 

dominant in torsion. Under torsion, rectangular subunits primarily undergo shear 

deformation rather than rigid-body-like rotation. This shear deformation of subunits 
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appears easier in the unit cells with longer slits (or smaller HR values), resulting in 

larger HR values increasing the shear stiffness C*, as shown in Figure 3-13a. The in-

plane shear stress distribution in the unit cell also verifies this (Figure 3-14a). 

However, the relationship with AR is non-monotonic. C* is the maximum value 

when subunits are square (AR = 20) and decreases as AR goes further from 20, as 

shown in Figure 3-13b. The reason of this arises from the fact that the shear 

deformation of subunits is closer to the bending of a beam, rather than a pure shear 

of a planar material, as evidenced by the shear stress distribution. The subunits are 

more flexible near free edges formed by slits than around hinges. As the force 

required for a given flexural shear deformation decreases with the increase of 

slenderness of subunits (Figure 3-14b), the tube exhibits the maximum torsional 

stiffness in the case of the square subunit. 

 

 

Figure 3-13. Adjustment of torsional stiffness of auxetic meta-tube. Each curve 

represents a constant the other design variable. (a) HR variations, and (b) AR 

variations. X-markers denote the experimental results, and the color curve indicate 

the corresponding numerical results. 
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Figure 3-14. Schematics and shear stress distribution with the change in 

design variables. (a) HR variations, and (b) AR variations. High level of stress 

occurs in the large HR unit cell and in the unit cell of AR equal to 20. 

 

3.5.3. Designable stiffness area 

 

Figure 3-15 shows the stiffness design area, with the horizontal and vertical 

axes representing normalized torsional and bending stiffness, respectively. As 

depicted in the figure, a wide variety of bending and torsional stiffness values can be 

achieved using auxetic patterns. The upper-left region, where bending stiffness is 

greater than torsional stiffness, is almost completely covered. However, the lower-

right area is partially populated. This is due to the fact that torsional stiffness reaches 

its maximum value when AR = 20, while bending stiffness increases with AR in a 

monotonic manner. Consequently, it is simple to create a tube with B*/C* > 1 but 

challenging to reach the area of B*/C* < 1. The lower boundary of the designable 

area can be bounded by the points of AR equal to 2-1, where constant HR lines (solid 

lines in Figure 3-15) experience deflection. Nonetheless, within the feasible range, 

tube stiffness values can be fully controlled. 
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Figure 3-15. Designable tube stiffness area. Solid and dotted lines represent the 

constant HR and AR values, respectively. A wide designable stiffness area is 

achieved. 

 

3.5.4. Independent stiffness control 

 

In the designable stiffness area, both bending and torsional stiffness can be 

adjusted freely. An independent stiffness control can also be possible, which control 

one stiffness while the other stiffness is constant. Figures 3-16a and 3-17a show the 

bending and torsional stiffness contour according to the set of the design variables. 

When the tube properties of a constant bending stiffness (B*) and adjustment of 

torsional stiffness (C*) are required, we can easily find corresponding design 

variables. The examples of auxetic meta-tube for constant B* are illustrated in Figure 

16b. In order to design a higher torsional stiffness of meta-tube, the upper-left part 

of the set of design variables would be desirable. For a constant torsional stiffness 

while bending stiffness is required to be changed, an appropriate set of the design 

variables could be selected referring the C* contour. Several examples are shown in 

Figure 17b. The upper-right parts in the contour corresponds to higher bending 
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stiffness. 

 

 

Figure 3-16. Independent torsional stiffness control. (a) Bending stiffness 

contour, and (b) the examples of meta-tube designs, where the bending stiffness 

values are constant but the torsional stiffness values vary. 

 

 

Figure 3-17. Independent bending stiffness control. (a) Torsional stiffness 

contour, and (b) the examples of meta-tube designs, where the torsional stiffness 

values are constant but the bending stiffness values vary. 
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3.6. Results with triangular and hexa-triangular pattern 

 

The proposed design principle can be applied to other rotating rigid auxetic 

pattern. We represent a triangular rotating rigid unit and a hexa-triangular rotating 

rigid unit to demonstrate the generality of applying load-dependent deformation 

modes. This section includes the definition of the two unit cells, feasible stiffness 

area obtained with FE analysis, and independent stiffness control examples. 

 

3.6.1. Definition of triangular and hexa-triangular unit cell 

 

One triangular unit cell is composed by eight triangular subunits and one hexa-

triangular unit cell is constituted by one hexagonal and two triangular subunits 

(Figure 3-18). The unit cells are circumferentially arranged to form a unit layer, and 

the layers are stacked along the axial direction of tube. 

 

 

Figure 3-18. Triangular and hexa-triangular rotating rigid unit cell. Eight 

triangular subunits compose (a) triangular unit cell, and two triangular and one 

hexagonal subunits constitute (b) hexa-triangular unit cell. Two design variables, 

HR and AR, define the unit cells. In both figures, the unit length was assumed to be 

1 for simplicity. 

 

The design parameters of the unit cells are the same with the rectangular auxetic 

pattern: HR and AR. For convenience, the lateral width of a triangular subunit is 

assumed as 1 in this section. The actual width will be determined by the tube 

dimension. HR determines the thickness of hinges, and AR indicates the height of 
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the subunit as shown in Figure 3-18. Note that HR also determines the hinges at the 

legs of the triangles, so the thickness of the leg hinge is proportional to the leg length. 
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3.6.2. Stiffness control result 

 

The stiffness control mechanisms in the auxetic and non-auxetic deformation 

modes of triangular patterns and hexagonal-triangular patterns are the same as those 

in the rectangular patterns. HR represents the stiffness of the rotational hinges in the 

auxetic deformation mode, while in the non-auxetic deformation mode, it signifies 

the length of the connector. AR determines the rotation angles of polygons in the 

auxetic deformation mode, and in the non-auxetic deformation mode, it decides 

whether the deformation shape is bending-like shear or continuum-like shear. A 

similar range of stiffness control areas can be achieved with both patterns, and within 

this area, independent stiffness design is also possible. Figures 3-19, 3-20, 3-21, and 

3-22 show the bending and torsional stiffness contours for triangular and hexagonal-

triangular patterns, respectively, as well as examples of auxetic meta-tubes with 

independently designed stiffness. 
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Figure 3-19. Independent torsional stiffness control with triangular pattern. 

(a) Bending stiffness contour, and (b) the examples of triangular pattern meta-tube 

designs. 

 

 

Figure 3-20. Independent bending stiffness control with triangular pattern. (a) 

Torsional stiffness contour, and (b) the examples of triangular pattern meta-tube 

designs. 
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Figure 3-21. Independent torsional stiffness control with hexa-triangular 

pattern. (a) Bending stiffness contour, and (b) the examples of hexa-triangular 

pattern meta-tube designs. 

 

 

Figure 3-22. Independent bending stiffness control with hexa-triangular 

pattern. (a) Torsional stiffness contour, and (b) the examples of hexa-triangular 

pattern meta-tube designs. 
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3.7. Results with tilted rectangular patterns 

 

Using a 45-degree tilted pattern allows for creating different stiffness variations 

while utilizing the distinct deformation modes of the auxetic pattern, as discussed in 

Section 2.5.3. The 45-degree tilted auxetic meta-tube can be created by arranging 

tilted unit cells along a 45-degree inclined axis to form a unit helix, which is then 

arranged in a tube form, as shown in Figure 3-23. 

 

 

Figure 3-23. Construction of auxetic meta-tube with tilted auxetic unit cell. 

 

One important consideration when forming the helix into a tube is to consider the 

connectivity between the hinges of the auxetic pattern. For example, with an AR 

value of 2-2, the connectivity between helices is not secured, and a complete tube 

form cannot be constructed, as shown in Figure 3-24. In this study, it was decided to 

arrange six unit cells (twelve subunits) in the circumferential direction. Thus, the 

study proceeded with three AR values (2-1, 20, 21) that allow for normal connection 

between the hinges when arranging six helices (Figure 3-25). 
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Figure 3-24. Uncontinuity of hinges.  

 

 

Figure 3-25. Auxetic meta-tube with 45-degree pattern. (a) AR = 2-1, (b) AR = 20, 

and (c) AR = 21. 
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The next Figure 3-26 shows the results of calculating the bending and torsional 

stiffness of the tilted pattern auxetic meta-tube through simulation. Similar to the 

results of Section 2.5.3, the two stiffness values monotonically increase with HR, 

and for AR, both stiffness values change symmetrically, centered around AR=1. 

 

 

Figure 3-26. Normalized bending and torsional stiffness adjustment of 45-

degree pattern. The bending stiffness adjustment according to the variation of (a) 

HR and (b) AR, and the torsional stiffness adjustment according to the variation of 

(c) HR and (d) AR. 
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The two dimensionless stiffness values of the tilted pattern are shown in Table 3-2. 

The stability criteria of the tube robot, the B*/C* value, can also be seen in the table. 

Considering that the minimum B*/C* value is 0.173 (AR = 2-1, HR = 0.3) for the 

same range of the design variables, it would be more appropriate to use the original 

pattern from the aspect of the stiffness ratio. 

 

 B* C* B*/C* 

HR/AR 2-1 20 21 2-1 20 21 2-1 20 21 

0.3 0.079 0.301 0.664 0.099 0.375 0.749 0.795 0.805 0.887 

0.5 0.100 0.362 0.740 0.389 0.603 0.822 0.257 0.599 0.900 

0.7 0.085 0.336 0.689 0.119 0.434 0.780 0.718 0.775 0.883 

Table 3-2. Normalized tube stiffness and stiffness ratio. 
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3.8. Conclusion 

 

In this chapter, based on the design principle of planar auxetic unit cells for 

simultaneous control of tensile and shear stiffness, we designed auxetic meta-tubes 

capable of controlling the bending and torsional stiffness of tubular structures. The 

results of analysis and experiments showed that tube stiffness can be controlled 

simultaneously in a wide range and that each tube stiffness can be freely designed 

within the designable area. By demonstrating that the same stiffness control 

mechanism can be implemented using various patterns, including rectangular, 

triangular, and hexa-triangular patterns, we confirmed that the application of load-

dependent deformation modes has broad generality. 

The research findings of this chapter can improve the stability of concentric 

tube robots in the field of minimally invasive surgery. By expanding the concept, it 

may enable the design of meta-structures capable of simultaneously controlling the 

stiffness of two structural components in shapes other than tubular structures (such 

as plates and shells) by applying the same stiffness control principles. In this study, 

we covered a linear problem assuming small displacements, but the applicability of 

the research can be expanded through follow-up studies on the nonlinear stiffness of 

auxetic meta-tubes. 
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Chapter 4. Simultaneous control of elastic wave 

propagation: Auxetic meta-disk 

 

 

4.1. Introduction 

 

In this chapter, we present the second meta-structure design using the load-

dependent deformation modes of auxetic patterns, which is an auxetic meta-disc 

capable of simultaneously controlling the elastic wave propagation of bending and 

torsion modes in pipes. 

One of the methods to control the propagation and blocking of elastic waves is 

to form a bandgap, a frequency region where waves do not propagate, through the 

design of metamaterials. The formation of bandgaps mainly occurs through two 

mechanisms: phononic crystals that use Bragg scattering by periodically arranging 

metamaterial unit cells, and locally resonant structures that use resonance within the 

metamaterial unit cells. The phononic crystal (PC) method utilize the periodicity of 

unit cells, making it difficult to form bandgaps in the low-frequency range. However, 

the locally resonant (LR) method has the advantage of being able to control wave 

propagation characteristics in the low-frequency range because bandgaps form near 

the resonant frequency of locally resonant structures. 

 

Since the introduction of the first locally resonant elastic metamaterial, which 

consisted of coated lead spheres36, numerous studies have focused on the formation 

of bandgaps in elastic metamaterials to manipulate elastic waves and vibrations in 

structures. Among these studies, significant attention has been devoted to wave 

propagation in slender structures like beams and pipes due to their wide-ranging 

applications. Analytical approaches have been employed to investigate the 

propagation of flexural wave in beams with periodic spring-mass resonators using 

the Euler-Bernoulli beam37-39 and Timoshenko beam40-42. Furthermore, studies have 

explored longitudinal and torsional wave propagation43,44. These works revealed that 
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the resonant-based bandgap emerge near the natural frequency of the local resonators. 

Beyond the primary spring-mass local resonator, recent research has proposed 

intriguing designs to achieve unique properties of local resonators. For instance, an 

X-shaped local resonator with an internal spring that exhibits variable stiffness at 

different frequencies was employed to attenuate flexural waves45. Local resonators 

with quasi-zero stiffness were utilized to create extremely low-frequency bandgaps 

for flexural waves in a beam46. A metamaterial beam with periodically changing 

cross-sections was investigated to generate broadband flexural bandgaps by 

combining the mechanisms of Bragg scattering and local resonance47. Additionally, 

an origami resonator was proposed to control torsional bandgaps48. 

A majority of prior studies focused on elastic metamaterials functioning where 

only a single wave mode is present. However, in real-world engineering applications, 

such as robot arms, airfoils, and pipe systems containing fluid, it is crucial to consider 

situations where two or more wave modes occur simultaneously. The inherent 

coupling of dynamic properties in resonant structures, as determined by material 

properties and structural configuration, poses a challenge to designing metamaterials 

that can effectively handle multiple wave modes simultaneously. 

The load-dependent deformation mechanism may have the potential to adjust 

the two natural frequencies in the flexural and torsional modes of a local resonator. 

Considering the resonance of disk-shaped local resonators attached to a pipe, the 

mode shapes of the two modes manifest as depicted in Figure 4-1. In the flexural 

mode, the unit cells in the disk oscillate entirely in the normal direction, while the 

unit cells experience shear deformation in the torsional vibration. At this point, we 

can implement the load-dependent deformation modes of auxetic patterns by 

arranging the auxetic pattern into a disk structure, thus creating an auxetic meta-disk. 

The flexural and torsional natural frequencies can be fine-tuned using auxetic 

deformation and non-auxetic deformation modes, respectively. 
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Figure 4-1. Utilizing load-dependent deformation modes in vibration of disk 

sturcutre. The displacement fields of the flexural and torsional mode shapes of a 

disk structure are illustrated with quivers. Each colored square in the mode shapes 

denotes the unit cell showing its deformation type. 

 

From this point, a background theory for bandgap generation in a bar with local 

resonant structures are introduced, and the design principle to manipulate the flexural 

and torsional wave propagation is present. It was discovered that the two frequencies 

could be designed in a wide range, and the bandgap for each mode was generated at 

those frequencies. We utilized finite element analysis to verify the results which 

confirms that wave transmission was significantly reduced in the bandgaps. 

Additionally, an application of elastic wave mode-filtering is proposed. 
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4.2. Auxetic meta-disk 

 

In this chapter, we present the definition of auxetic meta-disk unit cell and the 

composition of the auxetic meta-disk by arranging the unit cells. The difference 

between the unit cells of in-plane, meta-tube, and meta-disk is also present, because 

the unit cell should be modified to be applied to auxetic meta-disk to form a disk 

shape. The main design variables in the definition of the auxetic meta-tube are the 

hinge thickness ratio (HR) and the aspect ratio (AR). 

 

4.2.1. Definition of auxetic meta-disk 

 

In Figure 4-2, the process of constructing an auxetic meta-disk is demonstrated. 

To create an auxetic meta-disk, the fundamental rotating rigid auxetic unit cell needs 

to be transformed. We designed an auxetic unit sector by vertically placing two 

auxetic unit cells and giving it a tapered shape. A unit sector consists of eight 

similarly shaped subunits, which are radially scaled down. These unit sectors are 

then arranged circumferentially to fill the entire disk. A host pipe, which is the target 

for wave manipulation, has several meta-disks placed on it. 

 

 

Figure 4-2. Auxetic meta-disk composition. Two auxetic unit cell form a unit 

sector, which is arranged circumferentially to establish an auxetic meta-disk. The 

auxetic meta-disks are placed on a host pipe to form the entire meta-structure. 
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Two design parameters define the subunit geometry: hinge thickness ratio (HR) 

and aspect ratio (AR). HR indicates the hinge thickness of the unit cell in the 

circumferential direction (tc) divided by the outer perimeter (c). HR also determines 

the hinge thickness in the radial direction (th) divided by the subunit height (h) for 

simplicity. AR represents the aspect ratio which is defined by the height (h) divided 

by the outer circumferential length of the subunit (c). The dimension for the design 

variables is shown in Figure 4-3. We utilized normalized design parameters to apply 

the design principles into applications regardless of their scale. 

We set constant inner and outer radii of the disk. Therefore, the unit cell height 

(h) is a constant value, and the change in the design parameter AR determines only 

the outer perimeter of the unit cell (c) and the number of unit cells in the 

circumferential direction. To fill the circumference without any gaps, AR must be 

determined by the condition where the number of unit cells in the circumferential 

direction should be a natural number. 

 

 

Figure 4-3. Definition of auxetic meta-disk. (a) Dimensions for the definition, the 

unit cell variation by the change in (b) AR, and (c) HR. Note that the height of a 

subunit (h) is set constant, so the circumferential length of the unit cell decreases as 

AR increases. 
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4.2.2. Study for other design variables 

 

The actual number of the design variables in auxetic meta-disk is a seven: for 

disk dimensions, including the outer and inner radii and disk width, and for auxetic 

pattern geometry parameters, including aspect ratio (AR), hinge thickness ratio (HR), 

slit thickness ratio (SR), and the number of unit cells in the radial direction (nr). The 

outer and inner radii of the auxetic disk are set at 275 mm and 177.8 mm, respectively, 

with a width of 127 mm. The two primary design variables, AR and HR, are defined 

by the height and hinge thickness of the rectangular subunits divided by the 

circumferential length, respectively. SR, the ratio between the slit thickness and the 

circumferential length, has a fixed value of 0.1. The number of unit cells in the radial 

direction (nr) is selected as 4. 

The aspect ratio AR determines the number of unit cells in the circumferential 

direction (nc), which must be a natural number to fill the entire disk circumference. 

For convenience, AR values are notated with an interval of 0.4 in the exponent of 2, 

however, the actual AR values (ARa) are smaller than the notated AR and are the 

largest appropriate values, as shown in Table 4-1. 

 

AR 2-1.6 2-1.2 2-0.8 2-0.4 20 20.4 20.8 21.2 21.6 22.0 

ARa 2-1.605 2-1.342 2-0.927 2-0.467 2-0.020 20.395 20.774 21.161 21.597 21.980 

nc 20 24 32 44 60 80 104 136 184 240 

Table 4-1. Notated, actual AR values and corresponding the number of the 

unit cell in circumferential direction, nc. 
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4.3. Finite element analysis model 

 

We conducted finite element analysis using COMSOL Multiphysics® 5.4, a 

commercial multiphysics simulation software, to confirm the variations of the elastic 

wave propagation characteristics. We performed three kinds of analysis: normal 

mode analysis to obtain the natural frequency of the meta-disks; dispersion analysis 

to investigate the bandgap formation; and transmission analysis to verify 

transmission of wave in bandgaps. This chapter contains the information of analysis 

model, boundary conditions, and the validity of the results of analyses. 

 

4.3.1. Analysis model 

 

We adopted polyurethane as the material for the disk in our analysis, 

considering its Young's modulus, density, and Poisson's ratio as 38.4 MPa, 1200 

kg/m3, and 0.48, respectively. To minimize computational costs, we employed a 

sector model comprised of a single unit of the auxetic meta-disk sector, as depicted 

in Figure 4-4. The sector model featured cyclic symmetry conditions at the two 

boundary surfaces, highlighted in red, assuming circumferential periodicity. At those 

area, phase shifts were imposed based on the sector angle of the model. To discretize 

the analysis model, we utilized 3D ten-node tetrahedral elements, employing a finer 

mesh size near the end of the slits. The mesh resolutions are visually presented in 

Figure 4-4c. 

 

4.3.2. Normal mode analysis 

 

To determine the natural frequencies of the auxetic meta-disks, a normal mode 

analysis was conducted. Fixed boundary conditions were applied to the inner 

surfaces (highlighted in green in Figure 4-4a), assuming the meta-disks were 

mounted on a host pipe. The natural frequencies of the meta-disks were normalized 

by dividing them by the corresponding values of a solid disk without any pattern but 
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with identical dimensions. These normalized natural frequencies, denoted as f*, were 

calculated using the equation f* = fmeta/fsolid. In this study, the values of fsolid were 

found to be 525 Hz and 202 Hz for flexural and torsional modes, respectively. 

 

 

Figure 4-4. FE model for normal mode analysis. (a) Finite element model of the 

auxetic meta-disk sector, (b) ten-node tetrahedral element, and (c) resolution of the 

mesh. At the red-colored faces in both sides, cyclic symmetry condition is applied, 

and the inner faces are constrained. 

 

4.3.3. Validity of sector model 

 

For analysis with the sector model, a cyclic boundary condition that imposed 

phase shift and rotation of displacements to the nodes of the source and destination 

surfaces was applied. The following condition was assumed as shown in Equation 

18, 

 

𝑢𝑑𝑠𝑡 = 𝑅𝑢𝑠𝑟𝑐𝑒−𝑖𝑚𝜃𝑠 (18) 

 

where usrc and udst indicate the displacement field of the source and destination 

boundary surfaces, respectively; R represents the rotation matrix for a given sector 
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angle; θs represents the sector angle; and m is the mode number in the azimuthal 

direction. For a torsional mode, m must be set to zero, and for a flexural mode, it 

should be set to one. Figure 4-5 displays the mode shapes and the natural frequencies 

of the full and the sector model of the auxetic disk. Little difference in the natural 

frequencies was observed, which confirms that employing the sector disk model is 

appropriate to utilize the sector model instead of the full model. 

 

 

Figure 4-5. Mode shapes and natural frequency comparison between the full 

disk model and the sector disk model. The normalized total displacement 

distribution is plotted. The natural frequencies of the full and the sector models are 

almost coincident which ensures the validity of the usage of the sector model. 

 

4.3.4. Dispersion analysis 

 

To analyze the band structures, a concentric aluminum pipe was introduced. 

The pipe had a thickness, length, Young's modulus, density, and Poisson's ratio of 10 

mm, 254 mm, 70 GPa, 2700 kg/m3, and 0.33, respectively. Since we considered one-

dimensional wave propagation, specifically flexural and torsional wave propagation 

in a pipe, the wave vector could be expressed as a scalar, known as the wave number. 

Floquet boundary conditions were imposed on the front and back surfaces of the host 

sector (indicated in pink in Figure 4-6), introducing a phase shift ϕ. The wave number 
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(k) was determined by dividing the phase shift ϕ by the unit pipe length (a), which 

was 254 mm. The phase shift was swept from zero to pi. For the lower wave number 

range, from 0 to 0.2 pi, we used fine increments (40 increments) to clearly distinguish 

the dispersion curves, and for the left range, from 0.2 pi to pi, large increments (16 

increments) were employed. The total number of increments is 57, including zero. 

The resulting eigen-frequencies for each increment of k constituted a band structure. 

 

 

Figure 4-6. FE model for dispersion analysis. The sector model of auxetic meta-

disk is attached on a sector host pipe. Floquet periodic boundary condition for 

dispersion analysis is applied at the pink-colored faces at the front and the back of 

the sector pipe. 

 

Figure 4-7 represents the results of dispersion analysis for an example unit cell (HR 

= 0.3 and AR = 20) with a host sector. For an assigned wavenumber, we calculated 

six eigenfrequencies which were represented as points in Figure 4-7. Each point is 

corresponding to each mode shape. For example, for the wavenumber of 0.2 pi rad/m, 

3rd mode represents flexural mode and 4th mode denotes out-of-phase mode as shown 

in Figure 4-8. The points whose mode is the same are connected to form dispersion 

curves as shown in Figure 4-7b. 
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Figure 4-7. Forming dispersion curves via dispersion analysis. (a) The results of 

dispersion analysis are obtained as eigenfrequencies and corresponding mode shapes 

for a given wavenumber. (b) The points whose mode is the same are connected to 

draw dispersion curves. 

 



 

 ９６ 

 

Figure 4-8. Calculated mode shapes for an example wavenumber, 0.2 pi (rad/m). 

Each point which lies vertically is corresponding to each mode. (a) Out-of-phase 

mode, (b) 2nd torsional mode, (c) 1st flexural mode, (d) out-of-phasemode, (e) and 

(f) coupled mode. Note that the azimuthal mode number was set as one, so the mode 

shape of the entire disk has phase variance of 2 pi along to the circumferential 

direction. 

 

4.3.5. Transmission analysis 

 

To investigate wave propagation inside or outside the bandgaps, we placed four 

to twelve auxetic meta-disks axially on the host pipe at intervals of unit length a 

(Figure 4-9) in the transmission analysis. We attached waveguides to both sides of 

the meta-structure and imposed perfectly matched layers (PMLs) which are artificial 

domains that perfectly absorb incident waves. We applied a small harmonic 

displacement w1 in the flexural and torsional directions at the excitation point in front 

of the meta-structure, and the amplitude w2 at the measurement point was obtained. 
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The distances of the excitation and measurement points from the meta-structure were 

a (254 mm) and 2a (508 mm), respectively. The transmission value, T, was calculated 

with the equation of T = 20log(w2/w1) (dB). It is defined by the amplitude at each 

points, so it can exceed unity without any violation in energy conservation49. 

 

 

Figure 4-9. FE model for transmission analysis. From four to twelve auxetic 

meta-disks with the host pipe are arranged. Waveguides are attached at the front 

and back of the meta-disk array. At the end of the waveguides, perfectly matched 

layer (PML) was applied to inhibit reflected wave. 

 

4.3.6. Mesh convergence test 

 

We conducted a parametric study for a minimum mesh size of a 3D auxetic disk 

sector model to ensure a converged solution. A static analysis was performed, where 

the inner surfaces of the auxetic disk model are fixed and a small displacement in the 

y-direction is applied at the outer surfaces of the auxetic disk. The resulting reaction 

forces were compared, while varying the minimum mesh size of the FE model. The 

smallest slit of the innermost subunit of an auxetic disk unit cell was used to set the 

minimum mesh size as the slit thickness multiplied by a variable γ. The solution 

variations according to the value of 1/γ and the number of elements are plotted in 

Figure 4-10, indicating that γ = 1 and 1.87 million elements are sufficient to ensure 

a converged solution, as marked by the unfilled circle. 
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Figure 4-10. Convergence test on the minimum mesh size. The vertical and 

lateral axis represent the solution (reaction force) and 1/γ and corresponding the 

number of the used elements. 

 

4.3.7. Mesh for perfectly matched layers 

 

We applied perfectly matched layer (PML) condition to the left and right end of 

the entire meta-structure as shown in Figure 4-9. The perfectly matched layer is a 

domain to mimic an open or non-reflecting infinite domain. To achieve effective 

absorption of PMLs, finer mesh should be applied on those domains. It was known 

that at least 8 layers of mesh should be required inside PML. 

We assigned rectangular mesh on the cross-section of the host pipe sector as 

shown in Figure 4-11a and swept them along the axial direction to form hexahedral 

elements. The maximum size of the rectangular mesh was set to be 0.3 mm, and the 

maximum swept size is 0.4 mm. The connecting part from the PMLs and the 

waveguide is the excitation point as shown in Figure 4-11b. 
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Figure 4-11. Convergence test on the minimum mesh size. The vertical and 

lateral axis represent the solution (reaction force) and 1/γ and corresponding the 

number of the used elements. 
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4.4. Design principle for simultaneous control of elastic wave 

propagation 

 

Based on the result of the mechanism analysis for simultaneous adjustment of 

in-plane stiffness, we propose a design principle to control elastic wave propagation 

in the two modes, flexural and torsional modes. We performed a comprehensive 

parametric study whose ranges are from 0.1 to 0.8 with the interval of 0.1 for HR, 

and from 2-1.6 to 22 with the interval of 0.2 in the exponent for AR. It was found that 

the natural frequencies of the disk could be tuned in a wide range. We confirmed that 

the bandgaps were opened at the corresponding natural frequencies by the dispersion 

analysis result. 

 

4.4.1. Flexural mode natural frequency control 

 

Figure 4-12 illustrates the variations in normalized flexural natural frequencies 

(fflex
*) as the two design parameters change. The impact of these design parameter 

changes on the natural frequency was examined from a stiffness perspective, 

considering the mass change to be negligible, which will be discussed later. 

Therefore, stiffness plays a dominant role in determining the natural frequency, and 

an auxetic meta-disk design with higher flexural or torsional stiffness exhibits a 

higher natural frequency in the corresponding mode. 

In the case of flexural vibration, where auxetic deformation primarily occurs in 

the auxetic unit cell, the flexural natural frequency increases with both HR and AR, 

as depicted in Figure 4-12. In this mode, the auxetic unit cell is assumed to consist 

of rotating rigid rectangles interconnected by rotational springs. A higher HR value 

corresponds to a stiffer spring, while a larger AR implies a larger number of 

rectangles occupying a fixed area, requiring a greater rotation angle for a given 

displacement. The stress distribution shown in Figure 4-13 confirms the higher stress 

levels observed in cases with larger HR and AR values. These effects contribute to 

an increased flexural natural frequency of the auxetic meta-disk. 
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Figure 4-12. Adjustment of flexural natural frequency of auxetic meta-disk. 

Each curve represents a constant the other design variable. (a) HR variations, and 

(b) AR variations. As HR and AR values increase, the flexural natural frequencies 

increase. 

 

 

Figure 4-13. Schematics and radial stress distribution with the change in 

design variables. (a) HR variations, and (b) AR variations. Higher level of stress 

occurs when HR and AR increase. 

 

4.4.2. Torsional mode natural frequency control 

 

The variation in the normalized torsional natural frequency (ftor
*) with changes 

in the two design parameters is presented in Figure 4-14. In the case of torsional 

vibration, non-auxetic deformation is predominant in the deformed configuration, 
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where all constituents of the unit cell deform as a continuous structure. The hinges 

lose their function as rotational springs and act as connectors, and the sub-rectangles 

are not assumed to be rigid. This mechanism is distinct from auxetic deformation. 

The stress fields depicted in Figure 4-15a confirm the wide distribution of shear 

stress in the unit cell. Increasing the HR lengthens the connector, leading to a higher 

torsional resonating frequency (Figure 4-15a). 

However, AR affects torsional stiffness in a distinct manner, where the 

slenderness of the rectangles plays a crucial role in determining the natural frequency. 

In a partially connected unit cell, the square shape exhibits the highest stiffness, 

while the unit cell becomes more flexible as the shape becomes flatter or longer. 

Therefore, the maximum torsional frequency is achieved when AR is 1 (equal to 20), 

and it decreases as AR increases or deviates from 1, as shown in Figure 4-14b. The 

shear stress distribution confirms that the unit cell with a square shape (Figure 4-15b) 

is stiffer compared to the unit cell with higher AR values. 

 

 

Figure 4-14. Adjustment of torsional natural frequency of auxetic meta-disk. 

Each curve represents a constant the other design variable. (a) HR variations, and 

(b) AR variations. As HR increase and AR is closer to 20, the torsional natural 

frequencies increase. 
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Figure 4-15. Schematics and shear stress distribution with the change in 

design variables. (a) HR variations, and (b) AR variations. Higher level of stress 

occurs when HR increase or AR is closer to 20. 

 

4.4.3. Effect of mass variation of auxetic meta-disk 

 

The mass of the auxetic disks (M) is calculated as the planar density (ρ) 

multiplied by the surface area of the auxetic disk (A) which is determined by the 

porosity (p) of the auxetic disk unit cell (M = ρ(1-p)A). The porosity is determined 

by the hinge thickness ratio (HR) varying from 0.1 to 0.8 and the slit thickness ratio 

(SR = 0.1), so its value is arranged from 0.01 to 0.08. Therefore, the masses of the 

auxetic disks are from 0.92 to 0.99 times the solid disk with the same dimension, 

which is negligible compared to the natural frequency variation. 

 

4.4.4. Bandgap formation 

 

To achieve simultaneous modulation of two-mode bandgaps, we took 

advantage of the broad tunability of natural frequencies in both flexural and torsional 

modes. Through dispersion analysis of various design parameter combinations, we 

computed the band structures of the meta-disk integrated with the host structure. The 

numerical results confirmed the opening of bandgaps at the natural frequencies of 

the auxetic meta-disks, which could be independently tuned for each mode by 

adjusting the design variables, HR and AR. Figure 4-16 presents the band structures 

of an example auxetic meta-disk with HR = 0.3 and AR = 20. The colored regions 
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represent the bandgaps, which opened at 213 Hz and closed at 302 Hz for the flexural 

wave, and opened at 121 Hz and closed at 227 Hz for the torsional wave. The 

corresponding mode shapes, shown in Figure 4-17, validate that the flexural or 

torsional resonance of the auxetic meta-disk resulted in the bandgap formation for 

the corresponding mode. In the flexural bandgap, a horizontal curve was observed at 

262 Hz (a-iii), indicating out-of-phase modes with opposite phases on the front and 

back surfaces of the meta-disk. However, this configuration had an insignificant 

impact on wave propagation characteristics. Within the torsional bandgap, the curves 

exhibited out-of-phase (b-iii, 147 Hz) and radial mode (b-iv, 208 Hz) behaviors. 

 

 

Figure 4-16. Bandgap formation. Band structures for (a) flexural and (b) torsional 

modes of an example meta-disk (AR=20 and HR=0.3). The blue and yellow areas 

correspond to the bandgaps. 
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Figure 4-17. Mode shapes for the points located in the bandgaps. (a) Flexural, 

and (b) torsional modes. (iii) is the out-of-phase mode and (iv) is the radial mode 

which do not affect forming bandgaps. 

 

4.4.5. Designable range of bandgaps 

 

Figure 4-18 presents a graphical representation of how the bandgap varies with 

different design parameters, HR and AR. The flexural and torsional bandgaps are 

represented by the blue and yellow bars, respectively. The bars' bottom and top edges 

indicate the frequencies at which the bandgap opens and closes for a specific auxetic 

meta-disk design. Specifically, the boxed bars in Figure 4-18 correspond to the 

flexural and torsional bandgaps of the model shown in Figure 4-16, with HR = 0.3 

and AR = 20. The shaded regions depict the feasible range of bandgap formation 

within the design variable area. 

The opening frequencies of the bandgap align closely with the natural 

frequencies, which can be found in the tables in the Appendix. Consequently, the 
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bandgap frequencies follow a similar trend to the variations in natural frequencies. 

When HR is larger, both the flexural and torsional bandgap frequencies increase. 

Increasing AR results in an upward shift in the flexural bandgap, but the dependence 

on AR for the torsional mode is non-monotonic. The highest bandgap position occurs 

when the sub-rectangles have a square shape (AR = 20) since it represents the stiffest 

shape. 

 

 

 

Figure 4-18. Designable bandgap range. The bandgaps in the two modes are 

denoted with blue and yellow color bar, respectively. The lower and upper 

frequencies of each bar represent the bandgap opening and closing frequency. The 

lateral axis represents the variation of AR and the values of HR are set constant in 

each subfigure as (a) 0.1, (b) 0.3, (c) 0.5, and (d) 0.7, respectively. 

 

The distance between the meta-disks affects the bandgap closing frequency. It 

is known that the bandgap closing frequency is proportional to the mass ratio 

between the local resonator and the host structure. When the meta-disks are densely 

arranged, the mass ratio increases, leading to a wider bandgap. This was verified 

through dispersion analyses by varying the unit length of the pipe, a, by 1.5, 2, 4, 

and 8 times the thickness of the meta-disk (t = 127 mm). Note that the default unit 

length, a, is equal to 2t. In Figure 4-19, the bandgap closing frequencies decrease as 

the meta-disks are placed further apart. A similar effect can be observed when 

changing the axial thickness of a meta-disk while keeping the distances constant. For 

instance, a meta-disk with half the thickness produces the same bandgap as the model 
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with double the distance (4t in Figure 4-19), as the mass ratio of the host and the 

resonator remains unchanged. 

 

 

Figure 4-19. Bandgap variation with the changes in the distance of auxetic 

meta-disks. Band structures are plotted with bandgaps denoted with colored area 

for (a) flexural and (b) torsional mode. As the distance between the meta-disks 

increases, the mass ratio is reduced, resulting the bandgap closing frequency goes 

down. 
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Figure 4-20. Bandgap comparison between the double distance model and the 

half thickness model. In the double distance model, the starting and ending 

frequency of the bandgaps are (212 Hz, 270 Hz) and (120 Hz, 193 Hz) for flexural 

and torsional modes, respectively, and in the half thickness model, the bandgap 

frequencies are (211 Hz, 267 Hz) and (120 Hz, 192 Hz) for flexural and torsional 

modes, respectively. 
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4.5. Numerical validation 

 

We executed transmission analysis to confirm the wave propagation 

characteristics both inside and outside the bandgaps. The analysis revealed that wave 

propagation was effectively obstructed within the forbidden bands, while high 

transmission values were achieved outside the bandgap. Furthermore, we 

investigated the attenuation efficiency, which is influenced by the number of auxetic 

meta-disks used in the design. 

 

4.5.1. Transmission analysis result 

 

As demonstrated in Figure 4-21, the transmission value, T, showed a sharp 

decline at the bandgap opening frequency and maintained low values throughout the 

frequency band. The curves located within the bandgap, such as the out-of-phase or 

radial mode shown in Figure 4-17, exhibited little impact on the transmission values. 

Although a small peak appeared within the flexural bandgap in Figure 4-21a, the 

transmission value remained below 0 dB. The attenuation efficiency at the higher 

frequency within the band could be improved through a graded metamaterial 

design50-52, but this topic is beyond our scope. Nonetheless, the great part of the 

excited wave cannot propagate through the meta-structure, which proves that the 

auxetic meta-disks works effectively as local resonators. 
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Figure 4-21. Wave transmission in bandgaps. (a) Flexural and (b) torsional 

wave. It was observed that the transmission values were sharply reduced in the 

bandgaps, especially near the bandgap opening frequency. The out-of-phase or 

radial mode existing in the bandgap do not significantly reduce the attenuation 

efficiency. 

 

4.5.2. Investigation of attenuation efficiency 

 

One of the factors that affect how well attenuation occurs is the arrangement of 

auxetic meta-disks. The number of meta-disks in an array is connected to the 

attenuation effectiveness within a bandgap. Since the meta-disk acts as a local 

resonator, having a greater number of local resonators can enhance the attenuation 

effectiveness. This was confirmed through a study where the number of meta-disks 

was varied. The chosen design parameters for the meta-disk were HR = 0.3 and AR 

= 20, and the number of meta-disks ranged from 4 to 12. It is important to note that 

while the location of the bandgap is a characteristic of the design of the unit cell, the 

number of meta-disks doesn't change the bandgap location but does affect the 

transmission of the meta-structure. Figure 4-22 shows the transmission results for 
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different numbers of meta-disks. In all cases, it was observed that as more resonators 

were added, a smaller portion of the wave was transmitted to the measurement point, 

resulting in lower transmission values. At the bandgap opening frequency, with only 

four meta-disks in the arrangement, the transmission values decreased to -30.4 dB 

for flexural waves and -30.2 dB for torsional waves. The minimum and average 

transmission values are presented in Table 4-2. An appropriate number of auxetic 

meta-disks can be chosen based on the specific requirements of an application. 

 

 

Figure 4-22. Transmission variations with the different number of meta-disks. 

Transmission value variations with the changes in the number of the meta-disks for 

(a) flexural and (b) torsional mode. Larger number of the meta-disks produces 

lower transmission values. 
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T (dB) 4 6 8 10 12 

Tflex,min -30.4 -53.7 -82.7 -126 -133 

Tflex,avg -12.2 -18.8 -26.7 -34.3 -40.5 

Ttor,min -30.2 -45.5 -61.0 -77.6 -92.2 

Ttor,avg -3.81 -6.44 -9.24 -12.2 -15.0 

Table 4-2. Minimum and average transmission values in the bandgap. The 

design parameters are set as AR is equal to 20 and HR is 0.3.  
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4.6. Application: Elastic wave mode filter 

 

The proposed design concept, which allows simultaneous control of two elastic 

wave modes, enables the selective transmission of a desired wave mode while 

blocking the undesired mode within a specific frequency range. To demonstrate the 

feasibility of this approach in mode filtering applications, several sample designs 

labeled as case 1-4 were considered. The unit cell design and the values of the design 

variables (AR, HR) are shown in Figure 4-23a. The flexural and torsional bandgaps 

for each case are plotted next to the unit cell. In these designs, the flexural and 

torsional waves were either blocked for both modes, blocked for one while allowing 

propagation of the other, or allowed to propagate for both at an arbitrary frequency 

(150 Hz) by positioning the excitation frequency inside or outside the bandgaps. 

Figure 4-23b illustrates the steady-state configurations of the meta-structure, 

clearly demonstrating the filtering effect. The two figures for each case correspond 

to the excitation of flexural and torsional waves, respectively. The color bar 

represents the displacement magnitude. Within the bandgap, only a few local 

resonators exhibit significant vibration amplitude, while the right end of the host pipe 

has minimal oscillation. In contrast, when the excitation frequency is outside the 

bandgap, waves are effectively transmitted along the host structure. 
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Figure 4-23. Auxetic meta-disk applicaion as an elastic wave mode filter. (a) 

Four case designs of auxetic meta-disks with representation of the designed 

bandgaps. (b) The deformed configurations with the normalized displacement 

distribution are illustrated. 
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4.7. Conclusion 

 

In this chapter, we introduced the design principles of locally resonant 

structures for the purpose of independently controlling the propagation of elastic 

waves in two different modes. By utilizing the load-dependent feature of auxetic 

pattern deformation, we were able to modulate the propagation of flexural and 

torsional waves in a pipe structure using locally resonant auxetic meta-disks. The 

numerical results demonstrated the feasibility of this approach within a broad 

frequency range and its potential applicability in elastic wave-mode filtering 

applications. 

The main highlight of this chapter is the development of a metamaterial that 

allows for the simultaneous control of two distinct wave modes using a single auxetic 

meta-disk design. Additionally, the proposed meta-disk design does not require any 

modifications to the host structure for vibration attenuation, making it adaptable to 

various operating environments, including internal attachments. By appropriately 

arranging the auxetic unit cells, the design concept can be extended to other 

geometries, such as plates and shells, in addition to pipe structures. 

The proposed idea is straightforward and has a wide-ranging impact, providing 

a foundation for the design of other wave modes, such as longitudinal and shear 

waves, in various structures.  
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Chapter 5. Concluding remarks 

 

 

In this work, we have presented a design principle for a rotating rigid auxetic 

pattern to adjust two different mechanical properties by exploiting the load-

dependent deformation modes of auxetic pattern. We analyzed the deformation 

mechanism of each mode, specifically tension-dominant auxetic deformation mode 

and shear-dominant non-auxetic deformation mode. The key design variables of the 

auxetic unit cell are the hinge thickness ratio (HR) and the aspect ratio (AR), and 

their role in the two deformation modes was investigated. 

Based on the design principle utilizing the load-dependent deformation modes 

of the auxetic pattern, we have successfully demonstrated auxetic meta-tube that can 

simultaneously control bending and torsional stiffness of tubular structure, as well 

as auxetic meta-disk which manipulates flexural and torsional wave propagation in 

pipe structures. Numerical and experimental results validate the versatility and 

effectiveness of our approach in the various applications. 

The proposed design principles are straightforward and highly adaptable, 

making them suitable for various geometries such as plates, shells, and other various 

3D structures due to their nondimensional nature. Further research on three-

dimensional auxetic unit cells may facilitate applying to volumetric structures. Using 

additive patterns rather than perforation or different materials like hyperelastic 

materials can also be considered for novel characteristics of metamaterials. We hope 

that our approach provides a robust foundation for future work in the field of auxetic 

patterns, opening the door to new possibilities in the design and control of 

mechanical properties for a broad range of structures. 
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Appendix. 

 

 

Figure A-1. Frequency Response Functions (FRFs) of the auxetic tubes 

imposed an impact force. The marked frequencies indicate the first mode bending 

natural frequencies of the tubes. The vertical axis refers magnitude in decibel unit. 
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Figure A-2. Frequency Response Functions (FRFs) of the auxetic tubes 

imposed a torsional impact force. The marked frequencies indicate the first mode 

torsional natural frequencies of the tubes. 
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Figure A-3. Normal stress distribution in auxetic tube unit cell under bending 

load. The sizes of the unit cells are normalized to be the same to the unit cell with 

AR = 20. 
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Figure A-4. Normal stress distribution in auxetic tube unit cell under bending 

load (continued). 
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Figure A-5. Shear stress distribution in auxetic tube unit cell under torsional 

load. 
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Figure A-6 Shear stress distribution in auxetic tube unit cell under torsional 

load (continued). 
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Figure A-7. Frequency comparison between FE static, normal mode analysis 

and experiment. a) 1st bending mode frequencies, and b) 1st torsional mode 

frequencies. 
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Figure A-8. Feasible stiffness region of rectangular unit auxetic tube. The solid 

and dashed lines indicate constant AR, and HR respectively.  

 

Figure A-9. Feasible stiffness region of triangular unit auxetic tube. 

 



 

 １２５ 

 

Figure A-10. Feasible stiffness region of hexa-triangular unit auxetic tube. 
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B* 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

2-2 0.001 0.003 0.009 0.029 0.132 0.334 0.538 - - 

2-1.8 0.001 0.005 0.013 0.039 0.145 0.345 0.551 - - 

2-1.6 0.001 0.006 0.017 0.050 0.159 0.357 0.566 0.771 - 

2-1.4 0.002 0.008 0.023 0.063 0.176 0.371 0.583 0.787 - 

2-1.2 0.002 0.010 0.029 0.077 0.194 0.388 0.603 0.803 - 

2-1 0.002 0.012 0.037 0.093 0.215 0.410 0.625 0.819 - 

2-0.8 0.003 0.015 0.045 0.111 0.240 0.436 0.649 0.835 - 

2-0.6 0.003 0.018 0.055 0.131 0.270 0.466 0.675 0.850 - 

2-0.4 0.004 0.023 0.068 0.156 0.304 0.502 0.702 0.865 - 

2-0.2 0.005 0.028 0.083 0.185 0.344 0.540 0.729 0.878 - 

20 0.007 0.036 0.101 0.218 0.387 0.580 0.756 0.891 - 

20.2 0.009 0.045 0.123 0.255 0.432 0.619 0.781 0.903 0.977 

20.4 0.011 0.056 0.148 0.295 0.477 0.657 0.805 0.913 0.979 

20.6 0.015 0.070 0.177 0.337 0.521 0.691 0.826 0.922 0.981 

20.8 0.020 0.086 0.208 0.379 0.562 0.722 0.844 0.930 0.983 

21 0.026 0.104 0.240 0.419 0.599 0.750 0.861 0.938 0.984 

21.2 0.033 0.123 0.272 0.457 0.633 0.774 0.875 0.944 0.985 

21.4 0.041 0.144 0.304 0.492 0.663 0.795 0.887 0.949 0.986 

21.6 0.051 0.165 0.335 0.524 0.690 0.814 0.898 0.954 0.987 

21.8 0.061 0.187 0.366 0.555 0.715 0.830 0.907 0.958 0.988 

22 0.072 0.208 0.396 0.585 0.738 0.845 0.916 0.962 0.989 

22.2 0.083 0.231 0.425 0.613 0.759 0.859 0.923 0.965 0.990 

22.4 0.095 0.254 0.455 0.641 0.780 0.871 0.930 0.967 0.990 

22.6 0.107 0.278 0.485 0.667 0.798 0.882 0.936 0.970 0.991 

22.8 0.120 0.303 0.515 0.693 0.816 0.893 0.941 0.972 0.991 

23 0.135 0.329 0.546 0.718 0.832 0.902 0.946 0.974 0.991 

Table A-1. Normalized bending stiffness of rectangular pattern. 
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C* 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

2-2 0.036 0.072 0.124 0.191 0.254 0.352 0.527 - - 

2-1.8 0.042 0.086 0.147 0.223 0.298 0.403 0.574 - - 

2-1.6 0.049 0.100 0.169 0.253 0.339 0.450 0.615 0.811 - 

2-1.4 0.056 0.112 0.187 0.279 0.374 0.490 0.650 0.830 - 

2-1.2 0.063 0.123 0.202 0.298 0.402 0.524 0.680 0.847 - 

2-1 0.069 0.131 0.213 0.312 0.422 0.550 0.705 0.860 - 

2-0.8 0.074 0.138 0.219 0.319 0.436 0.571 0.724 0.870 - 

2-0.6 0.079 0.143 0.222 0.323 0.444 0.586 0.739 0.878 - 

2-0.4 0.083 0.146 0.224 0.323 0.449 0.596 0.750 0.884 - 

2-0.2 0.086 0.149 0.225 0.324 0.452 0.603 0.757 0.887 - 

20 0.088 0.151 0.226 0.325 0.454 0.607 0.760 0.888 - 

20.2 0.090 0.152 0.228 0.328 0.456 0.607 0.759 0.887 0.972 

20.4 0.091 0.153 0.230 0.331 0.457 0.604 0.755 0.885 0.971 

20.6 0.090 0.153 0.232 0.333 0.457 0.598 0.747 0.880 0.970 

20.8 0.088 0.151 0.231 0.333 0.453 0.588 0.736 0.872 0.968 

21 0.085 0.147 0.227 0.329 0.445 0.574 0.720 0.863 0.965 

21.2 0.081 0.141 0.220 0.320 0.430 0.553 0.700 0.850 0.961 

21.4 0.075 0.132 0.208 0.305 0.409 0.527 0.674 0.835 0.957 

21.6 0.069 0.122 0.193 0.284 0.382 0.493 0.643 0.816 0.952 

21.8 0.063 0.109 0.173 0.258 0.348 0.453 0.608 0.795 0.946 

22 0.055 0.096 0.152 0.228 0.310 0.409 0.567 0.769 0.939 

22.2 0.048 0.082 0.131 0.198 0.270 0.362 0.523 0.740 0.931 

22.4 0.041 0.069 0.110 0.168 0.231 0.315 0.477 0.707 0.921 

22.6 0.034 0.057 0.091 0.140 0.193 0.270 0.429 0.671 0.909 

22.8 0.028 0.046 0.074 0.115 0.160 0.229 0.382 0.630 0.896 

23 0.023 0.037 0.060 0.093 0.130 0.192 0.335 0.587 0.881 

Table A-2. Normalized torsional stiffness of rectangular pattern. 
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B* 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

2-2 - - 0.003 0.010 0.030 0.134 - - 

2-1.5 - 0.002 0.010 0.028 0.064 0.174 0.431 - 

2-1 0.001 0.006 0.021 0.059 0.127 0.260 0.497 0.775 

2-0.5 0.003 0.013 0.039 0.098 0.204 0.369 0.590 0.817 

20 0.007 0.023 0.060 0.137 0.278 0.471 0.677 0.859 

20.5 0.011 0.035 0.085 0.182 0.350 0.560 0.750 0.898 

21 0.019 0.053 0.120 0.240 0.431 0.645 0.816 0.935 

21.5 0.034 0.083 0.173 0.318 0.531 0.735 0.878 - 

22 0.065 0.137 0.257 0.430 0.653 0.828 0.927 - 

22.5 0.131 0.240 0.396 0.584 0.780 0.895 - - 

23 0.259 0.416 0.584 0.731 0.855 - - - 

Table A-3. Normalized bending stiffness of triangular pattern. 

 

C* 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

2-2 - - 0.026 0.072 0.200 0.383 - - 

2-1.5 - 0.018 0.043 0.107 0.252 0.459 0.631 - 

2-1 0.014 0.032 0.065 0.141 0.296 0.501 0.680 0.845 

2-0.5 0.022 0.049 0.095 0.177 0.327 0.518 0.699 0.858 

20 0.029 0.065 0.122 0.212 0.346 0.517 0.698 0.861 

20.5 0.033 0.074 0.138 0.230 0.346 0.491 0.671 0.847 

21 0.032 0.071 0.131 0.212 0.302 0.421 0.602 0.803 

21.5 0.025 0.055 0.099 0.158 0.220 0.314 0.493 - 

22 0.016 0.035 0.062 0.099 0.138 0.209 0.367 - 

22.5 0.009 0.019 0.035 0.057 0.079 0.129 - - 

23 0.005 0.010 0.019 0.031 0.043 - - - 

Table A-4. Normalized torsional stiffness of triangular pattern. 
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B* 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

2-2 - - 0.013 0.033 0.090 0.273 - - 

2-1.5 - 0.010 0.030 0.072 0.156 0.339 0.597 - 

2-1 0.005 0.019 0.055 0.126 0.245 0.432 0.660 0.858 

2-0.5 0.010 0.035 0.090 0.192 0.346 0.539 0.733 0.890 

20 0.019 0.059 0.139 0.272 0.451 0.640 0.802 0.919 

20.5 0.035 0.100 0.212 0.369 0.554 0.728 0.857 0.943 

21 0.066 0.169 0.312 0.480 0.653 0.800 0.899 0.960 

21.5 0.127 0.273 0.432 0.590 0.740 0.858 0.929 0.971 

22 0.234 0.404 0.553 0.686 0.808 0.899 0.948 - 

22.5 0.379 0.535 0.657 0.759 0.856 0.924 - - 

23 0.512 0.633 0.726 0.805 0.882 - - - 

Table A-5. Normalized bending stiffness of hexa-triangular pattern. 

 

C* 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

2-2 - - 0.098 0.184 0.339 0.513 - - 

2-1.5 - 0.090 0.158 0.265 0.425 0.603 0.753 - 

2-1 0.073 0.138 0.222 0.341 0.500 0.665 0.801 0.909 

2-0.5 0.101 0.178 0.273 0.396 0.546 0.697 0.824 0.921 

20 0.117 0.200 0.300 0.421 0.557 0.697 0.824 0.923 

20.5 0.115 0.196 0.294 0.408 0.532 0.668 0.804 0.914 

21 0.094 0.164 0.248 0.349 0.465 0.608 0.763 0.893 

21.5 0.065 0.114 0.176 0.259 0.365 0.519 0.697 0.859 

22 0.039 0.070 0.110 0.170 0.258 0.413 0.607 - 

22.5 0.022 0.040 0.065 0.104 0.170 0.305 - - 

23 0.012 0.022 0.037 0.060 0.106 - - - 

Table A-6. Normalized torsional stiffness of hexa-triangular pattern. 
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HR=0.1 Flexural Torsional 

AR f opening closing f opening closing 

2-1.6 76.1 76.1 104.0 64.9 64.9 120.2 

2-1.2 81.4 81.4 113.5 69.5 69.5 128.5 

2-0.8 88.8 88.8 128.9 75.0 75.0 138.5 

2-0.4 102.4 102.4 154.1 78.1 78.1 143.8 

20 137.5 137.5 195.8 79.4 79.4 146.1 

20.4 178.8 177.1 239.4 78.8 78.8 145.0 

20.8 211.4 208.9 269.9 77.0 77.0 141.8 

21.2 237.5 233.4 326.8 72.9 72.9 134.1 

21.6 258.3 249.7 340.0 66.4 66.4 122.3 

22 277.5 269.0 348.5 59.3 59.3 109.4 

Table A-7. Natural frequency and bandgap frequencies of the auxetic disk. HR 

is constant as 0.1. 

 

HR=0.3 Flexural Torsional 

AR f opening closing f opening closing 

2-1.6 138.4 138.3 175.2 109.8 109.8 207.6 

2-1.2 139.7 139.7 188.4 115.3 115.3 218.1 

2-0.8 141.1 141.1 211.1 120.1 120.1 226.6 

2-0.4 166.2 166.2 248.1 120.7 120.7 227.4 

20 213.8 212.7 301.7 120.7 120.7 227.2 

20.4 260.9 257.4 353.1 121.6 121.6 228.8 

20.8 296.3 291.5 391.1 122.1 122.1 229.7 

21.2 324.8 317.5 415.1 119.7 119.7 224.7 

21.6 349.3 338.3 468.0 111.8 111.8 209.2 

22 361.6 349.8 470.7 100.8 100.8 187.9 

Table A-8. Natural frequency and bandgap frequencies of the auxetic disk. HR 

is constant as 0.3. 
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HR=0.5 Flexural Torsional 

AR f opening closing f opening closing 

2-1.6 242.0 242.0 298.4 143.5 143.5 275.8 

2-1.2 253.9 253.0 325.8 149.2 149.2 287.5 

2-0.8 273.1 271.7 359.9 154.8 154.8 298.4 

2-0.4 301.7 299.3 400.3 156.9 156.9 302.2 

20 334.8 331.4 442.3 157.7 157.7 303.4 

20.4 363.1 358.9 473.2 157.6 157.6 302.7 

20.8 383.4 375.4 493.3 156.7 156.7 300.2 

21.2 399.1 389.4 506.0 153.1 153.1 292.1 

21.6 411.8 400.4 511.4 144.6 144.6 274.4 

22 419.4 406.5 549.9 133.2 133.2 251.2 

Table A-9. Natural frequency and bandgap frequencies of the auxetic disk. HR 

is constant as 0.5. 

 

HR=0.7 flexural torsional 

AR f opening closing f opening closing 

2-1.6 414.9 409.9 508.2 177.7 177.7 348.1 

2-1.2 424.3 419.1 522.9 180.7 180.7 354.4 

2-0.8 437.7 431.9 537.6 184.4 184.4 362.2 

2-0.4 450.8 446.2 550.8 186.8 186.8 366.8 

20 461.2 454.5 560.7 187.8 187.8 368.6 

20.4 467.7 459.6 566.2 187.0 187.0 366.7 

20.8 471.4 462.2 569.3 185.4 185.4 362.9 

21.2 473.0 463.0 570.1 182.4 182.4 356.0 

21.6 474.1 463.1 570.1 177.4 177.4 345.2 

22 474.2 463.1 570.4 171.6 171.6 332.7 

Table A-10. Natural frequency and bandgap frequencies of the auxetic disk. 

HR is constant as 0.7. 
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Abstract in Korean 

  

오그제틱 물질은 음의 푸아송비를 보이는 메타물질의 일종으로, 

인장 시 물질의 옆면이 함께 팽창하는 독특한 특성을 보인다. 이러한 

특성은 인장 하중에 의해 오그제틱 단위체의 내부 빈 공간이 팽창하는 

오그제틱 변형 모드에 의해 발생한다. 그러나 오그제틱 물질이 전단력을 

받을 때에는 일반적인 연속체와 유사한 비오그제틱 변형 모드로 

변형하게 된다. 우리는 오그제틱 물질의 이러한 하중 의존적 변형 

모드에 주목하여 두 기계적 물성을 동시에 조절하기 위한 설계 원리를 

제안하였다.  

본 연구는 먼저 인장, 전단 강성을 동시에 조절할 수 있는 평면 

오그제틱 단위체의 설계 원리를 제시한다. 회전 강체 오그제틱 패턴을 

기본 단위체로 설정하여 각각의 변형 모드에서의 강성 조절 메커니즘을 

확인하고 이를 설계하기 위한 두 가지 핵심 설계 변수인 힌지두께비 

(HR), 세장비 (AR)를 제시하고 조절 원리를 고찰하였다. 

평면 상의 강성 조절 설계 원리를 확장하여, 3차원 메타 구조인 

오그제틱 메타 튜브, 오그제틱 메타 디스크의 설계 원리를 추가적으로 

제시하였다. 오그제틱 메타 튜브는 튜브 구조의 굽힘, 비틀림 강성을 

동시에 설계할 수 있는 메타 구조로, 시뮬레이션과 실험을 통해 

최소침습수술 기법 중 하나인 동심형 튜브 로봇의 안정성과 성능을 

향상시킬 수 있음을 확인하였다. 오그제틱 메타 디스크는 디스크의 굽힘 

모드, 비틀림 모드의 고유진동수를 동시에 설계할 수 있는 구조로, 두 

종류의 탄성파 전파를 조절하기 위해 설계되었다. 다양한 유한요소 해석 

기법을 활용하여 파이프에서의 굽힘, 비틀림 파의 전파를 동시에 조절할 

수 있음을 확인하였고, 적용 분야로 탄성파 모드 필터의 예시를 통해 

비파괴검사에서의 응용 가능성을 확인하였다. 

제안된 설계 원리는 직관적이고 다양한 분야에 적용 가능하다는 

데에 의의가 있다. 본 설계 원리는 다양한 기계 특성과 형상에 대한 

적용으로 확장될 수 있으며, 이를 통해 새로운 특성과 장치에 대한 

설계가 가능해지기를 기대한다. 

 

주요어:  메타물질, 오그제틱, 강성, 파동 전파 

학번: 2015-22727 
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