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Abstract

Development of an Efficient Multi-
disciplinary Optimization Method for
the Conceptual Design of Reusable
Unmanned Spacecraft

Jongho Jung
School of Mechanical and Aerospace Engineering

The Graduate School
Seoul National University

This study develops an efficient approach to design reusable unmanned
spacecraft, which is in increasing demand in these days. In various analyses for the
design, the calculations of the aerodynamic force, heat flux, and motion are
conducted by enormous times while the geometry definition, weight estimation, and
propulsion analysis are performed by few times. It is because the former calculations
are executed for each instance of trajectory. Thus, this study develops an efficient
method to adjust the time step for an analysis. The developed method adjust the time
step based on the current state. The developed method is applied to the heat-flux
calculation for validating the method. The adaptive-time-step method includes a
dynamic factor that adjusts the time step between each instance of heat-flux
calculation. Under low-heat-flux conditions, the time step using this factor increases,

resulting in a decrease of approximately one-tenth in the number of heat-flux



calculations required with over 90% accuracy. Therefore, the efficiency of heat-flux
calculation are improved with high accuracy by adopting the adaptively-determined
time step according to this dynamic factor.

In addition, a new method that adaptively adjusts the design space by considering
the actual solution distribution of a problem is developed to overcome the limitations
of conventional design-space adaptation methods that typically assume a normal
distribution of solutions, which is rarely the case for real-world problems. To validate
the effectiveness of the developed adaptive design-space method, it is applied to
nineteen multiobjective test functions that are commonly used to evaluate
optimization approaches. The results show that the method adapted the design space
to a suitable range where the probability of solution existence is high. Furthermore,
the optimization performance achieved using the developed adaptive design-space
method is better than that of the conventional methods.

To validate the effectiveness of the developed methods, the efficient methods for
heat-flux calculation and adaptive design space were utilized in MDO for reusable
unmanned spacecraft. The MDO framework combines a variety of spacecraft
analysis technologies, including weight, propulsion, aerothermodynamics, and
trajectory analyses. The weight of the spacecraft is predicted using a modified
hypersonic aerospace sizing analysis (HASA), while the entry weight is used to
estimate the required thrust and weight of engines. Aerodynamic properties are
calculated using modified Newtonian theory and Digital DATCOM, and
approximate convective-heating equations are used to determine heat-flux. The
spacecraft trajectory is modeled using three degree-of-freedom equation of motion.
To enable optimization, the MDO is integrated with a multiobjective genetic
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algorithm (MOGA). The MDO results demonstrate that the Pareto solutions obtained
using the developed method are superior to those obtained using conventional
methods.

Data mining is also conducted with analysis of variance (ANOVA), parallel chart,
and self-organizing map (SOM) to investigate why the optimized shapes exhibited
superior performance by extracting geometric features that impact the performance
of the unmanned spacecraft. The data mining results indicated a trade-off
relationship between weight and heat flux. Additionally, the nose radius, total length,

and root chord were identified as significant variables for spacecraft performance.

Keywords : Reusable unmanned spacecraft, Conceptual design,
Multidisciplinary optimization (MDO), Multiobjective genetic algorithms (MOGA),
Time step adaptation, Design-space adaptation

Student Number : 2017-38109
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Nomenclature

English symbols
a
A,

J

AR

Parameter of adaptive time step for heat-flux calculation
Probability densities of the ;% subspace for the control
distribution

Aspect ratio

Parameter of adaptive time step for heat-flux calculation

Factor for adaptive time step

Moment coefficients

Pressure coefficients

Maximum value of the pressure coefficient

Body equivalent diameter

Distance between the solutions and analytical solutions

Unit vectors in the direction of the streamline

Unit vectors in the direction of perpendicular to the streamline on
the surface

Inverse of the error function

Represented surface of the body

Acceleration of gravity

Enthalpy

Metric coefficients correspond to 8

Metric coefficients correspond to ¢
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ISPoms

1 SPrcs

Variable number

Specific impulse of OMS

Specific impulse of RCS

Subspace number

Total number of variables

Fuselage length

Free stream Mach number

Median of the i design variable
Modifying factor

The number of methods (solution sets)
Normal vector

The number of subspace

The number of generations

The number of solutions in [x;;_q, x;;] for the /" design
variable

The number of individuals

The number of Pareto solutions

The numbers of primary RCS for aft
The numbers of primary RCS for front
Total number of solutions

The numbers of vernier RCS for aft
The numbers of vernier RCS for front

Proportion of solutions in the /™ subspace for the i variable
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Pomspress
POmStnk
I'CSpress

I'CStnk

Pr

qmax

Sbtot

Sref

Treqoms

Pressure of the pressurization system for OMS
Pressure of the tank for OMS
Pressure of the pressurization system for RCS

Pressure of the tank for RCS

Prandtl number

Maximum dynamic pressure

Heat flux

Nose radius

Union of all Pareto solutions

The number of Pareto solutions obtained from each optimization
The number of Pareto solutions present in Rj
Pareto solutions

New Pareto solutions of R*

Ratio of OMS engine thrust to weight

Ratio of primary RCS thrust to weight

Ratio of vernier RCS engine thrust to weight
Momentum thickness Reynolds number
Streamline length

Current state

Fuselage wetted surface area

Reference wing area

Wing thickness to chord ratio

Required thrust of OMS
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reqp
regy
TRF
ULF
Vo
Vomsfuel
Vomsox

Vomspress

‘/Omstnk

|74

I'CSfyel

V;‘csox

Vrcspress

Required thrust of primary RCS

Required thrust of vernier RCS
Technology reduction factor
Ultimate load factor

Free stream velocity

Volumes of fuel for OMS

Volumes of oxygen for OMS

Volume of Helium required as pressurant for OMS
Volume of the tank for OMS

Volumes of fuel for RCS

Volumes of oxygen for RCS

Volume of Helium required as pressurant for RCS
Volume of the tank for RCS

Fuselage volume

Electrical system weight

Vehicle empty weight

Total weight for engine

Entry weight

Fuselage weight

Total fuel weights

Landing gear weight

Total vehicle gross weight

Hydraulics weight
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5

ms

S

OmSepg

S

OmMSfyel

S

OmMSjnstall

S

oms,y

S

OMSprop

S

OMSpropascent

S

OMSpPropge-orbit

S

OMSpropyrpit

S

OMSpress

S

OMmMStpk

5 3

S

ICSfyel

S

I'CSinstall

S

rCSox

S

rCSpa

S

rcspe

S

I'CSpress

S

ICSprop

S

TCSpropentry

Landing weight
OMS weight

OMS engine weight

Fuel weight for OMS propellant

Installation weight for OMS

Oxygen weight for OMS propellant

Total OMS propellant weight

OMS propellant weight for ascent

OMS propellant weight for de-orbit

OMS propellant weight for orbit maneuvers
Weight of the pressurization system for OMS
The weight of OMS tank

Total oxygen weight

RCS weight

Weights of the fuel for RCS

Installation weight for RCS

Weights of the oxygen for RCS

Weights of primary RCS for aft

Weights of primary RCS for front

Weight of the pressurization system for RCS
Total RCS propellant weight

RCS propellant weight for entry



W,
TCSproporbit

Xiextreme
xi,lower

xi,upper

y

Greek symbols

a

B

RCS propellant weight on orbit

Weights of vernier RCS for aft
Weights of vernier RCS for front
The weight of RCS tank
Payload weight

Total propellant weight

Total propulsion weight
Avionics weight

Total structural weight

Total subsystem weight

Total weight of tank

TPS weight

Wing weight

i design variables

Extreme solutions of the i design variables
Lower bound of i variable
Upper bound of i variable

Output variables

Angle of attack
Position perpendicular to the streamline
Specific heat ratio

Standard deviation /™ design variable
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~2
0;

A2
Ototal

AV

OMSascent

AV

OMmMSde—orbit

AI/Omsorbit

AV,

I'CSentry

AVrcsorbit
Aty,

At,

¢

Nvol

Nt

Htotal

Variance related to the design variable X;

Variance of output variables

Total velocity change using OMS for ascent

Total velocity change using OMS for de-orbit

Total velocity change using OMS for orbit maneuvers

Total velocity change using RCS for entry

Total velocity change using RCS on orbit

Time steps of the heat flux calculation

Time steps of the trajectory

Lees-Dorodnisyn transformation parameter

Vehicle volumetric efficiency

Confidence level

Angle between the direction of free stream velocity and the
surface of the vehicle

Laminar momentum thickness

Mean laminar momentum thickness

Taper ratio

Mid-chord sweep angle

Viscosity

Mean value of the i design variable

Degree of impact of the design variable x; on the objective
function

Total mean of output variables
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¥
Subscripts

aw

Superscripts

*

Abbreviations
ANOVA
BFCS

CFD

CRGA

DOF

ECEF

ECI

FRSI

GCS

GD

The position along the streamline
Density

Velocity gradient parameter

Adiabatic wall
Boundary layer edge
Laminar

Stagnation point
Wall (surface)

Epsilon curve

Eckert’s reference enthalpy relation

Analysis of variance

Body-fixed coordinate system

Computational fluid dynamics

Changing range genetic algorithm

Degree of freedom

Earth-centered, Earth-fixed coordinate system
Earth-centered inertial coordinate

Fibrous refractory composite insulation
Geographic coordinate system

Generational distance
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HASA

HRSI

LES

MDA

MDO

MOGA

NASA

NFE

OMS

PI

PID

RANS

RCC

RCS

SD

SM

SOM

TPS

WFG

ZDT

Hypersonic aerospace sizing analysis
High-temperature reusable surface insulation
Large eddy simulation

Multidisciplinary analysis

Multidisciplinary optimization
Multiobjective genetic algorithm

U.S. National Aeronautics and Space Administration
The number of function evaluations

Orbital maneuvering system

Proportional integral

Proportional integral derivative
Reynolds-averaged Navier Stokes
Reinforced carbon—carbon

Reaction control system

Runge-Kutta

Standard deviation

Static margin

Self-organizing map

Thermal protection system

Walking fish group problems

Zitzler-Deb-Thiele problems
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Chapter 1

Introduction

1.1 Backgrounds

These days, many report and investigator expect that the space industry will grow
up continuously. Euroconsult estimates that the spacecraft market has reached 370
and 464 billion dollars in 2021 and 2022, respectively, and is expected to grow by
more than 737 billion dollars by 2032, as shown in Fig. 1.1 [1,2]. In addition,
According to Morgan Stanley's analysis, the revenue generated by the global space
industry has the potential to exceed a trillion dollars by the year 2040, as illustrated
in Fig. 1.2 [3].

To occupy these space market, private enterprises such as SpaceX, Virgin
Galactic, and Blue Origin are developing launch vehicles and spacecraft. SpaceX's
goal is to reduce the cost of space transportation and colonize Mars. To achieve this,
they are developing both launch vehicles and spacecraft. Virgin Galactic, on the other
hand, is focusing on creating commercial spacecraft for space tourists. The company
has already succeeded in manned spaceflight, including with their founder. Blue
Origin is working on developing rocket-powered vertical takeoff and landing
vehicles to access suborbital and orbital space. These efforts suggest that space
development has shifted from the government to the commercial sector, with the aim
of increasing profits through the use of reusable spacecraft and diversifying flight
purposes.

Specially, Boeing is developing X-37 as a reusable unmanned spacecraft, and it



was first launched in 2010. The X-37 is launched into space by a launch vehicle and
then lands on Earth as a spaceplane after re-entering the atmosphere. Korea also
makes an effort to develop a reusable unmanned spacecraft through grants, such as
the Reusable Unmanned Space Vehicle Research Center (ReUSV) by Korea
Research Institute for Defense Technology Planning and Advancement (KRIT).
However, since the spacecraft development of Korea is in the early stage, a various
configuration of spacecraft should be analyzed. Therefore, the development of an

efficient method to conceptually design reusable unmanned spacecraft is necessary.
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Fig. 1.1 Space market reported by Euroconsult [1,2]
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1.2 Previous studies for adaptive time-step method for MDO

In order to develop a high-performance reusable spacecraft, various technologies
must be utilized: Geometry definition, weight analysis, propulsion analysis,
aerothermodynamic analysis, trajectory analysis, and so on. To simultaneously
consider these various analyses in the conceptual design, multidisciplinary
optimization (MDO) should be established. Various efficient methods for each
analysis in MDO was developed, such as hypersonic aerospace sizing analysis
(HASA) for weight analysis [4], equations to estimate the required thrust for
propulsion analysis [5], approximate convective-heating equation based on modified
Newtonian theory for aerothermodynamic analysis [6], and three degree-of-freedom
equation of motion.

The calculations of the aerodynamic force, heat flux, and motion are conducted
by enormous times while the geometry definition, weight estimation, and propulsion
analysis are performed by few times. It is because the former calculations are
executed for each instance of trajectory. While the aerodynamic-force and motion
calculations for an instance need a very short computational time (approximately
0.01 second), the heat-flux calculations take approximately a few second [7].
Therefore, the reduction of the number of heat-flux calculation can make more
efficient MDO.

The heat flux are calculated in several million evaluations in a multidisciplinary
optimization process because the heat flux should be evaluated along the entire
trajectory of a vehicle, which may result in over a thousand evaluation stages and the
heat-flux evaluations along the trajectory are typically simulated over a thousand

times during vehicle shape optimization [8§—11]. The enormous number of heat-flux



evaluations required for MDO makes this process time-consuming. Therefore, it is
essential to develop an efficient method for calculating heat flux along the entire
trajectory for multidisciplinary optimization.

To reduce computational costs, one practical solution is to increase the time step
for trajectory analysis. As the heat flux is calculated along the entire trajectory,
increasing the time step can decrease the number of calculations required and thereby
relieve the computational cost. Various adaptive time-step methods have been
suggested to address time-dependent problems, including the utilization of a simple
equation [12—14] or a proportional-integral (PI) [15-20] or proportional-integral-
derivative (PID) controller [21-23]. These methods control the time step according
to the error (the rate of change for solutions). Thus, these methods are more suited
for steady-state problems, in which the error decreases over time due to the
convergence of solutions, and are not appropriate for trajectory analysis.

Another possible approach to reduce the computational cost in multidisciplinary
analysis, including the evaluation of heat flux along a trajectory, is to split the time
step into individual time steps for each analysis. This is because the required time
steps for accurate computations differ among individual analyses. When the same
time step is applied for all analyses, the minimum required time step is selected to
ensure accurate results. However, if the time step differs for each analysis, the
number of calculations decreases, leading to a reduction in computational cost.
Although this method has been attempted before [24-27], the ratio of time steps
between individual analyses was constant, which may not lead to a drastic reduction
in computational cost since each individual time step is not controllable using the

changes in the conditions for each analysis.



Therefore, a method that adjusts each individual time step for heat-flux

calculation is required.
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1.3 Previous studies for adaptive design space

Currently, optimization problems have become more complicated with the
incorporation of multiple disciplines, such as the design of reusable unmanned
spacecraft. In addition, the optimization problems take various multiobjective
functions, and complexly constraints. These complexity have made it challenging to
discover solutions and analyze the correlations between the quantity of interest and
design variables in a straightforward manner. To address these challenges,
population-based optimization methods like genetic algorithms [28] and particle
swarm optimization [29] have emerged. These methods can explore a design space
using multiple populations without relying on gradient information and offer several
design candidates known as "Pareto solutions" [30-36]. Thus, population-based
optimization is an attractive alternative for dealing with such complex problems.

Population-based methods typically seek solutions within a predefined design
space that consists of the upper and lower bounds of the design variables. Because
the design space is typically predetermined and remains unchanged throughout the
entire optimization process, selecting an appropriate design space for the given
problem is crucial. Without an appropriate design space, the optimization algorithm
may fail to find desirable solutions. The selection of a suitable design space heavily
relies on the prior knowledge and experience of the engineers, making it challenging
to select an appropriate design space for a new type of problem that is beyond the
engineer's domain of expertise. If the design space does not include the desired
solutions, the optimization process will not succeed. To prevent this, engineers may
choose to set a larger than necessary design space, but this may result in decreased

optimization efficiency due to the stochastic processes of population-based



optimization methods, which generally operate within a fixed design space
throughout the process.

To address these problems, Amirjanov [37,38] proposed a changing range genetic
algorithm (CRGA). The CRGA adjusts the center of the design space to be at the
mean value of the design variables of the solutions. It decreases the size of the design
space by a predetermined ratio until the ratio of the current design space to the initial
design space becomes below a specific value. However, sometimes the CRGA may
make the design space excessively small, resulting in a failure to find the optimal
solution. Amirjanov [39,40] proposed an enhancement to the previous method by
introducing an algorithm that modifies the center of the design space without
decreasing its size after the ratio reaches a specific value. Moreover, Amirjanov
proposed a technique to determine the reduction ratio by analyzing the solution
behaviors during the generation [41,42], and this approach was extended to particle
swarm optimization [43]. However, for multiobjective optimization problems, this
approach is not suitable as it reduces the design space size by a constant value,
ignoring the distributions of the solutions of multiple objective functions. In such
problems, the solutions are not unique, and the design variable distributions of the
solutions converge to a range of the design space, rather than a single point.
Therefore, adapting the design space for multiobjective optimization problems
requires considering the distributions of the design variables of multiple objective
functions.

Various researchers have endeavored to adjust design spaces by taking into
account the distributions of the design variables. Adaptive search region methods

have been proposed by Jeong et al. [44], Kitayama et al. [45], and Arakawa et al.



[46,47], which assume that the design variables have normal distributions. On the
other hand, Oyama et al. [48-50] suggested a method that sets the cumulative
distribution functions of normal distributions as genotype of genetic algorithm. The
cumulative distribution functions is iteratively updated the means and standard
deviations of the design variable. Initially, this method was designed for single-
objective functions, but it was later improved for multi-objective function
applications by utilizing a plateau region [51-53]. This method has been
implemented in numerous engineering fields, such as aerodynamic design [54],
conceptual design [55], turbomachinery [56], fluid-structure interaction [57], vehicle
occupant restraint systems [58], and energy systems [59]. Although the widespread
use of the normal distribution assumption, the design variable distributions in real-
world problems are rarely normal distributions. If a design variable is not normally
distributed, the variance could be exaggerated, leading to a larger design space that
includes infeasible regions. This weakens the effectiveness of the design-space
adaptation method because optimization efficiency is decreased with the inclusion
of infeasible regions. Consequently, it is preferable to have a design-space adaptation

method that takes into account the actual distributions of the solutions.



1.4 Motivation and scope of the dissertation

This study develops a novel approach to enhance the efficiency of MDO for
reentry vehicles. To achieve this goal, an adaptive time-step method for each analysis
in the MDO based on the current state is developed. To validate this method, the
method is applied to the heat-flux calculations in the MDO for the conceptual design
of reusable spacecraft. The developed approach reduces the number of heat-flux
calculations required along a trajectory. A dynamic factor is introduced to adjust the
time step between each heat flux calculation, resulting in a decreased time step when
a large amount of heat flux is generated and an increased time step when a small
amount of heat flux is generated. This method aims to increase the efficiency of
MDO while obtaining detailed information on heat flux in high-heat-flux conditions.

In addition, this study develops a novel approach for adaptively adjusting the
design space based on the actual distribution of solutions. This is achieved by
dividing the design space into equally-sized subspaces and calculating the proportion
of solutions in each subspace to the total number of solutions. The effectiveness of
this method is evaluated using nineteen commonly-used multiobjective test
functions to analyze its characteristics and performance.

To validate the effectiveness of the developed methods for adjusting time step for
heat-flux calculation and adjusting design space, this study utilizes the developed
efficient methods for heat-flux calculation and adaptive design space to perform
MDO for reusable unmanned spacecraft. The optimized shapes are examined to
identify the geometric features that contribute to the improved performance through
data mining. The analysis of variance (ANOVA) [60], parallel chart [61], and self-

organizing map (SOM) [62] methods are utilized as data mining techniques.



This dissertation is organized as follows:

Chapter 2 introduces a method to adjust the time step for an analysis in MDO
based on the current state. The developed method is applied to calculate heat flux
along a trajectory. For the efficient calculation, the time step for MDO are split by
the time steps for heat flux and trajectory. First, the ratio of the time steps is set to
constant values as previous studies to validate its effectiveness for heat-flux
calculations. Then, the ratio is varied by dynamic factor that is determined using the
heat flux of the stagnation point.

Chapter 3 presents the development of an adaptive design-space method that
considers the actual distribution of solutions to find a suitable design space. The
performance and characteristics of this method are evaluated by solving nineteen test
problems. To verify the adaptive design-space method, the initial design space are
shifted from the design space of the analytical solutions. Furthermore, to
quantitatively validate the effectiveness of the developed method, the solutions from
optimizations using the developed method and conventional method are compared
by two metrics.

In Chapter 4, the MDO for reusable unmanned spacecraft are employed to
validate the developed methods for heat-flux calculations and adaptive design space.
The MDO is established by combining the geometry definition and the analyses of
weight, propulsion, aerothermodynamics, and trajectory with the developed methods.
Then, the results of the MDO using the adaptive design-space method are compared
to those obtained from other design-space methods. Finally, the geometry and
performance of the extreme solutions in a Pareto solution are compared to evaluate

the effectiveness of the method. In addition, the geometric features that affect the
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performance of the unmanned spacecraft are extracted using data mining techniques.

Lastly, Chapter 5 provides the conclusion of the dissertation.
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Chapter 2

Adaptive Time-Step Method for MDO

Various analyses are implemented in the multidisciplinary optimization for the
conceptual design of the reusable spacecraft. Reducing the number of calculations
of analyses in MDO are necessary for the efficient optimization. To do that, adjusting
the time step for each analysis in MDO is needed. Since the heat-flux calculation is
time-consuming analysis in MDO for the spacecraft, diminishing the number of the
heat-flux calculations has a large effect for the efficiency of the MDO.

In the MDO, a number of the heat-flux calculations are required to estimate the
heat flux for entire positions of the trajectory, as illustrated in Fig. 2.1. In addition,
the trajectory analysis is performed by several iterations to converge coupling
variables owing to inter-relations between analyses. As a result, more than a

thousand evaluations of heat flux were required to estimate the heat flux during the

flight.

Pressure

® = Propulsion analysis @ = Geometry definition @ = Weight analysis

® = Heat analysis @ = Aerodynamic analysis @ = Trajectory analysis

Fig. 2.1 Combined analysis for the heat flux on the KSP-1
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The number of the heat-flux calculations were reduced by increasing the time
step, which was achieved by multiplying it by a factor C, according to the following

equation:
Aty = CAt, (2.1)

Equation (2.1) shows that the time step of the heat flux calculation can be increased
by a factor C, where At;, and At; represent the time steps of the heat flux
calculation and trajectory, respectively. If the heat flux is computed at all positions
in the trajectory, then Aty isequal to At,. By increasing the value of C, the number
of heat-flux calculations can be reduced as the time step of the heat flux calculation
(Aty) is increased. Conversely, decreasing the value of C leads to an increase in the
number of heat-flux calculations as the time step of the heat flux calculation (Aty,) is
decreased.

In this study, to validate the effectiveness of the increased time step according to
C, the heat-flux calculations were integrated with trajectory analysis to predict the
heat flux on the spacecraft. Furthermore, weight, propulsion, and aerodynamic
analyses were combined with the heat flux analysis. To apply and validate the
developed efficient method for heat-flux calculation, heat fluxes on the surface of
Korea Aerospace Research Institute’s KSP-1, shown in Fig. 2.2, which is a three-ton
class vehicle with a 7-m fuselage and 4-m span wing, were estimated from mission
orbit to landing. The trajectory started at an altitude of 300 km with a speed of 7000

m/s, a flight path angle of 0°, and an incline angle of 80°.
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Fig. 2.2 KSP-1 geometry

2.1 Constant C

Initially, a numerical approach was used with a constant value of C. This
approach is consistent with previous studies that established a fixed ratio of time
steps between individual analyses [24—27]. Table 3 indicated that increasing the
value of C led to a decrease in the overall computational expense due to a larger
Aty,, which in turn resulted in fewer computations. However, the application of the
constant C led to the omission of the time corresponding to the original maximum
stagnation heat flux, which in turn led to an inaccurate representation of the
maximum stagnation heat fluxes, as can be seen in Table 2.1 and Fig. 2.3. Since the
spacecraft's ability to endure heat is largely dependent on the maximum heat flux,

this value is of critical importance.
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Table 2.1 Total computational cost with constant C

Number of Maximum stagnation Total computational
C
computations heat flux [W/m?] cost [s]
1 (original) 1,197 2,133,778 1553.9525
2 600 2,133,778 832.1355
7 174 1,751,234 272.4919
11 111 1,700,364 211.6848
17 72 1,875,972 137.2899
23 54 634,614 114.4419
31 39 1,513,749 103.5552
2.5M
—C=1
—C=2 N\

— 2.0M+ c=7 /

£ —C=11

S 1smM{ - C=17 \

X — C=23 \\

= 1omd—— c=3l A

T ’L N

500.0k
0.0 +—=—— : :
0 5 10 15 20 25 30
Mach

Fig. 2.3 Stagnation heat flux with constant C

2.2 Dynamic C

In the previous section, the use of a constant value of € resulted in the inability

to perform heat-flux calculations at the maximum-heat-flux position in the trajectory.
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To address this problem, it is necessary to use a small Aty at high heat flux for
accurate calculations and a large At;, at low heat flux for efficient calculations.
Therefore, a dynamic C changed by the current state was adopted, and the heat flux
at the stagnation point of the vehicle ¢, was used as the current state. This was
because estimating the heat flux at this point did not require the time-consuming
streamline calculation, and a stagnation heat flux could represent the characteristics
of heat fluxes in certain conditions. It should be noted that the stagnation heat flux
may not be maximum due to the shape of the shock wave and the laminar-turbulent
flow transition. To define the dynamic factor C, the heat flux at the stagnation point,

Gw,s> Was used, and it was expressed as follows:

C = round[S? x a] + 1 (2.2)
— ‘?w,s,_max — (Iw,s
S= Gw,s,max (23)

Herein, S represents the current state. Equation (2.2) introduced a and b as
parameters that control the heat flux calculation time step along the trajectory. The
dynamic factor C in Eq. (2.2) was determined based on the difference between the
heat flux at a specific moment (g, s) and the maximum heat flux at the stagnation
point throughout the trajectory (G smax)- The maximum heat flux is an essential
parameter throughout the trajectory of hypersonic vehicles due to the potential for
destruction and damage by high heat flux. Equation (2.2) and (2.3) demonstrates that
the heat-flux calculation time step decreased when the heat flux at the stagnation
point was high and increased when it was low. This phenomenon indicates that the
efficiency of the heat-flux calculation during multidisciplinary analysis improves

with an elongated time step under low heat flux conditions. Conversely, detailed
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information about heat flux is obtained by shortening the time step under high-heat-
flux conditions since periods with high heat flux are critical due to the possibility of
vehicle destruction and damage. The maximum time step increases with a larger
value of a because the maximum value of C increases. If b increases, the time
step decreases at low stagnation heat flux since the value of C is low, as depicted in
Fig. 2.4.

In the other words, the term of S as Eq. (2.3) represent the current state in
contrast with the maximum value. Therefore, this adaptive time-step method adjusts

the time step based on the current state.

1 i
a —b=1

—b=3
increasing b —b=5
—b=7

0 ] Maximum
Stagnation heat flux stagnation
heat flux

Fig. 2.4 Behavior of the dynamic C with b

To determine the optimal values of a and b in Eq. (2.2), a series of calculations
were performed by varying a from 10 to 100 at intervals of 10, and b from 1 to
10 at intervals of 1. Table 2.2 and Fig. 2.5 display the results for some of the iterations
for the sake of brevity. The application of Eq. (2.2) reduced the total computational

cost by approximately one-tenth, as illustrated in Table 2.2. Moreover, the maximum
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heat fluxes remained unchanged compared to the original values, as presented in
Table 2.2 and Fig. 2.5, since the time step at high stagnation heat flux was shortened.
By keeping b constant and increasing a, the number of computations reduced
because the maximum value of C became large. Conversely, by keeping a
constant and increasing b, the number of computations increased since a relatively

low value of € was maintained at a low stagnation heat flux, as indicated in Fig.

2.4.
Table 2.2 Total computational cost with dynamic C
Number of Maximum stagnation  Total computational
¢ calculations heat flux [W/m?] cost [s]
Original 1,197 2,133,778 1553.9525
20 1 75 2,133,778 125.2944
10 2 156 2,133,778 215.9298
20 2 93 2,133,778 139.2946
30 2 72 2,133,778 103.8202
40 2 57 2,133,778 81.8680
20 3 108 2,133,778 132.3144
30 3 81 2,133,778 98.2031
20 4 123 2,133,778 128.7518
30 4 96 2,133,778 85.8918
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Fig. 2.5 Stagnation heat flux evaluated with changes in the dynamic C

In order to evaluate the performance of Eq. (2.2) with respect to a and b, we
have defined two metrics: efficiency and accuracy.

(Efficiency) (2.4)

(the number of calculation with original)—(the number of calculation using Eq.((2.2))

(the number of calculation with original)

(accuracy) (2.5)

|(heat flux of original)—(heat flux using Eq.((2.2))| d(Mach)

ftra'ector
=1- ) Yy

ftrajectory(heat flux of original) d(Mach)

When the value of a decreases, the efficiency decreases as C becomes small.
Conversely, the efficiency increases when a increases since € becomes large. A
decrease in b leads to a decrease in accuracy due to the constant C, while an
increase in b results in an increase in accuracy as C approaches one. Figure 2.6
illustrates the relationship between efficiency, accuracy. The shaded region in Fig.

2.6 indicates the area with both efficiencies and accuracies greater than 0.9. Table
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2.3 describes three examples located in the region denoted by bold squares in Fig.

2.6. A high efficiency is observed when a and b are 40 and 2, respectively, with

relatively low accuracy. Conversely, when a is 20 and b is 3, accuracy is high

despite the relatively low efficiency. The remaining sample compromises both

efficiency and accuracy. In this study, a and b are set to 20 and 1 for the

compromised performance.

Table 2.3 Total computational cost for high efficiency and accuracy

Number of ) Maximum stagnation
_ Efficiency Accuracy
calculations heat flux [W/m?]
40 2 57 0.95238 2,133,778 0.91737
20 1 75 0.93042 2,133,778 0.93484
20 3 108 0.90727 2,133,778 0.95610
1.000
| | ]
0.9754 = =
" n = -. Hy
a 0 =20,5=3
0.950- =t 8@ !
> ] u
) " laigs " W(a=20.5-1)
= 0.925- -
0 u- - W(a=40,b=2)
®
0.900 1 .
0.8751 -t
I.-. - | |
0,850 e e
0.850 0.875 0.900 0.925 0.930 0.975 1.000
efficiency

Fig. 2.6 Efficiencies and accuracies about a and b
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Chapter 3

Adaptive Design-Space Method

3.1 Method implement

This study develops a design-space adaptation method that involves modifying
the design space by comparing the probability densities of an arbitrary control
distribution and the actual solution distribution. The control distribution is the
arbitrary distribution that is expected as the distribution of the design variables, while
the actual distribution is determined based on the ratio of the solutions, which satisfy
all constraints, in the subspaces of the design space. This study utilized the standard
normal distribution as the control distribution and divided it into » subspaces with a
confidence level of 7;, as illustrated in Fig. 3.1(a). The probability densities of the
J" subspace for the control distribution were indicated by A; in Fig. 3.1 (a). To
obtain the actual solution distribution, the current design space was partitioned into
n subspaces with equal sizes, as depicted in Fig. 3.1 (b). The boundaries of each
subspace were represented by x; j, where x;, and x;, were the previous upper
and lower bounds of the i variable, respectively. The proportion of solutions in the
J™ subspace for the i variable (p; ;) was determined by computing the ratio of the
number of solutions belonging to the j™ subspace to the total number of solutions, as

shown in Fig. 3.1 (b).

Nij

pij = 3.1

Niotal

Herein, Nioia refers to the total number of solutions, and N; ; refers to the number
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of solutions in which the /™ design variable value ranged between [x; j-1> Xij]. The

adjustments to the lower and upper bounds of the design variables were determined

by comparing A;, A,, and p;, for the lower bound, and A,_;, A4,, and p;, for

the upper bound. For example, if p;; was smaller than A;, the lower bound was

contracted. Conversely, if p;; was greater than (A; + A;), the lower bound was

expanded. Table 3.1 summarizes the specific criteria for shrinking, retaining, and

expanding.

Table 3.1 Conditions for shrinking, retaining, and expanding the design-

variable bound

lower bound upper bound
Shrinking pi1 <4 Pin < Ap
Retaining A <pi1 <(4;+A4) Ap <pin < (Ap-1+4,)
Expanding Pi1 > (A1 + 42) Pin > (An-1+ 4n)
p(x) i (%)) Actual
Nt N(0,1) distribution
A, o P2
A / fAn pi,1\
z &/ / N
P \
/ M
o o "X Xi0 X1 Xi2 X
(a) control distribution (b) actual distribution
Fig. 3.1 Proportions of subspace
] 1]
i i | I
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Once the criteria for shrinking, retaining, and expanding the boundary were
established, the design space of the i variable was modified according to the

following equations:

1. Shrinking Xilower = min(xl-,{”pj >4,}) 3.2)
Xiupper = MaX(Xigjp; >a,}) (3.3)
2. Retaining Xilower = Xip 34
Xiupper = Xin (3.5)
3. Expanding Xilower = M — (x10 — M) erf”(ne) (3.6)

erf-1 [2 (Z?;ll pl-,]-)—l]

erf (1)
erf-1 [2 (E?:z pi,]-)—l]

Xiupper — M, + (xi,n - mi) 3.7

Here, x;jower and X;ypper denote the lower and upper bounds of the i design
variable, respectively. The median of the i design variable is represented by m;,
and erf™? is the inverse of the error function.

The upper bound of the largest-/" subspace satisfying p; j > A4, (j=1,...,n)
becomes the new upper bound of the design space when shrinking the upper bound
(Eq. (3-3)). When retaining the bound, the upper bound remains the same. To expand
the upper bound, since the standard normal distribution is used as the control
distribution, the new upper bound is determined using Eq. (3.7). Similar procedures
are applied when adapting the lower bound. This method shrinks the bounds of the
design space with few solutions and expands the bounds of the design space with
many solutions. Therefore, the infeasible space including no feasible samples and
the space including few feasible samples are excluded to increase the searchability

of the optimization, and the space having the probability of the existence for

3§ 53 17
24 .'w._"i = = 1_ I



solutions is added to find feasible solutions.

In order to enhance the efficiency of the method developed in this study, an initial
investigation of the feasible design space is carried out through optimization without
adaptation before applying the adaptation process as previously described. The lower
and upper bounds of the feasible design space are then determined by employing Egs.

(3.8) and (3.9), respectively.

Xilower = mjin Xij — [m}ax Xij — mjin xi,j] x 0.05 (3.8)

Xiupper = m}axxi,j + [m]axxi,j - mjin xi,j] x 0.05 3.9)

In multiobjective optimization, the solutions that are the best for each objective
function observed so far are called extreme solutions and are very important.
Therefore, the design space where extreme solutions exist should be maintained.
However, these space typically has a low probability density of solutions, making
them likely to be removed by the developed adaptation method. To prevent the loss
of these areas, an extra adjustment of the design space is performed using Egs. (3.10)

and (3.11)
If X;jower > Min(X; extreme )s
Xijower = MIN(X; extreme) — [*in — Xi0] X 0.05 (3.10)
If %; ypper < Max(X; extreme)s
Xiupper = max(xilextreme) + [xirn - xi,o] x 0.05 (3.11)

In this context, X;exireme Tefers to the values of the i design variables found in

extreme solutions.
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3.2 Application to test problems

3.2.1 ZDT problems

The characteristics and performance of the developed method were examined by
implementing it on the Zitzler-Deb-Thiele (ZDT) problems [63]. These problems are
commonly used as multiobjective test functions to assess the performance of
optimization methods. The ZDT problems consist of six test functions that
encompass a range of function types such as convex, concave, discrete, and multi-
modal functions. Therefore, these problems were suitable for validating the
performance of the developed method and assessing its ability to handle different

types of functions. The specific problem settings were as follows:

ZDT problems

Minimize fi and f,

Constraint 0<x; <1
0<x; <1 for i = 2,...,L (except ZDT4)
—-5<x <5 for i =2,...,L (ZDT4)

Initial space —-01<x, <09
0<x; =<1 for i = 2,...,L (except ZDT4)
—5<x; <5 for i =2,...,L (ZDT4)

Side constraint 0<x; for i = 2,...,L (except ZDT4)

Analytical solutions 0<x; <1

x; =0 for i =2,..,L

(3.12)
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The total number of variables for the Zitzler-Deb-Thiele (ZDT) problems is
denoted by Ls, which is set to 30, 30, 30, 10, and 10 for ZDT1-ZDT4 and ZDT6,
respectively, by referring to Ref. [63]. The ZDTS5 problem was not considered for
testing in this study as it is not a real-numbered problem.

The multiobjective genetic algorithm based on the developed method was
executed with a population size of 256 individuals in each of the 600 generations.
Adaptation of the design space was performed every 100 generations, using the
feasible solutions obtained from the last 20 generations. The parameters for
adaptation were set as follows: the confidence level was set to 99% (denoted as 7;)
and the number of divisions was set to 20 (denoted as n). The process of randomly
reinitializing while preserving the extreme solutions was carried out after the design-
space adaptation was completed. This ensured that the diversity of the populations
was maintained, while the best solution for each objective function was preserved.
Figure 3.2 illustrates the procedure.

Moreover, to compare the developed method, two other optimizations were
conducted, one with adaptation assuming normal distributions [44] and another with
a fixed design space. In the method that assumed normal distributions, the adaptation

of the design space was performed using Egs. (3.13) and (3.14).
Xilower = Hi — O-i\/i erf_l(nt) (3.13)
= w; + o2 erf~1(n,) (3.14)

xi,upper

The variables u;, o;, and 7, refer to the mean value, standard deviation, and

confidence level of the i™ design variable, respectively.
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Fig. 3.2 Procedure of the genetic algorithm and the design-space adaptation

The results of the optimization process for the developed method, the method
based on normal distribution, and the fixed design space are presented in Fig. 3.3.
The results of all three methods are comparable to the analytical solutions. However,
the optimization results for the fixed design space were unable to find solutions
within the range of x; > 0.9, as demonstrated in the subplots of Fig. 3.3. This is
because the fixed design space does not encompass 0.9 < x; < 1.0. In contrast, the
adaptive-design-space method adjusted the design space to encompass the entire
solution space. The final adjusted design spaces for the developed method and the
method that assumed normal distributions were notably distinct, as presented in
Table 3.2 and Fig. 3.4. The design space obtained from the developed method was

much closer to the range of analytical solutions than the one obtained from the

method that assumed normal distributions.
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Fig. 3.3 Pareto solutions for ZDT problems
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Table 3.2 Adapted design spaces for ZDT problems

With the method assuming normal distributions With the developed method
Design space for Design space for
X1slower X1rupper X X1/1ower X1rupper X
ZDT1 -0.3635 1.1987 1.5621 -0.0007 1.0036 1.0044
ZDT2 -0.1603 1.2882 1.4485 -0.0498 1.0098 1.0596
ZDT3 -0.2864 1.1355 1.4219 -0.0450 0.9446 0.9896
ZDT4 -0.2700 1.2449 1.5149 -0.0243 1.1801 1.2044
ZDT6 0.0071 0.0881 0.0810 0.0045 0.0870 0.0825
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Fig. 3.4 Final design spaces for x; in the ZDT problems

In addition, to measure the effectiveness of the developed method quantitatively,
the generational distance (GD) was utilized. The GD calculates the average distance
between the analytical solutions and the Pareto solutions, and is expressed as follows

[64]:

(3.15)

The GD is defined as the average distance between the Pareto solutions and the
analytical solutions, where d; represents the distance between the Pareto solutions

and analytical solutions, and n,, is the number of Pareto solutions. The results
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showed that the GD of the developed method was much better than the other methods,
as shown in Fig. 3.5. This indicates that the efficiency of the MOGA using the
developed method was higher than that of the method assuming normal distributions.
This was because the developed method properly adjusted the design space to a space
where the solution existence probability was high, while excluding the infeasible
design space.

The performance of the developed method was further evaluated using the purity
metric [65]. This metric can compare the performance of multiple optimization
methods. The process of calculating the purity metric is as follows: Firstly, calculate

r = |R:

,where i = 1,2,---, N. Herein, N is the number of methods (solution sets),
and r; is the number of Pareto solutions obtained from each optimization. Then,
obtain the new Pareto solutions R; by taking the union of all Pareto solutions, as
R* = UN,{R}}. Finally, 77" denotes the number of Pareto solutions present in R},

which is expressed as:

r = |{y|y €R! and y € R} (3.16)
The definition of the purity metric for the i method is as follows:
P=1 i=12-N (3.17)

The purity metric has a range of values from 0 to 1, and it represents the ratio of
the number of non-dominated Pareto solutions to other Pareto solutions. Therefore,

a higher value of the purity metric indicates better quality Pareto solutions.
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The purity metric values for the developed method were the same as to those of
the method assuming normal distributions up to 200 generations, as shown in Fig.
3.6. This was because the solutions generated by both methods were identical during
this period. However, the purity metric values for the developed method was higher
than those of the other methods after 200 generations. This indicated that the Pareto
solutions produced by MOGA using the developed method were better than those
obtained using the normal distribution assumption.

In order to investigate why the method assuming normal distributions resulted in
a wider adapted design space, the proportion of points evenly distributed on the
analytical Pareto front of ZDT1 was calculated. Figure 3.7 presents the proportions
of evenly-divided subspaces. The results showed that the distribution was biased
towards x; = 0 rather than a normal distribution. In this particular case, the mean
value and standard deviation of x; were 0.4100 and 0.3093, respectively.
Consequently, the upper and lower bounds of x; obtained using the method
assuming normal distributions were -0.3867 and 1.2067, respectively. As a result,
this method expanded the design space into the infeasible region. The MOGA using
the method assuming normal distributions had limited efficiency improvement
because it expanded the design space to include the infeasible region. On the other
hand, the developed method adapted the design space based on the actual distribution
and did not expand to the infeasible region. Consequently, the developed method
was able to adapt the design space appropriately to the space where solutions exist,
resulting in higher efficiency of the MOGA using this method compared to the

method assuming normal distributions.
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3.2.2 1 problems

To evaluate the efficiency of the developed method in three-objective
optimization, I problems were utilized [66]. These problems are made up of five
functions, denoted as 11 through I5. The I1 problem is a basic and separable function,
while the remaining functions become more complex by introducing dependencies

between variables. The problems were established in the following manner:

I problems
Minimize fi, f2,and f3
Constraint 0<x; <1 fori=1,..,L
Initial space -01<x; <09
-01<x,<09
0<x;<1 for i=3,..,L
Side constraint 0<x for i=3,..,L

Analytical solutions Y3, f; =1

x; = 0.35 for i=3,..,L
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In the I problems, the total number of variables is denoted by L, where the
variables include both position- and distance-related variables. Typically, the
position-related variables determine the positions of objective functions, while the
distance-related variables define the distance between the objective functions and
the analytical solutions. In this study, two position-related variables and six distance-
related variables were used, based on the references [66,67], resulting in a total of
eight variables.

To solve the I problems, the real-coded MOGA was employed, using the same
settings as those used for the ZDT problems, except for the number of objective
functions. For comparison purposes, an optimization with adaptation assuming
normal distributions [44] was also carried out. To quantitatively evaluate the
performance of the developed method, its GD and purity metric values were
compared to those obtained using the method assuming normal distributions.

The adaptive-design-space method was employed to modify the design space.
The final adapted design space covered the whole design space of the analytical
solutions, as indicated in Tables 3.3 and 3.4 and illustrated in Fig. 3.8. The adapted
design space of the developed method was found to be closer to the design space of
the analytical solutions than that of the method assuming normal distributions. In
addition, Figs. 3.9 and 3.10 demonstrate that the GD and purity metric of the
developed method were superior to those of the method assuming normal
distributions. These results are consistent with those obtained for two-objective
functions. Therefore, the effectiveness of the developed method in three-objective

optimization was also confirmed.
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Table 3.3 Adapted design spaces of x; for I problems

With the method assuming normal distributions

With the developed method

Design space for

Design space for

X1,lower X1upper X X1,lower X1upper X
I1 -0.2182 1.2254 1.4436 -0.0496 1.0500 1.0996
2 -0.3675 1.2206 1.5881 -0.0339 1.0488 1.0827
I3 -0.0246 1.2464 1.2710 -0.0204 1.0396 1.0600
14 -0.0919 1.3081 1.4000 -0.0475 1.0499 1.0975
IS -0.0706 1.3001 1.3707 -0.0158 1.0069 1.0227
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Table 3.4 Adapted design spaces of x, for I problems

With the method assuming normal distributions

With the developed method

Design space for

Design space for

X2,lower X2;upper X, X2,lower X2,upper X,
I1 -0.0455 1.4436 1.4891 -0.0364 1.2844 1.3207
) 0.0444 1.2413 1.2856 -0.0420 1.0466 1.0886
13 -0.2675 1.1978 1.4652 -0.0016 1.0444 1.0460
14 -0.0492 1.3765 1.4257 -0.0496 1.0211 1.0707
I5 -0.3070 1.2718 1.5788 -0.0343 1.0145 1.0487
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3.2.3 WFG problems

To evaluate the effectiveness of the developed method in more complicated three-
objective optimization, the WFG problems [68] were employed, which are
commonly used for evaluating the performance of multi-objective optimization
algorithms. The WFG problems consist of nine functions, namely WFG1-9.

The Pareto optimal front of WFGI1 exhibits both convex and concave
characteristics and contains flat and polynomial mapping functions. WFG2 has a
convex and disconnected Pareto optimal front and a non-separable function. The
Pareto optimal front of WFG3 is a linear function with a non-separable function. On
the other hand, WFG4-9 have concave Pareto optimal fronts, and WFG4-6 are
multi-modal, deceptive, and non-separable, respectively. The functions of WFG7
and WFG8 depend on parameters, and WFG9 features a non-separable, multi-modal,
deceptive, and parameter-dependent function. The WFG problems are considered
appropriate for validation purposes as they demonstrate various characteristics that
are commonly observed in real-world multi-objective optimization problems. The

problems are specified as follows:

WEFG problems
Minimize f1, f2,and f3
Constraint 0<x; <1 fori=1,..,L
Initial space -01<x; <09
-01<x,<09
0<x; <1 for i=3,..,L
Side constraint 0<x; fori=3,..,L
Analytical solutions x; = 0.35 for i=3,..,L (3.19)
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In this study, L refers to the total number of variables used in the WFG problems.
The variables in these problems also consist of position- and distance-related
variables. Consistent with Ref. [66,67], this study adopted two position-related
variables and six distance-related variables, resulting in a total of eight variables,
denoted as L.

To solve the WFG problems, the real-coded MOGA was utilized with the same
settings as the I problems. An optimization method that assumes normal distributions
[44] was also employed to compare results. To quantitatively verify the performance
of the developed method, the GD and purity metric were compared between the two
methods.

The adapted design space was adjusted using the adaptive-design-space method,
covering the whole design space of analytical solutions, as presented in Tables 3.5
and 3.6 and Fig. 3.11. The final adapted design space of the developed method was
closer to the design space of the analytical solutions than the method that assumed
normal distributions. In addition, Figs. 3.12 and 3.13 show that the GD and the purity
metric of the developed method was better than that of the method that assumed
normal distributions. These findings correspond with the results obtained for the
two-objective functions and I problems. As a result, the performance of the

developed method was validated for three-objective functions as well.
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Table 3.5 Adapted design spaces of x; for WFG problems

With the method assuming normal distributions With the developed method
Design space for Design space for
X1slower X1rupper X X1,lower X1,upper Xy
WFG1 -0.3589 0.6892 1.0481 -0.0425 0.5522 0.5947
WFG2 -0.0758 1.1430 1.2188 -0.0472 1.0499 1.0970
WFG3 -0.1266 1.1492 1.2757 -0.0469 1.0499 1.0968
WFG4 -0.1360 0.3901 0.5261 -0.0043 0.3472 0.3515
WFGS5 -0.3740 1.2769 1.6509 -0.2399 1.1277 1.3676
WFG6 -0.2108 1.0843 1.2951 -0.0500 1.0499 1.0998
WFG7 -0.2707 1.2946 1.5654 -0.0524 1.0444 1.0969
WFG8 -0.0554 1.2464 1.3018 -0.0204 1.0396 1.0600
WFG9 -0.1599 1.1295 1.2893 -0.0447 1.0205 1.0653
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Table 3.6 Adapted design spaces of x, for WFG problems

With the method assuming normal distributions With the developed method
Design space for Design space for
X2,lower X2upper X, X2,lower X2,upper X,
WFG1 -0.1210 0.2249 0.3460 -0.0218 0.1984 0.2202
WFG2 -0.0844 1.2683 1.3527 -0.0025 1.2084 1.2108
WFG3 -0.2542 1.1574 1.4116 -0.1946 1.0638 1.2584
WFG4 -0.1695 0.4647 0.6342 0.0952 0.3934 0.4886
WFGS5 -0.4397 1.4283 1.8680 -0.2895 1.0133 1.3028
WFG6 -0.0482 1.4019 1.4501 -0.0108 1.2598 1.2706
WFG7 -0.0496 1.3588 1.4085 -0.0304 1.1911 1.2215
WFG8 -0.2675 1.1978 1.4652 -0.0016 1.0444 1.0460
WFG9 -0.2365 1.1513 1.3878 -0.1578 1.0292 1.1870
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Chapter 4

Application to Reusable Unmanned Spacecraft

4.1 Establishment of MDO

To validate the effectiveness of the developed method of adaptive time step and
adaptive design space, the developed methods were utilized to the design of
unmanned spacecraft involving a multidisciplinary optimization problem, which
includes defining the geometry, conducting various analyses (such as weight,
propulsion, aerothermodynamics, and trajectory analysis), and optimizing the design
using MOGA [8], as shown in Fig. 4.1. As depicted in Fig. 4.2, each discipline in
spacecraft design is closely interrelated since the output of one discipline serves as
input for another. Therefore, it requires iterations of calculations until converged
coupling variables is achieved. Once the coupled variables had converged, the
performance of the spacecraft was evaluated based on its geometry, and optimization

was subsequently carried out accordingly.
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Fig. 4.1 Analyses in MDO
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4.1.1 Geometry definition

A total of 22 design variables were utilized to determine the geometry of various
parts of the spacecraft including the fuselage, wing planform, winglet, and airfoil as
illustrated in Fig. 4.3. The nose section of the fuselage was created with a spherically
blunted tangent ogive curve, while a rectangular height, corner radius, and width
were utilized to define one section. The planform of the wing and winglet were
described using ten variables, including the inboard and outboard sweep angle,
winglet sweep angle, dihedral angle, winglet dihedral angle, wing span, winglet span,
kink position, root chord, and winglet tip chord. In this study, the airfoil was defined
as a NACA 4-digit series using the wing-leading-edge radius instead of thickness to
directly regulate the heat flux on the wing leading edge. Two variables were used to
establish the relative position between the wing and fuselage. The design variables
summarized in Table 4.1. Lastly, a rear body flap was present with the same width

as the fuselage and 1/8 length of the total length.
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Fig. 4.3 Spacecraft design variables
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Table 4.1 Spacecraft design variables

Design
Part variables Description

X, Nose radius [m]

X Fuselage width [m]

X3 Rectangular height of fuselage section [m]

Fuselage X4 Corner radius of fuselage section (radius / (width / 2)) [ ]

Xs Total length [m]

X Nose length (nose length / total length) [ ]

X7 Nose height [m]

Xg Root chord length [m]
Xg Span [m]
X109 1% sweep angle [°]
X11 2" sweep angle [°]
Wing
X12 Kink position (kink position / span) [ ]
X13 Dihedral angle [°]
X14 Wing longitudinal position (position / total length) [ ]
X5 Wing vertical position (position / total height) [ ]
X16 Camber [ ]
Airfoil X17 Camber position [ ]
X1g Leading edge radius [m]
X19 Sweep angle [°]
Winglet X20 Tip chord length [m]

X1 Dihedral angle [°]

X22 Span [m]
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4.1.2 Weight analysis

The weight analysis involves calculating the weight of each component of the
spacecraft and determining the center of gravity of the entire vehicle. The dimensions
of each part are specified in the vehicle geometry definition, and the propulsion
analysis provides the propellant weight and required thrust. This study utilized
hypersonic aerospace sizing analysis (HASA) to estimate the weight of each
component using statistical techniques [4]. The data flow chart of HASA is
illustrated in Fig. 4.4. However, the HASA method was modified to enhance its
precision as the statistical equations of the original HASA were developed based on
data from 100 ton class vehicles, whereas the focus of this study is on vehicles
weighing approximately 2-3 ton [5,69].

Fuselage [ Engine ] [ Fuel tank }—
I

Wing ¢ Total
ropulsion
Total
structure

ol

Tail fin M

TPS

Landing gear Payload [ Subsystem ][ PrvovgiegI:?tnt }

Propulsion
structure

i

Fig. 4.4 The data flow chart of HASA

Fuselage weight
The weight of the body comprises important structural parts except the propellant

tanks and thrust structure. The modifying factor can also consider advancements in
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material technology. Figure 4.5 illustrates the modifying factor (mf) with respect to
the structural temperature of different materials like aluminum, titanium, and Rene
41. In this study, the modifying factor is 1.148 because the structure temperature was

maintained as 300 °C with titanium.
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Fig. 4.5 Modifying factor according to structure temperature

The equation for the fuselage weight is as follows:

W = 0.341(mf)(0)*° 4.1)
= ()™ () (St (42)

where Wy, Lg, ULF, quax, and Spior are the fuselage weight, fuselage length,
ultimate load factor, maximum dynamic pressure, and fuselage wetted surface area,

respectively. The body equivalent diameter (Dye) 1is:

_ Viot
Dpe = /—LfL:nvol 4.3)

The vehicle volumetric efficiency (1)) is typically 0.7.
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Wing weight

The equation for wing weight considers the wing box structure, the aerodynamic
control surfaces, and the wing carry-through structure. It is dependent on the empty
weight of the vehicle and the wing aspect ratio and taper ratio.

The empty weight of the vehicle is defined as:
I/Vemp = Wgtot - Wprop (4.4)

Herein, Wyior, Wemp, and Wyop are the total vehicle gross weight, vehicle empty

weight, and total propellant weight. The equation for wing weight is as follows:

}1.017 (45)

WempULF
1000

0.52
| 1Sverl®714RI O |

W, = 0.2958(mf){

1+4|04 0.7
t/c cos(11/2)

where Syer, AR, 4, t/c,and A;/, arereference wing area, aspect ratio, taper ratio,

wing thickness to chord ratio, and mid-chord sweep angle.

Thermal protection system weight

To calculate the weight of the thermal protection system (TPS), the density of the
TPS and its area were multiplied. The TPS material for each surface was selected
based on the space shuttle design. The nose and leading edge were coated with
reinforced carbon—carbon (RCC), while the lower surface of the fuselage and wing
was coated with high-temperature reusable surface insulation (HRSI), and other
areas were coated with fibrous refractory composite insulation (FRSI). The TPS type

for each surface is depicted in Fig. 4.6.
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Fig. 4.6 Types of TPS on each surface (gray: RCC, black: HRSI, white:

FRSI)

Landing gear weight
The weight of the landing gear consists of the weight of the nose gear, main gear,
and associated controls. It varies according to the weight of the vehicle at landing.

The calculation for landing gear weight is as follows [5]:
Weear = 0.030Wiana (4.6)

where Wi, ,q is the landing weight of the vehicle

Total structure weight
Thus, the total structural weight is the sum of the fuselage, the wing, the thermal

protection system, and the landing gear, as follows:
Wser = We + Wy + ths + I/Vgear 4.7

Herein, Wy, is the TPS weight of the vehicle.
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Engine weight

For this study, a main engine is not required for the space vehicle as it is launched
into orbit using a separate launch vehicle. However, an orbital maneuvering system
and a reaction control system (OMS/RCS) are necessary for the modification of the

orbit or attitude of the spacecraft. Based on the required thrust T; Treqp, and

€doms”’
Treq, from propulsion analysis, the OMS/RCS weight is calculated by following

equations [5].

OMS engine weight is:

Tr oms
M/omsengz “doms 4.8)

Roms
Herein, WOmseng and Treq,. . are OMS engine weight and required thrust, and
Roms 1s the ratio of OMS engine thrust to weight.
Roms = 22 (4.9)

The pressurization system for OMS is Ti 6/4 tank with 3000 psia Helium, yield

at 400% Poms press> 400 R storage temperature. The weight of the pressurization

system for OMS is:
Woms press = 0'0143P0mspressV0mspress(1 —TRF) + 0.617 (Voms,, + Vomssye)(4-10)

where W,

OMSpress

and P,

omspress AIC the weight and pressure of the pressurization

system, and Vomspress are the volume of Helium required as pressurant. TRF is
technology reduction factor (in this study, 0.0). Voms,, and Voms,, are the

volumes of oxygen and fuel for OMS. Poms pres and Vomspress 1€ given:

S

T
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Poms e = 3000 [psia]

%mspress = 0-24’(‘/;)msOX + I/Omeue])
The installation weight for OMS is:

W,

OMSijnstall

= 0.74Woms

Thus, the OMS weight is:

O0MSijnstall

Woms = VVomseng + W, + VVOmSpreSS

RCS thruster weights are:

Treqp
Rp

I/Vrcspf = pr

Treqy
VVrcsvf - Nvf

Ry

Treq
— b
VVrcspa - Npa R

Treqy
VVrcsva = Nya Ry

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

4.17)

(4.18)

Herein, Wrcspf, Wresyp Wrcspa, and Wi, are weights of primary and vernier

RCS for front and aft of fuselage. Np¢, Ny, Npa, and Ny, are the numbers of

primary and vernier RCS for front and aft of fuselage. In this study, Npf, Nyt N,

pas

and N,, aresetto 14, 2, 24, and 4 by referring Space Shuttle. Treqp and Treq, are

the required thrust for primary and vernier RCS, and R, and R, are the thrust to

weight of primary and vernier thrusters.
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R, =39.5 (4.19)
R, = 9.4 (4.20)

The pressurization system for RCS is Ti 6/4 tank with 3000 psia Helium, yield at

400% Prcspress’ 400 R storage temperature. The weight of the pressurization system

for RCS is:
Wrcspress = 0.0143Prcspressl/}cspress(1 —TRF) + 0.617 (Vics,, + Veesryer) 4.21)

where Wcs and Py are the weight and pressure of the pressurization
press press
system, and V. are the volume of Helium required as pressurant. TRF is
press

technology reduction factor (in this study, 0.0). Vics  and Ve, ., are the volumes

of oxygen and fuel for RCS. Prcspress and Vrcspress are given:
Prespress = 3000 [psia] (4.22)
Veespress = 0-24(Vrcsoy + Vecssuer) (4.23)
The installation weight for RCS is:
Weesinstan = 0.74(Wrcspf + Weesye + Wees,, + Wees,,) (4.24)
Thus, the RCS weight is:
Wres = Wrcs, & Wresy + Wresy + Whes, + Whespn + Wrcspresy (425)
The total weight for engine is:
Weng = Wres + Woms (4.26)
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Tank weight
The tank weight depends on the pressure and volume of the tank. For the weight

of OMS and RCS tank is [5]:

Womsinie = 0-01295P0msmkVomsmk (4.27)
VVrcstnk = 0'01295PrcstnerCStnk (4.28)

Herein, the pressures of tanks for OMS/RCS (Pyps,,, and Bes,,,) are set to 195

psia. The total weight of tank is:

Wink = Womsmk + W

I'CStnk

(4.29)

Total propulsion weight
The total propulsion weight is the weight of the engines plus the weight of the

propellant tanks:
Woros = Wink + Weng (4.30)
Hydraulic weight
The weight of the hydraulics is defined as:
Whyar = 2.64(¥)'° (4.31)

where

0.334
_ (SremeaX) (Lb+VVspan)0.5 (432)

- 1000
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Avionics weight
The avionics weight is reduced to 69% of the weight in the original HASA based
on the assumption of the advanced avionics system [70]. The weight of the avionics

is defined as:

Wiaves = 0.69 X 66.37(Wegor) " (4.33)
Electrical system weight
The weight of the electrical system is defined as:
Weleer = 1.167()° (4.34)

where

® = |(Wetor)”” (L) (4.35)

Subsystem weight

The total subsystem weight is thus defined as:

Wsup = Whydr + Wiaves + Welect (4.36)

Payload weight
The payload weight W,y is set to 226.8 kg, and the density of payload is 52.86

kg/m? because typical payload densities are about 3.3 Ib/ft>.

Total vehicle gross weight
The total vehicle gross weight is the summation of the total structure, propulsion,
subsystem, propellant, and payload weight. Thus, the total vehicle gross weight is

defined as:

3§ 53 17
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Wgtot = (Wstr + Wpros + Wsup + I/Vprop + Wpay) (4.37)

Herein, the propellant weight Wpo, is estimated in propulsion analysis.

Weight analysis validation

The weight estimate was compared to that of the Boeing X-37 [71], which
contains more fuel than the vehicles designed in this study due to its long-term
missions. To ensure a fair comparison, the fuel quantity was set to the actual fuel
weight of the X-37. The comparison results are presented in Table 4.2. The original
HASA resulted in a large error of 90.3%. In contrast, the modified HASA achieved

accurate weight estimation with only a 4.0% error.
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Table 4.2 Actual weight of the Boeing X-37 and estimated weight

Actual weight Original HASA (error) Modified HASA (error)
Fuselage weight (kg) 776.6 468.4
Wing weight (kg) 270.8 139.7
Tail wing weight (kg) 183.9 95.0
TPS weight (kg) 122.6 454.8
Landing gear weight (kg) 243.9 99.0
Tank weight (kg) 66.51 187.5
Engine weight (kg) 62.13 808.5
Misc. weight (kg) 5974.3 741.5
Dry weight (kg) 7927.5 3221.2
LH2 weight (kg) 224.9 2249
LOX weight (kg) 1342.6 1342.6
Gross weight (kg) 4990 9495 (90.3%) 4789 (4.0%)
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4.1.3 Propulsion analysis

As described for engine weight, for this study, a main engine is not required for
the spacecraft as it is launched into orbit using a separate launch vehicle. However,
an orbital maneuvering system and a reaction control system are necessary for the
modification of the orbit or attitude of the spacecraft. The OMS/RCS required

weights are calculated by following equations [5]:

Wen T
Treqoms = 16t > (4.38)
_ Wentrny
Treqp =870 147141x143 (4.39)
_ Wentrny
Treq, = 50 147141143 (4.40)

T,

Herein, T; reqp

and Treq, are the required thrust for OMS, primary RCS,

€qoms’
and vernier RCS. Wep¢ry and L¢ are the entry weight and fuselage length.

The cryogenic propellant fuel (LOX/LH2) is used for the OMS/RCS, and its
weight was determined based on total velocity change possible using OMS/RCS
engine and vehicle entry weight. In this study, the specific impulse of OMS and RCS
engines (Ispyms and Ispycs) are set to 246 s and 265 s [5].

The OMS propellant weight for orbit maneuvers is:

W,

OMSproperpit

(Avomsorbit)
= Wengry €\ pomsxs ) — 1 (4.41)

where the total velocity change using OMS for orbit maneuvers is:

AVoymsorpe = 50 [fpS] (4.42)

68 -':lx'i "':'-:' 1-



The OMS propellant weight for de-orbit is:

(AVodee—orbit>
-1

Womspropde—orbit = Wentry €\ 15Poms*d (4.43)

where the total velocity change using OMS for de-orbit is:
AVoms ge_orpic = 200 [fps] (4.44)

The OMS propellant weight for ascent is:
W =W, [e(%) - 1] (4.45)
OMSpropascent entry '
where the total velocity change using OMS for ascent is:

AVoms,geen: = 650 [1ps] (4.406)

Total OMS propellant weight is with 10% reserve propellant

W

7% =11( + W, +W, )
O0MSprop OMSproporpit OMSpropge-orbit OMSpropascent

(4.47)

The ratio between oxygen and fuel for OMS propellant was 6:1. Thus,

Woms,, = 6/7 Wo (4.48)

mspmp

Womsses = 1/7 W (4.49)

msprop

where, Woms,, and Wons,,., are the weights of the oxygen and fuel for OMS.

The RCS propellant weight for entry is:

(AVrcsentry>
W, = Wentry [e Ispresxg ) _ 1] (4.50)

rcspropentry

where the total velocity change using RCS for entry is:
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AV

I'CSentry

= 40 [fps] (4.51)

The RCS propellant weight on orbit is:

(AVrcsorbit)
— Is X —
M/rcsproporbit = Wentry e\ SPres*d 1 (4.52)

where the total velocity change using RCS on orbit is:

AV,

I'CSorbit

=200 [fps] (4.53)

Total RCS propellant weight is also with 10% reserve propellant

Wrcsprop =11 (Wrcspmpentry + M/rcspr(’porbit) (4.54)

The ratio between oxygen and fuel for RCS propellant was 4:1. Thus,
Wees,, = 4/5 Womsprop (4.55)
Weespy = 1/5 Womsprop (4.56)

where, Wies, —and Wi, ., are the weights of the oxygen and fuel for RCS.

The total propellant weight Wy is:

VVprop = VVomsprop + VVrcspmp (4.57)
and The total oxygen and fuel weights are:
Wox = I/Vomsox + VVrcsox (4.58)

Whyel = Womeuel + W

I'CSfyel

(4.59)

The tanks for the fuel consist of a cylinder with dome-shaped ends, and their
radius is the same as that of the circle tangent to the body section, as depicted in Fig.

4.7.
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Fig. 4.7 Radius of tank

4.1.4 Aerothermodynamic analysis

Aerodynamics

During the reentry, the spacecraft goes through various speeds ranging from
hypersonic to subsonic. The aerodynamic characteristics of the vehicle were
determined using modified Newtonian theory for hypersonic and supersonic flight
regimes [72], and Digital DATCOM for the subsonic flight regime [73].

The determination of the angle between the direction of free stream velocity and
the surface of the vehicle is necessary in the modified Newtonian theory. This angle

can be computed using the following equation.

T _1 —nV
@ =——cos™ ! ud
2 |Vl

(4.60)

The equation involves the normal vector n for each surface panel and the free
stream velocity vector V. The surface panels are categorized as either windward
(6 > 0) or leeward (8 < 0) panels.

The modified Newtonian method is utilized to calculate the windward pressure
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coefficients, while C, = 0 is used for the leeward pressure coefficients, as shown

in Fig. 4.8. The modified Newtonian formula used is as follows:

C,=C

Pmax

sin? 6 (4.61)

where (), is the maximum value of the pressure coefficient by using normal

shock relation and isentropic relation, as follows:

2 a2z VD (1o,
Cpmax T yM% [{4yM§°—2(y—1)} { y+1 } -1 (4.62)

Herein, y is the specific heat ratio. This theory determines the surface pressure and
computes the magnitude of surface velocity by converting the normal velocity on the
surface into pressure. Furthermore, the direction of surface velocity is obtained as

follows:

L _ nXVgeXxn (4.63)

V]~ |nxVexnl

Cp = C[:)ma,c Slnzg

Fig. 4.8 Modified Newtonian theory
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The altitude and velocity obtained from the trajectory analysis were utilized to
calculate the aerodynamic force. The aerodynamic analysis also assessed the
longitudinal stability and trim condition by considering the pitching moments.
Ensuring longitudinal stability and trim condition is an important constraint. The
pressure distribution and center of gravity, obtained from the weight analysis, were
used to determine whether the longitudinal stability and trim condition can be
satisfied. The angle of attack, which is used to evaluate the aecrodynamic force, varies
depending on the Mach number. The angle of attack corresponding to a specific

Mach number is depicted in Fig. 4.9 [74].

Angle of Attack [°]
[
o

0 5 10 15 20 25
Mach

Fig. 4.9 Pre-described angle of attack according to the Mach number

Heat-flux calculation

Using the flow properties, an estimation of the surface heat flux was made using
the approximate-convective-heating equation [7,75,76]. The first step in estimating
the heat flux using the approximate convective-heating equations involves
calculating the streamline. Once the streamline is obtained, the heat flux can be

predicted at each point along the streamline from the stagnation point to the endpoint
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(seed). To avoid the unrealistic heat flux pattern near the stagnation point, caused by
the velocity singularity at that point, a surface curve called the e-curve was
introduced [76]. This curve is perpendicular to the inviscid surface streamlines and
encircles the stagnation point. If the point is located inside the e-curve, the heat flux
is determined by interpolating the heat flux at the stagnation point on the e-curve.
However, if the point is located outside the e-curve, the properties of the boundary
layer edge are calculated using the modified Newtonian theory. The streamline
metric and momentum thickness are then computed from these properties. Finally,
the heat flux at the point is estimated from the computed momentum thickness.

Figure 4.10 illustrates this procedure.

START

[ Calculation of streamlines ]
- Yes Remain
* \@m”n?
[ [y
Y
Yes Inside No
-curve’?

k.
[ Calculation of boundary layer ]
edge properties

A4
[ Calculation of heat flux at the ]
stagnation heat flux

[ Calculation streamline metric ]

[ Calculation of heat flux on the ]
£-curve

[ Calculation momentum thickness ]

[ Interpolating heat flux at the ] l
stagnation point and the e-curve

[ Calculation heat flux ]

Fig. 4.10 Heat-flux calculation procedure
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Streamline calculation

The approximate convective-heating equations estimate the heat flux along a
streamline, which necessitates the use of inviscid surface streamlines. To obtain these
streamlines, two integration methods are available: forward integration and
backward integration. In forward integration, the streamline segments are integrated
from the stagnation point along the surface velocity direction, while in backward
integration, they are integrated from seeds (starting points of streamline calculation)
in the opposite direction to that of surface velocity. The results of both methods are
similar for simple geometries such as a sphere, ellipsoid, and spherically blunted
cone. However, in complex geometries like wing-body configurations, the
streamline using forward integration is not well distributed, as the differences in the
well-distributed streamlines are overly small near the stagnation point. Hence, this
study employs backward integration.

To calculate the streamline, a candidate point is selected at a short distance from
to the endpoint of the streamline in the opposite direction of the surface velocity
using Eq. (4.63). If the candidate point falls within the same grid as the endpoint, it
replaces the new endpoint. Otherwise, the candidate point is projected onto the plane
that contains other grids [77], and it is checked if it falls within the same grid. If the
projected point is within the grid, it replaces the endpoint. This process is repeated
from the seed point to the stagnation point.

To distribute the streamline over the entire wing and body, the midpoints of all
grids that contain the trailing edge of the wing or the aft of the body are selected as
seeds for streamline calculation. This approach results in a well-distributed

streamline on both the wing and body, as shown in Fig. 4.11.
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Stagnation point

Fig. 4.11 Seeds and streamlines for backward integration

Streamline metrics
The coordinates used on the surface to determine the inviscid streamline were &
and B, which are illustrated in Fig. 4.12. & denotes the position along the

streamline, while f represents the position perpendicular to the streamline [7].

Fig. 4.12 Inviscid surface streamline coordinate system

The differentials of the arc lengths on the surface were expressed as ds = hgd€

and ds; = hdp, while the differential of the position vector (dR) on the surface was
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written as follows:
dR = hydéeg + hdfe; (4.64)

The equation shows the differential of the position vector on the surface, expressed
as dR. The metric coefficients, hy and h, correspond to ¢ and [, respectively,
while e; and & are unit vectors in the direction of the streamline and
perpendicular to it on the surface. The metric coefficient h represents the
convergence or divergence of streamlines, and in the case of an axisymmetric flow,
it is equivalent to the local radius of the body.

To apply the axisymmetric analogy [78], the metric of the streamline h needs to
be calculated to replace the radius of the equivalent axisymmetric body. An efficient
method of calculating h was used, which relied on only two independent variables
in Cartesian coordinates (x,y,z) for integration. When selecting (y,z), where
v =v(y,z) and w = w(y, z), the streamline metric was computed according to the

following formula [76]:

_ vF| oy
ho= g |w (5 B)z] (4.65)
The surface of the body is represented by F(x,y,z) = 0, and the normal vector

. T . . .
to the surface is denoted by VF = (Fx, Fy,Fz) . The partial derivative can be

expressed as a differential equation:

Al (2 ]2 Zw (@) |22 4 2
ds [W (aﬁ)z] Wi [W (aﬁ)z] [ay +3 (4.66)
Herein, s is the distance along the streamline on the surface. Equations for the

independent variables (x,y) and (x,z) were derived as follow [4].
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As the denominator in Egs. (4.65), (4.65a), and (4.65b) contains a component of the
surface normal vector VF, the integration variables were selected to maximize this

component.

Heating equations

Zoby et al. [6] proposed approximate convective-heating equations to compute
heat flux on the surface. In conditions above 50 km altitude, laminar flow is the
dominant flow condition [79]. As reentry vehicles spend most of their time above
this altitude, the flow is assumed to be mostly laminar under these flight conditions

[80,81]. For laminar flow,
) -1 (p*\ (1 _
Gur = 022(Rege)” (£) (&) pee(Haw = HI (PRI (4.67)

The heat flux on the surface is denoted by ¢, and the momentum thickness
Reynolds number and Prandtl number are represented by Reg and Pr, ,
respectively. Density, viscosity, velocity, and enthalpy are denoted by p, u, u, and
H, respectively. Subscripts (e), (w), and (aw) represent estimations at the boundary

layer edge, wall, and adiabatic wall, respectively. The superscript (*) indicates that
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evaluations are done by Eckert’s reference enthalpy relation [82] to consider
compressible effects.
The calculation of the laminar momentum thickness 6}, was performed using the

following equation:

1
O1, = 0.664( [ p* 1 ueh?ds)?/ (petteh) (4.68)

The correction equation proposed by Kemp et al. was used to consider the effect of

the velocity gradient on laminar heating in the following equation:

5 _ HL
OL= 140.09{% (4.69)

Therefore, before computing the laminar heating, the mean momentum thickness,
denoted as 0; in Eq. (4.68), was substituted for 6, in Eq. (4.69). The velocity

gradient parameter Y was defined as follows:
b= 28 [(due) /(4
¥ = Ue ( ds )/(ds)] (4.70)

The parameter ¢, which was determined by the Lees-Dorodnisyn transformation

[83], was represented as follows:
¢ = [} Pwitwlch?ds (4.71)

Heat flux near the stagnation point

The heat flux at the stagnation point could not be computed using the above-
mentioned approximate convective-heating equations since the integration process
begins from the stagnation point. Therefore, the heat flux at the stagnation point was

determined using the following equation:
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dug

s = 0.767 |52 (o) S (Hy — Hy) (Pr,) 00 (4.72)

The subscript (s) is used to indicate properties at the stagnation point, and the
gradient of velocity at the stagnation point is represented by du,/dx. DeJarnette et

al. proposed the following equation to calculate the gradient [84]:

due _ Vol [1 5P
Te=rp 185t (4.73)

Near the stagnation point, the assumption of the similar (p*u*) and the linear u,
and h along a streamline could be utilized. This approximation led to a replacement
of the integration for calculating the momentum thickness 6; on the e-curve with

the following expression:

E _k, k * % Ss
o P Uh?ds = (p"i)s(ue)chE (4.74)

To calculate the heat flux on the e-curve, integration was not necessary as the
momentum thickness on the e-curve was obtained using Eq. (4.74). The heat flux
inside the e-curve was determined by interpolating the heat flux at the stagnation

point and the g-curve.

Heat-flux calculation validation

In order to verify the accuracy of the approximate convective-heating equations
applied in this study, a comparison was made between the heat flux on a sphere with
a 0.0508-m radius obtained from these equations and the experimental results [85]
and a high-fidelity computational fluid dynamics (CFD) approach that utilized the
Reynolds-averaged Navier-Stokes (RANS) solver. For the RANS solver, ANSYS

Fluent, a commercial CFD software package, was utilized for the laminar and steady-
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state flows. The RANS solver was implemented with the implicit AUSM+ flux [86],
Green-Gauss node-based gradient [87], and a combination of first- and second-order
upwind schemes. The conditions for the sphere's freestream and wall are presented
in Table 4.3. The heat flux obtained from the approximate convective-heating
equations agreed well with the results obtained from the other methods, as illustrated

in Fig. 4.13.

Table 4.3 Freestream and wall conditions for the sphere

Value
M, 9.74
y 1.4 (Perfect gas)
Poo 0.004272 kg/m?
T 53.17K
Tw 300.0 K

120.0k
n m Experiment [85]
—m — RANS
<&~ 90.0k A
= —— Approx. Eq.
2 "N
5 60.0k N
= Na
@
$ N\,
30.0k N
[ |
\-
0.0

0.0 0.4 0.8 1.2 1.6
s/r

Fig. 4.13 Convective heat flux for the sphere
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Additionally, the convective heat fluxes on a wing-body configuration were
computed and compared using both the RANS and approximate convective heating
equations to examine the accuracy of the latter for more complex geometries. The
Korea Aerospace Research Institute's KSP-1 vehicle, which has a 7-m fuselage and
4-m span wing and is depicted in Fig. 4.14, was utilized for this study. The freestream
and wall conditions for the KSP-1 were described in Table 4.4. To perform the RANS
calculation, an unstructured hybrid mesh with approximately 10,000,000 nodes and
50 prism layers was utilized, as shown in Fig. 4.15. The body surface was discretized
into 80 longitudinal and 58 cross-sectional grids, while the wing surface was
discretized into 20 span-wise and 128 airfoil grids, for the approximate convective-

heating equations calculations.

Fig. 4.14 KSP-1 geometry
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Table 4.4 Freestream and wall conditions for KSP-1
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Computational mesh for RANS at the symmetric plane

The results obtained from the RANS and approximate convective-heating

equations are comparable, as illustrated in Fig. 4.16. A detailed comparison was

conducted by plotting the heat fluxes along the wing section of 1.85 m, as depicted

in Fig. 4.17. The peaks of the heat fluxes are in reasonable agreement, and the trends

of the heat fluxes with changes in the x-coordinates are comparable. The heat flux
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calculations obtained from the sphere and KSP-1 models demonstrate that the
approximate convective-heating equations employed in this study are sufficiently

accurate for heat flux calculations.

Heat flux (W/m2)
2.00E+06

1.50E+06

1.85m
‘ 1.008+06

5.00E+05

y
185 m

./

Fig. 4.16 KSP-1 heat fluxes using RANS and the approximate convective-
heating equations (the upper portion is RANS, and the lower portion is the

approximate convective-heating equations)
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Fig. 4.17 Heat fluxes along the 1.85-m wing section
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4.1.5 Trajectory analysis

The trajectory analysis in this study only covers the period from orbit to landing
because the launch vehicle is responsible for placing the vehicle into orbit, using a
three-degree-of-freedom (3DOF) trajectory analysis [88] incorporating the weight
and aerodynamic force of the vehicle.

The gravity and aerodynamic force of the present position were used to determine
the next position and velocity. Then, the position and velocity were utilized to
calculate the aerodynamic force at the current position. Time integral was carried out

using the 4™ Runge-Kutta (RK) method, as follows:

XM = £(X™0) (4.75a)

X® = f(x™ 4+ 0.5AtXD ¢ + 0.5A¢) (4.75b)
X® = f(X™ + 0.5AtXP t + 0.5A¢) (4.75¢)
X® = £(X™ + 0.5AtX®), t + At) (4.75d)
gl _ yn y AED 12X D25+ ®) @.75)

6

where X =[u v w x y z]' in Earth-centered inertial coordinate.

In this study, four coordinate system was employed for describing motion and
position [89,90]. Body-fixed coordinate system (BFCS) is defined using node point
as orientation.

The Earth-centered inertial (ECI) coordinate system utilizes Cartesian
coordinates with its origin located at the center of mass of Earth and fixed with
respect to the stars, as shown in Fig. 4.18. The x-y plane of the system coincides with

Earth's equatorial plane, while the x-axis remains permanently fixed in a direction
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relative to the celestial sphere that does not rotate as Earth does. The z-axis is
perpendicular to the equatorial plane and extends through the North Pole. It is
noteworthy that while Earth rotates, the ECI coordinate system remains stationary.
As remaining stationary using Cartesian coordinate, it is easy to apply the equation

of motion.

North Pole

s Equator
(0° latitude)

X/ y

»

i

Fig. 4.18 ECI coordinate

The Earth-centered, Earth-fixed coordinate system (ECEF) is a type of Cartesian
spatial reference system that represents positions near the Earth using X, Y, and Z
measurements from its center of mass, as illustrated in Fig. 4.19. It is commonly used
for tracking satellite orbits and in satellite navigation systems for determining
locations on the Earth's surface. Unlike ECI, the ECEF is rotating along with the

Earth.
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Fig. 4.19 ECEF coordinate

The geographic coordinate system (GCS) is a type of spherical coordinate system
used to determine and communicate positions on the Earth using latitude and
longitude. It is the most widely used spatial reference system and serves as the
foundation for many others. Unlike a Cartesian coordinate system, the geographic
coordinate system is not planar because latitude and longitude measurements are

angles.

North Pole
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S [ — o
P
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Fig. 4.20 GCS coordinate
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The flow chart illustrating the trajectory analysis procedure is shown in Fig. 4.21.

The detailed process for trajectory analysis, which includes coordinate conversion,

is as follows:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Input the initial position and velocity in GCS.

Convert the initial properties to ECI to apply them to the equation of
motion, as the equation on ECI is more convenient because of stationary
Cartesian coordinates.

Obtain the aerodynamic force in BFCS based on the position and velocity
of the spacecraft through aerothermodynamic analysis.

Convert the aerodynamic force to ECI to apply it to the equation of
motion.

Conduct time integral to calculate the new position and velocity using the
4™ orther Runge-Kutta (RK) method.

Convert the new position and velocity to ECEF to account for Earth's
rotation.

Convert the new position and velocity to GCS, as GCS is more familiar
by using altitude, longitude, and latitude to describe the position.

Repeat step 3—7 until the spacecraft land

To verify the trajectory analysis, the trajectory of KSP-1 was analyzed, beginning

at a height of 300 km, with a velocity of 7000 m/s, an inclination angle of 80°, and

a flight path angle of 0°. Table 4.5 provides a summary of the initial trajectory

conditions. The trajectory was calculated appropriately, as illustrated in Fig. 4.22.

T
88 N =X



START I

A 4

Get initial position and velocity in GCS

!

Convert the initial position and velocity to ECI

-
+

Y

[ Get the aerodynamic force in BFCS ]

:

Convert the aerodynamic force to ECI

!

Integrate time using 4" order RK

!

Convert the new position and velocity to ECEF

!

Convert the new position and velocity to GCS

—

Yes

Fig. 4.21 Flow chart of trajectory analysis

Table 4.5 Initial trajectory condition of KSP-1

Initial trajectory condition Value
Altitude 300 km
Velocity 7000 m/s

Flight path angle 0°
Incline angle 80°
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Trajectory
of vehicle

Fig. 4.22 Trajectory of KSP-1
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4.2 Problem definition

To evaluate the performance of the spacecraft, multidisciplinary optimization
described in Chapter 2 was employed. The spacecraft's trajectory began at a height
of 300 km, with a velocity of 7000 m/s, an inclination angle of 80°, and a flight path

angle of 0°. Table 4.6 provides a summary of the initial trajectory conditions.

Table 4.6 Initial trajectory condition

Initial trajectory condition Value
Altitude 300 km
Velocity 7000 m/s

Flight path angle 0°
Incline angle 80°

The optimization problem was set as follows:

Minimize Weight and standard deviation (SD) of the heat flux
Constraint Unrealistic geometry
(i.e., tank length < fuselage length, nose radius > 0.01 m)
Maximum dynamic pressure < 50 kPa
Maximum heat flux <4 MW/m2
Landing speed < 20 m/s
Trim condition (the ability to maintain C,, = 0)
Longitudinal stability (static margin > 0)
Side constraint ~ Geometrical constraints

(i.e., wing span < 5 m, total length < 10 m)

b i 211
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The minimization of the weight is to reduce the payload of the launch vehicle that
will load the spacecraft. The minimization of the SD of heat flux is for diminishing
the heat flux on the spacecraft. If the maximum heat flux of the spacecraft is
minimized as an objective function, a specific point (i.e., the stagnation point or the
leading edge) of the spacecraft will be affected. However, minimizing of the SD of
heat flux can consider a large area that has a high heat flux. Therefore, these two
objective functions were selected in this study. The Appendix provides a detailed
description of the initial design space and side constraints.

For the optimization process, the MOGA algorithm was run with 256 individuals
for 600 generations. The design space was updated every 100 generations using
feasible solutions obtained in the last 20 generations, with 7; and n set to 99% and
20, respectively. To maintain population diversity, reinitialization was performed
while retaining the extreme solutions after adapting the design space. In addition,
optimization was conducted with and without reinitialization using the fixed design

space to assess the effectiveness of this approach.
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4.3 Results

To validate the effectiveness of the developed adaptive time-step method, the
numbers of heat-flux calculations were counted for optimization processes. The
number of the calculations with the adaptive time-step method is approximately 14
million, while the number of the calculations without the method is 185 million, as
shown in Table 4.7. The number of the calculation is reduced over one-tenth with the

developed adaptive time-step method.

Table 4.7 The number of heat-flux calculations for the optimizations

Without adaptive time With adaptive time step
step for heat flux for heat flux
heat-flux calculation 185,072,122 14,415,674
(Normal dist.)
heat-flux calculation
(developed method) 185,063,669 14,413,916

Figure 4.23 displays the Pareto solutions generated by the method assuming
normal distributions, the developed adaptive design-space method, and the fixed
design space. The Pareto solutions obtained by the developed method outperformed
the other methods. On the other hand, the Pareto solutions produced by the method
assuming normal distributions were comparable to those achieved with the fixed
design space. Theoretically, the Pareto solutions obtained by any method upon
convergence should be the same. However, in a practical problem, the Pareto
solutions may differ across the design space due to variations in the probability of
finding solutions during the stochastic optimization process. Therefore, adjusting the
design space to a region where the probability density of feasible solutions is high

can improve the searchability of the MOGA.
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Fig. 4.23 Pareto solutions and OPTs

Figure 4.24 indicates that the majority of the adapted design variable ranges
achieved with the developed method were narrower than those obtained with the
method that assumes normal distributions. This finding aligns with the
characteristics identified through analyses of the test problems. In Fig. 4.24, the
adaptive design space of x;, which represents the outboard sweep angle, is depicted
as a point. The reason behind low surface pressure at larger sweep angles is the low
angle between the flow and the surface. As a result of this low pressure, the
optimization leads to a large value of this variable, as it generates a low heat flux on
the surface. Additionally, the weight of the wing can be reduced with a larger sweep
angle as it results in a smaller tip-chord length. However, there is a geometrical
constraint that limits x;; to be smaller than 50. Consequently, the adaptive design
space of x;; converged close to 50. The adaptive design space of x;9 and x,, did
not overlap with the initial design space because a large x4, which represents the

winglet sweep angle, produces low heat flux as discussed for x;. On the other hand,
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a small x,,, which represents the winglet length, results in a lighter winglet.
Consequently, the adaptive-design-space method can effectively optimize the design

space and enhance the performance of unmanned spacecraft.
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Fig. 4.24 Adapted design spaces for the conceptual design of an unmanned

spacecraft

Near the extreme solutions, the positions of samples seem perpendicular to axis
because the values for an objective are similar against the different values for the
other objective function. To figure out this reason, the constraint values of the
samples are depicted in Fig. 4.25. The static margin (SM) of the light weight samples
are almost zero. The SMs of the spacecraft should be greater than zero to maintain
the longitudinal stability. On the other hand, the landing speed of the low heat flux
samples are almost 20 m/s. The landing speeds of the spacecraft should be lower
than 20 m/s due to the constraint. In these reasons, the samples near the extreme

solutions have similar values with the value of the extreme solutions.
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Fig. 4.25 The values of constraints near extreme solutions

The design space adaptation method improved both objective functions more
effectively than the other methods, as shown in Fig. 4.26 which displays the trends
of the objective functions for the extreme solutions. To evaluate the efficiency of the
MOGA and design-space adaptation method, the number of function evaluations
(NFE) was computed. The NFE was determined as the sum of the number of

individuals (Nj,q) from 1 to the number of generations (Ngey,), as follows:

NFE = 32" Nypq (4.77)

=1

Since Njpq was fixed in this study, Ngen could be used as the efficiency metric.
In Fig. 4.26, the developed method showed a more improved performance than the
other methods. The developed method required fewer generations to achieve the

same values of the objective functions, indicating higher efficiency than other

method.
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Additionally, the purity metric achieved by the developed method is considerably

greater than that of the method assuming normal distributions, as demonstrated in

Fig. 4.27. These findings indicate that the Pareto solution obtained by the developed

method outperforms that of the method assuming normal distributions. Therefore,

the performance and efficiency of the MOGA were enhanced by the developed

method.

Fig. 4.27
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The extreme solutions obtained from the developed method were labeled as
"OPT1-dev" and "OPT2-dev" and are depicted in Fig. 4.23. The compromise
solution was selected by considering the balance between weight and the SD of heat
flux performance and labeled "OPTcom." On the other hand, the Pareto solutions
obtained with the method assuming normal distributions and the fixed design space
were labeled as "OPT1-nor" and "OPTI1-fix" or "OPT2-nor" and "OPT2-fix,"
depending on whether they had similar weights or SDs of heat flux to OPT¢om.

The objective function values of the named solutions can be found in Table 4.8.
The values of the featured design variables and geometries of the labeled solutions

are presented in Table 4.9 and Fig. 4.28, respectively.

Table 4.8 Objective functions of the designed unmanned spacecraft

Weight (kg) SD of heat flux (W/m?)
OPT1-dev 2,263.5 198,124
OPT2-dev 2,802.3 165,425
OPTcom 2,481.9 178,675
OPT1-nor 2,482.0 186,468
OPT2-nor 2,584.0 178,740
OPT1-fix 2,480.0 185,950
OPT2-fix 2,614.1 178,734
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Table 4.9 Values of the feature design variables of the OPTs

OPT1-dev OPT2-dev OPTcom OPT1-nor OPT1-fix OPT2-nor OPT2-fix
Nose radius 0.0944 0.2346 0.1234 0.1163 0.1118 0.1214 0.1153
Total length 8.2179 9.9734 9.2936 9.0153 8.7940 9.3764 9.3341
Wing root chord 4.8416 5.5657 5.1732 5.1683 5.2137 5.3900 5.4722
Wing span 41321 4.4850 4.2419 4.2720 4.2544 4.3608 4.3746
Wing area 11.245 14.247 12.572 12.666 12.769 13.527 13.788
Wing leading edge radius 0.0545 0.0648 0.0617 0.0611 0.0636 0.0652 0.0647
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OPT1-dev has shorter fuselage and smaller wing area than OPT2-dev. This is why
the weight of OPT1-dev is lighter than OPT2-dev. On the other hand, OPT2-dev has
larger nose radius and wing leading edge radius. With these large radius, OPT2-dev
shows small heat flux because a large radius generates low heat flux in hypersonic
vehicles.

The SD of the heat flux of OPTcom was lower than those of OPT1-nor and OPT1-
fix by 4.2% and 3.9%, respectively, despite having similar weights. OPT¢om had a
larger nose radius and total length than OPT1-nor and OPT1-fix. The large nose
radius reduced heat flux at the nose stagnation point during hypersonic flight. The
large total length created a wide area on the lower surface of the fuselage, which is
a pressure surface generating high lift force that increases acceleration in the inverse-
gravity direction. As a result, when the maximum heat flux on the stagnation point
occurred, the velocity and altitude were relatively low and high, respectively, as
shown in Table 4.10. Consequently, it appears that the heat flux on the spacecraft
with a large total length was low. Therefore, OPTom achieved a lower heat flux than
OPT1-nor and OPT1-fix, resulting in higher survival probability during the mission
because a large amount of heat flux can destroy the spacecraft structure. Thus, while
all three solutions had similar weights, the survival probability of OPTcom was higher

than that of OPT1-nor and OPT1-fix.
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Table 4.10 Flow conditions, inverse-gravity-direction accelerations induced

by aerodynamic force, and heat fluxes at the stagnation point

Heat flux at
Altitude (km) Velocity (m/s)  Acc. (m/s?) stagnation
point (W/m?)

OPTeom 58.50 6,751 35.61 2,860,800
OPT1-nor 58.43 6,754 35.53 2,962,300
OPT1-fix 58.33 6,760 35.43 3,047,800

The weight of OPTcom was 3.9% and 5.1% lower than those of OPT2-nor and
OPT2-fix, respectively, while the SDs of the heat fluxes were comparable. OPTcom
had smaller total length and root chord compared to OPT2-nor and OPT2-fix. As the
fuselage weight was related to the volume and wetted area of the fuselage, a smaller
total length decreased the fuselage weight. Similarly, the weight of the wing can be
reduced by having a smaller wing area. Consequently, OPT.om was lighter than
OPT2-nor and OPT2-fix. The weight difference between OPTcom and OPT2-nor was
nearly 100 kg. Considering that the loading cost of a launch vehicle is more than
$5,000 per kilogram [91], this weight difference would save over $500,000 of the
budget required to load the spacecraft on a launch vehicle. Thus, the developed
method yielded significantly better performance compared to the method assuming

normal distributions.
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4.4 Data mining

4.4.1 Analysis of variance (ANOVA)

ANOVA is a statistical analysis technique that is widely used to quantify the
impact of an input variable (design variable) on an output variable (objective
function). It uses the ratio of the variance due to each input variable to the total
variance to quantify this influence. ANOVA breaks down the total variance into the
variance associated with each design variable [92]. This decomposition is achieved
by integrating the output variables of .

To determine the total mean (fiyora) and variance (62,,,) of output variables, as

follow:
Atotal = f f}”\(xp """ ,x,) dxg - dxg, (4.78)

6t2()tal = f f[y(xp """ ,XL) — ﬁtotal]2 dxq -+~ dx, 4.79)

In this context, L refers to the number of design variables. The primary impact of the

x; variable can be expressed as follows:

Ai(x;) = f"'fy(xp """ yx) dxy e dx;_qdxpq - dx, — figorar  (4.80)

The value of f1;(x;) represents the degree of impact of the design variable x; on
the objective function. On the other hand, the variance related to the design variable

x; can be calculated as follows:

67 = [l (x)]* dx; (4.81)

The ratio of the variance attributed to the design variable x; to the entire variance

of § can be computed by dividing Eq. (4.81) by Eq. (4.79):
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o - JIRGI dx
a-tzotal f f[j}(xll """ le)_ﬁtota]]z dxl"'de

(4.82)

This numerical result indicates the impact of the design variable x; on the objective
function.

In Fig. 4.29 (a), the results obtained from ANOVA for the weight of the spacecraft
are depicted, and the design variables that have a significant impact are presented,
namely: total length, nose radius, and root chord. Typically, the weights of the
fuselage and wing are connected to the volume and wetted area of the fuselage or the
planform area of the wing. The total length represents the length of the fuselage, and
the nose radius affects the volume and wetted area of the nose section, while the root
chord is a crucial factor in determining the planform area. Hence, it can be concluded
that the nose radius, total length, and root chord are highly influential in determining
the weight of the spacecraft.

In Fig. 4.29 (b), the results obtained using ANOVA for the SD of heat flux on the
spacecraft are illustrated, and the design variables with a substantial influence are
shown, which are total length, nose radius, and root chord. The total length and root
chord are vital parameters for determining the planform area and the lower surface
area of the fuselage, respectively. The heat flux is well-known to be related to the
flight velocity and air density, which are affected by the spacecraft's lift. The lift of
the spacecraft is influenced by the area of the pressure surface, such as the wing and
the lower surface of the fuselage. In addition, the nose radius corresponds to the
knowledge of hypersonic flow, where the heat flux on the stagnation point is related
to the nose radius. Thus, the nose radius, total length, and root chord are significant

variables for the heat flux on the spacecraft.

T
105 N =X



! . etc
/ Nose radius o
. Xg f\
Root chord / / .

Total length Total length

(a) Weight (b) SD of heat flux

Fig. 4.29 The result of ANOVA

106

~, Nose radius



4.4.2 Parallel chart

The parallel chart is a technique used to examine high-dimensional datasets
visually [61]. It includes several parallel axes, and each axis corresponds to a variable
of the samples. In this study, the Pareto solutions obtained from optimization were
compared against the samples, while the design variables and objective functions
were compared against the variables. The position of each sample on the axis is
represented by a vertex, and the vertices are connected by polylines. The value of
each variable of the sample corresponds to the position of the vertex on each axis.
By coloring the lines according to one objective function value, the distribution of
the lines for the design variables can be examined to analyze the qualitative
relationships between the objective functions and the design variables.

In Fig. 4.30, the parallel chart is presented with the weight as the color scale. The
first two columns indicate that Pareto solutions with low weight (blue line) have a
high SD of heat flux, while those with high weight (red line) have a low SD of heat
flux, indicating a trade-off relationship between weight and SD of heat flux. Low-
weight solutions are associated with smaller spacecraft sizes, consistent with the
general understanding that smaller spacecraft are relatively lighter. Notably, these
low-weight solutions have small nose radius, total length, and root chord values. In
contrast, solutions with a low SD of heat flux (red line) have higher nose radius, total
length, and root chord values. By analyzing the distribution of the lines for the design
variables, qualitative relationships between the objective functions and the design

variables can be established.
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4.4.3 Self-organizing map (SOM)

The Self-Organizing Map (SOM) is an unsupervised neural network approach
that maps high-dimensional data onto a lower-dimensional space. The resulting map
is composed of numerous nodes which are clustered based on the similarity of data
or solutions. Each node on the map represents a solution, which allows for a
qualitative analysis of the relationship between input and output variables or between
different input variables by coloring the map according to the value of each variable.
More information about the learning algorithm of SOM can be found in references
[93,94].

To analyze the relationships between the objective functions and design variables,
the color patterns of maps can be compared. In Fig. 4.31, a trade-off relation appears
to exist between the weight and the SD of heat flux, as evidenced by the low-weight
solutions (blue) in the right-top corner of the map having high heat flux (red), and
the high-weight solutions (red) in the left-bottom corner of the map having low heat
flux (blue). Similarly, the qualitative relationship between the objective functions
and design variables can be analyzed. Nose radius, total length, and root chord are
the design variables related to the objective functions, as the color patterns of the
maps for these variables are similar or inversely similar to the color patterns of the
objective functions. Based on the SOM analysis, it was found that the variables have
a positive correlation with the weight, while they have a negative correlation with

the heat flux, which is consistent with the findings of the parallel chart.
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Fig. 4.31 SOM results
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4.4.4 Summary of geometric features

Based on the results of ANOVA, parallel chart, and SOM, the critical

characteristics of the spacecraft geometry that lead to enhanced performance can be

summarized as:

1)

2)

The optimal spacecraft design should have a small nose radius, total length,
and root chord, leading to a lower weight. By decreasing the nose radius, the
weight of the nose section is reduced, while a shorter total length and smaller
root chord contribute to a lighter fuselage and wing, respectively.

The spacecraft exhibiting a low standard deviation of heat flux possess a
larger nose radius, total length, and root chord. This finding aligns with the
knowledge of hypersonic flow, which suggests that a large nose radius
decreases the heat flux at the stagnation point. In addition, a large total length
and root chord result in a broad lower surface of the fuselage and wing, which
is a pressure surface. The latter generates a high lift force that increases the
acceleration in the direction opposite to gravity. Consequently, the spacecraft
with a greater pressure surface exhibits relatively slower velocity and higher
altitude compared to the spacecraft with a smaller pressure surface at the
same altitude. Hence, the spacecraft having a larger total length displays

lower heat flux than those with smaller total lengths.
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Chapter 5

Conclusion

This study developed efficient methods that can be applied to multidisciplinary
optimization to design reusable unmanned spacecraft, which has become
increasingly in demand in these days. The methods involved the adaptive time-step
method for an analysis in MDO based on the current state. To achieve this, a dynamic
factor was introduced to adjust the time step between each heat flux evaluation. The
dynamic factor was determined based on the current state. To validate this method,
this method was applied to reduce the number of heat-flux evaluations required along
a flight trajectory of spacecraft. For heat-flux calculation, the dynamic factor was
varied based on the difference between the heat flux at an instant and the maximum
heat flux over the entire trajectory. By shortening the time step when the heat flux
was high, detailed information on heat flux was obtained, while increasing the time
step under low-heat-flux conditions improved the efficiency of the heat-flux
calculations. The dynamic factor was used to adaptively determine the time step,
which improved efficiency with accuracy, making it an effective method for
enhancing the efficiency of MDA. As a result, the number of heat-flux calculations
decreased approximately one-tenth in with over 90% accuracy.

Further, this study introduced a new method that adaptively adjusted the design
space by considering the actual distribution of solutions, as opposed to the
conventional method that assumes the solution distribution to be normal distributions.

The actual solution distribution was estimated by calculating the proportion of
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solutions in each subspace, which divided the design space evenly. Moreover, the
developed method preserved the area of the design space where the extreme
solutions, being the best solutions for each objective function, existed.

In order to evaluate the effectiveness and efficiency of the developed adaptive
design-space method, it was applied to nineteen widely used multiobjective test
functions, namely the ZDT problems, I problems, and WFG problems. The results
showed that the design space adapted by the developed adaptive design-space
method was much closer to the analytical solution range compared to the
conventional method that assumed normal distributions. The study found that the
adaptive design-space method was able to adjust the design space appropriately to
raise the probability of solution existence, leading to improved efficiency and
performance of MOGA compared to the method that assumed normal distributions.

To validate the effectiveness of the developed methods for adjusting time step for
heat-flux calculation and adjusting design space, this study utilized the developed
efficient methods for heat-flux calculation and adaptive design space to perform
MDO for reusable unmanned spacecraft. The MDO was established with weight,
propulsion, aerothermodynamics, and trajectory analyses to address diverse
spacecraft analysis technologies. The weight of the spacecraft was predicted using
the modified HASA, while the required thrust and weight of engines were estimated
based on the entry weight. Aerodynamic properties were calculated using the
modified Newtonian theory and Digital DATCOM, and the approximate convective-
heating equations were used for heat-flux calculation. The spacecraft trajectory was
modeled using three design-of-freedom equations of motion. To facilitate multi-

disciplinary optimization, the these analyses was integrated with a multi-objective
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genetic algorithm.

The optimization for the reusable unmanned spacecraft was performed by the
established MDO with the developed method of adaptive time step for heat-flux
calculations and adaptive design space. According to the results obtained by
optimization, it was found that the Pareto solutions generated by the developed
adaptive design-space method outperformed those obtained from the conventional
methods. Therefore, it can be inferred that the developed adaptive design-space
method could be beneficially implemented in solving complex real-world
optimization problems, offering better efficiency and performance.

Furthermore, this research conducted data mining to comprehend why the
optimized shapes demonstrate better performance by identifying the geometric
features that affect the performance of unmanned spacecraft. The analysis of
variance (ANOVA), parallel chart, and self-organizing map (SOM) methods were
utilized as data mining techniques. All three techniques produced consistent results.
The outcomes revealed the weight and heat flux trade-off relationship. The nose
radius, total length, and root chord were identified as significant variables for
spacecraft performance. A smaller geometry size reduced the weight, whereas a
larger total length, nose radius, and root chord decreased the heat flux by operating
at low velocity at high altitudes, where air density is low, and by generating high lift
due to a large total length and root chord. In hypersonic flight, a large nose radius
resulted in a low heat flux at the nose stagnation point, corresponding to hypersonic

flow knowledge.
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Appendix

This appendix presents information on the initial design space and the constraints

on the problem that was studied in this study.
Conceptual design of the unmanned spacecraft

Initial space 0.05<x; <0.34
1.53 <x, <1.82
0.35 <x3 <0.55
034<x,<05
8.08 < x5 <10
0.45 < x4 < 0.5
0.56 <x; <0.71
4.15 < xg < 5.92
420<x9<5
47.7 < x19 < 65.6
48 < x1, <50
049 <x,, <08
299 <x3<5
037 <x, <04
0.11 < x;5 < 0.45
0 < x4 <0.009
029 <x, 0.6
0.016 < x4 < 0.078
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Side constraint

52.7 < x19 < 60.3
043 <x,0<1

70.1 < x; < 85.6
0.48 < x,, < 0.98
0.05 < x; < 0.34

1.53 < Xy

X9 <5

X171 < 50

x12 < 0.8

299 <x3<5
0 < x4 <0.009
0.29 < x47, 0.6
0.016 < xq5
52.7 < X419

X0 <1

70.1 < xy4
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