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Abstract           

Development of an Efficient Multi-

disciplinary Optimization Method for 

the Conceptual Design of Reusable 

Unmanned Spacecraft 

 
Jongho Jung 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

 

 
This study develops an efficient approach to design reusable unmanned 

spacecraft, which is in increasing demand in these days. In various analyses for the 

design, the calculations of the aerodynamic force, heat flux, and motion are 

conducted by enormous times while the geometry definition, weight estimation, and 

propulsion analysis are performed by few times. It is because the former calculations 

are executed for each instance of trajectory. Thus, this study develops an efficient 

method to adjust the time step for an analysis. The developed method adjust the time 

step based on the current state. The developed method is applied to the heat-flux 

calculation for validating the method. The adaptive-time-step method includes a 

dynamic factor that adjusts the time step between each instance of heat-flux 

calculation. Under low-heat-flux conditions, the time step using this factor increases, 

resulting in a decrease of approximately one-tenth in the number of heat-flux 
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calculations required with over 90% accuracy. Therefore, the efficiency of heat-flux 

calculation are improved with high accuracy by adopting the adaptively-determined 

time step according to this dynamic factor.  

In addition, a new method that adaptively adjusts the design space by considering 

the actual solution distribution of a problem is developed to overcome the limitations 

of conventional design-space adaptation methods that typically assume a normal 

distribution of solutions, which is rarely the case for real-world problems. To validate 

the effectiveness of the developed adaptive design-space method, it is applied to 

nineteen multiobjective test functions that are commonly used to evaluate 

optimization approaches. The results show that the method adapted the design space 

to a suitable range where the probability of solution existence is high. Furthermore, 

the optimization performance achieved using the developed adaptive design-space 

method is better than that of the conventional methods. 

To validate the effectiveness of the developed methods, the efficient methods for 

heat-flux calculation and adaptive design space were utilized in MDO for reusable 

unmanned spacecraft. The MDO framework combines a variety of spacecraft 

analysis technologies, including weight, propulsion, aerothermodynamics, and 

trajectory analyses. The weight of the spacecraft is predicted using a modified 

hypersonic aerospace sizing analysis (HASA), while the entry weight is used to 

estimate the required thrust and weight of engines. Aerodynamic properties are 

calculated using modified Newtonian theory and Digital DATCOM, and 

approximate convective-heating equations are used to determine heat-flux. The 

spacecraft trajectory is modeled using three degree-of-freedom equation of motion. 

To enable optimization, the MDO is integrated with a multiobjective genetic 
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algorithm (MOGA). The MDO results demonstrate that the Pareto solutions obtained 

using the developed method are superior to those obtained using conventional 

methods. 

Data mining is also conducted with analysis of variance (ANOVA), parallel chart, 

and self-organizing map (SOM) to investigate why the optimized shapes exhibited 

superior performance by extracting geometric features that impact the performance 

of the unmanned spacecraft. The data mining results indicated a trade-off 

relationship between weight and heat flux. Additionally, the nose radius, total length, 

and root chord were identified as significant variables for spacecraft performance. 
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Nomenclature 

English symbols 

𝑎 Parameter of adaptive time step for heat-flux calculation 

𝐴𝑗 Probability densities of the jth subspace for the control 

distribution 

𝐴𝑅 Aspect ratio 

𝑏 Parameter of adaptive time step for heat-flux calculation 

𝐶 Factor for adaptive time step 

𝐶𝑚 Moment coefficients 

𝐶p Pressure coefficients 

𝐶𝑝𝑚𝑎𝑥
 Maximum value of the pressure coefficient 

𝐷be Body equivalent diameter 

𝑑𝑖 Distance between the solutions and analytical solutions 

𝒆ŝ Unit vectors in the direction of the streamline 

𝒆⊥̂ Unit vectors in the direction of perpendicular to the streamline on 

the surface  

erf −1 Inverse of the error function 

𝑭 Represented surface of the body 

𝑔 Acceleration of gravity 

𝐻 Enthalpy 

ℎ Metric coefficients correspond to 𝛽 

ℎs Metric coefficients correspond to 𝜉 
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i Variable number 

𝐼𝑠𝑝oms Specific impulse of OMS 

𝐼𝑠𝑝rcs Specific impulse of RCS 

j Subspace number 

L Total number of variables 

𝐿f Fuselage length 

𝑀∞  Free stream Mach number 

𝑚𝑖 Median of the ith design variable 

𝑚𝑓 Modifying factor 

𝑁 The number of methods (solution sets) 

𝒏 Normal vector 

n The number of subspace 

𝑁gen The number of generations 

𝑁𝑖,𝑗 The number of solutions in [ 𝑥𝑖,𝑗−1 , 𝑥𝑖,𝑗   for the ith design 

variable 

𝑁ind The number of individuals 

𝑛𝑝 The number of Pareto solutions 

𝑁pa The numbers of primary RCS for aft 

𝑁pf The numbers of primary RCS for front 

𝑁total Total number of solutions 

𝑁va The numbers of vernier RCS for aft 

𝑁vf The numbers of vernier RCS for front 

𝑝𝑖,𝑗 Proportion of solutions in the jth subspace for the ith variable 
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𝑃omspress
 Pressure of the pressurization system for OMS 

𝑃omstnk
 Pressure of the tank for OMS 

𝑃rcspress
 Pressure of the pressurization system for RCS 

𝑃rcstnk
 Pressure of the tank for RCS 

𝑃𝑟  Prandtl number 

𝑞max Maximum dynamic pressure 

�̇�  Heat flux 

𝑅 Nose radius 

𝑅∗ Union of all Pareto solutions  

𝑟𝑖 The number of Pareto solutions obtained from each optimization 

𝑟𝑖
∗ The number of Pareto solutions present in 𝑅1

∗ 

𝑅1
𝑖  Pareto solutions 

𝑅1
∗ New Pareto solutions of 𝑅∗ 

𝑅oms Ratio of OMS engine thrust to weight 

𝑅p Ratio of primary RCS thrust to weight 

𝑅v Ratio of vernier RCS engine thrust to weight 

𝑅𝑒𝜃 Momentum thickness Reynolds number 

𝑠 Streamline length 

𝑆 Current state 

𝑆btot Fuselage wetted surface area 

𝑆ref Reference wing area 

𝑡 𝑐⁄  Wing thickness to chord ratio 

𝑇reqoms
 Required thrust of OMS 
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𝑇reqp
 Required thrust of primary RCS 

𝑇reqv
 Required thrust of vernier RCS 

𝑇𝑅𝐹 Technology reduction factor 

𝑈𝐿𝐹 Ultimate load factor 

𝑽∞ Free stream velocity 

𝑉omsfuel
 Volumes of fuel for OMS 

𝑉omsox
 Volumes of oxygen for OMS 

𝑉omspress
 Volume of Helium required as pressurant for OMS 

𝑉omstnk
 Volume of the tank for OMS 

𝑉rcsfuel
 Volumes of fuel for RCS 

𝑉rcsox
 Volumes of oxygen for RCS 

𝑉rcspress
 Volume of Helium required as pressurant for RCS 

𝑉rcstnk
 Volume of the tank for RCS 

𝑉tot Fuselage volume 

𝑊elect Electrical system weight 

𝑊emp Vehicle empty weight 

𝑊eng Total weight for engine 

𝑊entry Entry weight 

𝑊f Fuselage weight 

𝑊fuel Total fuel weights 

𝑊gear Landing gear weight 

𝑊gtot Total vehicle gross weight 

𝑊hydr Hydraulics weight 
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𝑊land Landing weight 

𝑊oms OMS weight 

𝑊omseng
 OMS engine weight 

𝑊omsfuel
 Fuel weight for OMS propellant 

𝑊omsinstall
 Installation weight for OMS 

𝑊omsox
 Oxygen weight for OMS propellant 

𝑊omsprop
 Total OMS propellant weight 

𝑊omspropascent
 OMS propellant weight for ascent 

𝑊omspropde−orbit
 OMS propellant weight for de-orbit 

𝑊omsproporbit
 OMS propellant weight for orbit maneuvers 

𝑊omspress
 Weight of the pressurization system for OMS 
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 The weight of OMS tank 

𝑊ox Total oxygen weight 
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𝑊sub Total subsystem weight 
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𝑥𝑖,lower Lower bound of ith variable 
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Chapter 1  

Introduction 

1.1 Backgrounds 

These days, many report and investigator expect that the space industry will grow 

up continuously. Euroconsult estimates that the spacecraft market has reached 370 

and 464 billion dollars in 2021 and 2022, respectively, and is expected to grow by 

more than 737 billion dollars by 2032, as shown in Fig. 1.1 [1,2 . In addition, 

According to Morgan Stanley's analysis, the revenue generated by the global space 

industry has the potential to exceed a trillion dollars by the year 2040, as illustrated 

in Fig. 1.2 [3 .  

To occupy these space market, private enterprises such as SpaceX, Virgin 

Galactic, and Blue Origin are developing launch vehicles and spacecraft. SpaceX's 

goal is to reduce the cost of space transportation and colonize Mars. To achieve this, 

they are developing both launch vehicles and spacecraft. Virgin Galactic, on the other 

hand, is focusing on creating commercial spacecraft for space tourists. The company 

has already succeeded in manned spaceflight, including with their founder. Blue 

Origin is working on developing rocket-powered vertical takeoff and landing 

vehicles to access suborbital and orbital space. These efforts suggest that space 

development has shifted from the government to the commercial sector, with the aim 

of increasing profits through the use of reusable spacecraft and diversifying flight 

purposes.  

Specially, Boeing is developing X-37 as a reusable unmanned spacecraft, and it 
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was first launched in 2010. The X-37 is launched into space by a launch vehicle and 

then lands on Earth as a spaceplane after re-entering the atmosphere. Korea also 

makes an effort to develop a reusable unmanned spacecraft through grants, such as 

the Reusable Unmanned Space Vehicle Research Center (ReUSV) by Korea 

Research Institute for Defense Technology Planning and Advancement (KRIT). 

However, since the spacecraft development of Korea is in the early stage, a various 

configuration of spacecraft should be analyzed. Therefore, the development of an 

efficient method to conceptually design reusable unmanned spacecraft is necessary. 

 

Fig. 1.1  Space market reported by Euroconsult [1,2  
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Fig. 1.2  Global space economy estimated by Morgan Stanley [3  
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1.2 Previous studies for adaptive time-step method for MDO 

In order to develop a high-performance reusable spacecraft, various technologies 

must be utilized: Geometry definition, weight analysis, propulsion analysis, 

aerothermodynamic analysis, trajectory analysis, and so on. To simultaneously 

consider these various analyses in the conceptual design, multidisciplinary 

optimization (MDO) should be established. Various efficient methods for each 

analysis in MDO was developed, such as hypersonic aerospace sizing analysis 

(HASA) for weight analysis [4 , equations to estimate the required thrust for 

propulsion analysis [5 , approximate convective-heating equation based on modified 

Newtonian theory for aerothermodynamic analysis [6 , and three degree-of-freedom 

equation of motion.  

The calculations of the aerodynamic force, heat flux, and motion are conducted 

by enormous times while the geometry definition, weight estimation, and propulsion 

analysis are performed by few times. It is because the former calculations are 

executed for each instance of trajectory. While the aerodynamic-force and motion 

calculations for an instance need a very short computational time (approximately 

0.01 second), the heat-flux calculations take approximately a few second [7 . 

Therefore, the reduction of the number of heat-flux calculation can make more 

efficient MDO. 

The heat flux are calculated in several million evaluations in a multidisciplinary 

optimization process because the heat flux should be evaluated along the entire 

trajectory of a vehicle, which may result in over a thousand evaluation stages and the 

heat-flux evaluations along the trajectory are typically simulated over a thousand 

times during vehicle shape optimization [8–11 . The enormous number of heat-flux 
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evaluations required for MDO makes this process time-consuming. Therefore, it is 

essential to develop an efficient method for calculating heat flux along the entire 

trajectory for multidisciplinary optimization. 

To reduce computational costs, one practical solution is to increase the time step 

for trajectory analysis. As the heat flux is calculated along the entire trajectory, 

increasing the time step can decrease the number of calculations required and thereby 

relieve the computational cost. Various adaptive time-step methods have been 

suggested to address time-dependent problems, including the utilization of a simple 

equation [12–14  or a proportional-integral (PI) [15–20  or proportional-integral-

derivative (PID) controller [21–23 . These methods control the time step according 

to the error (the rate of change for solutions). Thus, these methods are more suited 

for steady-state problems, in which the error decreases over time due to the 

convergence of solutions, and are not appropriate for trajectory analysis.  

Another possible approach to reduce the computational cost in multidisciplinary 

analysis, including the evaluation of heat flux along a trajectory, is to split the time 

step into individual time steps for each analysis. This is because the required time 

steps for accurate computations differ among individual analyses. When the same 

time step is applied for all analyses, the minimum required time step is selected to 

ensure accurate results. However, if the time step differs for each analysis, the 

number of calculations decreases, leading to a reduction in computational cost. 

Although this method has been attempted before [24–27 , the ratio of time steps 

between individual analyses was constant, which may not lead to a drastic reduction 

in computational cost since each individual time step is not controllable using the 

changes in the conditions for each analysis.  
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Therefore, a method that adjusts each individual time step for heat-flux 

calculation is required. 
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1.3 Previous studies for adaptive design space 

Currently, optimization problems have become more complicated with the 

incorporation of multiple disciplines, such as the design of reusable unmanned 

spacecraft. In addition, the optimization problems take various multiobjective 

functions, and complexly constraints. These complexity have made it challenging to 

discover solutions and analyze the correlations between the quantity of interest and 

design variables in a straightforward manner. To address these challenges, 

population-based optimization methods like genetic algorithms [28  and particle 

swarm optimization [29  have emerged. These methods can explore a design space 

using multiple populations without relying on gradient information and offer several 

design candidates known as "Pareto solutions" [30–36 . Thus, population-based 

optimization is an attractive alternative for dealing with such complex problems. 

Population-based methods typically seek solutions within a predefined design 

space that consists of the upper and lower bounds of the design variables. Because 

the design space is typically predetermined and remains unchanged throughout the 

entire optimization process, selecting an appropriate design space for the given 

problem is crucial. Without an appropriate design space, the optimization algorithm 

may fail to find desirable solutions. The selection of a suitable design space heavily 

relies on the prior knowledge and experience of the engineers, making it challenging 

to select an appropriate design space for a new type of problem that is beyond the 

engineer's domain of expertise. If the design space does not include the desired 

solutions, the optimization process will not succeed. To prevent this, engineers may 

choose to set a larger than necessary design space, but this may result in decreased 

optimization efficiency due to the stochastic processes of population-based 
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optimization methods, which generally operate within a fixed design space 

throughout the process. 

To address these problems, Amirjanov [37,38  proposed a changing range genetic 

algorithm (CRGA). The CRGA adjusts the center of the design space to be at the 

mean value of the design variables of the solutions. It decreases the size of the design 

space by a predetermined ratio until the ratio of the current design space to the initial 

design space becomes below a specific value. However, sometimes the CRGA may 

make the design space excessively small, resulting in a failure to find the optimal 

solution. Amirjanov [39,40  proposed an enhancement to the previous method by 

introducing an algorithm that modifies the center of the design space without 

decreasing its size after the ratio reaches a specific value. Moreover, Amirjanov 

proposed a technique to determine the reduction ratio by analyzing the solution 

behaviors during the generation [41,42 , and this approach was extended to particle 

swarm optimization [43 . However, for multiobjective optimization problems, this 

approach is not suitable as it reduces the design space size by a constant value, 

ignoring the distributions of the solutions of multiple objective functions. In such 

problems, the solutions are not unique, and the design variable distributions of the 

solutions converge to a range of the design space, rather than a single point. 

Therefore, adapting the design space for multiobjective optimization problems 

requires considering the distributions of the design variables of multiple objective 

functions. 

Various researchers have endeavored to adjust design spaces by taking into 

account the distributions of the design variables. Adaptive search region methods 

have been proposed by Jeong et al. [44 , Kitayama et al. [45 , and Arakawa et al. 
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[46,47 , which assume that the design variables have normal distributions. On the 

other hand, Oyama et al. [48–50  suggested a method that sets the cumulative 

distribution functions of normal distributions as genotype of genetic algorithm. The 

cumulative distribution functions is iteratively updated the means and standard 

deviations of the design variable. Initially, this method was designed for single-

objective functions, but it was later improved for multi-objective function 

applications by utilizing a plateau region [51–53 . This method has been 

implemented in numerous engineering fields, such as aerodynamic design [54 , 

conceptual design [55 , turbomachinery [56 , fluid-structure interaction [57 , vehicle 

occupant restraint systems [58 , and energy systems [59 . Although the widespread 

use of the normal distribution assumption, the design variable distributions in real-

world problems are rarely normal distributions. If a design variable is not normally 

distributed, the variance could be exaggerated, leading to a larger design space that 

includes infeasible regions. This weakens the effectiveness of the design-space 

adaptation method because optimization efficiency is decreased with the inclusion 

of infeasible regions. Consequently, it is preferable to have a design-space adaptation 

method that takes into account the actual distributions of the solutions. 

 

  



 

 

 10 

1.4 Motivation and scope of the dissertation 

This study develops a novel approach to enhance the efficiency of MDO for 

reentry vehicles. To achieve this goal, an adaptive time-step method for each analysis 

in the MDO based on the current state is developed. To validate this method, the 

method is applied to the heat-flux calculations in the MDO for the conceptual design 

of reusable spacecraft. The developed approach reduces the number of heat-flux 

calculations required along a trajectory. A dynamic factor is introduced to adjust the 

time step between each heat flux calculation, resulting in a decreased time step when 

a large amount of heat flux is generated and an increased time step when a small 

amount of heat flux is generated. This method aims to increase the efficiency of 

MDO while obtaining detailed information on heat flux in high-heat-flux conditions. 

In addition, this study develops a novel approach for adaptively adjusting the 

design space based on the actual distribution of solutions. This is achieved by 

dividing the design space into equally-sized subspaces and calculating the proportion 

of solutions in each subspace to the total number of solutions. The effectiveness of 

this method is evaluated using nineteen commonly-used multiobjective test 

functions to analyze its characteristics and performance. 

To validate the effectiveness of the developed methods for adjusting time step for 

heat-flux calculation and adjusting design space, this study utilizes the developed 

efficient methods for heat-flux calculation and adaptive design space to perform 

MDO for reusable unmanned spacecraft. The optimized shapes are examined to 

identify the geometric features that contribute to the improved performance through 

data mining. The analysis of variance (ANOVA) [60 , parallel chart [61 , and self-

organizing map (SOM) [62  methods are utilized as data mining techniques. 
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This dissertation is organized as follows: 

Chapter 2 introduces a method to adjust the time step for an analysis in MDO 

based on the current state. The developed method is applied to calculate heat flux 

along a trajectory. For the efficient calculation, the time step for MDO are split by 

the time steps for heat flux and trajectory. First, the ratio of the time steps is set to 

constant values as previous studies to validate its effectiveness for heat-flux 

calculations. Then, the ratio is varied by dynamic factor that is determined using the 

heat flux of the stagnation point. 

Chapter 3 presents the development of an adaptive design-space method that 

considers the actual distribution of solutions to find a suitable design space. The 

performance and characteristics of this method are evaluated by solving nineteen test 

problems. To verify the adaptive design-space method, the initial design space are 

shifted from the design space of the analytical solutions. Furthermore, to 

quantitatively validate the effectiveness of the developed method, the solutions from 

optimizations using the developed method and conventional method are compared 

by two metrics. 

In Chapter 4, the MDO for reusable unmanned spacecraft are employed to 

validate the developed methods for heat-flux calculations and adaptive design space. 

The MDO is established by combining the geometry definition and the analyses of 

weight, propulsion, aerothermodynamics, and trajectory with the developed methods. 

Then, the results of the MDO using the adaptive design-space method are compared 

to those obtained from other design-space methods. Finally, the geometry and 

performance of the extreme solutions in a Pareto solution are compared to evaluate 

the effectiveness of the method. In addition, the geometric features that affect the 
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performance of the unmanned spacecraft are extracted using data mining techniques. 

Lastly, Chapter 5 provides the conclusion of the dissertation. 
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Chapter 2  

Adaptive Time-Step Method for MDO 

Various analyses are implemented in the multidisciplinary optimization for the 

conceptual design of the reusable spacecraft. Reducing the number of calculations 

of analyses in MDO are necessary for the efficient optimization. To do that, adjusting 

the time step for each analysis in MDO is needed. Since the heat-flux calculation is 

time-consuming analysis in MDO for the spacecraft, diminishing the number of the 

heat-flux calculations has a large effect for the efficiency of the MDO. 

In the MDO, a number of the heat-flux calculations are required to estimate the 

heat flux for entire positions of the trajectory, as illustrated in Fig. 2.1. In addition, 

the trajectory analysis is performed by several iterations to converge coupling 

variables owing to inter-relations between analyses. As a result, more than a 

thousand evaluations of heat flux were required to estimate the heat flux during the 

flight. 

 

Fig. 2.1  Combined analysis for the heat flux on the KSP-1 
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The number of the heat-flux calculations were reduced by increasing the time 

step, which was achieved by multiplying it by a factor 𝐶, according to the following 

equation: 

 ∆𝑡h = 𝐶∆𝑡t (2.1) 

Equation (2.1) shows that the time step of the heat flux calculation can be increased 

by a factor 𝐶 , where ∆𝑡h  and ∆𝑡t  represent the time steps of the heat flux 

calculation and trajectory, respectively. If the heat flux is computed at all positions 

in the trajectory, then ∆𝑡h is equal to ∆𝑡t. By increasing the value of 𝐶, the number 

of heat-flux calculations can be reduced as the time step of the heat flux calculation 

(∆𝑡h) is increased. Conversely, decreasing the value of 𝐶 leads to an increase in the 

number of heat-flux calculations as the time step of the heat flux calculation (∆𝑡h) is 

decreased. 

In this study, to validate the effectiveness of the increased time step according to 

𝐶, the heat-flux calculations were integrated with trajectory analysis to predict the 

heat flux on the spacecraft. Furthermore, weight, propulsion, and aerodynamic 

analyses were combined with the heat flux analysis. To apply and validate the 

developed efficient method for heat-flux calculation, heat fluxes on the surface of 

Korea Aerospace Research Institute’s KSP-1, shown in Fig. 2.2, which is a three-ton 

class vehicle with a 7-m fuselage and 4-m span wing, were estimated from mission 

orbit to landing. The trajectory started at an altitude of 300 km with a speed of 7000 

m/s, a flight path angle of 0°, and an incline angle of 80°.  
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Fig. 2.2  KSP-1 geometry 

2.1 Constant 𝑪 

Initially, a numerical approach was used with a constant value of 𝐶 . This 

approach is consistent with previous studies that established a fixed ratio of time 

steps between individual analyses [24–27 . Table 3 indicated that increasing the 

value of 𝐶 led to a decrease in the overall computational expense due to a larger 

∆𝑡h, which in turn resulted in fewer computations. However, the application of the 

constant 𝐶 led to the omission of the time corresponding to the original maximum 

stagnation heat flux, which in turn led to an inaccurate representation of the 

maximum stagnation heat fluxes, as can be seen in Table 2.1 and Fig. 2.3. Since the 

spacecraft's ability to endure heat is largely dependent on the maximum heat flux, 

this value is of critical importance. 
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Table 2.1  Total computational cost with constant 𝑪 

𝑪 
Number of 

computations 

Maximum stagnation 

heat flux [W/m2  

Total computational 

cost [s  

1 (original) 1,197 2,133,778 1553.9525 

2 600 2,133,778 832.1355 

7 174 1,751,234 272.4919 

11 111 1,700,364 211.6848 

17 72 1,875,972 137.2899 

23 54 634,614 114.4419 

31 39 1,513,749 103.5552 

 

Fig. 2.3  Stagnation heat flux with constant 𝑪 

2.2 Dynamic 𝑪 

In the previous section, the use of a constant value of 𝐶 resulted in the inability 

to perform heat-flux calculations at the maximum-heat-flux position in the trajectory. 
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To address this problem, it is necessary to use a small ∆𝑡h at high heat flux for 

accurate calculations and a large ∆𝑡h  at low heat flux for efficient calculations. 

Therefore, a dynamic 𝐶 changed by the current state was adopted, and the heat flux 

at the stagnation point of the vehicle �̇�w,s was used as the current state. This was 

because estimating the heat flux at this point did not require the time-consuming 

streamline calculation, and a stagnation heat flux could represent the characteristics 

of heat fluxes in certain conditions. It should be noted that the stagnation heat flux 

may not be maximum due to the shape of the shock wave and the laminar-turbulent 

flow transition. To define the dynamic factor 𝐶, the heat flux at the stagnation point, 

�̇�w,s, was used, and it was expressed as follows: 

 𝐶 = round[𝑆𝑏 × 𝑎] + 1 (2.2) 

 𝑆 =
�̇�w,s,_max − �̇�w,s

�̇�w,s,max
 (2.3) 

Herein, 𝑆 represents the current state. Equation (2.2) introduced 𝑎 and 𝑏 as 

parameters that control the heat flux calculation time step along the trajectory. The 

dynamic factor 𝐶 in Eq. (2.2) was determined based on the difference between the 

heat flux at a specific moment (�̇�w,s) and the maximum heat flux at the stagnation 

point throughout the trajectory (�̇�w,s,max). The maximum heat flux is an essential 

parameter throughout the trajectory of hypersonic vehicles due to the potential for 

destruction and damage by high heat flux. Equation (2.2) and (2.3) demonstrates that 

the heat-flux calculation time step decreased when the heat flux at the stagnation 

point was high and increased when it was low. This phenomenon indicates that the 

efficiency of the heat-flux calculation during multidisciplinary analysis improves 

with an elongated time step under low heat flux conditions. Conversely, detailed 
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information about heat flux is obtained by shortening the time step under high-heat-

flux conditions since periods with high heat flux are critical due to the possibility of 

vehicle destruction and damage. The maximum time step increases with a larger 

value of 𝑎 because the maximum value of 𝐶 increases. If 𝑏 increases, the time 

step decreases at low stagnation heat flux since the value of 𝐶 is low, as depicted in 

Fig. 2.4. 

In the other words, the term of 𝑆  as Eq. (2.3) represent the current state in 

contrast with the maximum value. Therefore, this adaptive time-step method adjusts 

the time step based on the current state. 

 

Fig. 2.4  Behavior of the dynamic 𝑪 with 𝒃 

To determine the optimal values of 𝑎 and 𝑏 in Eq. (2.2), a series of calculations 

were performed by varying 𝑎 from 10 to 100 at intervals of 10, and 𝑏 from 1 to 

10 at intervals of 1. Table 2.2 and Fig. 2.5 display the results for some of the iterations 

for the sake of brevity. The application of Eq. (2.2) reduced the total computational 

cost by approximately one-tenth, as illustrated in Table 2.2. Moreover, the maximum 
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heat fluxes remained unchanged compared to the original values, as presented in 

Table 2.2 and Fig. 2.5, since the time step at high stagnation heat flux was shortened. 

By keeping 𝑏  constant and increasing 𝑎 , the number of computations reduced 

because the maximum value of 𝐶  became large. Conversely, by keeping 𝑎 

constant and increasing 𝑏, the number of computations increased since a relatively 

low value of 𝐶 was maintained at a low stagnation heat flux, as indicated in Fig. 

2.4. 

Table 2.2  Total computational cost with dynamic 𝑪 

𝑎 𝑏 
Number of 

calculations 

Maximum stagnation 

heat flux [W/m2  

Total computational 

cost [s  

Original 1,197 2,133,778 1553.9525 

20 1 75 2,133,778 125.2944 

10 2 156 2,133,778 215.9298 

20 2 93 2,133,778 139.2946 

30 2 72 2,133,778 103.8202 

40 2 57 2,133,778 81.8680 

20 3 108 2,133,778 132.3144 

30 3 81 2,133,778 98.2031 

20 4 123 2,133,778 128.7518 

30 4 96 2,133,778 85.8918 
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Fig. 2.5  Stagnation heat flux evaluated with changes in the dynamic 𝑪 

In order to evaluate the performance of Eq. (2.2) with respect to 𝑎 and 𝑏, we 

have defined two metrics: efficiency and accuracy. 

(Efficiency)  (2.4) 

=  
(the number of calculation with original)−(the number of calculation using Eq.((2.2))

(the number of calculation with original)
  

(accuracy)   (2.5) 

= 1 −  
∫ |(heat flux of original)−(heat flux using Eq.((2.2))| 𝑑(𝑀𝑎𝑐ℎ)

trajectory

∫ (heat flux of original) 𝑑(𝑀𝑎𝑐ℎ)
trajectory

  

When the value of 𝑎 decreases, the efficiency decreases as 𝐶 becomes small. 

Conversely, the efficiency increases when 𝑎 increases since 𝐶 becomes large. A 

decrease in 𝑏  leads to a decrease in accuracy due to the constant 𝐶 , while an 

increase in 𝑏 results in an increase in accuracy as 𝐶 approaches one. Figure 2.6 

illustrates the relationship between efficiency, accuracy. The shaded region in Fig. 

2.6 indicates the area with both efficiencies and accuracies greater than 0.9. Table 
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2.3 describes three examples located in the region denoted by bold squares in Fig. 

2.6. A high efficiency is observed when 𝑎 and 𝑏 are 40 and 2, respectively, with 

relatively low accuracy. Conversely, when 𝑎  is 20 and 𝑏  is 3, accuracy is high 

despite the relatively low efficiency. The remaining sample compromises both 

efficiency and accuracy. In this study, 𝑎  and 𝑏  are set to 20 and 1 for the 

compromised performance. 

Table 2.3  Total computational cost for high efficiency and accuracy 

𝑎 𝑏 
Number of 

calculations 
Efficiency 

Maximum stagnation 

heat flux [W/m2  
Accuracy 

40 2 57 0.95238 2,133,778 0.91737 

20 1 75 0.93042 2,133,778 0.93484 

20 3 108 0.90727 2,133,778 0.95610 

 

 

Fig. 2.6  Efficiencies and accuracies about 𝒂 and 𝒃  
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Chapter 3  

Adaptive Design-Space Method 

3.1 Method implement 

This study develops a design-space adaptation method that involves modifying 

the design space by comparing the probability densities of an arbitrary control 

distribution and the actual solution distribution. The control distribution is the 

arbitrary distribution that is expected as the distribution of the design variables, while 

the actual distribution is determined based on the ratio of the solutions, which satisfy 

all constraints, in the subspaces of the design space. This study utilized the standard 

normal distribution as the control distribution and divided it into n subspaces with a 

confidence level of 𝜂𝑡, as illustrated in Fig. 3.1(a). The probability densities of the 

jth subspace for the control distribution were indicated by 𝐴𝑗  in Fig. 3.1 (a). To 

obtain the actual solution distribution, the current design space was partitioned into 

n subspaces with equal sizes, as depicted in Fig. 3.1 (b). The boundaries of each 

subspace were represented by 𝑥𝑖,𝑗, where 𝑥𝑖,𝑛 and 𝑥𝑖,0 were the previous upper 

and lower bounds of the ith variable, respectively. The proportion of solutions in the 

jth subspace for the ith variable (𝑝𝑖,𝑗) was determined by computing the ratio of the 

number of solutions belonging to the jth subspace to the total number of solutions, as 

shown in Fig. 3.1 (b). 

 𝑝𝑖,𝑗 =
𝑁𝑖,𝑗

𝑁total
 (3.1) 

Herein, 𝑁total refers to the total number of solutions, and 𝑁𝑖,𝑗 refers to the number 
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of solutions in which the ith design variable value ranged between [𝑥𝑖,𝑗−1, 𝑥𝑖,𝑗 . The 

adjustments to the lower and upper bounds of the design variables were determined 

by comparing 𝐴1, 𝐴2, and 𝑝𝑖,1 for the lower bound, and 𝐴𝑛−1, 𝐴𝑛, and 𝑝𝑖,𝑛 for 

the upper bound. For example, if 𝑝𝑖,1 was smaller than 𝐴1, the lower bound was 

contracted. Conversely, if 𝑝𝑖,1 was greater than (𝐴1 + 𝐴2), the lower bound was 

expanded. Table 3.1 summarizes the specific criteria for shrinking, retaining, and 

expanding. 

Table 3.1  Conditions for shrinking, retaining, and expanding the design-

variable bound 

 lower bound upper bound 

Shrinking 𝑝𝑖,1 < 𝐴1 𝑝𝑖,𝑛 < 𝐴𝑛 

Retaining 𝐴1 < 𝑝𝑖,1 < (𝐴1 + 𝐴2) 𝐴𝑛 < 𝑝𝑖,𝑛 < (𝐴𝑛−1 + 𝐴𝑛) 

Expanding 𝑝𝑖,1 > (𝐴1 + 𝐴2) 𝑝𝑖,𝑛 > (𝐴𝑛−1 + 𝐴𝑛) 

 

 

  

 (a) control distribution  (b) actual distribution 

Fig. 3.1  Proportions of subspace 
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Once the criteria for shrinking, retaining, and expanding the boundary were 

established, the design space of the ith variable was modified according to the 

following equations: 

 1. Shrinking 𝑥𝑖,lower = min (𝑥𝑖,{𝑗|𝑝𝑗 >𝐴1}) (3.2) 

  𝑥𝑖,upper = max (𝑥𝑖,{𝑗|𝑝𝑗 >𝐴𝑛}) (3.3) 

 2. Retaining 𝑥𝑖,lower = 𝑥𝑖,0 (3.4) 

  𝑥𝑖,upper = 𝑥𝑖,𝑛 (3.5) 

 3. Expanding 𝑥𝑖,lower = 𝑚𝑖 − (𝑥𝑖,0 − 𝑚𝑖)
erf−1(𝜂𝑡)

erf−1[2(∑ 𝑝𝑖,𝑗
𝑛−1
𝑗=1 )−1]

 (3.6) 

  𝑥𝑖,upper = 𝑚𝑖 + (𝑥𝑖,𝑛 − 𝑚𝑖)
erf−1(𝜂𝑡)

erf−1[2(∑ 𝑝𝑖,𝑗
𝑛
𝑗=2 )−1]

 (3.7) 

Here, 𝑥𝑖,lower  and 𝑥𝑖,upper  denote the lower and upper bounds of the ith design 

variable, respectively. The median of the ith design variable is represented by 𝑚𝑖, 

and erf −1 is the inverse of the error function. 

The upper bound of the largest-jth subspace satisfying 𝑝𝑖,𝑗 > 𝐴𝑛 (𝑗 = 1, … , 𝑛) 

becomes the new upper bound of the design space when shrinking the upper bound 

(Eq. (3.3)). When retaining the bound, the upper bound remains the same. To expand 

the upper bound, since the standard normal distribution is used as the control 

distribution, the new upper bound is determined using Eq. (3.7). Similar procedures 

are applied when adapting the lower bound. This method shrinks the bounds of the 

design space with few solutions and expands the bounds of the design space with 

many solutions. Therefore, the infeasible space including no feasible samples and 

the space including few feasible samples are excluded to increase the searchability 

of the optimization, and the space having the probability of the existence for 
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solutions is added to find feasible solutions. 

In order to enhance the efficiency of the method developed in this study, an initial 

investigation of the feasible design space is carried out through optimization without 

adaptation before applying the adaptation process as previously described. The lower 

and upper bounds of the feasible design space are then determined by employing Eqs. 

(3.8) and (3.9), respectively. 

 𝑥𝑖,lower = min
𝑗

𝑥𝑖,𝑗 − [max
𝑗

𝑥𝑖,𝑗 − min
𝑗

𝑥𝑖,𝑗] × 0.05 (3.8) 

 𝑥𝑖,upper = max
𝑗

𝑥𝑖,𝑗 + [max
𝑗

𝑥𝑖,𝑗 − min
𝑗

𝑥𝑖,𝑗] × 0.05 (3.9) 

In multiobjective optimization, the solutions that are the best for each objective 

function observed so far are called extreme solutions and are very important. 

Therefore, the design space where extreme solutions exist should be maintained. 

However, these space typically has a low probability density of solutions, making 

them likely to be removed by the developed adaptation method. To prevent the loss 

of these areas, an extra adjustment of the design space is performed using Eqs. (3.10) 

and (3.11) 

 If 𝑥𝑖,lower > min(𝑥𝑖,extreme), 

 𝑥𝑖,lower = min(𝑥𝑖,extreme) − [𝑥𝑖,𝑛 − 𝑥𝑖,0] × 0.05 (3.10) 

 If 𝑥𝑖,upper < max(𝑥𝑖,extreme), 

 𝑥𝑖,upper = max(𝑥𝑖,extreme) + [𝑥𝑖,𝑛 − 𝑥𝑖,0] × 0.05 (3.11) 

In this context, 𝑥𝑖,extreme refers to the values of the ith design variables found in 

extreme solutions. 
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3.2 Application to test problems 

3.2.1 ZDT problems 

The characteristics and performance of the developed method were examined by 

implementing it on the Zitzler-Deb-Thiele (ZDT) problems [63 . These problems are 

commonly used as multiobjective test functions to assess the performance of 

optimization methods. The ZDT problems consist of six test functions that 

encompass a range of function types such as convex, concave, discrete, and multi-

modal functions. Therefore, these problems were suitable for validating the 

performance of the developed method and assessing its ability to handle different 

types of functions. The specific problem settings were as follows: 

ZDT problems 

 Minimize 𝑓1 and 𝑓2 

 Constraint 0 ≤ 𝑥1 ≤ 1 

  0 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = 2, … , 𝐿 (except ZDT4) 

  −5 ≤ 𝑥𝑖 ≤ 5 for 𝑖 = 2, … , 𝐿 (ZDT4) 

 Initial space −0.1 ≤ 𝑥1 ≤ 0.9 

  0 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = 2, … , 𝐿 (except ZDT4) 

  −5 ≤ 𝑥𝑖 ≤ 5 for 𝑖 = 2, … , 𝐿 (ZDT4) 

 Side constraint 0 ≤ 𝑥𝑖  for 𝑖 = 2, … , 𝐿 (except ZDT4) 

 Analytical solutions 0 ≤ 𝑥1 ≤ 1 

  𝑥𝑖 = 0  for 𝑖 = 2, … , 𝐿 

  (3.12) 
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The total number of variables for the Zitzler-Deb-Thiele (ZDT) problems is 

denoted by Ls, which is set to 30, 30, 30, 10, and 10 for ZDT1–ZDT4 and ZDT6, 

respectively, by referring to Ref. [63 . The ZDT5 problem was not considered for 

testing in this study as it is not a real-numbered problem. 

The multiobjective genetic algorithm based on the developed method was 

executed with a population size of 256 individuals in each of the 600 generations. 

Adaptation of the design space was performed every 100 generations, using the 

feasible solutions obtained from the last 20 generations. The parameters for 

adaptation were set as follows: the confidence level was set to 99% (denoted as 𝜂𝑡) 

and the number of divisions was set to 20 (denoted as n). The process of randomly 

reinitializing while preserving the extreme solutions was carried out after the design-

space adaptation was completed. This ensured that the diversity of the populations 

was maintained, while the best solution for each objective function was preserved. 

Figure 3.2 illustrates the procedure. 

Moreover, to compare the developed method, two other optimizations were 

conducted, one with adaptation assuming normal distributions [44  and another with 

a fixed design space. In the method that assumed normal distributions, the adaptation 

of the design space was performed using Eqs. (3.13) and (3.14). 

 𝑥𝑖,lower = 𝜇𝑖 − 𝜎𝑖√2 erf −1(𝜂𝑡) (3.13) 

 𝑥𝑖,upper = 𝜇𝑖 + 𝜎𝑖√2 erf −1(𝜂𝑡) (3.14) 

The variables 𝜇𝑖 , 𝜎𝑖 , and 𝜂𝑡  refer to the mean value, standard deviation, and 

confidence level of the ith design variable, respectively. 
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Fig. 3.2  Procedure of the genetic algorithm and the design-space adaptation 

The results of the optimization process for the developed method, the method 

based on normal distribution, and the fixed design space are presented in Fig. 3.3. 

The results of all three methods are comparable to the analytical solutions. However, 

the optimization results for the fixed design space were unable to find solutions 

within the range of 𝑥1 > 0.9, as demonstrated in the subplots of Fig. 3.3. This is 

because the fixed design space does not encompass 0.9 < 𝑥1 < 1.0. In contrast, the 

adaptive-design-space method adjusted the design space to encompass the entire 

solution space. The final adjusted design spaces for the developed method and the 

method that assumed normal distributions were notably distinct, as presented in 

Table 3.2 and Fig. 3.4. The design space obtained from the developed method was 

much closer to the range of analytical solutions than the one obtained from the 

method that assumed normal distributions. 
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 (a) ZDT1  (b) ZDT2 

  

 (c) ZDT3  (d) ZDT4 

 

  (e) ZDT6 

Fig. 3.3  Pareto solutions for ZDT problems 
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Table 3.2  Adapted design spaces for ZDT problems 

 

With the method assuming normal distributions With the developed method 

𝑥1,lower 𝑥1,upper 
Design space for 

𝑥1 
𝑥1,lower 𝑥1,upper 

Design space for 

𝑥1 

ZDT1 -0.3635 1.1987 1.5621 -0.0007 1.0036 1.0044 

ZDT2 -0.1603 1.2882 1.4485 -0.0498 1.0098 1.0596 

ZDT3 -0.2864 1.1355 1.4219 -0.0450 0.9446 0.9896 

ZDT4 -0.2700 1.2449 1.5149 -0.0243 1.1801 1.2044 

ZDT6 0.0071 0.0881 0.0810 0.0045 0.0870 0.0825 
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 (a) ZDT1  (b) ZDT2 

 

 (c) ZDT3  (d) ZDT4 

 

  (e) ZDT6 

Fig. 3.4  Final design spaces for 𝒙𝟏 in the ZDT problems 

In addition, to measure the effectiveness of the developed method quantitatively, 

the generational distance (GD) was utilized. The GD calculates the average distance 

between the analytical solutions and the Pareto solutions, and is expressed as follows 

[64 : 

 GD =  
√∑ 𝑑𝑖

2

𝑛𝑝
 (3.15) 

The GD is defined as the average distance between the Pareto solutions and the 

analytical solutions, where 𝑑𝑖 represents the distance between the Pareto solutions 

and analytical solutions, and 𝑛𝑝  is the number of Pareto solutions. The results 
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showed that the GD of the developed method was much better than the other methods, 

as shown in Fig. 3.5. This indicates that the efficiency of the MOGA using the 

developed method was higher than that of the method assuming normal distributions. 

This was because the developed method properly adjusted the design space to a space 

where the solution existence probability was high, while excluding the infeasible 

design space.  

The performance of the developed method was further evaluated using the purity 

metric [65 . This metric can compare the performance of multiple optimization 

methods. The process of calculating the purity metric is as follows: Firstly, calculate 

𝑟𝑖 = |𝑅1
𝑖 |, where 𝑖 = 1,2, ⋯ , 𝑁. Herein, 𝑁 is the number of methods (solution sets), 

and 𝑟𝑖 is the number of Pareto solutions obtained from each optimization. Then, 

obtain the new Pareto solutions 𝑅1
∗ by taking the union of all Pareto solutions, as 

𝑅∗ = ⋃ {𝑅1
𝑖 }𝑁

𝑖=1 . Finally, 𝑟𝑖
∗ denotes the number of Pareto solutions present in 𝑅1

∗, 

which is expressed as: 

 𝑟𝑖
∗ = |{𝛾|𝛾 ∈ 𝑅1

𝑖  and 𝛾 ∈ 𝑅1
∗}| (3.16) 

The definition of the purity metric for the ith method is as follows: 

 𝑃𝑖 =
𝑟𝑖

∗

𝑟𝑖, 𝑖 = 1, 2, ⋯ , 𝑁 (3.17) 

The purity metric has a range of values from 0 to 1, and it represents the ratio of 

the number of non-dominated Pareto solutions to other Pareto solutions. Therefore, 

a higher value of the purity metric indicates better quality Pareto solutions. 
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 (a) ZDT1  (b) ZDT2 

 

 (c) ZDT3  (d) ZDT4 

 

  (e) ZDT6 

Fig. 3.5  GD evolution trends for the ZDT problems 
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The purity metric values for the developed method were the same as to those of 

the method assuming normal distributions up to 200 generations, as shown in Fig. 

3.6. This was because the solutions generated by both methods were identical during 

this period. However, the purity metric values for the developed method was higher 

than those of the other methods after 200 generations. This indicated that the Pareto 

solutions produced by MOGA using the developed method were better than those 

obtained using the normal distribution assumption. 

In order to investigate why the method assuming normal distributions resulted in 

a wider adapted design space, the proportion of points evenly distributed on the 

analytical Pareto front of ZDT1 was calculated. Figure 3.7 presents the proportions 

of evenly-divided subspaces. The results showed that the distribution was biased 

towards 𝑥1 = 0 rather than a normal distribution. In this particular case, the mean 

value and standard deviation of 𝑥1  were 0.4100 and 0.3093, respectively. 

Consequently, the upper and lower bounds of 𝑥1  obtained using the method 

assuming normal distributions were -0.3867 and 1.2067, respectively. As a result, 

this method expanded the design space into the infeasible region. The MOGA using 

the method assuming normal distributions had limited efficiency improvement 

because it expanded the design space to include the infeasible region. On the other 

hand, the developed method adapted the design space based on the actual distribution 

and did not expand to the infeasible region. Consequently, the developed method 

was able to adapt the design space appropriately to the space where solutions exist, 

resulting in higher efficiency of the MOGA using this method compared to the 

method assuming normal distributions. 
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 (a) ZDT1  (b) ZDT2 

  

 (c) ZDT3  (d) ZDT4 

 

  (e) ZDT6 

Fig. 3.6  Purity metric evolution trends for the ZDT problems 
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Fig. 3.7  Distribution of solutions in the subspaces 

3.2.2 I problems 

To evaluate the efficiency of the developed method in three-objective 

optimization, I problems were utilized [66 . These problems are made up of five 

functions, denoted as I1 through I5. The I1 problem is a basic and separable function, 

while the remaining functions become more complex by introducing dependencies 

between variables. The problems were established in the following manner: 

I problems 

 Minimize 𝑓1, 𝑓2, and 𝑓3 

 Constraint 0 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = 1, … , 𝐿  

 Initial space −0.1 ≤ 𝑥1 ≤ 0.9 

  −0.1 ≤ 𝑥2 ≤ 0.9 

  0 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = 3, … , 𝐿  

 Side constraint 0 ≤ 𝑥𝑖  for 𝑖 = 3, … , 𝐿 

 Analytical solutions ∑ 𝑓𝑖
3
𝑖=1 = 1 

  𝑥𝑖 = 0.35  for 𝑖 = 3, … , 𝐿 

  (3.18) 
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In the I problems, the total number of variables is denoted by L, where the 

variables include both position- and distance-related variables. Typically, the 

position-related variables determine the positions of objective functions, while the 

distance-related variables define the distance between the objective functions and 

the analytical solutions. In this study, two position-related variables and six distance-

related variables were used, based on the references [66,67 , resulting in a total of 

eight variables. 

To solve the I problems, the real-coded MOGA was employed, using the same 

settings as those used for the ZDT problems, except for the number of objective 

functions. For comparison purposes, an optimization with adaptation assuming 

normal distributions [44  was also carried out. To quantitatively evaluate the 

performance of the developed method, its GD and purity metric values were 

compared to those obtained using the method assuming normal distributions. 

The adaptive-design-space method was employed to modify the design space. 

The final adapted design space covered the whole design space of the analytical 

solutions, as indicated in Tables 3.3 and 3.4 and illustrated in Fig. 3.8. The adapted 

design space of the developed method was found to be closer to the design space of 

the analytical solutions than that of the method assuming normal distributions. In 

addition, Figs. 3.9 and 3.10 demonstrate that the GD and purity metric of the 

developed method were superior to those of the method assuming normal 

distributions. These results are consistent with those obtained for two-objective 

functions. Therefore, the effectiveness of the developed method in three-objective 

optimization was also confirmed. 
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Table 3.3  Adapted design spaces of 𝒙𝟏 for I problems 

 

With the method assuming normal distributions With the developed method 

𝑥1,lower 𝑥1,upper 
Design space for 

𝑥1 
𝑥1,lower 𝑥1,upper 

Design space for 

𝑥1 

I1 -0.2182 1.2254 1.4436 -0.0496 1.0500 1.0996 

I2 -0.3675 1.2206 1.5881 -0.0339 1.0488 1.0827 

I3 -0.0246 1.2464 1.2710 -0.0204 1.0396 1.0600 

I4 -0.0919 1.3081 1.4000 -0.0475 1.0499 1.0975 

I5 -0.0706 1.3001 1.3707 -0.0158 1.0069 1.0227 
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Table 3.4  Adapted design spaces of 𝒙𝟐 for I problems 

 

With the method assuming normal distributions With the developed method 

𝑥2,lower 𝑥2,upper 
Design space for 

𝑥2 
𝑥2,lower 𝑥2,upper 

Design space for 

𝑥2 

I1 -0.0455 1.4436 1.4891 -0.0364 1.2844 1.3207 

I2 0.0444 1.2413 1.2856 -0.0420 1.0466 1.0886 

I3 -0.2675 1.1978 1.4652 -0.0016 1.0444 1.0460 

I4 -0.0492 1.3765 1.4257 -0.0496 1.0211 1.0707 

I5 -0.3070 1.2718 1.5788 -0.0343 1.0145 1.0487 
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  (a) I1 

  
  (b) I2 

  
  (c) I3 

  
  (d) I4 

  
  (e) I5 

Fig. 3.8  Final design spaces for 𝒙𝟏 and 𝒙𝟐 in the I problems 
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 (a) I1  (b) I2 

  

 (c) I3  (d) I4 

 

  (e) I5 

Fig. 3.9  GD evolution trends for the I problems 
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 (a) I1  (b) I2 

  

 (c) I3  (d) I4 

 

  (e) I5 

Fig. 3.10  Purity metric evolution trends for the I problems 
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3.2.3 WFG problems 

To evaluate the effectiveness of the developed method in more complicated three-

objective optimization, the WFG problems [68  were employed, which are 

commonly used for evaluating the performance of multi-objective optimization 

algorithms. The WFG problems consist of nine functions, namely WFG1–9. 

The Pareto optimal front of WFG1 exhibits both convex and concave 

characteristics and contains flat and polynomial mapping functions. WFG2 has a 

convex and disconnected Pareto optimal front and a non-separable function. The 

Pareto optimal front of WFG3 is a linear function with a non-separable function. On 

the other hand, WFG4–9 have concave Pareto optimal fronts, and WFG4–6 are 

multi-modal, deceptive, and non-separable, respectively. The functions of WFG7 

and WFG8 depend on parameters, and WFG9 features a non-separable, multi-modal, 

deceptive, and parameter-dependent function. The WFG problems are considered 

appropriate for validation purposes as they demonstrate various characteristics that 

are commonly observed in real-world multi-objective optimization problems. The 

problems are specified as follows: 

WFG problems 

 Minimize 𝑓1, 𝑓2, and 𝑓3 

 Constraint 0 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = 1, … , 𝐿  

 Initial space −0.1 ≤ 𝑥1 ≤ 0.9 

  −0.1 ≤ 𝑥2 ≤ 0.9 

  0 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = 3, … , 𝐿  

 Side constraint 0 ≤ 𝑥𝑖  for 𝑖 = 3, … , 𝐿 

 Analytical solutions 𝑥𝑖 = 0.35  for 𝑖 = 3, … , 𝐿 (3.19) 
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In this study, L refers to the total number of variables used in the WFG problems. 

The variables in these problems also consist of position- and distance-related 

variables. Consistent with Ref. [66,67 , this study adopted two position-related 

variables and six distance-related variables, resulting in a total of eight variables, 

denoted as L. 

To solve the WFG problems, the real-coded MOGA was utilized with the same 

settings as the I problems. An optimization method that assumes normal distributions 

[44  was also employed to compare results. To quantitatively verify the performance 

of the developed method, the GD and purity metric were compared between the two 

methods. 

The adapted design space was adjusted using the adaptive-design-space method, 

covering the whole design space of analytical solutions, as presented in Tables 3.5 

and 3.6 and Fig. 3.11. The final adapted design space of the developed method was 

closer to the design space of the analytical solutions than the method that assumed 

normal distributions. In addition, Figs. 3.12 and 3.13 show that the GD and the purity 

metric of the developed method was better than that of the method that assumed 

normal distributions. These findings correspond with the results obtained for the 

two-objective functions and I problems. As a result, the performance of the 

developed method was validated for three-objective functions as well.
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Table 3.5  Adapted design spaces of 𝒙𝟏 for WFG problems 

 

With the method assuming normal distributions With the developed method 

𝑥1,lower 𝑥1,upper 
Design space for 

𝑥1 
𝑥1,lower 𝑥1,upper 

Design space for 

𝑥1 

WFG1 -0.3589 0.6892 1.0481 -0.0425 0.5522 0.5947 

WFG2 -0.0758 1.1430 1.2188 -0.0472 1.0499 1.0970 

WFG3 -0.1266 1.1492 1.2757 -0.0469 1.0499 1.0968 

WFG4 -0.1360 0.3901 0.5261 -0.0043 0.3472 0.3515 

WFG5 -0.3740 1.2769 1.6509 -0.2399 1.1277 1.3676 

WFG6 -0.2108 1.0843 1.2951 -0.0500 1.0499 1.0998 

WFG7 -0.2707 1.2946 1.5654 -0.0524 1.0444 1.0969 

WFG8 -0.0554 1.2464 1.3018 -0.0204 1.0396 1.0600 

WFG9 -0.1599 1.1295 1.2893 -0.0447 1.0205 1.0653 
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Table 3.6  Adapted design spaces of 𝒙𝟐 for WFG problems 

 

With the method assuming normal distributions With the developed method 

𝑥2,lower 𝑥2,upper 
Design space for 

𝑥2 
𝑥2,lower 𝑥2,upper 

Design space for 

𝑥2 

WFG1 -0.1210 0.2249 0.3460 -0.0218 0.1984 0.2202 

WFG2 -0.0844 1.2683 1.3527 -0.0025 1.2084 1.2108 

WFG3 -0.2542 1.1574 1.4116 -0.1946 1.0638 1.2584 

WFG4 -0.1695 0.4647 0.6342 0.0952 0.3934 0.4886 

WFG5 -0.4397 1.4283 1.8680 -0.2895 1.0133 1.3028 

WFG6 -0.0482 1.4019 1.4501 -0.0108 1.2598 1.2706 

WFG7 -0.0496 1.3588 1.4085 -0.0304 1.1911 1.2215 

WFG8 -0.2675 1.1978 1.4652 -0.0016 1.0444 1.0460 

WFG9 -0.2365 1.1513 1.3878 -0.1578 1.0292 1.1870 
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  (a) WFG1 

  

  (b) WFG2 

  

  (c) WFG3 

  

  (d) WFG4 

  

  (e) WFG5 
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  (f) WFG6 

  

  (g) WFG7 

  

  (h) WFG8 

  

  (i) WFG9 

Fig. 3.11  Final design spaces for 𝒙𝟏 and 𝒙𝟐 in the WFG problems 
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 (a) WFG1  (b) WFG2 

  

 (c) WFG3  (d) WFG4 

  

 (e) WFG5  (f) WFG6 
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 (g) WFG7  (h) WFG8 

 

  (i) WFG9 

Fig. 3.12  GD evolution trends for the WFG problems 
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 (a) WFG1  (b) WFG2 

  

 (c) WFG3  (d) WFG4 

  

 (e) WFG5  (f) WFG6 
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 (g) WFG7  (h) WFG8 

 

  (i) WFG9 

Fig. 3.13  Purity metric evolution trends for the WFG problems 
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Chapter 4  

Application to Reusable Unmanned Spacecraft 

4.1 Establishment of MDO 

To validate the effectiveness of the developed method of adaptive time step and 

adaptive design space, the developed methods were utilized to the design of 

unmanned spacecraft involving a multidisciplinary optimization problem, which 

includes defining the geometry, conducting various analyses (such as weight, 

propulsion, aerothermodynamics, and trajectory analysis), and optimizing the design 

using MOGA [8 , as shown in Fig. 4.1. As depicted in Fig. 4.2, each discipline in 

spacecraft design is closely interrelated since the output of one discipline serves as 

input for another. Therefore, it requires iterations of calculations until converged 

coupling variables is achieved. Once the coupled variables had converged, the 

performance of the spacecraft was evaluated based on its geometry, and optimization 

was subsequently carried out accordingly. 

 
Fig. 4.1  Analyses in MDO 
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Fig. 4.2  The data flow chart of Multidisciplinary Analysis 



 

 

 

55 

4.1.1 Geometry definition 

A total of 22 design variables were utilized to determine the geometry of various 

parts of the spacecraft including the fuselage, wing planform, winglet, and airfoil as 

illustrated in Fig. 4.3. The nose section of the fuselage was created with a spherically 

blunted tangent ogive curve, while a rectangular height, corner radius, and width 

were utilized to define one section. The planform of the wing and winglet were 

described using ten variables, including the inboard and outboard sweep angle, 

winglet sweep angle, dihedral angle, winglet dihedral angle, wing span, winglet span, 

kink position, root chord, and winglet tip chord. In this study, the airfoil was defined 

as a NACA 4-digit series using the wing-leading-edge radius instead of thickness to 

directly regulate the heat flux on the wing leading edge. Two variables were used to 

establish the relative position between the wing and fuselage. The design variables 

summarized in Table 4.1. Lastly, a rear body flap was present with the same width 

as the fuselage and 1/8 length of the total length. 

 

Fig. 4.3  Spacecraft design variables 
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Table 4.1  Spacecraft design variables 

Part 

Design 

variables 
Description 

Fuselage 

𝑥1 Nose radius [m  

𝑥2 Fuselage width [m  

𝑥3 Rectangular height of fuselage section [m  

𝑥4 Corner radius of fuselage section (radius / (width / 2)) [   

𝑥5 Total length [m  

𝑥6 Nose length (nose length / total length) [   

𝑥7 Nose height [m  

Wing 

𝑥8 Root chord length [m  

𝑥9 Span [m  

𝑥10 1st sweep angle [°  

𝑥11 2nd sweep angle [°  

𝑥12 Kink position (kink position / span) [   

𝑥13 Dihedral angle [°  

𝑥14 Wing longitudinal position (position / total length) [    

𝑥15 Wing vertical position (position / total height) [   

Airfoil 

𝑥16 Camber [   

𝑥17 Camber position [   

𝑥18 Leading edge radius [m  

Winglet 

𝑥19 Sweep angle [°  

𝑥20 Tip chord length [m  

𝑥21 Dihedral angle [°  

𝑥22 Span [m  
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4.1.2 Weight analysis 

The weight analysis involves calculating the weight of each component of the 

spacecraft and determining the center of gravity of the entire vehicle. The dimensions 

of each part are specified in the vehicle geometry definition, and the propulsion 

analysis provides the propellant weight and required thrust. This study utilized 

hypersonic aerospace sizing analysis (HASA) to estimate the weight of each 

component using statistical techniques [4 . The data flow chart of HASA is 

illustrated in Fig. 4.4. However, the HASA method was modified to enhance its 

precision as the statistical equations of the original HASA were developed based on 

data from 100 ton class vehicles, whereas the focus of this study is on vehicles 

weighing approximately 2-3 ton [5,69 . 

 

Fig. 4.4  The data flow chart of HASA 

Fuselage weight 

The weight of the body comprises important structural parts except the propellant 

tanks and thrust structure. The modifying factor can also consider advancements in 
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material technology. Figure 4.5 illustrates the modifying factor (𝑚𝑓) with respect to 

the structural temperature of different materials like aluminum, titanium, and Rene 

41. In this study, the modifying factor is 1.148 because the structure temperature was 

maintained as 300 °C with titanium. 

 

Fig. 4.5  Modifying factor according to structure temperature 

The equation for the fuselage weight is as follows: 

 𝑊f = 0.341(𝑚𝑓)(𝜎)1.0 (4.1) 

 𝜎 = |(
𝐿f𝑈𝐿𝐹

𝐷be
)

0.15
(𝑞max)0.16(𝑆btot)1.05| (4.2) 

where 𝑊f , 𝐿f , 𝑈𝐿𝐹 , 𝑞max , and 𝑆btot  are the fuselage weight, fuselage length, 

ultimate load factor, maximum dynamic pressure, and fuselage wetted surface area, 

respectively. The body equivalent diameter (𝐷be) is: 

 𝐷be = √
𝑉tot

𝐿f
𝜋

4
𝜂vol

 (4.3) 

The vehicle volumetric efficiency (𝜂vol) is typically 0.7. 
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Wing weight 

The equation for wing weight considers the wing box structure, the aerodynamic 

control surfaces, and the wing carry-through structure. It is dependent on the empty 

weight of the vehicle and the wing aspect ratio and taper ratio. 

The empty weight of the vehicle is defined as: 

 𝑊emp = 𝑊gtot − 𝑊prop (4.4) 

Herein, 𝑊gtot, 𝑊emp, and 𝑊prop are the total vehicle gross weight, vehicle empty 

weight, and total propellant weight. The equation for wing weight is as follows: 

𝑊w = 0.2958(𝑚𝑓) {|
𝑊emp𝑈𝐿𝐹

1000
|

0.52
|𝑆ref|

0.7|𝐴𝑅|0.47 |
1+𝜆

𝑡 𝑐⁄
|

0.4
|0.3 +

0.7

cos(𝜆1 2⁄ )
|}

1.017

 (4.5) 

where 𝑆ref, 𝐴𝑅, 𝜆, 𝑡 𝑐⁄ , and 𝜆1 2⁄  are reference wing area, aspect ratio, taper ratio, 

wing thickness to chord ratio, and mid-chord sweep angle.  

Thermal protection system weight 

To calculate the weight of the thermal protection system (TPS), the density of the 

TPS and its area were multiplied. The TPS material for each surface was selected 

based on the space shuttle design. The nose and leading edge were coated with 

reinforced carbon–carbon (RCC), while the lower surface of the fuselage and wing 

was coated with high-temperature reusable surface insulation (HRSI), and other 

areas were coated with fibrous refractory composite insulation (FRSI). The TPS type 

for each surface is depicted in Fig. 4.6. 
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Fig. 4.6  Types of TPS on each surface (gray: RCC, black: HRSI, white: 

FRSI) 

Landing gear weight 

The weight of the landing gear consists of the weight of the nose gear, main gear, 

and associated controls. It varies according to the weight of the vehicle at landing. 

The calculation for landing gear weight is as follows [5 : 

 𝑊gear = 0.030𝑊land (4.6) 

where 𝑊land is the landing weight of the vehicle 

Total structure weight 

Thus, the total structural weight is the sum of the fuselage, the wing, the thermal 

protection system, and the landing gear, as follows: 

 𝑊str = 𝑊f + 𝑊w + 𝑊tps + 𝑊gear (4.7) 

Herein, 𝑊tps is the TPS weight of the vehicle. 
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Engine weight 

For this study, a main engine is not required for the space vehicle as it is launched 

into orbit using a separate launch vehicle. However, an orbital maneuvering system 

and a reaction control system (OMS/RCS) are necessary for the modification of the 

orbit or attitude of the spacecraft. Based on the required thrust 𝑇reqoms
, 𝑇reqp

, and 

𝑇reqv
 from propulsion analysis, the OMS/RCS weight is calculated by following 

equations [5 . 

OMS engine weight is: 

 𝑊omseng
=

𝑇reqoms

𝑅oms
 (4.8) 

Herein, 𝑊omseng
  and 𝑇reqoms

  are OMS engine weight and required thrust, and 

𝑅oms is the ratio of OMS engine thrust to weight. 

 𝑅oms = 22 (4.9) 

The pressurization system for OMS is Ti 6/4 tank with 3000 psia Helium, yield 

at 400% 𝑃omspress
 , 400 R storage temperature. The weight of the pressurization 

system for OMS is: 

𝑊omspress
= 0.0143𝑃omspress

𝑉omspress
(1 − 𝑇𝑅𝐹) + 0.617(𝑉omsox

+ 𝑉omsfuel
)(4.10) 

where 𝑊omspress
 and 𝑃omspress

 are the weight and pressure of the pressurization 

system, and 𝑉omspress
  are the volume of Helium required as pressurant. 𝑇𝑅𝐹  is 

technology reduction factor (in this study, 0.0). 𝑉omsox
  and 𝑉omsfuel

  are the 

volumes of oxygen and fuel for OMS. 𝑃omspress
 and 𝑉omspress

 are given: 
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 𝑃omspress
= 3000 [psia  (4.11) 

 𝑉omspress
= 0.24(𝑉omsox

+ 𝑉omsfuel
) (4.12) 

The installation weight for OMS is: 

 𝑊omsinstall
= 0.74𝑊omseng

 (4.13) 

Thus, the OMS weight is: 

 𝑊oms = 𝑊omseng
+ 𝑊omsinstall

+ 𝑊omspress
 (4.14) 

RCS thruster weights are: 

 𝑊rcspf
= 𝑁pf

𝑇reqp

𝑅p
 (4.15) 

 𝑊rcsvf
= 𝑁vf

𝑇reqv

𝑅v
 (4.16) 

 𝑊rcspa
= 𝑁pa

𝑇reqp

𝑅p
 (4.17) 

 𝑊rcsva
= 𝑁va

𝑇reqv

𝑅v
 (4.18) 

Herein, 𝑊rcspf
 , 𝑊rcsvf

,  𝑊rcspa
 , and 𝑊rcsva

  are weights of primary and vernier 

RCS for front and aft of fuselage. 𝑁pf , 𝑁vf , 𝑁pa , and 𝑁va  are the numbers of 

primary and vernier RCS for front and aft of fuselage. In this study, 𝑁pf, 𝑁vf, 𝑁pa, 

and 𝑁va are set to 14, 2, 24, and 4 by referring Space Shuttle. 𝑇reqp
 and 𝑇reqv

 are 

the required thrust for primary and vernier RCS, and 𝑅p and 𝑅v are the thrust to 

weight of primary and vernier thrusters. 
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 𝑅p = 39.5 (4.19) 

 𝑅v = 9.4 (4.20) 

The pressurization system for RCS is Ti 6/4 tank with 3000 psia Helium, yield at 

400% 𝑃rcspress
, 400 R storage temperature. The weight of the pressurization system 

for RCS is: 

𝑊rcspress
= 0.0143𝑃rcspress

𝑉rcspress
(1 − 𝑇𝑅𝐹) + 0.617(𝑉rcsox

+ 𝑉rcsfuel
) (4.21) 

where 𝑊rcspress
  and 𝑃rcspress

  are the weight and pressure of the pressurization 

system, and 𝑉rcspress
  are the volume of Helium required as pressurant. 𝑇𝑅𝐹  is 

technology reduction factor (in this study, 0.0). 𝑉rcsox
 and 𝑉rcsfuel

 are the volumes 

of oxygen and fuel for RCS. 𝑃rcspress
 and 𝑉rcspress

 are given: 

 𝑃rcspress
= 3000 [psia  (4.22) 

 𝑉rcspress
= 0.24(𝑉rcsox

+ 𝑉rcsfuel
) (4.23) 

The installation weight for RCS is: 

 𝑊rcsinstall
= 0.74(𝑊rcspf

+ 𝑊rcsvf
+ 𝑊rcspa

+ 𝑊rcsva
) (4.24) 

Thus, the RCS weight is: 

 𝑊rcs = 𝑊rcspf
+ 𝑊rcsvf

+ 𝑊rcspa
+ 𝑊rcsva

+ 𝑊rcsinstall
+ Wrcspress

 (4.25) 

The total weight for engine is: 

 𝑊eng = 𝑊rcs + 𝑊oms (4.26) 
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Tank weight 

The tank weight depends on the pressure and volume of the tank. For the weight 

of OMS and RCS tank is [5 : 

 𝑊omstnk
= 0.01295𝑃omstnk

𝑉omstnk
 (4.27) 

 𝑊rcstnk
= 0.01295𝑃rcstnk

𝑉rcstnk
 (4.28) 

Herein, the pressures of tanks for OMS/RCS (𝑃omstnk
 and 𝑃rcstnk

) are set to 195 

psia. The total weight of tank is: 

 𝑊tnk = 𝑊omstnk
+ 𝑊rcstnk

 (4.29) 

Total propulsion weight 

The total propulsion weight is the weight of the engines plus the weight of the 

propellant tanks: 

 𝑊pros = 𝑊tnk + 𝑊eng (4.30) 

Hydraulic weight 

The weight of the hydraulics is defined as: 

 𝑊hydr = 2.64(𝛹)1.0 (4.31) 

where  

 Ψ = |(
𝑆ref𝑄max

1000
)

0.334
(𝐿b + 𝑊span)

0.5
| (4.32) 
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Avionics weight 

The avionics weight is reduced to 69% of the weight in the original HASA based 

on the assumption of the advanced avionics system [70 . The weight of the avionics 

is defined as: 

 𝑊tavcs = 0.69 × 66.37(𝑊gtot)
0.361

 (4.33) 

Electrical system weight 

The weight of the electrical system is defined as: 

 𝑊elect = 1.167(𝛷)1.0 (4.34) 

where 

 𝛷 = |(𝑊gtot)
0.5

(𝐿b)0.25| (4.35) 

Subsystem weight 

The total subsystem weight is thus defined as: 

 𝑊sub = 𝑊hydr + 𝑊tavcs + 𝑊elect (4.36) 

Payload weight 

The payload weight 𝑊pay is set to 226.8 kg, and the density of payload is 52.86 

kg/m2 because typical payload densities are about 3.3 lb/ft3. 

Total vehicle gross weight 

The total vehicle gross weight is the summation of the total structure, propulsion, 

subsystem, propellant, and payload weight. Thus, the total vehicle gross weight is 

defined as: 
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 𝑊gtot = (𝑊str + 𝑊pros + 𝑊sub + 𝑊prop + 𝑊pay) (4.37) 

Herein, the propellant weight 𝑊prop is estimated in propulsion analysis. 

Weight analysis validation  

The weight estimate was compared to that of the Boeing X-37 [71 , which 

contains more fuel than the vehicles designed in this study due to its long-term 

missions. To ensure a fair comparison, the fuel quantity was set to the actual fuel 

weight of the X-37. The comparison results are presented in Table 4.2. The original 

HASA resulted in a large error of 90.3%. In contrast, the modified HASA achieved 

accurate weight estimation with only a 4.0% error. 
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Table 4.2  Actual weight of the Boeing X-37 and estimated weight 

 Actual weight Original HASA (error) Modified HASA (error) 

Fuselage weight (kg)  776.6 468.4 

Wing weight (kg)  270.8 139.7 

Tail wing weight (kg)  183.9 95.0 

TPS weight (kg)  122.6 454.8 

Landing gear weight (kg)  243.9 99.0 

Tank weight (kg)  66.51 187.5 

Engine weight (kg)  62.13 808.5 

Misc. weight (kg)  5974.3 741.5 

Dry weight (kg)  7927.5 3221.2 

LH2 weight (kg)  224.9 224.9 

LOX weight (kg)  1342.6 1342.6 

Gross weight (kg) 4990 9495 (90.3%) 4789 (4.0%) 
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4.1.3 Propulsion analysis 

As described for engine weight, for this study, a main engine is not required for 

the spacecraft as it is launched into orbit using a separate launch vehicle. However, 

an orbital maneuvering system and a reaction control system are necessary for the 

modification of the orbit or attitude of the spacecraft. The OMS/RCS required 

weights are calculated by following equations [5 : 

 𝑇reqoms
=

𝑊entry

16
 (4.38) 

 𝑇reqp
= 870

𝑊entry𝐿f

147141×143
 (4.39) 

 𝑇reqv
= 50

𝑊entry𝐿f

147141×143
 (4.40) 

Herein, 𝑇reqoms
, 𝑇reqp

, and 𝑇reqv
 are the required thrust for OMS, primary RCS, 

and vernier RCS. 𝑊entry and 𝐿f are the entry weight and fuselage length. 

The cryogenic propellant fuel (LOX/LH2) is used for the OMS/RCS, and its 

weight was determined based on total velocity change possible using OMS/RCS 

engine and vehicle entry weight. In this study, the specific impulse of OMS and RCS 

engines (𝐼𝑠𝑝oms and 𝐼𝑠𝑝rcs) are set to 246 s and 265 s [5 . 

The OMS propellant weight for orbit maneuvers is: 

 𝑊omsproporbit
= 𝑊entry [𝑒

(
Δ𝑉omsorbit

𝐼𝑠𝑝oms×𝑔
)

− 1] (4.41) 

where the total velocity change using OMS for orbit maneuvers is: 

 Δ𝑉omsorbit
= 50 [fps  (4.42) 
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The OMS propellant weight for de-orbit is: 

 𝑊omspropde−orbit
= 𝑊entry [𝑒

(
Δ𝑉omsde−orbit

𝐼𝑠𝑝oms×𝑔
)

− 1] (4.43) 

where the total velocity change using OMS for de-orbit is: 

 Δ𝑉omsde−orbit
= 200 [fps  (4.44) 

The OMS propellant weight for ascent is: 

 𝑊omspropascent
= 𝑊entry [𝑒

(
Δ𝑉omsascent

𝐼𝑠𝑝oms×𝑔
)

− 1] (4.45) 

where the total velocity change using OMS for ascent is: 

 Δ𝑉omsascent
= 650 [fps  (4.46) 

Total OMS propellant weight is with 10% reserve propellant 

 𝑊omsprop
= 1.1 (𝑊omsproporbit

+ 𝑊omspropde−orbit
+ 𝑊omspropascent

) (4.47) 

The ratio between oxygen and fuel for OMS propellant was 6:1. Thus, 

 𝑊omsox
= 6 7⁄ 𝑊omsprop

 (4.48) 

 𝑊omsfuel
= 1 7⁄ 𝑊omsprop

 (4.49) 

where, 𝑊omsox
 and 𝑊omsfuel

 are the weights of the oxygen and fuel for OMS. 

The RCS propellant weight for entry is: 

 𝑊rcspropentry
= 𝑊entry [𝑒

(
Δ𝑉rcsentry

𝐼𝑠𝑝rcs×𝑔
)

− 1] (4.50) 

where the total velocity change using RCS for entry is: 
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 Δ𝑉rcsentry
= 40 [fps  (4.51) 

The RCS propellant weight on orbit is: 

 𝑊rcsproporbit
= 𝑊entry [𝑒

(
Δ𝑉rcsorbit

𝐼𝑠𝑝rcs×𝑔
)

− 1] (4.52) 

where the total velocity change using RCS on orbit is: 

 Δ𝑉rcsorbit
= 200 [fps  (4.53) 

Total RCS propellant weight is also with 10% reserve propellant 

 𝑊rcsprop
= 1.1 (𝑊rcspropentry

+ 𝑊rcsproporbit
) (4.54) 

The ratio between oxygen and fuel for RCS propellant was 4:1. Thus, 

 𝑊rcsox
= 4 5⁄ 𝑊omsprop

 (4.55) 

 𝑊rcsfuel
= 1 5⁄ 𝑊omsprop

 (4.56) 

where, 𝑊rcsox
 and 𝑊rcsfuel

 are the weights of the oxygen and fuel for RCS. 

The total propellant weight 𝑊prop is: 

 𝑊prop = 𝑊omsprop
+ 𝑊rcsprop

 (4.57) 

and The total oxygen and fuel weights are: 

 𝑊ox = 𝑊omsox
+ 𝑊rcsox

 (4.58) 

 𝑊fuel = 𝑊omsfuel
+ 𝑊rcsfuel

 (4.59) 

The tanks for the fuel consist of a cylinder with dome-shaped ends, and their 

radius is the same as that of the circle tangent to the body section, as depicted in Fig. 

4.7. 
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Fig. 4.7  Radius of tank 

4.1.4 Aerothermodynamic analysis 

Aerodynamics 

During the reentry, the spacecraft goes through various speeds ranging from 

hypersonic to subsonic. The aerodynamic characteristics of the vehicle were 

determined using modified Newtonian theory for hypersonic and supersonic flight 

regimes [72 , and Digital DATCOM for the subsonic flight regime [73 . 

The determination of the angle between the direction of free stream velocity and 

the surface of the vehicle is necessary in the modified Newtonian theory. This angle 

can be computed using the following equation. 

 𝜃 =
𝜋

2
− cos−1 −𝒏∙𝑽∞

|𝒏||𝑽∞|
 (4.60) 

The equation involves the normal vector 𝒏  for each surface panel and the free 

stream velocity vector 𝑽∞. The surface panels are categorized as either windward 

(𝜃 > 0) or leeward (𝜃 < 0) panels. 

The modified Newtonian method is utilized to calculate the windward pressure 
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coefficients, while 𝐶p = 0 is used for the leeward pressure coefficients, as shown 

in Fig. 4.8. The modified Newtonian formula used is as follows: 

 𝐶𝑝 = 𝐶𝑝𝑚𝑎𝑥
sin2 𝜃 (4.61) 

where 𝐶𝑝𝑚𝑎𝑥
  is the maximum value of the pressure coefficient by using normal 

shock relation and isentropic relation, as follows: 

 𝐶𝑝𝑚𝑎𝑥
=

2

𝛾𝑀∞
2 [{

(𝛾+1)2𝑀∞
2

4𝛾𝑀∞
2 −2(𝛾−1)

}
𝛾 (𝛾−1)⁄

{
1−𝛾+2𝛾𝑀∞

2

𝛾+1
} − 1] (4.62) 

Herein, 𝛾 is the specific heat ratio. This theory determines the surface pressure and 

computes the magnitude of surface velocity by converting the normal velocity on the 

surface into pressure. Furthermore, the direction of surface velocity is obtained as 

follows: 

 
𝑽

|𝑽|
=

𝒏×𝑽∞×𝒏

|𝒏×𝑽∞×𝒏|
 (4.63) 

 

Fig. 4.8  Modified Newtonian theory 
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The altitude and velocity obtained from the trajectory analysis were utilized to 

calculate the aerodynamic force. The aerodynamic analysis also assessed the 

longitudinal stability and trim condition by considering the pitching moments. 

Ensuring longitudinal stability and trim condition is an important constraint. The 

pressure distribution and center of gravity, obtained from the weight analysis, were 

used to determine whether the longitudinal stability and trim condition can be 

satisfied. The angle of attack, which is used to evaluate the aerodynamic force, varies 

depending on the Mach number. The angle of attack corresponding to a specific 

Mach number is depicted in Fig. 4.9 [74 . 

 

Fig. 4.9  Pre-described angle of attack according to the Mach number 

Heat-flux calculation 

Using the flow properties, an estimation of the surface heat flux was made using 

the approximate-convective-heating equation [7,75,76 . The first step in estimating 

the heat flux using the approximate convective-heating equations involves 

calculating the streamline. Once the streamline is obtained, the heat flux can be 

predicted at each point along the streamline from the stagnation point to the endpoint 
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(seed). To avoid the unrealistic heat flux pattern near the stagnation point, caused by 

the velocity singularity at that point, a surface curve called the ε-curve was 

introduced [76 . This curve is perpendicular to the inviscid surface streamlines and 

encircles the stagnation point. If the point is located inside the ε-curve, the heat flux 

is determined by interpolating the heat flux at the stagnation point on the ε-curve. 

However, if the point is located outside the ε-curve, the properties of the boundary 

layer edge are calculated using the modified Newtonian theory. The streamline 

metric and momentum thickness are then computed from these properties. Finally, 

the heat flux at the point is estimated from the computed momentum thickness. 

Figure 4.10 illustrates this procedure. 

 

Fig. 4.10  Heat-flux calculation procedure 
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Streamline calculation 

The approximate convective-heating equations estimate the heat flux along a 

streamline, which necessitates the use of inviscid surface streamlines. To obtain these 

streamlines, two integration methods are available: forward integration and 

backward integration. In forward integration, the streamline segments are integrated 

from the stagnation point along the surface velocity direction, while in backward 

integration, they are integrated from seeds (starting points of streamline calculation) 

in the opposite direction to that of surface velocity. The results of both methods are 

similar for simple geometries such as a sphere, ellipsoid, and spherically blunted 

cone. However, in complex geometries like wing-body configurations, the 

streamline using forward integration is not well distributed, as the differences in the 

well-distributed streamlines are overly small near the stagnation point. Hence, this 

study employs backward integration. 

To calculate the streamline, a candidate point is selected at a short distance from 

to the endpoint of the streamline in the opposite direction of the surface velocity 

using Eq. (4.63). If the candidate point falls within the same grid as the endpoint, it 

replaces the new endpoint. Otherwise, the candidate point is projected onto the plane 

that contains other grids [77 , and it is checked if it falls within the same grid. If the 

projected point is within the grid, it replaces the endpoint. This process is repeated 

from the seed point to the stagnation point. 

To distribute the streamline over the entire wing and body, the midpoints of all 

grids that contain the trailing edge of the wing or the aft of the body are selected as 

seeds for streamline calculation. This approach results in a well-distributed 

streamline on both the wing and body, as shown in Fig. 4.11. 
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Fig. 4.11  Seeds and streamlines for backward integration 

Streamline metrics 

The coordinates used on the surface to determine the inviscid streamline were 𝜉 

and 𝛽 , which are illustrated in Fig. 4.12. 𝜉  denotes the position along the 

streamline, while 𝛽 represents the position perpendicular to the streamline [7 . 

 

Fig. 4.12  Inviscid surface streamline coordinate system 

The differentials of the arc lengths on the surface were expressed as d𝑠 = ℎsd𝜉 

and d𝑠⊥ = ℎd𝛽, while the differential of the position vector (d𝑹) on the surface was 
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written as follows: 

 d𝑹 = ℎsd𝜉𝒆ŝ + ℎd𝛽𝒆⊥̂ (4.64) 

The equation shows the differential of the position vector on the surface, expressed 

as d𝑹 . The metric coefficients, ℎs  and ℎ , correspond to 𝜉  and 𝛽 , respectively, 

while 𝒆ŝ  and 𝒆⊥̂  are unit vectors in the direction of the streamline and 

perpendicular to it on the surface. The metric coefficient ℎ  represents the 

convergence or divergence of streamlines, and in the case of an axisymmetric flow, 

it is equivalent to the local radius of the body. 

To apply the axisymmetric analogy [78 , the metric of the streamline ℎ needs to 

be calculated to replace the radius of the equivalent axisymmetric body. An efficient 

method of calculating ℎ was used, which relied on only two independent variables 

in Cartesian coordinates (𝑥, 𝑦, 𝑧)  for integration. When selecting (𝑦, 𝑧) , where 

𝑣 = 𝑣(𝑦, 𝑧) and 𝑤 = 𝑤(𝑦, 𝑧), the streamline metric was computed according to the 

following formula [76 : 

 ℎ =
|∇𝑭|

𝑭𝑥|𝑽|
[𝑤 (

𝜕𝑦

𝜕𝛽
)

𝑧
] (4.65) 

The surface of the body is represented by 𝐹(𝑥, 𝑦, 𝑧) = 0, and the normal vector 

to the surface is denoted by 𝛻𝐹 = (𝐹𝑥 , 𝐹𝑦, 𝐹𝑧)
T
 . The partial derivative can be 

expressed as a differential equation: 

 
d

d𝑠
[𝑤 (

𝜕𝑦

𝜕𝛽
)

𝑧
] =

1

|𝑽|
[𝑤 (

𝜕𝑦

𝜕𝛽
)

𝑧
] [

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
] (4.66) 

Herein, 𝑠  is the distance along the streamline on the surface. Equations for the 

independent variables (𝑥, 𝑦) and (𝑥, 𝑧) were derived as follow [4 .  



 

 

 

78 

 ℎ =
|∇𝑭|

𝑭𝑧|𝑽|
[𝑢 (

𝜕𝑦

𝜕𝛽
)

𝑥
] (4.65a) 

 
d

d𝑠
[𝑢 (

𝜕𝑦

𝜕𝛽
)

𝑥
] =

1

|𝑽|
[𝑢 (

𝜕𝑦

𝜕𝛽
)

𝑥
] [

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
] (4.66a) 

 ℎ =
|∇𝑭|

𝑭𝑦|𝑽|
[𝑢 (

𝜕𝑧

𝜕𝛽
)

𝑥
] (4.65b) 

 
d

d𝑠
[𝑢 (

𝜕𝑧

𝜕𝛽
)

𝑥
] =

1

|𝑽|
[𝑢 (

𝜕𝑧

𝜕𝛽
)

𝑥
] [

𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
] (4.66b) 

As the denominator in Eqs. (4.65), (4.65a), and (4.65b) contains a component of the 

surface normal vector 𝛻𝐹, the integration variables were selected to maximize this 

component.  

Heating equations 

Zoby et al. [6  proposed approximate convective-heating equations to compute 

heat flux on the surface. In conditions above 50 km altitude, laminar flow is the 

dominant flow condition [79 . As reentry vehicles spend most of their time above 

this altitude, the flow is assumed to be mostly laminar under these flight conditions 

[80,81 . For laminar flow, 

 �̇�w,L = 0.22(𝑅𝑒𝜃,e)
−1

(
𝜌∗

𝜌e
) (

𝜇∗

𝜇e
) 𝜌e𝑢e(𝐻aw − 𝐻w)(𝑃𝑟w)−0.6 (4.67) 

The heat flux on the surface is denoted by �̇�w,L , and the momentum thickness 

Reynolds number and Prandtl number are represented by 𝑅𝑒𝜃  and 𝑃𝑟w , 

respectively. Density, viscosity, velocity, and enthalpy are denoted by 𝜌, 𝜇, 𝑢, and 

𝐻, respectively. Subscripts (e), (w), and (aw) represent estimations at the boundary 

layer edge, wall, and adiabatic wall, respectively. The superscript (*) indicates that 
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evaluations are done by Eckert’s reference enthalpy relation [82  to consider 

compressible effects. 

The calculation of the laminar momentum thickness 𝜃L was performed using the 

following equation: 

 𝜃L = 0.664(∫ 𝜌∗𝜇∗𝑢eℎ2d𝑠
𝑠

0
)

1

2/(𝜌e𝜇eℎ) (4.68) 

The correction equation proposed by Kemp et al. was used to consider the effect of 

the velocity gradient on laminar heating in the following equation: 

 �̅�L =
𝜃L

1+0.09√�̅�
 (4.69) 

Therefore, before computing the laminar heating, the mean momentum thickness, 

denoted as �̅�L  in Eq. (4.68), was substituted for 𝜃L  in Eq. (4.69). The velocity 

gradient parameter �̅� was defined as follows: 

 �̅� =
2𝜁

𝑢e
[(

d𝑢e

d𝑠
) (

d𝜁

d𝑠
)⁄ ] (4.70) 

The parameter 𝜁 , which was determined by the Lees-Dorodnisyn transformation 

[83 , was represented as follows: 

 ζ = ∫ 𝜌w𝜇w𝑢eℎ2d𝑠
𝑠

0
 (4.71) 

Heat flux near the stagnation point 

The heat flux at the stagnation point could not be computed using the above-

mentioned approximate convective-heating equations since the integration process 

begins from the stagnation point. Therefore, the heat flux at the stagnation point was 

determined using the following equation: 
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 �̇�w,s = 0.767√
d𝑢e

d𝑥
(𝜌𝜇)0.5(𝐻s − 𝐻w)(𝑃𝑟w)−0.6 (4.72) 

The subscript (s) is used to indicate properties at the stagnation point, and the 

gradient of velocity at the stagnation point is represented by d𝑢e/d𝑥. DeJarnette et 

al. proposed the following equation to calculate the gradient [84 : 

 
d𝑢e

d𝑥
=

|𝑽∞|

𝑅
√1.85

𝜌∞

𝜌s
 (4.73) 

Near the stagnation point, the assumption of the similar (𝜌∗𝜇∗) and the linear 𝑢e 

and ℎ along a streamline could be utilized. This approximation led to a replacement 

of the integration for calculating the momentum thickness 𝜃L on the ε-curve with 

the following expression: 

 ∫ 𝜌∗𝜇∗𝑢eℎ2d𝑠
𝑠𝜀

0
= (𝜌∗𝜇∗)s(𝑢e)𝜀ℎ𝜀

2 𝑆𝜀

4
 (4.74) 

To calculate the heat flux on the ε-curve, integration was not necessary as the 

momentum thickness on the ε-curve was obtained using Eq. (4.74). The heat flux 

inside the ε-curve was determined by interpolating the heat flux at the stagnation 

point and the ε-curve. 

Heat-flux calculation validation 

In order to verify the accuracy of the approximate convective-heating equations 

applied in this study, a comparison was made between the heat flux on a sphere with 

a 0.0508-m radius obtained from these equations and the experimental results [85  

and a high-fidelity computational fluid dynamics (CFD) approach that utilized the 

Reynolds-averaged Navier-Stokes (RANS) solver. For the RANS solver, ANSYS 

Fluent, a commercial CFD software package, was utilized for the laminar and steady-
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state flows. The RANS solver was implemented with the implicit AUSM+ flux [86 , 

Green-Gauss node-based gradient [87 , and a combination of first- and second-order 

upwind schemes. The conditions for the sphere's freestream and wall are presented 

in Table 4.3. The heat flux obtained from the approximate convective-heating 

equations agreed well with the results obtained from the other methods, as illustrated 

in Fig. 4.13. 

Table 4.3  Freestream and wall conditions for the sphere 

 Value 

𝑀∞ 9.74 

𝛾 1.4 (Perfect gas) 

𝜌∞ 0.004272 kg/m3 

𝑇∞ 53.17 K 

𝑇w 300.0 K 

 

 

Fig. 4.13  Convective heat flux for the sphere 
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Additionally, the convective heat fluxes on a wing-body configuration were 

computed and compared using both the RANS and approximate convective heating 

equations to examine the accuracy of the latter for more complex geometries. The 

Korea Aerospace Research Institute's KSP-1 vehicle, which has a 7-m fuselage and 

4-m span wing and is depicted in Fig. 4.14, was utilized for this study. The freestream 

and wall conditions for the KSP-1 were described in Table 4.4. To perform the RANS 

calculation, an unstructured hybrid mesh with approximately 10,000,000 nodes and 

50 prism layers was utilized, as shown in Fig. 4.15. The body surface was discretized 

into 80 longitudinal and 58 cross-sectional grids, while the wing surface was 

discretized into 20 span-wise and 128 airfoil grids, for the approximate convective-

heating equations calculations. 

 

Fig. 4.14  KSP-1 geometry 
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Table 4.4  Freestream and wall conditions for KSP-1 

 Value 

𝑀∞ 20.0 

𝛾 1.4 

𝛼 40° 

𝜌∞ 0.000568 kg/m3 

𝑇∞ 260.772 K 

𝑇w 300.0 K 

 

Fig. 4.15  Computational mesh for RANS at the symmetric plane 

The results obtained from the RANS and approximate convective-heating 

equations are comparable, as illustrated in Fig. 4.16. A detailed comparison was 

conducted by plotting the heat fluxes along the wing section of 1.85 m, as depicted 

in Fig. 4.17. The peaks of the heat fluxes are in reasonable agreement, and the trends 

of the heat fluxes with changes in the x-coordinates are comparable. The heat flux 
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calculations obtained from the sphere and KSP-1 models demonstrate that the 

approximate convective-heating equations employed in this study are sufficiently 

accurate for heat flux calculations. 

 

Fig. 4.16  KSP-1 heat fluxes using RANS and the approximate convective-

heating equations (the upper portion is RANS, and the lower portion is the 

approximate convective-heating equations) 

 

Fig. 4.17  Heat fluxes along the 1.85-m wing section 
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4.1.5 Trajectory analysis 

The trajectory analysis in this study only covers the period from orbit to landing 

because the launch vehicle is responsible for placing the vehicle into orbit, using a 

three-degree-of-freedom (3DOF) trajectory analysis [88  incorporating the weight 

and aerodynamic force of the vehicle. 

The gravity and aerodynamic force of the present position were used to determine 

the next position and velocity. Then, the position and velocity were utilized to 

calculate the aerodynamic force at the current position. Time integral was carried out 

using the 4th Runge-Kutta (RK) method, as follows: 

 �̇�(1) = 𝑓(𝑋𝑛, 𝑡) (4.75a) 

 �̇�(2) = 𝑓(𝑋𝑛 + 0.5Δ𝑡�̇�(1), 𝑡 + 0.5Δ𝑡) (4.75b) 

 �̇�(3) = 𝑓(𝑋𝑛 + 0.5Δ𝑡�̇�(2), 𝑡 + 0.5Δ𝑡) (4.75c) 

 �̇�(4) = 𝑓(𝑋𝑛 + 0.5Δ𝑡�̇�(3), 𝑡 + Δ𝑡) (4.75d) 

 𝑋𝑛+1 = 𝑋𝑛 +
Δ𝑡(�̇�(1)+2�̇�(2)+2�̇�(3)+�̇�(4))

6
 (4.75) 

where 𝑋 = [𝑢 𝑣 𝑤 𝑥 𝑦 𝑧]T in Earth-centered inertial coordinate. 

In this study, four coordinate system was employed for describing motion and 

position [89,90 . Body-fixed coordinate system (BFCS) is defined using node point 

as orientation. 

The Earth-centered inertial (ECI) coordinate system utilizes Cartesian 

coordinates with its origin located at the center of mass of Earth and fixed with 

respect to the stars, as shown in Fig. 4.18. The x-y plane of the system coincides with 

Earth's equatorial plane, while the x-axis remains permanently fixed in a direction 
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relative to the celestial sphere that does not rotate as Earth does. The z-axis is 

perpendicular to the equatorial plane and extends through the North Pole. It is 

noteworthy that while Earth rotates, the ECI coordinate system remains stationary. 

As remaining stationary using Cartesian coordinate, it is easy to apply the equation 

of motion. 

 

Fig. 4.18  ECI coordinate 

The Earth-centered, Earth-fixed coordinate system (ECEF) is a type of Cartesian 

spatial reference system that represents positions near the Earth using X, Y, and Z 

measurements from its center of mass, as illustrated in Fig. 4.19. It is commonly used 

for tracking satellite orbits and in satellite navigation systems for determining 

locations on the Earth's surface. Unlike ECI, the ECEF is rotating along with the 

Earth. 
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Fig. 4.19  ECEF coordinate 

The geographic coordinate system (GCS) is a type of spherical coordinate system 

used to determine and communicate positions on the Earth using latitude and 

longitude. It is the most widely used spatial reference system and serves as the 

foundation for many others. Unlike a Cartesian coordinate system, the geographic 

coordinate system is not planar because latitude and longitude measurements are 

angles. 

 

Fig. 4.20  GCS coordinate 
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The flow chart illustrating the trajectory analysis procedure is shown in Fig. 4.21. 

The detailed process for trajectory analysis, which includes coordinate conversion, 

is as follows: 

Step 1: Input the initial position and velocity in GCS. 

Step 2: Convert the initial properties to ECI to apply them to the equation of 

motion, as the equation on ECI is more convenient because of stationary 

Cartesian coordinates. 

Step 3: Obtain the aerodynamic force in BFCS based on the position and velocity 

of the spacecraft through aerothermodynamic analysis. 

Step 4: Convert the aerodynamic force to ECI to apply it to the equation of 

motion. 

Step 5: Conduct time integral to calculate the new position and velocity using the 

4th orther Runge-Kutta (RK) method. 

Step 6: Convert the new position and velocity to ECEF to account for Earth's 

rotation. 

Step 7: Convert the new position and velocity to GCS, as GCS is more familiar 

by using altitude, longitude, and latitude to describe the position. 

Step 8: Repeat step 3–7 until the spacecraft land 

To verify the trajectory analysis, the trajectory of KSP-1 was analyzed, beginning 

at a height of 300 km, with a velocity of 7000 m/s, an inclination angle of 80°, and 

a flight path angle of 0°. Table 4.5 provides a summary of the initial trajectory 

conditions. The trajectory was calculated appropriately, as illustrated in Fig. 4.22. 
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Fig. 4.21  Flow chart of trajectory analysis 

Table 4.5  Initial trajectory condition of KSP-1 

Initial trajectory condition Value 

Altitude 300 km 

Velocity 7000 m/s 

Flight path angle 0° 

Incline angle 80° 
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Fig. 4.22  Trajectory of KSP-1 
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4.2 Problem definition 

To evaluate the performance of the spacecraft, multidisciplinary optimization 

described in Chapter 2 was employed. The spacecraft's trajectory began at a height 

of 300 km, with a velocity of 7000 m/s, an inclination angle of 80°, and a flight path 

angle of 0°. Table 4.6 provides a summary of the initial trajectory conditions. 

Table 4.6  Initial trajectory condition 

Initial trajectory condition Value 

Altitude 300 km 

Velocity 7000 m/s 

Flight path angle 0° 

Incline angle 80° 

 

The optimization problem was set as follows: 

 Minimize Weight and standard deviation (SD) of the heat flux 

 Constraint Unrealistic geometry  

  (i.e., tank length < fuselage length, nose radius > 0.01 m) 

  Maximum dynamic pressure < 50 kPa 

  Maximum heat flux < 4 MW/m2 

  Landing speed < 20 m/s 

  Trim condition (the ability to maintain 𝐶𝑚 = 0) 

  Longitudinal stability (static margin > 0) 

 Side constraint Geometrical constraints  

  (i.e., wing span < 5 m, total length < 10 m) 

  (4.76) 
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The minimization of the weight is to reduce the payload of the launch vehicle that 

will load the spacecraft. The minimization of the SD of heat flux is for diminishing 

the heat flux on the spacecraft. If the maximum heat flux of the spacecraft is 

minimized as an objective function, a specific point (i.e., the stagnation point or the 

leading edge) of the spacecraft will be affected. However, minimizing of the SD of 

heat flux can consider a large area that has a high heat flux. Therefore, these two 

objective functions were selected in this study. The Appendix provides a detailed 

description of the initial design space and side constraints.  

For the optimization process, the MOGA algorithm was run with 256 individuals 

for 600 generations. The design space was updated every 100 generations using 

feasible solutions obtained in the last 20 generations, with 𝜂t and n set to 99% and 

20, respectively. To maintain population diversity, reinitialization was performed 

while retaining the extreme solutions after adapting the design space. In addition, 

optimization was conducted with and without reinitialization using the fixed design 

space to assess the effectiveness of this approach. 
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4.3 Results 

To validate the effectiveness of the developed adaptive time-step method, the 

numbers of heat-flux calculations were counted for optimization processes. The 

number of the calculations with the adaptive time-step method is approximately 14 

million, while the number of the calculations without the method is 185 million, as 

shown in Table 4.7. The number of the calculation is reduced over one-tenth with the 

developed adaptive time-step method. 

Table 4.7  The number of heat-flux calculations for the optimizations 

 
Without adaptive time 

step for heat flux 

With adaptive time step 

for heat flux 

heat-flux calculation 

(Normal dist.) 
185,072,122 14,415,674 

heat-flux calculation 

(developed method) 
185,063,669 14,413,916 

 

Figure 4.23 displays the Pareto solutions generated by the method assuming 

normal distributions, the developed adaptive design-space method, and the fixed 

design space. The Pareto solutions obtained by the developed method outperformed 

the other methods. On the other hand, the Pareto solutions produced by the method 

assuming normal distributions were comparable to those achieved with the fixed 

design space. Theoretically, the Pareto solutions obtained by any method upon 

convergence should be the same. However, in a practical problem, the Pareto 

solutions may differ across the design space due to variations in the probability of 

finding solutions during the stochastic optimization process. Therefore, adjusting the 

design space to a region where the probability density of feasible solutions is high 

can improve the searchability of the MOGA. 
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Fig. 4.23  Pareto solutions and OPTs 

Figure 4.24 indicates that the majority of the adapted design variable ranges 

achieved with the developed method were narrower than those obtained with the 

method that assumes normal distributions. This finding aligns with the 

characteristics identified through analyses of the test problems. In Fig. 4.24, the 

adaptive design space of 𝑥11, which represents the outboard sweep angle, is depicted 

as a point. The reason behind low surface pressure at larger sweep angles is the low 

angle between the flow and the surface. As a result of this low pressure, the 

optimization leads to a large value of this variable, as it generates a low heat flux on 

the surface. Additionally, the weight of the wing can be reduced with a larger sweep 

angle as it results in a smaller tip-chord length. However, there is a geometrical 

constraint that limits 𝑥11 to be smaller than 50. Consequently, the adaptive design 

space of 𝑥11 converged close to 50. The adaptive design space of 𝑥19 and 𝑥22 did 

not overlap with the initial design space because a large 𝑥19, which represents the 

winglet sweep angle, produces low heat flux as discussed for 𝑥11. On the other hand, 
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a small 𝑥22 , which represents the winglet length, results in a lighter winglet. 

Consequently, the adaptive-design-space method can effectively optimize the design 

space and enhance the performance of unmanned spacecraft. 
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Fig. 4.24  Adapted design spaces for the conceptual design of an unmanned 

spacecraft 

Near the extreme solutions, the positions of samples seem perpendicular to axis 

because the values for an objective are similar against the different values for the 

other objective function. To figure out this reason, the constraint values of the 

samples are depicted in Fig. 4.25. The static margin (SM) of the light weight samples 

are almost zero. The SMs of the spacecraft should be greater than zero to maintain 

the longitudinal stability. On the other hand, the landing speed of the low heat flux 

samples are almost 20 m/s. The landing speeds of the spacecraft should be lower 

than 20 m/s due to the constraint. In these reasons, the samples near the extreme 

solutions have similar values with the value of the extreme solutions. 
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Fig. 4.25  The values of constraints near extreme solutions 

The design space adaptation method improved both objective functions more 

effectively than the other methods, as shown in Fig. 4.26 which displays the trends 

of the objective functions for the extreme solutions. To evaluate the efficiency of the 

MOGA and design-space adaptation method, the number of function evaluations 

(NFE) was computed. The NFE was determined as the sum of the number of 

individuals (𝑁ind) from 1 to the number of generations (𝑁gen), as follows: 

 NFE = ∑ 𝑁ind
𝑁gen

𝑖=1
 (4.77) 

Since 𝑁ind was fixed in this study, 𝑁gen could be used as the efficiency metric. 

In Fig. 4.26, the developed method showed a more improved performance than the 

other methods. The developed method required fewer generations to achieve the 

same values of the objective functions, indicating higher efficiency than other 

method.  
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 (a) weight  (b) Std. of heat flux 

Fig. 4.26  The evolution trends of the objective functions as the number of 

generations increased 

Additionally, the purity metric achieved by the developed method is considerably 

greater than that of the method assuming normal distributions, as demonstrated in 

Fig. 4.27. These findings indicate that the Pareto solution obtained by the developed 

method outperforms that of the method assuming normal distributions. Therefore, 

the performance and efficiency of the MOGA were enhanced by the developed 

method. 

 
Fig. 4.27  The evolution trends of the purity metric as the number of 

generations increased 
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The extreme solutions obtained from the developed method were labeled as 

"OPT1-dev" and "OPT2-dev" and are depicted in Fig. 4.23. The compromise 

solution was selected by considering the balance between weight and the SD of heat 

flux performance and labeled "OPTcom." On the other hand, the Pareto solutions 

obtained with the method assuming normal distributions and the fixed design space 

were labeled as "OPT1-nor" and "OPT1-fix" or "OPT2-nor" and "OPT2-fix," 

depending on whether they had similar weights or SDs of heat flux to OPTcom. 

The objective function values of the named solutions can be found in Table 4.8. 

The values of the featured design variables and geometries of the labeled solutions 

are presented in Table 4.9 and Fig. 4.28, respectively.  

Table 4.8  Objective functions of the designed unmanned spacecraft 

 Weight (kg) SD of heat flux (W/m2) 

OPT1-dev 2,263.5 198,124 

OPT2-dev 2,802.3 165,425 

OPTcom 2,481.9 178,675 

OPT1-nor 2,482.0 186,468 

OPT2-nor 2,584.0 178,740 

OPT1-fix 2,480.0 185,950 

OPT2-fix 2,614.1 178,734 
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Table 4.9  Values of the feature design variables of the OPTs 

 OPT1-dev OPT2-dev OPTcom OPT1-nor OPT1-fix OPT2-nor OPT2-fix 

Nose radius 0.0944 0.2346 0.1234 0.1163 0.1118 0.1214 0.1153 

Total length 8.2179 9.9734 9.2936 9.0153 8.7940 9.3764 9.3341 

Wing root chord 4.8416 5.5657 5.1732 5.1683 5.2137 5.3900 5.4722 

Wing span 4.1321 4.4850 4.2419 4.2720 4.2544 4.3608 4.3746 

Wing area 11.245 14.247 12.572 12.666 12.769 13.527 13.788 

Wing leading edge radius 0.0545 0.0648 0.0617 0.0611 0.0636 0.0652 0.0647 
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 (a) OPT1-dev  (b) OPT2-dev 

 

  (c) OPTcom 

 

 (d) OPT1-nor  (e) OPT1-fix 

 

 (f) OPT2-nor  (g) OPT2-fix 

Fig. 4.28  Geometries of the OPTs 
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OPT1-dev has shorter fuselage and smaller wing area than OPT2-dev. This is why 

the weight of OPT1-dev is lighter than OPT2-dev. On the other hand, OPT2-dev has 

larger nose radius and wing leading edge radius. With these large radius, OPT2-dev 

shows small heat flux because a large radius generates low heat flux in hypersonic 

vehicles. 

The SD of the heat flux of OPTcom was lower than those of OPT1-nor and OPT1-

fix by 4.2% and 3.9%, respectively, despite having similar weights. OPTcom had a 

larger nose radius and total length than OPT1-nor and OPT1-fix. The large nose 

radius reduced heat flux at the nose stagnation point during hypersonic flight. The 

large total length created a wide area on the lower surface of the fuselage, which is 

a pressure surface generating high lift force that increases acceleration in the inverse-

gravity direction. As a result, when the maximum heat flux on the stagnation point 

occurred, the velocity and altitude were relatively low and high, respectively, as 

shown in Table 4.10. Consequently, it appears that the heat flux on the spacecraft 

with a large total length was low. Therefore, OPTcom achieved a lower heat flux than 

OPT1-nor and OPT1-fix, resulting in higher survival probability during the mission 

because a large amount of heat flux can destroy the spacecraft structure. Thus, while 

all three solutions had similar weights, the survival probability of OPTcom was higher 

than that of OPT1-nor and OPT1-fix. 
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Table 4.10  Flow conditions, inverse-gravity-direction accelerations induced 

by aerodynamic force, and heat fluxes at the stagnation point 

 Altitude (km) Velocity (m/s) Acc. (m/s2) 

Heat flux at 

stagnation 

point (W/m2) 

OPTcom 58.50 6,751 35.61 2,860,800 

OPT1-nor 58.43 6,754 35.53 2,962,300 

OPT1-fix 58.33 6,760 35.43 3,047,800 

 

The weight of OPTcom was 3.9% and 5.1% lower than those of OPT2-nor and 

OPT2-fix, respectively, while the SDs of the heat fluxes were comparable. OPTcom 

had smaller total length and root chord compared to OPT2-nor and OPT2-fix. As the 

fuselage weight was related to the volume and wetted area of the fuselage, a smaller 

total length decreased the fuselage weight. Similarly, the weight of the wing can be 

reduced by having a smaller wing area. Consequently, OPTcom was lighter than 

OPT2-nor and OPT2-fix. The weight difference between OPTcom and OPT2-nor was 

nearly 100 kg. Considering that the loading cost of a launch vehicle is more than 

$5,000 per kilogram [91 , this weight difference would save over $500,000 of the 

budget required to load the spacecraft on a launch vehicle. Thus, the developed 

method yielded significantly better performance compared to the method assuming 

normal distributions.  
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4.4 Data mining 

4.4.1 Analysis of variance (ANOVA) 

ANOVA is a statistical analysis technique that is widely used to quantify the 

impact of an input variable (design variable) on an output variable (objective 

function). It uses the ratio of the variance due to each input variable to the total 

variance to quantify this influence. ANOVA breaks down the total variance into the 

variance associated with each design variable [92 . This decomposition is achieved 

by integrating the output variables of �̂�.  

To determine the total mean (�̂�total) and variance (�̂�total
2 ) of output variables, as 

follow: 

 �̂�total ≡ ∫ ⋯ ∫ �̂�(𝑥1, ⋯ ⋯ , 𝑥𝐿) d𝑥1 ⋯ d𝑥𝐿 (4.78) 

 �̂�total
2 ≡ ∫ ⋯ ∫[�̂�(𝑥1, ⋯ ⋯ , 𝑥𝐿) − �̂�total]

2 d𝑥1 ⋯ d𝑥𝐿 (4.79) 

In this context, L refers to the number of design variables. The primary impact of the 

𝑥𝑖 variable can be expressed as follows: 

 �̂�𝑖(𝑥𝑖) ≡ ∫ ⋯ ∫ �̂�(𝑥1, ⋯ ⋯ , 𝑥𝐿) 𝑑𝑥1 ⋯ 𝑑𝑥𝑖−1𝑑𝑥𝑖+1 ⋯ 𝑑𝑥𝐿 − �̂�total (4.80) 

The value of �̂�𝑖(𝑥𝑖) represents the degree of impact of the design variable 𝑥𝑖 on 

the objective function. On the other hand, the variance related to the design variable 

𝑥𝑖 can be calculated as follows: 

 �̂�𝑖
2 ≡ ∫[�̂�𝑖(𝑥𝑖)]2 d𝑥𝑖 (4.81) 

The ratio of the variance attributed to the design variable 𝑥𝑖 to the entire variance 

of �̂� can be computed by dividing Eq. (4.81) by Eq. (4.79): 
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�̂�𝑖

2

�̂�total
2 ≡

∫[�̂�𝑖(𝑥𝑖)]2 d𝑥𝑖

∫⋯ ∫[�̂�(𝑥1,⋯⋯,𝑥𝐿)−�̂�total]2 d𝑥1⋯d𝑥𝐿
 (4.82) 

This numerical result indicates the impact of the design variable 𝑥𝑖 on the objective 

function. 

In Fig. 4.29 (a), the results obtained from ANOVA for the weight of the spacecraft 

are depicted, and the design variables that have a significant impact are presented, 

namely: total length, nose radius, and root chord. Typically, the weights of the 

fuselage and wing are connected to the volume and wetted area of the fuselage or the 

planform area of the wing. The total length represents the length of the fuselage, and 

the nose radius affects the volume and wetted area of the nose section, while the root 

chord is a crucial factor in determining the planform area. Hence, it can be concluded 

that the nose radius, total length, and root chord are highly influential in determining 

the weight of the spacecraft. 

In Fig. 4.29 (b), the results obtained using ANOVA for the SD of heat flux on the 

spacecraft are illustrated, and the design variables with a substantial influence are 

shown, which are total length, nose radius, and root chord. The total length and root 

chord are vital parameters for determining the planform area and the lower surface 

area of the fuselage, respectively. The heat flux is well-known to be related to the 

flight velocity and air density, which are affected by the spacecraft's lift. The lift of 

the spacecraft is influenced by the area of the pressure surface, such as the wing and 

the lower surface of the fuselage. In addition, the nose radius corresponds to the 

knowledge of hypersonic flow, where the heat flux on the stagnation point is related 

to the nose radius. Thus, the nose radius, total length, and root chord are significant 

variables for the heat flux on the spacecraft. 
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 (a) Weight  (b) SD of heat flux 

Fig. 4.29  The result of ANOVA 
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4.4.2 Parallel chart 

The parallel chart is a technique used to examine high-dimensional datasets 

visually [61 . It includes several parallel axes, and each axis corresponds to a variable 

of the samples. In this study, the Pareto solutions obtained from optimization were 

compared against the samples, while the design variables and objective functions 

were compared against the variables. The position of each sample on the axis is 

represented by a vertex, and the vertices are connected by polylines. The value of 

each variable of the sample corresponds to the position of the vertex on each axis. 

By coloring the lines according to one objective function value, the distribution of 

the lines for the design variables can be examined to analyze the qualitative 

relationships between the objective functions and the design variables. 

In Fig. 4.30, the parallel chart is presented with the weight as the color scale. The 

first two columns indicate that Pareto solutions with low weight (blue line) have a 

high SD of heat flux, while those with high weight (red line) have a low SD of heat 

flux, indicating a trade-off relationship between weight and SD of heat flux. Low-

weight solutions are associated with smaller spacecraft sizes, consistent with the 

general understanding that smaller spacecraft are relatively lighter. Notably, these 

low-weight solutions have small nose radius, total length, and root chord values. In 

contrast, solutions with a low SD of heat flux (red line) have higher nose radius, total 

length, and root chord values. By analyzing the distribution of the lines for the design 

variables, qualitative relationships between the objective functions and the design 

variables can be established.
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Fig. 4.30  Parallel charts with the results 
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4.4.3 Self-organizing map (SOM) 

The Self-Organizing Map (SOM) is an unsupervised neural network approach 

that maps high-dimensional data onto a lower-dimensional space. The resulting map 

is composed of numerous nodes which are clustered based on the similarity of data 

or solutions. Each node on the map represents a solution, which allows for a 

qualitative analysis of the relationship between input and output variables or between 

different input variables by coloring the map according to the value of each variable. 

More information about the learning algorithm of SOM can be found in references 

[93,94 . 

To analyze the relationships between the objective functions and design variables, 

the color patterns of maps can be compared. In Fig. 4.31, a trade-off relation appears 

to exist between the weight and the SD of heat flux, as evidenced by the low-weight 

solutions (blue) in the right-top corner of the map having high heat flux (red), and 

the high-weight solutions (red) in the left-bottom corner of the map having low heat 

flux (blue). Similarly, the qualitative relationship between the objective functions 

and design variables can be analyzed. Nose radius, total length, and root chord are 

the design variables related to the objective functions, as the color patterns of the 

maps for these variables are similar or inversely similar to the color patterns of the 

objective functions. Based on the SOM analysis, it was found that the variables have 

a positive correlation with the weight, while they have a negative correlation with 

the heat flux, which is consistent with the findings of the parallel chart. 
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Fig. 4.31  SOM results 
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4.4.4 Summary of geometric features 

Based on the results of ANOVA, parallel chart, and SOM, the critical 

characteristics of the spacecraft geometry that lead to enhanced performance can be 

summarized as: 

1) The optimal spacecraft design should have a small nose radius, total length, 

and root chord, leading to a lower weight. By decreasing the nose radius, the 

weight of the nose section is reduced, while a shorter total length and smaller 

root chord contribute to a lighter fuselage and wing, respectively. 

2) The spacecraft exhibiting a low standard deviation of heat flux possess a 

larger nose radius, total length, and root chord. This finding aligns with the 

knowledge of hypersonic flow, which suggests that a large nose radius 

decreases the heat flux at the stagnation point. In addition, a large total length 

and root chord result in a broad lower surface of the fuselage and wing, which 

is a pressure surface. The latter generates a high lift force that increases the 

acceleration in the direction opposite to gravity. Consequently, the spacecraft 

with a greater pressure surface exhibits relatively slower velocity and higher 

altitude compared to the spacecraft with a smaller pressure surface at the 

same altitude. Hence, the spacecraft having a larger total length displays 

lower heat flux than those with smaller total lengths. 
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Chapter 5  

Conclusion 

This study developed efficient methods that can be applied to multidisciplinary 

optimization to design reusable unmanned spacecraft, which has become 

increasingly in demand in these days. The methods involved the adaptive time-step 

method for an analysis in MDO based on the current state. To achieve this, a dynamic 

factor was introduced to adjust the time step between each heat flux evaluation. The 

dynamic factor was determined based on the current state. To validate this method, 

this method was applied to reduce the number of heat-flux evaluations required along 

a flight trajectory of spacecraft. For heat-flux calculation, the dynamic factor was 

varied based on the difference between the heat flux at an instant and the maximum 

heat flux over the entire trajectory. By shortening the time step when the heat flux 

was high, detailed information on heat flux was obtained, while increasing the time 

step under low-heat-flux conditions improved the efficiency of the heat-flux 

calculations. The dynamic factor was used to adaptively determine the time step, 

which improved efficiency with accuracy, making it an effective method for 

enhancing the efficiency of MDA. As a result, the number of heat-flux calculations 

decreased approximately one-tenth in with over 90% accuracy. 

Further, this study introduced a new method that adaptively adjusted the design 

space by considering the actual distribution of solutions, as opposed to the 

conventional method that assumes the solution distribution to be normal distributions. 

The actual solution distribution was estimated by calculating the proportion of 
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solutions in each subspace, which divided the design space evenly. Moreover, the 

developed method preserved the area of the design space where the extreme 

solutions, being the best solutions for each objective function, existed. 

In order to evaluate the effectiveness and efficiency of the developed adaptive 

design-space method, it was applied to nineteen widely used multiobjective test 

functions, namely the ZDT problems, I problems, and WFG problems. The results 

showed that the design space adapted by the developed adaptive design-space 

method was much closer to the analytical solution range compared to the 

conventional method that assumed normal distributions. The study found that the 

adaptive design-space method was able to adjust the design space appropriately to 

raise the probability of solution existence, leading to improved efficiency and 

performance of MOGA compared to the method that assumed normal distributions. 

To validate the effectiveness of the developed methods for adjusting time step for 

heat-flux calculation and adjusting design space, this study utilized the developed 

efficient methods for heat-flux calculation and adaptive design space to perform 

MDO for reusable unmanned spacecraft. The MDO was established with weight, 

propulsion, aerothermodynamics, and trajectory analyses to address diverse 

spacecraft analysis technologies. The weight of the spacecraft was predicted using 

the modified HASA, while the required thrust and weight of engines were estimated 

based on the entry weight. Aerodynamic properties were calculated using the 

modified Newtonian theory and Digital DATCOM, and the approximate convective-

heating equations were used for heat-flux calculation. The spacecraft trajectory was 

modeled using three design-of-freedom equations of motion. To facilitate multi-

disciplinary optimization, the these analyses was integrated with a multi-objective 
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genetic algorithm. 

The optimization for the reusable unmanned spacecraft was performed by the 

established MDO with the developed method of adaptive time step for heat-flux 

calculations and adaptive design space. According to the results obtained by 

optimization, it was found that the Pareto solutions generated by the developed 

adaptive design-space method outperformed those obtained from the conventional 

methods. Therefore, it can be inferred that the developed adaptive design-space 

method could be beneficially implemented in solving complex real-world 

optimization problems, offering better efficiency and performance. 

Furthermore, this research conducted data mining to comprehend why the 

optimized shapes demonstrate better performance by identifying the geometric 

features that affect the performance of unmanned spacecraft. The analysis of 

variance (ANOVA), parallel chart, and self-organizing map (SOM) methods were 

utilized as data mining techniques. All three techniques produced consistent results. 

The outcomes revealed the weight and heat flux trade-off relationship. The nose 

radius, total length, and root chord were identified as significant variables for 

spacecraft performance. A smaller geometry size reduced the weight, whereas a 

larger total length, nose radius, and root chord decreased the heat flux by operating 

at low velocity at high altitudes, where air density is low, and by generating high lift 

due to a large total length and root chord. In hypersonic flight, a large nose radius 

resulted in a low heat flux at the nose stagnation point, corresponding to hypersonic 

flow knowledge.  
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Appendix 

This appendix presents information on the initial design space and the constraints 

on the problem that was studied in this study. 

Conceptual design of the unmanned spacecraft 

 Initial space 0.05 ≤ 𝑥1 ≤ 0.34 

  1.53 ≤ 𝑥2 ≤ 1.82 

  0.35 ≤ 𝑥3 ≤ 0.55 

  0.34 ≤ 𝑥4 ≤ 0.5 

  8.08 ≤ 𝑥5 ≤ 10 

  0.45 ≤ 𝑥6 ≤ 0.5 

  0.56 ≤ 𝑥7 ≤ 0.71 

  4.15 ≤ 𝑥8 ≤ 5.92 

  4.20 ≤ 𝑥9 ≤ 5 

  47.7 ≤ 𝑥10 ≤ 65.6 

  48 ≤ 𝑥11 ≤ 50 

  0.49 ≤ 𝑥12 ≤ 0.8 

  2.99 ≤ 𝑥13 ≤ 5 

  0.37 ≤ 𝑥14 ≤ 0.4 

  0.11 ≤ 𝑥15 ≤ 0.45 

  0 ≤ 𝑥16 ≤ 0.009 

  0.29 ≤ 𝑥17 ≤ 0.6 

  0.016 ≤ 𝑥18 ≤ 0.078 
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  52.7 ≤ 𝑥19 ≤ 60.3 

  0.43 ≤ 𝑥20 ≤ 1 

  70.1 ≤ 𝑥21 ≤ 85.6 

  0.48 ≤ 𝑥22 ≤ 0.98 

 Side constraint 0.05 ≤ 𝑥1 ≤ 0.34  

  1.53 ≤ 𝑥2 

  0.35 ≤ 𝑥3 

  𝑥4 ≤ 0.5 

  𝑥5 ≤ 10 

  𝑥6 ≤ 0.5 

  𝑥9 ≤ 5 

  𝑥11 ≤ 50 

  𝑥12 ≤ 0.8 

  2.99 ≤ 𝑥13 ≤ 5 

  0 ≤ 𝑥16 ≤ 0.009 

  0.29 ≤ 𝑥17 ≤ 0.6 

  0.016 ≤ 𝑥18 

  52.7 ≤ 𝑥19 

  𝑥20 ≤ 1 

  70.1 ≤ 𝑥21 
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국문 초록 

증가하는 재사용 무인우주비행체에 대한 수요에 대응하기 위하여, 본 

연구에서는 재사용 무인 우주비행체의 개념설계에 적용 가능한 효율적인 

기법을 개발하였다. 우주비행체 개념설계를 위한 다양한 해석 중에서, 

형상정의, 중량추정, 추진분석 등은 계산이 적은 횟수로 이루어지는 반면, 

공력 및 열전달량, 궤도 계산은 궤도의 각 위치에서 계산이 수행되어야 

하므로 수많은 계산이 필요하다. 그리므로 본 연구에서는 궤도에서의 

현재 상태에 기반하여 각 분석에서 사용되는 시간 간격을 조절할 수 

있는 기법을 개발하였다. 개발된 기법은 열전달량 해석에 적용하여 

효용성을 검증하였다. 시간 간격을 조절하기 위하여 동적 요소를 

도입하였으며, 이를 토대로 열전달량이 낮을 경우 시간 간격을 

증가시켰다. 그 결과, 90% 이상의 정확도를 유지하면서 열전달량 계산 

횟수가 약 1/10으로 감소하였다. 이와 같이 개발된 동적 요소에 따라 

시간 간격을 조절할 경우, 높은 정확도를 유지하면서 열전달량 계산 

효율을 증가시킬 수 있다. 

이와 더불어, 기존 설계 공간 조절 기법은 변수 분포를 정규분포로 

가정하였으나 실제 문제에서는 변수 분포가 정규분포를 따를 경우가 

매우 드물다. 이와 같은 기존 설계 공간 조절 기법의 단점을 보완하기 

위하여 실제 변수 분포를 이용한 설계 공간 조절 기법을 개발하였다. 

개발된 설계 공간 조절 기법의 효능성을 검증하기 위하여, 최적 기법의 
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성능을 판단할 때 널리 사용되는 19개 테스트 문제에 대하여 개발된 

기법을 적용하였다. 그 결과, 개발된 기법은 해가 존재할 가능성이 높은 

적절한 공간으로 조절하였으며, 이를 기반으로 개발된 기법을 이용한 

최적화 성능이 기존 기법을 이용한 경우보다 높았다. 

본 연구에서 개발된 기법들의 효용성을 검증하기 위하여, 재사용 

무인 우주비행체에 대한 다학제간 최적 설계에 적용하였다. 

우주비행체의 중량은 수정된 Hypersonic Aerospace Sizing Analysis (HASA)를 

이용하여 추정하였으며, 재진입 중량을 이용하여 요구 추력 및 엔진 

중량을 계산하였다. 수정된 Newtonian 이론 및 Digital DATCOM을 

이용하여 공력 특성을 구하였으며, Approximate convective-heating 

equation을 이용하여 열전달량을 추정하였다. 우주비행체의 궤적은 

3자유도 운동방정식을 이용하여 해석하였다. 이와 같이 우주비행체를 

해석하기 위하여, 다양한 분석들을 결합하고 다목적 유전 알고리즘을 

이용하여 다학제간 최적 설계를 실시하였다. 그 결과 테스트 문제에서와 

같이, 개발된 설계 공간 조절 기법을 이용한 다학제간 최적 설계 결과가 

기존의 기법을 사용한 것 보다 뛰어남을 확인하였다. 

재사용 무인우주비행체 성능에 영향을 끼치는 형상 정보를 추출하여 

최적 형상이 높은 성능을 나타내는 이유를 분석하기 위하여, 분산 분석 

및 Parallel chart, 자기 조직화 지도와 같은 데이터 마이닝(Data mining) 

기법을 사용하였다. 데이터 마이닝 결과를 토대로, 중량과 열전달량은 

Trade-off 관계에 있는 것을 확인하였으며 기수 반경 및 전체 길이, 뿌리 
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시위 길이가 우주비행체 성능에 영향이 큰 변수임을 확인하였다. 

 

 

 

주요어 : 재사용 무인 우주비행체, 개념설계, 다학제간 최적설계,  

 다학제간 분석, 시간 간격 조절, 설계 공간 조절 
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