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Abstract 
 

Energy-efficient Driving based on Diagnosis of 

Flooding and Drying in Fuel Cell Electric Vehicle 

using Sequential Data Analysis-integrated Deep 

Deterministic Policy Gradient 

 

 

The issue of global warming caused by rapid climate change has gained 

worldwide attention. The automotive industry is exploring various solutions to 

reduce greenhouse gas emissions. One such solution is the development of 

autonomous driving technology to achieve energy-efficient driving with minimal 

fuel consumption based on vehicle-to-infrastructure (V2I). Another approach is the 

hybridization of vehicles by replacing the power source with environmentally-

friendly fuel cells, specifically, Polymer Electrolyte Membrane Fuel Cells (PEMFC). 

However, these solutions present challenges that must be addressed. 

In order to achieve energy-efficient driving in fuel cell hybrid electric vehicles 

(FCHEVs), it is essential to develop optimal speed control and power distribution 

strategies among the PEMFC and battery based on the vehicle's internal and external 

information. These approaches require optimization techniques for achieving the 

best performance; however, the long calculation times of these techniques make 

them difficult to apply to actual vehicles, requiring appropriate control strategies. 

Furthermore, the PEMFC, which is the energy source of FCHEVs, has critical flaws 

such as flooding and drying, occurring for a long-time operation under extreme 

conditions. Therefore, it is necessary to operate the fuel cell under stable conditions 

by implementing driving control and batter power assist. In this paper, a driving 
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system for FCHEVs is proposed that considers energy-efficient speed control, power 

distribution strategies, and moisture-related errors of PEMFC. 

Initially, modeling of the FCHEV is performed using backward-looking 

simulation. Additionally, a semi-empirical PEMFC model is developed based on a 

single fuel cell experimental result. Using the developed vehicle model, the driving 

system is trained with deep deterministic policy gradient (DDPG), a type of 

reinforcement learning. This system produces the target speed of the vehicle and 

reference values for power distribution to the controller of the fuel cell and battery. 

By updating the action space of the DDPG so as not to exceed the limiting conditions 

of the powertrain at every step, the vehicle model increases the possibility of 

performing the actions suggested by the system. Through parameter optimization, 

the performance of the model is improved by applying parameters suitable for the 

DDPG. Furthermore, the model evaluates fuel consumption and operational point by 

considering the road gradient applied to learning phase. The proposed system 

exhibits 97.11 % optimality compared to DP, a global optimization method and 

outperformed control based on cruise control and rule-based strategy by 36.52 %. 

A model for diagnosing the defects is developed to determine whether flooding 

or drying occurs in FCHEVs of an energy-efficient driving system. An experimental 

procedure is conducted to deliberately trigger flooding and drying, and the 

electrochemical data acquired during the experiment are subsequently analyzed. 

Using the sequential data obtained, a diagnostic model is created utilizing long-short 

term memory (LSTM) technique and bootstrap aggregation (bagging) ensemble 

method. The diagnosis rate for flooding and drying achieved 88.11%. The output 

value of the diagnostic model is incorporated into the reward function of the DDPG 

method to develop an energy-efficient driving system, considering flooding and 

drying of the PEMFC. The integration of fuel cell condition diagnostics into the 
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driving system was verified to decrease the likelihood of flooding and drying in the 

flow channel. The average time taken for the system to recover from these 

occurrences was 0.5956 seconds. Additionally, due to the avoidance of errors, the 

fuel consumption rate improved by approximately 1.25% when compared to the 

driving system without diagnosis system. 

To evaluate the generality of the suggested driving system, the car model 

undergoes testing in diverse road conditions. As reinforcement learning relies on the 

Bellman equation, which updates future Q values, a change in the environment may 

cause a decline in optimality. Therefore, online-learning is performed to prevent 

performance degradation. In addition, the effect of online learning according to the 

convergence of offline learning is verified. The model that undergoes online learning 

exhibits a fuel consumption reduction of 5.59% compared to the offline model.  

This study developed a novel system using a single DDPG algorithm, which 

simultaneously presents the target value of the optimal speed control and power 

distribution strategy. The reinforcement learning model was effective in reducing the 

occurrence of fatal defects in PEMFC, such as flooding and drying, and controlled 

them to quickly return to normal. The system demonstrated excellent generalization 

and was improved through online learning. Thus, the proposed energy-efficient 

driving system for a fuel cell hybrid vehicle, which considers the stability of a 

polymer electrolyte fuel cell, presented in this study has contributed towards the 

environmentally friendly development of autonomous driving, a critical focus area 

of the automotive industry. Additionally, the study has presented a methodology for 

developing a high-performance power distribution strategy. 

Keyword: Energy-efficient driving, Power distribution, Fuel cell hybrid electric 

vehicle (FCHEV), Deep deterministic policy gradient (DDPG), Polymer electrolyte 

membrane fuel cells (PEMFC), Fault diagnosis 
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Chapter 1. Introduction 

 

1.1. Background 

 

Global warming is a critical environmental issue that confronts humanity. The 

increase in the emissions of greenhouse gases, such as carbon dioxide, has led to an 

elevation in global temperatures, which has adversely affected the global ecosystem 

and human health. The temperature increase trend is evident in Figure 1, which 

displays the global average temperature from 1850 to 2022, indicating a steep rise in 

recent times. The escalation of temperatures because of climate change has caused a 

loss of biodiversity, alterations in water quality, coastal erosion, drought, and 

changes in the abundance of pests and diseases [1]. In response to these challenges, 

the international community has taken concrete steps to address climate change. The 

Paris Agreement, signed during the United Nations Climate Change Conference in 

2015, aims to restrict global warming to below 2°C above pre-industrial levels and 

make endeavors to limit the temperature rise to 1.5°C. To this end, countries have 

submitted nationally determined contributions (NDCs) outlining their respective 

plans to mitigate greenhouse gas emissions. As of 2020, 196 countries have 

developed NDCs [2]. The Korean government, in the NDC presented in accordance 

with Article 9 of the Special Act on Climate Change Response in 2015, aims to 

reduce greenhouse gas emissions by 40% in comparison to 2018 levels by 2030. 

Germany's NDC targets a reduction of 55% by 2030, 70% by 2040, and 85% by 

2050 compared to 1990 levels [3]. 

The transportation industry is a significant contributor to the overall greenhouse 

gas emissions, which is a major driver of global warming. As shown in Figure 2, 

greenhouse gas emissions by sector in 2020 were distributed among various sectors,  
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Figure 1. Global average temperature 1850-2022 [4] 

 

with the transportation industry accounting for approximately 16.2% of total 

emissions. This highlights the need for the transportation sector to take a more 

proactive role in reducing greenhouse gas emissions. Moreover, within the 

transportation, the road transport sector is responsible for the majority of greenhouse 

gas emissions. The increasing concern over climate change and the need to reduce 

greenhouse gas emissions has prompted the automobile industry to develop energy-

efficient driving system and eco-friendly vehicles.  

 

1.1.1. Energy-efficient Driving System for Connected and 

Autonomous Vehicles 

 

One solution to reducing greenhouse gas emissions is the development of 

autonomous vehicles that can operate energy efficiently. Connected and autonomous 

vehicles (CAVs) use advanced technologies such as sensors, GPS, and artificial 
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intelligence (AI) to navigate roads and make driving decisions. Figure 3 presents 

statistical data forecasting the size of the autonomous vehicle market by 2030, 

demonstrating the significant potential of the autonomous driving market.  

The feasibility of realizing energy-efficient driving for autonomous vehicles 

through the implementation of Vehicle-to-Information (V2I) communication 

technology is evident [7]. Vehicle-to-Infrastructure (V2I) is a technology that enables 

communication between vehicles and infrastructure systems. It is a critical 

component of the Intelligent Transportation System (ITS) and aims to improve the 

safety and efficiency of transportation systems. V2I technology uses wireless 

 

 

Figure 2. Global greenhouse gas emissions by sector [5] 
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Figure 3. Global autonomous vehicle market size trends in 2021 and 2022, with a 

forecast through 2030 [6] 

 

communication systems, such as Dedicated Short-Range Communications (DSRC) 

and Cellular Vehicle-to-Everything (C-V2X), to exchange information between 

vehicles and infrastructure [8]. Figure 4 shows the V2I and V2V communication. 

V2I technology can be used to improve the efficiency of transportation systems. By 

providing real-time information about the altitude and curvature of the road ahead, 

V2I can help drivers optimize their driving behavior and reduce fuel consumption. 

It can also provide information about the location of steep inclines and declines, 

allowing drivers to adjust their speed and acceleration to conserve fuel. This results 

in more efficient use of energy and reduced emissions, as the vehicles can avoid 

idling and take optimal routes, among other things. 
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Figure 4. Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) 

communication 

 

1.1.2. Fuel Cell Hybrid Electric Vehicle 

 

Fuel Cell Hybrid Electric Vehicles (FCHEVs) have garnered substantial 

attention in recent years as a promising technology that offers a potential solution to 

the challenges associated with traditional internal combustion engine (ICE) vehicles, 

such as air pollution and greenhouse gas emissions. FCHEVs operate by converting 

the energy from hydrogen fuel into electricity, which is used to power an electric 

motor. One of the primary advantages of FCHEVs is that they emit only water vapor 

as a byproduct.  

The powertrain of FCHEVs consists of a fuel cell stack, an energy storage 

system, an electric motor, and an energy management system (EMS). The fuel cell 
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stack generates electricity by combining hydrogen fuel and oxygen from the air, 

which is facilitated by the electrochemical process in the stack. The energy storage 

system in FCHEVs is typically a high-capacity battery pack that can store energy 

generated by the fuel cell stack or recapture energy during braking or coasting. The 

role of the electric motor in FCHEVs is to transform the electrical energy sourced 

from both the fuel cell stack and battery pack into mechanical energy, which is then 

utilized to drive the vehicle forward. The EMS in FCHEVs manages the flow of 

power between the fuel cell stack, battery, and electric motor [9]. 

The primary objective of the EMS in an FCHEVs is to ensure that the power 

demands of the vehicle are met, while at the same time minimizing energy losses 

and maximizing the overall efficiency of the system. To achieve this goal, the EMS 

continually monitors the vehicle's power consumption and assesses the driving 

conditions, such as the road gradient, speed, and acceleration, to determine the 

optimal power distribution strategy. This involves ensuring that the power generated 

by the fuel cell stack and battery is sufficient to meet the vehicle's power demands, 

while also considering the energy efficiency of each component. 

 

Figure 5. Structure of fuel cell hybrid electric vehicles (FCHEVs) 
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Given that FCHEVs operate under conditions of comparatively lower 

temperature, they predominantly depend on proton exchange membrane fuel cells 

(PEMFCs) as their primary energy source. This is owing to the ability of PEMFCs 

to operate effectively at lower temperatures, making them a favorable choice for 

powering FCHEVs. Typical PEMFCs are composed of an anode, cathode, and 

electrolyte membrane as illustrated in Figure 6. The chemical formula for the 

reaction at each electrode is as follows: 

 𝐴𝑛𝑜𝑑𝑒: 𝐻2 → 2𝐻+ + 2𝑒− (1) 

 Cathode:
1

2
𝑂2 + 2𝐻+ + 2𝑒− → 𝐻2𝑂 (2) 

The anode is the negative electrode and is responsible for oxidizing the 

hydrogen fuel to release electrons. The cathode is the positive electrode and 

facilitates the reduction of oxygen from the air, creating water vapor as a byproduct. 

The anode and cathode are divided by an electrolyte membrane, which selectively 

permits the passage of positively charged ions. This selective transfer generates an 

electric current that can be harnessed to propel the vehicle. The hydrogen fuel is then 

supplied to the anode side of the fuel cell stack, where it reacts with the anode 

catalyst to produce electrons and protons. The electrons travel along an external 

circuit to reach the cathode, generating an electric current that drives the vehicle's 

electric motor. The protons move through the electrolyte membrane to the cathode 

section of the fuel cell. There, they combine with oxygen from the atmosphere to 

create water vapor as the sole emission produced by FCHEVs. 
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Figure 6. Schematic of typical proton exchange membrane fuel cells 

 

1.2. Motivation 

 

The utilization of V2I technology can enable energy-efficient driving to 

leverage road information for optimizing driving behavior in autonomous vehicles, 

leading to a reduction in fuel consumption. The environmental advantages of 

FCHEVs stem from their ability to generate only water during electricity production 

without emitting harmful gases, while an appropriate power distribution control 

strategy through the EMS can minimize hydrogen consumption. The combined 

benefits of energy-efficient driving in FCHEVs, including reduced fuel consumption 
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and minimized emissions, yield significant environmental benefits. However, the 

optimization of vehicle speed to enhance energy-efficient driving, as well as the 

optimization of power distribution between batteries and fuel cells, represents 

significant challenges that require attention. The execution of both optimizations 

simultaneously presents a formidable challenge due to the large computational 

requirements involved. Moreover, the implementation of optimal control strategies 

in real-world driving scenarios is complicated by the need for advanced knowledge 

of future conditions, as well as the long computation times required.  

To overcome these obstacles, current research in this area have focused on the 

development of driving speed control and power distribution strategies utilizing a 

variety of methods such as rule-based approaches, optimization techniques, and 

neural networks. Wang et al. developed a system that uses road gradient information 

to optimize the energy consumption of connected and automated vehicles (CAVs) by 

generating speed profiles through model predictive control (MPC) [10]. Lee et al. 

presents an eco-driving control strategy based on a model-based RL method for 

electric vehicles. The model-free RL is utilized for evaluating driving conditions, 

while incorporating domain knowledge of vehicle dynamics to improve learning 

efficiency. [11]. The development of a power distribution control strategy for hybrid 

systems, such as fuel cell vehicles, has been investigated using a methodology 

similar to that employed in the field of energy-efficient speed control. Ahmadi et al. 

proposed a new power sharing method to develop an intelligent control technology 

for energy management of fuel cell vehicles and used a genetic algorithm to adjust 

the parameters of Fuzzy Logic Control [12]. Lin et al. conducted a study on the 

power distribution optimization of fuel cell vehicles when driving uphill, utilizing 

dynamic programming based on the equivalent consumption minimization strategy 

(ECMS) [13]. Zheng et al. developed an power distribution strategy for a fuel cell 

electric bus by utilizing reinforcement learning with prioritized experience replay 
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(PER) [14]. Zhou et al. developed a state-of-charge (SOC) regulator for a hybrid 

system that consists of multiple fuel cell stacks using deep deterministic policy 

gradient [15]. The study of methods for jointly addressing speed control for energy-

efficient driving and power distribution strategies for hybrid systems primarily have 

employed optimization techniques. Kim et al. introduced co-optimization and 

sequential optimization techniques for optimal speed profiling and power 

management, employing Pontryagin's minimum principle (PMP) optimization 

method to ascertain the appropriate control actions for the vehicle, including 

regeneration, braking, propulsion, coasting, and cruising [16]. Nie et al. employed 

model predictive control to tackle the reference speed and fuel management 

challenges of fuel cell vehicles, incorporating battery degradation into their approach 

[17]. 

The studies mentioned above demonstrate that EMS and energy-efficient speed 

control methods, which prioritize fuel efficiency, make a significant contribution to 

reducing fuel consumption while maintaining the driving performance of the vehicle. 

However, simultaneously addressing the issues of an energy-efficient speed control 

system and the power distribution strategy of a hybrid system with an optimization 

algorithm presents several challenges. Firstly, although the optimal solution can 

demonstrate the potential of the system, its real-time applicability is limited due to 

the extended time required for calculations. Secondly, using a discrete action can 

lead to errors in presenting a solution, as it can result in unrealistic simulations of 

vehicle speed control and battery power output. In addition, the instability of the 

PEMFC, which is the primary power source for FCHEVs, can significantly affect 

the performance of the vehicle. Failure to consider PEMFC instability can lead to 

large decreases in performance. Common PEMFC issues include flooding and 

drying. Flooding is a common issue in PEMFCs that occurs at high current densities, 

and it reduces the efficiency of fuel usage by blocking the gas diffusion path and 
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catalyst layer. The flooding phenomenon leads to an accumulation of excess water 

in the membrane electrode assembly (MEA), which restricts the diffusion of 

reactants and inhibits their access to active sites. As a result, the performance of the 

PEMFC deteriorates, and the fuel consumption increases. The excess water in the 

MEA also creates a back pressure that restricts the removal of product water from 

the cell. This back pressure further exacerbates the flooding problem, as it causes 

more water to accumulate in the cell. Moreover, the accumulation of excess water in 

the cell can also lead to a drop-in cell voltage, which further reduces the performance 

of the PEMFC [18-21]. Conversely, when the PEMFC experiences dehydration, the 

membrane's water content diminishes, leading to a considerable decrease in the 

PEMFC's electrical conductivity. This increase in ohmic resistance can limit the 

power output and reduce the cell efficiency. Drying also affects the mechanical 

properties of the membrane, leading to cracks, delamination, and a reduction in its 

durability. Additionally, drying can cause the membrane to shrink, leading to a loss 

of contact between the catalyst layer and the membrane, which can result in a further 

reduction in the performance of the PEMFC [22, 23]. Therefore, it is crucial to 

develop effective strategies to mitigate flooding and drying in PEMFC to ensure their 

stable and efficient operation. In this regard, power control strategies for the 

electronic control unit (ECU) of PEMFCs have been identified as an effective 

approach to avoid flooding and drying. By adjusting the required power to the 

PEMFC, the water content of the cell can be optimized to prevent both flooding and 

drying [24, 25]. By lowering the required power for PEMFC through vehicle speed 

control and battery assist, the water content of the cell can be optimized to prevent 

both flooding and drying. 

As previously noted, there are challenges to be addressed in deploying an 

energy-efficient driving assistance system for FCHEVs. This thesis presents a model 

that provides concurrent references for vehicle driving speed and power distribution, 
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which is capable of real-time control and yields continuous action. Additionally, the 

model is designed to consider errors associated with moisture in PEMFCs, with the 

aim of minimizing performance degradation during driving. 

1.3. Thesis Outlines 

 

This thesis proposes the use of deep deterministic policy gradient (DDPG), a 

variant of deep Q-network (DQN), to address the aforementioned issues related to 

energy-efficient driving for FCHEVs. Specifically, the DDPG model is utilized to 

simultaneously optimize energy-efficient speed control, as well as power distribution 

between the battery and fuel cell. The reinforcement learning model of the DDPG 

framework is trained to present the driving speed and the distribution of battery 

power, based on the state of the vehicle and road geographical information obtained 

from V2I communication. Additionally, a diagnostic model is developed to detect 

flooding and drying in PEMFC, which can then be incorporated into an energy-

efficient driving assistance system to prevent performance degradation. Chapter 2 of 

this thesis introduces a model for FCHEVs that is based on actual PEMFC 

experiments. The developed vehicle model is then validated. In Chapter 3, a driving 

control and power distribution model for a fuel cell hybrid vehicle is trained using 

DDPG. Chapter 4 analyzes the influence of PEMFC flooding and drying and 

develops a model that considers performance degradation. Chapter 5 evaluates the 

generality of the proposed driving assistance system and assesses its performance 

with and without online learning. Finally, Chapter 6 summarizes the conclusions of 

this thesis and outlines future plans for research in this area. 

⚫ Chapter 2 presents the modeling of FCHEVs with a parallel hybrid 

system that utilizes a PEMFC as the main power source. The power of 
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each component is calculated based on the vehicle's required 

acceleration and the efficiency of each component. The PEMFC and 

battery are designed to adequately meet the required power based on 

the specific hybrid system. To ensure the accuracy of the modeling, 

experiments are conducted under various conditions. The 

experimental data collected includes the temperature of the cell and 

the relative humidity of each electrode. Based on this data, models of 

the PEMFC are developed using various coefficients and map data. To 

validate the accuracy of the developed PEMFC modeling, the 

outcomes are compared to the experimental results. 

⚫ Chapter 3 describes the development of controllers for energy-

efficient driving and power distribution in FCHEVs. The controllers 

are learned using a deep reinforcement learning algorithm called 

DDPG, which is based on the vehicle state and geographical 

information of the road. The FCHEVs model developed in Chapter 2 

is driven on test roads with varying grades to investigate the optimal 

driving speed for minimizing fuel consumption, and to determine the 

optimal power distribution between the fuel cell and energy storage 

system. A reward function is designed to include the fuel consumption, 

driving time, and SOC reference, and the control model is trained 

through continued driving to obtain the optimal reward. The trained 

model's performance is evaluated against the optimal results and 

typical control methods to assess its effectiveness. This chapter 

provides a detailed account of the DDPG algorithm and the 

methodology used to develop the controllers for energy-efficient 

driving and power distribution in FCHEVs. 
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⚫ In Chapter 4, a driving control and power distribution system is 

developed for FCHEVs that considers the issues of flooding and 

drying, which are known to be critical defects in PEMFCs. 

Experiments on PEMFC cells under extreme conditions conducted, 

deliberately causing flooding and drying, in order to investigate their 

effects on the cells' performance. Through the analysis of the voltage 

pattern during flooding and drying, an approximate model for 

performance degradation is developed. Additionally, a system for 

diagnosing flooding and drying is established using the Long Short-

Term Memory (LSTM) and bootstrap aggregation (bagging) method, 

based on time-series experimental data. By integrating the flooding 

and drying diagnosis model with the DDPG learning process, an 

optimal driving technique and energy management system strategy 

that considers flooding and drying are established. 

⚫ Chapter 5 focuses on evaluating the generalizability of the system 

developed in the preceding chapters, as well as investigating the 

performance of a DDPG-based online learning system for driving 

control and power distribution. The objective of this chapter is to 

evaluate the models in real-world road environment and determine 

their capacity to adjust to different driving conditions. The existing 

model is compared and analyzed with the model incorporating online 

learning. 

⚫ In Chapter 6, the summary of the results obtained from the 

development of energy-efficient driving assistance systems for 

FCHEVs is presented. The main contributions of each of the previous 

chapters are reviewed and their significance in advancing the practical 



 

 15 

implementation of FCHEVs is discussed. The limitations of the 

research are acknowledged and areas for future exploration are 

suggested, particularly in light of the expanding availability of 

information and technology. The chapter concludes with a discussion 

of the potential implications of the work for the broader fields of 

transportation and sustainable energy. 
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Chapter 2. Modeling of Fuel Cell Hybrid Vehicles 

based on PEMFC Experiments 

 

2.1. Introduction 

 

In this chapter, modeling of FCHEVs, which are target vehicles of energy-

efficient driving assistance system, is performed based on experiments conducted on 

a PEMFC, which is a popular choice for FCHEVs power sources due to its high 

efficiency, low operating temperature, and fast response. The FCHEVs structure 

considered in this study is composed of a parallel hybrid system, as depicted in 

Figure 7, where the fuel cell stack and battery are responsible for outputting power. 

This hybrid system is a common configuration for FCHEVs and helps improve their 

overall efficiency by utilizing both the fuel cell stack and battery as power sources. 

The efficiency of each component, including the fuel cell stack, battery, and motor, 

 

 

Figure 7. Powertrain structure of an FCHEVs 
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is considered in the calculation of the vehicle's traction power based on vehicle 

dynamics. The specifications of the vehicle, such as its weight, dimensions, and 

maximum power output, are presented in Table 1. To develop the vehicle model, the 

data used was referenced from a commercial program called Autonomie, which was 

developed at the Argonne National Laboratory and is widely used for FCHEVs 

modeling.  

The experimental setup used for the PEMFC is thoroughly described. This 

includes a detailed account of the fuel cell, as well as the hydrogen and air supply 

systems. In order to evaluate the performance of the PEMFC, various test protocols 

were utilized, including polarization curves and power density measurements. These 

tests were conducted to measure the output power of the fuel cell under various 

conditions. Based on the experimental data, a mathematical model was created to 

simulate the operation of a PEMFC. The model considers the complex 

 

Table 1. Specifications of the FCHEVs model 

 

Parameter Value 

Fuel Cell stack power 50 kW 

Battery capacity 6.5 Ah 

Electric motor power 60 kW 

Vehicle mass 1500 kg 

Final differential gear Ratio: 10 / Efficiency: 98 % 

Converter efficiency 95 % 

Tire radius 0.305 m 

Front area 1.8 m2 

Air drag coefficient 0.29 

Rolling resistance coefficient 0.007 
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electrochemical reactions, as well as the transfer of mass, momentum, and heat. It is 

validated against experimental data. Overall, the chapter provides a comprehensive 

overview of the experimental and modeling approaches used to investigate the 

performance of a PEMFC-based FCHVs. 

 

2.2. Design and experiments of PEMFC 

 

PEMFC, the main power source of FCHEVs, is composed of components such 

as stack, channel of each electrode, and humidifier. In order to develop and validate 

a mathematical model for each component, a single cell is fabricated, and 

experiments are conducted to collect data. The single cell is illustrated in Figure 8 

and consists of an endplate, a current collector with channel, gaskets, gas diffusion 

layers (GDLs), an MEA, and a bipolar plate. The specifications of the PEMFC single 

 

 

Figure 8. Schematic of a single PEMFC 
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cell are outlined in Table 2. The experimental setup, depicted in Figure 9, includes 

fuel and air processing systems, temperature sensors in the fuel cells and inlet gas 

pipes, and a potentiostat for measuring voltage and impedance modulus. During the 

experiments, the PEMFC is operated using this setup, and data are recorded and 

analyzed. Experimental investigations are carried out, involving the manipulation of 

three independent variables, namely, the relative humidity within the range of 50% 

to 120%, the temperature of the cell spanning from 40 to 80 degrees, and the current 

density ranging from 0 to 0.8. The data collected include cell temperature, humidity 

of the anode and cathode, cell voltage, impedance modulus, and current density, and 

were gathered over a 100-hour period. The data obtained from these experiments are 

analyzed and utilized to develop mathematical models for each component of 

PEMFCs, which are subsequently validated through further model driving test. 

 

Table 2. Specifications of PEMFC for experiments 

 

Specifications of a single PEMFC 

Endplates Hard-anodized aluminum 

Current collector Gold-plated stainless steel 

Flow-field plate 

Graphite 

51-channel parallel channel 

(channel width: 0.3 mm) 

Gas diffusion layer SGL® 36BB (PTFE treated) 

Membrane Nafion® 211 

Catalyst loading amount 

(𝑚𝑔/𝑐𝑚2)  
Anode 0.12 / Cathode 0.12 

Active area (𝑐𝑚2) 9.0 
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Figure 9. Configuration of experimental apparatus for PEMFC operations 
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2.3. FCHEVs Modeling 

 

This thesis describes the development of a backward-looking vehicle simulator. 

In a forward-looking simulator, the driver model issues commands for the accelerator 

and brake pedals to follow a predefined target speed profile, and the vehicle's 

components respond accordingly. In contrast, the backward-looking simulator 

analyzes the operation of each vehicle component to determine how they function 

together. Once the required speed of the vehicle is determined, it is calculated 

backward from the wheels to the power source without using a driver model. The 

backward-looking simulator is commonly used for developing control algorithms or 

evaluating the fuel economy performance of the vehicle, as it is more time-efficient 

compared to the forward-looking simulator [26]. The adoption of quasi-steady 

models in the backward-looking simulator results in the omission of transient 

dynamics in the vehicle powertrain. To validate the proposed control strategy, the 

driving assistance system and power distribution strategy are evaluated in the 

backward-looking vehicle simulator. 

Additionally, the PEMFC semi-empirical modeling is performed based on 

experimental data. The experimental data is utilized to validate the fuel cell model, 

and determine the coefficient of the model. Semi-empirical models typically include 

simplified versions of the physical and chemical processes occurring within the fuel 

cell, resulting in reduced computational complexity compared to mechanistic models 

[27]. 
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2.3.1. Powertrain Modeling 

 

Based on the mathematical model of longitudinal vehicle dynamics, it is 

calculated from the vehicle's required speed to the main power source [28]. The 

wheel torque 𝑇𝑤ℎ𝑒𝑒𝑙, calculated by vehicle acceleration �̇�, is given by the following 

equation. 

 𝑇𝑤ℎ𝑒𝑒𝑙 =
𝑚𝑣𝑒ℎ�̇� + 𝐹𝑙𝑜𝑠𝑠

𝑅𝑡𝑖𝑟𝑒
 (3) 

 𝐹𝑙𝑜𝑠𝑠 =
1

2
𝐶𝑑𝐴𝑓𝜌𝑎𝑖𝑟𝑣2 + 𝜇𝑟𝑜𝑙𝑙𝑚𝑣𝑒ℎ𝑔𝑐𝑜𝑠𝜃 + 𝑚𝑣𝑒ℎ𝑔𝑠𝑖𝑛𝜃 (4) 

 

where 𝑚𝑣𝑒ℎ is the total weight of the vehicle, and 𝐹𝑙𝑜𝑠𝑠 is the resistance loss 

occurring while the vehicle is driving. The first term of 𝐹𝑙𝑜𝑠𝑠  represents the 

aerodynamic resistance, which is dependent on the aerodynamic drag coefficient 𝐶𝑑, 

the frontal area of the vehicle 𝐴𝑓, and the density of the surrounding air 𝜌𝑎𝑖𝑟. The 

second term represents the rolling resistance, which is determined by the rolling 

resistance coefficient 𝜇𝑟𝑜𝑙𝑙 , the gravity 𝑔 , and the road gradient 𝜃 . This term 

accounts for the resistance encountered by the vehicle due to the deformation of the 

tires and the road surface as well as the gravitational force acting on the vehicle. The 

third term represents the gradient resistance encountered when driving a vehicle 

uphill or on an incline. 

The required power equation for PEMFC and batteries is determined based on 

the motor's torque and angular velocity, which is calculated as follows: 

 𝑃𝑟𝑒𝑞 =
𝜂𝑚𝑜𝑡

−𝑠𝑔𝑛(𝑇𝑚𝑜𝑡)
𝑇𝑚𝑜𝑡𝜔𝑚𝑜𝑡

𝜂
𝑖𝑛𝑣

 (5) 
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 𝑃𝑟𝑒𝑞 = (𝜂𝑑𝑐
𝑠𝑔𝑛(𝑃𝑏𝑎𝑡)

𝑃𝑏𝑎𝑡 + 𝜂𝑑𝑐𝑃𝑓𝑐) (6) 

 

where 𝑇𝑚𝑜𝑡(= 𝜂𝑓𝑇𝑤ℎ𝑒𝑒𝑙 𝑟𝑓⁄ )  is the motor torque, which is calculated by 

dividing the wheel torque by the final differential fear ratio 𝑟𝑓, ωmot(= 𝑟𝑓𝑣 Rtire⁄ ) 

is the angular speed of the motor, 𝜂𝑖𝑛𝑣 is the efficiency of the AC/DC inverter, and 

𝜂𝑚𝑜𝑡 is the efficiency of the motor, which is defined as a function of motor speed 

and torque, as shown in Figure 10. The power requirements are satisfied by 

distributing power in a suitable manner between the battery and the PEMFC stack. 

Equivalent circuit models are frequently utilized in battery modeling to 

represent the charging and discharging dynamics since they are capable of 

expressing internal variations using specific electrical equations and possess clear 

physical interpretations. This study employs a first-order resistance model, which 

comprises an internal resistance and an open circuit voltage source, as illustrated in 

Figure 11 [29, 30]. The dynamics for SOC, which is derived from battery power, can 

be expressed as follows: 

 𝑆𝑂𝐶̇ = −
1

𝑄𝑏𝑎𝑡

(𝑉𝑜𝑐 − √𝑉𝑜𝑐 − 4𝑃𝑏𝑎𝑡𝑅𝑖𝑛𝑡)

2𝑅𝑖𝑛𝑡
 (7) 

 

where 𝑄𝑏𝑎𝑡 is the battery capacitance, 𝑉𝑜𝑐 and 𝑅𝑖𝑛𝑡 are open-circuit voltage 

and internal resistance respectively, which vary according to SOC based on the map 

depicted in Figure 12.  
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Figure 10. Efficiency and torque limit of the electric motor 

 

Figure 11. Equivalent circuit diagram of battery 
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Figure 12. open-circuit voltage and internal resistance according to SOC 

 

2.3.2. Semi-empirical Model of PEMFC 

 

Practical implementation of the PEMFC is limited by several factors, including 

the lack of accurate models for predicting its performance. Among the available 

models, the semi-empirical approach is widely used due to its simplicity and 

accuracy [31-33]. In this model, the PEMFC is treated as a set of interconnected 

processes, and the overall performance is calculated by combining experimental data 

and theoretical calculations. Table 3 displays the parameters utilized in the model. 

The fuel cell performance model relates the output power of the fuel cell to the 

operating conditions, such as the pressure, flow rate, and temperature of the reactants. 

This model is based on empirical data obtained from experimental measurements. 

The semi-empirical model of PEMFC predicts the performance of the fuel cell under  
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Table 3. Parameters of PEMFC model 

 

Properties Values 

Number of cells 400 

Active area (cm2) 270 

Target temperature (K) 352.983 

Membrane thickness (μm) 125 

Gas channel width (m) 0.01 

Number of channels 8 

Density of dry membrane (kg/cm3) 0.002 

Equivalent weight of dry membrane (kg/mol) 1.1 

Gas diffusion layer thickness (μm) 250 

Overall specific heat of MEA (J/kgK) 870 

 

various operating conditions. This is done by fitting the experimental data to the 

theoretical model and adjusting the parameters to match the experimental results. 

The voltage of a PEMFC can be calculated by considering the Nernst equation 

and the various sources of voltage losses [34]. The Nernst equation relates the cell 

voltage of an electrochemical reaction to the standard potential, the activities of the 

reactants and products, and the quantity of electrons involved in the reaction. For the 

PEMFC, the Nernst equation can be written as: 

 𝐸𝑛𝑒𝑟𝑛𝑠𝑡 = 𝐸0 −
𝑅𝑇

𝑛𝐹
𝑙𝑛

𝑝𝐻2𝑂

𝑝𝐻2
𝑝𝑂2

1 2⁄
 (8) 

 

where 𝐸0 is the standard-state reversible voltage, 𝑅 is the gas constant, 𝑇 is 

the stack temperature, 𝑛 is the number of electrons transferred in the reaction, 𝐹 
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is the Faraday constant, 𝑝𝐻2𝑂  is the water partial pressure, 𝑝𝐻2
  is the hydrogen 

partial pressure, and pO2
 is the oxygen partial pressure. 

The voltage loss can be categorized into three main types: activation loss, ohmic 

loss, and concentration loss. Activation loss is caused by the kinetic limitations of 

the electrochemical reactions taking place at the electrodes. Various factors like 

temperature, catalyst activity, and reactant concentration can affect the activation 

overpotential needed to initiate the electrochemical reactions. The activation loss can 

be expressed as: 

 𝜂𝑎𝑐𝑡 =
𝑅𝑇

𝛼𝑛𝐹
𝑙𝑛

𝑗𝑐𝑒𝑙𝑙

𝑗0
 (9) 

 

where 𝑗𝑐𝑒𝑙𝑙  is the current density of the cell, and  𝑗𝑙𝑒𝑎𝑘  represents the 

parasitic losses resulting from various sources, such as current leakage, gas crossover, 

and undesired side reactions. 𝛼 and 𝑗0 are the transfer coefficient and exchange 

current density respectively, which can be determined by Tafel equation. Specifically, 

the Tafel slope and the intercept of the Tafel equation obtained from experimental 

data, as shown in Figure 13, can be used to calculate 𝛼 and 𝑗0. 

Ohmic loss, also known as the internal resistance of the fuel cell, is the voltage 

drop that occurs across the membrane and the electrodes due to the resistance of the 

materials and interfaces. Several factors contribute to the magnitude of the ohmic 

loss, such as the membrane's thickness and conductivity, the electrodes' surface area 

and thickness, and the contact resistance between the electrodes and the membrane. 

The ohmic loss is dependent on the conductivity of the Nafion membrane, which in 

turn is influenced by its water content [35, 36]. The ohmic loss can be quantified 

using the following equation: 
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Figure 13. Tafel approximation based on PEMFC experiments 

 

𝜆𝑎𝑛,𝑐𝑎 = {

0.043 + 17.81𝜑𝑎𝑛,𝑐𝑎 − 39.85𝜑𝑎𝑛,𝑐𝑎
2 + 36.0𝜑𝑎𝑛,𝑐𝑎

3 ;                     

                                                                                for 0 < 𝜑𝑎𝑛,𝑐𝑎 ≤ 1

14 + 1.4(𝜑𝑎𝑛,𝑐𝑎 − 1)                                        for 1 < 𝜑𝑎𝑛,𝑐𝑎 ≤ 3

 (10) 

 𝜎303𝐾(𝜆𝑎𝑛,𝑐𝑎) = 0.005193𝜆𝑎𝑛,𝑐𝑎 − 0.00326 (11) 

 𝜎(𝑇, 𝜆) = 𝜎303𝐾(𝜆𝑎𝑛,𝑐𝑎) exp [1268 (
1

303
−

1

𝑇
)] (12) 

 𝐴𝑆𝑅𝑜ℎ𝑚𝑖𝑐 = 𝑡𝑚 𝜎(𝑇, 𝜆)⁄  (13) 

 𝜂𝑜ℎ𝑚𝑖𝑐 = 𝑗𝑐𝑒𝑙𝑙𝐴𝑆𝑅𝑜ℎ𝑚𝑖𝑐 (14) 

 

where 𝜆𝑎𝑛,𝑐𝑎 is the water content, 𝜑𝑎𝑛,𝑐𝑎 refers to the relative humidity, 𝜎 

indicates the conductivity of the membrane, 𝑡𝑚 represents the membrane thickness, 

and 𝐴𝑆𝑅𝑜ℎ𝑚𝑖𝑐 is the area-specific resistance. 
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Concentration loss is a common phenomenon that occurs in PEMFC due to 

limitations in mass transport. It is caused by the depletion of reactants near the 

catalyst layer, leading to reduced electrochemical reaction rates. Various factors can 

influence this form of loss, including the rate of reactant flow, the thickness and 

porosity of the electrode and membrane layers, and the solubility of the reactants in 

the electrolyte. [37]. The reactants, hydrogen, and oxygen, are consumed at the 

cathode and anode, respectively. The depletion of reactants in the reaction zone 

causes a concentration gradient that reduces the rate of the reaction. The 

concentration loss is proportional to the current density, and it can be expressed by 

the following equation: 

 𝜂𝑐𝑜𝑛𝑐 = (
𝑅𝑇

𝑛𝐹
) (1 +

1

𝛼
) 𝑙𝑛

𝑗𝐿

𝑗𝐿 − 𝑗𝑐𝑒𝑙𝑙
 (15) 

 

where 𝑗𝐿 represents the limiting current density. 

Finally, the cell voltage of a PEMFC that considers activation loss, ohmic loss, 

and concentration loss is calculated as follows: 

 𝑉𝑐𝑒𝑙𝑙 = 𝐸𝑛𝑒𝑟𝑠𝑛𝑡 − 𝜂𝑎𝑐𝑡 − 𝜂𝑜ℎ𝑚𝑖𝑐 − 𝜂𝑐𝑜𝑛𝑐 (16) 

 

The polarization curve of the PEMFC model corresponding to the test run of 

FCHEVs is presented in Figure 14. The operation was mainly carried out at low 

current densities, and the curve exhibits a similar field pattern to the experimental 

data. Moreover, the power density as a function of current density shows analogous 

results to those obtained in the experiments. 
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Figure 14. Polarization curve of the semi-empirical PEMFC model 
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Chapter 3. Energy-efficient Driving Considering 

Power Distribution of FCHEVs using DDPG. 

 

3.1. Introduction 
 

This chapter outlines the development of an energy-efficient driving assistance 

system that utilizes the vehicle model developed in the previous chapter. The 

objective of the system is to provide speed scenarios that minimize fuel consumption 

while the vehicle is driving on a test road with varying gradients. Furthermore, the 

system provides the power distribution strategy for the FCHEVs based on the 

required power for driving. The system considers both the internal state of the vehicle 

and external geographic information. To develop this system, the DDPG method, 

which is a type of actor-critic algorithm, is employed. 

DDPG is a kind of reinforcement learning algorithm suitable for training 

policies in scenarios with continuous action spaces. It is a combination of deep 

learning and policy gradient methods, where the policy is learned directly from the 

state and action space of an environment. The DDPG algorithm comprises two neural 

networks: an actor and a critic network. The actor network receives the current state 

of the environment as input and produces the best action for the agent to execute. 

The critic network, on the other hand, evaluates the action taken by the actor network 

by estimating the Q-value of the current state and action [38]. 

The actor-critic approach has several advantages over other RL algorithms like 

Q-learning, in which the agent learns the optimal policy by estimating the optimal 

Q-value function. In contrast, the actor-critic approach can learn a policy directly 

without estimating the Q-values. This approach is especially useful when the action 
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space is continuous since estimating the Q-value for each possible action becomes 

impractical. Additionally, the actor-critic approach enables the agent to learn from 

its own experiences and enhance its performance over time by adjusting the policy 

and Q-value estimation. This makes DDPG a popular choice for developing complex 

control systems, such as autonomous driving, robotics, and game playing [39-41]. 

One key feature of DDPG is the use of a replay buffer, which stores the agent's 

experiences in a memory buffer. This buffer is then sampled randomly to train the 

neural networks, ensuring that the agent learns from a diverse set of experiences. An 

additional significant aspect involves the employment of target networks. These 

networks are duplicates of the actor and critic networks, serving to produce target Q-

values and target actions throughout the training process. By using target networks, 

the agent's estimates of the Q-value and policy become more stable and less prone 

to oscillations [42]. DDPG is a model-free reinforcement learning method that 

combines the strengths of DQN, a type of value iteration, and policy iteration. A 

taxonomy of reinforcement learning algorithms is illustrated in Figure 15. 

 

Figure 15. Classification for model-free reinforcement learning. 
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3.2. Learning Process for DDPG Agents  
 

In this section, a suitable reward function is proposed for DDPG to enable 

energy-efficient driving and power distribution of FCHEVs. Due to constraints on 

vehicle specifications such as fuel cell power, battery power, and motor power, as 

well as steep slopes of roads, the range of actions for the vehicle is inevitably 

restricted. Consequently, the action space is updated at each step based on the 

vehicle's state and location. 

 

3.2.1. DDPG Algorithm Principle 

 

In this study, a distance-based approach is employed in the context of vehicle 

driving scenarios. The reason for this is that it is relatively straightforward to obtain 

topographical data regarding the road based on the vehicle's location, and there is 

minimal room for error. Within this framework, the DDPG algorithm is utilized to 

construct a system that generates actions for actions at each incremental distance 

step. 

The DDPG algorithm framework implemented for driving FCHEVs is 

illustrated in Figure 16. This experience replay buffer, denoted as ℛ, represents a 

collection of prior experiences. During the operation of the vehicle model developed 

in the previous chapter, the internal and external states 𝑠 of the vehicle, actions 𝑎, 

the next state 𝑠′  after performing the action in the current state, the associated 

reward 𝑟, and an indicator variable, 𝑑, denoting whether the state is terminal are all 

stored in a replay memory. Subsequently, data is extracted from this replay buffer 

and employed for training the deep neural network. The replay buffer accumulates 
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data as the driving progresses step by step, and the oldest data is replaced with the 

most recent data. As there exists a potential risk of overfitting if only recent data is 

used for training, data samples for learning are randomly selected from the replay 

memory.  

The neural networks involved in the DDPG algorithm are trained by extracting 

mini-batches of data from the replay memory and updating the parameters of both 

the actor and critic networks [43]. The distinguishing feature of DDPG, in contrast 

to other policy-based techniques, is that it uses a deterministic policy. Specifically, 

the actor function accepts the state as input and outputs a policy π whose probability 

distribution function corresponds to the Dirac delta function of a particular value. 

The deterministic target policy allows the Q-value, the action-value function, to be 

expressed by the Bellman equation as: 

 𝜋: 𝑆 → 𝑝(𝑎𝑡|𝑠𝑡) = 𝛿(𝑎𝑡 − 𝑎𝑡
∗) (17) 

 𝑄𝜙(𝑠𝑡, 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1~𝐸[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄𝜙(𝑠𝑡+1, 𝜇𝜃(𝑠𝑡+1))] (18) 

 

where 𝑆 is the state space, 𝑎𝑡
∗ is the target action, 𝛾 is the discounting factor, 

and 𝑄𝜙 is the 𝑄-value generated by the critic networks, which serves to evaluate 

the values of states and actions. The actor networks are trained using the policy 

gradient approach. The gradient of the objective function J with respect to the 

parameter 𝜃 of the actor networks is given by the following expression: 

 
𝛻𝜃𝐽 ≈ 𝔼𝑠𝑡~𝜌𝛽[𝛻𝜃𝑄(𝑠, 𝑎|𝜙)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡)]                                   

= 𝔼𝑠𝑡~𝜌𝛽[𝛻𝑎𝑄(𝑠, 𝑎|𝜙)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡)𝛻𝜃𝜇(𝑠|𝜃)|𝑠=𝑠𝑡
] 

(19) 
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Critic networks are action-value functions composed of parameters 𝜙. They 

are trained using stochastic gradient descent to minimize the loss function of Mean 

Squared Bellman Error (MSBE), as expressed by the following equation: 

 𝐿(𝜙, ℛ) = 𝔼(𝑠,𝑎,𝑟,𝑠′,𝑑)~ℛ [(𝑄𝜙(𝑠𝑡, 𝑎𝑡) − 𝑦𝑡)
2

] (20) 

 𝑦𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾(1 − 𝑑)𝑄𝜙𝑡𝑎𝑟𝑔
(𝑠𝑡+1, 𝜇𝜃𝑡𝑎𝑟𝑔

(𝑠𝑡+1)) (21) 

 

The DDPG algorithm is an off-policy algorithm and therefore utilizes target 

actor networks and target critic networks. At each step of the algorithm, the Q-

networks are updated and their parameters are modified. However, this can lead to 

convergence issues since the parameters of the updated Q-networks are employed 

when calculating the target value. In order to address the convergence issues caused 

by the use of the parameters of the updated Q-networks when calculating the target 

value, target networks with parameters copied from the actor and critic networks are 

used instead to calculate the target value. To update the weights of the target 

networks, a soft target update is used. Specifically, the soft target update is 

represented as follows: 

 𝜙𝑡𝑎𝑟𝑔 ← 𝜏𝜙 + (1 − 𝜏)𝜙𝑡𝑎𝑟𝑔 (22) 

 𝜃𝑡𝑎𝑟𝑔 ← 𝜏𝜃 + (1 − 𝜏)𝜃𝑡𝑎𝑟𝑔 (23) 

 

where 𝜏  regulates the rate at which the weights of the target networks are 

updated. Exploration is a crucial aspect of the learning process as it allows the agent 

to encounter diverse states and derive an optimal solution. To facilitate exploration 
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in the continuous action space of DDPG, random noise is added to the actor policy. 

The policy of the actor with noise can be represented as: 

 𝑎𝑡 = 𝜇 𝜃(𝑠𝑡|𝜃𝑡) + 𝒩 (24) 

 

3.2.2. Development of the Agents for Speed Control and 

Power Distribution 

In the proposed system, the DDPG algorithm is utilized, using the internal and 

external states of the vehicle as input values. The state used for learning is composed 

of battery SOC, vehicle speed 𝑣𝑡, and road gradient. The internal controller of the 

vehicle receives two actions from the learned model. The first action is the target 

speed for the vehicle in the next time step, which represents the desired acceleration. 

The second action corresponds to the battery's output power. A positive value 

signifies power assistance, while a negative value indicates charging. When 

decelerating, coasting, or driving downhill, the vehicle uses regenerative braking, 

whereas in other cases, it is charged with the output of the fuel cell. As actions are 

executed, rewards are calculated. 

Table 4. Configuration of neural networks 

 

Configuration Actor networks Critic networks 

Input data State 𝑠𝑡 
State 𝑠𝑡, Action 𝑎𝑡 

(Concatenate layer) 

Data scaling Min-Max scaler 

Input layer Node: 64 (Relu) 

Hidden layer 1 Node: 64 (Relu) 

Hidden layer 2 Node: 64 (Relu) 

Output layer 2 (tanh) 1 (-) 
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Table 4 and Table 5 detail the specific configuration of the actor networks and 

critic networks, as well as the hyperparameters utilized in the learning process. In 

order to train the agent, the vehicle model navigates through a test road, which is 

depicted in Figure 17. To enhance the agent's generality, the test road is comprised 

of a variety of gradients, with eight distinct types included. The learning process was 

conducted employing an Intel Core i7-8700 CPU, a NVIDIA GeForce RTX 3070 Ti 

GPU, 64 GB of RAM, and TensorFlow 2.5.0.  

 

3.2.3. Adaptive Action Space 

 

The vehicle driving system has constraints for driving due to the specification 

limits of each component of the vehicle powertrain. The constraints on acceleration 

and battery power policies, output by the Agent, undergo flexible changes that 

depend on the current state of the vehicle and the road conditions. When a policy 

proposed within a fixed action space is implemented, it may result in exceeding the 

constraints due to the characteristics of the Backward-looking simulator. Thus, in 

order to effectively train the DDPG agents within the constraints, a dynamically 

adaptive action space is necessary. This section presents an approach for developing 

such an action space that flexibly adjusts to the current vehicle state, allowing for 

optimal performance within the specified constraints. By considering the states at 

each step, the proposed action space can effectively regulate the agent's output policy 

and maintain the vehicle's performance within the prescribed boundaries, even when 

facing changing road conditions or varying vehicle states.  
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Table 5. Hyperparameters of learning process 

 

Hyperparameters Values 

Experience memory buffer size [103, 104, 105] 

Learning rate of actor networks 10−5 

Learning rate of critic networks 10−5 

Discount factor 𝛾 0.99 

Update parameter for target networks 𝜏 [10−1, 10−2, 10−3, 10−4] 

Batch size 32 

Optimizer Adam 

 

 

Figure 17. Test Road as an environment for Learning Agents through Vehicle 

Navigation 

 

The adaptive action space is established according to the specification 

constraints of each component of the vehicle. The powertrain dynamics are 

constrained as follows: 

 𝑇𝑚𝑜𝑡,𝑚𝑖𝑛(𝜔𝑚𝑜𝑡) ≤ 𝑇𝑚𝑜𝑡(𝑡) ≤ 𝑇𝑚𝑜𝑡,𝑚𝑎𝑥(𝜔𝑚𝑜𝑡) (26) 
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 𝐼𝑏𝑎𝑡,𝑚𝑖𝑛(𝑆𝑂𝐶) ≤ 𝐼𝑏𝑎𝑡(𝑡) ≤ 𝐼𝑏𝑎𝑡,𝑚𝑎𝑥(𝑆𝑂𝐶) (27) 

 𝑃𝑏𝑎𝑡,𝑚𝑖𝑛 ≤ 𝑃𝑏𝑎𝑡(𝑡) ≤ 𝑃𝑏𝑎𝑡,𝑚𝑎𝑥 (28) 

 𝑣𝑚𝑖𝑛 ≤ 𝑣(𝑡) ≤ 𝑣𝑚𝑎𝑥 (29) 

 𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥 (30) 

 

In the reinforcement learning process, in which the vehicle drives on the test 

road, the action space for the speed change 𝛥𝑣  is restricted to prevent it from 

exceeding the vehicle's speed limit and the motor's limit torque. Similarly, the action 

space for changing the 𝛥𝑆𝑂𝐶 is restricted to ensure that it does not exceed the limit 

current or limit power of the battery during power distribution. The updated action 

space at each step is defined as follows: 

 𝐴𝑡 = 𝑐𝑙𝑖𝑝(𝐴(𝜇𝜃(𝑠𝑡) + 𝒩), 𝐴𝑙𝑜𝑤 , 𝐴ℎ𝑖𝑔ℎ) (31) 

 

𝐴𝑙𝑜𝑤 
= [Δ𝑣𝑚𝑖𝑛(𝑠𝑡), Δ𝑆𝑂𝐶𝑚𝑖𝑛(𝑠𝑡)]                                                            

= [𝑚𝑎𝑥(𝛥𝑣𝑣,𝑚𝑖𝑛, 𝛥𝑣𝑚𝑜𝑡,𝑚𝑖𝑛) , 𝑚𝑎𝑥(𝛥𝑆𝑂𝐶𝐼,𝑚𝑖𝑛, 𝛥𝑆𝑂𝐶𝑝,𝑚𝑖𝑛)] 
(32) 

 

𝐴ℎ𝑖𝑔ℎ 

= [Δ𝑣𝑚𝑎𝑥(𝑠𝑡), Δ𝑆𝑂𝐶𝑚𝑎𝑥(𝑠𝑡)]                                                            
= [𝑚𝑖𝑛(𝛥𝑣𝑣,𝑚𝑎𝑥, 𝛥𝑣𝑚𝑜𝑡,𝑚𝑎𝑥) , 𝑚𝑖𝑛(𝛥𝑆𝑂𝐶𝐼,𝑚𝑎𝑥, 𝛥𝑆𝑂𝐶𝑝,𝑚𝑎𝑥)] 

(33) 

 𝛥𝑣𝑣 = 𝑣𝑙𝑖𝑚 − 𝑣(𝑡) (34) 

 𝛥𝑣𝑚𝑜𝑡 =
𝛥𝑑

𝑚𝑣𝑒ℎ
(

𝑇𝑚𝑜𝑡,𝑙𝑖𝑚𝑟𝑓𝜂𝑓

𝑅𝑡𝑖𝑟𝑒
− 𝐹𝑙𝑜𝑠𝑠) (35) 

 𝛥𝑆𝑂𝐶𝐼 = −
𝐼𝑙𝑖𝑚𝛥𝑡

𝑞𝑐𝑎𝑝
 (36) 

 𝛥𝑆𝑂𝐶𝑝 = −
𝑉 − √𝑉2 − 4𝑅𝑃𝑏𝑎𝑡

2𝑅
(

𝛥𝑡

𝑞𝑐𝑎𝑝
) (37) 
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where 𝐴𝑡 is the physical action value in the vehicle model according to the action 

of actor networks at step 𝑡, 𝐴𝑙𝑜𝑤 is minimum value of the action space, 𝐴ℎ𝑖𝑔ℎ is 

maximum value of the action space, 𝛥𝑣𝑣 and 𝛥𝑣𝑚𝑜𝑡 represents the limit on speed 

change based on the vehicle's speed constraints and the motor's limit torque 

respectively, and ΔSOCI and 𝛥𝑆𝑂𝐶𝑝 represents the limit on SOC change based on 

the limit current of the battery and the limit power of the battery respectively.  

Subsequent to receiving the policy from the actor networks, the adaptive action 

space is computed prior to executing the corresponding action on the vehicle model 

by the agent. The algorithm of the DDPG method with adaptive action space is 

summarized on Algorithm 1. 
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Algorithm 1 DDPG algorithm with adaptive action space 

Initialize critic network 𝑄(𝑠, 𝑎|𝜙)  and actor policy network 𝜇(𝑠|𝜃)  with 

random weights 𝜙 and 𝜃 

Initialize target networks 𝑄′(𝑠, 𝑎|𝜙𝑡𝑎𝑟𝑔)  and 𝜇′(𝑠|𝜃𝑡𝑎𝑟𝑔)  with weights 

𝜙𝑡𝑎𝑟𝑔 ← 𝜙 and 𝜃𝑡𝑎𝑟𝑔 ← 𝜃 

Initialize replay buffer ℛ 

 

for episode = 1 to M do 

    Initialize a random process 𝒩 for action exploration 

    Receive initial observation state 𝑠1 

 

    while t < T do 

        Select action 𝑎𝑡 = 𝜇(𝑠𝑡|𝜃) + 𝒩𝑡 according to the current policy and 

exploration noise 

 Set action space 𝐴𝑙𝑜𝑤 , 𝐴ℎ𝑖𝑔ℎ = 𝑓(𝑠𝑡) according to the function of the 

adaptive action space 

        Execute action 𝑎𝑡 and observe reward 𝑟𝑡 and new state 𝑠𝑡+1 

        Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, st+1, 𝑑) in replay buffer ℛ 

Sample a random mini-batch of 𝑁 transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, s𝑖+1, 𝑑) 

from ℛ 

        Set 𝑦𝑖 = 𝑟𝑖 + 𝛾(1 − 𝑑)𝑄′(𝑠𝑖+1, 𝜇′(𝑠𝑖+1|𝜃𝑡𝑎𝑟𝑔)|𝜙𝑡𝑎𝑟𝑔) 

        Update critic network by minimizing the loss: 

𝐿 =
1

𝑁
∑ (𝑦𝑖 − 𝑄(𝑠𝑖, 𝑎𝑖|𝜙))

2

𝑖
 

        Update actor policy network μ by maximizing the Q-value:  

𝛻𝜃𝐽 ≈=
1

𝑁
∑ 𝛻𝑎𝑄(𝑠, 𝑎|𝜙)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)𝛻𝜃𝜇(𝑠|𝜃)|𝑠=𝑠𝑖

𝑖
 

        Update target networks:  

𝜙𝑡𝑎𝑟𝑔 ← 𝜏𝜙 + (1 − 𝜏)𝜙𝑡𝑎𝑟𝑔 

𝜃𝑡𝑎𝑟𝑔 ← 𝜏𝜃 + (1 − 𝜏)𝜃𝑡𝑎𝑟𝑔 

 

         

    end while 

end for 
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3.3. Results and Discussion 

 

This section details the development of a driving system for FCHEV using the 

aforementioned DDPG algorithm. First, the reward function, which is the main 

element of reinforcement learning, is established. Subsequently, parameter tuning is 

executed to enable DDPG learning under optimal conditions. Finally, the efficiency 

of the developed driving system is assessed by evaluating its optimality in terms of 

energy consumption.  

 

3.3.1. Development of the Reward Function 

 

The reward function is a crucial element in reinforcement learning as it serves 

as an evaluation metric for an agent's behavior. It takes the current state and action 

as inputs and produces a corresponding reward value. The agent's goal is to choose 

actions that maximize the cumulative expected reward over a period of time, which 

leads to learning and improvement in performance. The primary objective of the 

proposed system is to discover optimal vehicle speed scenarios and power 

distribution strategies that minimize fuel consumption. To achieve this goal, the 

reward function includes three key components: the fuel consumption rate, driving 

time, and SOC deviation of the battery. Table 6 displays different combinations of 

these key components in the reward function. The reward function of Case 1 is the 

fuel consumption rate, and Case 2 multiplies the fuel consumption rate with the 

driving time to calculate the reward. Cases 3 and 4 incorporate a term for driving 

time into the reward functions of Cases 1 and 2, respectively, with 𝜔𝑇  as a 
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coefficient for speed control. Cases 5 and 6 introduce a term for SOC deviation from 

the SOC reference, which is set to 0.6, where 𝜔𝑠𝑜𝑐 is the coefficient that controls 

the degree to which the SOC reference is followed. Cases 7 and 8 include a term for 

the rate of change in SOC in the reward functions of Cases 5 and 6, respectively, and 

𝛾 is a correction coefficient between SOC change rate and fuel consumption rate 

according to battery and fuel cell output power.  

Figure 18 shows the driving results of the DDPG agent for the reward function 

of each case. In case 1, the term for driving time is not included in the reward 

function, resulting in the vehicle reducing its speed at the beginning of driving and 

maintaining a low speed to minimize only fuel consumption rate. Despite controlling 

the state of charge (SOC) for achieving the minimum fuel consumption rate, the 

battery output is significantly high due to the absence of a battery-related controller. 

In cases 2, 3, and 4, the driving time term is added, which leads to an increase in 

speed to reduce the overall driving time. Speed control is performed to maximize the 

reward by minimizing fuel consumption based on the road gradient. However, due 

to the absence of a term for battery control, the battery SOC decreases almost linearly. 

Table 6. Cases of the reward function combining key components 

 

Cases Reward function 

1 𝑟 = −�̇�𝑡 

2 𝑟 = −𝑚𝑡 = −�̇�𝑡𝛥𝑇𝑡 

3 𝑟 = −(�̇�𝑡 + 𝜔𝑇𝛥𝑇𝑡) 

4 𝑟 = −(𝑚𝑡 + 𝜔𝑇𝛥𝑇𝑡) 

5 𝑟 = −(�̇�𝑡 + ω𝑇Δ𝑇𝑡 + 𝜔𝑠𝑜𝑐|𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑟𝑒𝑓|) 

6 𝑟 = −(𝑚𝑡 + ω𝑇Δ𝑇𝑡 + 𝜔𝑠𝑜𝑐|𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑟𝑒𝑓|) 

7 𝑟 = −(�̇�t + 𝛾𝑆𝑂𝐶̇ + ω𝑇Δ𝑇𝑡 + 𝜔𝑠𝑜𝑐|𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑟𝑒𝑓|) 

8 𝑟 = −(𝑚𝑡 + 𝛾𝑆𝑂𝐶̇ + ω𝑇Δ𝑇𝑡 + 𝜔𝑠𝑜𝑐|𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑟𝑒𝑓|) 
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Figure 18. (a) Speed profile and (b) SOC trajectory according to reward function of 

DDPG algorithm 

 

Therefore, the reward functions of cases 1, 2, 3, and 4 are not used for DDPG agent 

learning due to the absence of terms for speed control and power distribution control, 

respectively. Cases 5, 6, 7, and 8 perform control at an appropriate speed based on 
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the coefficient ω𝑇  and maintain the battery SOC near the SOC reference while 

distributing power. The equivalent fuel consumption is calculated by applying an 

equivalent coefficient to the final SOC under the same total driving time to compare 

the specific impact of the reward function. The equivalent coefficient is calculated 

using dynamic programming (DP). DP is a global optimization method that is 

calculated using the Bellman equation, which is represented as:  

 𝐽𝑡
∗(𝑠𝑡) = 𝐸[𝑟𝑡 + 𝐽𝑡+1

∗ (𝑠𝑡+1)] (38) 

 

DP results are commonly used as benchmarks for assessing optimality [44-46]. 

Optimization of the speed profile and power distribution for minimum fuel 

consumption is performed using sequential DP. The equivalent coefficient is 

calculated by figuring out the relationship between final SOC state and fuel 

consumption [47]. Figure 19 shows fuel consumption according to final SOC. The 

equivalent coefficient is obtained using the linear relationship between final SOC 

and fuel consumption. The fuel consumption according to reward function using the 

calculated equivalent coefficient is shown in Table 7. The reward function of Case 5 

with the smallest fuel consumption is applied to the DDPG algorithm in this study. 

Figure 20 displays the action values in each step of Case 5. The actions indicate the 

variations in both speed and SOC. This demonstrates that the action space is limited 

according to the vehicle's specifications at each step, and an action is selected within 

that space. The Q value with reward of Case 5 can be updated as follows: 

𝑄𝜙(𝑠𝑡, 𝑎𝑡) 

= 𝔼𝑟𝑡,𝑠𝑡+1~𝐸[−(�̇�𝑡 + ω𝑇Δ𝑇𝑡 + 𝜔𝑠𝑜𝑐|𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑟𝑒𝑓|) + 𝛾𝑄𝜙(𝑠𝑡+1, 𝜇𝜃)] 
(25) 
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Figure 19. Fuel consumption according to final soc using sequential dynamic 

programming for speed control and power distribution. 

 

Table 7. Fuel consumption based on reward function using equivalent coefficient 

 

Cases 
Driving 

time 

Fuel 

consumption 

Final 

SOC 

Equivalent 

coefficient 

Equivalent 

fuel 

consumption 

5 107.58 s 20.19 g 0.6079 

168.85 

20.19 g 

6 107.05 s 10.85 g 0.5367 22.87 g 

7 106.87 s 17.31 g 0.5736 23.10 g 

8 107.95 s 19.46 g 0.5940 21.81 g 
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Figure 20. Actions selected within the constrained action space according to 

vehicle specifications in Case 5 (variation in speed and SOC)  
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3.3.2. Analysis of Coefficients in Reward Function 

 

The selected reward function mentioned above incorporates two coefficients: 

ωT, which is related to time, and ωsoc, which is related to the SOC of the battery. 

Figure 21 illustrates the relationship between vehicle speed, total driving time, and 

the time-related coefficients, ωT. The time-related coefficient allows control over 

the total driving time within the vehicle's speed limit while accommodating the user's 

desired driving duration through adjustments in the speed spectrum to optimize 

energy-efficient driving. Moreover, Figure 22 presents the SOC history and 

equivalent fuel consumption based on coefficients related to SOC deviation. When 

the coefficient value is small, the impact of SOC deviation on the overall cost is 

minimal, resulting in rapid battery consumption to reduce fuel usage. However, with 

coefficient values of 5 or higher, the battery undergoes appropriate charging and 

discharging cycles to achieve optimal energy efficiency in driving. If the coefficient 

value becomes excessively large, the battery's SOC is maintained consistently at the 

reference value of 0.6, diminishing the role of the hybrid system in energy 

optimization. Notably, when the coefficient value was set to 10, it was observed that 

the least amount of fuel was consumed due to the implementation of proper charging 

and discharging strategies. 
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Figure 21. Vehicle speed and driving time according to time-related coefficient, 

ωT in reward function 
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Figure 22. SOC history during driving and equivalent fuel consumption according 

to SOC deviation-related coefficient, ω𝑆𝑂𝐶 in reward function 
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3.3.3. Parameter Tuning in DDPG Algorithm 

 

The optimal values for the parameters of the DDPG algorithm are determined 

to improve its performance. The target update parameter 𝜏  is an important 

hyperparameter of the DDPG algorithm. It is used to control the update rate of the 

target network in the algorithm. Specifically, the target network, which is a copy of 

the original network used to calculate the target values, is updated gradually over 

time using the tau hyperparameter. Choosing an appropriate value for the tau 

hyperparameter is important to achieve a balance between the convergence rate and 

training stability in the DDPG algorithm. Figure 23 shows the return history 

according to the target update parameter 𝜏. In the case of an update parameter of 0.1, 

convergence occurs at around the 600th episode, but thereafter, the 

 

 

Figure 23. Return history according to update parameter 𝜏 with experience replay 

buffer size of 104 
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return decreases gradually over time. This is because frequent updates of the target 

networks result in the target values that the learning network aims to follow changing 

frequently, leading to instability in the learning direction. Convergence initiates 

approximately at episode 1100 for an update parameter of 0.01 and at episode 800 

for an update parameter of 0.001. Despite having comparable return values in both 

cases, the latter has been verified to achieve faster convergence. For update 

parameter values of 0.0001, It is evident that the learning rate is relatively sluggish, 

as the small number of updates hinders the target networks from keeping pace with 

the latest trained networks. As a consequence, the learning process becomes unstable, 

leading to non-convergence. 

Experience memory buffer size also has implications for the performance of 

DDPG. Research has shown that increasing the buffer size can lead to improved 

performance in some tasks, especially those that require a long-term memory. 

However, the optimal buffer size may vary depending on the task, and a larger buffer 

size may not always lead to better performance. Therefore, it is necessary to 

determine an appropriate buffer size that is suitable for the driving system under 

consideration. Figure 24 shows the return history according to the experience replay 

buffer size. The state of 200 steps (the number of steps per episode) per episode is 

stored in replay memory. The process of replacing the oldest memory with new 

memory begins at 5 episodes, 50 episodes, and 500 episodes for replay buffer sizes 

of 103, 104, and 105, respectively. When the buffer size is 103, the return value 

is greatly reduced in the initial learning process. This is due to the small size of the 

buffer, which limits the model's ability to reuse previous experience and therefore 

hinders its capacity to learn various situations. As learning progresses, the model 

performs more Exploitation, but only the latest data is used for learning, resulting in 

overfitting. Eventually, despite the model reaching convergence at 300 episodes, the 

performance is gradually declining. The results of the buffer size of  
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Figure 24. Return history according to experience replay buffer size with update 

parameter of 0.001 

 

104 are the same as those of the update parameter 0.001 as illustrated in Figure 23. 

In the case of a buffer size of 105, the model exhibits stable learning at the initial 

stage of training due to the availability of a diverse set of experiences. However, 

from episodes 1000 to 1200, the model exhibits a lack of convergence and degrades 

performance during training. This can be attributed to the continual use of outdated 

or irrelevant data that is no longer useful for learning. In conclusion, the update 

parameter of 0.001 and the buffer size of 104 are the suitable choice for the specific 

environment considered in this study due to its fast convergence speed and stable 

learning stability. 

Figure 25 illustrates the velocity profile and SOC trajectory of FCHEV per 

episode during the DDPG learning process. In the first episode, the random values 

assigned to the networks cause the model to exhibit biased outcomes such as 

continuous deceleration and battery output. As learning progresses, the speed of the 
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vehicle increases, and the SOC also operates near the reference SOC. Exploration of 

the model and non-convergence of learning cause the model to perform various 

experiences. Since the rate of the exploration decreases and the DDPG agent reaches 

convergence value in the latter part of learning, the vehicle continues similar driving 

and power distribution. 

 

Figure 25. (a) Speed profile and (b) SOC trajectory of FCHEV across episodes for 

DDPG learning process 
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3.3.4. Optimality Verification of Speed Control and Power 

Distribution 

 

The optimality of speed control and power distribution of the developed driving 

system are evaluated, and its performance is compared with conventional control 

methods used in actual driving controllers. The energy efficiency of speed control of 

the proposed system is tested by DP and cruise control to the system. Cruise control 

is an actual speed control method where the vehicle maintains a constant speed at a 

specific velocity. In addition, the power distribution of the proposed system is 

evaluated in comparison with the DP and the rule-based strategy developed as a 

heuristic. The rule-based strategy is developed by referencing the driving simulation 

tool, Autonomie, developed by Argonne National Laboratory. The strategy is 

summarized in Figure 26. The operation of the fuel cell is determined based on the 

SOC and required power, and the operation mode of the hybrid system is determined 

by the battery power, which depends on the SOC. The operation mode includes 

regeneration, normal, and power assist.  

Figure 27 displays the vehicle driving speed and SOC for each control method, 

all having the same travel time. The cruise control strategy accelerates the vehicle to 

100m, regardless of the road gradient, and then maintains a constant speed until 

100m before the end of the journey, where it drives with a constant acceleration to 

reach the final speed. The proposed method of control shows a similar driving trend 

to the DP-based speed control, with a smaller speed deviation. Although the 

proposed method usually starts acceleration later, the deceleration start point is 

similar to that of DP. 
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Figure 26. Flow chart summarizing the rule-based strategy for power distribution 

 

The power distribution in a rule-based strategy is determined by referring to 

Figure 26, which displays the SOC and required power for charging and discharging. 

The SOC trajectory of DDPG-based power distribution displays a charge/discharge 

pattern that is similar to the optimal result. However, as the input and output power 

of the battery is relatively small, it is apparent that battery intervention is less active 

compared to DP. 
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Figure 27. (a) Vehicle speed according to cruise control, dynamic programming and 

DDPG and (b) SOC trajectory according to rule-based strategy, dynamic 

programming and DDPG 
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Table 8 presents the fuel consumption results of each control method. To ensure 

a fair comparison of fuel consumption under equivalent SOC conditions, an 

equivalent coefficient calculated in Table 7 is used. Since this problem requires two 

optimization problems sequentially, the method applied with cruise control and rule-

based strategy reduces the optimality. Consequently, a significant drop in 

performance is observed. Furthermore, superior performance outcomes are observed 

when DP is employed for speed control rather than power distribution, highlighting 

the greater energy impact of road gradient-based speed control. The DDPG-based 

proposed method achieves an optimality of 97.11%, which is superior to the result 

obtained by optimizing only one of speed control or power distribution. 

 

Table 8. Fuel consumption according to control methods 

 

Case 
Fuel 

consumption 

Final 

SOC 

Equivalent 

fuel 

consumption 

Optimality 
Speed 

control 

Power 

distribution 

Cruise 

control 
Rule-based 18.18 g 0.5272 31.81 g 61.63 % 

Cruise 

control 
DP 23.37 g 0.6079 23.37 g 83.89 % 

DP Rule-based 20.06 g 0.5969 21.92 g 89.44 % 

Proposed algorithm 

(DDPG) 
20.19 g 0.6079 20.19 g 97.11 % 

DP DP 19.60 g 0.6079 19.60 g 100 % 
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3.3.5. Characteristic Analysis of Roads 

 

The slope of the road used for reinforcement learning and model testing has a 

great influence on the driving model as a state for learning as well as vehicle demand 

power. In this section, the DDPG (Deep Deterministic Policy Gradient) model 

undergoes training using roads with varying slopes, and subsequently, the model is 

evaluated on real roads with diverse slope characteristics. Figure 28 presents the 

altitude and grade of the roads for learning. Three types of roads are employed for 

training the driving model: roads with gentle slopes, roads with steep slopes, and 

roads that combine both characteristics. Figure 29 shows the normalized elevation 

and grade of the real road for testing the model. Specifically, the highway section 

corresponds to the initial 4 kilometers of the Seocho Interchange in Korea, while the 

flat road and hill road are derived from the Mojave proving ground roads. 

Figure 30 presents the comparative analysis of equivalent fuel consumption 

when employing models trained with the DDPG algorithm on the test road. The 

integrated road-trained model exhibited the lowest fuel consumption across all test 

roads. Furthermore, the model trained on gentle roads demonstrated lower fuel 

consumption on flat roads compared to the model trained on steep roads. Conversely, 

the steep road-trained model displayed reduced fuel consumption in hilly terrains. 

Figure 31 shows vehicle acceleration and battery power, which are actions of the 

driving model, according to the grade of the test road. Irrespective of the learning 

road, the test road's gradient and vehicle acceleration demonstrate similar trends. 

However, there are disparities in battery power depending on the learning road. The 

gentle-trained model, predominantly trained on mild slopes, exhibited minimal 

charge and discharge, thus failing to leverage the advantages of hybrid functionality. 
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Conversely, the steep-trained model, unnecessarily induced continuous battery 

charging, resulting in increased fuel consumption. 

 

 

Figure 28. Altitude and grade of the road for DDPG learning 
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Figure 29. Normalized altitude and grade of the road for model test 

 

Figure 30. Equivalent fuel consumption according to train road 
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Figure 31. Actions of the driving model according to the grade of the test road: 

Acceleration and battery power 
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Chapter 4. Development of the DDPG Agent 

considering Moisture-related Errors in Interiors of 

PEMFC 

 

4.1. Introduction 
 

This chapter presents the development of a diagnostic system for moisture-

related errors, specifically flooding and drying, in the interiors of PEMFC. To 

analyze the impact of flooding and drying on performance, a single PEMFC is 

fabricated and experimentally tested. In order to induce flooding and drying in the 

interiors of PEMFCs, extreme experimental parameters including temperature and 

relative humidity are set and the corresponding physical responses are recorded. 

These time-series experimental data are then used to construct a diagnostic system 

for flooding and drying, utilizing the LSTM and bagging methods. Finally, the 

performance of the diagnostic system is evaluated to assess its effectiveness in 

accurately diagnosing these moisture-related errors in PEMFCs. 

Furthermore, an approximation model for performance degradation is 

developed through voltage pattern analysis during flooding and drying. It is then 

applied to the vehicle model. When flooding or drying is diagnosed, the vehicle's 

performance decreases gradually according to the corresponding degradation model. 

In the process of DDPG learning, the agent achieves energy-efficient driving while 

considering degradation caused by moisture-related errors through referencing the 

diagnostic system results. 
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4.2. Experiments for Inducing Flooding and Drying 

 

The long-term operation of the fuel cell was carried out with the conditions 

outlined in Table 9. These operating conditions have been widely used in previous 

studies investigating the water management of PEMFC [48, 49]. The relative 

humidity (𝜑 = 𝑝𝑤/𝑝𝑠𝑎𝑡 ) is determined by the temperature of the MEA and the 

humidifier, following the psychrometric chart. If the relative humidity is over 100%, 

flooding typically occurs, while if it is below 50%, drying occurs. 

 

Table 9. Experimental conditions for inducing flooding and drying 

 

Relative humidity 

(%) 

Cell temperature 

(℃) 

Current density 

(𝐀/𝐜𝐦𝟐) 

50 

40 
0.4 

0.8 

60 
0.4 

0.8 

80 
0.4 

0.8 

100 

40 
0.4 

0.8 

60 
0.4 

0.8 

80 
0.4 

0.8 
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Peculiarities in the voltage and impedance modulus of a transparent flow 

channel PEMFC were identified through a comparison of its video and 

electrochemical data. In Figure 32, the flow channel experiences rapid liquid water 

accumulation during the flooding phenomenon. In the case of drying, only a few 

water droplets are observed, remaining stagnant in the GDL. 

Figure 33 illustrates the Impedance modulus in the flooding. In the case of 

flooding, distinct anomalies are clearly observed in the data at lower frequencies 

(~10Hz). A fixed frequency of 10Hz is selected as the measurement frequency for 

impedance in the flooding state. On the other hand, in the drying state, the 

determination of Ohmic resistance is based on the High-Frequency Resistance (HFR) 

region, which corresponds to a semicircular region in the Nyquist plot as shown in 

Figure 34. Therefore, a fixed frequency of 1000Hz is selected for impedance 

measurements. Figure 35 depicts the voltage and impedance modulus during 

flooding and drying. Voltage sharply drops during flooding, while there is no 

variation in impedance modulus. As for drying, the voltage gradually decreases, and 

the impedance modulus increases. These tendencies are observed at relative 

humidity of 50% and 100%. 

    

Figure 32. Transparent PEMFC during (a) flooding and (b) drying 
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Figure 33. Real and imaginary values of impedance vary with the frequency of 

alternating current 
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Figure 34. Real value of impedance according to frequency and Nyquist plot 

during drying 

 

Polarization curves and Nyquist plots according to relative humidity for the 

PEMFC are shown in Figure 36. The cell temperature is maintained at 60 °C for 

relative humidity of 100% and 120%, and at 80 °C for a relative humidity of 50%. 

Results show that performance deteriorated more significantly at a relative humidity 

of 120% due to the increased likelihood of flooding. Performance declined rapidly 

at a relative humidity of 50% due to drying. Recorded data included current density, 

cell voltage, cell temperature, relative humidity of the anode and cathode, and 

impedance modulus. The impedance modulus at a fixed high frequency of 4000 Hz 

is employed as an indicator to determine the operational status of the PEMFC, which 

includes normal, flooding, and drying status. This impedance modulus is also 

included in the criteria to evaluate the occurrence of flooding and drying. 

Nevertheless, it is excluded from the deep learning models due to its prolonged 

measurement time. 
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Figure 35. Voltage and impedance modulus during (a) flooding and (b) drying 
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Figure 36. Polarization curves and Nyquist plot according to relative humidity in 

PEMFC experiments 
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4.3. Development of Diagnosis System using LSTM 

 

4.3.1. Calculation of LSTM 

 

The present study aimed to develop a diagnosis system for fuel cell operation 

by utilizing LSTM, a type of Recurrent Neural Network (RNN), to model the 

sequential correlation from past to present states in the time-series data. LSTM is 

known for its ability to detect long-term dependencies in data, which makes it 

suitable for this task. This method was developed to solve the vanishing gradient 

problem commonly encountered in Vanilla RNN [50, 51]. This problem arises when 

the time step increases, and the gradient decreases, leading to the loss of information 

from the past hidden state. However, LSTM incorporates several gates in the cell 

state that regulate the flow of information, reducing the occurrence of this issue [52]. 

Figure 37 represents the structure of the LSTM cell. The forget gate in LSTM 

employs a logistic activation function to generate outputs that range between 0 and 

1. These outputs are then subjected to an element-by-element multiplication 

operation, which selectively erases part of the long-term memory. Additionally, a 

new memory component is added to the input gate to improve the model's 

performance. The long-term state beyond the input gate is then passed to the 

hyperbolic tangent (𝑡𝑎𝑛ℎ) function and filtered by the output gate, which generates 

a short-term state and the final output of the cell. By employing these mechanisms, 

LSTM can effectively detect long-term dependencies in sequential data and address 

the vanishing gradient problem associated with Vanilla RNN. The equations 

governing the LSTM cell for a single step can be expressed as follows: 
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 𝑓𝑡 = 𝜎(𝑊𝑥𝑓
𝑇 𝑥𝑡 + 𝑊ℎ𝑓

𝑇 ℎ𝑡−1 + 𝑏𝑓) (38) 

 𝑖𝑡 = 𝜎(𝑊𝑥𝑖
𝑇 𝑥𝑡 + 𝑊ℎ𝑖

𝑇 ht−1 + 𝑏𝑖) (39) 

 𝑜𝑡 = 𝜎(𝑊𝑥𝑜
𝑇 𝑥𝑡 + 𝑊ℎ𝑜

𝑇 ℎ𝑡−1 + 𝑏𝑜) (40) 

 𝑔𝑡 = tanh(𝑊𝑥𝑔
𝑇 𝑥𝑡 + 𝑊ℎ𝑔

𝑇 ℎ𝑡−1 + 𝑏𝑔) (41) 

 𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑔𝑡 (42) 

 𝑦𝑡 = ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡) (43) 

 

where 𝑓𝑡 (forget gate) controls which information from the previous cell state 

and the current input should be removed, 𝑖𝑡 (input gate) controls how much new 

information should be added to the current cell state, 𝑜𝑡 (output gate) determines 

which part of the cell state should be output as the output of the LSTM, 𝑔𝑡 

(candidate value) is a new piece of information calculated by the activation function, 

which is used to update the cell state, 𝑐𝑡 (cell state) is the long-term memory of the 

LSTM, which is updated based on the input and forget gates, the candidate value, 

and the previous cell state, 𝑦𝑡 (output) is the short-term memory generated based 

on the current cell state and output gate, and ℎ𝑡 (hidden state) is the output of the 

LSTM at each time step and is derived from the cell state through an activation 

function. 



 

 73 

 

Figure 37. Structure of the LSTM cell 

 

The architecture of the LSTM is depicted in Figure 38. The input sequence is 

processed by the LSTM cells based on the time step t. The LSTM layers, except for 

the last one, are sequence-to-sequence networks which are designed to process 

sequential input data and generate sequential output data. These networks consist of 

multiple LSTM layers, where each layer receives an input sequence and outputs a 

sequence that is passed to the next layer. The final LSTM layer is a sequence-to-

vector network where a sequence of inputs is processed and transformed into a single 

output vector. It produces a fixed-length vector by taking the final output state of the 

LSTM cells at time step T. This vector output is forwarded to the subsequent dense 

layer. 

The input features for the proposed system are selected from the experimental 

results obtained from full-scale tests. However, in order to make the system 

applicable in real-time, experimental data that required several minutes to collect, 

such as impedance modulus, were eliminated from the input features. In addition, it 

is observed during the experimental phase that flooding and drying can be confirmed 
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by monitoring voltage changes while keeping the current constant. However, in real 

vehicle operation where the current is constantly changing, adding voltage as an 

input feature may result in inaccurate diagnosis. Therefore, voltage is also excluded 

from the input features. The selected features for the system were the current density, 

relative humidity inside the flow channel of the anode and cathode, and cell 

temperature. The LSTM networks produces an estimation of the operating state of 

the PEMFC as output. This is achieved by utilizing the softmax function to determine 

the probabilities of each class, which include the states of flooding, normal, and 

drying, based on the last calculation results of the dense layer. The state of the 

PEMFC is determined by the model selecting the class with the highest probability. 

The duration of the time step t and the window size T in this study were 1 s and 45 

s, respectively. The diagnosis of the PEMFC's state was conducted by analyzing the 

data from the previous 45 s to the current time. 

 

 

Figure 38. Architecture of the deep LSTM model [53] 
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4.3.2. Bagging Ensemble Method 

 

The Bagging method, also known as Bootstrap Aggregating, is a widely-used 

ensemble learning technique that aims to improve the accuracy and stability of neural 

network models [53-57]. Bagging entails generating multiple bootstrapped datasets 

from the original training set and training an individual model on each of these 

datasets. The predictions of these models are then aggregated using a voting or 

averaging mechanism to produce the final prediction. Figure 39 illustrates the 

process of the Bagging method. The Bagging method involves the following steps 

[58]: 

1. Randomly sample the training dataset with replacement to create multiple 

bootstrap samples with data balancing. 

2. Train a separate model on each bootstrap sample. 

3. Use each model to make predictions on the test dataset. 

4. Aggregate the predictions of all models to produce the final prediction. 

The aggregation can be done in several ways, including majority voting, 

weighted voting, and averaging. Majority voting involves selecting the most 

common prediction among all models, while weighted voting assigns weights to 

each model's prediction based on its performance on the training set. Averaging 

involves taking the average of all models' predictions. Table 10 presents the 

parameters of the Bagging method used in this study. Table 11 displays the 

configuration of the LSTM models, which serve as weak classifiers in this study. 
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Table 10. Parameters of the Bagging methods based on LSTM 

 

Parameters Values 

Number of samples 9 

Size of each dataset 10000 (balanced) 

Aggregation Majority voting 

Window size 45 

Batch size 512 

Learning rate 1e-3 

Optimizer Adam 

 

Table 11. Configuration of the LSTM for weak classifiers in Bagging method 

 

Configuration LSTM networks 

Input data [𝑗𝑐𝑒𝑙𝑙, 𝜑𝑎𝑛, 𝜑𝑐𝑎 , 𝑇𝑐𝑒𝑙𝑙] 

Data scaling Min-Max scaler 

LSTM layer 1 Unit: 128 (Sequence to sequence) 

LSTM layer 2 Unit: 128 (Sequence to sequence) 

LSTM layer 3 Unit: 64 (Sequence to vector) 

Dense layer Node: 32 (elu) 

Output layer 3 (softmax) 

 

4.3.3. Diagnosis Results of PEMFC State  

 

Figure 40 depicts the diagnostic accuracy of LSTM-based network model and 

the bagging ensemble method. The individual models demonstrate an accuracy range 

of 82-83%, with an average of 82.6%. Nevertheless, the collective accuracy of the 
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ensemble method, which integrates the outputs of each model through a majority 

vote, shows a marked improvement, reaching 88.1% accuracy. The confusion matrix 

of the bagging model is presented in Figure 41. The primary reason for model 

misclassification is the misdiagnosis of normal PEMFC states as either flooding or 

drying. Nonetheless, the model exhibits a high degree of accuracy in the majority of 

cases, and in particular, demonstrates a detection rate of 97.39% for flooding cases. 

 

 

Figure 40. Diagnosis accuracy of nine LSTM models and bagging model 
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Figure 41. Confusion matrix for bagging model 

 

4.4. DDPG Agent Training with Diagnosis of Flooding 

and Drying 

 

4.4.1. Reward Function with Additional Cost for Moisture-

related Errors 

 

DDPG agent training is performed considering flooding and drying using the 

previously developed diagnostic model. Based on the results of the cell test, the 

magnitude of the voltage drop of the PEMFC is determined when flooding and 

drying occur. Additional fuel is consumed as the voltage drop causes the current 
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density to increase to meet the required power. DDPG agent should minimize 

flooding and drying to reduce fuel consumption. Also, even if the corresponding 

errors occur, it should swiftly return to the normal state. To accomplish this, cost 

term for flooding and drying is added to the reward function. 

The cost associated with flooding and drying is computed by means of an 

LSTM-based bagging model and the voltage drop metrics associated with these 

phenomena. The probability of errors occurring, which are predicted by the 

diagnostic model, is used to determine the expected rate of additional fuel 

consumption. The cost including the additional fuel consumption rate is as follows: 

 �̇�𝑓𝑐 = −(�̅�𝐹�̇�𝐹 + �̅�𝑁�̇�𝑁 + �̅�𝐷�̇�𝐷) (44) 

 

where �̅�𝐹, �̅�𝑁, and σ̅D are the average probabilities for each state of the PEMFC 

predicted by the bagging models. The sum of probabilities for each state is equal to 

1. �̇�𝐹 , �̇�𝑁 , and �̇�𝐷  are the expected fuel consumption rate caused by voltage 

drop due to each error. The driving system that considers the occurrences of flooding 

and drying is trained using the DDPG algorithm mentioned earlier by incorporating 

the associated costs into the reward function. 

 

4.4.2. Training Results considering Flooding and Drying 

 

A performance evaluation is conducted on the driving system that considers the 

occurrences of flooding and drying. The vehicle model equipped with the developed 

system is driven five consecutive times on the designated test road. The energy-
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efficient driving assistance system that incorporates the diagnosis of flooding and 

drying is referred to as EDAS-D, while the system that does not consider it is denoted 

as EDAS. The results of applying the diagnosis model to the DDPG learning process 

are presented in Figure 42, which displays the vehicle speed, SOC, and PEMFC 

condition diagnosis outcomes. The progression of vehicle speed appears to be similar 

regardless of the inclusion of the diagnostic model. Both EDAS and EDAS-D models 

exhibit similar charging and discharging times, but there is a notable difference in 

power size. Specifically, the EDAS-D model employs the battery to assist with more 

power compared to the EDAS model without error diagnosis. Moreover, the EDAS 

 

 

Figure 42. Vehicle speed, SOC and state of PEMFC according to the application of 

the diagnosis model of the DDPG algorithm. 
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model shows a higher frequency of short-duration occurrences of flooding and 

drying. Specifically, a significant portion of errors are related to the phenomenon of 

flooding. The voltage drop phenomenon when errors occur is presented in Figure 43. 

The voltage is initially reduced by approximately 0.8V, and as the error persists, the 

magnitude of the voltage drop gradually increases, up to a maximum of 2.33V. This 

underscores the significance of prompt action upon the occurrence of flooding and 

drying. The fuel consumption of the EDAS model is 92.14 g, while that of the EDAS-

D model is 90.98 g, thereby reducing energy consumption by around 1.25%. 

 

 

Figure 43. Voltage-drop during flooding and drying phenomena in PEMFC 
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Table 12 presents a comparative analysis of the effects of specific flooding and 

drying in each model during 20 consecutive drives on the test road. The EDAS 

model's longer duration of flooding and drying leads to an increase in total voltage-

drop per step. Furthermore, it takes more time for EDAS to return to normal after an 

error occurs. The actions of the DDPG algorithm, i.e., vehicle acceleration and 

battery power, during flooding and drying are shown in Figure 44. The control of 

vehicle speed and power distribution in the EDAS model remains largely unchanged 

even if flooding and drying occur. Since the EDAS model independently determines 

the speed of the vehicle and the power control of the components only by the vehicle 

state and road gradient without considering the fuel cell state, it can be seen that 

flooding and drying occur in similar states. In contrast, the EDAS-D model exhibits 

a tendency to decelerate in case of flooding and to reduce the power allocated to the 

fuel cell. This reduces the water generated by low PEMFC loads, resulting in faster 

recovery from flooding. In the case of Drying, the vehicle accelerates slightly and 

the battery is slightly charged. A certain level of load is necessary on the PEMFC to 

provide water to the channel, but it should not be excessive because of low efficiency 

caused by voltage-drop. 

 

Table 12. Comparative analysis of the effects of specific flooding and drying in 

EDAS and EDAS-D during 20 consecutive drives on the test road. 

 

 EDAS EDAS-D  

Flooding duration (sec) 28.49 7.10 

Drying duration (sec) 4.36 1.84 

Total voltage-drop per step (V) 62.55 10.83 

Average recovery time (sec) 0.7045 0.5956 
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Figure 44. Box plots of DDPG algorithm actions: vehicle acceleration and battery 

power for (a) flooding and (b) drying 
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Chapter 5. Online-learning for Generality of the 

Driving System 

 

5.1. Introduction 

 

Previous chapters have demonstrated the impressive driving performance of the 

FCHEV's reinforcement learning-based system. However, in general, reinforcement 

learning has limitations in that training and testing are performed in the same 

environment [59]. If the environment is changed, the generalization capability of the 

agent is likely to be jeopardized due to reinforcement learning's dependency on the 

Bellman equation, which calculates the future Q value based on information about 

the future environment [60, 61]. Consequently, to enhance the agent's generality, 

perpetual online-learning is imperative in a novel environment. Online-learning is 

an extension of reinforcement learning that allows the agent to train and adapt 

continuously in real-time without access to the entire dataset. Online-learning 

algorithms use the reward signal to update the policy in real-time, improving the 

agent's decision-making ability. In this study, driving scenario is conducted on an 

unfamiliar road environment using a model generated through offline learning on the 

test road. Initially, the policy from the existing agent is delivered to the vehicle 

controller. During the course of driving, a mini-batch of acquired data is 

continuously collected, and online-learning is employed to enhance the agent's 

generalization capability. 
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5.2. Online-learning Process 

 

This section describes the online-learning process of this study. Figure 45 shows 

a flowchart of the online learning process. In this process, the vehicle is driven on a 

new road environment that differs from the one used in the offline-learning phase. 

Initially, the vehicle adheres to the policy derived from the offline-trained model. 

Similar to the DDPG algorithm, the experience replay buffer is employed to store 

the experiences recorded during driving, including the state of the vehicle and action, 

the following state, and the reward in response to the action. When the replay 

memory surpasses the mini-batch size, a copy of the existing model is generated, and 

DDPG learning based on the copied model is performed using new driving data. It 

is important to note that, during the online-learning phase, the model being trained 

does not affect the driving and power distribution. The driving and learning 

procedures are conducted simultaneously, and when the driving distance reaches the 

update distance 𝑑𝑠𝑒𝑔 of the online-learning model, a test is performed to compare 

the existing model and the newly learned model. The evaluation of the newly learned 

model is carried out on the road where the vehicle is driven based on the policy of 

the existing model, and the performance of the existing model is determined from 

the driving results. The superior model of the two models is updated with a new 

driving model. This learning process is repeated until the vehicle reaches its final 

destination. Table 13 displays the parameters employed for online-learning in this 

study. 
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Figure 45. Flowchart of online learning process 
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Table 13. Hyperparameters of learning process for online-learning 

 

Parameters Values 

Update distance of online-learning model dseg 2 km 

Experience memory buffer size 1000 

Learning rate of actor networks 1e-5 

Learning rate of critic networks 1e-5 

Discount factor 𝛾 0.99 

Update parameter for target networks 𝜏 0.001 

Batch size 32 

Optimizer Adam 

 

5.3. Online-learning for Enhancing Generality in 

DDPG under Environmental Changes 

 

To assess and enhance the generality of the proposed vehicle driving system, 

online-learning is conducted. The previously learned DDPG agent, EDAS-D, is 

tested on a new road and compared with the continuously updated system that has 

undergone online-learning during driving. The road route for online-learning and its 

elevation profile based on distance are depicted in Figure 46. This route spans a total 

distance of 26.28 km, from Seocho IC to Suwonsingal IC in Korea, featuring a steep 

initial slope and subsequently gentle slopes, providing the agent with diverse 

experiences. To facilitate exploration by the agent in a completely different 

environment, noise is randomly sampled from a distribution with mean 0 and 

standard deviation of 0.1.  
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Figure 46. Road route and elevation profile for online-learning (Seocho IC to 

Suwonsingal IC) 
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Cumulative fuel consumption of two vehicles, one equipped with only the 

EDAS-D model without online-learning and the other with continuous updates based 

on the EDAS-D model (EDAS-online), is shown in Figure 47. The initial driving is 

performed using the EDAS-D model in both vehicles, and hence the cumulative fuel 

consumption is the same during the initial online-learning process. The model is 

updated a total of three times during the online-learning process, and a slight 

difference in cumulative fuel consumption is observed initially. However, as the 

learning progresses, the DDPG agent adapts to the new road, leading to a gradual 

widening of the gap in fuel consumption between the two models. 

 

 

Figure 47. Cumulative fuel consumption of EDAS-D and EDAS-online 
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The graph presented in Figure 48 displays the vehicle speed, SOC, and PEMFC 

state of EDAS-D and EDAS-online. Both models exhibit a similar trend in terms of 

vehicle speed, with a slight decrease observed as the model undergoes updates. The 

SOC charging and discharging trends were found to be similar for both EDAS-D and 

EDAS-online models; however, the EDAS-online model exhibited a higher 

discharge rate. Table 14 presents the detailed driving results of EDAS-D and EDAS-

online. The results reveal that online-learning lead to a 5.59% reduction in equivalent 

fuel consumption. The EDAS-online model exhibits more frequent flooding at 12.74 

sec and less drying at 4.24 sec. However, due to the rapid voltage-drop associated 

with flooding, the total voltage-drop was greater for EDAS-online. While online-

learning do not significantly prevent moisture-related errors, it is confirmed that the 

speed control and power distribution close to the optimum for the new road 

significantly contribute to the increase in energy efficiency. 

 

Figure 48. Vehicle speed, SOC and state of PEMFC of EDAS-D and EDAS-online 
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Table 14. Detailed driving results of EDAS-D and EDAS-online 

 

 EDAS-D EDAS-online 

Equivalent fuel consumption (g) 260.85 246.26 (+5.59%) 

Flooding duration (sec) 9.77 12.74 

Drying duration (sec) 7.65 4.24 

Total voltage-drop per step (V) 22.24 24.60 

 

5.4. Analysis of Online Learning Performance 

according to Offline Base Models 

 

In this section, an analysis of the performance of online learning based on the 

learning level of the offline model is conducted. The process involves uploading 

three different versions of the learning model to the driving controller when 

navigating a new road: the initial model with an unconverged return, an intermediate 

model in the midst of the learning process, and a final model with a converged return. 

The training history of the offline model is presented in Figure 49, where the red 

points indicate the return values of the base models used for analyzing the 

performance of online learning. In the process of online learning, the coefficients of 

the reward function are configured to match the values employed in the training of 

the offline model. The update point for the models during online learning is depicted 

in Figure 50. Table 15 provides information on the return value and update count of 

the base model for each episode. At the beginning of learning, the base model is 

updated in every update interval. The frequency of updates decreases until the 

midpoint of the episodes for the base model. Subsequently, the number of updates 

remains constant until the model reaches convergence. 
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Figure 49. Return history of offline models 

 

Figure 50. Online-learning update point according to offline models 
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Table 15. Episodes, return of base models and number of model update in online 

learning 

 

Episodes Return Number of updates  

10 -490.32 13 

30 -308.92 11 

50 -166.50 9 

175 -161.62 11 

250 -137.19 10 

 

Figure 51 presents equivalent fuel consumption, flooding duration, drying 

duration, and improvements of the offline base model and the online model 

according to the learning episode. It is observed that when online learning is 

conducted using a highly trained model, a significant improvement in fuel 

consumption is achieved. This suggests that utilizing a well-learned model for online 

learning results in faster enhancements in new road environments. Additionally, 

when employing a less trained base model for online learning, there is a decrease in 

the duration of flooding. If the base model has received sufficient training, flooding 

incidents are less likely to occur, rendering online learning less impactful in reducing 

flooding occurrences. As for drying duration, it is evident that the effect of online 

learning is minimal, as the offline model already demonstrates satisfactory 

performance even in new environments. 
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Figure 51. Equivalent fuel consumption, flooding duration, drying duration and 

improvement of Online models and Offline models 
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Chapter 6. Conclusion and Future works 

 

6.1. Conclusion 

 

This study developed an energy-efficient driving assistance system for 

autonomous FCHEVs using an AI model based on reinforcement learning. The study 

aimed to develop the energy management strategy of an FCHEVs by developing an 

AI model that presents a reference for speed control and power distribution. The 

vehicle was modeled using a backward-looking simulation method, and a semi-

empirical model was developed based on data obtained by fabricating and testing the 

PEMFC. Based on the developed vehicle model, a reward function capable of 

controlling fuel consumption, driving time, and SOC was developed. The results of 

the study showed that the developed DDPG model with the developed reward 

function improved energy efficiency by 36.52% compared to the method combining 

cruise control and rule-based strategy that are actually used. It also achieved an 

optimality of 97.11%. 

The driving system was additionally developed considering flooding and drying, 

which are chronic problems of PEMFC, the power source of FCHEV. The study 

intentionally caused moisture-related errors with the fabricated PEMFC to identify 

patterns when flooding and drying occurred. A model was trained to diagnose 

flooding and drying using LSTM based on the sequential data obtained from the 

error-induced experiments. The bagging ensemble method was used to improve the 

performance by integrating the output of multiple LSTM models, achieving an 

accuracy of 88.1%. The detection rate for flooding was particularly high at 97.39%. 
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Furthermore, a driving model was trained by adding an additional fuel consumption 

rate to the reward function using the average of the probability of flooding and drying, 

which is the output of the bagging ensemble model. The occurrence of flooding and 

drying was observed to be less frequent, and the recovery time for normalization of 

PEMFC was improved during such events. As a consequence, fuel consumption was 

reduced by 1.25% compared to the driving system without the diagnostic system. 

The nature of the Bellman equation used in reinforcement learning leads to a 

deterioration in generality when the environment changes. In order to overcome this 

limitation, online learning was conducted while the vehicle model was driving on a 

new real road. This approach enables the reinforcement learning algorithm to adapt 

to changing environments and to continuously improve the performance of the 

driving assistance system in real-world scenarios. Although the online-learning 

model did not yield significant improvements in preventing flooding and drying, the 

developed methodology resulted in a fuel consumption reduction of approximately 

5.59%. This outcome was attributed to the near-optimal speed control and power 

distribution achieved through the reinforcement learning algorithm. Despite the 

limited impact on moisture-related stability, the developed model still demonstrates 

the potential for improving the energy efficiency of FCHEVs. 

This study proposed a novel methodology that addresses both speed control and 

power distribution using the DDPG algorithm, which achieves high optimality for 

solving these two nonlinear problems. By constructing dual neural networks, the 

reinforcement learning model can ensure not only energy efficiency but also 

moisture-related stability of the PEMFC. This methodology represents a significant 

contribution as it is the first to integrate these two functions using the DDPG 

algorithm. Additionally, the incorporation of online learning further enhances the 

effectiveness and robustness of the system under diverse driving conditions and 
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environments. Overall, the study provided insights for the development of energy-

efficient driving assistance systems that can manage moisture-related issues in 

FCHEVs. 

 

6.2. Future works 

 

Future research intends to develop a more improved and realistic energy-

efficient driving system by utilizing the expanded V2I-based information. In addition 

to geographical information on the road, V2I communication also allows vehicles to 

access surrounding vehicle information and traffic light information. The energy-

efficient driving assistance system developed based on this information has great 

potential. 

Interaction with surrounding vehicles is a critical aspect of driving in real-world 

scenarios.  The state of the surrounding vehicles has a direct impact on the speed 

control limitations of a vehicle. Factors such as the distance between vehicles, the 

speed of the preceding vehicle, and the safety distance, impose speed and 

acceleration constraints, thereby restricting the vehicle's operation to within the 

allowable control range. And Traffic signals play a crucial role in achieving energy 

efficiency while driving. Vehicle idling induced by stopping at traffic signals results 

in wasteful energy consumption. The operation of traffic lights is influenced by both 

time and the location of vehicles, as the decision to continue driving or halt is made 

according to the traffic light's current status when the vehicle reaches the intersection. 

Consequently, the traffic light is represented as a function of both the position of the 

vehicle and the duration of the driving time. In the event that the traffic light is red 

and the vehicle arrives at the intersection, a penalty is imposed to encourage the 



 

 99 

driving system to avoid coming to a halt at the signal. Drawing on the V2I-based 

information, a prospective driving system is envisaged to be constructed in the future. 

The system is intended to integrate more precise constraining conditions, utilizing 

real-time data on nearby vehicle positions, as well as current speed and acceleration. 

Additionally, appropriate incentives will be established in line with the prevailing 

traffic signal conditions, leading to a more practical driving system. 
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국문 초록  

 
 

최근 급격한 기후 변화로 인한 지구 온난화 문제는 전 세계적으로 큰 관심을 

받고 있다. 차량 업계에서도 온실 가스 배출을 줄이기 위해 방안들을 모색하고 

있다. 첫번째로는 차량-인프라 통신 (Vehicle-to-infrastructure, V2I) 

기반으로 자율 주행 기술의 발전으로 최소의 연료를 소모하도록 에너지 효율 

주행을 하는 것이다. 두번째는 친환경 연료를 사용하는 고분자 전해질 연료전지 

(Polymer electrolyte membrane fuel cell, PEMFC)로 차량 에너지 동력원을 

변경하고 하이브리드화하는 것이다. 하지만 이러한 방안들은 해결과제들을 

가지고 있다.  

먼저 연료전지 하이브리드 전기 자동차 (Fuel cell hybrid electric vehicles, 

FCHEVs)의 에너지 효율 주행을 하기 위해서 차량의 내, 외적인 정보를 

기반으로 최적의 속도 컨트롤과 고분자 전해질 연료전지, 배터리간의 요구 동력 

분배 전략 개발이 필수 적이다. 위 두 가지 개발방안은 최고의 성능을 위해서는 

최적화 기법이 요구된다. 하지만 긴 계산 시간 때문에 최적화 기법은 실제 

차량에 적용시키기 어렵기 때문에 적절한 컨트롤 전략이 필요하다. 또한 

연료전지 하이브리드 전기 자동차의 에너지 동력원인 고분자 전해질 

연료전지는 플러딩 (Flooding), 드라잉 (drying)이라는 치명적인 결함이 

존재한다. 이러한 결함들은 연료전지가 극한의 상황에서 장시간 작동되었을 때 

발생되기 때문에 주행 컨트롤과 배터리의 동력 어시스트로 통해 안정적인 

조건에서 연료전지를 가동시켜야 한다. 따라서 본 논문에서는 에너지 효율 속도 

컨트롤, 동력분배 전략, 고분자 전해질 연료전지의 수분 관련 결함을 고려한 

연료전지 하이브리드 전기 자동차를 위한 주행 시스템을 제시한다. 

먼저 후방향 시뮬레이션 (Backward-looking simulation)으로 연료전지 

하이브리드 전기 자동차의 모델링을 수행한다. 또한 단일 연료전지 셀을 

제작하고 실험 결과값을 참조하여 준 경험적 고분자 전해질 연료전지 모델을 
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개발한다. 개발된 차량 모델을 이용하여 강화학습의 일종인 심층 결정적 정책 

경사법 (Deep deterministic policy gradient, DDPG)으로 주행 시스템을 

학습시킨다. 이 시스템은 차량의 목표 속도와 연료전지, 배터리의 컨트롤러에게 

동력 분배에 대한 참조 값을 제시한다. 매 스텝마다 파워트레인의 제한 조건을 

넘지 않도록 심층 결정적 정책 경사법의 행동 공간 (Action space)을 

갱신함으로써, 차량모델이 시스템에서 제시한 행동에 대한 수행 가능성을 

높인다. 파라미터 최적화를 통해 심층 결정적 정책 경사법에 적합한 파라미터를 

적용하여 모델의 성능을 개선한다. 또한 학습에 적용된 도로의 구배에 따른 

모델의 연료소모와 작동점을 분석한다. 제안된 시스템은 글로벌 최적화 방법인 

동적 계획법 (Dynamic programming, DP)과 비교하여 97.11 % 최적성을 

보였으며, 크루즈 컨트롤 (Cruise control)과 규칙 기반 전략 (Rule-based 

strategy) 기반의 컨트롤보다 36.52 % 우수한 성능을 보였다. 

에너지 효율 주행 시스템의 연료전지 하이브리드 차량에서 플러딩과 

드라잉의 발생 여부를 파악하기 위해 해당 결함들을 진단하는 모델을 개발한다. 

의도적으로 플러딩과 드라잉을 유발하는 실험을 수행하고, 각각 결함 발생시의 

전기화학적인 데이터를 분석한다. 습득된 시계열 데이터를 기반으로 장단기 

기억 신경망 (Long-short term memory, LSTM)과 배깅 앙상블 방법 

(Bootstrap aggregation, Bagging)을 이용해서 진단 모델을 개발한다. 진단 

시스템의 Flooding 과 drying 에 대한 진단율은 88.11 %을 달성했다. 진단 

모델의 출력 값을 심층 결정적 정책 경사법의 보상 함수 (Reward function)에 

포함시켜 고분자 전해질 연료전지의 수분 관련 결함을 고려한 에너지 효율 

주행 시스템을 개발한다. 연료 전지 상태 진단이 통합된 주행 시스템은 

플러딩과 드라잉에 대한 감소가 확인되었으며, 발생 후에 평균 0.5956 초 후에 

정상화되었다. Error 회피로 인해 기존 주행 모델에 비해 연료 소모 효율이 약 

1.25 % 개선되었다. 

개발된 주행 시스템의 일반성을 확인하기위해 새로운 도로 환경에서 차량 

모델을 주행 시킨다. 미래의 Q 값을 갱신하는 강화학습의 벨만 방정식 
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(Bellman equation)의 특성상 환경 (Environment) 변경되었을 때 최적성이 

떨어진다. 따라서 성능 감소를 방지하기 위해 온라인 러닝 (Online-

learning)을 수행한다. 또한 오프라인 러닝의 학습 수렴성에 대한 온라인 

러닝의 효과를 검증한다. 온라인 러닝이 수행된 모델은 기존 오프라인 모델보다 

5.59% 연료가 적게 소모되었다.  

본 연구를 통해서 최적 속도 컨트롤과 동력 분배 전략의 목표 값을 동시에 

제시하는 시스템을 단일 심층 결정적 정책 경사법을 이용하여 최초로 

개발되었다. 본 강화학습 모델은 고분자 전해질 연료전지의 치명적인 결함인 

플러딩과 드라잉의 발생을 줄였으며, 발생하더라도 빠르게 정상으로 돌아오도록 

컨트롤하는 것이 확인되었다. 시스템의 일반화에 대한 우수성이 확인되었으며 

온라인 러닝을 통해 성능을 개선시켰다. 이로써 본 연구에서 제안하는 고분자 

전해질 연료전지의 안정성을 고려한 연료전지 하이브리드 차량의 에너지 효율 

주행 시스템은 자동차산업의 주요 관심사인 자율주행의 친환경화 발전에 

기여했으며 온라인 적용이 가능한 고성능 동력분배 전략 개발에 대한 방법론을 

제시하였다. 
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