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Abstract 

Shape-memory polyurethane is a promising material that undergoes large 

reversible deformation in response to external heat, and includes a urethane bond 

inside the polymer structure. These polymer materials can be applied to diverse 

applications, including sensors, actuators, and biomaterials, owing to their cost-

effectiveness, lightweight nature, high strain capacity, and ease of processing. In 

addition, studies on the design of nanocomposites with nanoparticles added to 

compensate for the low mechanical properties of pure polymer materials are also 

being actively conducted. 

In order to obtain the thermal response shape memory effect of polyurethane 

nanocomposites, two structural conditions are required: a net point and a molecular 

switch. The hard segment, which remembers its original shape through physical 

entanglement, covalent bonding, or cross-linking, acts as a netpoint, and the flexible 

soft segment, which recovers its shape through a phase change in which polymer 

crystallization occurs at a transition temperature, acts as a molecular switch. Phase 

separation occurs between the two segments due to inherent incompatibility, and the 

microstructure change according to the ratio greatly affects the behavior of the 

polymer system. In addition, the clustering phenomenon of nanoparticles due to the 

chemical dissimilarity between the polymer matrix and the nanoparticles has been 

attention as a challenge to overcome to improve the mechanical properties of 

nanocomposites. 
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Atomistic simulation models that analyze the structure-property relationship of 

polymer systems or simulation methodologies that analyze mechanical properties 

according to the distribution of nanoparticles have been studied for a long time, but 

there are limitations in simulating and designing the behavior of actual 

nanocomposites. Motivated by this, this paper proposes a design method that 

comprehensively simulates the polymer crystallization, phase separation behavior, 

and nanoparticle distribution analysis of shape-memory polyurethane 

nanocomposites. In this study, a multi-scale analysis from the molecular dynamics 

level to the continuum level was performed through mesoscale simulations. 

In this study, a CG MD model was developed to overcome the scale issues of 

existing molecular dynamics models. The polymer crystallization and shape memory 

cycles were simulated at the mesoscale level through a bead model to analyze the 

thermo-mechanical properties of polyurethane and the effect of adding nanoparticles 

according to the ratio of each segment in the polymer. This model model was verified 

by qualitatively and quantitatively comparing the thermo-mechanical trends 

according to the temperature and molecular composition reported in the experiment. 

In addition, a dissipative particle dynamics simulation model was constructed 

to analyze the phase separation and nanoparticle distribution of polyurethane 

nanocomposites. Using the solubility of each material calculated at the molecular 

level as a parameter of the simulation, the phase shape of the polymer and the actual 

nanoparticle distribution of the nanocomposite according to the segment ratio were 

accurately predicted. In addition, surface treatment materials were introduced into 
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the silica nanoparticles to design an optimal nanoparticle distribution. 

A continuum model that reflects the geometry obtained through the phase 

separation simulation of the polyurethane nanocomposite was constructed. In order 

to predict mechanical properties according to the degree of dispersion of 

nanoparticles, a finite element-based homogenization technique was introduced, and 

this paper presented it as a design methodology capable of designing various types 

of nanocomposites. 

Through the mesoscale simulation-based multiscale analysis method presented 

in this paper, it is expected that more research will be conducted in the future to be 

used in actual nanocomposite design and application to obtain target properties. 

 

Keyword : Shape-memory polyurethane, Nanocomposites, Coarse-grained 

molecular dynamics, Mesoscale simulation, Dissipative Particle Dynamics, 

Nanoparticle surface treatment, Finite element homogenization 
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Chapter 1 

 

Introduction 

 

1.1  Shape-memory polyurethane (SMPU) nanocomposites  
 

Shape-memory polymer (SMP) is an intelligent material that exhibit responses 

to external stimuli like heat, light, moisture, and electricity [1–3]. In comparison to 

shape-memory alloys, offer several benefits such as being biocompatible, cost-

effective, lightweight, and having high strain capacity and processability. As a result, 

SMPs find wide applications in biomaterials, sensors, micro-actuators, and textile 

fibers [3–5]. Heat-induced SMPs, which are responsive to heat, are particularly 

popular due to their simplicity in operation. To achieve the desired thermo-

responsive shape-memory effect, two structural conditions are necessary: a netpoint 

and a molecular switch [6]. The netpoint, responsible for memorizing the original 

shape, can be achieved through physical entanglement, covalent crosslinking, or 
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physical crosslinking. The molecular switch, also known as a switching segment, 

initiates shape recovery at the transition temperatures like glass-transition 

temperature or melting temperature. One example of a thermo-responsive SMP is 

the semi-crystalline thermoplastic polyurethane (TPU), which is a physically 

crosslinked copolymer with the melting temperature (Tm) as the transition 

temperature [7–9]. The shape-memory polyurethane (SMPU) contains a urethane 

linkage formed by combining an N–C–O bonded isocyanate group with a polyol 

containing an OH group. In the SMPU copolymers developed in this study, the 

isocyanate groups with aromatic ring structures and the urethane linkages capable of 

hydrogen bonding create a rigid hard-segment functioning as the netpoint. The soft-

segment polyether (or polyester) diol forms a flexible chain structure that can 

undergo polymer crystallization (Figure 1.1).  

 

 

Figure 1.1 Mechanism of shape memory behavior of SMPU. 
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Compared to other SMPs, the polymer chains of Tm-dependent SMPU 

copolymers exhibit better mobility at temperatures above Tm, and the melting 

temperature can be easily adjusted by modifying the structures or composition 

[10,11]. As SMPU copolymers have a phase-separated (hard-soft) copolymer 

structure, the microscale features can significantly impact the macroscopic 

characteristics of thermo-responsive actuators, such as mechanical rigidity, operation 

temperature, and final deformed shape. Hence, the ratio of each segment in each 

polymer chain plays a crucial role in SMPU material design. Several researchers 

have studied the effects of hard-segment content (HSC) in polymer chains on the 

morphology and shape-memory behavior of SMPU copolymers [3,12]. For instance, 

Lin et al. [12] conducted experimental investigations on the effect of HSC on the 

thermodynamic properties and shape-memory behavior of polyurethanes, while Li 

et al. [13] explored the effects of HSC and the length of soft-segment on the 

crystallinity and morphology of dual-segment polyurethanes.  

Despite the wide range of possible shapes that shape-memory polymers (SMPs) 

can adopt, they have significant limitations including low stiffness and tensile 

strength, restricted actuation due to heat-treatment, slow response time, low recovery 

stress, and limited recovery at physiological temperatures [14,15]. Similarly, shape-

memory polyurethane (SMPU) also has drawbacks such as low stiffness [16,17], 

weak recovery performance [18-20], and limited responsiveness to electrical, light, 

or magnetic stimuli. 

To overcome these limitations, researchers have turned to shape-memory 
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polymer nanocomposites by incorporating one or more types of nanofillers, such as 

nanotubes, nanofibers, nanospheres, or nanorods, into the polymer matrix to improve 

shape-memory properties, recovery stress, or to modify the operating temperature 

and expand the range of actuation [1,6]. However, the introduction of nanofillers into 

SMPs can present drawbacks, notably in the disruption of the polymer networks that 

govern the shape memory capabilities, particularly at elevated filler concentrations. 

Achieving the appropriate equilibrium between recovery stress and recovery strain 

when using fillers remains an active area of research. Polyurethane and its 

composites filled with particles have been popular choices for SMPs due to their 

versatility and ease of preparation. Some studies [21,22] have reported negative 

impacts of fillers on shape memory properties in composites, while others [16,23-

25] have shown improved mechanical properties and recovery ratios with the 

incorporation of nanofillers, such as SiC or carbon nanotubes.  

Therefore, researches on the relationship between the structure and properties 

of SMP nanocomposites and the cutting-edge development are steadily attracting 

attention as an important issue. Therefore, through comprehending the basic 

correlation between the structure and properties of SMPU nanocomposites and the 

effect of various nanofillers on SMP properties, the development of a computational 

model that can be used to design, develop, and program SMPU systems more 

accurately and precisely is essential. In addition, we need to focus on strategies that 

can uniformly disperse nanofillers to improve the properties of nanocomposites, and 

modeling methods are needed to design shape-memory polymer systems and devices 
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with superior performance. 

 

1.2  Issues and Chanllenges of conventional computaional 

models on design of SMPU nanocomposites 
 

The all-atom (AA) molecular dynamics (MD) simulation has been extensively 

utilized by researchers to investigate the thermo-mechanical properties or molecular 

mechanisms of SMPs without the need for time-consuming experiments. However, 

conventional AA MD models have limitations in describing the global motion of 

polymer chains and mesoscopic phenomena associated with shape-memory behavior 

in semi-crystalline copolymers. Polymer chain crystallization, which involves 

complex and slow processes, is challenging to observe using AA MD simulations 

owing to the significant computational cost required for long polymer chains. This 

often results in only local ordering behavior being observable, or the need to use 

artificially pre-oriented models for polymer crystallization simulations [26,27]. 

Additionally, structural transitions may not occur adequately at high temperatures in 

conventional AA MD models due to the extremely fast heating rates applied. As a 

result, accurate prediction of transition behavior and switching temperature range is 

difficult. To address these challenges, it is necessary to accelerate polymer dynamics 

for the phase transition behaviors by reducing the number of degrees of freedom 

(DOFs) of the atomistic model [28,29]. 

Researchers have employed coarse-grained molecular dynamics (CG MD) 

simulations to address the scale restrictions of all-atom (AA) MD simulations when 
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investigating thermo-responsive shape-memory polymers (SMPs). [30-34]. For 

instance, Uddin et al. [30] developed a CG MD model for thermoplastic 

polyurethane (TPU) to determine its mechanical properties and explore the impact 

of hard segments on equilibrium structures. Abberton et al. [32] also developed a CG 

model for a generalized hard-soft copolymer system to replicate the glassy-transition 

and shape-memory performance, and customized shape-programming conditions to 

modify the recovery characteristics of heat-activated SMPs. These CG models have 

been useful in simulating the phase-separated morphology and thermodynamic 

behavior of copolymer-type SMPs and inducing shape recovery through the glassy-

to-rubbery transition. However, challenges remain in obtaining a comprehensive 

description of the shape-memory cycle for semi-crystalline polymers at the 

mesoscopic level because the low level of polymer crystallization in longer chains 

requires a CG model that elaborately reflects the interaction at the atomistic level. 

As mentioned above, the shape memory mechanism and structure-property 

analysis are required at the mesoscale level through the crystallization behavior of 

the soft segment, which acts as a switch, and the behavior of the hard segment, which 

serves as a netpoint. The SMPU chains lead to phase separation due to the intrinsic 

chemical dissimilarity between these two segments and has each domain. Therefore, 

not only understanding the behavior and molecular structure of each segment, but 

also understanding the phase structure of the system in the microdomain is essential 

for SMPU design. In some cases, the shape memory and mechanical properties of 

polymeric materials are greatly influenced by the degree of structural completeness 
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and phase separation. Therefore, understanding and optimizing this phase separation 

is very important to determine the performance of polymer systems. Zhang et. al. 

[120]  introduced a styrene–butadiene–styrene (SBS) copolymer and poly(ɛ-

caprolactone) (PCL) blend for its shape memory properties, and demonstrated the 

phase morphologies of the immiscible blend contributed to the shape recovery and 

fixing performances. The effect of phase separation is also very significant in the 

mechanical properties of polymer-based materials such as Mater-Bi type bioplastic 

[121], and various additives were tested to improve the miscibility and solubility 

between the gum rosin and its derivatives. The shape-memory behaviors and thermo-

mechanical properties of SMPU are also affected by the phase separation 

morphology, which are in turn related to the HSCs.  

Since AA MD simulation, which considers all atomic degrees of freedom and 

observes local motion, is not suitable for observing the phase separation behavior of 

the SMPU copolymer, a coarse-grained MD model should be used as well. At this 

time, the focus is on the polymer mixing phenomenon rather than the molecular 

behavior of each polymer chain. Therefore, it is efficient to use a CG model that 

reflects the solubility of each component in order to observe the phase separation 

behavior and phase morphology on the scale of tens of nanometers. 

From the point of view of nanocomposites design, many multiscale 

computational models are also being developed to analyze nanocomposites in which 

nanoparticles are added to polymer materials [35-38]. The area of the polymer matrix 

surrounding the surface of filler is referred to as the interphase. The interactions in 
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this region influence the physical properties of the polymer nanocomposites. When 

the dimensions of the filler decrease to the nanometer scale, the interfacial 

interactions become more significant because nanoparticles exhibit a high surface 

area to volume ratio. [39].  

Attaining a uniform distribution of nanofillers within polymer resins is of 

paramount importance processing nanocomposites. The even distribution of 

nanofillers is crucial for attaining ideal multifunctional characteristics, particularly 

when dealing with low concentrations [40,41]. When filler particles agglomerate, 

they obstructs the effective penetration and crystallization of polymer segments, and 

also restrict the movement of nanoparticles [42-44]. As a consequence of this 

inadequate penetration, a void area forms within the clusters, which is widely 

believed to negatively impact the mechanical properties in general. 

The problem of interphase zone degradation caused by agglomeration is 

important, but traditional micromechanics models cannot account for how 

agglomeration affects composite properties overall. As a solution, a new method 

called inverse multiscale modeling has been introduced and untilized to explore 

different aspects of nanocomposites. This approach employs molecular dynamics 

simulation alongside continuum modeling techniques like micromechanics solutions 

or finite element methods to study characteristics such as elasticity, thermoelasticity, 

and thermal conductivity [45,46]. Furthermore, the effective creation of interfacial 

regions is restricted by substantial potential barriers caused by repulsive forces 

between neighboring nanoparticles [47,48]. As a result, there are overlapping and 
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gallery regions with lower densities than bulk polymers. To address this, Baek et al 

proposed a modified interphase model that recognizes the variation in density 

between the conventional high-density interphase without overlapping and the 

overlapping interphase [47]. To analyze the mechanical, thermal, or electrical 

properties of nanocomposites in terms of the degree of nanoparticle agglomeration, 

some research suggests employing a multiscale framework that accounts for the 

properties of the nanoscale interphase region. This model does not reveal how the 

actual distribution of nanoparticles occurs through the chemical interaction between 

the matrix and nanoparticles in the fabrication of nanocomposites. In addition, from 

the point of view of complete nanocomposite design, they do not suggest a chemical 

treatment method to improve the nanoparticle agglomeration phenomenon and a 

method to improve the properties of the nanocomposite accordingly. To solve this 

problem, multi-scale analysis through expansion from atomistic level to mesoscale 

level is necessary, rather than the existing multi-scale framework leading directly 

from the molecular dynamics to continuum modeling, and this work was performed 

in this study. 

 

1.3  Mesoscale-based multiscale analysis strategy 
 

In this computational study, as shown in Figure 1.2, a sequential multiscale 

framework was proposed, involving all-atom molecular dynamics (AA MD), coarse-

grained MD (CG MD), dissipative particle dynamics (DPD), and finite element 

method (FEM). 
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To bridge the chemical interaction in atomistic level with the design of polymer 

nanocomposites in continuum scale, we established a mesoscale simulation-based 

multiscale strategy for SMPU nanocomposites. Here, mesoscale simulation refers to 

CG MD and DPD models that treat multiple atoms as one bead, reducing the degree 

of freedom and dramatically increasing the time/length scale. At this time, to 

improve the dependability of the constructed multiscale model, scale bridging was 

conducted, involving the transfer of physical properties from the lower scale to the 

upper scale. First, we developed a coarse-grained MD model by using the iterative 

boltzmann inversion (IBI) technique. At this time, a reference atomistic model was 

established, and the CG model was upscaled to equally simulate the structural 

conformations, radial distribution density (RDF), and density of the polymer chain 

at the atomistic level. The phase transition (polymer crystallization) of SMPU was 

simulated through the developed CG model, and the resulting thermo-mechanical 

properties and shape memory mechanism were investigated. In addition, the effect 

of nanoparticles on the shape-memory performance was investigated through the 

addition of silica nanoparticles. 

Next, the phase separation of SMPU nanocomposites was investigated through 

the DPD model. Here, DPD is an extended scale that can observe phase architectural 

evolution in tens of nanometers by treating larger atomistic units as beads than 

general CG models developed through the IBI method. DPD simplifies potential 

energy between beads and focuses only on phase mixing between different 

components through relatively soft nonbonded repulsion. Here too, the difference in 
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solubility and mixing energy between each component calculated through AA MD 

is upscaled as a variable for calculating the DPD repulsion parameter. Through the 

developed DPD model, the two-phase morphology according to the HSC of SPMU 

was investigated. In addition, by adding silica nanoparticles, the distribution of 

nanoparticles in the polymer matrix could be derived through multiple phase 

separation. Additionally, the nanoparticle clustering behavior was controlled by 

surface treatment of silica. The presented study can provide a guideline for designing 

uniform distribution of nanoparticles to improve the electrical, mechanical, and 

thermal characteristics of nanocomposites. The geometry of the nanocomposite 

derived through DPD is upscaled to the FEM mesh at the continuum scale. This 

overcomes the limitations of conventional nanocomposite theoretical models 

assuming well-dispersed nanoparticles or existing multi-scale models that derive 

nanocomposite properties according to user-controlled particle agglomeration.  
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Figure 1.2 Mesoscale simulation-based strategy for multiscale analysis of SMPU 

nanocomposites. 

 

 

1.4  Thesis Outline 
 

The dissertation is organized as follows; In Chapter 2, the basic mesoscale 

behavior of shape-memory polyurethane (SMPU) nanocomposites is described. A 

coarse-grained MD model was built using the iterative Boltzmann inversion (IBI) 

technique to investigate the molecular structure of each segment of the SMPU. And 

the thermo-mechanical properties and shape-memory performance according to the 

HSC are described. Furthermore, changes in microstructure and shape-memory 
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behavior are shown with the addition of silica nanoparticles. Chapter 3 focuses on 

the phase separation of the SMPU copolymer by building a dissipative particle 

dynamics (DPD) model. By introducing the solubility parameter calculated through 

AA MD, we predict the architectural evolution of the phase domain according to the 

SMPU HSC. Chapter 4 shows the multiple phase separation of the SMPU/Silica 

nanocomposties considering the nanoparticle agglomeration in DPD simulation. 

Uniform distribution is obtained through surface treatment of silica nanoparticle, and 

the degree of improvement in nanoparticle distribution improvement is quantified 

through clustering density. Finally, finite element-based homogenization is 

combined with DPD resulting geometries to derive the mechanical properties of 

SMPU nanocomposites considering the interphase zone. The conclusions are given 

in Chapter 5. 
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Chapter 2 

 

Shape-memory behaviors of SMPU 

nanocomposites 

 

2.1  Coarse-grained (CG) modeling of SMPU–Silica 

nanocomposites 
 

Coarse-grained molecular dynamics simulation is an efficient modeling method 

that enables simulation and analysis of desired mesoscale behavior or properties of 

polymer nanocomposite systems. This model plays a role of scale bridging for 

mesoscale phenomena that have limitations in interpretation with the existing full 

atomistic model and cannot be applied to the continuum theory. Coarse-grained 

models treat multiple atoms as a bead to dramatically increase the time scale and 
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length scale of computation. Existing all-atom MD has the advantage of precisely 

mimicking the local motion of a polymer nanocomposite through realistic molecular 

structure modeling, whereas the CG model implements the global motion of a 

polymer through a reduced degree of freedom, resulting in phase transition, phase 

separation, Mesoscale phenomena such as nanoparticle aggregation can be 

efficiently simulated. In order to build an accurate CG model, it is necessary to 

develop potential energy between the constituent beads that equally simulate the 

structure or physical properties of the all-atom model according to the desired 

analysis goal.  

 

2.1.1  Iterative Boltzmann inversion (IBI) method 

To create a CG model with fewer DOFs, a new set of potentials must be created 

between the beads. The energy of the entire bead system can be categorized into two 

parts: bonded energy and non-bonded energy. 

First, the bonded potential is created to ensure that the bead model has the same 

conformational distribution as the reference AA MD model. Then, the non-bonded 

potential is derived using the Iterative Boltzmann Inversion (IBI) method to match 

the structural and thermodynamic properties, such as radial distribution function and 

density. This structure-based bottom-up approach is to accurately simulate the 

behavior of the SMPU-silica nanocomposite at the bead level. Similar optimization 

techniques have been used to link atomic and mesoscopic properties of various 

 ∑ 𝑈𝐶𝐺 = ∑ 𝑈𝐶𝐺
𝑏𝑜𝑛𝑑𝑒𝑑 + ∑ 𝑈𝐶𝐺

𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑  (2.1) 
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polymeric molecules. [49-53].  

Bonded potential can be divided into the energy associated with the bond length 

of adjacent two beads (𝑙) and the bending-angle of adjacent three beads (𝜃). The 

probability distributions of the intramolecular conformations (𝑃(𝑙) and 𝑃(𝜃)) were 

obtained from the NVT trajectory of the reference model. The CG potentials 

( 𝑈𝐶𝐺
𝑏𝑜𝑛𝑑𝑒𝑑(𝑙)  and 𝑈𝐶𝐺

𝑏𝑜𝑛𝑑𝑒𝑑(𝜃) ) can be derived from the obtained probability 

distribution via Boltzmann inversion : 

where 𝑘𝐵  is the Boltzmann constant, and T is the temperature. The bonded 

potentials, which depend on the bond length and bending angle, were calibrated 

using a technique called multi-centered Gaussian fitting method [33], expressed as: 

where 𝑙𝑖 and 𝜃𝑖 represent the central positions of each Gaussian function, and 𝑎𝑖 

and 𝑏𝑖 are coefficients. This method is more sophisticated in describing the multiple 

equilibrium states compared with just using a simple harmonic function. 

The non-bonded potentials are created so that they can match the target radial 

distribution function (RDF) and density of the atomistic model at the reference 

temperature of 300K. The RDF is calculated using CG reference trajectories derived 

from all-atomistic MD simulations. An initial guess (𝑈𝐶𝐺,0
𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑(𝑟)) for the non-

 

𝑈𝐶𝐺
𝑏𝑜𝑛𝑑𝑒𝑑(𝑙) = −𝑘𝐵𝑇𝑙𝑛(𝑃(𝑙) 𝑙2⁄ ) 

𝑈𝐶𝐺
𝑏𝑜𝑛𝑑𝑒𝑑(𝜃) = −𝑘𝐵𝑇𝑙𝑛(𝑃(𝜃) 𝑠𝑖𝑛𝜃⁄ )  

(2.2) 

 

𝑈𝐶𝐺
𝑏𝑜𝑛𝑑𝑒𝑑(𝑙) = −𝑘𝐵𝑇𝑙𝑛 [∑ 𝑎𝑖𝑒𝑥𝑝 {− (

𝑙 − 𝑙𝑖

𝑏𝑖
)

2

}

𝑛

𝑖=1

] 

𝑈𝐶𝐺
𝑏𝑜𝑛𝑑𝑒𝑑(𝜃) = −𝑘𝐵𝑇𝑙𝑛 [∑ 𝑎𝑖𝑒𝑥𝑝 {− (

𝜃−𝜃𝑖

𝑏𝑖
)

2
}𝑛

𝑖=1 ]  

(2.3) 
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bonded potential is estimated by utilizing the target RDFs and employing Boltzmann 

inversion; 

where r is the distance between CG beads, and 𝑔𝑡𝑎𝑟𝑔𝑒𝑡(𝑟) is the target RDF. We 

used the IBI method to optimize the non-bonded potential energy between beads. 

The initial potential in the CG model did not match the target RDF, so we had to 

optimize the CG potential energy iteratively using a formula that included a constant 

value and the RDF from each iteration as follow: 

We stopped the iteration process when the target function, which measures the degree 

of error with the target RDF, fell below a certain value. To calculate the target 

function, we followed the given formula. 

where 𝑟𝑐 is the cut-off distance, which is 20 Å in this study. 

While the RDFs of the IBI-completed bead model matche the desired outcome 

well, the potential based on IBI alone is not enough to replicate the density of the 

AA reference model. As a result, an extra correction for pressure is required to 

achieve a density match [34]. To derive the pressure-corrected potential (𝑈𝐶𝐺
𝑃𝐶(𝑟)), 

the following formula is used. 

The process of adjusting the CG system continues repeatedly until its pressure 

 𝑈𝐶𝐺,0
𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑(𝑟) = −𝑘𝐵𝑇𝑙𝑛 (𝑔𝑡𝑎𝑟𝑔𝑒𝑡(𝑟)) (2.4) 

 𝑈𝐶𝐺,𝑖+1
𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑(𝑟) = 𝑈𝐶𝐺,𝑖

𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑(𝑟) − 𝛽𝑘𝐵𝑇𝑙𝑛 (
𝑔𝑖(𝑟)

𝑔𝑡𝑎𝑟𝑔𝑒𝑡(𝑟)
) (2.5) 

 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 = ∫ 𝑒𝑥𝑝(−𝑟) {𝑔𝑖(𝑟) − 𝑔𝑡𝑎𝑟𝑔𝑒𝑡(𝑟)}
2

𝑑𝑟
𝑟𝑐

0
  (2.6) 

 𝑈𝐶𝐺
𝑃𝐶(𝑟) = 𝑈𝐶𝐺

𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑(𝑟) − 𝛾𝑘𝐵𝑇 (1 −
𝑟

𝑟𝑐
)  (2.7) 
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matches the desired pressure of 0.1 MPa. 

 

2.1.2  CG modeling for thermoplastic polyurethane copolymer 

Figure 2.1 represents the chemical structure of the SMPU copolymer adopted 

in this study, and the CG bead mapping is indicated. The copolymer is made up of 

urethane linkages formed by combining 4,4'-diphenylmethane diisocyanate (MDI) 

and poly (ethylene oxide) (PEO), where MDI forms the hard segment and PEO forms 

the soft segment. Various CG mapping schemes have been developed to describe the 

molecular interaction and structure of polyurethane- and polyurea-based materials. 

Agrawal and co-workers [49] used two types of beads to represent the hard and soft 

segments of oligomeric polyurea chains. Cui et al. [32] also used a two-bead system 

to study the mechanical properties of hard-soft copolymers. But it was found that 

using only two beads to represent the hard and soft segments is not sufficient to 

accurately replicate the strong adhesion between the hard segments induced by the 

hydrogen bonding between the urethane linkages. Zhang et al. [50] found that 

multiple bead types were necessary to accurately replicate the packing behavior and 

interaction characteristics of rigid biphenyl groups. Therefore, this study constructed 

a system with three different beads, with bead A representing one monomer of PEO, 

bead B representing the center part of the hard component, and bead C representing 

the remaining part of the benzenes and the urethane linkage. Beads A, B, and C 

correspond to 7, 13, and 10 atoms, respectively. Uddin et al. [30] also used three 

types of beads on thermoplastic polyurethane and were able to effectively observe 
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the phase transition behavior with their mesoscale model. So as to simplify the 

process of deriving the coarse-grained potential and mesoscale model, the chain 

extender between the hard groups was disregarded in their study. 

 

 

Figure 2.1 Chemical structures and bead-mapping of the SMPU copolymer. 

 

We prepared a target reference structure of the SMPU to derive CG potentials 

by using the AA MD simulation as shown in Figure 2.2. We used the Theodorou-

Suter [54] method of the Amorphous Cell Tools of Materials Studio 5.5 to create a 

unit cell made up of 80 polymer chains, each with a molecular weight of 

1277.39g/mol and a hard-segment content of 65 wt.%. The LAMMPS [55] code 

developed by the Sandia National Laboratory was then used to relax the initial cell, 

with a polymer consistent force field (PCFF) [56] describing intra- and inter-
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atomistic potentials. A cut-off distance of 9.5 Å was set for both non-bonded van der 

Waals and Coulombic interactions, utilizing a timestep of 1.0 fs and a dielectric 

constant value for the Coulombic interactions set to 1.0. To obtain clear peak values 

in radial distribution functions (RDFs), the reference AA model was equilibrated at 

high temperature (T=550 K) for 10 ns to avoid local minimization of the initial 

randomly generated polymer configuration., and then equilibrated for an additional 

20 ns at 300 K and 0.1 MPa. Then, NVT ensemble was performed at 300 K for 2 ns 

to obtain structural properties through reference CG trajectories. Our methodology 

was similar to that of Agrawal et al. [49] who also equilibrated their system at an 

elevated temperature and then quenched it to 300 K.  

 

 

Figure 2.2 Atomistic and coarse-grained (CG) MD models of the SMPU reference 

unit cell.  
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The potential energy between the beads was developed through the process 

described in section 2.1.1. Examples of bond length and bending angle distributions 

are shown in Figures 2.3 and 2.4, respectively.  

 

 

Figure 2.3 Example of the bond length distribution obtained from the AA reference 

model at 300 K and corresponding CG potential energy curve derived from the 

Boltzmann inversion.  

 

Figure 2.4 Example of the bending angle distribution obtained from the AA 

reference model at 300 K and corresponding CG potential energy curve derived 

from the Boltzmann inversion. 

 

The MD data marked with a blue circle was fitted to a multi-centered Gaussian using 

a red line. Tables 2.1 and 2.2 contain coefficients for analytically parameterized bond 
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length and bending angle pairs, respectively. On the right, each CG potential 

obtained from the red line through Boltzmann inversion is shown by a black line. 

The CG potentials obtained through Boltzmann inversion are extrapolated by 

polynomial functions at both ends. 

 

Table 2.1 Bond length CG potential energy coefficients for SMPU copolymer. 

Bond 

length 
𝑎1 𝑏1 [Å ] 𝑙1 [Å ] 𝑎2 𝑏2 [Å ] 𝑙2 [Å ] 𝑎3 𝑏3 [Å ] 𝑙3 [Å ] 

A-A 0.157 0.070 3.600 0.136 0.281 3.310    

A-C 0.060 0.131 4.374 0.070 0.080 4.689 0.041 0.412 4.170 

B-C 0.121 0.173 5.147       

C-C 0.048 0.158 5.412 0.039 0.273 4.917 0.030 0.144 4.514 

 

Table 2.2 Bending angle CG potential energy coefficients for SMPU copolymer. 

Bending 

angle 
𝑎1 𝑏1 [°] 𝜃1 [°] 𝑎2 𝑏2 [°] 𝜃2 [°] 𝑎3 𝑏3 [°] 𝜃3 [°] 

A-A-A 0.134 13.79 179.5 0.019 18.97 160.5 0.014 36.26 140.5 

B-C-A 0.297 18.62 179.5       

C-A-A 0.033 16.49 179.4 0.029 45.31 158.2    

C-B-C 0.062 12.37 132.1       

C-C-B 0.155 18.86 177.9 0.012 29.53 133.6 0.001 3.435 119.3 

 

After applying all the derived bonded potentials to the bead system, the IBI 

procee begins. In this system, there are three types of beads, which necessitates six 

non-bonded potentials (A-A, B-B, C-C, A-B, B-C, C-A). Figure 2.5 shows the RDF 
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convergence process during IBI implementation, expressed as equation (2.5) in 

section 2.1.1. The comparison of the target radial distribution functions (RDFs) from 

the all-atom reference model and the IBI-completed CG model is shown in Figure 

2.6, along with the final target function values of each bead pair. The density of the 

CG system was 1.211 g/cc at 300 K with the additionally the pressure-corrected 

potentials, which is in precise agreement with the atomistic model's density of 1.210 

g/cc. 

 

 

Figure 2.5 The process of RDF converging to the target RDF through the IBI 

equation. 
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Figure 2.6 Comparison between the target RDF obtained through the AA reference 

model and the RDF obtained through the CG model where the IBI process was 

completed.. 

 

2.1.3  CG modeling for Silica nanoparticle 

To simulate the CG SMPU-silica nanocomposite system, we have to derive the 

new CG potentials that represent the interaction between the nanoparticle and 

polymer chains. Figure 2.7 shows the chemical structure of SiO2 silica nanoparticle 

and the bead mapping strategy. In order to accurately reflect the interaction between 

the nanoparticle and the SMPU chain, it is necessary to capture a clear RDF peak 

between the surface part of the nanoparticle and the PU matrix [57]. Therefore, we 

mapped the particle into two kinds of beads. The positions of the outmost Si atom 

was treated as shell (S) beads, and the remaining Si atom was treated as core (Co) 

beads.  
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As in section 2.1.2, an all-atom reference structure was established to develop 

SMPU-silica CG potentials. As shown in Figure 2.8a, it consists of the same 80 

polymer chains as in section 2.1.2 and a SiO2 nanoparticle with a radius of 12.91 

angstroms. In order to investigate the nanoparticle clustering behavior, not only the 

SMPU-silica interaction, but also the interaction between particles is important. To 

induce the interparticle CG potential, a unit cell composed of 7 identical SiO2 

nanoparticles was additionally constructed (Figure 2.8b). The relaxation process of 

the unit cell to obtain reference trajectories for deriving structural conformations and 

target RDFs is the same as in section 2.1.2. 

 

 

Figure 2.7 Core-shell bead mapping strategy for CG model of silica nanoparticle.  
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Figure 2.8 AA and CG MD configurations of the referenc unit cells for deriving 

CG potentials (a) between SMPU matrix and silica nanoparticle, and (b) between 

silica nanoparticles.  

 

Bonded potentials for beads (Co, S) of silica nanoparticle were derived through 

the same process as in section 2.1.2 by using the reference trajectories. Figure 2.9 

shows the same CG potentials for bond lengths between Co-Co, Co-S and S-S. 

Figure 2.10 shows the CG bending angle potentials for angles in all cases that can 

com from silica nanoparticles. Tables 2.3 and 2.4 also shows the parameterized 

coefficients for multi-centered gaussian funtions of bond length and bending angle 

CG potentials. 
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Figure 2.9 Results of bond length distribution and derived CG potential energy of 

silica nanoparticle (Co-Co, Co-S, S-S). 

 

 

Figure 2.10 Results of bending angle distributions and derived CG potential 

energies of silica nanoparticle. 
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Table 2.3 Bond length CG potential energy coefficients for silica nanoparticle. 

Bond 

length 
𝑎1 𝑏1 [Å ] 𝑙1 [Å ] 𝑎2 𝑏2 [Å ] 𝑙2 [Å ] 𝑎3 𝑏3 [Å ] 𝑙3 [Å ] 

Co-Co, 

Co-S, 

S-S 

0.409 0.096 3.151 0.180 0.104 3.051    

 

Table 2.4 Bending angle CG potential energy coefficients for silica nanoparticle. 

Bending 

angle 
𝑎1 𝑏1 [°] 𝜃1 [°] 𝑎2 𝑏2 [°] 𝜃2 [°] 𝑎3 𝑏3 [°] 𝜃3 [°] 

Co-Co-Co, 

Co-S-Co, 

S-Co-S 

0.071 8.418 109.4       

Co-Co-S, 

Co-S-S 
0.001 2.769 110.2 0.020 7.930 87.92 0.036 12.21 110.5 

S-S-S 0.065 13.47 126.7 -0.050 12.19 127.5 0.015 29.23 112.3 

 

In order to derive the nonbonded potentials between nanoparticle and polymer 

chains, we obtained the target RDFs by using all-atom MD simulation (Figure 2.8a). 

There are six new RDFs between nanoparticle(Shell(S), Core (Co)) and polymer 

chains (A, B, and C) ; S-A, S-B, S-C, Co-A, Co-B, Co-C. 

Figure 2.11 shows the target RDFs between nanoparticle and polymer matrix 

obtained from the all-atom MD. The polymer chains interact mainly with the shell 

part of the nanoparticle, so the RDFs between the chains and the shell of the particle 

have the clear peaks. Whereas, the RDFs between the chains and the core part of the 

particle have unclear shape, which indicates a relatively weak interactions. 
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Figure 2.11 Comparisons between the target RDFs and CG RDFs (IBI-PC 

completed) for matrix-naniparticle interactions obtained from the reference unit 

cells (Figre 2.8a).  

 

The RDFs between beads derived from the bead model where both IBI and 

pressure correction are completed matches the target RDFs well, and the target 

function value for each pair is also shown in Figure 2.11. The density of the SMPU-

silica nanocomposites system calculated by using the CG potentials was 1.228 g/cc 

at 300 K, which is which is comparable to that of the reference atomistic model 

(1.233 g/cc). Finally, interparticle nonbonded potentials (S-S, S-Co, Co,Co) were 

developed. Figure 2.12 shows the final RDF comparisons derived through the 

reference model of Figure 2.8b and the completed CG nonbonded potential energies.  
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Figure 2.12 Comparison between the target RDFs and CG RDFs (IBI-PC 

completed) for interparticle interactions obtained from the reference unit cells 

(Figre 2.8b), and the corresponding CG nonbonded energy curves. 
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2.2  Effect of molecular compositions on thermo-mechanical 

behaviors of pristine SMPU 
 

After completing the derivation of all CG potentials, new bead models were 

created for mesoscale analysis at increased length and time scale. The Mesocite 

module in the Materials Studio package (BIOVIA, Inc.) was employed to construct 

CG models with different segment ratios of polyurethane copolymer. The CG bulk 

unit cells have 9,022-17,446 beads, which are equivalent to 65,962-158,626 atoms. 

The molecular weight of soft-segment (bead A) for all CG models was fixed at 640 

beads (4480 atoms, 28193.9 g/mol) to focus solely on the effect of the HSC on the 

molecular behavior. The hard-segment's (bead B and C) molecular weight was 

gradually increased, resulting in seven different HSC models. Table 2.5 presents the 

specific HSC values and detailed information for each CG model. Each model 

underwent equilibration using sequential steps that included energy minimization, 

the NPT ensemble for 80 ns at 300 K and 0.1 MPa with a timestep of 10 fs. During 

the CG MD simulations, the Langevin thermostat [58] controlled the temperature, 

and the Berendsen barostat [59] controlled the pressure. 
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Table 2.5 Information on the mesoscale CG models with different HSCs. 

(All models have the same number of soft-segment beads = 8320 beads) 

Model 
HSC 

[wt. %] 

No. of 

hard-

segment 

beads 

Molecular 

weight 

[kg/mol] 

No. of 

corresponding 

atoms 

Density 

(CG) 

[g/cc] 

PU15 15.27 702 33.31 65,962 1.223 

PU21 21.28 1,053 35.87 69,823 1.258 

PU32 32.46 1,872 41.84 78,832 1.319 

PU45 45.68 3,276 52.07 94,276 1.378 

PU50 50.52 3,978 57.19 101,998 1.381 

PU60 60.20 5,850 70.83 122,590 1.355 

PU70 70.23 9,126 94.71 158,626 1.261 

 

 

2.2.1  Crystallinity of the SMPU 

In order to examine how semi-crystalline polymers behave thermodynamically, 

it is necessary to define the level of crystallization, or crystallinity, of the polymer 

models at a mesoscopic level. We utilized the same approach as Deng et al. [60], 

who applied a method for simulating semi-crystalline polymers. We introduced the 

orientational order parameter (S) as a means of measuring the degree of molecular 

alignment. This parameter can be calculated using the following equation:  

The symbol 𝜽  represents the angle formed between the reference axis and the 

 𝑺 = 〈𝑷𝟐(𝒄𝒐𝒔𝜽)〉 = 〈
𝟑𝒄𝒐𝒔𝟐𝜽−𝟏

𝟐
〉  (2.8) 
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direction vector, and 〈∙〉 indicates the average value for all the beads. The reference 

axis vector for each bead in a polymer chain is defined as the vector that connects it 

to its neighboring beads. This is also done for another bead in the same manner. 

Figure 2.13 illustrates the calculation process in detail. The orientational order 

parameter is determined by averaging the values of beads within a certain distance 

(four times the bond length) from a particular bead (i). If the averaged value is greater 

than 0.6, then that bead (i) is considered crystalline. The level of crystallinity is 

assessed by calculating the ratio of crystalline beads to the overall number of beads 

present in the system. 

 

Figure 2.13 A depiction of the reference axis and direction vector within the 

polymer, which were used to define the crystallinity in the CG model.  

 

Our investigation focused on the crystallization process of SMPU copolymers 

and how the relaxation time of simulations affects their structural changes. The 

results, shown in Figure 2.14, demonstrate how the crystallinity of linear block 

copolymers varies with different HSCs during the NPT ensemble at the room 



 51 

temperature (300 K). As the models relaxed, the non-crystalline structures began to 

form crystalline polymers in the soft segment. Notably, we found that the content of 

the hard segments is critical on the morphological behavior. Increasing the 

concentration of MDI groups from 15 wt% to 70 wt% decreased the crystallinity of 

the equilibrium state from 0.383 to 0.003 due to the strong adhesion between the 

diisocyanates of the hard-segment beads, which inhibits the crystallization of the soft 

flexible chains. Our findings align with similar experimental studies [8,61,62] that 

suggest the chain-folding behavior of soft-segment mainly contributes to the 

crystallinity of segmented polyurethane, and the content of hard blocks significantly 

affects micromorphology. The corresponding structure according to the segment 

ratio will also affect the thermo-elastic behavior of the SMPU materials. 
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Figure 2.14 Crystallinity of the pristine SMPU copolymers with various hard-

segment contents (HSCs) during the 80 ns of relation at 300 K.  
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2.2.2  Melting temperature 

The differences in crystallinity of SMPU copolymers based on HSC can have 

an impact on their thermal transition behavior. To investigate this, the melting 

temperature was evaluated by gradually increasing the temperature from 300 to 500 

K at a rate of 10 K/20 ns and observing the specific volume change. As shown in 

Figure 15, the CG configurations of three different models with varying HSC were 

analyzed, and it was found that the most clearly folded polymer chains were 

observed in the PU15 model with the highest crystallinity. However, higher HSCs 

were found to destabilize the crystalline phase. During the simulated heating process, 

semi-crystalline polymers maintained a well-developed layered structure before 

quickly softening at the melting point. The specific volume was observed to increase 

significantly at the melting point, regardless of the HSC. It was observed that the 

melting temperature decreased with increasing polymer HSC, meaning that SMPU 

copolymers with low crystallinity have low melting temperatures. This phenomenon 

must be considered when modeling the actuation behavior of thermo-responsive 

block copolymers, as the melting point is the operating temperature of shape-

recovery effect. The heat-activation temperature can be controlled by modifying the 

HSC of the hard-soft copolymer system. 

 

2.2.3  Mechanical behaviors 

Mechanical loads under various conditions were applied to examine the 

structural evolution of each segment. Figure 2.16 presents the CG configurations of  
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Figure 2.15 CG MD configurations of semi-crystalline SMPU with (a) HSC = 15 

wt.% , (b) HSC = 15 wt.% , and (c) HSC = 32 wt.% and their specific volume 

change during the heating-up simulation.  

 

PU15 (HSC 15 wt.%) under uniaxial tensile deformation at two different 

temperatures. When the temperature was below the melting point (T=300 K), the 
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soft segment had randomly oriented lamellar layers of polymer crystallites before 

any load was applied. During tensile deformation, the crystalline layers became 

uniaxially oriented (Figure 2.16a). However, when the temperature was above the 

transition temperature (ex. T=410 K), the amorphous and isotropic polymer chains 

exhibited flexible deformation (Figure 2.16b).  

 

 

Figure 2.16 CG configurations of PU15 (HSC: 15 wt.%) undergoing uniaxial 

tensile deformation at (a) T=300 K and (b) 410 K.  

 

The crystallinity and orientational order parameter of the PU15 were shown in 

Figure 2.17a as a function of the applied strain. When the strain was applied at 300 

K, stretching resulted in further crystallization, so the fraction of the crystalline beads 
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slightly increased to approximately 34% at 150% strain. However, the orientational 

order parameter was nearly zero in the initial non-deformed state, even though the 

crystallinity was relatively high (0.383). As the strain increased to 150%, the order 

parameter of the soft segments sharply increased to 0.575, indicating that the 

crystallites were re-oriented parallel to the loading direction. Under the condition of 

a temperature of 410 K, the crystallinity and order parameter were zero in the initial 

un-deformed state, and although a large amount of strain was applied, the 

crystallinity remained near zero (0.003), and the order parameter increased to 0.117. 

At high temperatures, soft polymer chains remained amorphous regardless of the 

fraction of hard blocks. Therefore, under these conditions, the influence of the soft- 

segment itself on the mechanical property of the SMPU according to HSC will be 

insignificant.  

However, regardless of the temperature, as HSC increases, the RDF peak 

between hard-segments increases (Figure 2.17b), which means that relatively stable 

hard-segment domains are formed in polymer network system. Therefore, both 

external temperature and molecular composition affect the structure of each hard 

segment and soft segment of the SMPU copolymers, and the resulting 

micromorphology will also affect their mechanical behaviors.  
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Figure 2.17 (a) Crystallinity and orientational order parameter of PU15 (HSC: 

15 wt.%) under the uniaxial tensile test at T=300 K and 410 K. (b) RDF of the hard 

segment beads with different HSCs at T=410 K.  

 

The graph in Figure 2.18 shows how the elastic modulus of SMPU copolymers 

changes based on the microstructures depending on the temperature and HSC. To 

determine the elastic modulus, we employed the gradient of the stress-strain graph 
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in its linear elastic range, spanning from 0 to 2%. The calculated values (38.4–607.9 

MPa) were comparable to experimentally measured values (2.2–540 MPa) [63-67] 

for segmented thermoplastic polyurethanes. At a temperature of 300 K, increasing 

the concentration of hard segment from 15% to 70% decreased the elastic modulus 

by about 78%. However, at a temperature of 410 K, increasing HSC actually 

increased the elastic stiffness. At lower temperature, there was a greater difference 

in the elastic moduli, indicating that the increased stiffness was due to soft-segment 

crystallization caused by the hard-soft phase-separated structure. This phenomenon 

was shown to be significant in enhancing elastic stiffness. However, when the HSC 

was increased, the lamellar microstructure was disrupted, leading to a degradation in 

mechanical properties under the condition T = 300 K.  

On the other hand, at higher temperatures where the soft polymer chain 

remained amorphous, the non-crystalline segment has sufficient molecular mobility 

to mix with the hard segment. Increasing HSC led to larger hard aggregations and 

this hard domain contributes more to the improved resistance to external load. These 

results were consistent with previous experimental studies [66,67] on the influence 

of crystallinity on elastic stiffness of semi-crystalline polyurethanes. The findings 

also supported unique relationships between elastic modulus and HSC at the two 

external temperatures, consistent with previous experimental reports [8]. The CG 

potential used in the study was derived from a reference state of 300 K and HSC of 

65 wt%, but the model showed reasonable transferability for a wide range of 

temperature and molecular composition. The study suggests that modifying intrinsic 
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polymer architecture or thermo-mechanical history can easily modulate the 

mechanical properties of SMPU copolymers. 
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Figure 2.18 Elastic modulus reulsts of the SMPU copolymers according to HSCs 

and external temperatures.  

 

2.2.4  Shape-memory properties 

To simulate the mesoscopic shape-memory thermo-mechanical cycle, the CG 

models were utilized and the LAMMPS code was implemented with the developed 

CG potentials to carry out sequential simulations as described in Figure 2.19. The 

shape-memory cycle comprises four steps, including loading, cooling, unloading, 

and reheating. Figure 2.19 displays the mesoscopic morphology and unit cell shape 

variations of the SMPU model during the shape-memory cycle. Before the first 
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loading step, the CG bulk unit cell is geometrically optimized and equilibrated in the 

NPT ensemble for 40 ns under 370 K and 0.1 MPa conditions, while the polymer 

chains of the original shape (𝜀 = 𝜀0 ) remain in a non-crystalline isotropic state. 

Afterward, uniaxial tensile loading is applied in the x-axis direction of the unit cell 

up to strain of 200% (𝜀 = 𝜀𝑡) with a nominal strain rate of 108/𝑠. Cooling maintains 

the temporary deformed shape while the external temperature decreases to 300 K 

through an NVT ensemble for 20 ns, and polymer crystallization occurs during this 

process. An NPT ensemble is applied for 20 ns under 300 K and 0.1 MPa conditions 

to relax the external stress during the unloading process. Under stress relaxation, the 

SMPU copolymer fixes its shape with a new strain value (𝜀 = 𝜀𝑓), and finally, the 

unit cell is heated to high temperature through an anisotropic NPT ensemble for 500 

ns. The activation temperature of Tm+20 K was chosen, following an experimental 

approach [61], to examine the structural recoveries. During heating, the polymer 

undergoes deformation to the recovered strain (𝜀 = 𝜀𝑟 ) after the removal of its 

crystalline structure  

The shape-fixity ratio (𝑅𝑓)  and the shape-recovery ratio (𝑅𝑟)  are the two 

crucial characteristics that reflect the shape-memory performance of the thermo-

mechanical cycle, which can be expressed through equation (2.9). 

 

 

𝑹𝒇 =
𝜺𝒇

𝜺𝒕
  

𝑹𝒓 =
𝜺𝒕 − 𝜺𝒓

𝜺𝒕
 

(2.9) 
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Figure 2.19 CG simulation process of the 4-step shape-memory thermo-mechanical 

cycle.  

 

The 3D results of the shape-memory thermo-mechanical cycle of an SMPU 

with an HSC of 15 wt% are displayed in Figure 2.20, depicting the crystallinity–

temperature–strain relationship. The four differently colored lines represent the four 

steps of the cycle. During the first step, the SMPU copolymer was subjected to 

tensile loading with a maximum strain of 200%, and the crystallinity value barely 

increased due to the relatively high external temperature (T = 370 K). However, as 

the system cooled to T = 300 K, the level of strain was maintained, and the 

crystallinity value sharply increased, indicating a transformation of the amorphous 

soft phase into the crystalline phase. After the load was removed, the crystallinity of 

the SMPU copolymer slightly increased. During the heating phase, the temperature 

increased to Tm + 20 K, and the strain and crystallinity values significantly decreased, 

indicating the shape-recovery behavior of the SMPU copolymer was primarily 

activated by the crystalline–amorphous transition of the soft segments. 
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Figure 2.20 3-D plot (strain-temperature-crystallinity) of the SMPU with HSC = 15 

wt.% during the 4-step thermo-mehcniacl shape memory cycles.  

 

 Figure 2.21 compares the 3D results for SMPU copolymers with three 

different HSCs, with the black, blue, and green lines representing SMPU copolymers 

with HSCs of 15, 45, and 70 wt%, respectively. The ratio of hard to soft segments 

affects the entire shape-memory curve, with the CG model possessing the lowest 

HSC showing the most distinct crystalline structure during the cooling period, 

despite all three SMPU copolymers having the same deformation history (Figure 

2.21, top-right inset). This result aligns with the observations discussed in Section 

3.1.1. Moreover, the copolymer with the lowest HSC value fixed the temporary 

shape best during the stress relaxation step, owing to the formation of the rigid 

crystalline structure (Figure 2.21, bottom-right inset). Increasing the HSC led to a 

decrease in the activation temperature and degree of shape-recovery during the 

reheating phase. 
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Figure 2.21 Shape-memory 3-D plots of the SMPU with three different HSCs (15, 

45, and 70 wt.%). 

 

Table 2.6 presents the shape-fixity ratio, shape-recovery ratio, and crystallinity 

values obtained after the unloading step for each model. The impact of the high HSC 

on various macroscale shape-memory performance metrics can be attributed to 

microstructural differences. As shown in Table 2.6 and Figure 2.21, increasing the 

HSC results in a decrease in the shape-fixity ratio. In semi-crystalline polymers, a 

higher fraction of crystalline molecules is advantageous for retaining the pre-

deformed shape during the unloading step due to limited conformational molecular 

mobility in densely packed polymer chains within crystallites, compared to the 

amorphous state [4,8,61]. Furthermore, an increase in HSC corresponds to a decrease 

in the shape-recovery ratio, with the SMPU copolymer having an HSC of 15 wt% 

showing nearly 100% shape-recovery performance. Generally, good shape-recovery 

performance can be achieved with SMPU copolymers having a polymer chain HSC 
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of up to 50 wt%, but increasing HSC beyond 50 wt% tends to reduce the shape-

recovery ratio to below 90%. This suggests that higher HSC in SMPU polymer 

chains hinders the shape-recovery process, as localized irreversible deformation of 

the hard-segment domains is a major contributor to residual strain in SMPU 

copolymers [8,32,61]. Specifically, plastic deformation of the hard-segment domains 

may not be fully corrected, even when the crystalline polymer of the soft segment is 

released above the melting temperature. 

 

Table 2.6 Shape-memory peformances and crystallinity during the shape-memory 

cycle. 

Model 
HSC 

[wt. %] 
𝑅𝑓 (%) 𝑅𝑟 (%) 

Crystallinity 

after cooling 

Crystallinity 

after fixing 

PU15 15.27 97.17 99.3 0.4956 0.5186 

PU21 21.28 99.56 95.29 0.4107 0.4476 

PU32 32.46 97.81 94.32 0.3320 0.3964 

PU45 45.68 96.41 93.27 0.1394 0.2357 

PU50 50.52 95.18 93.07 0.0821 0.1421 

PU60 60.20 92.41 88.66 0.0194 0.0314 

PU70 70.23 76.85 87.24 0.0099 0.0086 

 

To investigate how well the hard phase recovers its shape in SMPU copolymers, 

we analyzed the behavior of polymer chains during the heating phase. Figure 2.22 

and 2.23 displays the changes in the radius of gyration (Rg) and mean square 

displacement (MSD) of the hard segment during the shape-recovery process. In 
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Figure 2.22, the dashed lines represent the Rg values of the hard segment in its non-

deformed state. Due to the relatively larger hard-segment domain in SMPU 

copolymers, the radius of gyration of the hard segment in the original shape is larger. 

Prior to heating in the simulations, all SMPU models exhibited Rg values much larger 

than those of the original state, indicating that the molecules were elongated by the 

tensile strain. When shape-recovery behavior was activated, the polymeric 

conformation of the hard domain was rapidly restored. For SMPU copolymer with a 

hard-segment content (HSC) of 15 wt%, the hard-segment radius of gyration was 

fully recovered during the heating phase. However, increasing the fraction of the 

aggregated hard-segment domain hindered the SMPU copolymer from returning to 

its initial state. These results, as shown in Figure 2.22, explain the presence of 

residual strain in SMPU copolymers with larger hard-segment domains after shape 

recovery.  

Figure 2.23 displays the MSD in the loading direction (i.e., along the x-axis) of 

each segment in the SMPU copolymers during heating. The MSD curves for the 

polymer chains can be calculated using equation (2.10). 

Here, the x-axis position of atom i at time t is denoted as 𝑟𝑖,𝑥(𝑡), with N representing 

the total number of atoms and 〈•〉  indicating the ensemble average. The MSD 

curves for the soft and hard segments are illustrated in Figure 2.23 using dotted and 

 

𝑀𝑆𝐷𝑥(∆𝑡) =
1

𝑁
∑ 〈|𝑟𝑖,𝑥(𝑡 − ∆𝑡) − 𝑟𝑖,𝑥(𝑡)|

2
〉

𝑁

𝑖=1
 

𝑀𝑆𝐷𝑥 =
1

𝑁
∑ 〈|𝑟𝑖,𝑥(𝑡) − 𝑟𝑖,𝑥(0)|

2
〉

𝑁

𝑖=1
 

(2.10) 
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solid lines, respectively. Previous studies have suggested that the high mobility of 

polymer chains in the loading direction during heating is an important point in the 

shape recovery of shape memory polymers (SMPs) [51,68]. For instance, the SMPU 

copolymer with a HSC of 15 wt%, the mobility of the hard segment was observed to 

be higher than that of the soft segment due to incomplete formation of the segregated 

hard domain. On the other hand, a relatively high HSC was found to constrain the 

overall movement of the polymer chain due to strong adhesion between the hard 

segments, resulting in reduced mobility of the hard segment. This reduced mobility 

can also explain the less desirable shape recovery performance of polymer chains 

with higher HSCs.  

The simulation results suggest that the macroscopic shape of the thermo-

responsive SMP actuator can be controlled by modifying the mesoscopic polymer 

architecture of the material, along with the diffusivity of the constituent polymer 

chains. 
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Figure 2.22 Changes in the radius of gyration (Rg) of the hard segment during 

shape recovery.  

 

 

Figure 2.23 Changes in the mean square displacement (MSD) in the loading 

direaction (x-axis) of each segment of the SMPU copolymer during shape recovery. 
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2.3  Effect of incorporation of silica nanofiller 
 

2.3.1  SMPU microstructure on silica surface 

First, a single silica nanoparticle was added to four different HSC (15, 32, 50, 

and 70 wt.%) SMPU matrices. To investigate the microstructure around the silica 

surface, silica with a radius of 30 angstroms composed of a core and a shell bead was 

constructed. Figure 2.24 shows the unit cells of SMPU-silica CG nanocomposite 

models containing a single nanoparticle equivalent to 10 wt.%.  

 

 

Figure 2.24 CG configurations of the SMPU nanocomposites with differenct HSCs 

(15, 32, 50, 70 wt.%) containing single silica nanoparticles with a radius of 30 Å . 
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It is known that the silica surface has strong interactions with both the soft 

segment ether (C-O-C) polyol and the hard domains (N-H, C=O). Looking at the 

radial density originating from the core of a silica nanoparticle in Figure 2.25, the 

presence of a high-density peak in the interphase around the silica surface was well 

simulated [69-71]. It can be seen that the aspect of the high-density peak varies 

depending on the HSC. As the interphase thickness decreases as the HSC increases, 

it seems that the silica surface is more compatible with the low-HSC SMPU, forming 

a more stable and thicker interphase.  

 

 

Figure 2.25 Radial density of the SMPU matrix and the high-density interphase 

region 
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To further investigate the polymer structure around the surface of the 

nanoparticles in nano level, the crystallinity was calculated in the radial direction of 

the nanoparticle starting from its center. Figure 2.26 shows the orientational order 

parameter (𝑆) (equation (2.8)) for each and every bead of crystalline PU15 model at 

300 K. The orientational order parameter (𝑆) was calculated in the same way as in 

section 2.2.1, and a bead with this value of 0.6 or more is defined as a crystalline 

bead, and the crystallinity of the system is the number of crystalline beads per total 

number of beads. The 𝑆 value of each bead is represented by the color of the range 

shown in the color bar, and the dark red area is the area where crystalline is strongly 

formed. As shown in Figure 2.26, the average 𝑆 value of all beads is 0.451, while 

the average 𝑆 value of beads in the interphase region 10 Å thick from the surface 

of the silica nanoparticle is 0.231. This means that there are almost no crystalline 

beads around the nanoparticle surface. Using the calculated order parameter, the 

degree of crystallinity was obtained by partitioning the section radially from the 

nanoparticle center.  

Figure 2.27 compares the radial crystallinity of pristine SMPU and SMPU-

silica nanocomposites at 15, 32 and 50 wt.% of HSCs. Radial distances were 

measured from the center of unitcell for pristine SMPUs and from the center of mass 

of silica nanoparticles for SMPU nanocomposites. As in section 2.2.1, the 

crystallinity of the SMPU tends to decrease as the ratio of hard-segment increases. 

It can be seen that the pristine SMPU has a uniform crystallinity distribution inside 

the unit cell irrespective of the radial distance. However, looking at the crystallinity 
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of the polymer chains around the silica surface, the soft segment in interphase region 

does not form a crystalline arrangement because of the strong adsorption with the 

silica surface. These results are consistent with the experimental results that silica 

nanoparticulate fillers can suppress the crystallization of thermoplastic polyurethane 

due to physical hindrance reducing chain mobility [72-74]. 

. 

 

 

Figure 2.26 S value of each bead of SMPU matrix in PU15/Silica nanocomposite 

model. The average S value of the total matrix is 0.451, and the average S value of 

the 10 Å thick region around the silica nanoparticle is 0.231. 
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Figure 2.27 Comparisions between radial crystallinity distributions of the SMPU 

from the center of unitcell for pristine SMPU and from the center of the 

nanoparticle for SMPU/Silica nanocomposites.  
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2.3.2  Effect of silica nanoparticle content 

More realistic SMPU nanocomposites models were constructed to investigate 

the shape-memory behaviors reflecting nanoparticle clustering effect as well as the 

interaction between matrix and nanofiller. For PU15, PU32, and PU50 (HSC 15, 32, 

and 50 wt.%), silica nanoparticles with a radius of 15 angstrom were added at four 

different contents (3, 6, 10, and 15 wt.%). The SMPU polymer chain for each HSC 

was used as shown in Table 2.5 in section 2.2. Table 2.7 shows the unit cell 

information of the corresponding SMPU nanocomposite models.  

 

Table 2.7 Modeling of the mesoscale CG SMPU/Silica nanocomposites. 

HSC 

[wt. %] 

Silica  

content 
No. of chains  

No. of silica 

nanoparticles 

PU15 

3 wt.% 61 3 

6 wt.% 59 7 

10 wt.% 57 11 

15 wt.% 54 16 

PU32 

3 wt.% 49 3 

6 wt.% 47 7 

10 wt.% 45 11 

15 wt.% 43 16 

PU50 

3 wt.% 36 3 

6 wt.% 35 7 

10 wt.% 33 11 

15 wt.% 31 16 

 

 



 73 

A shape-memory cycle was also performed on the SMPU-silica nanocomposite 

model. The high temperature of the loading step and heating step was 500K, which 

was the same for all unit cells, and the low temperature was 300K. The unit cell 

deformed to strain 2 at high temperature was cooled at 300 K for 100 ns, and an 

unloading step at 300 K and 0.1 MPa for 50 ns was performed. Final heating was 

performed with an anisotropic NPT ensemble at 500K and 0.1 MPa for 100 ns. 

 

Table 2.8 Shape-fixity ratio (𝑅𝑓) of the SMPU/Silica nanocomposites accordint to 

HSC (15, 32, and 50 wt.%) and silica content (3, 6, 10, 15 wt.%). 

         Silica Content 

             (wt .%) 

SMPU HSC 

𝑅𝑓 (%) 

0 3 6 10 15 

PU15 (HSC 15 wt.%) 90.48 87.50 88.11 89.20 89.13 

PU32 (HSC 32 wt.%) 89.51 87.72 88.66 90.07 92.68 

PU50 (HSC 50 wt.%) 88.87 88.25 90.94 93.57 93.99 

 

Table 2.9 Shape-recovery ratio (𝑅𝑟) of the SMPU/Silica nanocomposites accordint 

to HSC (15, 32, and 50 wt.%) and silica content (3, 6, 10, 15 wt.%). 

         Silica Content 

             (wt .%) 

SMPU HSC 

𝑅𝑟 (%) 

0 3 6 10 15 

PU15 (HSC 15 wt.%) 89.33 88.97 88.77 89.63 86.42 

PU32 (HSC 32 wt.%) 89.20 89.46 90.17 89.55 85.81 

PU50 (HSC 50 wt.%) 86.14 85.98 79.29 74.60 39.25 
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Table 2.8 and 2.9 show the shape-memory performances according to the silica 

content for SMPUs of three different HSCs. In this shape-memory cycle, all SMPU 

and SMPU/Silica nanocomposites models show good shape-fixity properties around 

90%. According to section 2.2, the aggregated hard-segment domains make it 

difficult for the SMPU chain to recover its initial state and degrade the shape 

recovery ratio. Similar to the previous results, the recovery performance of PU50 is 

lower than that of PU15 or PU32 in all silica contents. According to Table 2.9, when 

the silica content in PU15 and PU32 increases to 15 wt.%, the shape recovery 

performance slightly deteriorates. From this, it can be seen that not only HSC but 

also silica nanoparticles affect the shape-memory performance.  

To investigate the effect in more detail, the free volume change during the shape-

memory cycle of the SMPU nanocomposite was investigated. Figure 2.28 and Table 

2.10 shows the fractional free volume (FFV) of the PU15, PU32, and PU50 for the 

silica contents of 3 wt.% and 15 wt.%. FFV is calculated as the ratio of free volume 

to total unit cell volume. Common to all models, FFV increases at high temperature 

(500K) than at room temperature (300K), and it increases slightly when mechanical 

deformation is applied. In addition, the FFV is further increased by the free volume 

created between the semi-crystalline network chains and nanoparticles [75] during 

the cooling step, as shwon in Figure 2.29. However, looking at the models of 3 wt.% 

silica in Figure 2.28 and Table 2.10, the free volume due to these crystalline 

structures and nanoparticles is completely recovered as the deformed- 
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Figure 2.28 Changes in fractional free volume (FFV) during shape-memory cycles 

for silica content 3 wt.% and 15 wt.% of the (a) PU15, (b) PU32, and (c) PU50 

nanocomposites.  

 

Table 2.10 Fractional free volume (FFV) change during the shape-memory thermo-

mechanical cycle.  

Model 300K 500K 
Deformed 

(500K) 

After 

cooling 

(300K) 

After 

Unloading 

(300K) 

After 

Recovery 

(500 K) 

PU15 3 wt.% 0.022 0.094 0.097 0.112 0.020 0.093 

PU32 3 wt.% 0.020 0.080 0.084 0.099 0.019 0.080 

PU50 3 wt.% 0.026 0.084 0.088 0.130 0.024 0.084 

PU15 15 wt.% 0.027 0.106 0.109 0.131 0.062 0.106 

PU32 15 wt.% 0.027 0.095 0.099 0.127 0.066 0.096 

PU50 15 wt.% 0.054 0.131 0.164 0.242 0.157 0.198 
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strain changes to fixed strain in the unloading step. Therefore, it has a FFV value 

similar to that of the state before deformation at 300 K. In the silica 3 wt.% model, 

the strain was not completely recovered even after heating was completed, but it had 

the same value as the FFV at 500K before deformation. 

It is known that excessive silica deteriorates the particle distribution and hinders 

chain motion, and the free volume of SMPU/silica nanocomposites increases as the 

silica content increases [76,77]. Comparing the 15 wt.% silica models of PU15, 

PU32, and PU50 with each 3 wt.% model in Figure 2.28, it can be seen that they 

have larger FFVs in all steps of the shape-memory cycle. When the content of silica 

is 15 wt.%, it is noteworthy that the FFV is not completely recovered despite the 

completion of the unloading step and has a larger free volume than the undeformed 

state at 300K.  

Figure 2.30 shows the deformed shape at high temperature with various silica 

weight percent in PU15 nanocomposites. Looking at each CG MD configuration, an 

evident observation is that with the rise in silica content, nanoparticles tend to form 

concentrated aggregates within a specific region. In the spaces between these 

adjacent nanoparticles, intercalation of polymer chains becomes more difficult, and 

voids are formed [48,70]. Therefore, the formation of vacancy by nanoparticle 

aggregation can cause residual deformation after shape recovery in high-content 

silica models, and several experiments [73,76,89] have also shown that the shape-

recovery ability is degraded as the amount of silica increases. This may also explain 

the slightly higher shape-fixity ratio in the high-content silica model in Table 2.8, 
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which has also been observed in experimental study [78]. 

 

Figure 2.29 Formation of free volume by nanoparticles in semi-crystalline polymer 

chains. 

 

 

Figure 2.30 Nanoparticle agglomeration according to silica content and consequent 

formation of vacancy zone. 
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One more point to note here is that, in particular, in the PU50 (HSC 50wt.%) 

model, the degree of shape recovery decreases as the amount of silica gradually 

increases from 3 wt.% to 15 wt.%. This phenomenon means that the clustering 

behavior of nanoparticles can be affected not only by the content of silica but also 

by the interaction with the polymer matrix, that is, the hard-soft ratio of SMPU. 

Therefore, we further investigated the probability density of the distance between 

silica nanoparticles (𝑅𝑆𝑖𝑙𝑖𝑐𝑎−𝑆𝑖𝑙𝑖𝑐𝑎) for SMPU models with different HSCs (15, 32, 

and 50 wt.%) and silica contents (6 and 15 wt.%) 

  

 

Figure 2.31 Probability distribution of 𝑅𝑆𝑖𝑙𝑖𝑐𝑎−𝑆𝑖𝑙𝑖𝑐𝑎 (the distance between silica 

nanoparticles) for silica content (a) 6 wt.% and (b) 15 wt.% in undeformed and 

deformed shapes.  
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Table 2.11 Characterization of the probability distribution (Figure 2.31) of 

𝑅𝑆𝑖𝑙𝑖𝑐𝑎−𝑆𝑖𝑙𝑖𝑐𝑎. 

Model 

Undeformed state 

 (𝜀 = 0) 

Deformed state 

 (𝜀 = 1.5 − 2.0) 

peak 

location 

(nm) 

Max. peak 

height 

(nm-1) 

peak 

location 

(nm) 

Max. peak 

height 

(nm-1) 

PU15 6 wt.% 6.0, 11.25 0.19 12.75 0.143 

PU32 6 wt.% 5.25 0.238 9.75 0.190 

PU50 6 wt.% 5.25 0.262 5.25 0.238 

PU15 15 wt.% 5.25 0.192 5.25 0.138 

PU32 15 wt.% 5.25 0.217 5.25 0.150 

PU50 15 wt.% 5.25 0.204 5.25 0.221 

 

Figure 2.31 shows the probability density of the distance between silica 

nanoparticles before and after deformation, and Table 2.11 shows the maximum peak 

height and corresponding location. In the undeformed state of PU15 with a silica 

content of 6 wt.%, there are three clear peaks and two maximum peaks (6.0, 11.25 

nm). On the other hand, PU32 and PU50 have a maximum peak at 5.25 nm, and the 

peak height is slightly larger in PU50. From this, it can be seen that the distribution 

of silica nanoparticles spreads relatively uniformly in the SMPU matrix with a larger 

percentage of the soft segment of the SMPU. This silica clustering behavior can also 

be observed in mechanically deformed shapes. When strain is applied to the 

nanocomposite, the distance between the nanoparticles increases accordingly, and 

the probability density drops to a low value in a wide range. The maximum peak 

location moved to 12.75 nm in PU15 and to 9.75 nm in PU32, and the heights also 

decreased. However, PU50 maintained a quite high peak at the same 5.25 nm 
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position.  

In the undeformed state of the models containing 15 wt.% silica, the high 

maximum peak at 5.25 nm was shown regardless of HSC due to the high silica 

contents. Also, even when deformed by 𝜀 = 1.5 − 2.0, regardless of HSC, it has the 

same maximum probability of interparticle distance at 5.25 nm. The nanoparticle 

agglomeration behavior is more pronounced when mechanical strain is applied to 

PU50 with 15 wt.% of silica. In the HSC 50wt.% and Silica 15wt.% models, the 

maximum peak height in the deformed shape was even increased than before 

deformation.  

Figure 2.32a shows the shape recovery performance according to different 

HSCs as the final result of these phenomena described above. Despite the same 15 

wt.% silica content, nanoparticle agglomeration is more severe in PU50 than in PU15, 

and the region where nanoparticles are agglomerated inside the hard domain prevents 

the polymer system from recovering to its initial shape. It can be seen from the MSD 

graph in Figure 2.32b that the strong immobility of the nanoparticle cluster in hard 

domain [79] is maximized at high HSC and high silica content. 

Looking at the behavior of the silica nanoparticles, as the HSC of the SMPU 

increases, the compatibility between the silica nanoparticles and the polymer matrix 

decreases, so that a stable interphase region between the particles and the matrix 

cannot be formed and the nanoparticles are more agglomerated. By conducting CG 

MD of SMPU-silica nanocomposites, we observed that there is a trade-off between 

the increased stiffness due to the nanofiller and the decreased ability to recover strain.  
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Figure 2.32 (a) Comparision between the original shape and recovered shape of 

PU15 and PU50 with 15 wt.% of silica. (b) Changes in the mean square 

displacement (MSD) in the loading direaction (x-axis) of the hard segment of 

PU50/Silica nancomposites. 
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These findings can serve as valuable guidelines for designing nanocomposites 

that strike a balance between recovery stress and recovery strain through the strategic 

use of fillers. Additionally, a more detailed study in solubility and phase separation 

through dissipative particle dynamics is required to more specifically understand the 

mixing and aggregation behaviors between these dissimilar materials, which will be 

performed in sections 3 and 4. 

 

 

 

. 
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Chapter 3 

 

Phase separation behaviors of SMPU 

 

In Chapter 2, we investigated the mesoscale behavior of hard and soft segments 

of SMPU and their thermo-mechanical and shape-memory characteristics through 

CG models. In addition, performance change and particle agglomeration phenomena 

according to the addition of silica nanoparticles were also noticed. However, in order 

to perfectly design desired polymer nanocomposites, it is essential to comprehend 

not only the role of each segment, but also the phase-separated architectures of the 

SMPUs on a larger nanoscale. In addition, it is necessary to understand the material 

properties according to the distribution of silica nanoparticles and to have design 

skills that can directly control this clustering behavior. To this end, it is necessary to 

understand the phase separation behavior through differences in solubility 

parameters of each component of SMPU nanocomposites. 



 84 

3.1  Dissipative particle dynamics (DPD) simulation 
 

A Dissipative particle dynamics (DPD) proposed by Groot and Warren [80] 

serves as a meso-scale simulation method designed to replicate the dynamic and 

rheological characteristics of both uncomplicated and intricate fluids. In other words, 

DPD treats a large number of atoms as one bead and focuses on molecular behavior 

on the mesoscale, such as polymer dissolution by solvent or phase separation. At this 

time, every DPD bead adheres to Newton's equation of motion, and the 𝑟𝑖, 𝑣𝑖, 𝑚𝑖, 

and 𝑓𝑖  represent each particle's position, velocity, mass, and force acting on the 

bead : 

The bead 𝑖  experiences a combined force ( 𝑓𝑖 ) comprising conservative ( 𝐹𝑖𝑗
𝐶 ), 

dissipative (𝐹𝑖𝑗
𝐷), random (𝐹𝑖𝑗

𝑅), and spring (𝐹𝑖𝑗
𝑆) forces. Euqation 3.2 expresses the 

conservative force, characterized as a soft repulsive force that operates along the line 

connecting the beads' centers. and gradually diminishes to zero as the distance 

between the beads reaches a specific cutoff radius, 𝑟𝑐. 

In other words, the polymer chains are not entangled with each other due to a rather 

simple and weak non-bond interaction, and the amount of computation is reduced 

due to the reduced degree of freedom. Therefore, DPD simulation dramatically 

 
𝑑𝑟𝑖

𝑑𝑡
= 𝑣𝑖    ,    𝑚𝑖

𝑑𝑣𝑖

𝑑𝑡
= 𝑓𝑖 = ∑(𝐹𝑖𝑗

𝐶 + 𝐹𝑖𝑗
𝐷 + 𝐹𝑖𝑗

𝑅)

𝑗≠𝑖

+ 𝐹𝑖𝑗
𝑆    (3.1) 

 𝐹𝑖𝑗
𝐶 = {

𝑎𝑖𝑗 (1 −
𝑟𝑖𝑗

𝑟𝑐
) 𝐫̂𝒊𝒋 ,     (𝑟𝑖𝑗 < 𝑟𝑐) 

0,                                (𝑟𝑖𝑗 > 𝑟𝑐)
 (3.2) 
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increases the time scale and enables intensive investigation of the phase mixing and 

separation behavior of polymers. The repulsion parameter (𝑎𝑖𝑗) is the most important 

factor to describe interactions between DPD beads, so we embraced the theory 

proposed by Groot and Warren [37] and AA MD simulation scheme to derive the 

precise values for the parameter.  

The repulsion parameters between different types of bead were obtained 

through the Flory-Huggins parameter (𝜒) which can be calculated by the solubility 

(δ) difference between each molecular components. Solubility parameters are 

chemical and physical properties of a material, and the concept predicts the heat of 

mixing for liquids and amorphous polymers. The dissimilarity in solubility (δi − δj) 

between two substances has commonly been used to assess the ability of a binary 

system to mix when there is no significant specific interaction, like non-

combinatorial entropy effect or hydrogen bonding.  

The dissipative force (𝐹𝑖𝑗
𝐷) is directly related to the relative velocity between 

particles and results in a decrease in their momentum. Conversely, the random force 

(𝐹𝑖𝑗
𝑅) acts as a counterbalance to the energy lost due to the dissipative force. These 

two force terms can be given by equation (3.3).  

The frictional and random forces are characterized by their respective weight 

functions,  𝜔𝐷(𝑟𝑖𝑗)  and 𝜔𝑅(𝑟𝑖𝑗) , and the amplitude coefficients, γ  and 𝜎 . 

According to the theory of Español and Warren [81], the two weight functions have 

 𝐹𝑖𝑗
𝐷 = −γ𝜔𝐷(𝑟𝑖𝑗)(𝐫̂𝒊𝒋 ∙ 𝐯𝒊𝒋)𝐫̂𝒊𝒋    , 𝐹𝑖𝑗

𝑅 = 𝜎𝜔𝑅(𝑟𝑖𝑗)
𝜉𝑖𝑗

√∆𝑡
𝐫̂𝒊𝒋  (3.3) 
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a mutual dependence on each other, and they are related to the Boltzmann constant 

and temperature of the system as shown in equation (3.4).  

𝜉𝑖𝑗 represents a randomly generated value with a mean of 0 and a variance of 1 

independently for all pairs of interacting particles at all time steps. 

According to the Groot et al., the weight functions can be simplified in such a way 

that 𝜔𝑅(𝑟𝑖𝑗) has the same form as the conservative force : 

The final force therm is the sping force (𝐹𝑖𝑗
𝑆) related to the bonded harmonic potential 

energy (𝑈𝑖
𝑆) than can be expressed as equation (3.6) 

In this study, the spring constant (𝐶𝑏) was established as 4 and the equilibrium bond 

length (𝑟𝑏,0) was set to 0.1 Å for the beads connected to each other in the SMPU 

polymer chains. 

  

 

 

 

 

 𝜔𝐷(𝑟𝑖𝑗) = [𝜔𝑅(𝑟𝑖𝑗)]
2

      , 𝜎 = √2γ𝑘𝐵𝑇 (3.4) 

 𝜔𝐷(𝑟𝑖𝑗) = [𝜔𝑅(𝑟𝑖𝑗)]
2

= {
(1 −

𝑟𝑖𝑗

𝑟𝑐
) 𝐫̂𝒊𝒋 ,     (𝑟𝑖𝑗 < 𝑟𝑐) 

0,                          (𝑟𝑖𝑗 > 𝑟𝑐)
 (3.5) 

 𝑈𝑖
𝑆 = ∑

1

2
𝐶𝑏(𝑟𝑏 − 𝑟𝑏,0)2

𝑏

       ,    𝐹𝑖𝑗
𝑆 = −

𝜕𝑈𝑖
𝑆

𝜕𝐫𝒊𝒋
 (3.6) 
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3.2  Derivation of solubility parameters for SMPU copolymer  
 

According to the Flory-Huggins theory, all beads must be modeled to have the 

same or similar volume in DPD simulations. The volume of monomer, which is a 

unit of MDI and PEO, each hard and soft segment of SMPU, is shown in Table 3.1. 

Therefore, 1 MDI and 5 ethylene oxide units are mapped with DPD beads of hard 

segment and soft segment, respectively, having the same volume (about 250 Å3).  

 

Table 3.1 DPD bead modeling with similar molecular volume for each segment of 

the SMPU. 

 

The cohesive energy (𝐸𝑐𝑜ℎ) of each type of DPD was calculated by using AA 

MD simulation for the solubility theory. The Theodorou-Suter technique available in 

Material Studio 2016 package was utilized to produce the amorphous unit cells, 

consisting of MDI and PEO (Figure 3.1 and Table 3.2). Geometry optimization 

(conjugate gradient), 1ns of NPT ensemble (300 K, 0.1 MPa), and 1 ns of NVT 

ensemble (300 K) were sequentially performed on each unit cell by using COMPASS 

(ab initio Condensed-phase Optimized Molecular Potential for Atomistic Simulation 

 
𝑉𝑚𝑜𝑛𝑜𝑚𝑒𝑟  

[Å3] 

No. of monomer 

per DPD bead 
DPD 𝑉𝑏𝑒𝑎𝑑 [Å3] 

MDI 

(Hard segment) 
243.65 1 243.65 

PEO 

(Soft segment) 
51.03 5 255.15 
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Studies) forcefield [82]. 

 

 

Figure 3.1 Atomistic configurations of pure MDI and PEO MD unit cells. A 

detailed information is listed in Table 3.1. 

 

Table 3.2 Information on the AA MD unit cells of each segment component of the 

SMPU copolymer (see atomistic configuration in Figure 3.1). 

Unit cell No. of constituents Density (g/cm3) 

MDI 
10 MDI monomer 

(10 MDI beads) 
1.29 

PEO 
10 ethylene oxide (EO) pentamers 

(10 PEO beads) 
1.06 

 

The energy values for individual molecules (𝐸𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑,𝑖, i=1-𝑁𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒) and the 

bulk system (𝐸𝑏𝑢𝑙𝑘) were obtained through a single-point-energy calculation using 

the fully equilibrated MD unit cell, as described in equation (3.7).  

Using the derived cohesive energy (𝐸𝑐𝑜ℎ), the solubility parameter (δ in equation 

 𝐸𝑐𝑜ℎ =
(∑ 𝐸𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑,𝑖

𝑁𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒
𝑖=1 ) − 𝐸𝑏𝑢𝑙𝑘

𝑁𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒
 (3.7) 



 89 

(3.8)) and 𝜒-parameter (equation (3.9)) were calculated sequentially. The variables 

include the molar volume of the MD unit cell (𝑉), the volume of the DPD bead 

(𝑉𝑏𝑒𝑎𝑑) with a 252 Å3, the Boltzmann constant (𝑘𝐵), and the temperature (𝑇).  

Then, the repulsion parameter for two different beads was derived by using the 

obtained 𝜒-parameter. Equation (3.10) was developed by Groot. et al. [80] under the 

condition of a dimensionless bead density (ρ = 3) . To achieve the same 

compressibility of water, the repulsion parameter between the same type of beads 

was fixed to 𝑎𝑖𝑖 = 25 [80].  

Therefore, in the DPD simulation, how much the repulsion parameter between 

different beads is greater than or less than 25 is very important for the mixing 

behavior of dissimilar materials. Tables 3.3 and 3.4 show the derived solubility 

parameters and the resulting repulsion parameter values. 

Here, only the self interaction parameter between urethanes was used as 22.5 

instead of 25 as an exception, meant to represent the hydrogen bonding between 

MDIs [83,84].  

 

 

 

 𝛿 = √𝐸𝑐𝑜ℎ 𝑉⁄   (3.8) 

 𝜒𝑖𝑗 =
𝑉𝑏𝑒𝑎𝑑

𝑘𝐵𝑇
(𝛿𝑖 − 𝛿𝑗)2 (3.9) 

 

 

𝑎𝑖𝑗 = 𝑎𝑖𝑖 +
𝜒𝑖𝑗

0.286
  (𝑎𝑖𝑖 = 25, ρ = 3)  (3.10) 
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 Table 3.3 Solubility parameter (𝛿) of pure MDI and PEO system cacluated from 

AA MD simulations. 

Solubility parameter 𝛿 (√𝐽 𝑐𝑚3⁄ ) 

MDI PEO 

  

28.71 

 

23.14 

 

Table 3.4 Repulsion parameter (𝑎𝑖𝑗) between SMPU DPD beads. 

𝑎𝑖𝑗 MDI PEO 

MDI 22.5   

PEO 31.59  25  

 

Additionally, in order to conduct the DPD simulation, it is necessary to establish 

the reduced units for mass, length, and energy scales. The unit of mass is represented 

by the average mass of the DPD particles. The unit of length is defined as the length 

at which the dimensionless bead density of a cube of unit length is 3 (ρ = 3). The 

unit of energy is established as kBT set to 1. It is possible to calculate the reduced 

time scale using these defined unit quantities. The formula for the reduced units and 

the values calculated in this work are shown in Table 3.5. 
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Table 3.5 Information on the reduced units of DPD simulation 

DPD unit Equation Reduced unit 

Length scale 𝐿 = (𝑉𝑏𝑒𝑎𝑑 ∗ 3)
1
3 9.1112 Å 

Mass scale 𝑀 = 𝑀𝑏𝑒𝑎𝑑
𝑎𝑣𝑔

 230 – 264 amu 

Energy scale 𝐸 = 𝑘𝐵𝑇 (300 K)  0.59616 kcal/mol 

Time scale 𝑡 = 𝐿√𝑀 𝐸⁄  8.75 – 9.37 ps 

 

The mass scale used the average mass of beads according to the HSC (15 – 50 wt.% 

in section 3.3) of the SMPU, and the time scale value was determined accordingly. 

The values of reduced unit at each scale in Table 3.5 are all defined as 1, which is a 

unit scale, in DPD simulation. In the dissertation, all MD and DPD simulations were 

performed using a high performance computing (HPC) cluster, specifically an Intel 

Xeon E5-2650 Octa Core 2.2 GHz CPU with 16 cores. When the same 10 ns 

ensemble simulation was performed for the unit cells used in this study through 

reduced degrees of freedom and increased time steps in mesoscale models, the 

computational time, which was 40 hours (all-atom MD), drastically reduced by 3.4 

hours (CG MD) and 0.6 hour (DPD). 

 

3.3  Morphologies of phase-separated SMPU 
 

SMPU DPD models with a much higher molecular weight (3.33 ~ 5.72 × 105  

g/mol) than the polymer chains of the existing all-atom and CG model was 

constructed for 5 different HSCs (15, 21, 32, 45, 50 wt.%). As shown in Figure 3.2, 
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while the number of MDI beads was changed according to HSC, the number of PEO 

beads was fixed,  

 

Figure 3.2 Modelling of the SMPU copolymer chains for DPD simulations. 

The DPD unit cells were constructed using the SMPU chains. All unit cells were 

modeled to have a size of 30𝐿 ×  30𝐿 ×  30𝐿 (27.3 𝑛𝑚 ×  27.3 𝑛𝑚 ×  27.3 𝑛𝑚) 

through DPD reduced unit. The time scale of the DPD simulation was set to  

𝜏 = 0.05𝑡, the energy scale (temperature) to 1, the cutoff distance to 1, and the total 

simulation time to 2 × 105 𝜏.  

Since the dimensionless bead density is 3 (ρ = 3), the corresponding unit cell is 

composed of about 8 × 104 DPD beads. The unit cell size and total simulation time 

used in this simulation were used with values larger than sufficient values to reach 
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the equilibrium state used in several DPD studies [85-88].  

 

 

Figure 3.3 Phase separation morphology of PU15 according to time step by DPD 

simulation. Yellow bead represents MDI bead and green bead represents PEO bead. 

To illustrate the phase domain more effectively, green PEO beads are hidden from 

the unit cell. 

 

Figure 3.3 shows the architectural evolution of the phase domains according to 

the time step as a result of the DPD simulation of the PU15 model. Here, yellow 

beads represent MDI beads and green beads represent PEO beads. After the initial 

configuration, the PEO bead was hidden from view to visualize the morphology of 

the hard phase domain. The MDI beads, initially spread in the hard-soft mixed phase, 

gradually aggregated, showing a phase morphology that reached an almost 

euilibrium state after 𝑡 = 100,000𝜏. The hard phase in the final configuration builds 

a "Spherical-shape" domains and the phase architecture of MDI is completely 
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distinct from the overall shape memory polyurethane morphology. The phase-

separated SMPU is the result of DPD simulation, which comprehensively reflects 

MDI's hydrogen bonding (𝑎𝑖𝑖 = 22.5) and hard-soft incompatibility (𝑎𝑖𝑗 = 31.59 ). 

According to a reference [90,91], when the content of hard segments increases 

in SMPU block copolymers, the hard segments tend to aggregate more and form 

domains. The MDI-based shape memory polyurethanes is primarily determined by 

MDI, which holds a permanent shape. Figure 3.4 displays the structural evolution of 

the MDI phase in our systems with varying HSCs in the simulation box. To illustrate 

the phase domain connections and distributions more effectively, we show the phase 

domains in the 2 × 2 × 2 unit cell with periodic boundary conditions (PBC). 

As described above, as shown in Figure 3.3 and 3.4, the MDI phase at 15 wt.% 

of HSC exists in the shape of spherical particles. It exists as an isolated domain area 

in the middle of the soft phase domain, and each domain area is not connected. 

SMPU is a copolymer chain that consists of a hard segment and a soft segment, but 

this phase architecture looks like a nanofiller added to a polymer matrix with 

different properties. This result is also aligns well with the experimental results [92-

94] showing spherical hard segment domains in polyurethane with low hard segment 

content, which validates our DPD model. 
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Figure 3.4 Hard domain connections and distributions of the SMPU according to 

the HSCs (15, 21, 32, 45, and 50 wt.%) in 2 × 2 × 2 periodic unit cells. 

 

In the HSC 21 wt.% model, similar phase domains were formed, and worm- or 

rod-shape domains [95,96] with slightly larger hard clusters were additionally 

formed. In the case of PU32, it was found that a stronger connection was formed 

between the MDI beads in a specific direction. Therefore, it was found that the hard 

segment in a single unit cell existed in the form of several cylindrical shapes [96-98], 

and this structure formed an alternating hard-soft lamellar structure in a 2x2x2 

periodic unit cell. In this structure, the lamellar thickness and interlamellar space can 

be changed by the molecular composition or chain length of SMPU [94,98,99], and 

this microdomain structure can have a great effect on the thermomechanical 

properties of segmented polyurethane copolymer. In PU45 with a larger HSC, a 
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stronger interconnection between hard domains was created, and the hard domain in 

PU50 was found to exist as a continuous area that links and dominates the entire 

system, which align well with earlier research [97].  

The MDI topological architectures can represent the netpoints of networks 

similar to shape-memory polyurethane models. As the HSC increases, the network 

gains greater strength and resilience. In this specific range of HSC (Hard-Segment 

Content), the hard-segment phase undergoes a transition from being isolated and 

discontinuous to becoming interconnected and continuous. In addition to the basic 

mechanism of each segment found in the CG model in section 2, the phase structure 

in the microdomain can be understood through the repulsion by the clearer solubility 

difference of the DPD simulation. 

Figure 3.5 summarizes the architectural evolution of MDI (hard domain) 

according to the SMPU's molecular composition, and shows the resulting overall 

hard-soft phase-separated morphology. To view the phase morphology in Figure 3.4 

more efficiently, Figure 3.5 shows a specific side view or inside cross-section view. 

Our proposal is that the architectural evolution of the phase domain in a unit cell, as 

demonstrated in Figure 3.5, can represent the SMPU model with varying hard 

segment contents. As the HSCs increase from 15 wt.% to 50 wt.%, the isolated 

spherical MDI structure transitions into a rodlike structure, followed by 

cylindrical/lamellar and finally an interconnected/continuous configuration. The 

mesoscale result through DPD simulation is consistent with the experimental result 

[100] that the hard segment of thermoplastic polyurethane develops from an isolated 
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phase to an interconnected phase according to HSC. It is also consistent with 

previous studies [97,122,123] that alternating hard and soft lamellar structures with 

interdomain spacings of approximately 10–20 nm appear in HSCs greater than about 

30 wt.%.  

The block copolymer's different chemical components serve different roles in 

the molecular mechanism of the dual-segment system. The MDI domain functions 

as the netpoint, while the PEO phase functions as the switch. With varying HSCs, 

the components may exhibit different phase architectures. In our CG study in section 

2, we observed that SMPUs with lower HSCs exhibited better shape fixing ability. 

This is because, with lower HSCs, the PEO phase acts as a filling matrix without 

interconnections among the spherical MDI domains, leading to excellent shape 

fixation. Conversely, for higher HSCs, the PEO and MDI form linked-continuous 

phases, resulting in lower shape fixity. The decrease in shape-recovery performance 

may be attributed to the hard-segment phase changing from spheres to continuous 

domain. In terms of shape memory performance, the model in which the soft-

segment is the major matrix phase and the hard-segment forms the isolated phase is 

the optimized design. In this design, the crystalline polymer provides excellent fixing 

and unfixing performance, and the hard-domain also hardly reduces recovery 

performance. Our structural shape-memory model (Figure 3.5) involves the full 

description of phase domains for the two segments in SMPU and covers all the phase 

morphologies in the literatures [90-100] to verify the rationality of the DPD models 

and highlight the specific characteristics of shape memory polymers. 
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Figure 3.5 Summarization of the architectural evolution of phase morphologies 

according to HSC of the SMPU. 
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Chapter 4 

 

 

Multiple phase separation behaviors of 

SMPU – Silica nanocomposites 

 

4.1  Morphologies of phase-separated SMPU nanocomposites 
 

4.1.1  Mixing energy and Flory-Huggins parameters between silica 

nanoparticle and polymer 

The distribution and clustering behaviors of silica nanoparticles can greatly 

affect the thermo-mechanical properties or electrical conductivity properties of 

SMPU nanocomposites. Therefore, silica nanoparticles also need to be applied to 

DPD simulation to observe multi phase separation behavior.  

As in section 3.2, the DPD bead should be defined to have a volume similar to 

250 Å3 for silica nanoparticles. Therefore, as shown in Table 4.1, five SiO2, which 
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is a constituent unit of silica nanoparticles, are defined as one bead. Here, in owing 

to accurately capture the interaction between silica nanoparticle and SMPU polymer 

matrix and reflect it with different repulsion parameters, the core part of the 

nanoparticle and the shell part containing the hydroxy silanol group (Si-O-H) were 

divided. Figure 4.1 shows four different bead systems defined in DPD simulation of 

SMPU-Silica. 

 

Table 4.1 DPD bead modeling of silica nanoparticle system. 

 

 

Figure 4.1 Molecular unit segments constituting each bead of DPD. 

 

 
𝑉𝑚𝑜𝑛𝑜𝑚𝑒𝑟  

[Å3] 

No. of monomer 

per DPD bead 

DPD 𝑉𝑏𝑒𝑎𝑑 

[Å3] 

SiO2 

(Silica nanoparticle) 
51.52 5 257.6 
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In section 3, we established the DPD repulsion parameters for the  segment 

components of the SMPU by using a relationship between well-known Flory-

Huggins theory and the solubility parameter of polymer materials. However, this 

method is not suitable for deriving the interaction between solid SiO2 particles and 

polymers, and a general theory has not been established. 

Hence, we have chosen to use a blend method that merges a modified Flory-

Huggins model with Monte Carlo simulation. This technique allows us to compute 

the 𝜒 parameters by directly analyzing the mixing energy between different types 

of beads. This method has been successfully used in other DPD studies [101-103] to 

calculate the interaction of gold nanoparticles or any binary systems. We used the 

blend module of Material Studio 2016 package. 

Based on the work of Ryikinaet et al. [103], the average interaction energy 

among bead pairs can be determined by computing the mixing energy of two 

corresponding fragments: 

The 𝑍𝑗𝑗 refer to the calculated coordination numbers of each pair of fragments. The 

average pair interaction energy ( 〈𝐸𝑖𝑗(𝑇)〉 ) was calculated using Monte Carlo 

sampling, considering 10,000 possible conformations of a pair of molecules in 

contact at a temperature of 300 K: 

 

 

𝐸𝑖𝑗
𝑚𝑖𝑥 =

1

2
(𝑍𝑖𝑗〈𝐸𝑖𝑗(𝑇)〉 + 𝑍𝑗𝑖〈𝐸𝑗𝑖(𝑇)〉 − 𝑍𝑖𝑖〈𝐸𝑖𝑖(𝑇)〉 −

𝑍𝑗𝑗〈𝐸𝑗𝑗(𝑇)〉)                                             

(4.1) 
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where 𝑘𝐵 is Boltzmann constant. Each pairs of mixing energiey between differenct 

types of beads (Figure 4.1) was averaged with 1,000,000 energy smaples calculated 

from the cluster samples, and the Flory-Huggins parameter (𝜒𝑖𝑗(𝑇)) between bead 

i and j was obtained by 

The repulsion parameters (𝑎𝑖𝑗 ) between each beads were calculated by equation 

(3.10) in the same way, and the derived 𝜒𝑖𝑗 and 𝑎𝑖𝑗 valules are shown in Table 4.2 

and 4.3, respectively. 

 

Table 4.2 Flory-Huggins parameter (𝜒𝑖𝑗) between DPD beads of SMPU/Silica 

nanocomposites. 

𝜒𝑖𝑗 MDI PEO Core Shell 

MDI     

PEO 1.884    

Core 17.96 3.259   

Shell 11.18 2.454 0.729  

 

 

 

 

〈𝐸𝑖𝑗(𝑇)〉 =
∫ 𝑑𝐸𝑖𝑗  𝑃(𝐸𝑖𝑗)𝐸𝑖𝑗 exp (−𝐸𝑖𝑗 𝑘𝐵𝑇)⁄

∫ 𝑑𝐸𝑖𝑗  𝑃(𝐸𝑖𝑗) exp (−𝐸𝑖𝑗 𝑘𝐵𝑇)⁄
          

                                          

(4.2) 

 𝜒𝑖𝑗(𝑇) =
𝐸𝑖𝑗

𝑚𝑖𝑥

𝑅𝑇
 (4.3) 
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Table 4.3 Repulsion parameter (𝑎𝑖𝑗) between DPD beads of SMPU/Silica 

nanocomposites. 

𝑎𝑖𝑗 MDI PEO Core Shell 

MDI 22.50    

PEO 31.59 25   

Core 87.81 36.40 25  

Shell 64.11 33.58 0.729 25 

 

Looking at the calculated repulsion paratemer value, it seems that a higher 

affinity of the silica particle towards the soft segment PEO in comparison to the hard 

segment MDI, which is consistent with the experimental finding [104] that polyols 

strongly interact with nanosilica. These DPD models derived through solubility and 

mixing energy are more efficient in observing the phase separation and nanoparticle 

distribution of SMPU nanocomposites than the coarse-grained model that accurately 

simulates the structure of each segment through the IBI method in section 2. 

 

4.1.2 Nanoparticle clustering behaviors 

The distribution and dispersion characteristics of silica nanoparticles can 

greatly affect the thermo-mechanical properties or electrical conductivity properties 

of SMPU nanocomposites. Therefore, silica nanoparticles also need to be applied to 

DPD simulation to observe multi phase separation behavior. We constructed DPD 

silica nanoparticle with a radius of 30 angstroms. The silica segments in Figure 4.1c 

and 4.1d were treated as each beads, and the bond length between the beads in the 
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nanoparticles was 5.3261 Å. The spring constant between the silica beads was set to 

350 to prevent the size change of nanoparticles during DPD simulation (𝐶𝑏 =

350 , 𝑟𝑏 = 5.3261 Å) . Here, the time step was modified to 𝜏 = 0.04𝑡  for more 

stable relaxation of the unit cell with strong bonded potentials, and the total 

simulation time to 2.5 × 105 𝜏. Similar to the CG model in section 2.3, we added 

three different amounts of silica nanoparticles, which are 3 wt.%, 6 wt.%, and 10 

wt.%, to PU15, PU32, and PU50 in section 3.3.  

First, we modeled a nanoparticle composed of only core beads assuming humed 

silica nanoparticles whose surface was not doped with silanol groups (S-OH) [105-

106]. Figure 4.2 shows the architectural evolution according to the time step as a 

result of the PU15 with 10 wt.% of silica nanoparticles. Here, yellow beads are MDI 

beads, green beads are PEO beads, and navy beads are silica Core beads. What is 

noteworthy here is that all silica nanoparticles are distributed in the soft-segment 

(PEO) domain region. This finding is the result of the DPD repulsion parameters 

between silica and MDI (𝑎𝑖𝑗 = 87.81), and between silica and PEO (𝑎𝑖𝑗 = 36.40), 

which reflects the mixing energy derived by considering the chemical interaction at 

the atomistic level. 
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Figure 4.2 Multiple phase separation morphology of PU15/Silica nanocomposite 

according to time step by DPD simulation. Yellow bead represents MDI bead, 

green bead represents PEO bead, and and navy beads represent silica Core beads.. 

 

These results add reliability to the compatibility issue between nanoparticles 

and each segment of the polymer matrix predicted through the CG models in section 

2.3, and the resulting nanoparticle clustering behaviors and shape-memory 

performances. In addition, DPD simulation reflecting the solubility parameter and 

mixing energy provides a more accurate breakthrough in understanding and 

designing the realistic distribution of nanoparticles. 
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Figure 4.3 Final snapshots of DPD simulation results for different HSCs and silica 

nanoparticle contents (Silica with only Core beads). 

 

Figure 4.3 shows the final phase morphologies of 9 different SMPU 

nanocomposites according to the HSC and silica content of the DPD unit cell. The 

phase domains of the polymer matrix in nanocomposites follow the segment 

morphology of the pristine SMPU copolymer in section 3.3. As the HSC of SMPU 

increases, the hard domain has an extended area from spherical shape to continuous 

domain. As in the previous Figure 4.2, all silica nanoparticles exist in the soft domain 

in all models. Figure 4.4 illustrates the phase morphologies acquired from 2 × 2 × 2 
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cells with PBC, aiming to present the interconnections and distributions in the phase 

domain more effectively. As shown in Figure 4.4a, in PU15, silica nanoparticles are 

evenly distributed in the soft matrix area except for the hard spherical filler area. In 

PU32, since the hard and soft segment regions form an alternating lamellar shape, 

the nanoparticles tend to be distributed along the wave line of the soft domain (Figure 

4.4b). According to Figure 4.4c, in PU50, silica nanoparticles seem to be relatively 

aggregated in the soft region outside the continuous hard domain region. This is the 

result of multiple phase separation due to differences in compatibility between 

different components (MDI, PEO, Core) of SMPU nanocomoposites.  
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Figure 4.4 Phase domain morphologies of the SMPU matrix and silica nanoparticle 

distributions (10 wt.%) for HSC (a) 15 wt.%, (b) 32 wt.%, and (c) 50 wt.% in 2 × 2 

× 2 periodic unit cells. 



 109 

To further investigate the nanoparticle clustering behaviors, we quantified the 

extent of nanoparticle agglomeration at the nanoscale. We derived the clustering 

density (C) derived from the volume fraction of the interphase region in the actual 

unit cell (𝑉𝑟𝑒𝑎𝑙 ) compared to the ideal well-dispersed case (𝑉𝑤𝑒𝑙𝑙−𝑑𝑖𝑠𝑝𝑒𝑟𝑒𝑑 ). To 

calculate the clustering density, we assumed an interphase region with a thickness of 

10 Å from the nanoparticle surface.  

Here, a normalization constant (A=3.23) was utilized to scale the clustering density 

to 1 when the 10 wt.% of silica nanoparticles were perfectly agglomerated. The 

difference in nanoparticle agglomeration can be clearly seen through the clustering 

density according to HSC and silica content in Figure 4.5. It can be seen that the 

higher the silica content in each HSC, the higher the clustering density. As the 

nanoparticle content increases, particle aggregation becomes an inherent 

phenomenon, leading to a reduction in surface free energy. This occurs as the 

particles adhere to one another, leading to a growth in their size and a reduction in 

their surface area [107]. 

In addition, as expected from our results, even if the silica content is the same, 

it can be confirmed quantitatively that the clustering density increases as the HSC 

increases. It can be seen that nanoparticles are excessively aggregated in PU50 due 

to incompatible solubility between silica nanoparticles and MDI. We propose a silica 

surface treatment strategy to improve this nanoparticle clustering phenomenon in 

section 4.2. 

 𝐶 = 𝐴 × (1 −
𝑉𝑟𝑒𝑎𝑙

𝑉𝑤𝑒𝑙𝑙−𝑑𝑖𝑠𝑝𝑒𝑟𝑒𝑑
) (4.4) 
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Figure 4.5 Clustering density results as a function of HSC at different silica 

contents. 

 

4.2  Effect of silica nanoparticle surface treatment 
 

The region between nanoparticles and a polymer matrix, known as the 

interphase region, can differ based on the properties of the nanoparticle and polymer 

surfaces. Modifying the surface of the nanoparticles can enhance the interaction and 

compatibility of the interphase, thereby enhancing the overall quality of 

nanocomposites [108,109]. Silica nanoparticles have different interactions with the 

polymer matrix depending on the surface treatment effect, and as a result, the degree 

of agglomeration of the nanoparticles can be improved.  

As shown in Figure 4.6, three additional surface treatment materials were 
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introduced in addition to the silanol group (Shell bead) to improve the compatibility 

of the silica nanoparticle with the SMPUs. The materials are polydimethylsiloxane 

(PDMS), octylsilane (OS), and 3-aminopropyltrimethoxysilane (APTS), which have 

been used for silica surface treatment to reduce aggregation in several experimental 

studies [110-115].  

 

 

Figure 4.6 Chemical structure of silica surface treatment materials (a) silanol 

groups (Shell bead), (b) polydimethylsiloxane (PDMS bead), (c) Octylsilane (OS 

bead), and (d) 3-aminopropyltrimethoxysilane (APTS bead). 

 

We derived the Flory-Huggins parameter and DPD repulsion parameter values 

through mixing energy calculation between existing bead segments (MDI, PEO, 

Core, and Shell) and PDMS,OS, and APTS materials via equation (4.1)-(4.3) in 

section 4.1.1. The derived 𝜒𝑖𝑗  and 𝑎𝑖𝑗  valules are shown in Table 4.4 and 4.5, 
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respectively. 

Table 4.4 Flory-Huggins parameter (𝜒𝑖𝑗) for silica surface treatment materials. 

𝜒𝑖𝑗 MDI PEO Core Shell 

PDMS 20.08 2.820 0.543 1.284 

OS 10.18 0.901 0.692 0.169 

APTS 9.029 -0.252 2.008 -0.309 

 

Table 4.5 Repulsion parameter (𝑎𝑖𝑗) for silica surface treatment materials. 

𝑎𝑖𝑗 MDI PEO Core Shell 

Core 87.81 36.40   

Shell 64.11 33.58 27.55  

PDMS 95.22 34.86 26.90 29.49 

OS 60.60 28.15 27.42 25.59 

APTS 56.57 24.12 32.02 23.92 

 

Looking at the derived repulsion parameter results, the surface of the silica 

nanoparticle exhibits varying interactions with the polymer matrix (MDI and PEO) 

contingent upon the specific functional group introduced to the silicon dioxide. As 

the repulsion between the polymer matrix and the nanoparticle decreases, a more 

stable and wider interphase region can be formed and uniform distribution can be 

achieved. Basically, the silanol surface, the Shell bead, has better compatibility with 

the polymer matrix (smaller repulsion parameters) than the Core bead due to the 
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hydrogen bonding between silica surface and SMPU. The surface-treated silica with 

PDMS bead has rather more repulsion with MDI and PEO than the Core bead as well 

as the Shell bead. In this case, where the force to push each other with the hard and 

soft segments becomes greater, it will result in nanoparticles being more 

agglomerated, with poor compatibility with the polymer matrix. In OS and APTS 

materials, the repulsion with MDI and PEO is both reduced compared to the existing 

silanol-dopted silica surface, and it is expected that the nanoparticle distribution can 

be improved by enhancing the affinity with the SMPU matrix. In particular, in APTS, 

the repulsion with MDI and PEO decreased the most, and the repulsion parameter 

with PEO was 24.12, lower than 𝑎𝑖𝑖 = 25 , which significantly improved 

compatibility with soft segments. In addition, since the APTS beads increase the 

repulsive force with the Core beads compared to the Shell beads, further 

improvement in nanoparticle distribution can be expected.  

Therefore, following the nanoparticle made of only the Core bead in section 

4.1.2, DPD simulations were performed for the basic Shell bead and APTS bead 

among the surface treatment candidates. In addition, from the viewpoint of 

improving compatibility between SMPU and nanoparticles, MDI and PEO beads, 

which are the matrix itself, can be considered as one of the best candidates for surface 

treatment. Therefore, additional DPD simulation was performed for the models 

surface treated with MDI and PEO beads on the Core beads. Therefore, we 

constructed 10 wt.% of silica nanoparticles of five different types as shown in Figure 

4.7. "Core" refers to silica nanoparticles composed of only Core beads. The 
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remaining "Shell", "APTS", "MDI", and "PEO" represent nanoparticles in which the 

surface of silica nanoparticles are replaced with other corresponding beads. 

 

 

Figure 4.7 DPD modeling of silica surface treatment of SMPU/silica 

nanocomposites. 

 

Figure 4.8 shows the DPD simulation results of PU15, PU32, and PU50 with 

various silica surface treatments (only Core, Shell, APTS, PEO, and MDI). Basically, 

silica nanoparticles surface-treated with Core, Shell, APTS, and PEO beads are 

distributed in the soft segment region of the SMPU matrix because they have better 

compatibility with the soft segment than with the hard segment. The Core model 

without surface treatment has the strongest repulsive force with the SMPU matrix, 

so it can be seen that the nanoparticles are agglomerated the most among themselves 

compared to other models as shown in Figure 4.8. Unlike the other four models, in 

the model treated with MDI, nanoparticles are distributed in the hard domain area, 



 115 

causing additional connections between the surrounding hard domains. 

Since all surface treatment materials complement the overall chemical 

dissimilarities between the primary Core bead and the SMPU matrix, we can expect 

a more uniform distribution of nanoparticles. According to Tables 4.3 and 4.5, the 

compatibility with the soft segment is improved in the order of Core → Shell → MDI 

→ PEO → APTS, and the compatibility with the hard segment is improved in the 

order of Core → Shell → APTS → PEO → MDI. The final uniformity of silica 

nanoparticle distribution will be determined by the interaction between the 

nanoparticle and each segment and the hard-soft ratio in the SMPU matrix. 

 

Figure 4.8 Distributions of silica nanoparticles as a result of DPD simulation 
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according to HSC (a) 15 wt.%, (b) 32 wt.%, and (c) 50 wt.% and silica surface 

treatment of SMPU/Silica nanocomposites. 

Figure 4.9 shows the clustering density value that quantifies the degree of 

improvement of nanoparticle distribution as in section 4.1.2. In SMPU with all HSCs, 

the clustering density decreased in all four different surface treatment materials, 

which means that the distribution of nanoparticles was improved. However, 

depending on HSC, the degree of improvement and ranking according to the surface 

treatment materials are different.  

 

 

Figure 4.9 Clustering density change according to nanoparticle surface treatment of 

SMPU/Silica nanocomposites. 

 

In PU15 (HSC 15 wt.%), the soft segment is dominant in the SMPU matrix. 
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Therefore, the degree of repuslion between the silica nanoparticle and PEO (soft 

segment) is important at this time. As a result, the clustering density decreased as the 

repulsion parameter between the PEO and the surface bead decreased. The 

distribution of nanoparticles gradually improved in order from Core to Shell, MDI, 

PEO, and APTS, and the ATPS surface treatment, which had the best affinity with 

the soft segment (𝑎𝑖𝑗 = 24.12), showed the lowest clustering density. 

In PU32 (HSC 32 wt.%), however, the APTS surface treatment had a higher 

clustering density than the PEO and MDI surface treatments. The reason is that 

APTS has the best affinity with the soft segment, while its repulsion with the hard 

segment is relatively strong. Since the repulsion between APTS and MDI (𝑎𝑖𝑗 =

56.57) is a stronger repulsive force than the repulsion between hard and soft matrices 

(𝑎𝑖𝑗 = 31.59), the APTS model overall has less affinity with the SMPU matrix than 

the model using MDI or PEO itself for surface treatment. Even though the content 

of the is still higher than that of the hard segment in the PU32, the reason why MDI 

surface treatment has more uniform nanoparticle distribution than PEO surface 

treatment is that the very strong repulsion between the existing Core bead and hard 

segment (𝑎𝑖𝑗 = 87.81) is improved to strong adhesion (𝑎𝑖𝑖 = 22.5) between MDIs. 

 In PU50, the clustering pattern is similar to that in PU32, and the order of 

clustering density according to the surface treatment is also the same. However, in 

SMPU with HSC 50 wt.%, the hard segment with a much higher proportion than 

PU32 forms a continuous domain, so the improvement effect on nanoparticle 

agglomeration is maximized in the MDI surface treatment model. In other words, it 
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can be seen that the improvement effect of nanoparticle agglomeration in a phase-

separated copolymer system such as SMPU matrix is maximized when one segment 

occupies a dominant portion in the polymer matrix and compatibility with the 

domain is the best. This explanation is verified in Figure 4.9 by showing that the 

lowest value of clustering density in each HSC of the SMPU is smaller in PU15 and 

PU50 than in PU32. Figure 4.10 shows the improvement effect of nanoparticle 

distribution through optimal surface treatment on PU15 and PU50 in more detail. 

The highly aggregated silica nanoparticles are spread relatively uniformly in the 

polymer matrix through surface treatment, and this change has a critical effect on 

forming a wider and more stable interphase region in terms of nanocomposite 

performance. 

The DPD simulation of this study presents a very innovative design technique 

in terms of nanoparticle distribution in polymer nanocomposites. If only the 

solubility difference or mixing energy between various heterogeneous materials can 

be derived, the nanoparticle distribution can be predicted through the repusion 

parameter. Nanocomposite design through testing and development of these surface 

treatment materials is time-consuming and has limitations on accurate distribution 

analysis in the nanometer level through experiments. If we analyze the clustering 

tendency in Figure 4.9 according to the value of the repusion parameter in Table 4.5, 

we can predict the particle distribution even without DPD run if only the solublity 

difference or mixing energy with the components is derived for any unknown 

material. We can expect that the octylsilane (OS) model will have an intermediate 
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clustering density of the Shell and APTS models. This mesoscale simulation-based 

multiscale analysis technique is an essential research for the completion of 

nanocomposite design. 

 

 

 

Figure 4.10 Nanoparticle distribution improvement effect by optimal silica surface 

treatment in (a) PU15 and (b) PU50. 
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4.3  Multiscale continuum model for mechanical properties 
 

4.3.1  Multiscale two-phase homogenization and verification 

To examine how nanoparticle distributions influence the homogenized 

mechanical properties of nanocomposites, we developed finite element models for 

continuum scale. The nanoparticle coordinates within the unit cell were derived from 

the nanocomposites final geometry, obtained through DPD simulations. To perform 

finite element analysis, we employed commercial software tools DIGIMAT and 

ABAQUS, and integrated the acquired geometry data into CAD modeling. This 

continuum modeling method does not randomly generate the position and 

distribution of nanoparticles to simulate the degree of clustering that is targeted, as 

in the existing multi-scale models [47,48]. This is a strong reason why mesoscale-

based simulation is essential for nanocomposite design. 

We first analyzed the mechanical properties depending on the silica content for 

a model composed of two phases: nanoparticles and polymer matrix. The DPD 

simulation results of unit cells with 3, 6, and 10 wt.% silica nanoparticles added to 

PU15 and the equivalent FEM models are shown as examples in Figure 4.11. 10-

node tetrahedral elements were used in all finite element analyses, and each model 

had about 40,000-80,000 elements.  
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Figure 4.11 Configurations of DPD model of PU15/Silica nancomposites and 

equivalent finite element model: (a) silica 3 wt.%, (b) silica 6 wt.%, and (c) silica 

10 wt.%.  
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We derived the Young’s modulus through the solution of a mathematical 

homogenization model integrating the microstructure of nanoparticles and a given 

matrix by using the following equation : 

where 𝐂𝐇 represents the homogenized fourth-order elastic stiffness tensor of the 

nanocomposite, and |𝑽𝒚
𝑪| is the volume of a homogenized microscopic unit cell. The 

χ tensor characterizes how the unit cell behaves under elastic conditions and can be 

calculated through numerical methods like finite element discretization. :  

Here, 𝒗  is the virtual displacement. We conducted computational 

homogenization analysis using our FEM code, incorporating periodic boundary 

conditions. For a deeper understanding of the mathematical formulas and finite 

element discretization, refer to our prior research [116]. To determine the elastic 

modulus of the nanocomposite, we applied a minor longitudinal strain of 0.3% to the 

FEM model. The mechanical properties of the polymer matrix, obtained through CG 

MD simulation (Figure 2.18), were then scaled up to the input data of the continuum 

FEM during this process. Hill's approach [117] was employed to characterize the 

effective elastic modulus of the nanocomposite unit cell, representing it as an 

isotropic elastic property in the context of polycrystalline structures. 

Figures 4.12 show the change in Young’s modulus and shear modulus according 

to silica content of PU15, PU32, and PU50, and the resulting values are listed in 

 𝐂𝐇 =
1

|𝑽𝒚
𝑪|

∫  (𝐂 − 𝐂 ∶  𝛁𝒚𝝌)𝑑𝑽𝒚

..

𝑽𝒚
𝑪̅̅ ̅̅

 (4.5) 

 ∫  𝛁𝒚𝒗(𝒚) ∶ 𝐂 ∶ 𝛁𝒚𝝌 𝑑𝑽𝒚

..

𝑽𝒚
𝑪̅̅ ̅̅

 =   ∫  𝛁𝒚𝒗(𝒚) ∶ 𝐂  𝑑𝑽𝒚

..

𝑽𝒚
𝑪̅̅ ̅̅

 (4.6) 
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Tables 4.6. The reinforcing effect on the elastic modulus of the SMPU 

nanocomposite increases with the silica content. The two-phase FE homonization 

results show that the tendency of property enhancement according to the weight 

percent of the nanofiller can be predicted without considering the interphase region. 

 

 

Figure 4.12 Homogenized (a) Young’s modulus and (b) shear modulus of neat 

SMPU and nanocomposites with the silica contents without considering interphase.  

 

Table 4.6 Young’s modulus and shear modulus of SMPU/Silica nanocomposites 

with the Mori-Tanaka model (Unit: MPa). 

Model 
Silica content [wt .%] 

0 3 6 10 

PU15 
Young’s modulus 607.9 624.4 649.8 690.1 

Shear modulus 213.1 219.0 228.2 242.9 

PU32 
Young’s modulus 228.0 234.1 243.6 270.6 

Shear modulus 80.8 83.0 86.5 96.6 

PU50 
Young’s modulus 158.7 164.7 169.6 178.6 

Shear modulus 57.9 60.2 62.0 65.5 
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4.3.2  Development of interphase for nanoparticular agglomeration effect 

We derived the distribution change of nanoparticles according to the silica 

surface treatment in section 4.2. To accurately investigate the effect of the 

nanoparticle distributions in the same silica content on the mechanical properties, it 

is essential to introduce the concept of interphase region at the nanoscale. In order to 

develop an interphase model for three-phase homogenization, it is necessary to know 

the thickness and properties of the interphase region between the nanofiller and the 

polymer matrix.  

To determine the mechanical properties of the interphase region, we utilized an 

inverse multiscale approach which combined a 3-phase micromechanics model with 

our CG MD simulation model. This approach involves comparing the characteristics 

of nanocomposites, which are derived from CG MD simulations, with the 

mathematical homogenization models or analytical solutions in micromechanics. 

These models are employed to predict the overall characteristics of composites by 

taking into account the attributes of individual phases. 

The elastic modulus and shear modulus of the nanocomposites were obtained 

using the CG models shown in Figure 2.24 (a)-(c). To create the nanocomposite 

models, we added a single silica nanoparticle (r=30 angstroms) to the PU15, PU32, 

and PU50 matrix while keeping the nanofiller volume fraction constant at 0.06. We 

calculated the elastic modulus of the nanocomposites in the 1% strain range, which 

is the linear elastic region of the tensile stress-strain curve, and presented the 

corresponding values in Table 4.7. 



 125 

Table 4.7 Young’s modulus and shear modulus of neat SMPU and nanocomposites 

calculated from CG MD and Mori-Tanaka models. 

 MD Model 
Young’s modulus  

[MPa] 

Shear modulus  

[MPa] 

PU15 607.9 213.1 

PU32 228.0 80.8 

PU50 158.7 57.9 

PU15 + Silica 826.5 291.1 

PU32 + Silica 309.8 110.8 

PU50 + Silica 200.3 73.9 

PU15/Silica M-T 692.0 243.3 

PU32/Silica M-T 262.1 93.3 

PU50/Silica M-T 182.0 66.7 

 

Table 4.7 shows the calculated young's modulus and shear modulus of each CG 

MD unit cells for SMPU and SMPU nanocomposites with conventional 2-phase 

Mori-Tanaka solution. The reinforcement effect of the nanofiller becomes evident as 

the mechanical properties of the nanocomposite models surpass those of the pure 

SMPU model. We compared the CG results with the values predicted by 

conventional two-phase Mori-Tanaka (M-T) micromechanics that do not consider 

interphase. It can be seen that the values calculated through our simulation is greater 

than the values of the Mori-tanaka solution. The difference between the two results 

can be attributed directly to the characteristics of the interphase region, and provides 

an insight that it is essential to consider the interphase effect to precisely predict the 

nanocomposites properties according to nanoparticle dispersion on a continuum 

scale. 
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We also defined the thickness of the interphase in each matrix through the radial 

density profile derived through CG MD. As seen in advance in Figure 2.25 in section 

2.3, a high-density interphase region exists between the polymer matrix and 

nanoparticles, and the interphase thickness is defined as the point at which the radial 

density converges to the pure matrix density. 

Given the known properties and volume fractions of composites, the features of 

the interphase region become implicit variables of interest. To address this, the multi-

inclusion model, as outlined in references [118,119], offers a potential 

micromechanics approach for the reverse characterization of the interphase region. 

This continuum model takes into account the finite matrix effect by incorporating a 

fictitious infinite medium. The multi-inclusion model is comprised of three coaxial 

inclusions representing the matrix, particle, and interphase. These phases are 

considered to be isotropic and homogenous, and are embedded in an infinite medium, 

assuming a perfect bond with each other. The overall stiffness of the present three-

phase nanocomposite (𝑪 ) can be solved using equation (4.7), and the interphase 

property (𝑪𝒊) can be calculated through the inverse process of equations (4.8)-(4.9). 

A detailed description of the micromechanics can gbe found in the Reference [118]. 

 

 

 𝑪 = 𝑪∞[𝑰 + (𝑺 − 𝑰)(∑ 𝑓𝑟𝜱𝑟
𝑁
𝑟=1 )][𝑰 + 𝑺(∑ 𝑓𝑟𝜱𝑟

𝑁
𝑟=1 )]−𝟏  (4.7) 

 𝜱𝒓 = [(𝑪∞ − 𝑪𝒓)−𝟏𝑪∞ − 𝑺]
−𝟏

 (4.8) 

 𝑪𝒊 = 𝑪∞[𝑰 − (𝒇𝒓𝑩−𝟏(𝑪∞
−𝟏𝑪𝑺 − 𝑺 + 𝑰) + 𝑺)−𝟏]

−𝟏
  (4.9) 



 127 

Table 4.8 Properties of interphase region for different HSCs of the SMPU. 

Model 

Interphase Property 

Thickness  

[Å ]  

Young’s modulus  

[MPa] 

Shear modulus  

[MPa] 

PU15 + Silica 20 1426.1 500.9 

PU32 + Siliac 15 729.5 268.2 

PU50 + Silica 10 500.8 188.7 

 

The interphase properties (thickness and mechanical properties) derived 

through the corresponding processes are shown in Table 4.8. Finally, FE 

homogenization calculations were performed for 3-phase models with interphase 

regions as shown in Figure 4.13, and it was simplified by assuming that the 

characteristics of the interphase remained constant regardless of the surface 

treatment applied to silica. 

 

Figure 4.13 Equivalent finite element model for 3-phase (matrix, particle, and 

interphase) systems. 
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Figure 4.14 shows the change in particle distribution and interphase area 

according to the surface treatment of silica. As the compatibility between the 

nanoparticles and the matrix improves, the nanoparticles form an interphase with a 

wider area in a more dispersed form. Figure 4.15 shows the interphase volume 

fraction of the models and the resulting enhancement of mechanical properties. The 

reinforcing effect of 2-phase model (matrix and nanoparticle) was confirmed in 

section 4.3.1. Considering the interphase region between the polymer and the 

nanoparticles, which has stronger physical properties than the polymer matrix, the 

reinforcement effect of the nanocomposite can be more accurately predicted. 

Therefore, the homogenized Young's modulus of the nanocomposite considering the 

interfacial area showed a remarkable difference from the 2-phase model. In addition, 

as the distribution of nanoparticles was improved through the surface treatment of 

silica, the total volume ratio of the interphase region clearly increased, and the 

mechanical properties were further improved accordingly. These results show that 

the nanocomposite design we derive from mesoscale simulations can be used to 

predict realistic material properties.gradually increased. 
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Figure 4.14 Changes of particle distribution and interphase area in 3-phase FEM 

model according to the surface treatment for (a) PU15, (b) PU32, and (c) PU50. 
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Figure 4.15 Homogenized Young’s modulus of SMPU nanocomposites and volume 

fraction of interphase region considering interphase effct and silica surface 

treatment for (a) PU15, (b) PU32, and (c) PU50. 



 131 

4.3.3  Reinforcement effect of anisotropic nanofiller 

We confirmed the improving of the mechanical properties of SMPU 

nanocomposites through a 3-phase multiscale model that can reflect changes in the 

distribution of nanoparticles according to the silica surface treatment. The 3-phase 

nanocomposites unit cfells showed a stronger elastic modulus by forming a more 

stable interphase region when the nanoparticles were uniformly distributed. 

Regardless of the degree of improvement in mechanical properties, these 

nanoparticulate models have isotropic characteristics, with the longitudinal modulus 

of the nanocomposites being almost similar in three axes due to the characteristics 

of spherical particles. Therefore, in this section, DPD simulation and FE 

homogenization were additionally performed on cylinder-shaped nanoparticles to 

investigate the reinforcement effect of the anisotropic nanofiller. 

 

 

Figure 4.16 DPD modeling of silica surface treatment of cylindrical nanofiller. 
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As shown in Figure 4.16, we modeled a cylindrical nanofiller with an aspect 

ratio of 3. The cylinder has a diameter (D) of about 36.3 Å and a height (h=3D) of 

109 Å, so that it has the same volume as the previous nanoparticle with a radius of 

30 Å. As in section 4.2, various surface treatments were applied to the nanofiller, and 

DPD simulations were performed for models with a silica content of 10 wt.% for 

PU15, PU32, and PU50. The clustering density was calculated using equation (4.4), 

assuming an interphase region with a thickness of 6 Å between the cylindrical 

nanofiller and the matrix. Similarly, a normalization constant (A =2.84) was used to 

adjust the clustering density to 1 when 10 wt% of the silica nanoparticles were 

perfectly aggregated. 

Figure 4.17 shows the clustering density results according to the HSC and silica 

surface treatment of the cylindrical nano-filler. The trend of the result is the same as 

that of the nanoparticle model in Figure 4.9. The degree of nanoparticle clustering 

of the untreated cylinders is a little higher than that of the nanoparticles. When the 

aspect ratio of the nano-fillers increases, the surface area increases and the nano-

fillers become more aggregated. In the surface treatment results, as in the previous 

results, the APTS model for PU15 and the MDI model for PU32 and PU50 showed 

the most optimal nanoparticle distribution. Figure 4.18 shows the DPD 

configurations showing the optimal nanofiller distribution change in PU15 and PU50. 

In the Core model of PU15, nanofillers are agglomerated to form some clusters, 

whereas in the model with improved compatibility with the soft segment through 

APTS surface treatment, they are evenly distributed over a relatively wide area of 
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the matrix. In PU50, the ratio of the hard phase is increased so that the nanofillers 

are strongly aggregated in the center like one large spherical cluster. On the other 

hand, in the model with MDI-surface treatment, it can be confirmed that the nano-

filler is evenly distributed in the continuous hard segment domain, and the clustering 

density is significantly improved. 

 

 

 

Figure 4.17 Clustering density change of cylindrical nanofiller. 
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Figure 4.18 Cylinder distribution improvement by optimal surface treatment in (a) 

PU15 and (b) PU50. 

 

 

Figure 4.19 Distributions of cylindrical nanofillers, and corresponding volume 

fraction of interaphse (Vint) and mechanical properties for (a) PU15 and (b) PU50.  
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The homogenized Young's modulus was calculated to derive the mechanical 

properties reflecting the the distribution of the cylindrical nanofiller obtained 

through DPD simulation. Here, as well, the interphase characteristics of the 

nanofiller should be considered. In this study, it was modeled assuming that a single 

cylinder has an interphase region of the same volume as a single particle in each 

HSC.  

Figure 4.19 shows the nanofiller distribution of each model, the interphase 

volume fraction in that distribution, and the derived mechanical properties. Here, as 

the mechanical properties, not only young's modulus, which is an effective isotropic 

property, but also elastic stiffness in each axial direction, Ex, Ey, and Ez, are also 

shown. As a uniform distribution was obtained through the surface treatment of silica, 

the volume fraction of the high-density interfacial area increased, and the young's 

modulus of the nanocomposite is also significantly improved. An additional point to 

be noted in the strengthening effect of the cylindrical nanofiller is the anisotropicity 

of the nanocomposite. Since the cylinder-shaped nanofiller has an aspect ratio of 3, 

the orientation of the longitudinal axis exists, but when the nanofillers are 

agglomerated, the anisotopic properties do not significantly exist because the 

cylinders form new clusters. However, when the nanofillers have a well-dispered 

distribution, it is advantageous to have an arrangement leading in a specific direction, 

which can maximize the enhancement of mechanical properties in that direction. 

Therefore, the deviation of elastic stiffness in each direction of the untreated 

nanofiller model was 3~6% compared to the properties of the neat matrix, whereas 
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the deviation was 6~17% in the surface treated model. 

 

 

Figure 4.20 (a) Bridging architectural morphology of cylindrical nanofillers in 

lamellar structure, and (b) 3 × 2 × 2 periodic unit cells. 
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The difference in characteristics between spherical nanoparticles and 

cylindrical nanoparticles is most prominent in the PU32 matrix. First, looking again 

at the clustering density in Figures 4.9 and 4.17, in PU15 and PU50, where either 

soft-segment or hard-segment dominates in spherical nanoparticles, the distribution 

improvement effect was better, whereas in cylindrical nanofiller, PU32 showed the 

most uniform distribution. This is related to the phase separated morphology of the 

PU32 matrix, that is, the hard domain of PU32 takes the form of alternating lamellae 

like a thin strip. Figure 4.20(a) compares nanoparticle models treated with MDI on 

PU32. The surface treatment model is characterized by connecting adjacent hard 

domains due to strong attraction between MDI beads. However, in the case of a long 

nanofiller with an aspect ratio of 3, it can be seen that a single free nanofiller can 

connects alternating lamellar hard domains like a "bridge". As such, the nano-filler 

distribution of PU32 is further enhanced due to the free nano-filler effect, which 

exists as the lamellar hard domains strongly hold the ends of the cylinder. Figure 

4.20(b) shows the microstructure through 3 × 2 × 2 periodic unit cells of the model. 

We also calculated the homogenized mechanical properties for three different 

models (Core, PEO, and MDI surface-treated) of PU32/silica nanocomposites as 

shown in Figure 4.21(a). As in PU15 and PU50, the volume fraction and Young's 

modulus of the interphase region increase as the clustering density decreases. 

However, the anisotropicity of the nanocomposite of PU32 is greatest in the well-

aligned models along the lamellar wave direction of the soft domain, regardless of 

the degree of dispersion of the nanofiller. As confirmed in Figure 4.20(a), the MDI-
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cylinder has a complex distribution along the hard domain, and the basic core model 

has relatively strong agglomeration characteristics even though nanofillers exist in 

the soft segment region. The PEO-surface treated nanofillers showed the greatest 

anisotropy because they were well dispersed along the wave line of the lamellar soft 

matrix with improved compatibility as shown in Figure 4.21(b). Therefore, the 

elastic stiffness variation in each direction increased by 28% in PEO-cylinders in 

PU32. 

Trough this section, we confirmed the surface treatment method for improving 

the nanoparticle distribution and mechanical properties in SMPU/silica 

nanocomposites, as well as the aspect ratio effect of nanofiller. Through this, it was 

examined that in the design of nanocomposites where phase separation occurs, such 

as SMPU copolymer, not only the compatibility between the nanofiller and each 

segment of the polymer matrix, but also the phase-separated morphology of the 

polymer matrix itself should be considered. 
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Figure 4.21 (a) Distributions of cylindrical nanofillers, and corresponding volume 

fraction of interaphse (Vint) and mechanical properties for PU32 nancomposites, 

and  (b) Anisotropicity of nanocomposites. 
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Conclusions 

This study employed a mesoscale simulation-based multiscale analysis to 

investigate the thermo-mechanical behavior and phase separation of semi-crystalline 

SMPU/silica nanocomposites with different HSC. While conventional AA MD 

simulation accurately reproduces material structures, it is computationally 

demanding and limits the exploration of global macromolecular movements, such as 

crystalline phase formation and aggregation of linear copolymer system's hard 

domains. To overcome these limitations, we utilized a CG bead system to reduce the 

degrees of freedom, enabling extended simulation timescales and length scales. 

Furthermore, a dissipative particle dynamics simulation model was developed 

to examine phase separation and nanoparticle distribution in polyurethane 

nanocomposites. By incorporating molecular-level solubility calculations as 

simulation parameters, the model accurately predicted polymer phase shapes and 

actual nanoparticle distributions based on segment ratios. Additionally, surface 

treatments were applied to silica nanoparticles to optimize their distribution. 

Finally, a continuum model was created based on the geometry obtained from 

the phase separation simulation of the polyurethane nanocomposite. To predict 

mechanical properties based on nanoparticle dispersion, a finite element-based 

homogenization technique was introduced. This paper presents a design 

methodology for various nanocomposites and anticipates that this mesoscale 

simulation-based multiscale analysis will drive further research for practical 
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nanocomposite design and targeted property attainment. The dependence of thermo-

mechanical properties on HSC in SMPU copolymers facilitates the identification of 

a continuum mechanics constitutive relation, enabling molecular-level simulation of 

large deformations. Therefore, this study provides valuable insights into the 

microstructure-dependent behavior of shape-memory polymer nanocomposites and 

aids in the custom design of advanced stimuli-responsive materials. 
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국문 요약 

  

형상 기억 폴리우레탄은 외부 열에 반응하여 가역적인 대변형이 발

생하는 대표적인 스마트 소재로, 고분자 구조체 내부에 우레탄 결합을 

포함한다. 고분자 재료의 비용 효율성, 경량성, 높은 변형률 및 가공성과 

같은 장점들 때문에 센서나 엑츄에이터, 바이오 재료 등 다양한 응용분

야에 적용되고 있으며,  또한 낮은 기계적 물성을 보완하기 위해 나노입

자를 첨가한 나노복합재 설계에 대한 연구도 활발히 진행되고 있다. 

폴리우레탄 나노복합재의 열반응 형상 기억 효과를 얻기 위해서는 

고분자 내 넷포인트와 분자 스위치라는 두 가지 구조적 조건이 필요하다. 

물리적 얽힘, 공유 결합 또는 가교결합을 통해 본래의 모양을 기억하는 

하드 세그먼트는 넷포인트 역할을, 전이 온도에서 폴리머 결정화와 같은 

상 변화를 통해 형상을 복구시키는 유연한 소프트 세그먼트는 분자 스위

치 역할을 한다. 두 가지 세그먼트의 물질은 본질적인 비호환성으로 인

해 상분리가 일어나며, 그 비율에 따른 마이크로 구조변화는 고분자 시

스템의 거동에 큰 영향을 미친다. 뿐만 아니라 고분자 메트릭스와 나노

입자 사이의 화학적 비유사성으로 인한 나노입자 클러스터링 현상은 이

전부터 나노복합재의 물성 개선을 위해 극복해야하는 과제로 주목받고 

있다.  

고분자 시스템의 구조-물성 관계를 해석하는 분자동역학 모델이나 



 160 

나노입자 분포에 따른 기계적 특성을 해석하는 시뮬레이션 방법론들이 

이전부터 연구가 진행되어 왔지만, 실제적인 나노복합재의 거동을 모사

고 설계하는 데에는 한계가 있었다. 이에 동기를 얻어 본 논문에서는 형

상 기억 폴리우레탄 나노복합재의 고분자 결정화, 상분리 거동, 그리고 

나노입자의 분포 해석을 종합적으로 모사하는 설계방법을 제시하고자 한

다. 본 연구에서는 분자동역학 수준에부터 메조스케일 시뮬레이션을 거

쳐 연속체 스케일까지 이어지는 멀티스케일 해석을 수행하였다. 

본 연구는 축소 분자동역학 모델을 구축하여 기존의 분자동역학 모

델의 스케일의 한계를 극복하였다. 비드 모델을 통해 고분자 결정화 및 

형상기억 사이클을 메조스케일 레벨에서 모사하여 고분자 내 각 세그먼

트의 비율에 따른 폴리우레탄의 열-기계적 특성 및 나노입자 첨가 효과

를 해석하였다. 이를 통해 실험에서 보고된 온도 및 분자조성에 따른 기

계적 변형 트랜드를 정성적 및 정량적으로 비교하여 본 모델의 정합성을 

검증하였다. 

또한 소산 입자 역학 시뮬레이션 모델을 구축하여 폴리우레탄 나노

복합재의 상분리 현상 및 나노입자 분포를 해석하였다. 분자레벨에서 계

산한 각 물질들의 용해도를 해당 시뮬레이션의 매개변수로 사용하여, 세

그먼트 비율에 따른 고분자의 위상 형태 및 나노복합재의 실제 나노입자 

분포를 정확하게 예측하였다. 또한 실리카 나노입자에 추가적인 표면 처

리 물질을 도입하여 최적의 나노입자 분포를 설계하고자 하였다.  
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그리고, 폴리우레탄 나노복합재의 상분리 모사를 통해 얻은 지오메

트리를 그대로 반영한 연속체 모델을 구축하였다. 나노입자의 분산 정도

에 따른 기계적 물성을 예측하기 위해 유한요소기반 균질화기법을 도입

하였고, 본 논문에서는 이를 나노복합재의 다양한 형태를 설계할 수 있

는 설계 방법론으로서 제시하였다.  

본 논문에서 제시된 메조스케일 시뮬레이션 기반 멀티스케일 해석기

법을 통해 앞으로 더 많은 연구가 진행되어 타겟 물성을 얻어내기 위한 

실제 나노복합재 디자인 및 어플리케이션 응용에 활용될 수 있기를 기대

한다.  
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