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Abstract

Optimization Models and Decomposition
Approaches for the Power System Operation

under Uncertainty

Jongheon Lee

Department of Industrial Engineering

The Graduate School

Seoul National University

Power systems consist of generation, transmission, and distribution systems indicat-

ing the electricity network from its generation to the loads. Among various optimiza-

tion problems in the system, the unit commitment (UC) problem is a fundamental

problem that aims to minimize operation costs while meeting electricity demand by

coordinating generation resources. To ensure effective and reliable operation, vari-

ous uncertain factors such as renewable generation, load demand, and contingencies

should appropriately be considered. However, since the computational burden in-

creases as uncertain factors are incorporated into the optimization models, efficient

models and solution approaches are needed. Thus, this dissertation aims to propose

optimization models and decomposition methods to solve optimization problems in

power system operation under uncertainty.

First, we investigate a novel modeling approach in two-stage stochastic program-

ming, which is a widely used framework in power system operations under uncer-
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tainty. We propose a partition-based risk-averse two-stage stochastic program that

mitigates the drawbacks of the traditional two-stage stochastic programs with finite

support. In the model, a set of scenarios is partitioned into several groups a second-

stage cost is represented as the expectation of conditional value-at-risks of costs

for each scenario group. We propose decomposition methods based on column-and-

constraint generation to solve the model exactly for a given partition. In addition,

a scenario partitioning method to enable the risk level of the model to be close to a

given target is devised, and partitioning schemes for combining it with the proposed

column-and-constraint generation algorithm are proposed. Numerical experiments

were performed that demonstrated the effectiveness of the proposed partitioning

schemes and the efficiency of the proposed solution approach.

Next, we address single-unit commitment (1UC) problems, which arise when an

individual power producer bids a generator’s schedule to the deregulated electricity

market. Especially, we devise efficient dynamic programming algorithms to solve

1UC problems under stochastic electricity prices, by extending the results in the

deterministic counterpart. Furthermore, leveraging the efficient algorithms on 1UC

problems, we present two unit decomposition frameworks to solve the general UC

problem under stochastic net load, which include a novel decomposition that has not

been proposed. We propose a total of four solution approaches based on Lagrangian

relaxation or column generation and analyze the dual bounds obtained from the

methods. Through the numerical experiments, we demonstrate the efficiency of the

proposed algorithms on 1UC problems. In addition, we analyze various unit decom-

position methods for the stochastic UC problems and emphasize the scalability of the

proposed novel column generation method with regard to the number of scenarios.
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Finally, we study optimization models for microgrid operation under stochastic

islanding and net load, where a microgrid is a localized power system with various

distributed energy resources having the distinguishing feature that can be operated

in an islanded or connected mode. Although multistage stochastic optimization mod-

els can address the dynamics and probabilistic nature of uncertainty, they suffer from

the curse of dimensionality in that the number of scenarios grows exponentially with

regard to the number of time periods. To overcome this drawback, we propose scal-

able optimization models to operate a microgrid under both uncertain factors. To

deal with uncertain islanding events, a replanning procedure with models that con-

sider at most one upcoming islanding event is proposed. To incorporate stochastic

net load, the range of generation is determined in addition to commitment decisions

to reduce the size of the model. Numerical experiments demonstrate that practical-

sized instances can be solved using the proposed models, whereas they cannot be

solved using the standard multistage model. The results also demonstrate the ef-

fectiveness of the solutions from the proposed models in an environment that both

stochastic factors sequentially realize.

Keywords: Power system operation, Optimization under uncertainty, Unit com-

mitment, Decomposition method, Microgrid, Stochastic optimization

Student Number: 2019-36357
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Chapter 1

Introduction

1.1 Backgrounds

1.1.1 Optimization problems in power systems

Power systems consist of generation, transmission, and distribution systems indi-

cating from electricity production to the customer. The power system is a critical

infrastructure in modern society that provides essential services to society, including

providing power to homes, businesses, and industries. A reliable and efficient power

system is essential for economic and environmental impacts since its importance

is growing due to the adoption of renewable energy sources, urbanization, and the

electrification of transportation and heating systems. As illustrated in Figure 1.1,

the power system can be categorized into three main components: power generators

which convert various sources of energy, such as coal, gas, nuclear, wind, or solar,

into electrical energy, transmission systems responsible for transmitting the electric-

ity from the generation stations to the load centers through a network of high-voltage

transmission lines, and distribution systems that deliver electricity to nearby indus-

trial and residential areas. There are numerous decision-making problems in power

systems, which can be classified with regard to the time scale that they consider as

illustrated in Figure 1.2. The operation phase refers to the problems that can occur

1
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saving (see for [1] details), and (2) the instantaneous power is constant, which 
becomes extremely important when dealing with induction machines.

Figure 1.1	 Traditional	network	structure.

Figure 1.2	 Transmission	and	distribution	networks	topology.

Figure 1.1: Illustration of power system structure (adapted from Delfino et al., 2018)

Real-time
operation

Automatic generation
control (AGC)

Economic dispatch
Optimal power flow

Unit commitment

Outage planning

Capacity expansion
planning

secs mins hours days months years

operation operation planning planning

Figure 1.2: Optimization problems in power system operation by time scale (e.g.,
Akrami et al., 2019)
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and be resolved in real-time or on the order of minutes, to maintain the system’s

stability and reliability. It includes balancing the demand and supply of electricity

and responding to unexpected events and disturbances. It is crucial since electric-

ity is hard to store a large amount of portion of the production in contrast to the

other production systems. For example, the economic dispatch (ED) and optimal

power flow (OPF) problems both determine the generation amount that minimizes

operation costs by meeting electricity demand. The OPF problem extends the ED

problem by considering more complex operational constraints for reliable operation

considering the transmission line, such as voltage, reactive power, and line capacity

limits (Cain et al., 2012).

On the other hand, the planning phase is concerned with long-term problems

for the next few months to years, including investment decisions. For example, the

capacity expansion problem is determining the optimal mix and size of power gener-

ation, transmission, and storage facilities required to meet future electricity demand

while minimizing the cost of investment and generation. It is important to ensure a

reliable and cost-effective power system for the future, where future electricity de-

mand is estimated based on factors such as population growth, and economic devel-

opment. Furthermore, the nuclear outage planning problem is related to the main-

tenance activities of nuclear power plants. It is important because nuclear power

plants require periodic outages for refueling, maintenance, and repairs, and these

shutdowns can last for several weeks or months (Griset et al., 2022). Since nuclear

power plants often provide a large portion of the power system’s baseload generation

capacity, the outage schedule must be coordinated with other system operators to

ensure the safe and reliable operation of the power system during the outage.
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The operation planning phase is in the middle of the above-mentioned two phases

in terms of the time scale, which has usually a planning horizon from a day to

a week and decides hourly schedules by coordinating inner generation resources.

The decisions in operation plans are essential as a baseline to make the real-time

operation reliable and efficient. It is because the decisions that can be amended in a

short time are restricted in practice since generators cannot instantly turn on or off.

Therefore, the commitment decisions which refer to the on/off status of generators

are important and must be planned in advance so that enough generation is always

available to handle system demand with an adequate reserve margin in the event

that generators or transmission lines go out or load demand increases (Zhu, 2015).

1.1.2 Unit commitment problem in power systems

The unit commitment (UC) problem is a fundamental optimization problem in the

operation planning phase of the power system. The term unit represents a gen-

erator (generating unit) and the commitment indicates turning on a generator. It

aims to minimize operational costs while satisfying system-wide requirements such

as balancing supply and demand, and operational requirements of the generators.

Typically, hourly decisions are made with a planning horizon from a day to a week. In

a deregulated power system, the UC problem is usually solved by a coordinator such

as an independent system operator (ISO), or a regional transmission organization

(RTO), that is responsible for managing the power system in the region. The ISO

typically receives bids from various generation companies (GENCOs) that own gen-

eration assets about their available capacity, operating costs, and other generating

information relevant to the UC problem.
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In general, the commitment and dispatch decisions of generators are determined

through the UC problem. Commitment decisions are crucial in the UC problem since

most generators have physical characteristics so changing their status in a short time

is rarely possible. Dispatch decisions indicate the generation amount when the gen-

erator is on. Among the various types of generators, thermal generators which burn

some sort of fuel to produce electricity are widely used. They are subject to numer-

ous operational requirements. For example, minimum up (or down) requirements

indicate the time periods that a generator must maintain its status when it starts

(or stops) generating. In addition, ramping requirements limit the increase and de-

crease of the generation amount of a generator from a time period to an adjacent

time period.

Considering those characteristics, solving UC problems is challenging. The basic

UC problem, which focuses on meeting the demand by the generation only decided

by the generators’ on/off status, is shown to be NP-hard in Tseng (1996). It also has

been shown to be strongly NP-hard (Bendotti et al., 2019) by additionally consider-

ing minimum up/down time requirements. To solve the model, classical and earlier

approaches include dynamic programming (Lowery, 1966) and Lagrangian relax-

ation (Muckstadt and Koenig, 1977) approaches. Then, mixed-integer programming

(MIP) approaches are widely used nowadays. It has been reported that the transi-

tion to MIP approaches has saved at least five billion USD annually in the United

States (e.g., O’Neill, 2017; Knueven et al., 2020).

There are variants of the classical UC problem that considers specific power sys-

tem environment. First, the single-unit commitment (1UC) problem arises when an

individual power producer (IPP), who is responsible for managing the operation of

5



its individual generator, submits a bid to the deregulated electricity market (Pan

and Guan, 2016). Instead of minimizing operating costs as in UC while demand and

supply are met, the net profit, which is a subtraction of cost from the profit that

it receives from the generation, is maximized in 1UC. In addition, compared to the

UC problem which is strongly NP-hard, the 1UC problem is polynomially solvable

although it is usually formulated as an MIP (Fan et al., 2002; Frangioni and Gentile,

2006b). Next, operation planning in a microgrid environment is of growing impor-

tance. A microgrid is a localized electric power system with a low voltage phase

consisting of various distributed energy resources that can operate with connection

to the centralized power system (main grid) or as an independent system while be-

ing disconnected from the main grid (Katiraei et al., 2008). Microgrids have been

considered a key element of the future energy transition since they can increase the

efficiency of distributed energy systems and facilitate the penetration of renewable

energy sources (Moretti et al., 2020). In microgrids, locally distributed microgrid

operators (MGOs) are responsible for managing their inner various distributed en-

ergy resources in the jurisdiction (Lee et al., 2021). There are specific characteristics

that such as islanding events, which occur when a microgrid is disconnected from the

main grid, need to be considered. Thus, to efficiently and reliably operate microgrids,

those characteristics should be appropriately considered.

1.1.3 Optimization under uncertainty

To operate a power system in a reliable and efficient manner, various uncertain

factors regarding the system should appropriately be considered. The uncertainty

usually stems from the unpredictability of some components regarding the system,
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such as electricity supply, demand, price, and so on. For example, the penetration

of renewable electricity sources has brought significant challenges to power system

operators since it is hard to predict precisely in advance because of their intermittent

nature (Zhao and Guan, 2016). The next one is regarding system failure, especially

unexpected outages of components, which typically are generators or transmission

lines. A classical method in power system operation to deal with such uncertain

factors is to provide spinning and operating reserves, which refer to a margin for

available generation capacity that can be utilized at the realization of uncertainty.

However, since it is an implicit and conservative approach that could lead to ineffi-

cient operation costs, various optimization models that explicitly consider uncertain

factors have then been developed based on the optimization frameworks (Wu et al.,

2007). We classify various optimization models under uncertainty in terms of the

decision-making process and optimization frameworks.

First, the optimization models can be classified by the decision-making process.

In the models, decision stages correspond to the group of decisions that are de-

termined based on the same information on uncertainty. For example, a two-stage

optimization model assumes the decision process with two stages, where the first-

stage decisions are made before the realization of uncertainty, and the remaining

second-stage decisions are determined based on the realization of uncertainty which

occurs after the first-stage decisions. The multistage optimization models are the

natural extension of the two-stage optimization models, which are adequate for se-

quential decision-making under uncertainty. Similarly to the two-stage models, each

stage in the multistage model refers to a point where the decision is made based on

the information on uncertainty at that point. Multistage models are more flexible
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and can capture more complex decision-making processes, where the advantage is

emphasized in Huang and Ahmed (2009), but they also tend to be more computa-

tionally demanding than two-stage models.

Next, we introduce representative optimization frameworks for modeling uncer-

tain factors. Stochastic programming assumes that the uncertain parameter follows a

certain probability distribution. Among the variations, the basic form is to minimize

the expected costs for a given distribution. In practice, to avoid calculating expecta-

tions which is naturally intractable, a sample average approximation is widely used

(Kleywegt et al., 2002). It is to replace the expectation with the sample average

value based on sampling scenarios from the distribution. Then, the optimization

model becomes a large-scale deterministic optimization model. On the other hand,

robust optimization minimizes the worst-case performance over a set of possible val-

ues for uncertain parameters. It is a non-parametric method that seeks a solution

that performs well under all possible values of the uncertain parameters within a

specified set, which is called the uncertainty set. The uncertainty set must be care-

fully chosen to avoid the over-conservativeness of obtained solutions since extreme

cases rarely occur. Various types of uncertainty sets have been considered such as

box, ellipsoid, and Γ-robustness (Bertsimas and Sim, 2004). Finally, we note the

hybrid models which can control the risk level between the two frameworks. Distri-

butionally robust optimization (DRO) is a representative framework that minimizes

the worst-case performance of expectation over a set of possible probability distri-

butions for uncertain parameters, where the set is denoted by an ambiguity set.

Compared to stochastic programming that minimizes expected costs for a certain

distribution, it is less dependent on accurate estimation on probability distributions
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and thus can hedge the risk of estimation error on the distribution. In addition, it

can mitigate the over-conservativeness in robust optimization by utilizing distribu-

tion information that can be incorporated into the ambiguity sets. Various types

of ambiguity sets are studied, including moment information-based (Delage and Ye,

2010) and statistical distance-based (e.g., Mohajerin Esfahani and Kuhn, 2018) sets.

We lastly note that DRO can be related to a risk-averse stochastic program with a

correspondence between a coherent risk measure and an ambiguity set (e.g., Artzner

et al., 1999; Rahimian and Mehrotra, 2019).

1.2 Literature review

1.2.1 Studies on unit commitment problems

In UC problems, polyhedral studies have been widely done by focusing on the single-

generator system. Lee et al. (2004) proposed valid inequalities for minimum up/down

polytope with on/off decisions, further showing that they are sufficient to describe

the convex hull of the polytope. Later, Rajan and Takriti (2005) extended the re-

search to provide valid inequalities and convex hull descriptions when start-up de-

cisions also exist. Morales-España et al. (2015) provided convex hull descriptions

when the power generation limit and minimum up/down constraints exist. From

then, various polyhedral studies are extended to incorporate ramping restrictions in

single-generator system (Ostrowski et al., 2011; Damcı-Kurt et al., 2016). For valid

inequalities for a multiple-generator system, Bendotti et al. (2018) proposed up-set

inequalities, which are similar to the extended cover inequalities in the binary knap-

sack problem. Frangioni and Gentile (2006a) proposed a perspective cut to efficiently

solve convex binary MIPs, and applied the method to the unit commitment problem
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when the generation cost is a convex quadratic function. In addition, there have been

algorithms for solving the 1UC problem directly, which can be solved in polynomial

time. As reported in Pan and Guan (2016), there are two types of 1UC problems

based on the bidding strategies of IPPs: self-commitment and self-scheduling. In

the self-commitment problem, only commitment decisions for the planning horizon

are decided, while the generation amount is also determined in the self-scheduling

problem. Most of the studies focused on the self-scheduling problem. Fan et al.

(2002) provided a dynamic programming-based polynomial-time algorithm to solve

the self-scheduling problem with piece-wise linear variable cost. Then, Frangioni and

Gentile (2006b) proposed a O(T 3)-time algorithm with a convex quadratic variable

cost function, where T is the number of periods in the planning horizon. Later, the

algorithm is refined in the subsequent literature (Frangioni and Gentile, 2015; Guan

et al., 2018; Wuijts et al., 2021). Further, based on the algorithm, several extended

formulations that can describe the convex hull of the feasible solution set in higher

dimension are proposed (Frangioni and Gentile, 2015; Guan et al., 2018; Knueven

et al., 2018). Knueven et al. (2020) present a comprehensive comparison of various

MIP formulations and proposed a new formulation regarding the UC problem.

To solve the UC problem, the above-mentioned valid inequalities are generated

in advance or used in a branch-and-cut framework. In addition, decomposition ap-

proaches are also widely used. A well-known solution approach called unit decompo-

sition (e.g., Van Ackooij et al., 2018) directly uses solutions of the 1UC problem. It is

a method that relaxes system-wise requirements such as demand balance constraints

and decomposes the remaining problem by each generator. Frangioni et al. (2008)

applied the Lagrangian relaxation approach for a hydro-thermal system where cor-
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responding self-scheduling subproblems are solved with their algorithm (Frangioni

and Gentile, 2006b). Kim et al. (2018) propose a temporal decomposition approach,

which is based on solving the problem by relaxing constraints regarding multi-period,

for the UC problem with a longer planning horizon. We lastly note that there is a

study that applies learning-based methods to enhance the solvability of large-scale

security-constrained UC, by utilizing the practical context that the daily instance

with similar characteristics is repeatedly solved (Xavier et al., 2021).

1.2.2 Optimization approaches under uncertainty in power system

operation

There have been a lot of studies on optimization models and solution approaches for

power system operation when uncertain factors are incorporated. For the stochastic

UC problems, Carpentier et al. (1996) and Takriti et al. (1996) are earlier stud-

ies that explicitly considered various uncertain factors in the optimization models,

where the electricity demand and outage of generators are considered uncertain in

both. From then, various uncertain factors such as electricity prices (Takriti et al.,

2000), renewable generation (Tuohy et al., 2009), and outages (Wu et al., 2007) are

considered in the stochastic programs for UC problems. Several papers integrated the

uncertainty in both renewable generation and electricity demand as net load (e.g.,

Bertsimas et al., 2013; Jiang et al., 2016), which is the load demand subtracted by

the renewable generation.

To solve stochastic programs, decomposition approaches are widely used. Ben-

ders decomposition method (Benders, 1962), which is a decomposition based on

partitioning variables and widely used to solve a variety of optimization problems
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(Rahmaniani et al., 2017), is used to solve stochastic UC problems. Wang et al.

(2013) presented a Benders decomposition method with the model with uncertain

wind power generation and sub-hourly dispatch constraints. Zheng et al. (2013) pro-

posed an elaborated Benders decomposition to solve two-stage stochastic UC with

uncertain renewable generation when the discrete decisions are in both stages. An-

other decomposition approach is the scenario decomposition approach, which refers

to relaxing so-called non-anticipativity constraints that the decisions in two scenar-

ios are the same when they share the same information to a certain stage. Then,

when the constraints are relaxed, the remaining problem can be decomposed for

each scenario, which is a deterministic problem. In Wu et al. (2007), various uncer-

tain factors including random outages and load forecasting errors are incorporated

into the model and it is solved with scenario decomposition methods. Papavasil-

iou and Oren (2013) also proposed a scenario decomposition approach to solve the

security-constrained UC problem with uncertain wind power generation. On the

other hand, the unit decomposition approach, which can be used to solve the deter-

ministic UC problem as in the previous subsection, can also be applied to stochastic

UC problems, where the resulting subproblem can be decomposed to the stochas-

tic self-scheduling problems. In Carpentier et al. (1996), an augmented Lagrangian

approach is proposed and the subproblems are solved by dynamic programming.

In addition, stochastic Lagrangian relaxation methods are also proposed in (Nowak

and Römisch, 2000). Shiina and Birge (2004) solved the UC problem with uncertain

demand and outage of generators by applying column generation techniques. Three

types of uncertain factors, which are load, fuel, and electricity prices, are consid-

ered in Takriti et al. (2000), and the model is solved by Lagrangian relaxation, and
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Benders’ decomposition is applied to solve the subproblems.

To appropriately deal with the sequential realization of uncertain factors, Uçkun

et al. (2015) proposed a hybrid optimization model that can incorporate dynamic

decisions and obtain efficiency for stochastic wind power generation. They intro-

duced a bucket that groups similar scenarios and imposed non-anticipativity re-

quirements among the buckets, which can reduce the computational burden. Jiang

et al. (2016) proposed strong valid inequalities for multistage stochastic unit com-

mitment problem, where net load is considered uncertain. To solve the multistage

model, stochastic dual dynamic programming (Pereira and Pinto, 1991) is widely

used, which sequentially approximates the expected-to-go function and is applied to

the energy planning problem. Zou et al. (2019) proposed a stochastic dual dynamic

inter programming method, which is an extension to be used when binary decisions

exist in every stage, to solve the problem with uncertain net load. For a compre-

hensive review on stochastic programming models, we refer to Zheng et al. (2015),

Tahanan et al. (2015), and Van Ackooij et al. (2018).

For robust optimization models, Street et al. (2011) proposed a model that can

accommodate up to k outages out of all N system components. This model was

extended to accommodate various emergency situations and includes methods to

model economic redispatch in case of emergency (Wang et al., 2013). Zhao and

Zeng (2012) considered uncertainty of electricity price, wind-power generation, and

the price-elastic demand curve. The model is solved by a column-and-constraint

generation method, which has been represented as a generic solution approach to

solve general two-stage robust optimization in the subsequent work (Zeng and Zhao,

2013). Bertsimas et al. (2013) proposed a robust optimization model that took the
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uncertainty in the net load into consideration and solved the model based on Ben-

ders’ decomposition techniques. Cho et al. (2019) proposed a new box-based robust

optimization to enhance the feasibility of the solutions. Lorca et al. (2016) proposes

a constraint generation approach to the multistage adaptive robust optimization

model for unit commitment problem, where affine decision rules are adopted to

enhance the tractability of the problem.

For DRO model, approximations based on the decision rules are widely used.

Xiong et al. (2016) solved a two-stage DRO model with linear decision rule ap-

proximation. Duan et al. (2017) carefully designed the ambiguity set to make the

corresponding DRO model tractable and scalable. Zhao and Guan (2016) propose a

risk-averse stochastic optimization model with a finite number of scenarios and de-

vise a Benders’ decomposition approach to solve the problem. Benders decomposition

and column-and-constraint generation methods are proposed based on the character-

istic when the uncertainty is in the right-hand-side in the Wasserstein distance-based

DRO model in Gamboa et al. (2021), where the tests are conducted to solve the UC

problem.

Also in the microgrid environment, various optimization models including stochas-

tic optimization (e.g., Farzin et al., 2017; Alvarado-Barrios et al., 2020), robust op-

timization (e.g., Moretti et al., 2020; Gholami et al., 2017), distributionally robust

optimization (e.g., Yurdakul et al., 2021) have been proposed. Among the uncertain

factors, the possibility of islanding events is one of the distinct features of microgrid

operation compared to the general UC problem. Optimization models were proposed

in Zacharia et al. (2019) for grid-connected and islanded modes with different ob-

jectives. A rolling horizon approach combined with a stochastic optimization model
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was proposed in Bashir et al. (2019) to operate a microgrid for a one-year plan-

ning horizon. A stochastic optimization model was proposed in Farzin et al. (2017)

to minimize the operation costs during unscheduled islanding where the islanding

periods are uncertain. However, a few papers have considered it during the plan-

ning horizon, with an appropriate characterization of possible islanding events in

advance. Khodaei (2013) proposed the T − τ criteria, which considers an island-

ing event of τ consecutive time periods during the given planning horizon with T

time periods, and non-dispatchable generation was additionally considered in Kho-

daei (2014). The models in both studies aim to minimize power mismatches under

worst-case realizations. Lee et al. (2021) proposed a multistage stochastic optimiza-

tion approach considering the possibility of multiple islanding events in a planning

horizon. Gholami et al. (2016) proposed a two-stage stochastic optimization model

that considers both contingency-based and normal-operation-based uncertainty. Un-

certain factors, including both islanding events and net load, were considered in a

two-stage robust optimization framework in Gholami et al. (2017), Guo and Zhao

(2018), and Mansouri et al. (2022), where the set of possible islanding events is

predetermined.

1.3 Research motivations and contributions

Although there has been a considerable amount of research on power system opera-

tion under uncertainty, there are some areas where the research is not yet sufficient.

Firstly, various types of power systems such as microgrids or single-generator systems

need to be further investigated. For example, microgrids contain various distributed

energy resources and have unique features such as islanding events that need to be
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considered. Furthermore, optimization models and solution approaches under un-

certainty need to be further investigated since traditional stochastic programs are

insufficient to deal with distributional uncertainty and become more challenging to

solve as the number of scenarios increases. Moreover, the computation burden in-

creases when we further consider the multistage optimization models, although they

can adequately represent the sequential realization of uncertain factors. To address

these challenges, optimization models and solution approaches need to be extended

and elaborated by considering the characteristics of power system operation and

uncertain factors. To resolve these issues, this dissertation aims to extend the opti-

mization methodologies used in power system operation under uncertainty. Specif-

ically, we focus on various optimization problems that can occur in power system

operation and propose efficient optimization methods to solve the problems. These

efficient methods include constructing effective and scalable optimization models

and proposing efficient solution approaches based on decomposition.

First, we propose a new optimization model in two-stage stochastic programming

widely used in the literature. Typically, two-stage stochastic programs have been

modeled and solved based on a finite support assumption, but a large number of

scenarios makes it hard to solve, and there also are potential risks of inaccurate

estimation of the underlying distribution. A new optimization model is proposed to

mitigate the drawbacks and it is a risk-averse representation of a two-stage stochastic

program with finite support, which we call a partition-based risk-averse two-stage

stochastic program. In the model, a set of scenarios is partitioned into several groups,

and the second-stage cost is defined as the expectation of risk levels for all groups. In

particular, the conditional value-at-risk is considered a risk measure for each group,
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and so the risk level of the model is affected by a quantile parameter or a partition of

a given set of scenarios. One of the strong advantages of the model is that it enables

efficient decomposition approaches, which is column-and-constraint generation. In

addition, a scenario partitioning algorithm to enable the risk level of the model to

be close to a given target is devised, and partitioning schemes for combining it with

the proposed column-and-constraint generation algorithm are proposed.

Next, we investigate the 1UC problem under uncertain electricity prices. Espe-

cially, to maximize an IPP’s net profit considering uncertainty in electricity prices,

we study the stochastic self-scheduling problem and the self-commitment problem.

To deal with a large number of price scenarios in the stochastic self-scheduling prob-

lem, we devise an efficient dynamic programming algorithm that is based on probing

a finite number of generation amounts that can be optimal. For the self-commitment

problem, we propose a dynamic programming algorithm whose complexity is linear

with regard to the number of time periods. Another purpose of studying single-

generator systems is to derive an efficient solution approach to solving general UC

problems. By leveraging efficient algorithms on 1UC problems, we propose two unit

decomposition methods to solve the UC problem under stochastic net load. We

present Lagrangian relaxation and column generation methods to implement the

methods, which include a novel decomposition that uses the self-commitment prob-

lem as a substructure and has not been proposed.

Finally, we study microgrid operation with the sequential realization of two un-

certain factors: stochastic net load and islanding events. To address sequential real-

izations, operation plans need to be adaptable to the dynamics that these uncertain

factors sequentially reveal in a given planning horizon. Although multistage stochas-
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tic optimization models can address the dynamics and probabilistic nature of uncer-

tainty, they suffer from the curse of dimensionality in that the number of scenarios

grows exponentially with regard to the number of time periods. To overcome this

drawback, we propose scalable optimization models for operating microgrids under

stochastic islanding and net load, while ensuring that the solutions from the models

are adaptable to sequential realization. In particular, integrated optimization models

are presented to deal with both uncertain factors based on the combination of the

proposed models for each of the two, which is scalable compared to the standard

multistage model used in the literature.

1.4 Outline of the dissertation

The remainder of the dissertation is organized as follows.

• In Chapter 2, we study a general two-stage stochastic program that is widely

used in the literature including power system operation. We propose a new

model which we call a partition-based risk-averse two-stage stochastic pro-

gram. We analyze the characteristics of the new model and provide exact and

heuristic algorithms based on column-and-constraint generation. Next, we pro-

pose a partitioning algorithm to make the risk level of the model close to the

pre-specified target, and a scheme that integrates the partitioning algorithm

and the proposed solution approach. We conduct computational experiments

to show the efficiency of the proposed algorithm and the effectiveness of the

new model.

• In Chapter 3, to address 1UC problems under electricity price uncertainty,
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two types of problems are studied. For the stochastic self-scheduling problem,

we propose a dynamic programming algorithm that can efficiently incorpo-

rate a large number of scenarios. For the self-scheduling problem, we propose

an efficient dynamic programming algorithm that can reduce the computa-

tional complexity proposed in the literature. Next, we propose efficient unit

decomposition approaches to the UC problem under stochastic net load. We

demonstrate the efficiency of the solution approaches through computational

experiments.

• In Chapter 4, operating microgrids under two stochastic factors, net load and

islanding events, where the uncertain factors sequentially realize. We first

present a standard multistage stochastic optimization model to incorporate

them. Next, for the main contribution, we propose scalable optimization mod-

els based on integrating each model considering each uncertain factor. Numeri-

cal experiments are constructed to demonstrate the scalability of the proposed

models, and it also demonstrated that the proposed scheme is effective in mi-

crogrids operation.

• In Chapter 5, we summarize the results and contributions of the dissertation

and present future research directions.
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Chapter 2

Partition-based risk-averse two-stage stochastic
program

2.1 Introduction

Two-stage stochastic programming is a representative modeling framework for de-

scribing sequential decision-making under uncertainty, wherein decision variables are

partitioned into here-and-now decisions and wait-and-see decisions. It has a wide

range of applications, such as operations in energy systems (Papavasiliou and Oren,

2013), healthcare systems (Kim and Mehrotra, 2015), network design (Santoso et al.,

2005), and so on. In the literature, it is commonly assumed, based on the theoretical

background of sample average approximation (e.g., Kleywegt et al., 2002), that the

distribution of uncertain parameters has finite support. In other words, we have, in

advance, a set of scenarios S that represents underlying uncertainties, with each sce-

nario s ∈ S having its probability ps. On this assumption, the two-stage stochastic

program in the risk-neutral sense (SP) can be cast as below:

(SP) min
x∈X

{
cTx+

∑
s∈S

psQ(x, s)

}
,
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where Q(x, s) := min{qTs ys | Tsx + Wsys ≥ hs} is the optimal second-stage cost

for each scenario s ∈ S with a given first-stage decision variable x ∈ X ⊆ Rn. For

each s ∈ S, ys ∈ Rd is the second-stage decision variable, and qs ∈ Rd, hs ∈ Rm,

Ts ∈ Rm×n, and Ws ∈ Rm×d are given data. The objective function is comprised

of two parts: the first-stage cost cTx for a given c ∈ Rn and the second-stage cost

which is the expectation of Q(x, s) for all scenarios.

There is wide-ranging research on efficient solution methods for the SP, which

is represented as a large-scale deterministic optimization model, usually based on

constraint-generation or decomposition methods such as the dual decomposition

(Carøe and Schultz, 1999), the L-shaped method (Birge and Louveaux, 2011), the

progressive hedging (Rockafellar and Wets, 1991), and others. Nonetheless, solving

the SP is computationally burdensome, because the size of the model is proportional

to the number of scenarios, and a large number of scenarios are needed to represent

underlying distribution in practice. In addition, accurate estimation of the under-

lying distributions of the random variables might not be possible in practice (Park

and Lee, 2017). Recently, to mitigate the disadvantage of the SP, several alterna-

tive two-stage models that employ risk measures along with the associated solution

algorithms have been proposed (Zeng and Zhao, 2013; Blanco and Morales, 2017;

Mınguez et al., 2021).

In this chapter, we propose a new model which we call the partition-based risk-

averse two-stage stochastic program (PSP for short), in which the second-stage cost is

represented as the expectation of risk values for all groups instead of for all scenarios.

Let K = {S1, . . . , SK} be a partition of a set of scenarios S with K ≥ 1 elements.

We sometimes denote a partition K only by its indices, i.e. K = {1, . . . ,K}, with a
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slight abuse of notation. Throughout this chapter, we denote each element k ∈ K

by group k, and the probability of each group k is defined by p̃k :=
∑

s∈Sk
ps.

To represent the second-stage cost for each group, we define Qk(x) as a random

variable with its support on {Q(x, s)}s∈Sk
, and with its probability ps|k := ps/p̃k for

s ∈ Sk and k ∈ K. The conditional value-at-risk (CVaR) with a quantile parameter

α ∈ [0, 1), which is widely used in risk-averse stochastic programs, is adopted as the

risk measure for each group. It has been used in financial risk management and is

a coherent risk measure that is known to have better mathematical properties than

the value-at-risk (VaR) (Artzner et al., 1999). The model minimizes the sum of the

first-stage cost and the second-stage cost, where the second-stage cost, which we also

call the risk level, is represented as the expectation of CVaR values for all groups.

For a given partition K of S and α ∈ [0, 1), a specific model of the PSP, which is

denoted as PSP(K, α), is defined as

(PSP(K, α)) zαK = min
x∈X

{
cTx+

∑
k∈K

p̃kCVaRα (Qk(x))

}
. (2.1)

For each scenario s ∈ S, the second-stage cost Q(x, s) is defined as in the definition

of the SP. We assume that Q(x, s) is feasible and bounded for any first-stage solution

x ∈ X and for all s ∈ S, which is a widely applied assumption in the literature.

The PSP is a generalization of a number of two-stage stochastic (or robust) op-

timization models studied in the literature. For example, with K = {S}, the corre-

sponding model PSP({S}, α) becomes the model proposed by Mınguez et al. (2021).

Specifically, with α = 0, PSP({S}, 0) is the SP (the two-stage stochastic program in

the risk-neutral sense). On the other hand, if we set α = 1− ϵ with a small positive
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number ϵ such that ϵ ≤ mins∈S ps, then CVaR1−ϵ (Qk(x)) = maxs∈Sk
Q(x, s). There-

fore, the model PSP(K, 1− ϵ) corresponds to the following model RO(K) studied by

Blanco and Morales (2017) in a special application context of the unit commitment

problem. In particular, RO({S}) is the two-stage robust optimization model (e.g.,

Zeng and Zhao, 2013).

(RO(K)) min
x∈X

{
cTx+

∑
k∈K

pk max
s∈Sk

Q(x, s)

}
. (2.2)

Furthermore, the model PSP can be interpreted based on the following rela-

tionship with the distributionally robust optimization (DRO). Using the well-known

correspondence between a coherent risk measure and an ambiguity set in the DRO

literature (e.g., Artzner et al., 1999; Rahimian and Mehrotra, 2019), it can be shown

that PSP(K, α) is equivalent to the following DRO(K, α) with an ambiguity set

P(K, α):

(DRO(K, α)) min
x∈X

{
cTx+ max

p′∈P(K,α)

∑
s∈S

p′sQ(x, s)

}
,

where P(K, α) = {p′ ∈ R|S|
+ |

∑
s∈Sk

p′s = p̃k, ∀k ∈ K, p′s ≤ ps/(1− α),∀s ∈ S}.

Let us call a partition K̄ a refinement of a given partition K if one can obtain

K̄ by repeating partitioning for one or more groups of K. From the equivalence

between PSP(K, α) and DRO(K, α) with the fact that P(K̄, α) ⊆ P(K, α) when K̄ is

a refinement of K, it can be deduced that the risk level of PSP(K̄, α) is not higher

than that of PSP(K, α). In addition, it is also clear that the risk level of PSP(K, α) is

monotone non-decreasing as the value of α increases. Therefore, the salient feature

of the model PSP is that one can control the risk level by the construction of a
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partition K as well as the choice of α. The important implication of this is that,

for a given α and K, there might exist β > α and a refinement K̄ of K such that

the risk level of PSP(K̄, β) closely approximates that of PSP(K, α). If it is the case,

PSP(K̄, β) can be used as a surrogate model for PSP(K, α), and vice versa.

Our main purpose is to present the model PSP with the characteristics men-

tioned above and propose efficient solution algorithms to deal with a large number

of scenarios along with effective scenario partitioning schemes to control the risk level

of the model. The remainder of the chapter is organized as follows. We first review

the related literature and summarize the contributions of our study in Section 2.2.

In Section 2.3, we propose an efficient column-and-constraint generation algorithm

to solve PSP(K, α) for a given partition K and α ∈ [0, 1). In Section 2.4, we first

present a heuristic algorithm to construct a partition with a desired risk level. Then,

we present two partitioning schemes including a novel adaptive partitioning scheme

that incorporates the heuristic algorithm into the column-and-constraint generation

algorithm for PSP(K, α). In Section 2.5, we demonstrate, through numerical exper-

iments, the effectiveness of the proposed partitioning schemes and the efficiency of

the proposed column-and-constraint generation algorithm. Finally, in Section 2.6,

we summarize the contents of the chapter.

2.2 Literature review and contributions

There have been a number of studies on risk-averse stochastic programs. First of all,

an important relationship between the risk-averse stochastic programs and the DRO

is shown in Jiang and Guan (2018), which showed that an ℓ1-distance-based ambigu-

ity set in the DRO is equivalent to a risk-averse stochastic program with its objective
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function being the weighted sum of a supremum and the CVaR functional. For solu-

tion approaches to risk-averse stochastic programs with finite support, the L-shaped

methods have been proposed to solve a single-stage problem with the CVaR func-

tional (Künzi-Bay and Mayer, 2006) or a two-stage problem with binary variables

in both stages with various ambiguity sets in the DRO framework (Bansal et al.,

2018). Another well-known solution approach to a risk-averse stochastic program is

the column-and-constraint generation method, which was first proposed in Zeng and

Zhao (2013) to solve the two-stage robust optimization model RO({S}), which is the

same as PSP({S}, 1 − ϵ). They demonstrated that this method requires a smaller

number of iterations to converge than does the Benders decomposition method. It

has been applied to solve a number of risk-averse stochastic programs. For exam-

ple, An and Zeng (2015) extended the method to the two-stage robust optimization

model with multiple polyhedral uncertainty sets. Blanco and Morales (2017) pro-

posed RO(K) for the unit commitment problem, which is the same as PSP(K, 1− ϵ),

that considers a partition of the set of scenarios and the maximum function as the

risk measure, and devised an algorithm based on column-and-constraint generation.

Mınguez et al. (2021) proposed a generic risk-averse two-stage stochastic program

that considers the CVaR as the risk measure, which is the same as PSP({S}, α), and

devised a column-and-constraint generation algorithm for it.

In the stochastic programming literature, partitioning the set of scenarios, sce-

nario partitioning for short, has been used mainly in obtaining primal and dual

bounds or accelerating existing solution approaches. It is also called scenario group-

ing or clustering. In Birge (1982), group subproblems are proposed to obtain better

primal and dual bounds of two-stage stochastic linear programs, and a bound hi-
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erarchy among different group subproblems is shown. Later, the idea is extended

to multi-stage settings in Sandıkçı et al. (2013) and Sandikçi and Özaltin (2017).

Scenario partitioning also has been used to enhance existing solution approaches. In

Escudero et al. (2013), it is used to get an improved dual bound of a Lagrangian

relaxation-based solution approach in the two-stage mixed-binary stochastic pro-

gram. In Crainic et al. (2014), it is used to devise a progressive hedging-based heuris-

tic algorithm for stochastic network design problems. In those studies mentioned

above, a partition is usually constructed a priori with similarity-based clustering

methods (e.g., Crainic et al., 2014; Blanco and Morales, 2017), such as the k-means

clustering algorithm. Since the scenario partitioning procedure itself could be im-

proved by further investigating its objective and optimizing its goal, there have been

a few studies on how to make good partitions. Ryan et al. (2020) presented a mixed-

integer program to construct a partition that maximizes dual bound improvement

for a given set of incumbent solutions in a two-stage stochastic program. Deng et

al. (2020) proposed a bilevel mixed-integer program problem and a branch-and-cut

method to obtain the tightest quantile bound by utilizing the fact that the quantile

bound for a chance-constrained stochastic program can be improved by scenario par-

titioning. Lastly, Song and Luedtke (2015) and its follow-up study by Ackooij et al.

(2018) proposed adaptive partitioning methods to exactly solve two-stage stochastic

linear programs in the risk-neutral sense.

Now, we present the motivations and contributions in comparison with the pre-

vious studies in the literature mentioned above.

• As mentioned so far, several risk-averse two-stage stochastic (or robust) opti-

mization models along with associated solution algorithms have been studied
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(Zeng and Zhao, 2013; Blanco and Morales, 2017; Mınguez et al., 2021). How-

ever, studies on a unified modeling and solution approach encompassing those

previous studies have been limited to the best of our knowledge. To fill this

gap, we propose the model PSP with an efficient solution algorithm, which

is a generalization of the previous studies in terms of modeling capacity and

solution approaches. As mentioned in Section 2.1, risk-averse stochastic opti-

mization models studied by Blanco and Morales (2017), and Mınguez et al.

(2021) including robust optimization model (e.g., Zeng and Zhao, 2013) are

special cases of the PSP, and the proposed solution algorithm can be directly

applied to those models.

• Although the PSP can be solved by extending the algorithm proposed in

Mınguez et al. (2021), which was originally proposed to solve PSP({S}, α), we

propose a column-and-constraint generation algorithm and theoretically show

that the performance of the proposed algorithm is at least as good as that of an

extension of their algorithm. In addition, our algorithm has a controllable pa-

rameter that can manage the trade-off between optimality and computational

time. Through extensive computational experiments, we also demonstrate the

efficiency of the proposed algorithm.

• Scenario partitioning in the PSP is used to model the risk level of a specific

model PSP(K, α) together with α ∈ [0, 1), whereas, in the existing studies, it

has been mainly used for the purpose of obtaining upper or lower bounds for a

given two-stage stochastic program. From the perspective of modeling the risk

level, Blanco and Morales (2017) proposed RO(K) mentioned above in which
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the risk level may vary according to scenario partitioning, and used the k-

means clustering algorithm to form a partition. However, there is a limitation

in that it is difficult for decision makers to understand what they are trying to

optimize and that it has not been sufficiently investigated how well a partition

is constructed. To address this modeling issue, in this study, we defined a

scenario partitioning problem to form a partition from the point of view of a

decision maker by making the risk level of the PSP to be close to a given target

risk level and devised a heuristic algorithm whose effectiveness is demonstrated

through computational experiments.

• We also propose two partitioning schemes for combining the proposed parti-

tioning method with the column-and-constraint generation algorithm for the

PSP. The first scheme, which we call the a priori partitioning scheme, is to

form a partition with a desired risk level using the proposed partitioning al-

gorithm in advance as in the previous studies. The second one is a novel par-

titioning scheme, which we call the adaptive partitioning scheme, whereby, to

obtain a partition K with a desired risk level as well as an optimal solution

of PSP(K, α), a partition is gradually re-constructed by making use of incum-

bent solutions obtained in the process of the proposed column-and-constraint

generation algorithm. Computational experiments show that the proposed par-

titioning schemes are effective.
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2.3 Column-and-constraint generation approaches for the

PSP

In this section, we propose efficient column-and-constraint generation algorithms

to exactly solve the model PSP(K, α) with a given partition K. Recall that it has

originally been proposed in Zeng and Zhao (2013) to solve the two-stage robust

optimization model (RO({S}) = PSP({S}, 1− ϵ)). Especially, we propose a primal

column-and-constraint generation algorithm in Section 2.3.1, and present the dual

counterpart in Section 2.3.2. The latter is an extension of the algorithm in Mınguez

et al. (2021), and the lower bounds of the two algorithms are compared. Before

demonstrating the algorithm, we first present an extensive formulation of PSP(K, α),

by using a well-known representation of a CVaR value as an optimal objective value

of a linear program.

Proposition 2.1. The extensive formulation of the model PSP(K, α) is as follows.

(PSP(K, α)) zαK = min cTx+
∑
k∈K

p̃kηk +
1

1− α
∑
s∈S

psvs

s.t. x ∈ X,

vs + ηk ≥ qTs ys ∀s ∈ Sk, k ∈ K,

Tsx+Wsys ≥ hs ∀s ∈ S,

vs ≥ 0 ∀s ∈ S.

Proof. By using the well-known result that obtaining a CVaR value of a random

variable can be formulated as a linear program problem (Rockafellar and Uryasev,

2000), the CVaR value of second-stage costs for a group k ∈ K can be represented
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as follows:

CVaRα(Qk(x)) = min ηk +
1

1− α
∑
s∈Sk

ps|kvs

s.t. vs + ηk ≥ qTs ys ∀s ∈ Sk,

Tsx+Wsys ≥ hs ∀s ∈ Sk,

vs ≥ 0 ∀s ∈ Sk.

(2.3)

Then, incorporating the formulation into the model (2.1) yields the desired result.

2.3.1 Primal column-and-constraint generation algorithm

In the column-and-constraint generation algorithm, variables and constraints corre-

sponding to certain scenarios are gradually added to the restricted master problem,

until the upper and lower bounds coincide. The algorithm starts from restricted

master problem RMPK(S ′) with a scenario subset S ′ ⊆ S as follows.

(RMPK(S
′)) z(S ′) = min cTx+

∑
k∈K

p̃kηk +
1

1− α
∑
s∈S

psvs

s.t. x ∈ X

vs + ηk ≥ η ∀k ∈ K, s ∈ Sk ∩ (S \ S ′)

vs + ηk ≥ qTs ys ∀k ∈ K, s ∈ Sk ∩ S ′ (2.4)

Tsx+Wsys ≥ hs ∀s ∈ S ′ (2.5)

vs ≥ 0 ∀s ∈ S,

where η is a lower bound of variable ηk that is small enough. We remark that one

can also obtain an optimal solution of PSP(K, α) by solving the master problem
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(MP:=RMPK(S)) directly using a commercial solver. Since RMPK(S ′) is a relax-

ation of MP, the optimal objective value z(S ′) is a valid lower bound of MP.

When one has an incumbent first-stage solution x̄ obtained by solving a restricted

master problem, one can also obtain corresponding optimal second-stage cost Q(x̄, s)

for all scenarios s ∈ S. Then, a primal objective value can be derived as cT x̄ +∑
k∈K pkCVaRα(Qk(x̄)), and becomes the upper bound of the master problem.

The main step of the algorithm is to generate scenarios that have not already

been generated for the restricted master problem unless the lower and upper bounds

converge. Whether the algorithm is exact or not depends on how scenarios to be

generated are selected. To indicate which scenarios to be added, we define a vector

π(x) which depends on the second-stage costs Q(x, s) for s ∈ S, as follows:

π(x) := argmax
π∈R|S|

{∑
s∈S

Q(x, s)πs

∣∣∣ 0 ≤ πs ≤ ps|k

1− α
∀s ∈ Sk, k ∈ K,

∑
s∈Sk

πs = Γ ∀k ∈ K

}
.

(2.6)

In (2.6), Γ ∈ [0, 1
1−α ] is a pre-defined parameter that can control the number of

scenarios to be added. We mention that the optimization problem in (2.6) can easily

be solved as follows: for each group k ∈ K, sort the scenarios according to the second-

stage cost and assign each scenario by its maximum possible value (πs =
ps|k
1−α) from

highest to lowest, until the summation of corresponding πs values is satisfied for Γ

with equality, and let the πs values for the rest of the scenarios be zero. For a given

π(x), we define a set of scenarios

S(x) := {s ∈ S | πs(x) > 0} (2.7)

to indicate which scenarios can be added. Our scenario generation criterion is to
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Algorithm 2.1 A primal column-and-constraint generation algorithm for
PSP(K, α) with given K
1: Let zU = +∞, zL = −∞, S ′ = ∅, and i = 0.
2: while zL < zU do
3: i = i+ 1
4: obtain xi as an optimal first-stage solution, update lower bound zL = z(S ′)

by solving (RMPK(S ′))
5: obtain optimal second-stage cost Q(xi, s) for each scenario s ∈ S
6: obtain each group’s second-stage risk CVaRα(Qk(x

i)) by (2.3) for all k ∈ K
7: let zI = cTxi +

∑
k∈K p̃kCVaRα(Qk(x

i)) and update upper bound by zU =
min{zI , zU}

8: if zL < zU then
9: calculate π(xi) for k ∈ K by (2.6)

10: obtain S(xi) and generate ys for s ∈ S(xi) \ S ′ ▷ add corresponding
constraints (2.4) and (2.5) for the restricted master problem

11: let S ′ = S ′ ∪ S(xi)
12: end if
13: end while
14: return zU , zL,S ′, i, xi and Q(xi, s) ∀s ∈ S

select scenarios with regard to second-stage costs induced by incumbent first-stage

solution x̄: once second-stage costs Q(x̄, s) for all scenarios s ∈ S are obtained,

scenarios in S(x̄) can be generated. To be more specific, for the newly generated

scenarios, the set of which is S(x̄) \ S ′, corresponding second-stage variables ys

and constraints (2.4) and (2.5) are generated for the restricted master problem.

At the following iteration, RMPK(S ′) with S ′ = S ′ ∪ S(x̄) will be solved, and the

algorithm will continue until the upper and lower bounds coincide, and the process

is summarized in Algorithm 2.1.

We now show that for Γ ≥ 1, the lower and upper bounds converge to the optimal

objective value in a finite number of iterations according to the scenario-generation

criterion. Before presenting the main result, we first present a basic observation. For

a given group k ∈ K and a given Qk(x), we define another discrete random variable
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Q′
k(x) as follows, where only the realizations are different between the two.

Q′(x, s) =


Q(x, s), if s ∈ S(x),

η, if s /∈ S(x),
(2.8)

where η is an arbitrarily small value that satisfies η ≤ mins∈Sk
Q(x, s). It trivially

holds that CVaRα(Qk(x)) ≥ CVaRα(Q
′
k(x)), in that Q(x, s) ≥ Q′(x, s) for all s ∈

Sk. We next show that the two risk values are the same.

Proposition 2.2. For any k ∈ K, consider discrete random variables Qk(x) and

Q′
k(x) as defined in (2.8) where S(x) is defined in (2.7). Then, for Γ ≥ 1, CVaRα(Qk(x))

= CVaRα(Q
′
k(x)).

Proof. Since the value CVaRα(Q
′
k(x)) is non-decreasing as Γ increases, it suffices

to show the equivalence between CVaRα(Qk(x)) and CVaRα(Q
′
k(x)) for Γ = 1.

Consider obtaining a CVaR value of Qk(x), where the optimization problem is rep-

resented as a dual linear program as follows:

CVaRα(Qk(x))

=max

∑
s∈Sk

Q(x, s)πs

∣∣∣ 0 ≤ πs ≤ ps|k

1− α
∀s ∈ Sk,

∑
s∈Sk

πs = 1


=max

 ∑
s∈Sk∩S(x)

Q(x, s)πs +
∑

s∈Sk\S(x)

ηπs

∣∣∣ 0 ≤ πs ≤ ps|k

1− α
∀s ∈ Sk,

∑
s∈Sk

πs = 1


=CVaRα(Q

′
k(x)).

The first equation is from the dual representation of the CVaR value and the second

equation is from the definition of S(x) in (2.7). Thus, the equivalence holds for
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Γ ≥ 1.

Proposition 2.2 implies that not all the optimal second-stage costs are needed

to obtain the exact CVaR cost defined on a whole set of scenarios. Therefore, one

can expect that only a subset of scenarios is needed to solve the model exactly and

that the proposed solution approach leverages the result. Now, we present the main

result, which shows the exactness of the algorithm when Γ ≥ 1.

Proposition 2.3. Algorithm 2.1 with Γ ≥ 1 is exact, i.e. zU = zL holds in a finite

number of iterations.

Proof. It suffices to show that at least one scenario is generated for the restricted

master problem whenever zL < zU . We assume that no scenarios are added for

the first time at iteration t ∈ Z+. The incumbent primal objective value zt at the

iteration t, with an optimal first-stage solution xt, becomes

zt = cTxt +min
∑
k∈K

p̃kηk +
1

1− α
∑
s∈S

psvs

s.t. vs + ηk ≥ Q(xt, s) ∀s ∈ Sk, k ∈ K

vs ≥ 0 ∀s ∈ S.

We now show that if the algorithm proceeds to the next iteration, the lower and

upper bounds become equal to each other. At the next t + 1th iteration, since no

scenarios are added in the tth iteration, we obtain the same optimal first-stage

solution, the lower bound, and the optimal second-stage costs for all scenarios, i.e.
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x and Q(x, s) remains the same for all s ∈ S. Therefore,

zL = min cTx+
∑
k∈K

p̃kηk +
1

1− α
∑
s∈S

psvs

s.t. x ∈ X

vs + ηk ≥ qTs ys ∀s ∈ Sk ∩ S ′, k ∈ K

vs + ηk ≥ η ∀s ∈ Sk ∩ (S \ S ′), k ∈ K

Tsx+Wsys ≥ hs ∀s ∈ S ′

vs ≥ 0 ∀s ∈ S

= cTxt +min
∑
k∈K

p̃kηk +
1

1− α
∑
s∈S

psvs (2.9)

s.t. vs + ηk ≥ Q(xt, s) ∀s ∈ Sk ∩ S ′, k ∈ K

vs + ηk ≥ η ∀s ∈ Sk ∩ (S \ S ′), k ∈ K

vs ≥ 0 ∀s ∈ S

= cTxt +min
∑
k∈K

p̃kηk +
1

1− α
∑
s∈S

psvs (2.10)

s.t. vs + ηk ≥ Q(xt, s) ∀s ∈ Sk, k ∈ K

vs ≥ 0 ∀s ∈ S

= zt ≥ zU

holds, which means that the two bounds are the same, where the equality in (2.9)

is satisfied because xt is an optimal first-stage solution, and the equality in (2.10)

holds by Proposition 2.2 with the fact that S ′ includes a set of scenarios S(xt) to

calculate the exact CVaR value. Further, since at each iteration at least one scenario

is added or the algorithm terminates, the number of iterations is no greater than
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|S|. Thus, the upper and lower bounds coincide in a finite number of iterations.

We now note some additional directions for scenario generation in the algorithm.

First, when the probabilities of scenarios are equal to each other, i.e. ps = 1/|S| for

all s ∈ S, which is generally the case in practice, obtaining S(x) is much simpler. In

that case, since p̃k = nk/|S| for each group k ∈ K, where nk denotes the number of

scenarios in group k, it can be deduced that the set S(x) can be obtained by choosing

the highest ⌈nk(1− α)Γ⌉ scenarios for each group k with regard to its second-stage

cost Q(x, s). Another notable point is that when the risk function for each group is

a maximum function, e.g. PSP(K, 1 − ϵ) as in Blanco and Morales (2017). Since ϵ

indicates a sufficiently small value that ϵ ≤ mins∈S ps, at most one scenario which

has the maximum second-stage cost for each group is generated in this case when

Γ = 1.

Finally, we note some practical guidelines for using the controllable parameter

Γ. Parameter Γ affects the number of scenarios to be added in one iteration. The

simplest implementation is to set Γ = 1, which indicates a minimal set of scenarios

added to ensure optimality. One could expect that the number of iterations has

a negative relationship with the number of scenarios added in one iteration. When

Γ > 1, since more scenarios are added in one iteration, the algorithm may converge in

fewer iterations. On the other hand, when Γ < 1, the algorithm is not guaranteed to

drive an optimal solution or terminate. For this case, we present a slight modification

to the termination condition in Algorithm 2.1. It is to terminate when no scenarios

are added for any iteration. Then, it can be used as a heuristic algorithm that the

obtained upper bound zU at the end of the algorithm can be used. But since fewer

scenarios are generated in one iteration, the algorithm can terminate in a shorter

37



time while obtaining a good quality solution. It is worthwhile to analyze the practical

choice of the parameter Γ in the proposed column-and-constraint generation method.

2.3.2 Dual column-and-constraint generation and comparison

In this section, we present another column-and-constraint-generation algorithm for

PSP(K, α) and we compare the two methods. This algorithm is a straightforward

extension of the algorithm proposed in Mınguez et al. (2021) for solving PSP({S}, α),

e.g., the second-stage cost is the CVaR value for the set of whole scenarios. First,

we can rewrite the restricted master problem as

(RMPK(S
′)) min cTx+

∑
k∈K

Pk(y)

s.t. x ∈ X

Tsx+Wsys ≥ hs ∀s ∈ S ′

where Pk(y) is defined as an optimal second-stage risk value for each group k ∈ K,

i.e.

Pk(y) := min p̃kηk +
1

1− α
∑
s∈Sk

psvs

s.t. vs + ηk ≥ qTs ys ∀s ∈ Sk ∩ S ′

vs + ηk ≥ η ∀s ∈ Sk ∩
(
S \ S ′

)
vs ≥ 0 ∀s ∈ Sk
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In addition, the problem Pk(y) can be obtained as a maximization problem using

linear programming duality, i.e. Pk(y) = max
{
P̄k(ψ, y) | ψ ∈ Ψk

}
, where

P̄k(ψ, y) :=
∑

s∈Sk∩S′

ψsq
T
s ys +

∑
s∈Sk∩(S\S′)

ψsη,

Ψk :=

ψ ∈ Rk
∣∣∣ 0 ≤ ψs ≤

1

1− α
ps ∀s ∈ Sk,

∑
s∈Sk

ψs = p̃k

 .

For any ψ ∈ Ψk, P̄k(ψ, y) can be used as a lower estimate of Pk(y) since Pk(y) ≥

P̄k(ψ, y). We can present another column-and-constraint generation algorithm where

the lower estimate is gradually updated. In the algorithm, the restricted master

problem is slightly modified, which is RMPl
K(S ′) at iteration l ∈ Z+ as below.

(RMPl
K(S ′)) zl(S ′) = min cTx+

∑
k∈K

rk

s.t. x ∈ X

Tsx+Wsys ≥ hs ∀s ∈ S ′

rk ≥ P̄k(ψ
ℓ, y) ∀k ∈ K, ℓ = 1, . . . , l − 1,

where the decision variable rk indicates an estimate of Pk(y). When the first-stage

solution is obtained by xl at the iteration, the lower estimation of the second-stage

risk can be obtained by P̄k(ψ
l, y), where ψl := argmax

{∑
s∈S Q(xl, s)ψs | ψ ∈ Ψk

}
.

Any scenario generation criteria that can yield the optimal solutions make the al-

gorithm an exact solution approach for PSP(K, α). The exactness of the algorithm

whose scenario generation criterion corresponds to that in Section 2.3.1 with Γ = 1

has shown in Mınguez et al. (2021). We denote the approach as dual implementa-
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tion of column-and-constraint generation since the second-stage cost is represented

in dual form, unlike primal implementation in the case of the proposed method in

Section 2.3.1. This dual implementation has the advantage that a smaller number

of variables are needed to represent the second-stage cost for each group k ∈ K by

rk, instead of decision variables vs and ηk in primal implementation. On the other

hand, the lower bounds of the two restricted master problems can easily be com-

pared. Let z(S ′) be an optimal objective value of RMPK(S ′) and let zl(S ′) be an

optimal objective value of RMPl
K(S ′). Since Pk(y) ≥ P̄k(ψ

l, y), it can trivially be

known that z(S ′) ≥ zl(S ′) holds, and we state the result as follows:

Proposition 2.4. For a given set of scenarios S ′ ⊆ S, z(S ′) ≥ zl(S ′) for any

l ∈ Z+.

Proposition 2.4 points out that when we have the same sets of scenarios for

restricted master problems until the iteration l ∈ Z+, the primal implementation

can yield a better lower bound compared to the dual implementation. Thus, the

proposed primal implementation can speed up the column-and-constraint generation

algorithm by reducing the number of iterations.

2.4 Scenario partitioning methods

In this section, we propose a framework for effectively and efficiently constructing a

partition K that has a critical role in model PSP(K, α). As noted earlier, the risk level

of model PSP(K, α) is affected by both α and K. The effect of quantile parameter

α on the model’s risk is straightforward: when α is higher, one can obtain a more

risk-averse model; on the other hand, when α is close to zero, the risk of the model
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tends towards that of the risk-neutral stochastic program. However, whereas it was

mentioned in Section 2.1 that different partitions could lead to different risk levels of

PSP, it is still not clear how a decision maker can construct a partition K to obtain

the desired risk level. To this end, we herein define a partitioning problem along with

the criteria, and devise an efficient partitioning algorithm to obtain such a partition

in a reasonable time; further, we discuss how the proposed partitioning method can

be integrated with the proposed solution approach on PSP(K, α). Throughout the

section, a partition K is chosen among a set of possible partitions K, which is a subset

of all possible partitions, with some restrictions. We let K be a tuple consisting of

two scalar values, i.e. K = (K,N). The first value K indicates the number of groups

in a partition, and the second value N denotes the maximum number of scenarios

in each group, similar to the settings in the literature (e.g., Ryan et al., 2020; Deng

et al., 2020).

First, we propose partitioning criteria, which is to make the risk level of model

PSP(K, α) close to the pre-defined risk level, which we call target risk. Precisely, since

the risk level of model PSP(K, α) is affected by the second-stage cost function, it

can be compared to the pre-determined risk level without partitioning, i.e. K = {S}.

In other words, the goal is to construct a partition where the corresponding model’s

second-stage cost is closest to the pre-determined target risk in the whole set of

scenarios for first-stage solutions in X. It is so generic in that one can choose various

risk positions by setting different target risks. For example, when the target risk is

high, the goal is to find a partition that is close to the risk-averse one; and the target

risk is low, the goal is to find a partition that is similar to the risk-neutral one.

We now formally describe the optimization model with the criteria. For second-
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stage scenario costs Q(x, s) for all scenarios s ∈ S and given x ∈ X, the target risk

is defined as a functional value of any pre-determined real-valued risk function in

the whole scenario set S, that can be easily calculated. Here, we let the target risk

function be CVaRβ(·) with β ∈ [0, 1) for the consistency with the risk function in

PSP(K, α). Then, the objective is to find a partition that minimizes the maximum

deviation among the first-stage solutions x ∈ X, where the deviation is defined as the

difference between the target risk and the actual second-stage cost. The partitioning

problem P(X) can be represented as follows, where Q(x) is a random variable with

its support {Q(x, s)}s∈S with probability ps for s ∈ S andQk(x) is a random variable

with its support {Q(x, s)} on s ∈ Sk with probability ps|k for k ∈ K.

(P(X)) min
K∈K

{
max
x∈X

∣∣∣EK [CVaRα(Qk(x))]− CVaRβ(Q(x))
∣∣∣} .

It can easily be seen that the optimal objective value of the model is always greater

than or equal to zero. When the objective value is zero, it means that the second-

stage cost of a partition is the same, with a given target risk, for any possible

first-stage solution in X, in which case, we can consider the partition to be ideal.

However, it is rarely the case that the ideal partition exists, and it is unrealistic that

we know all of the first-stage solutions in advance. Rather, in practice, it is quite

natural that we have some of the first-stage solutions, the set of which we denote

X̄ ⊆ X, rather than having all of them. In the following subsection, we propose an

efficient algorithm to solve P(X̄).
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2.4.1 Partitioning algorithm

Although the problem P(X̄) can be solved through enumeration-based methods,

it may be undesirable to exactly solve the problem since the computational burden

increases when the number of groups or scenarios increases. Thus, in this section, we

instead propose, as motivated by various methods in clustering literature, an efficient

heuristic to deal with the problem with a large number of scenarios and groups to

be assigned. It is a local search-based heuristic whereby a partition is iteratively

reconstructed while no improvements, in terms of deviation, are found. It is similar

to the algorithms in clustering literature, such as in partitioning around medoids

(Kaufman and Rousseeuw, 1990) in k-medoids clustering. Note that the algorithm

leverages the fact that for a given partition K := {S1, . . . , Sk}, it is relatively easy

to calculate the maximum deviation DK, which can be defined as

DK := max
xi∈X̄

∣∣∣∑
k∈K

p̃kCVaRα(Qk(x
i))− CVaRβ(Q(xi))

∣∣∣, (2.11)

because calculating the CVaR value of a discrete random variable can be easily done

by solving a linear program or by sorting, as mentioned in Section 2.3.1.

The generic procedure is summarized in Algorithm 2.2. The algorithm starts

from an initial partition K0 = {S0
1 , . . . , S

0
k} in K. In the algorithm, the maximum

deviations are evaluated among neighborhood N (K), which is a set of partitions, for

a given partition K. It consists of partitions constructed by two operations, where

one is an exchange operation and the other is a transfer operation. For a partition

Kt = {St
1, . . . , S

t
k} at iteration t ∈ Z+, in the exchange operation, a scenario in

a group is exchanged with a different scenario in a different group, i.e. St+1
i =
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Algorithm 2.2 A generic partitioning heuristic to solve P(X̄)

1: An initial partition K0 ∈ K with p̃k =
∑

s∈Sk
ps given.

2: Kbest = K0, Dbest = DK0 , i = 0 and improved = true ▷ DK0 is calculated by
(2.11)

3: while improved do
4: i += 1
5: construct a set of neighborhood N (Ki−1) and calculate DK for all K ∈
N (Ki−1)

6: if min {DK | K ∈ N (Ki−1)} ≥ Dbest then
7: improved = false
8: else
9: move on to the partition Ki ∈ N (Ki−1) and Kbest = Ki ▷ with move-on

rule
10: end if
11: end while
12: return a partition Kbest and its maximum deviation Dbest

(
St
i \ {sti}

)
∪ {stj} and S

t+1
j =

(
St
i \ {stj}

)
∪ {sti} for sti ∈ St

i , s
t
j ∈ St

j for St
i , S

t
j ∈ Kt.

In the transfer operation, a scenario in a group is transferred to another group,

if possible, i.e. St+1
i = St

i \ {sti} and St+1
j = St

j ∪ {sti} for sti ∈ St
i , s

t
j ∈ St

j for

St
i , S

t
j ∈ Kt. The partition moves on to the next partition, which is one of the

neighborhoods that shows improvements in terms of maximum deviation. There

are various implementation methods for selecting a partition among neighborhoods

showing improvement. In this chapter, we suggest three generic rules: the first one

is to move to a partition with the best improvement (move-best), the second one

is to move to the first partition that shows a decrease (move-first), and the third

one is to choose a partition randomly among those improved (move-random). The

procedure continues until no improvements are found, i.e. the deviation no longer

decreases. It has an advantage in that we can obtain a feasible partition at any of

its iterations, whenever we have an initial partition.
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2.4.2 Partitioning schemes

Next, we propose partitioning schemes, in which we denote the entire procedure from

constructing a desired partition K to solving the corresponding model PSP(K, α).

Recall that one can construct a partition with criteria and an algorithm in Section

2.4.1, and solve the problem by the proposed method in Section 2.3. Here, we discuss

two partitioning schemes by which the proposed methodologies can be integrated.

One is an a priori partitioning scheme, whereby a partition is constructed before

solving the model, and the other is an adaptive partitioning scheme, in which a

partition is adaptively re-constructed within the proposed solution approach.

A priori partitioning scheme

One straightforward way is to solve a model PSP(K, α) with the proposed solution

approach after constructing a partition K; in other words, a partition is constructed

a priori by using information that can be obtained in advance. It is a natural and

common method widely employed in the literature. When solving the partitioning

problem P(X̄) with Algorithm 2.2, it is important to obtain a set of incumbent

solutions X̄. We note that it could depend on the specific problem one considers.

Here, we briefly introduce two generic ways of constructing a set X̄, which are based

on solving the deterministic counterparts of the stochastic program and independent

of specific problem characteristics.

One way is to let X̄ = XEV , where XEV = {xEV } and xEV is defined as an

optimal first-stage solution obtained by solving the expected value problem, which is

well-known in the stochastic programming literature (e.g., Birge, 1982). The solution
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xEV is calculated as

xEV := argmin
x∈X

{
cTx+Q(x, s̄)

}
,

where the scenario s̄ indicates the scenario with the expected values, i.e. the corre-

sponding matrices and vectors are defined as (qs̄,Ts̄,Ws̄,hs̄) := (E[qs],E[Ts],E[Ws],E[hs]).

The second way is to use multiple single-scenario problems to obtain a set of first-

stage solutions, i.e. X̄ = XMS , where XMS = {xs}s∈S . In the set, xs for scenario

s ∈ S is calculated as

xs := argmin
x∈X

{
cTx+Q(x, s)

}
.

The latter implementation makes use of various scenarios, which contrasts with

the former implementation which considers only one scenario (the expected value

scenario). However, it could be burdensome to implement the latter case as the

number of scenarios gets larger. In that situation, one could use a subset of S instead

of considering all of the scenarios.

Adaptive partitioning scheme via column-and-constraint-generation

In the a priori scheme, the partitioning procedure can be regarded as a preprocessing

step in solving model PSP(K, α). However, the partitioning procedure itself can

be computationally demanding, and it depends on the set X̄ obtained a priori,

which contains only partial information on first-stage solutions. For this purpose, we

propose another novel partitioning scheme, which we call adaptive partitioning, to

construct a partition by making use of information within the column-and-constraint

generation proposed in Section 2.3. The main feature of the scheme is that it does not

need to choose a set X̄ in advance since the set is gradually constructed within the
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procedure. In addition, one can obtain a partitionK along with an optimal solution of

PSP(K, α) at the end of the entire procedure. The scheme is similar to the proposed

column-and-constraint generation algorithm in Algorithm 2.1, except that it has an

additional re-constructing phase at each iteration. In that phase, the given partition

is updated using incumbent first-stage solutions obtained by solving the restricted

master problem. When a partition does not change in the re-constructing phase, the

remaining algorithm proceeds in the same manner as the solution approach.

The overall procedure is summarized in Algorithm 2.3, and we state the proce-

dure more specifically. Differing from an a priori partitioning scheme that starts with

a set of incumbent solutions X0, it is initialized with an empty set, and an initial par-

tition K0 in K. At the ith iteration, an incumbent first-stage solution xi is obtained

by solving RMPK(S ′). Then, in the re-constructing phase, an incumbent first-stage

solution is added, i.e. Xi = Xi−1∪{xi}, and a partition Ki is constructed by solving

P(Xi) by Algorithm 2.2. In the algorithm, Ki−1 is set to an initial partition K0.

When the partition remains the same, i.e. Ki = Ki−1, a partition is determined and

the re-constructing phase does not proceed until the end of the algorithm. Other-

wise, the phase is revisited in subsequent iterations. We note that scenarios are also

generated for the restricted master problem for a new partition Ki, which leads to

a new incumbent first-stage solution at the next iteration. The obtained upper and

lower bounds (zUi and zLi respectively) become the true upper and lower bounds (zU

and zL respectively) of PSP(K, α) after partition K is finalized.

We also show that the lower and upper bounds from in Algorithm 2.3 coincide

in a finite number of iterations by extending the result in Proposition 2.3.

Proposition 2.5. Algorithm 2.3 terminates with zU = zL in a finite number of
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Algorithm 2.3 An adaptive partitioning scheme to obtain K ∈ K and solve
PSP(K, α)
1: an initial partition K0 ∈ K, X0 = ∅, S ′ = ∅
2: set zU = +∞, zL = −∞, i = 0, K = K0, and modify = true
3: while zL < zU do
4: i = i+ 1
5: obtain an optimal first-stage solution xi and update zLi = zK(S ′) by solving

(RMPK(S ′))
6: obtain optimal second-stage cost Q(xi, s) for each scenario s ∈ S
7: obtain each group’s second-stage risk CVaRα(Qk(x

i)) by (2.3) for all k ∈ K
8: let zIi = cTxi +

∑
k∈K p̃kCVaRα(Qk(x

i)) and update zUi = min{zIi , zUi }
9: if modify then ▷ re-construction phase

10: Xi = Xi−1 ∪ {xi}
11: construct Ki by solving P(Xi) with Ki−1 as an initial partition and p̃k =∑

s∈Sk
ps for k ∈ K

12: if Ki = Ki−1 then
13: modify = false, (zU , zL) = (zUi , z

L
i ), K = Ki

14: end if
15: else
16: (zU , zL) = (zUi , z

L
i )

17: end if
18: obtain S(xi) by calculating π(xi) by (2.6)
19: if zL < zU then
20: generate ys for s ∈ S(xi) \ S ′ and corresponding constraints (2.4) and

(2.5) for the restricted master problem
21: let S ′ := S ′ ∪ S(xi)
22: end if
23: end while
24: return K, zU , zL,S ′, i, xi, and Q(xi, s) ∀s ∈ S

iterations.

Proof. It suffices to show that the re-construction phase (line 9 to 17 in Algorithm

2.3) runs finite times since zU = zL in a finite number of iterations has been shown

in Proposition 2.3. Suppose that re-constructing continues and modify=true. If no

scenarios are generated at that iteration, the first-stage solution remains the same

at the following iteration. Since it makes the partition remain the same, the re-
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construction phase terminates. On the other hand, if at least one scenario is gen-

erated, the procedure continues but this can occur finite times since the number of

scenarios is finite. Thus, the re-constructing phase is repeated finite times, and thus

the algorithm terminates in a finite number of iterations.

2.5 Computational experiments

We conduct extensive numerical experiments to demonstrate the effectiveness of the

proposed partitioning methods and the efficiency of the proposed solution approach.

As mentioned, the methodologies in this chapter address generic two-stage stochas-

tic programs with finite support, therefore it can be applied to the various problems

having two-stage decision processes including power system operation. Here, we con-

duct and report computational tests with the two-stage stochastic unit commitment

problem, which is a fundamental optimization problem in power system operation.

The experiments which are also done for the well-known facility location problem

are reported in Appendix A. In the remainder of this section, we first briefly in-

troduce the mathematical formulation of the two-stage stochastic unit commitment

problem in Section 2.5.1. Then, we describe the experimental setup including the

implementation details and the settings that are used, in Section 2.5.2. Lastly, the

computational results are demonstrated in Section 2.5.3.

2.5.1 Two-stage stochastic unit commitment problem

In the unit commitment problem, the decision-maker decides the on/off status along

with the generation amount of the set of generators G for the planning horizon

T := {1, . . . , T} to meet electricity demand ds,t for s ∈ S, t ∈ T . Specifically, for a

generator g ∈ G and each time period t ∈ T , xg,t, xUg,t and xDg,t indicate the on, start-
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up, and shut-down status, respectively. Note that xg,0 is a given initial on/off state

for g ∈ G. In addition, yg,s,t and y
0
s,t indicate the generation amount and amount of

load shedding for each scenario s ∈ S, respectively. For each generator g ∈ G, Pmin
g

(or Pmax
g ) represents the minimum (or maximum) amount that can be generated

when the generator is on, and tUg (or tDg ) represents the minimum time periods that

a generator must be on (or off). In addition, Rg and R̄g indicate the ramp-up/down

and start-up/shut-down ramp limits. The cost parameters CON
g,t , C

U
g,t, C

D
g,t, C

V
g,t and

Kt indicate coefficients of fixed, start-up, shut-down, variable generation, and load

shedding, respectively. The mathematical formulation of the two-stage risk-averse

unit commitment problem is presented below:

min
∑

g∈G,t∈T

(
CON

g,t xg,t + CU
g,tx

U
g,t + CD

g,tx
D
g,t

)
+
∑
k∈K

p̃kηk +
1

1− α
∑
s∈S

psvs (2.12a)

s.t. vs + ηk ≥
∑

g∈G,t∈T

(
CV

g,tyg,s,t +Kty
0
s,t

)
∀s ∈ Sk, k ∈ K, (2.12b)

∑
g∈G

yg,s,t + y0s,t ≥ ds,t ∀s ∈ S, t ∈ T , (2.12c)

Pmin
g xg,t ≤ yg,s,t ≤ Pmax

g xg,t ∀g ∈ G, s ∈ S, t ∈ T , (2.12d)

yg,s,t ≤ yg,s,t−1 +Rgxg,t−1 + (1− xg,t−1)R̄g ∀g ∈ G, s ∈ S, t ∈ T , (2.12e)

yg,s,t ≥ yg,s,t−1 −Rgxg,t − (1− xg,t)R̄g ∀g ∈ G, s ∈ S, t ∈ T , (2.12f)

xUg,t − xDg,t = xg,t − xg,t−1 ∀g ∈ G, t ∈ T , (2.12g)

xg,k ≥ xg,t − xg,t−1 ∀g ∈ G, k ∈ {t+ 1, . . . ,min{t+ tUg − 1, T}}, t ∈ T , (2.12h)

1− xg,k ≥ xg,t−1 − xg,t ∀g ∈ G, k ∈ {t+ 1, . . . ,min{t+ tDg − 1, T}}, t ∈ T , (2.12i)

xg,t, x
U
g,t, x

D
g,t ∈ {0, 1}, yg,s,t, y0s,t, vs ≥ 0 ∀g ∈ G, s ∈ S, t ∈ T . (2.12j)

In the formulation, the objective function (2.12a) minimizes the total cost consisting

of fixed costs and second-stage costs. Constraints (2.12b) represent a relationship
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between second-stage risk and cost for each scenario, where the right-hand side con-

sists of variable generation costs and penalty costs for unmet demand. Constraints

(2.12c) mean that the generation amount including load shedding should satisfy

the load demand for each time period. Constraints (2.12d) restrict the minimum

and maximum amounts of generation. Constraints (2.12e) and (2.12f) indicate the

ramp-up and down limits of each generator. Constraints (2.12g) demonstrate the

logical relationships among the on, start-up, and shut-down variables. Constraints

(2.12h) and (2.12i) require the minimum up (down) time periods for each generator

whenever on (off). Constraints (2.12j) indicate the domain for each decision variable.

2.5.2 Experimental setup

In the experiments, an illustrative 10-unit system for 24 periods of the planning

horizon is used, the data of which is from Kazarlis et al. (1996) with demand scaled

by 0.5. A total of 500 scenarios for stochastic demand d are generated from a normal

distribution N(d̄, ( d̄4)
2), where d̄ indicates nominal demand. We consider that the set

of scenarios S has equi-probable scenarios, i.e. ps = 1/|S| for s ∈ S.

The a priori partitioning scheme is basically applied for constructing a partition

K. Recall that in this scheme, a partition is constructed in advance based on a pre-

defined set of incumbent first-stage solutions X̄. In the partitioning problem, we let

β = 2α−1 for each α so as to make a deviation between β and 1 equal to twice that

between α and 1. Therefore, the goal of scenario partitioning in this experiment is to

determine a partition K, where the risk level of the corresponding model PSP(K, α)

is the closest to that of PSP({S}, β). We also consider the case wherein |S|/K ∈ Z+

and the group sizes are all equal to each other. That is, the number of scenarios for
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each group only depends on the number of groups K, i.e. K=(K, |S|/K).

We also devised two basic partitioning methods for comparison with the proposed

partitioning method. The methods use rank function r(·) : S 7→ S to assign each

scenario to each group; when the rank of a scenario s ∈ S is r(s), the scenario

is assigned to the k(s)th group with k(s) := ⌈ r(s)K|S| ⌉. As for the two methods,

the rand method lets r(s) = s, which is to say that a group is constructed in

random order since a scenario is generated randomly. On the other hand, in the

dagg method, r(s) is determined by the aggregated demand of each scenario, where

the corresponding value is ||ds||, the distance is ℓ1-norm, and the rank is determined

by the relative position of each scenario s: i.e. by sorting each scenario according

to demand. A partition made by rand is also used as the initial partition in the

proposed partitioning methods, and we use move-first to implement the methods.

Various numbers of groups in {1, 5, 10, 20} and α values in {0.7, 0.8, 0.9} are

tested. The time limit is set to 3,600 seconds for each combination of (α, β) and K.

For each combination, the averaged value among five replicated sets of scenarios is

reported. All the models and algorithms are implemented with C++ using CPLEX

20.1 as a mixed-integer program solver with its default parameter setting. Finally,

all the computational experiments were conducted on an Intel i7-8700 3.20 gigahertz

machine with 32 gigabytes RAM.

2.5.3 Experimental results

Effectiveness of proposed partitioning methods

We analyze the effectiveness of the four partitioning methods, including our two

proposed methods, in a priori partitioning scheme. We use X̄ = XEV and X̄ =
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XWS , where XWS consists of an incumbent first-stage solution xWS with a fic-

titious worst-case scenario ŝ, where the scenario is defined as (qŝ, Tŝ,Wŝ, hŝ) :=

(maxs∈S qs,maxs∈S Ts,maxs∈S Ws,maxs∈S hs). In other words,

xWS := argmin
x∈X

{
cTx+Q(x, ŝ)

}
.

The methods, with two sets of X̄s, are compared with two other methods: dagg

and rand mentioned in Section 2.5.2. Table 2.1 reports the relative objective value

(relobj), the computation time (time), and the number of iterations (iter) in the

partitioning algorithm along with the actual deviation (dev) for all of the partition-

ing methods. Among them, relobj is calculated as

relobj :=
DKbest

DK0

,

where Kbest is a partition obtained from Algorithm 2.2, and K0 is an initial partition,

which indicates how the algorithm can reduce the maximum deviation (DK) from the

initial value. In addition, dev is calculated as |RK −Rt| /Rt, where RK =
∑

k∈K pk

CVaRα(Qk(x)) is defined as the actual second-stage risk level, andRt=CVaRβ(Q(x))

indicates the actual target risk as a value of the risk function with β.

First of all, the proposed partitioning methods show a low relobj value in a

reasonable time, which is nearly close to zero. Except for the cases when X̄ = XWS

and (α,K) = (0.7, 5) or (0.7,10), the proposed partitioning methods show similar

performance for relobj, dev, and time, where in those cases X̄ = XWS shows worse

performance. Overall, X̄ = XEV has stable performance overall in terms of dev and

computation time, and X̄ = XWS shows the lowest dev when α = 0.8 and 0.9. Both
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Table 2.1: Partitioning statistics for four partitioning methods

α K
Proposed partitioning methods

dagg rand
X̄ = XEV X̄ = XWS

relobj time (s) iter dev (%) relobj time (s) iter dev (%) dev (%) dev (%)

0.7

5 1.6×10−6 127.7 534.2 0.89 29.1×10−2 795.5 1,002.6 1.31 1.12 2.72
10 3.4×10−6 43.5 728.2 0.69 46.6×10−2 242.9 1,350.2 2.03 1.61 2.67
20 0.6×10−6 12.9 474.6 1.15 0.4×10−6 12.8 461.0 0.23 1.87 2.57

avg 1.9×10−6 61.4 579.0 0.91 25.2×10−2 350.4 937.9 1.19 1.53 2.65

0.8

5 8.3×10−6 82.0 242.6 0.76 4.8×10−6 81.9 224.8 0.09 2.37 2.10
10 2.6×10−6 31.7 280.6 0.87 1.9×10−6 31.6 253.0 0.09 2.96 2.02
20 1.9×10−6 13.2 252.6 0.86 3.5×10−6 13.1 254.8 0.09 3.26 1.93

avg 4.3×10−6 42.3 258.6 0.83 3.4×10−6 42.2 244.2 0.09 2.87 2.02

0.9

5 9.8×10−6 87.2 127.0 0.65 29.1×10−6 88.1 105.0 0.04 3.79 1.56
10 14.3×10−6 32.8 102.4 0.53 15.3×10−6 33.4 103.4 0.04 4.51 1.42
20 13.2×10−6 13.6 103.4 0.56 7.5×10−6 13.6 90.2 0.01 4.90 1.21

avg 12.4×10−6 44.5 110.9 0.58 17.3×10−6 45.0 99.5 0.03 4.40 1.40

methods show much lower actual deviation (dev) than do the other two methods

(dagg and rand). For the other two methods, dagg shows better deviation values

than rand when α = 0.7, but the performance gets worse as α increases. It indicates

making a partition with similar scenarios has difficulty in representing risk-averse

objectives. On the other hand, the deviation values of rand naturally decrease as α

increases, since the values between α and β get smaller when α increases.

Effectiveness of proposed solution approach

The performance of the proposed solution approach, the primal implementation of

the column-and-constraint-generation method in Section 2.3.1, is compared with two

other methods: one is the dual implementation of column-and-constraint generation

(see Section 2.3.2), the other is solving extensive formulation (MP=RMP(S)) by

commercial solver CPLEX (’CPLEX’). The computational times (time) are reported

for all solution approaches, and the total number of iterations (iter), the total

number of added scenarios (totscn), and the total computation time (time) are
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additionally reported for the column-and-constraint-generation methods, with the Γ

basically set to 1.

The results in Table 2.2 show the computational aspects of the three solution

approaches. First of all, both the column-and-constraint-generation methods show

less computation time than CPLEX for all α and K combinations. The difference

between them increases for higher α values, since the computation times of the

former decline as α gets larger, while those of the latter slightly increase. It shows

the advantages of column-and-constraint generation methods for higher α values.

On the other hand, the effect of K on computation time is not clear for any of the

methods. As for the two column-and-constraint generation methods, although the

number of scenarios added is nearly the same, the primal implementation shows a

much smaller number of iterations than the dual implementation. This leads faster

convergence of the algorithm, and it also shows why the proposed algorithm is more

efficient than the dual implementation.

Effect of Γ on proposed solution approach

The computational performance of the proposed solution approach with various Γ

values in {0.6, 0.8, 1.0, 1.2, 1.4} is evaluated. Recall that the parameter Γ controls

the number of scenarios that can be added in one iteration. We also record the

total number of iterations (iter), the total number of added scenarios (scn), and

the computation time (time), as previously. Since the algorithm is not exact when

Γ < 1, as mentioned in Section 2.3.1, we additionally report the gap for Γ < 1 to
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Table 2.2: Computational performance of three solution approaches

α K
column-and-constraint generation

CPLEX
primal implementation dual implementation

iter totscn time (s) iter totscn time (s) time (s)

0.7

1 3.6 163.4 361.0 4.2 163.4 576.4 987.9
5 4.0 172.8 504.4 5.2 173.4 976.5 1,279.5
10 4.2 181.4 608.0 5.4 182.2 1,133.5 1,161.7
20 4.4 184.4 652.4 4.8 183.0 740.3 1,218.4

avg 4.1 175.5 531.5 4.9 175.5 856.7 1,161.9

0.8

1 4.2 113.6 315.1 5.0 113.4 526.0 1,040.5
5 4.2 124.0 362.3 5.6 124.0 834.9 1,241.1
10 4.2 123.6 401.6 5.0 123.6 769.2 1,401.2
20 4.0 120.2 319.6 4.2 120.2 372.6 1,335.7

avg 4.2 120.4 349.7 5.0 120.3 625.7 1,254.6

0.9

1 4.0 68.2 157.8 6.4 68.8 770.7 1,248.4
5 4.2 77.2 226.5 6.2 81.0 810.5 1,345.8
10 4.2 77.4 221.3 5.2 77.6 556.4 1,545.0
20 4.4 85.4 261.8 5.0 84.6 409.6 1,404.2

avg 4.2 77.1 216.9 5.7 78.0 636.8 1,385.9
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evaluate the quality of the upper bound, where the value is calculated as

gap =
z(Γ)− z(1)

z(1)
,

where z(Γ) is the optimal objective value from the proposed column-and-constraint

generation with Γ. Table 2.3 shows the computational aspects of the proposed so-

lution approach for various Γ values. First of all, the total number of scenarios is

proportional to Γ, whereas the number of iterations has a negative relationship with

Γ. Compared with Γ = 1, computational gain by fewer iterations is not obvious for

Γ ∈ {1.2, 1.4}, since more scenarios added at each iteration incur a computational

burden in solving the restricted master problem. On the other hand, the computa-

tion times are much reduced for Γ ∈ {0.6, 0.8}, and a significantly low optimality

gap (gap), less than 10−4 for nearly all combinations, is observed. Especially, one can

obtain near-optimal solutions, whose average optimality gap is 6.2 × 10−5, within

50% of the computation time required in the cases where Γ = 1. The results sum-

marize that one can efficiently obtain good quality solutions by setting Γ less than

1.

Effectiveness of adaptive partitioning scheme

We lastly analyze the computational aspects of the adaptive partitioning scheme by

comparing them with the a priori partitioning scheme. Partitions in the a priori

partitioning scheme are constructed by solving P(X̄) with X̄ = XEV . Table 2.4

shows the computational performance of the two schemes, including the objective

value (objval), the number of iterations (iter), the number of added scenarios
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Table 2.3: Computational performance of proposed column-and-constraint genera-
tion algorithm for various Γ values

α K
Γ=0.6 Γ=0.8 Γ=1 Γ=1.2 Γ=1.4

iter scn gap (×10−5) time (s) iter scn gap (×10−5) time (s) iter scn time (s) iter scn time (s) iter scn time (s)

0.7

1 4.2 105.2 14.3 138.5 4.2 133.0 0.0 230.0 3.6 163.4 369.0 3.4 191.0 429.2 3.0 219.8 495.0
5 4.4 119.6 11.7 206.5 4.2 143.2 6.4 278.1 4.0 174.2 557.7 3.8 206.8 670.2 3.4 234.0 696.3
10 4.2 121.0 11.6 189.2 4.4 150.6 0.0 367.9 4.2 181.8 556.5 3.4 207.6 601.8 3.2 234.6 691.0
20 4.2 131.0 12.8 234.4 4.4 151.0 0.0 351.0 4.2 185.8 620.3 4.0 206.0 772.7 3.6 247.4 802.7

avg 4.3 119.2 12.6 192.1 4.3 144.5 1.6 306.8 4.0 176.3 525.9 3.7 202.9 618.4 3.3 234.0 671.2

0.8

1 4.0 77.6 10.9 85.5 4.2 95.2 0.0 160.0 4.2 113.6 316.3 3.4 132.2 296.3 3.4 152.6 339.3
5 4.2 83.6 0.0 103.7 4.2 104.2 0.0 202.8 4.2 125.4 370.5 3.4 139.8 338.0 3.4 159.4 412.8
10 4.4 87.6 0.0 143.8 4.2 107.2 0.0 239.0 4.2 125.0 351.6 3.4 142.8 332.5 3.6 159.4 534.6
20 4.2 86.0 0.0 132.2 4.0 102.0 0.0 202.0 4.0 121.2 348.0 3.6 141.8 352.3 3.4 160.2 406.7

avg 4.2 83.7 2.7 116.3 4.2 102.2 0.0 200.9 4.2 121.3 346.6 3.5 139.2 329.8 3.5 157.9 423.4

0.9

1 4.2 51.4 1.1 64.5 4.4 61.0 1.1 109.1 4.0 68.2 155.0 3.4 76.2 155.0 3.4 83.6 185.4
5 4.6 62.0 8.5 110.0 5.0 73.6 0.0 200.7 4.2 77.6 226.9 3.8 84.0 219.7 3.6 93.6 240.3
10 4.6 65.0 0.0 117.2 4.6 72.4 0.4 176.8 4.2 78.2 217.3 3.6 83.8 196.0 3.4 89.8 210.6
20 4.4 65.6 4.0 128.9 4.4 65.6 4.0 130.1 4.2 82.8 243.0 4.2 82.8 242.0 3.8 100.0 290.1

avg 4.5 61.0 3.4 105.2 4.6 68.2 1.4 154.2 4.2 76.7 210.6 3.8 81.7 203.2 3.6 91.8 231.6

(totscn), the actual deviation (dev) and computation time (time). For the a priori

partitioning scheme, we separate the computation time into the time for solving the

model (stime) and the time for constructing a partition (ptime).

Based on the table data, the performance of the adaptive partitioning scheme

relative to that of a priori partitioning scheme is analyzed. First of all, the objec-

tive values from the schemes are similar and those of adaptive partitioning being

slightly lower, which implies that a partition from adaptive partitioning scheme is

less risk-averse. The numbers of iterations and added scenarios are larger for adap-

tive partitioning, which incurs a greater computational burden, even when taking

partitioning time for a priori partitioning (ptime) into account. This is due to the

fact that the re-constructing phase takes more computation time whenever an in-

cumbent solution is added at each iteration. However, the deviation from adaptive

partitioning is lower in its a priori counterpart; especially, it has the lowest dev

when α = 0.8 or 0.9, which have shown exactly zeros for those cases. To sum up, in

order to take proper advantage of the adaptive partitioning scheme, it needs to be

elaborated in terms of computational time, since constructing a partition becomes
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Table 2.4: Overall statistics of two partitioning schemes

α K
adaptive partitioning a priori partitioning

objval iter totscn time (s) dev (%) objval iter totscn ptime (s) stime (s) dev (%)

0.7

5 303,753.8 4.2 248.2 2,589.4 1.33 308,992.6 4.0 172.8 127.7 529.5 0.89
10 302,059.4 4.2 269.6 1,635.7 2.05 308,598.2 4.2 181.4 43.5 597.8 0.69
20 306,890.2 4.2 282.0 1,598.8 0.00 309,700.4 4.4 184.4 12.9 643.5 1.15

avg 304,234.5 4.2 266.6 1,941.3 1.12 309,097.1 4.2 179.5 61.4 590.3 0.91

0.8

5 311,351.4 4.4 189.6 1,854.9 0.00 313,167.0 4.2 124.0 82.0 379.6 0.76
10 311,351.4 4.6 192.8 1,247.8 0.00 313,432.0 4.2 123.6 31.7 411.3 0.87
20 311,354.8 4.4 202.0 1,028.1 0.00 313,416.0 4.0 120.2 13.2 316.2 0.86

avg 311,352.5 4.5 194.8 1,376.9 0.00 313,338.3 4.1 122.6 42.3 369.0 0.83

0.9

5 316,757.4 4.6 118.8 1,758.7 0.00 318,282.0 4.2 77.2 87.2 228.7 0.65
10 316,695.2 5.2 122.2 1,264.0 0.00 318,071.2 4.2 77.4 32.8 228.3 0.53
20 316,757.4 5.6 128.8 930.5 0.00 318,078.2 4.4 85.4 13.6 266.5 0.56

avg 316,736.7 5.1 123.3 1,317.8 0.00 318,143.8 4.3 80.0 44.5 241.1 0.58

more burdensome as the number of iterations increases.

2.6 Summary

In this chapter, we presented a novel risk-averse two-stage stochastic program with

finite support, which is based on partitioning the set of scenarios. It is a generalized

model that can represent various models with finite support in the literature. We

proposed an efficient and generic solution approach, which is based on column-and-

constraint generation, to solve the model with a given partition. In addition, we

devised a partitioning algorithm to construct a partition whose risk is closest to the

pre-defined target. We also present partitioning schemes on how to consolidate the

proposed solution approach and partitioning algorithms, including a novel adaptive

partitioning scheme where a partition is iteratively re-constructed within the column-

and-constraint generation procedure. Numerical experiments are conducted to show

the effectiveness of the proposed partitioning methods, as indicated by the signifi-

cantly low deviation from the target compared to other existing methods. Further,
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the proposed column-and-constraint generation is shown to be efficient, compared

to solving extensive formulations or extensions of the method in the literature. In

addition, the practical usefulness of a controllable parameter Γ also is demonstrated

that the models can be solved much faster for Γ < 1 with a significantly small opti-

mality gap. Finally, the computational aspects of the adaptive partitioning scheme

show its potential utility over an a priori partitioning scheme.
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Chapter 3

Single unit commitment under uncertainty and its
application to unit decomposition approaches

3.1 Introduction

Single-unit commitment (1UC) problem is a problem of deciding the generation

schedule of a single generator in electric power systems. It usually arises in a dereg-

ulated electricity market that allows a variety of individual power producers (IPPs)

bid their generator’s schedules (MISO, 2022). It has been observed that two ma-

jor bidding strategies are possible: self-scheduling and self-commitment (Pan and

Guan, 2016). In the self-commitment approach, an IPP decides only the commit-

ment states of a generator, whereas generation amounts are also determined by an

IPP in the self-scheduling approach. In both approaches, the goal of an IPP is to

maximize its net profit under the given electricity price is given, considering the op-

erational requirements of an internal generator. The 1UC problem has widely been

studied in the literature since it also has a critical role in solving the unit commit-

ment (UC) problem, which is the problem solved by the system operator minimizing

total operation cost while satisfying system-wise load demand by coordinating mul-

tiple generators. Analyses on the single-generator system have been successful in

efficiently solving UC problems (e.g., Ostrowski et al., 2011; Yan et al., 2020). In
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addition, a well-known solution approach called unit decomposition (e.g., Frangioni

et al., 2008; Van Ackooij et al., 2018) directly uses solutions approaches for the

1UC problem. It is a method that relaxes system-wise requirements such as demand

balance constraints and decomposes the remaining problem by each generator.

In the literature, various types of generators are considered in 1UC problems,

such as combined-cycle (Pan and Guan, 2017; Papavasiliou et al., 2014), or pumped-

hydro storage generators (Qu et al., 2022). Among them, thermal generators have

been widely focused on 1UC problems. Lee et al. (2004) proposed valid inequali-

ties for minimum up/down polytope where on/off decisions exist, further showing

that they are sufficient to describe the convex hull of the polytope. Later, Rajan

and Takriti (2005) extended the research to provide valid inequalities when start-up

decisions and corresponding costs also exist. Morales-España et al. (2015) present

valid inequalities that can describe the convex hull under the power generation limit

and minimum up/down requirements. Using the results, it is shown that the self-

commitment problem can be solved in a polynomial time. For the self-scheduling

problem, where the generation amount is also determined, generation ramping re-

quirements, which restrict the increase or decrease of generation amount in two

adjacent time periods, make the problem not trivial to solve. Various studies in-

cluding valid inequalities (e.g., Ostrowski et al., 2011; Damcı-Kurt et al., 2016) and

a systematic formulation tightening approach (Yan et al., 2020) are proposed by

focusing on the single-generator system with ramping requirements. However, it has

been shown that the problem also can be solved in a polynomial time even with

the ramping restrictions. Methods that directly solve self-scheduling problems are

mostly based on dynamic programming approaches. Fan et al. (2002) provided a
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dynamic programming-based polynomial-time algorithm to solve the self-scheduling

problem with piece-wise linear variable cost. Then, Frangioni and Gentile (2006b)

proposed a O(T 3)-time algorithm with a convex quadratic variable cost function,

where T is the number of periods in the planning horizon. The algorithm is based on

constructing a state-space graph indicating on/off status and deciding on/off status

by solving the shortest path problem. From then, several further works are made

based on the algorithm. In Frangioni and Gentile (2015) and Guan et al. (2018),

the complexity of obtaining commitment decisions is improved by refining the state-

space graph. In addition, extended formulations that can provide integral solutions

are proposed (Frangioni and Gentile, 2015; Guan et al., 2018; Knueven et al., 2018).

Further, a refined algorithm that can reduce the computational burden is proposed

in Wuijts et al. (2021). In addition, Frangioni et al. (2008) applied the Lagrangian

relaxation approach to solve the Uc problem with hydro-thermal generators by unit

decomposition method, where the algorithm in Frangioni and Gentile (2006b) is

used to solve the decomposed self-scheduling problem.

Although the above-mentioned studies have made considerable contributions to

solving 1UC problems, the given electricity price is considered certain in advance.

However, since increasing penetration of renewable energy makes the electricity price

uncertain and volatile (e.g., Pan and Guan, 2016), an IPP needs to consider it when

submitting the offer. Regarding this, few studies considered electricity price uncer-

tainty in 1UC problems. For the stochastic price, Pan and Guan (2016) proposed

facet-defining inequalities for multi-stage stochastic optimization model, and Guan

et al. (2018) presented a dynamic programming algorithm that extends the results

in the deterministic counterpart. Lu et al. (2022) proposed an extended formulation
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that can describe a convex hull in a two-stage stochastic 1UC problem. In addition,

we note that earlier studies have utilized unit decomposition methods for the UC

problem when net load demand is uncertain, which has the subproblem structure as

stochastic 1UC problems. In Carpentier et al. (1996), an augmented Lagrangian ap-

proach is proposed. In addition, stochastic Lagrangian relaxation methods (Nowak

and Römisch, 2000), and column generation methods (Shiina and Birge, 2004) are

also proposed.

In this chapter, we study 1UC problems with stochastic electricity prices and

extend our analysis on 1UC to efficiently deal with stochastic unit commitment

problems under net load uncertainty using unit decomposition methods. Our moti-

vation is on aspects that have not been sufficiently addressed in the existing litera-

ture. First, although few studies have proposed to solve the stochastic self-scheduling

problems, the efficiency is not evaluated (Guan et al., 2018) or the algorithms are not

enough to deal with a large number of scenarios (Pan and Guan, 2016). Therefore,

we propose an efficient implementation to deal with many scenarios, where only the

generation amount is adaptable to the electricity price realization. Further, we refine

an algorithm to solve the self-commitment problem consisting of minimum up/down

requirements, whose complexity is O(T ), which is advantageous over the previous

algorithms in the literature (e.g., Guan et al., 2018; Frangioni and Gentile, 2015).

Next, using the results, we propose unit decomposition approaches to efficiently

deal with the stochastic unit commitment problem under net load uncertainty. Note

that although some earlier studies (e.g., Carpentier et al., 1996; Nowak and Römisch,

2000; Shiina and Birge, 2004) have investigated unit decomposition approaches on

stochastic unit commitment, ramping requirements are ignored in the problem,
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which makes the analysis on the subproblem structure or the computation much

easier. Thus, solution approaches in unit decomposition framework under genera-

tion ramping requirements are worthwhile to be further investigated. In this study,

we present two unit decomposition frameworks: schedule decomposition and com-

mitment decomposition. Each of the frameworks corresponds to the resulting sub-

problem structure. The first one, which we call schedule decomposition, utilizes the

stochastic self-scheduling problem as a substructure and is a straightforward decom-

position that is widely used in deterministic settings. On the other hand, the other

one which we denote commitment decomposition, which uses the self-commitment

problem as a substructure, is a novel decomposition that has rarely been considered

in the literature. Further, we propose two solution approaches for each decomposition

framework, which are based on Lagrangian relaxation and column generation.

The contribution of the chapter can be summarized as follows.

• First, we develop efficient dynamic programming algorithms for 1UC problems.

For the stochastic self-scheduling problem, we extend the dynamic program-

ming approach which was developed to solve the deterministic counterpart.

It is based on proposing another dynamic programming approach in the sub-

structure by characterization of an optimal solution, to efficiently deal with a

number of scenarios. Furthermore, for the self-commitment problem, we pro-

pose a dynamic programming algorithm that has an enhanced computational

complexity compared to the previous works.

• Next, by using the proposed algorithms on 1UC problems, we propose two

unit decomposition frameworks for the UC problem under net load uncer-

tainty. The schedule decomposition method utilizes the substructure as the
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self-scheduling problem, while the commitment decomposition method which

utilizes the self-commitment problem as a substructure is a novel approach

that has not been proposed. Lagrangian relaxation and column generation-

based solution approaches are proposed for each decomposition method, and

we also compare theoretical dual bounds from the approaches.

• Through extensive computational experiments, we first conduct algorithms on

1UC problems to show the efficiency of the proposed algorithms when the

number of scenarios or the time periods increase. Next, we compare a total

of four solution approaches to solve the UC problem with the stochastic net

load. Finally, we emphasize the efficiency of the commitment decomposition

with a column generation-based solution approach, by comparing the extensive

formulation approach as the number of scenarios increases.

The remainder of the chapter is written as follows. In Section 3.2, we present dynamic

programming algorithms for the stochastic self-scheduling and self-commitment prob-

lems. Next, in Section 3.3, we propose two unit decomposition methods for the UC

problem under stochastic net load, along with the Lagrangian relaxation and column

generation-based solution approaches. In Section 3.4, we conduct computational ex-

periments to demonstrate the efficiency of our approach to 1UC problems and unit

decomposition approaches. In Section 3.5, we conclude the chapter by summarizing

the results.

66



3.2 Algorithms for the single-unit commitment problem

under price uncertainty

In this section, we study two types of 1UC problems, especially stochastic self-

scheduling and self-commitment problems. We present notations to describe the

mathematical formulations in Table 3.1. Note that in this section we omit generator

information in decision variables and parameters since we focus on a specific gen-

erator when dealing with 1UC problems. With a slight abuse of notation, we will

extend the dimensions of variables and parameters to indicate generator information

in the following sections which deal with a set of generators. In addition, we denote

[a, b] := {t ∈ Z | a ≤ t ≤ b} for two integers a and b and we use boldface letter to

represent vectors. Furthermore, throughout the section, we represent the 1UC prob-

lems as the minimization form where the profit is regarded as the negative cost, for

convenience and consistency with the UC problems in the following section.

3.2.1 Dynamic programming algorithm for the stochastic self-scheduling

problem

We address the stochastic self-scheduling problem where the uncertain electricity

prices for a given planning horizon are given in advance with a set of scenarios S.

Since the commitment states are hard to modify in real-time operation, we focus

on the two-stage setting where the commitment decisions are determined before the

realization of uncertain prices, and the generation amounts are decided according to

the realization. For each scenario s ∈ S, (rs,t)t∈T represents electricity prices and the

probability of each scenario is ps. For convenience, we let bs,t := CV
t −rs,t be a linear

net cost coefficient for a unit generation amount for s ∈ S, t ∈ T . The stochastic
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Table 3.1: Nomenclature

Sets and Indices
T set of time periods, t ∈ T = {1, 2, . . . , T}
S set of scenarios, s ∈ S = {1, 2, . . . , S}

Parameters
CV
t variable generation cost at period t

CON
t fixed generation cost at period t

CU
t start-up cost at period t

CD
t shut-down cost at period t

ps probability of scenario s
rs,t electricity price for scenario s at period t
ρt commitment profit at period t
Pmin (Pmax) minimum (maximum) generation limit
R ramp-up/down limit
R̄ start-up/shut-down ramp limit (R̄ ≥ Pmin)
tU (tD) minimum up (down) time

Decision Variables
xt 1 if a generator is on at period t, 0 otherwise
xUt 1 if a generator is starting up at period t, 0 otherwise
xDt 1 if a generator is shutting down at period t, 0 otherwise
ys,t generation amount of scenario s at period t
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self-scheduling problem minimizes the expected net cost for all scenarios by deciding

each scenario’s generation amount. The mathematical formulation of the problem

can be written as follows:

min
∑
t∈T

(
CON
t xt + CU

t x
U
t + CD

t x
D
t

)
+

∑
s∈S,t∈T

psbs,tys,t (3.1a)

s.t. xk ≥ xt − xt−1 ∀k ∈ {t+ 1, . . . ,min{t+ tU − 1, T}}, t ∈ T (3.1b)

1− xk ≥ xt−1 − xt ∀k ∈ {t+ 1, . . . ,min{t+ tD − 1, T}}, t ∈ T (3.1c)

xUt − xDt = xt − xt−1 ∀t ∈ T (3.1d)

Pminxt ≤ ys,t ≤ Pmaxxt ∀s ∈ S, t ∈ T (3.1e)

ys,t ≤ ys,t−1 +Rxt−1 + R̄(1− xt−1) ∀s ∈ S, t ∈ T (3.1f)

ys,t−1 ≤ ys,t +Rxt + R̄(1− xt) ∀s ∈ S, t ∈ T (3.1g)

xt, x
U
t , x

D
t ∈ {0, 1}, ys,t ≥ 0 ∀s ∈ S, t ∈ T (3.1h)

The objective function (3.1a) is the expected cost which consists of commitment

and variable generation costs. Constraints (3.1b) and (3.1c) indicate minimum up

and down requirements when the generator starts up or shuts down. Constraints

(3.1d) demonstrate the logical relationship between on/off and start-up/shut-down

variables. Next, constraints (3.1e) restrict the range of generation when a generator

is on. Lastly, constraints (3.1f) (or (3.1g)) indicate the ramping constraints that

limit the maximum difference when the generation amount increases (or decreases),

where x0 and ys,0 denote initial states.

Although the problem is a mixed-integer linear programming (MIP) problem

that can be directly solved by a commercial solver, the computational burden in-
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Figure 3.1: Illustration of a state-space graph on obtaining commitment decisions

creases as the number of scenarios increases. In this section, we devise a dynamic

programming algorithm to solve the problem, which extends widely-used dynamic

programming approaches (e.g., Frangioni and Gentile, 2006b; Frangioni and Gen-

tile, 2015). The idea is based on constructing a state-space graph where each node

indicates a generator’s on/off status and represents the problem to the shortest path

problem on the graph, as illustrated in Figure 3.1. For each period t ∈ T , two types

of nodes (states) are defined: ONt, OFFt. The node ONt indicates that a generator

starts up at period t, which means the generator is off at period t− 1. Similarly, the

node OFFt indicates that a generator becomes off right after the period t, meaning

that it is on until period t and turns off at the period t + 1. Further, arcs between

different types of nodes can only be constructed, and when the minimum up/down

requirements are satisfied. For h, k ∈ T , an arc from the node ONh to node OFFk can

be constructed only if k ≥ h+ tU . Similarly, an arc from node OFFh to node ONk can

be constructed only if k ≥ h+ tD + 1. Since the number of nodes is O(T ) and that

of arcs is O(T 2) in a dynamic acyclic graph, the optimal cost of the problem can be

calculated in O(T 2) once all arc costs are calculated in advance. One of the impor-

tant tasks is to calculate all the costs of arcs representing on-periods efficiently. For

an arc from node OFFh and ONk where k ≥ h+ tD + 1, since the transition indicates
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the generator starts up at period k, the corresponding cost is CU
k . On the other

hand, for an arc from node ONh and OFFk where k ≥ h+ tU − 1, since the generator

is on for the periods [h, k], the corresponding arc cost is the summation of fixed

generation cost (which is
∑

t∈[h,k]C
ON
t ), and the expected variable generation cost

for [h, k]. The expected variable generation cost for [h, k] is an expectation of each

for all scenarios, which is
∑

s∈S psz
D(s, h, k). Each cost zD(s, h, k) is defined as an

optimal cost of solving problem D(s, h, k) defined as follows.

zD(s, h, k) := min
∑

t∈[h,k]

bs,twt

s.t. Pmin ≤ wt ≤ Pmax ∀t ∈ [h, k],

wh ≤ R̄,

wk ≤ R̄,

wt −R ≤ wt+1 ≤ wt +R ∀t ∈ [h, k − 1].

We note that the problem can be easily solved by a linear programming (LP) solver.

However, it may be undesirable when dealing with all [h, k] pairs for h, k ∈ T and

all of the scenarios in S. Thus, we propose another dynamic programming algorithm

for D(s, h, k), which is efficient and advantageous when calculating the costs for all

pairs [h, k] for h, k ∈ T , further helpful when solving the problem for a number of

scenarios. Our dynamic programming approach is based on characterizing optimal

solutions of D(s, h, k), which has been mentioned in the literature. The following

proposition can be derived based on the results in Guan et al. (2018) that there

exists an optimal solution in a set of a finite number of generation amounts.
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Proposition 3.1. Let Q be a set of generation amounts that each point q ∈ Q

satisfies Pmin ≤ q ≤ Pmax, and equals to the one of those: Pmin+nR,Pmax−nR, R̄+

nR, R̄ − nR, where n ∈ Z+. Then, there exists an optimal solution (wt)t∈[h,k] that

satisfies wt ∈ Q for all time periods t ∈ [h, k].

The result implies an efficient dynamic programming approach to solve D(s, h, k)

for given h and k ∈ T for any given scenario s ∈ S. For each node q ∈ Q, we denote

a set Q(q) be a set of points that can be connected, in terms of satisfying ramping

requirements, to point q, i.e. Q(q) := {q′ ∈ Q | q −R ≤ q′ ≤ q +R} . We denote an

optimal cost when the generation amount is q at the period k by z′(s, h, k, q). Then,

for a given scenario s ∈ S and h ∈ T , the recursion can be written as follows,

z′(s, h, h, q) =bs,hq ∀q ∈ Q,

z′(s, h, k, q) = min
q′∈Q(q)

{
z′(s, h, k − 1, q′) + bs,kq

′} ∀k ∈ [h+ 1, T ], q ∈ Q. (3.2)

Then, the optimal cost zD(s, h, k) becomes the minimum cost of z′(s, h, k, q) that

the q ∈ Q satisfies the ramping constraint in the last period k as follows.

zD(s, h, k) = min
q∈Q

{
z′(s, h, k, q) | q ≤ R̄

}
∀k ∈ [h, T ] (3.3)

Using the recursion, zD(s, h, k) can be obtained by solving dynamic programs, as

illustrated in Figure 3.2. The recursion also implies that it is easier to induce the op-

timal cost zD(s, h, k) from the zD(s, h, k−1) when using the dynamic programming

procedure. Combining the recursions (3.2) and (3.3), zD(s, h, k) can be obtained

while calculating {z′(s, h, k, q)}q∈Q from {z′(s, h, k−1, q)}q∈Q. It demonstrates that
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Figure 3.2: Illustration of a dynamic programming approach to solve D(s, h, k)

one can obtain a series of optimal costs {zD(s, h, k)}k∈[h,T ] by doing only one recur-

sion from k = h to k = T , which is similar to the implementation in Frangioni and

Gentile (2006b) for the deterministic setting. It means that the advantage of the

dynamic programming approach increases when solving multiple dispatch problems

with all pairs (h, k) for h and k in T .

3.2.2 Dynamic programming algorithm for the self-commitment

problem

Next, we consider the self-commitment problem, where the on/off status of a genera-

tor for the planning horizon is determined to maximize the revenue. In the problem,

an IPP gets a constant profit ρt for each time period t ∈ T when the generator is

on, regardless of the amount of generation. Since a constant generation cost when a

generator is on is CON
t , we can denote the net cost as Ct := CON

t −ρt for each period

t ∈ T . The objective is to minimize the net profit for the planning horizon by decid-

ing on/off status satisfying minimum up/down requirements. The self-commitment
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problem can be formulated as follows.

min
∑
t∈T

(
Ctxt + CU

t x
U
t + CD

t x
D
t

)
s.t. xUt − xDt = xt − xt−1 ∀t ∈ T ,

xk ≥ xt − xt−1 ∀k ∈ {t+ 1, . . . ,min{t+ tU − 1, T}}, t ∈ T ,

1− xk ≥ xt−1 − xt ∀k ∈ {t+ 1, . . . ,min{t+ tD − 1, T}}, t ∈ T ,

xt, x
U
t , x

D
t ∈ {0, 1} ∀t ∈ T ,

where x0 is the initial on/off status before the beginning of the planning horizon.

We note that it can be solved in a polynomial time although it is an integer linear

program. Lee et al. (2004) proposed valid inequalities which can characterize the

convex hull of the feasible solution set, when only on (xt)t∈T variables exist. Ra-

jan and Takriti (2005) extend the results to be used when the start-up variables

and corresponding costs exist. Algorithms to solve the self-commitment problem

are studied as a substructure in solving self-scheduling problems. A O(T 3)-time dy-

namic programming algorithm was proposed in Frangioni and Gentile (2006b). An

improved O(T 2) algorithm, which is used to obtain the commitment decisions in

self-scheduling problems as in Figure 3.1, is proposed in recent literature (e.g., Fran-

gioni and Gentile, 2015; Guan et al., 2018). In this chapter, we propose an O(T )-time

algorithm for the problem, by using the fact that only the information that indi-

cates whether a generator is sufficiently on or off is needed in the self-commitment

problem. Here, we state the algorithm and assume that the generator has been off

for a sufficient time, for ease of exposition.
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The key is to define four types of states for each time period: SU, ON, SD, OFF. For

each period t ∈ T , the state SUt means that a unit starts up at period t, meaning

that it is off when the period t − 1. Next, the state ONt indicates that a unit has

been on for a sufficient time at the period, which is at least tU consecutive periods.

Further, the state SDt indicates that the generator shuts down at period t, where it

is on at period t − 1. Lastly, the state OFFt means that a unit is off for a sufficient

time at the period, which at least tD periods. We let V S(t) be an optimal cost from

the beginning of the planning horizon to the period t when the state at period is

S. With the defined states, the dynamic programming recursion can be written as

follows.

V SU(t) =V OFF(t− 1) + CU
t ∀t ∈ T (3.4a)

V SD(t) =V ON(t− 1) + CD
t ∀t ∈ T (3.4b)

V ON(t) =


V ON(t− 1) + Ct if t < tU

min
{
V ON(t− 1) + Ct, V

SU(t− tU + 1) + V ON2(t)
}

if t ≥ tU
∀t ∈ T

(3.4c)

V OFF(t) =


V OFF(t− 1) if t < tD

min
{
V OFF(t− 1), V SD(t− tD + 1)

}
if t ≥ tD

∀t ∈ T (3.4d)

where V ON2(t) :=
∑

k∈[t−tU+1,t]Ck indicates a cumulative net cost when the gener-

ator is on for period [t− tU + 1, t]. The values V ON2(t) for t ≥ tU can be calculated

at O(T ) time, since V ON2(t) = V ON2(t − 1) + Ct − Ct−1−tU . In the recursion equa-

tions (3.4a) (and (3.4b)) indicates that the state SU (SD) only be possible at time
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Figure 3.3: Illustration of the self-commitment problem when a generator is on for
[1,4] for tU = tD = 3

period t when the unit is sufficiently off (on) at the period t − 1. Equations (3.4c)

imply that the state ON is possible when it is ON at the previous time period or it

is ST at t − tU . Similarly, equations (3.4d) indicate that the OFF state is possible

when it is OFF at the previous time period or it is SD at t − tD. The optimal ob-

jective value becomes the minimum value of four states in the last time period, i.e.

min
{
V SU(T ), V SD(T ), V ON(T ), V OFF(T )

}
. It can easily be seen that the calculation of

the optimal cost can be on in O(T ) since for each time period the cost functions can

be calculated in O(1)-time. The illustration, which is represented as a shortest path

problem, is in Figure 3.3 for a generator with tU = tD = 3, where it is initially off.

The solution indicates that the generator starts up at period 1. Since the minimum

up time is 3 periods, it is sufficiently on at period 3 and it can turn off from the

period. Then, it remains on until period 4 and changes its state to off at period 5.
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3.3 Unit decomposition approaches for the unit commit-

ment problem under stochastic net load

Now, we present the unit decomposition approaches to the UC problem under

stochastic net load. Recall that the net load is a subtraction of renewable generation

from the load demand and is uncertain since the increasing penetration of renewable

generation resources makes it hard to accurately predict the exact amount. In this

section, we define a set of generators by G := {1, . . . , G}, we use additional subscript

g to indicate every parameter and decision variable in Table 3.1 regarding a genera-

tor g ∈ G. For s ∈ S, t ∈ T , the net load value for scenario s in period t is denoted by

ds,t. In addition, we define a decision variable indicating the amount of load shedding

to y0s,t, with corresponding unit penalty cost coefficient Kt. We present a two-stage

stochastic optimization model for the UC problem under net load uncertainty. In

the model, the commitment states of all generators are determined before the net

load realization, and the generation amount is determined to meet the net load after

the realization. The extensive formulation (EXTS) is presented as follows.

min
∑

g∈G,t∈T

(
CON

g,t xg,t + CU
g,tx

U
g,t + CD

g,tx
D
g,t

)
+

∑
g∈G,s∈S,t∈T

ps
(
CV

g,tyg,s,t +Kty
0
s,t

)
(3.5a)

s.t.
∑
g∈G

yg,s,t + y0s,t ≥ ds,t ∀s ∈ S, t ∈ T , (3.5b)

yg,s,t ≥ Pmin
g xg,t ∀g ∈ G, s ∈ S, t ∈ T , (3.5c)

yg,s,t ≤ Pmax
g xg,t ∀g ∈ G, s ∈ S, t ∈ T , (3.5d)

yg,s,t ≤ yg,s,t−1 +Rgxg,t−1 + (1− xg,t−1)R̄g ∀g ∈ G, s ∈ S, t ∈ T , (3.5e)

yg,s,t ≥ yg,s,t−1 −Rgxg,t − (1− xg,t)R̄g ∀g ∈ G, s ∈ S, t ∈ T , (3.5f)

xUg,t − xDg,t = xg,t − xg,t−1 ∀g ∈ G, t ∈ T (3.5g)

xg,k ≥ xg,t − xg,t−1 ∀g ∈ G, k ∈ {t+ 1, . . . ,min{t+ tUg − 1, T}}, t ∈ T , (3.5h)

1− xg,k ≥ xg,t−1 − xg,t ∀g ∈ G, k ∈ {t+ 1, . . . ,min{t+ tDg − 1, T}}, t ∈ T , (3.5i)
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xg,t, x
U
g,t, x

D
g,t ∈ {0, 1}, yg,s,t, y0s,t ≥ 0 ∀g ∈ G, s ∈ S, t ∈ T . (3.5j)

In the formulation, the objective function (3.5a) minimizes the commitment cost

and the expected variable generation cost for all scenarios. The balance constraints

(3.5b) indicate the amount generated must be not less than the net load, otherwise,

the load shedding occurs. Constraints (3.5c) and (3.5d) indicate the minimum and

maximum generation amount when a generator is on. Constraints (3.5e) and (3.5f)

demonstrate up and down ramp limit when the generation amount at a certain

time period increases and decreases. Next, constraints (3.5g) indicate the logical

relationship between the on/off variable and start-up/shut-down variables. Next,

constraints (3.5h) and (3.5i) indicate minimum up/down requirements, where xg,0

and yg,s,0 are initial conditions.

Although the model can be directly solved by an off-the-shelf solver, the compu-

tational burden increases as the number of scenarios grows. A variety of research has

focused on decomposition methods to solve the problem (see Zheng et al., 2015; Van

Ackooij et al., 2018, for details). Here, we present two unit decomposition frameworks

for the problem, which are schedule decomposition and commitment decomposition,

where each framework is related to the subproblem structure when constraints are

relaxed. In addition, two solution approaches, Lagrangian relaxation-based and col-

umn generation-based solution approaches are presented for each framework. Thus, a

total of four solution approaches will be proposed: SD-LR, SD-CG, CD-LR, and CD-CG.

Among the four methods, schedule decomposition is used in SD-LR and SD-CG, while

commitment decomposition is used in CD-LR and CD-CG. In addition, Lagrangian

relaxation-based methods are used in SD-LR and CD-LR, while column generation-
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based methods are used in SD-CG and CD-CG.

3.3.1 Schedule decomposition

The schedule decomposition utilizes the substructure of the stochastic self-scheduling

problem. At first, the method SD-LR is based on Lagrangian relaxation of (EXTS)

obtained by relaxing the demand balance constraints (3.5b). The idea behind the

approach is that when we relax the demand balance constraints (3.5b), the prob-

lem can be decomposed with the generators. When the Lagrangian multiplier λ :=

(λs,t)s∈S,t∈T for the constraints, the corresponding Lagrangian relaxation problem

can be written as follows. It can easily be seen that the decomposed problem is a

stochastic self-scheduling problem for each generator.

zSDLR (λ) := min

 ∑
s∈S,t∈T

(
λs,t

(
ds,t − y0s,t

)
+ psKty

0
s,t

)
+
∑
g∈G

zSS(g,λ)

 ,

where

zSS(g,λ)

:= min
∑
t∈T

(
CON
g,t xt + CU

g,tx
U
t + CD

g,tx
D
t

)
+

∑
s∈S,t∈T

(
psC

V
g,t − λs,t

)
ys,t

s.t. Pmin
g xt ≤ ys,t ≤ Pmax

g xt ∀s ∈ S, t ∈ T , (3.6a)

ys,t ≤ ys,t−1 +Rgxt−1 + (1− xt−1)R̄g ∀s ∈ S, t ∈ T , (3.6b)

ys,t ≥ ys,t−1 −Rgxt − (1− xt)R̄g ∀s ∈ S, t ∈ T , (3.6c)

xUt − xDt = xt − xt−1 ∀t ∈ T (3.6d)

xk ≥ xt − xt−1 ∀k ∈ {t+ 1, . . . ,min{t+ tUg − 1, T}}, t ∈ T , (3.6e)
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1− xk ≥ xt−1 − xt ∀k ∈ {t+ 1, . . . ,min{t+ tDg − 1, T}}, t ∈ T , (3.6f)

xt, x
U
t , x

D
t ∈ {0, 1}, ys,t, y0s,t ≥ 0 ∀s ∈ S, t ∈ T . (3.6g)

We can obtain the Lagrangian dual zSDLD by maximizing the Lagrangian relaxation

with regard to the multiplier as follows,

zSDLD = max
λ≥0

zSDLR (λ).

Next, the method SD-CG utilizes the substructure as the stochastic self-scheduling

problem, which is based on column generation. For this, we present a pattern-based

formulation which we call schedule-pattern-based formulation, where a pattern corre-

sponds to a generation schedule that includes on/off status and generation amount

for all scenarios and all periods for a generator. For each generator g ∈ G, we define

a set of patterns SP(g). We use superscript p to indicate the parameters regarding

the pattern p ∈ SP(g). A pattern p corresponds to a vector
(
xpg,t, x

p,U
g,t , x

p,D
g,t , y

p
g,s,t

)
,

which consists of on/off status xpg,t, start-up status xp,Ug,t , shut-down status xp,Dg,t , gen-

eration amount for each scenario ypg,s,t. Then, the cost when the pattern p ∈ SP(g)

is used is denoted by cpg and calculated as follows.

cpg :=
∑
t∈T

(
CON
g,t x

p
g,t + CU

g,tx
p,U
g,t + CD

g,tx
p,D
g,t

)
+

∑
s∈S,t∈T

psC
V
g,tyg,s,t

We use a binary decision vector λpg to indicate whether a pattern p ∈ SP(g) is used

or not. Then, the schedule-pattern-based formulation (PS) can be represented as
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follows.

(PS) min
∑
g∈G

∑
p∈SP(g)

cpgλ
p
g +

∑
s∈S,t∈T

psKty
0
s,t

s.t.
∑
g∈G

∑
p∈SP(g)

ypg,s,tλ
p
g + y0s,t ≥ ds,t ∀s ∈ S, t ∈ T

∑
p∈SP(g)

λpg = 1 ∀g ∈ G

λpg ∈ {0, 1}, y0s,t ≥ 0 ∀p ∈ SP(g), g ∈ G, s ∈ S, t ∈ T

Since the model needs a very large number of decision variables, the proposed ap-

proach is based on solving its linear programming relaxation of (PS), which we

denote (PS-LM), in addition to deriving primal solutions. To solve the model (PS-

LM), we use the column generation method, which iteratively adds columns to the

restricted master problem. For a given pattern subset SP ′(g) ⊆ SP(g), the restricted

master problem (PS-RLM) can be written as follows.

(PS-RLM) min
∑
g∈G

∑
p∈SP ′(g)

cpgλ
p
g +

∑
s∈S,t∈T

psKty
0
s,t

s.t.
∑
g∈G

∑
p∈SP ′(g)

ypg,s,tλ
p
g + y0s,t ≥ ds,t ∀s ∈ S, t ∈ T (πs,t)

∑
p∈SP ′(g)

λpg = 1 ∀g ∈ G (ϕg)

λpg, yg,s,t, y
0
s,t ≥ 0 ∀p ∈ SP ′(g), g ∈ G, s ∈ S, t ∈ T

In the formulation, we denote dual variables π and ϕ next to the constraints. When

we obtain the dual optimal solutions (π̂, ϕ̂) to the (PS-RLM), we can check whether
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it is optimal to (PS-LM) by calculating the reduced cost. It can easily be seen that

the (π̂, ϕ̂) is optimal to (PS-LM) when

cpg −
∑

s∈S,t∈T
π̂s,ty

p
g,s,t ≥ ϕ̂g ∀p ∈ SP(g), g ∈ G. (3.7)

We can calculate the minimum value of the left-hand-side of (3.7) by solving the

following subproblem for each generator g ∈ G. In addition, it is observed that the

problem is a stochastic self-scheduling problem (in Section 3.2.1), having a slightly

different variable generation cost function.

zSDSP (g) = min
∑
t∈T

(
CON
g,t xt + CU

g,tx
U
t + CD

g,tx
D
t

)
+

∑
s∈S,t∈T

(
psC

V
g,t − π̂s,t

)
ys,t

s.t. (x,y) satisfies (3.6a)− (3.6g)

When zSDSP (g) ≥ ϕ̂g for all generators, the optimal solution of (PS-RLM) with

SP ′(g) g ∈ G is optimal for (PS-LM). If not, there exists at least one generator

that zSDSP (g) < ϕ̂g, and the optimal solution of the problem becomes a new pattern

(xp,yp) that needs to be added to the (PS-RLM). The procedure repeats until no

patterns (columns) are added to the (PS-RLM), i.e. zSDSP (g) ≥ ϕ̂g for all generators

g ∈ G.

3.3.2 Commitment decomposition

Here, we propose another unit decomposition framework which we denote commit-

ment decomposition since it utilizes the self-commitment problem as a subproblem.

First, we present the Lagrangian relaxation of (EXTS) in CD-CG. Here, compared
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to the schedule decomposition that relaxes (3.5b), constraints (3.5c)-(3.5f), which

include generation ramping and generation limit requirements, are also relaxed in

the commitment decomposition. We denote Lagrangian multipliers corresponding

to the constraints from (3.5b) to (3.5f) by from λ1 to λ5. Then, the Lagrangian

relaxation in commitment decomposition is written as follows.

zCD
LR (λ) := min

δ + ∑
g∈G,s∈S,t∈T

βg,s,tyg,s,t +
∑

s∈S,t∈T
γs,ty

0
s,t +

∑
g∈G

zSC(g,λ)

 ,

and the remaining problem is

zSC(g,λ)

:= min
∑
t∈T

(
αg,txt + CU

g,tx
U
t + CD

g,tx
D
t

)
s.t. xUt − xDt = xt − xt−1 ∀t ∈ T (3.8a)

xk ≥ xt − xt−1 ∀k ∈ {t+ 1, . . . ,min{t+ tUg − 1, T}}, t ∈ T , (3.8b)

1− xk ≥ xt−1 − xt ∀k ∈ {t+ 1, . . . ,min{t+ tDg − 1, T}}, t ∈ T , (3.8c)

xt, x
U
t , x

D
t ∈ {0, 1} ∀t ∈ T , (3.8d)

where the parameters (α,β,γ, δ) are

αg,t := CON
g,t + Pmin

g

(∑
s∈S

λ2g,s,t

)
− Pmax

g

(∑
s∈S

λ3g,s,t

)

+ (R̄g −Rg)

(∑
s∈S

λ4g,s,t+1It

)
+ (R̄g −Rg)

(∑
s∈S

λ5s,g,t

)
∀g ∈ G, t ∈ T

βg,s,t := psC
V
g,t − λ1s,t − λ2g,s,t + λ3g,s,t

+
(
λ4g,s,t − λ4g,s,t+1It

)
−
(
λ5g,s,t − λ5g,s,t+1It

)
∀g ∈ G, s ∈ S, t ∈ T
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γs,t := psKt − λ1s,t ∀s ∈ S, t ∈ T

δ :=
∑

s∈S,t∈T
λ1s,tds,t −

∑
g∈G,s∈S,t∈T

R̄g

(
λ4g,s,t+1It + λ5g,s,t

)
,

and It is a function that has value 1 when t < T and 0 otherwise.

It can be observed that the problem is the self-commitment problem for each

generator g, with a slightly modified cost coefficient on commitment decisions. Then,

we can obtain the Lagrangian dual zCD
LD by maximizing the Lagrangian relaxation

value as follows,

zCD
LD = max

λ≥0
zCD
LR (λ).

Next, we present another column generation-based solution approach for the

commitment decomposition method, which is CD-CG, by presenting a new pattern-

based formulation which we call commitment-pattern-based formulation. In the for-

mulation, each decision variable (pattern) corresponds to the commitment states

of each generator for all time periods. The formulation is constructed similarly to

the construction of schedule-pattern-based formulation in Section 3.3.1. We define

a set of all commitment patterns by CP(g) for each generator g ∈ G. Each pattern

p in CP(g) corresponds to feasible commitment states and the corresponding vec-

tor (xpg,t, x
p,U
g,t , x

p,D
g,t ) indicates the on/off status, start-up status, and the shut-down

status, respectively. For the pattern,

cpg :=
∑
t∈T

(
CON
g,t x

p
g,t + CU

g,tx
p,U
g,t + CD

g,tx
p,D
g,t

)

represents cost when the pattern p is used. We let a decision variable λpg indicate
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whether a pattern p ∈ CP(g) is used or not. Then, the mathematical formulation of

commitment-pattern-based formulation (PC) is as follows.

(PC) min
∑
g∈G

∑
p∈CP(g)

cpgλ
p
g +

∑
g∈G,s∈S,t∈T

psC
V
g,tyg,s,t +

∑
s∈S,t∈T

psKty
0
s,t

s.t.
∑
g∈G

yg,s,t + y0s,t ≥ ds,t ∀s ∈ S, t ∈ T

Pmin
g xg,t ≤ ys,g,t ≤ Pmax

g xg,t ∀g ∈ G, s ∈ S, t ∈ T

yg,s,t − yg,s,t−1 ≤ xg,t−1Rg + (1− xg,t−1)R̄g ∀g ∈ G, s ∈ S, t ∈ T ,

yg,s,t−1 − yg,s,t ≤ xg,tRg + (1− xg,t)R̄g ∀g ∈ G, s ∈ S, t ∈ T ,

xg,t =
∑

p∈CP(g)

xpg,tλ
p
g ∀p ∈ CP(g), g ∈ G

∑
p∈CP(g)

λpg = 1 ∀g ∈ G

λpg ∈ {0, 1}, yg,s,t, y0s,t ≥ 0, ∀p ∈ CP(g), g ∈ G, s ∈ S, t ∈ T .

Note that x is a decision variable of the problem while xp is not, and the integer

restriction does not need since it is naturally satisfied by the pattern decision vari-

ables (λpg)p∈CP(g),g∈G . Since there are an exponential number of pattern variables, it

is hard to solve the model (PC) directly. Therefore, as in Section 3.3.1, we propose a

method based on solving its linear relaxation problem, which we denote (PC-LM), by

column generation while also obtaining primal solutions. To solve (PC-LM) by col-

umn generation method, we state a restricted master problem of (PC-LM), which

we denote (PC-RLM), with a pattern subset CP ′(g) ⊆ CP(g) is given for g ∈ G.
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Then, (PC-RLM) can be formulated as follows.

(PC-RLM)

min
∑
g∈G

∑
p∈CP ′(g)

cpgλ
p
g +

∑
g∈G,s∈S,t∈T

psC
V
g,tyg,s,t +

∑
s∈S,t∈T

psKty
0
s,t

s.t.
∑
g∈G

yg,s,t + y0s,t ≥ ds,t ∀s ∈ S, t ∈ T

Pmin
g xg,t ≤ ys,g,t ≤ Pmax

g xg,t ∀g ∈ G, s ∈ S, t ∈ T

yg,s,t − yg,s,t−1 ≤ xg,t−1Rg + (1− xg,t−1)R̄g ∀g ∈ G, s ∈ S, t ∈ T ,

yg,s,t−1 − yg,s,t ≤ xg,tRg + (1− xg,t)R̄g ∀g ∈ G, s ∈ S, t ∈ T ,

xg,t =
∑

p∈CP ′(g)

xpg,tλ
p
g ∀g ∈ G, t ∈ T (ξg,t)

∑
p∈CP ′(g)

λpg = 1 ∀g ∈ G (ζg)

λpg, yg,s,t, y
0
s,t ≥ 0, ∀p ∈ CP ′(g), g ∈ G, s ∈ S, t ∈ T .

We also let the dual variables ξ and ζ next to the corresponding constraints. When

the problem (PC-RLM) is solved and the corresponding dual optimal values are

ξ̂ and ζ̂, we can check whether the current solution is optimal to (PC-LM) by

calculating the reduced cost. In other words, the solution is optimal when

cpg −
∑
t∈T

ξ̂g,tx
p
g,t ≥ ζ̂g ∀p ∈ CP(g), g ∈ G. (3.9)

We can obtain the minimum value of the left-hand-side of (3.9) by solving the

following subproblem for each generator g ∈ G, which can be easily shown that it

is a self-commitment problem with a slightly different objective on the commitment
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variable.

zCD
SP (g) = min

∑
t∈T

((
CON
g,t − ξ̂g,t

)
xt + CU

g,tx
U
t + CD

g,tx
D
t

)
s.t. x satisfies (3.8a)− (3.8d)

When zCD
SP (g) ≥ ζ̂g for all generators, the current optimal objective value of (PC-

RLM) with is optimal for (PC-LM). If not, there exists at least one generator that

zCD
SP (g) < ζ̂g, whose optimal solutions become a new pattern xp that needs to be

added to the (PC-RLM). The procedure repeats until no patterns (columns) are

added to the (PC-RLM), i.e. zCD
SP (g) ≥ ζ̂g for all generators g ∈ G.

3.3.3 Comparison of the dual bounds

We have presented two unit decomposition frameworks in the previous subsections,

including a total of four solution approaches. The methods use the Lagrangian relax-

ation or column generation that can derive a dual bound to (EXTS). Here we com-

pare the dual bounds obtained by each method, also with the LP relaxation bound

of (EXTS), which we denote by zEXTS
LP . Recall that zSDLD and zCD

LD are Lagrangian

duals obtained from SD-LR and CD-LR, respectively. We also denote zSDCG and zCD
CG by

the dual bound obtained from column generation-based methods SD-CG and CD-CG,

which are equal to the optimal objective values of (PS-LM) and (PC-LM), respec-

tively. Then, we can state the hierarchy of bounds as the following proposition.

Proposition 3.2.

zEXTS
LP ≤ zCD

LD = zCD
CG ≤ zSDLD = zSDCG.
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Proof. claim 1: zEXTS
LP ≤ zCD

LD ≤ zSDLD .

We prove claim 1 by using the well-known theorem that indicates the strength

of the Lagrangian dual. First, we define a set X(i) as follows.

X(i) :=
{
(x,y) ∈ B3GT × RGST

+ : satisfies constraints (i)
}

In addition, we define conv(X) to be a convex hull of the points in a setX. According

to Theorem 10.1 in Wolsey (2020), zSDLD and zCD
LD can be written as follows.

zSDLD =min
{
(3.5a) : (x,y) ∈ X(3.5b) ∩ conv(X(3.5c)−(3.5j))

}
zCD
LD =min

{
(3.5a) : (x,y) ∈ X(3.5b)−(3.5f) ∩ conv(X(3.5g)−(3.5j))

}

Since the set inclusion is as follows,

(
X(3.5b) ∩ conv(X(3.5c)−(3.5j))

)
⊆
(
X(3.5b)−(3.5f) ∩ conv(X(3.5g)−(3.5j))

)
⊆
{
(x,y) ∈ R3GT

+ × RGST
+ : satisfies (3.5b)− (3.5i)

}
,

minimizing the linear objective function (3.5a) over these three sets gives the fol-

lowing results.

claim 2: zSDLD = zSDCG, claim 3 : zCD
LD = zCD

CG

Since the proofs of claims 2 and 3 are similar, here we only write the proof

of claim 2 for simplicity. The proof is also based on the well-known equivalence

of Lagrangian dual and Dantzig-Wolfe reformulation (e.g., Conforti et al., 2014;
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Wolsey, 2020). Recall that the Lagrangian dual zSDLD is

zSDLD =max
λ≥0

zSDLR (λ)

=max
λ≥0

 ∑
s∈S,t∈T

λs,tds,t +min

 ∑
s∈S,t∈T

(psKt − λs,t) y0s,t +
∑
g∈G

zSS(g,λ)


 .

To represent zSS(g,λ), we define a set Jg be a set of extreme points of conv(Xg),

where Xg :=
{
(xg,yg) ∈ B3T × RST

+ : satisfies (3.6a)− (3.6g)
}
. We represent each

extreme point with (xjg,t, x
j,U
g,t , x

j,D
g,t , y

j
g,s,t)g∈G,s∈S,t∈T for j ∈ Jg. Then, we can write

zSS(g,λ)

= min
j∈Jg

∑
t∈T

(
CON
g,t x

j
g,t + CU

g,tx
j,U
g,t + CD

g,tx
j,D
g,t

)
+

∑
s∈S,t∈T

(
psC

V
g,ty

j
g,s,t − λs,ty

j
g,s,t

) .

Then, the Lagrangian dual can be written by representing minimum values with

additional variables α and (σg)g∈G ,

zSDLD = max
λ≥0

∑
s∈S,t∈T

λs,tds,t + α+
∑
g∈G

σg

s.t. σg ≤
∑
t∈T

(
CON
g,t x

j
g,t + CU

g,tx
j,U
g,t + CD

g,tx
j,D
g,t

)
+

∑
s∈S,t∈T

(
psC

V
g,ty

j
g,s,t − λs,ty

j
g,s,t

)
∀j ∈ Jg, g ∈ G

α ≤
∑

s∈S,t∈T
psKty

0
s,t −

∑
s∈S,t∈T

λs,ty
0
s,t

Then, we represent the Lagrangian dual with the minimization problem by using
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the LP dual.

min
∑
g∈G

(CON
g,t x

j
g,t + CU

g,tx
j,U
g,t + CD

g,tx
j,D
g,t

)
+

∑
s∈S,t∈T

psC
V
g,ty

j
g,s,t

πj
g +

∑
s∈S,t∈T

psKty
0
s,tδ

s.t.
∑
j∈Jg

πj
g = 1 ∀g ∈ G

δ = 1∑
g∈G

yg,s,tπ
j
g + y0s,tδ ≥ ds,t ∀s ∈ S, t ∈ T

When we define the coefficient of π by

cjg :=
(
CON
g,t x

j
g,t + CU

g,tx
j,U
g,t + CD

g,tx
j,D
g,t

)
+

∑
s∈S,t∈T

psC
V
g,ty

j
g,s,t,

then, the Lagrangian dual value becomes as follows

zSDLD = min
∑
g∈G

∑
j∈Jg

cjgπ
j
g +

∑
s∈S,t∈T

psKty
0
s,t

s.t.
∑
g∈G

∑
j∈Jg

yjg,s,tπ
j
g + y0s,t ≥ ds,t ∀s ∈ S, t ∈ T ,

∑
j∈Jg

πjg = 1 ∀g ∈ G

πjg, y
0
s,t ≥ 0 ∀j ∈ Jg, g ∈ G, s ∈ S, t ∈ T ,

which is equal to zSDCG.

From Proposition 3.2, we can observe that the dual bounds from the schedule

decomposition are the best among all methods. However, the formulation (PS) has

the largest number of decision variables among them, since each decision variable
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(pattern) includes the generation amount for all scenarios. Rather, the formulation

(PC) has a smaller number of decision variables compared to (PS) since each pat-

tern decision variable only contains commitment states for a generator. Therefore,

whether the method is efficient or not needs to be evaluated in a practical sense with

computational experiments, which will be discussed in Section 3.5.

3.3.4 Upper bounding

Since both Lagrangian relaxation and column generation methods do not derive

primal solutions themselves, we present a framework that derives primal solutions in

the solution approaches. This simple and efficient method to derive a feasible solution

of (EXTS) for each iteration is to recover dispatch decisions from the commitment

decisions. To do this, an economic dispatch problem is solved for given commitment

decisions (x̄g,t)g∈G,t∈T and the problem is written as below.

min
∑

s∈S,t∈T
ps

∑
g∈G

CV
g,tyg,s,t +Kty

0
s,t


s.t.

∑
g∈G

yg,s,t + y0s,t ≥ ds,t ∀s ∈ S, t ∈ T ,

Pmin
g x̄g,t ≤ yg,s,t ≤ Pmax

g x̄g,t ∀g ∈ G, s ∈ S, t ∈ T ,

yg,s,t ≤ yg,s,t−1 +RUgx̄g,t−1 + (1− x̄g,t−1)R̄g ∀g ∈ G, s ∈ S, t ∈ T ,

yg,s,t ≥ yg,s,t−1 −RDgx̄g,t − (1− x̄g,t)R̄g ∀g ∈ G, s ∈ S, t ∈ T ,

yg,s,t, y
0
s,t ≥ 0 ∀g ∈ G, s ∈ S, t ∈ T .

Note that the problem is an LP problem that can be solved in a relatively short time.

Then the summation of the first and second stage cost becomes the primal objective
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value and we let the primal bound as the lowest primal objective value so far. Now,

we describe how to obtain commitment decisions for every iteration. First, it is

straightforward for SD-LR and CD-LR that one can obtain the commitment decision

by the end of an iteration since the 1UC problem is solved for every iteration. On

the other hand, for SD-CG and CD-CG that use column generation, there are many

patterns that have fractional values when solving the restricted linear master (RLM)

problem in each iteration. Here, we propose to choose each pattern in each generator

that has the largest value (closest to one) among the generated so far. Then, the

commitment decisions of the corresponding pattern are obtained for each generator.

3.3.5 Implementation details

Here, we provide implementation details to apply the proposed solution approaches

in a computationally efficient manner. First, in column generation-based methods

SD-CG and CD-CG, a set of initial patterns for the problems (PS-LM) or (PC-LM)

be determined as follows. For CD-CG, a pattern p that a generator is on for the

entire planning horizon is used for each generator, i.e. xpg,t = 1 for all g ∈ G, t ∈ T .

For SD-CG in addition, a pattern whose status is on and the generation amounts

for all scenarios are the minimum generation amounts is used, i.e. xpg,t = 1 and

ypg,s,t = Pmin
g for all g ∈ G, t ∈ T , s ∈ S. In addition, when implementing the column

generation, we use the barrier method to solve RLM in each iteration, which has

been shown to be efficient when solving large-scale linear programs. Furthermore, we

use a well-known stopping criterion to terminate the column generation procedure in

a reasonable amount of time, especially for SD-CG which needs a number of iterations

to converge in the preliminary experiments. For this, we record the dual bound of
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the linear master (LM) problem for each iteration. Let objective values of RLM and

the corresponding subproblems be zRLM
n and

(
zSPn (g)

)
g∈G , respectively at iteration

n ∈ Z+. Then, vn := zRLM
n −

∑
g∈G z

SP
n (g) becomes a dual bound for LM (see

Wolsey, 2020, for details). So, the criterion is to terminate when the objective value

of RLM is close enough to the dual bound, to be specific when

zRLM
n − vn
zRLM
n

≤ ϵ,

where ϵ is a pre-determined parameter.

In Lagrangian relaxation-based methods SD-LR and CD-LR, the well-known sub-

gradient method is implemented to obtain Lagrangian dual. In the subgradient

method, whether the algorithm converges to the optimal Lagrangian dual or the

performance differs from how the stepsize is chosen. Here, we choose the stepsize at

the iteration n be 1√
S
(0.98)n, where an initial Lagrangian multiplier is set to a vector

of 1’s, which has shown a decent performance in the preliminary tests. Although this

method does not guarantee the convergence of the optimal Lagrangian dual, it has

been widely used because of faster convergence (e.g., Conforti et al., 2014). Then,

we run the algorithm for a maximum of 600 iterations.

3.4 Computational experiments

Through the experiments, we demonstrate the efficiency of the proposed methods on

1UC problems and unit decomposition approaches. Both 10-unit instance (Kazarlis

et al., 1996) and 54-unit instance (Zimmerman et al., 2010) are used. We let a ramp-

up/down limit be half of the maximum generation limit. Then, at the beginning of
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the planning horizon, all generators are assumed to be off for a sufficient amount of

time. Test results conducted for 1UC problems, which are stochastic self-scheduling

and self-commitment problems are presented in Section 3.4.1. In addition, we show

the effectiveness of proposed unit decomposition methods in the UC problems under

stochastic net load in Section 3.4.2. All the models and algorithms are implemented

with C++, where CPLEX 20.1 is used as a (mixed-integer) linear programming

solver. In addition, all the computational experiments were conducted on an Intel

i7-8700 3.20 GHz personal computer with 32 gigabytes RAM.

3.4.1 Results on single-unit commitment problems

First, experiments are conducted for two types of 1UC problems. A total of 10

generators from Kazarlis et al. (1996) are used. For the stochastic self-scheduling

problem, scenarios of the net profit coefficients which is (bs,t)s∈S,t∈T , are generated

from a uniform distribution U [0, 20]. For the self-commitment problem, the net profit

coefficient for when a generator g ∈ G is on in period t ∈ T be Cg,t := ηtC
ON
g,t , where

ηt is generated from the uniform distribution U [0.5, 1.5]. Average computation times

among 10 generators are reported in the experiments.

For the stochastic self-scheduling problem, three approaches are compared: MIP,

DP+LP, and DP+DP. First, MIP is to use the commercial solver to solve the MIP

problem. Next, both DP+LP and DP+DP are the methods that use dynamic program-

ming approaches to obtain commitment decisions (as in Figure 3.1 in Section 3.2.1).

However, in DP+LP while costs of arcs for all pairs are calculated by solving linear

programs with the commercial solver. On the other hand, in DP+DP, all arc costs are

calculated by another dynamic programming framework with the proposed imple-
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Figure 3.4: Comparison of the computation times for various numbers of scenarios

mentation method (as in Figure 3.2). We reported average computation times for

all approaches in Figure 3.4, for various numbers of scenarios from 1 to 10,000. The

results demonstrate the efficiency of the proposed solution method DP+DP, which

has shown the lowest increase in computation times as the number of scenarios in-

creases. It can also be observed that the MIP shows less computation time for the

small number of scenarios, however, it has shown that the rate of increase regarding

the number of scenarios is highest among the three. Alternatively, DP+LP exhibits

the highest computation times for small numbers of scenarios, the shows compa-

rable performance with the method MIP for large numbers of scenarios. Above all,

the proposed DP+DP shows the best computation times among the three methods for

various numbers of scenarios.

Next, we compare four methods for solving the self-commitment problem: IP,

DP C, DP Q, and DP L. First, IP is to use the commercial solver to solve the self-

commitment problem which is an integer program. Next, DP C is the widely-used
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Figure 3.5: Comparison of the computation times for various numbers of periods

dynamic programming algorithm based on state-space graph (e.g., Frangioni and

Gentile, 2006b) to solve the problem, where the computational complexity is O(T 3).

In addition, DP Q is the O(T 2) algorithm which shows advances than DP C by improv-

ing computational complexity in the literature (e.g., Frangioni and Gentile, 2015;

Guan et al., 2018). Lastly, DP L is the proposed dynamic programming algorithm in

Section 3.3.2, whose computational complexity is O(T ). Tests are conducted for var-

ious numbers of time periods from 24 to 7,200 and the average computation times

are reported in Figure 3.5. The results from the figure emphasize the superiority

and scalability of the proposed algorithm DP L, where the problem with T = 7, 200

can be solved within 10−2 seconds. Among the others, the IP methods show scalable

performance with regard to the increase in the number of time periods. On the other

hand, although DP C and DP Q are efficient for small numbers of time periods, they

become burdensome when dealing with large numbers of time periods.
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3.4.2 Results on unit decomposition methods

Next, we compare various unit decomposition methods for solving the UC problem

under stochastic net load. Two sets of instances are used: the 10-unit instance from

Kazarlis et al. (1996), and the 54-unit instance from Zimmerman et al. (2010). The

nominal net load data is scaled by 0.5 from the given data. Then, the net load

scenarios are generated from the normal distribution N
(
d̄,
(
0.1d̄

)2)
, where d̄ is

nominal net load. Various numbers of scenarios are tested, where S ∈ {1, 100, 200,

500, 1,000, 2,000, 5,000} for 10-unit instance and S ∈ {1, 10, 50, 100, 200, 500,

1,000} for 54-unit instance.

We implemented and compared four solution approaches based on two unit de-

composition frameworks: SD-LR, SD-CG, CD-LR, and CD-CG. Recall that the meth-

ods SD-LR and SD-CG are the schedule decomposition, while the methods CD-LR

and CD-CG are the commitment decomposition. In addition, where the Lagrangian

relaxation-based approach is used in SD-LR and CD-LR, and the column generation-

based approach is used in SD-CG and CD-CG. The corresponding subproblems, which

are a stochastic self-scheduling problem for SD-LR and SD-CG and self-commitment

problem for CD-LR and CD-CG, are solved with the proposed algorithms in Section 3.2.

For Lagrangian relaxation-based solution approaches, SD-LR and CD-LR, we used the

early termination approach mentioned in Section 3.3.5. For column generation-based

solution approaches, we use the early termination framework with ϵ = 0.05% only

for SD-CG, which has shown many iterations to converge in preliminary experiments.

First, we compare four solution approaches for S = 10, where solving EXTS is

not burdensome when using a commercial solver. For each method, we plot the lower

and upper bounds until the algorithm terminates. The results are shown in Figures
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3.6 and 3.7. First of all, it can be shown that the lower bounds of SD-LR and SD-CG

are better than those of CD-LR and CD-CG. However, it can also be shown that the

lower bounds of column generation-based methods (SD-CG and CD-CG) are higher

than the Lagrangian relaxation-based methods (SD-LR and CD-LR). It is because it

is hard to obtain the exact Lagrangian duals (e.g., Conforti et al., 2014), in addition,

we utilized early termination methods to solve the problem in a reasonable amount of

time. Further, it can be seen that the number of iterations of SD-CG is much greater

than the others, which is greater than 6,000 even with the small-sized instance

(S = 10). It is because there need a large number of patterns for each generator

since each pattern corresponds to the generation amount for each scenario. Next,

when comparing the quality of the upper bounds, all of the methods give decent

upper bounds, except for SD-LR. In addition, the good upper bounds are shown to

be obtained in a relatively small number of iterations.

Next, we compared the lower and upper bounds of three methods except SD-CG,

which needs a large number of iterations to converge and thus is hard to be solved

in a reasonable amount of time as shown in Figure 3.6. The bounds with various

numbers of scenarios are plotted in Figure 3.8. From the figure, it can be shown that

although the optimal Lagrangian dual of SD-LR is the highest among the three, it is

not always the highest in practice. It is because it is hard to obtain an exact optimal

value through the subgradient method as mentioned. On the other hand, lower

bounds of column generation methods are obtained when no columns are added,

and it is shown that the lower bounds of the method CD-CG are the highest in the

experiment. In addition, the method SD-LR has higher lower bounds compared to the
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method CD-LR, which is in accordance with the results in Proposition 3.2. Next, when

comparing the primal bounds of the three methods, it is observed that the upper

bounds of CD-LR and CD-CG are similar, while those of SD-LR are slightly higher.

It is because since the proposed upper-bounding methods are based on incumbent

commitment solutions, commitment decomposition that focuses on finding good

commitment solutions works well in this setting. In addition, the upper bounds of

SD-LR vary with regard to the number of scenarios. Overall, CD-CG has shown the

best bounds among the three. Lastly, the computation times of three methods with

regard to the number of scenarios are compared in Figure 3.9. From the figure, we

can see that CD-CG is the fastest, while SD-LR is the slowest. To sum up, CD-CG

shows the best and most stable performance among the three for various numbers

of scenarios.

Finally, we compare the solution approach CD-CG, which has shown best among
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the decomposition methods, with the extensive formulation approach EXTS, which

is to solve the extensive formulation (EXTS) by the solver CPLEX. We conducted

tests for 10-unit and 54-unit instances, where the results are in Tables 3.2 and 3.3

respectively. In the experiment, the time limit for each instance is five hours. For

CD-CG, ’LB’ is an optimal objective value of the linear master problem (PC-RLM).

In addition, ’UB’ is the best upper bound, the value of which is denoted by z̄CD
CG .

For EXTS, the ’LP’ is linear programming relaxation value (zEXTS
LP ) and ’MIP’ is the

objective value (zEXTS) within the time limit. When the problem cannot be solved

to optimality within time limits, we report its computation time with an asterisk (*),

and the best primal objective value obtained is reported. In addition, in the tables,

cgap denoting closed gap represents the relative ratio between optimal objective

value and linear programming values, and ogap denoting optimality gap represents

the relative ratio between the objective values of CD-CG and EXTS. Those values are
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calculated as follows.

cgap =
zCD
CG − zEXTS

LP

zEXTS − zEXTS
LP

,

ogap =
z̄CD
CG − zEXTS

zEXTS
.

From the results, the efficiency and scalability of CD-CG are observed. First of all,

the linear programming relaxation bounds provided by CD-CG are greater than those

of EXTS, which are closer to the optimal objective value. In addition, the primal

objective value obtained from CD-CG is less than 1% above on average in a relatively

short time compared to EXTS. It can also be shown that EXTS suffers from large

numbers of scenarios, especially when greater than 1,000. However, in those cases,

CD-CG has shown to be efficient in obtaining good primal and dual bounds. We note

that the number of iterations in CD-CG is not dependent on the number of scenarios,

which emphasizes the scalability of the method when dealing with a large number

of scenarios. Next, when we compared CD-CG and EXTS in a 54-unit instance, the

efficiency of the CD-CG can also be seen. The number of iterations to converge is

reduced compared to the 10-unit instance. Except for the deterministic case (S = 1)

that CD-CG gives poor upper bound, the CD-CG gives primal bounds within 0.3%

compared to the EXTS, with an average 13% of computation time.

3.5 Summary

In this chapter, we proposed dynamic programming algorithms for 1UC problems,

which arise when an individual power producer submits its schedule or commitment

to the electricity market. First, we presented an efficient dynamic programming
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Table 3.2: Performance comparison between CD-CG and EXTS for 10-unit instance

EXTS CD-CG

S LP LP time (s) MIP MIP time (s) LB UB iter time (s) cgap (%) ogap (%)

1 266,002 0.6 277,240 1.2 266,241 282,905 12 0.8 2.1 2.0
100 272,283 2.6 282,549 139.9 272,716 284,587 18 39.4 4.2 0.7
200 272,698 8.9 282,495 463.7 273,038 283,282 20 110.7 3.5 0.3
500 274,216 41.4 282,934 1,563.9 274,527 284,706 18 288.4 3.6 0.6
1,000 274,229 107.9 282,117 6,281.2 274,467 284,660 19 675.0 3.0 0.9
2,000 274,466 269.8 282,537 * 274,717 284,587 24 2,390.8 3.1 0.7
5,000 274,489 1,128.3 * * 274,714 284,166 20 6,705.4 - -

Table 3.3: Performance comparison between CD-CG and EXTS for 54-unit instance

EXTS CD-CG

S LP LP time (s) MIP MIP time (s) LB UB iter time (s) cgap (%) ogap (%)

1 614,352 4.1 615,464 4.6 614,457 850,383 9 1.2 9.4 38.2
10 610,564 4.6 612,346 21.5 610,869 613,572 9 5.9 17.1 0.2
50 615,028 8.1 617,761 334.4 615,263 619,518 11 40.8 8.6 0.3
100 616,590 14.9 619,427 442.7 616,840 620,722 12 103.5 8.8 0.2
200 616,273 38.9 619,122 2,362.3 616,503 620,415 12 262.1 8.1 0.2
500 617,486 105.5 620,857 * 617,775 623,337 11 783.7 8.6 0.4
1,000 617,338 278.3 * * 617,624 620,822 11 2,004.2 - -

approach for the self-scheduling problem under stochastic electricity prices. The

proposed algorithm is specifically designed to handle a large number of scenarios

and involves proposing an additional dynamic programming implementation for dis-

patch problems. Second, for the self-commitment problem, which involves making

decisions only on the on/off status based on a given profit, we proposed an effi-

cient dynamic programming algorithm with superior computational complexity to

other existing methods. Then, two unit decomposition frameworks that can utilize

proposed algorithms on 1UC problems are presented to deal with the UC problem

with the stochastic net load. The approaches include a novel approach that em-

ploys the self-commitment problem and has not been addressed before. We devised

Lagrangian relaxation-based and column generation-based solution approaches for

each unit decomposition method. Through numerical experiments, the efficiency of
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proposed algorithms for 1UC problems is demonstrated for various numbers of sce-

narios and time periods. Further, the computational performance of a total of four

solution approaches based on unit decomposition is demonstrated and the scalabil-

ity of the novel solution approach, which is a column generation-based method for

commitment decomposition, is presented.
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Chapter 4

Scalable optimization approaches for microgrid
operation under stochastic islanding and net load

4.1 Introduction

A microgrid is a localized electric power system with a low voltage phase consist-

ing of various distributed energy resources that can operate with connection to the

centralized power system (main grid) or as an independent system while being dis-

connected from the main grid (Katiraei et al., 2008). Microgrids have been being

considered as a key element of the future energy transition since they can increase

the efficiency of distributed energy systems and facilitate the penetration of renew-

able energy sources (Moretti et al., 2020). A microgrid operator needs to regularly

establish operation plans for the efficient and reliable operation of the system, each

of which determines the optimal on/off status and dispatch level of each internal

generator for each time period in a given planning horizon. To operate a microgrid

efficiently and reliably, various factors including islanding events must be carefully

considered when establishing the operation plans. Moreover, those factors may be

uncertain in that they cannot be accurately estimated in advance, and they can

be sequentially realized in each time period in the planning horizon. In this study,

we aimed to operate microgrids effectively and efficiently considering two important
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uncertain factors in a microgrid environment: islanding and net load. First, the un-

certainty of the islanding event, which denotes the time periods when a microgrid

disconnects from the main grid, must be carefully considered. Otherwise, the elec-

tricity supply of the internal generators cannot be sufficient during the islanding

period when receiving supply from the main grid is impossible. Next, the net load,

which is referred to as the load obtained by subtracting a negative load (e.g., re-

newable generation) from a positive one (e.g., load demand), is widely considered in

the power system operations because its uncertainty can incorporate those on both

sides.

To deal with various uncertain factors in microgrids, most of the previous studies

have focused on reactive approaches to operating a microgrid (Mitra and Vallem,

2012; Mohan et al., 2015). That is, operation plans are re-constructed whenever un-

certainty is realized, with a carefully determined pre-specified generation capacity,

called the reserve. Since then, optimization models for microgrid operation planning

have been extended to explicitly incorporate uncertain factors with various mod-

eling frameworks. Examples including stochastic optimization (Farzin et al., 2017;

Alvarado-Barrios et al., 2020), robust optimization (Moretti et al., 2020; Gholami

et al., 2017), distributionally robust optimization (Yurdakul et al., 2021) models

have been proposed, considering uncertainty in renewable generation (Gholami et

al., 2016), load demand (Moretti et al., 2020; Cheng et al., 2022), and electricity

price (Yurdakul et al., 2021). Among them, islanding events have been considered in

the recent literature. Optimization models were proposed in Zacharia et al. (2019)

for grid-connected and islanded modes with different objectives. A rolling horizon

approach combined with a stochastic optimization model was proposed in Bashir
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et al. (2019) to operate a microgrid for a one-year planning horizon. A stochastic

optimization model was proposed in Farzin et al. (2017) to minimize the operation

costs during unscheduled islanding where the islanding periods are uncertain. How-

ever, these studies considered that the grid-connected/islanded modes are given and

do not change during the planning horizon, which could be improved by consider-

ing the possibility of islanding during the planning horizon. In this regard, a few

papers have considered it in an integrated manner, with appropriate characteriza-

tion of possible islanding events in advance. Khodaei (2013) proposed the T − τ

criteria, which considers an islanding event of τ consecutive time periods during the

given planning horizon with T time periods, and non-dispatchable generation was

additionally considered in Khodaei (2014). The models in both studies aim to min-

imize power mismatches under worst-case realizations. Lee et al. (2021) proposed a

multistage stochastic optimization approach considering the possibility of multiple

islanding events in a planning horizon. Gholami et al. (2016) proposed a two-stage

stochastic optimization model that considers both contingency-based and normal-

operation-based uncertainty. Uncertain factors, including both islanding events and

net load, were considered in a two-stage robust optimization framework in Gholami

et al. (2017), Guo and Zhao (2018), and Mansouri et al. (2022), where the set of

possible islanding events is predetermined.

Although these studies have made significant contributions to operating micro-

grids under uncertainty, we note a research gap that has not been sufficiently ad-

dressed. It is the sequential realization of uncertain factors, that is, one cannot

exactly know the future realizations in advance. Specifically, it is difficult to know

the exact net load values of the following time periods at a certain time period.
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Even for islanding events, considering the possibility of multiple islanding events as

mentioned and modeled in Lee et al. (2016) and Ebrahimi et al. (2021), they can

occur regardless of the number of times that they have already occurred. Consid-

ering this, to make the operation of the microgrids reliable, the decisions in each

time period must be non-anticipative; in other words, adaptable to such dynamics

without anticipating exact values in the following periods. Non-anticipativity needs

to be carefully considered; otherwise, the solutions from a model that cannot fully

capture the dynamics of the uncertainty could make the operation inexecutable or

lead to significant costs, as mentioned in Lorca et al. (2016) and Cho et al. (2019).

In this regard, multistage stochastic optimization models, which we call standard

multistage models hereafter, are widely used in the literature to deal with this is-

sue (e.g., Jiang et al., 2016; Huang et al., 2021). It is because they can naturally

address the dynamics and probabilistic nature of uncertainty, where each stage in

the models corresponds to the uncertainty realization up to the stage. However, de-

spite the advantages, the standard multistage model is notoriously difficult to solve

because of its large number of scenarios, where each refers to a combination of sam-

ples during the entire planning horizon. In particular, the size of the model depends

on the number of scenarios and it is exponential to the number of time periods:

O(ST ), where S is the number of possible realizations for each time period and T

is the number of time periods. Therefore, scalability should be carefully treated for

stochastic optimization models that consider dynamics. In this regard, for models

in the literature, dynamics are not fully considered or are not scalable enough to

consider all the possible realizations in the planning horizon.

The main contribution of this study is the proposal of scalable stochastic opti-
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mization models under stochastic islanding and net load to obtain non-anticipative

decisions for period-wise independent realizations. Specifically, we assume that only

dispatch decisions are adaptable to the realization of uncertain factors, which is

a common assumption in the literature (e.g., Gholami et al., 2017; Lorca et al.,

2016). This is because commitment decisions cannot be easily changed in the oper-

ational sense owing to physical restrictions regarding generators. To the best of our

knowledge, this is the first time that both uncertain factors have been incorporated

simultaneously, considering their stochastic nature and dynamics, in a scalable way

that practical-sized instances can be solved in a reasonable amount of computation

time. Briefly, the integrated models under both islanding and net load uncertainty

are presented by combining two scalable optimization approaches proposed for each

uncertain factor. First, to make the optimization models scalable for islanding un-

certainty, our approach is based on repeatedly solving the models, each of which

has a reduced number of possible realizations. Next, to incorporate net load uncer-

tainty in a scalable manner, the proposed modeling framework reduces the number

of dispatch decision variables by allowing adequate restrictions on the dispatch level

range. Although such decision variables have been used in the literature to increase

the feasibility of the two-stage robust unit commitment problem Cho et al. (2019),

this is the first time that they have been utilized to improve the scalability of models

with stochastic net load.

To summarize, the contribution of the chapter is three-fold:

• We propose optimization models under stochastic islanding and net load, re-

spectively. The proposed models not only can derive solutions that are adapt-

able to sequential realizations, but have strong advantages in scalability com-
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pared to the standard multistage models.

• We propose integrated optimization models that can address both stochas-

tic factors simultaneously. To the best of our knowledge, it is the first time

to propose optimization models considering both that are scalable to solve

practical-sized instances within a reasonable amount of time. Because the stan-

dard multistage model has an exponential number of scenarios with respect to

the number of time periods, it can rarely be solved by itself even if only one

of the two is uncertain.

• We conducted extensive numerical experiments to demonstrate the efficiency

and effectiveness of the proposed optimization models. We demonstrated signif-

icantly reduced computation times and effectiveness of the obtained solutions

compared to the standard multistage model, which emphasizes the practical

usefulness of the proposed models. In addition, we tested the integrated mod-

els for practical-sized instances to operate microgrids when both factors are

uncertain, demonstrating the effectiveness of the models.

The remainder of this chapter is organized as follows. In Section 4.2, a standard

multistage model that can address islanding and net load uncertainty is presented

based on the modeling approach widely used in the literature. In Section 4.3, three

optimization models are presented. First, optimization models and corresponding

replanning procedures are developed to address various islanding events. Next, scal-

able optimization models under period-wise uncertain net load are proposed and

compared to the standard multistage model. Finally, integrated models based on

the combination of the two proposed methodologies are presented to operate a mi-
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crogrid when both factors are uncertain. Numerical experiments are presented in

Section 4.4 to demonstrate the efficiency and effectiveness of the proposed models.

Finally, conclusions and future research directions are presented in Section 4.5.

4.2 Standard multistage stochastic optimization model

In this section, we present a standard multistage model for microgrid operation under

stochastic islanding and net load. As mentioned, it can naturally address sequential

realizations of uncertain factors (Jiang et al., 2016; Huang et al., 2021). First, we

formally describe period-wise independent islanding and net load realizations as

follows. For an uncertain connection state, two possible realizations are considered

for each time period: connected or islanded. We let the set of possible realizations be

SI
t := {0, 1}, where the value 1 indicates that it is connected and 0 is islanded, and

let the probability qIt indicate the possibility of islanding for each time period t ∈ T .

Similarly, for an uncertain net load for each time period t ∈ T , we let the number

of possible realizations be σt, that is, SD
t := {D1

t , D
2
t , . . . , D

σt
t }. The probability of

each possible realization is qDst for s ∈ SD
t , satisfying

∑σt
s=1 q

D
st = 1 for t ∈ T . To

consider both uncertain factors, we define the possible realizations in time period t

as a set of pairs St = {(D1
t , 0), (D

1
t , 1), (D

2
t , 0), (D

2
t , 1), . . . , (D

σt
t , 0), (D

σt
t , 1)}. Then,

considering all the combinations of two realizations, |St| = 2σt. The corresponding

probability of each realization is defined as qst for s ∈ St, t ∈ T , where
∑

s∈St
qst = 1

for all t ∈ T .

To present a multistage stochastic optimization model, we construct a node set

containing all possible realizations, as illustrated in Figure 4.1, with the following

formal description: First, we let St = S1 × · · · × St for t ∈ T and each element in
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Time period: 1

n

t T

...

...

(Dn, In)

P(n)

St

...

...

Figure 4.1: A scenario tree based on the node set N

∪Tt=0St be denoted as a node, where S0 := {0} means the root node. In particular,

a node in ST is called a scenario. Node set N , defined as N := ∪Tt=0St, represents

a set of all nodes in a scenario tree. For each node n ∈ N , its corresponding time

period is denoted by t(n) and its unique parent is denoted by n− ∈ N , except for

the root node. In addition, the set of all the immediate children of node n is C(n).

For each node, Dn and In represent the net load and connection state, respectively,

where (Dn, In) ∈ St(n). Furthermore, the set of nodes on the unique path from the

root node to node n, including node n, is denoted as P(n). The probability of each

node pn is defined as the product of the corresponding probability qst of each node

in P(n), that is, pn := Πm∈P(n)qm,t(m). Similarly, we additionally define node sets

ND and N I based on realizations {SD
t }t∈T and {SI

t }t∈T , respectively, to represent

node sets when only one of the two factors is uncertain. The probability in each

node set, denoted by pDn and pIn respectively, can also be calculated analogously.
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The standard multistage model is based on the aforementioned multistage stochas-

tic optimization framework and operational requirements of a microgrid, as in the

literature (Khodaei, 2013; Lee et al., 2021), where a generic microgrid with BESS and

thermal units is considered. The notation used for the standard multistage model is

as follows.

Notations

Sets and Indices

T set of time periods, t ∈ T = {1, 2, . . . , T}

G set of generators, g ∈ G = {1, 2, . . . , G}

E set of battery energy storage systems (BESSs), e ∈ E

Parameters

cVg variable generation cost of g ∈ G

cSTg start-up cost of g ∈ G

ρt market price in t ∈ T

Kt value of lost load in t ∈ T

Dn load demand of node n ∈ N

In connection state of node n ∈ N (1: connected, 0: islanded)

PM maximum amount of transaction with main grid

Pmin
g (Pmax

g ) minimum (maximum) generation limit of g ∈ G

RUg (RDg) ramp-up (ramp-down) limit of g ∈ G

MUg (MDg) minimum-up (down) time of g ∈ G

PCH,max
e (PDCH,max

e ) maximum charging (discharging) limit of e ∈ E

ηe charging/discharging efficiency rate of e ∈ E

Emin
e (Emax

e ) minimum (maximum) storage level of e ∈ E
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TEe target energy level of e ∈ E at the end of time period

Binary Variables

xgt 1 if g ∈ G is on in t ∈ T , 0 otherwise

xSTgt 1 if g ∈ G is starting up in t ∈ T , 0 otherwise

xSPgt 1 if g ∈ G is shutting down in t ∈ T , 0 otherwise

Continuous Variables

ygn generation amount of g ∈ G of n ∈ N

yMn transaction amount with main grid of n ∈ N

ySHn load shedding amount of n ∈ N

ySOC
en energy storage level of e ∈ E of n ∈ N

yCH
en charging amount of e ∈ E of n ∈ N

yDCH
en discharging amount of e ∈ E of n ∈ N

Then, the standard multistage model B(N ) based on the set of nodes N is given

as follows:

min
∑
t∈T

∑
g∈G

cSTg xSTgt +
∑
n∈N

pn

∑
g∈G

cVg ygn + ρt(n)y
M
n +Kt(n)y

SH
n

 (4.1a)

s.t.
∑
g∈G

ygn +
∑
e∈E

(
yDCH
en − yCH

en

)
+ yMn + ySHn ≥ Dn, ∀n ∈ N , (4.1b)

− InPM ≤ yMn ≤ InPM , ∀n ∈ N , (4.1c)

xgt − xg,t−1 ≤ xgk, ∀k ∈ [t+ 1,min{t+MUg − 1, T}], g ∈ G, t ∈ T \ {1},

(4.1d)
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xg,t−1 − xgt ≤ 1− xgk, ∀k ∈ [t+ 1,min{t+MDg − 1, T}], g ∈ G, t ∈ T \ {1},

(4.1e)

xSTgt − xSPgt = xgt − xg,t−1, ∀g ∈ G, t ∈ T , (4.1f)

Pmin
g xg,t(n) ≤ ygn ≤ Pmax

g xg,t(n), ∀g ∈ G, n ∈ N , (4.1g)

ygn − yg,n− ≤ RUg, ∀g ∈ G, n ∈ N , (4.1h)

yg,n− − ygn ≤ RDg, ∀g ∈ G, n ∈ N , (4.1i)

yCH
en ≤ PCH,max

e , ∀e ∈ E , n ∈ N , (4.1j)

yDCH
en ≤ PDCH,max

e , ∀e ∈ E , n ∈ N , (4.1k)

ySOC
en = ySOC

e,n− + ηey
CH
en −

1

ηe
yDCH
en , ∀e ∈ E , n ∈ N , (4.1l)

Emin
e ≤ ySOC

en ≤ Emax
e , ∀e ∈ E , n ∈ N , (4.1m)

ySOC
en = TEe, ∀e ∈ E , n ∈ N : t(n) = T, (4.1n)

xgt, x
ST
gt , x

SP
gt ∈ {0, 1}, ∀g ∈ G, t ∈ T , (4.1o)

ygn, y
SH
n , ySOC

en , yCH
en , yDCH

en ≥ 0, ∀g ∈ G, e ∈ E , n ∈ N . (4.1p)

The objective function (4.1a) minimizes the total expected operation cost, con-

sisting of the generation cost, start-up cost, transaction cost, and cost of load shed-

ding. Here, the transaction cost is a multiple of the market price and the transaction

amount with the main grid. A positive cost occurs when purchasing power from the

main grid, while a negative cost is incurred in the opposite situation. Constraints

(4.1b) ensure that the net load is fulfilled with the total generation amount for each

time period. Constraints (4.1c) limit the amount of transaction with the main grid,

indicating that the transaction is possible only if In = 1. Constraints (4.1d) (or
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(4.1e)) indicate the minimum on (or off) requirements of all generators, imposing

that a generator must be on (or off) for certain time periods from it starts up (or

shut down). Constraints (4.1f) indicate the logical relationship between the start-up,

shut-down, and on decisions. Constraints (4.1g) indicate that the generation amount

can only be positive if the generator is on. Constraints (4.1h) and (4.1i) represent

the ramp-up and ramp-down limits, respectively. The maximum charging and dis-

charging amount of BESSs are given by (4.1j) and (4.1k), respectively. Constraints

(4.1l) represent the transition function of the storage level and constraints (4.1m)

limit the possible range of storage level to operate BESSs safely. Constraints (4.1n)

ensure that the target storage level is satisfied at the end of the time period.

Note that the commitment decision variables have indices with time periods,

whereas the dispatch counterparts are defined for each node. This indicates that

the former variables are not adaptable to uncertainty realizations, as assumed and

mentioned in Section 4.1. For easier representation in the following sections, we let

x = (xgt, x
ST
gt , x

SP
gt )g∈G,t∈T and define a set X that contains all feasible commitment

decisions. In other words,

X =
{
x ∈ R3GT | x satisfies (4.1d), (4.1e), (4.1f), and (4.1o)

}
.

The total number of scenarios in ND and N I are O(σT ) and O(2T ), respectively,

where σ := maxt∈T σt. Thus, the total number of scenarios in N where both un-

certain factors are considered is O
(
(2σ)T

)
. Since the number of variables and con-

straints depend on the number of scenarios, it is notoriously difficult to directly solve

the model using a commercial solver, even if only one of the two factors is considered
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uncertain. Therefore, in the following sections, we compare the model as a baseline

with the proposed models.

4.3 Proposed optimization models

4.3.1 Optimization models and replanning procedure under island-

ing uncertainty

First, we focus on proposing optimization models under islanding uncertainty, where

the net load is regarded as certain for ease of presentation. In other words, the goal

of this subsection is to make optimization models scalable compared to the standard

multistage model B(N I). Recall that although one can obtain solutions that are

adaptable to all possible islanding events by solving the standard multistage model,

it is not practical to solve the model because the number of scenarios is exponential

to the number of time periods.

The proposed scheme addresses islanding uncertainty using two types of scalable

optimization models. The key idea for both types of models is to consider a restricted

number of scenarios instead of all possible scenarios simultaneously. Specifically, we

denote an islanding event as the situation in which islanding occurs for consecutive

time periods. As shown in Figure 4.2, each islanding scenario may consist of several

islanding events. We define a node set N I(k) ⊂ N I for each time period k ∈ T

by the set of nodes with at most one islanding event in the time period Tk :=

{k, k+1, . . . , T}. Then, N I(T ) ⊂ N I(T−1) ⊂ · · · ⊂ N I(1) ⊂ N I holds. In addition,

we let the time period t(n) for each node n in N I(k) start from period k. Two sets

of nodes, N I defined in Section 4.2 and N I(1) with T = {1, 2, 3, 4}, are compared

in Figure 4.3. As can be seen in the figure, in N I(1), node n with a connection
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1 t1 t2
Islanding event 1 Islanding event 2 Islanding event 3

Planning horizon

Figure 4.2: Illustration of a scenario with multiple islanding events

state (In = 1) does not have descendent nodes with islanded states if it already

has an islanded state in P(n). This enables a reduction in the number of scenarios

compared to N I . In particular, since only the start and end times are needed to

define an islanding event, the number of scenarios in N I(k) is O((T − k)2).

Now, we introduce two types of optimization models based on the node set

N I(k), BL and RP(k) for k ∈ T , referred to as baseline and replan, respectively.

First, the baseline model BL is similar to the standard multistage model B(N ) in

that the decisions for the entire planning horizon are considered. The only difference

is that BL is constructed with the node set N I(1); recall that islanding scenarios

with at most one islanding event in T are considered. Therefore, the model can be

rewritten as BL=B(N I(1)), which has a strong advantage over B(N I) in terms of

scalability, where the number of scenarios in the former is O(T 2) and in the latter

is O(2T ). Thus, the role of model BL is to obtain good commitment solutions within

a reasonable amount of time.

It should be mentioned that it is not sufficient to deal with all possible islanding

scenarios with only BL, as the solutions from the model are only adaptable to a re-

stricted number of scenarios and several islanding events are possible in general. This

is the reason why the replan model RP and the corresponding replanning procedure

are required. The model RP(k) for k ∈ T is similar to BL in that the node set N I(k)

is considered but is defined slightly differently with it. The purpose of model RP(k)
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Figure 4.3: Comparison of two sets of nodes with T = {1, 2, 3, 4}
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is to amend the pre-determined schedule from k onward, to cope with consequent

islanding events. In other words, the planning horizon of RP(k) is Tk. In addition,

only dispatch decision variables can be determined though RP, where commitment

decisions are given by x̄. With proper initial dispatch and SOC conditions, ȳg for

g ∈ G and ȳSOC
e for e ∈ E , RP(k) is defined as B(N I(k)) on Tk with the following

additional constraints

x = x̄,

ySOC
e0 = ȳSOC

e , ∀e ∈ E ,

yg0 = ȳg, ∀g ∈ G,

where node index zero represents the root node. Notably, it is a linear program

that can be solved much faster than BL because it considers the given commitment

decisions.

We now describe the replanning procedure using scalable optimization models

BL and RP to obtain solutions that are adaptable for any possible case for the en-

tire planning horizon. Let yn = (ygn, y
M
n , y

SH
n , ySOC

en , yCH
en , yDCH

en )g∈G,e∈E for a given

node n. First, before the start of the planning horizon, we obtain commitment de-

cision x̄ and dispatch decisions ȳn for all node n ∈ N I(1) by solving BL. With the

assumption that only dispatch decisions are adaptable to the realization, the com-

mitment decision x̄ will be used throughout the planning horizon. Subsequently,

for each time period k ∈ T , the connection state ik ∈ {0, 1} is observed, where a

microgrid is connected for ik = 1 and islanded for ik = 0. The key time period of

the replanning procedure is immediately after the end of an islanding event, that is,
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Algorithm 4.1 Replanning procedure for a given planning horizon T = {1, . . . , T}

1: l← 1 and obtain x̄ and ȳn for all n ∈ N I(l) by solving BL

2: for k = 1 to T do
3: observe ik ∈ {0, 1}
4: if k = l then
5: nk ← n ∈ N I(l) such that t(n) = k and In = ik
6: else
7: nk ← n ∈ C(nk−1) such that In = ik
8: end if
9: if k ≤ T − 1 and ik − ik−1 = 1 then

10: l← k + 1 and obtain ȳn for all n ∈ N I(l) by solving RP(l)
11: end if
12: return decision at period k as (x̄k,ȳnk

)
13: end for

ik−1 = 0 and ik = 1. During this period, the new node set N I(k+ 1) is constructed

to update the dispatch decisions to appropriately deal with another islanding event

that may occur. Then, model RP(k + 1) is solved to update the dispatch decisions

(yn for n ∈ N I(k + 1)) from period k + 1 onward.

The dispatch decisions for each time period k are then decided by choosing

node nk appropriately as follows: Node nk is selected from one of the immediate

children of nk−1 that satisfies Ink
= ik. However, period k is the first period when

an optimization model is solved, and the node is chosen from the new node set

with t(n) = k and In = ik. Then, the obtained ȳnk
becomes a decision at the time

period k. This procedure is repeated until the end of the planning horizon. The

entire procedure is presented in Algorithm 4.1.

For example, in the case illustrated in Figure 4.2, with a scenario where three

islanding events can occur, three optimization models are solved to deal with the

events. First, the model BL is solved before the start of the planning horizon to deter-

mine the commitment decisions x̄ for the entire planning horizon and the dispatch
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decisions until the end of the first islanding event. Because the first islanding event

ends in period t1, the replanning model RP(t1 + 1) is solved in the period to update

dispatch decisions from t1 +1 onward. Similarly, the dispatch decisions from period

t2 + 1 are obtained by solving RP(t2 + 1) for period t2.

4.3.2 Scalable optimization models under net load uncertainty

Next, we focus on making the optimization models scalable with regard to the net

load uncertainty, especially compared to B(ND), as in the previous subsection. For

simplicity, the connection states are provided in advance, that is, the maximum

transaction amount for each time period t ∈ T is given as

P̄M
t =


0, if islanded in period t,

PM , if connected in period t.

On the whole, the key idea is to make the dispatch decisions determined period-

wise independently by introducing new decision variables that decide their ranges

to which all of them reside. It enables the redefinition of the dispatch decision vari-

ables for each realization in each period, which significantly reduces the number of

variables and constraints while keeping the solutions from the model still adaptable.

The main consideration in designing such variables is to make the dispatch deci-

sion variables feasible in terms of inter-temporal constraints. We note that a similar

concept was proposed in Cho et al. (2019), where the idea was used to enhance fea-

sibility in terms of the two-stage robust optimization framework. The new variable

zmin
gt (zmax

gt ) is defined as the minimum (maximum) generation amount for g ∈ G and

t ∈ T . In addition, the new variables zCH,min
et (zCH,max

et ) and zDCH,min
et (zDCH,max

et )

are defined similarly. Then, when we let z = (zmin
gt , zCH,min

et , zDCH,min
et , zmax

gt , zCH,max
et
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, zDCH,max
et )g∈G,e∈E,t∈T for brevity, we design a set of constraints that z satisfies, as

follows:

Pmin
g xgt ≤ zmin

gt ≤ zmax
gt ≤ Pmax

g xgt, ∀g ∈ G, t ∈ T , (4.2a)

zmax
gt − zmin

g,t−1 ≤ RUg, ∀g ∈ G, t ∈ T \ {1}, (4.2b)

zmax
g,t−1 − zmin

gt ≤ RDg, ∀g ∈ G, t ∈ T \ {1}, (4.2c)

0 ≤ zCH,min
et ≤ zCH,max

et ≤ PCH,max
e , ∀e ∈ E , t ∈ T , (4.2d)

0 ≤ zDCH,min
et ≤ zDCH,max

et ≤ PDCH,max
e , ∀e ∈ E , t ∈ T , (4.2e)

Emin
e ≤

t∑
k=1

(
ηez

CH,min
ek − 1

ηe
zDCH,max
ek

)
, ∀e ∈ E , t ∈ T , (4.2f)

t∑
k=1

(
ηez

CH,max
ek − 1

ηe
zDCH,min
ek

)
≤ Emax

e , ∀e ∈ E , t ∈ T , (4.2g)

T∑
k=1

(
ηez

CH,max
ek − 1

ηe
zDCH,min
ek

)
=

T∑
k=1

(
ηez

CH,min
ek − 1

ηe
zDCH,max
ek

)
= TEe, ∀e ∈ E .

(4.2h)

First, constraints (4.2a) require the relationship between x and z variables, ensur-

ing that z has values between the minimum and maximum generation limits when

the generator is on, or zero otherwise. Next, constraints (4.2b) and (4.2c) indicate

ramping requirements on z that the maximum possible difference in generation level

cannot exceed the ramping requirement. Similarly, constraints (4.2d) and (4.2e) im-

pose the ranges of the charging and discharging variables, respectively. Constraints

(4.2f)-(4.2h) require the z variables to satisfy the SOC ranges. In particular, con-

straints (4.2f) mean that the minimum possible SOC level for any time period t is

not less than the given value Emin
e , and constraints (4.2g) are defined similarly. In

addition, the target SOC level for the last time period is satisfied by (4.2h). Note

that all z values have non-negative values, as naturally satisfied in (4.2a), (4.2d),
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and (4.2e). For simplicity, we now define a set Z(x) containing feasible z values

satisfying (4.2a)-(4.2h). Note that the set depends on the commitment variable x.

As mentioned, the key advantage of introducing variable z is that one can re-

define the dispatch decisions, which are adaptable to sequential realizations, inde-

pendently of realizations for each time period, without having dispatch decision

variables correspond to every node in ND. More specifically, for g ∈ G, instead of

using ygn that indicates the dispatch amount for node n ∈ ND, ygst is defined to

indicate the dispatch amount for realization s ∈ SD
t , t ∈ T . The remaining dispatch

decisions yMst , y
SH
st , yCH

est , and yDCH
est can be defined in a similar manner and are

summarized as follows:

Continuous Variables for R

ygst generation amount of g ∈ G of s ∈ SD
t , t ∈ T

yMst transaction amount with main grid of s ∈ SD
t , t ∈ T

ySHst load shedding amount of s ∈ SD
t , t ∈ T

yCH
est charging amount of e ∈ E of s ∈ SD

t , t ∈ T

yDCH
est discharging amount of e ∈ E of s ∈ SD

t , t ∈ T

zmin
gt (zmax

gt ) minimum (maximum) generation amount for g ∈ G, t ∈ T

zCH,min
et (zCH,max

et ) minimum (maximum) charging amount for e ∈ E , t ∈ T

zDCH,min
et (zDCH,max

et ) minimum (maximum) discharging amount for e ∈ E , t ∈ T

Then, the proposed model R, based on the new variable z and re-defined variable

y, is represented as follows:

R : min
∑
t∈T

∑
g∈G

cSTg xSTgt +
∑
t∈T

∑
s∈SD

t

qDst

∑
g∈G

cVg ygst + ρty
M
st +Kty

SH
st

 (4.3a)
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s.t. x ∈ X , z ∈ Z(x),∑
g∈G

ygst +
∑
e∈E

(yDCH
est − yCH

est ) + yMst + ySHst ≥ Ds
t , ∀s ∈ SD

t , t ∈ T , (4.3b)

− P̄M
t ≤ yMst ≤ P̄M

t , ∀s ∈ SD
t , t ∈ T , (4.3c)

zmin
gt ≤ ygst ≤ zmax

gt , ∀g ∈ G, s ∈ SD
t , t ∈ T , (4.3d)

zCH,min
et ≤ yCH

est ≤ z
CH,max
et , ∀e ∈ E , s ∈ SD

t , t ∈ T , (4.3e)

zDCH,min
et ≤ yDCH

est ≤ zDCH,max
et , ∀e ∈ E ,∀s ∈ SD

t , t ∈ T , (4.3f)

ygst, y
SH
st , yCH

est , y
DCH
est ≥ 0, ∀g ∈ G, e ∈ E , s ∈ SD

t , t ∈ T . (4.3g)

In the model, the objective function (4.3a) and constraints (4.3b)-(4.3c) are obtained

by replacing the node index n ∈ ND with s ∈ SD
t and t ∈ T in (4.1a)-(4.1c) of

B(ND). In particular, the probability of each net load realization qDst is used instead

of the node probability pDn . Similarly, the net load realization Ds
t is used instead

of Dn. Constraints (4.3d)-(4.3f) utilize the range variable z, indicating that the

dispatch variables have values within such ranges.

We note that the number of decision variables is significantly reduced to O(σT ),

compared to O(σT ) where all the nodes are considered. In the following proposition,

we show the relationship between the two models, B(ND) and R.

Proposition 4.1. Let ZB and ZR be the optimal value of B(ND) and R, respectively.

Then, ZB ≤ ZR.

Proof. First, we define an artificial problem R’ by following,

Z ′
R = min

∑
t∈T

∑
g∈G

cSTg xSTgt +
∑

n∈ND

pDn

∑
g∈G

cVg ygn + ρt(n)y
M
n +Kt(n)y

SH
n

 (4.4a)
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s.t. x ∈ X , z ∈ Z(x), (4.4b)∑
g∈G

ygn +
∑
e∈E

(
yDCH
en − yCH

en

)
+ yMn + ySHn ≥ Dn, ∀n ∈ ND, (4.4c)

− P̄M
t(n) ≤ y

M
n ≤ P̄M

t(n), ∀n ∈ ND, (4.4d)

zmin
g,t(n) ≤ ygn ≤ z

max
g,t(n), ∀g ∈ G, n ∈ ND, (4.4e)

zCH,min
e,t(n) ≤ yCH

en ≤ z
CH,max
e,t(n) , ∀e ∈ E , n ∈ ND, (4.4f)

zDCH,min
e,t(n) ≤ yDCH

en ≤ zDCH,max
e,t(n) , ∀e ∈ E , n ∈ ND, (4.4g)

ygn, y
SH
n , yCH

en , yDCH
en ≥ 0, ∀g ∈ G, e ∈ E , n ∈ ND, (4.4h)

which is a formulation that introduces the range variables z but still uses dispatch

variables corresponding to every node in ND. The purpose of the artificial model R′

is to demonstrate the relationship between B(ND) and R in a simpler manner. Then,

we prove that ZB ≤ ZR by showing ZB ≤ Z ′
R and Z ′

R ≤ ZR.

First, we prove that ZB ≤ Z ′
R by demonstrating that any feasible solution of

R′ can be transformed into a feasible solution of B(ND). With a slight abuse of

the notation, let ynode = (ygn, y
M
n , y

SH
n , ySOC

en , yCH
en , yDCH

en )g∈G,e∈E,n∈ND . Then, a

feasible solution (x̄, ȳnode, z̄) is constructed with (x̄, z̄) satisfying (4.4b), (ȳgn, ȳ
M
n ,

ȳSHn , ȳCH
en , ȳDCH

en )g∈G,e∈E,n∈ND satisfying (4.4c)-(4.4h), and ȳSOC
en derived from ȳCH

en

and ȳDCH
en as follows:

ȳSOC
en =

∑
m∈P(n)

(
ηeȳ

CH
em −

1

ηe
ȳDCH
em

)

for e ∈ E , n ∈ ND. We demonstrate that (x̄, ȳnode, z̄) is feasible for B(ND). For
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g ∈ G and n ∈ ND, since z̄min
g,t(n) ≤ ȳgn ≤ z̄

max
g,t(n),

Pmin
g x̄g,t(n) ≤ z̄min

g,t(n) ≤ ȳgn ≤ z̄
max
g,t(n) ≤ P

max
g x̄g,t(n),

ȳgn − ȳg,n− ≤ z̄max
g,t(n) − z̄

min
g,t(n−) ≤ RUg,

ȳg,n− − ȳgn ≤ z̄max
g,t(n−) − z̄

min
g,t(n) ≤ RDg.

For e ∈ E and n ∈ ND, we know that z̄CH,min
e,t(n) ≤ ȳCH

en ≤ z̄CH,max
e,t(n) and z̄DCH,min

e,t(n) ≤

ȳDCH
en ≤ z̄DCH,max

e,t(n) . Then,

z̄CH,min
e,t(n) ≤ ȳCH

en ≤ z̄
CH,max
e,t(n) ≤ PCH,max

e ,

z̄DCH,min
e,t(n) ≤ ȳDCH

en ≤ z̄DCH,max
e,t(n) ≤ PDCH,max

e .

Also,

ȳSOC
en =

∑
m∈P(n)

(
ηeȳ

CH
em −

1

ηe
ȳDCH
em

)
≤

∑
m∈P(n)

(
ηez̄

CH,max
e,t(m) − 1

ηe
z̄DCH,min
e,t(m)

)
≤ Emax

e ,

ȳSOC
en =

∑
m∈P(n)

(
ηeȳ

CH
em −

1

ηe
ȳDCH
em

)
≥

∑
m∈P(n)

(
ηez̄

CH,min
e,t(m) −

1

ηe
z̄DCH,max
e,t(m)

)
≥ Emin

e ,

and

T∑
k=1

(
ηez̄

CH,min
ek − 1

ηe
z̄DCH,max
ek

)
≤ ȳSOC

en , ∀n ∈ ND : t(n) = T,

ȳSOC
en ≤

T∑
k=1

(
ηez̄

CH,max
ek − 1

ηe
z̄DCH,min
ek

)
, ∀n ∈ ND : t(n) = T.

Therefore, ȳSOC
en = TEe when t(n) = T . Because the two objective functions are

equal, we obtain ZB ≤ Z ′
R.
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Second, we demonstrate that Z ′
R ≤ ZR by transforming any feasible solution in

R into a feasible solution in R′ with the same objective value. Let (x̂, ŷbranch, ẑ) be a

feasible solution to R, where ybranch = (ygst, y
SH
st , yCH

est , y
DCH
est )g∈G,e∈E,s∈SD

t ,t∈T . Sub-

sequently, x̂ ∈ X and ẑ ∈ Z(x̂). For a given s ∈ SD
t and t ∈ T , define N(k, s, t) :=

{n ∈ ND | t(n) = t and Dn = Ds
t } to represent a set of nodes in ND that corre-

sponds to realization s at time period t. Then, for g ∈ G, e ∈ E , s ∈ SD
t , t ∈ T ,

a solution corresponding to each node in B(ND) can be constructed by letting

ŷgn = ŷgst, ŷ
SH
n = ŷSHst , ŷCH

en = ŷCH
est , ŷ

DCH
en = ŷDCH

est that satisfies n ∈ N(k, s, t).

Because (ŷbranch, ẑ) satisfies (4.3d)-(4.3g) and ŷbranch satisfies (4.3b) and (4.3c), we

can easily check that (ŷnode, ẑ) satisfies (4.4e)-(4.4h) and ŷnode satisfies (4.4c) and

(4.4d). Therefore, (x̂, ŷnode, ẑ) is feasible for R′. Furthermore, as qDst =
∑

n∈N(k,s,t) p
D
n

holds because the probability for each realization is independent of the time period,

the following holds:

∑
t∈T

∑
g∈G

cSTg xSTgt +
∑
t∈T

∑
s∈SD

t

qDst

∑
g∈G

cVg ygst + ρty
M
st +Kty

SH
st


=
∑
t∈T

∑
g∈G

cSTg xSTgt +
∑
t∈T

∑
s∈SD

t

∑
n∈N(k,s,t)

pDn

∑
g∈G

cVg ygn + ρty
M
n +Kty

SH
n


=
∑
t∈T

∑
g∈G

cSTg xSTgt +
∑

n∈ND

pDn

∑
g∈G

cVg ygn + ρty
M
n +Kty

SH
n

 .

We note the important implications of Proposition 4.1. First, the results demon-

strate the conversion of an optimal solution of R to a feasible solution of B(ND),

which directly indicates that one can obtain an adaptable solution to the uncertainty
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that is sequentially realized by solving R instead of B(ND). Since the number of de-

cision variables in the former is O(σT ), compared to O(σT ) in the latter, model R

significantly reduces the size of the problem. In addition, the difference in objective

values indicates that the optimal solution of R has relatively restricted flexibility

compared to B(ND) because the constraints (4.3d)-(4.3f) in R require a feasible re-

gion in which the adaptable decision variables should reside. However, this does

not mean deterioration of the obtained solutions; alternatively, robustness and en-

hanced feasibility can be obtained in that the feasible operational ranges can guide

the decision of the dispatch level, which needs to be analyzed in the computational

sense.

4.3.3 Integrated optimization models for both islanding and net

load uncertainty

The scalable optimization approaches proposed in Sections 4.3.1 and 4.3.2 can be

used separately when only one of the two factors is uncertain. However, the main

goal of this study is to operate a microgrid in a scalable manner, even when both

islanding and net load are uncertain. Therefore, we propose integrated optimization

approaches to operate a microgrid under stochastic islanding and net load, which

are based on combining the two frameworks in Sections 4.3.1 and 4.3.2.

Overall, the key is to extend the optimization models BL and RP(k) for k ∈

T to incorporate the net load uncertainty. To do this, the decision variables and

constraints of model R are first extended to incorporate all the nodes in N I(k). For

each node m ∈ N I(k), the corresponding connection state is given as Im ∈ {0, 1},

and the probability is given as p′stm = pImq
D
st for s ∈ SD

t , t ∈ Tk, considering the
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independence of the two uncertain factors. In addition, decision variables ybranch

and z are extended with the new component m ∈ N I(k). We define set Zm(x) as

the extension of Z(x) with m ∈ N (k). In Zm(x), all constraints (4.2a)-(4.2h) of

Z(x) are defined for a given m ∈ N I(k) with the extended variable z. Then, the

integrated model I(k) for k ∈ T , which is used for both the baseline and replan

models, is as follows:

I(k) :

min
∑
t∈Tk

∑
g∈G

cSTg xSTgt +
∑

m∈N I(k)

∑
t∈Tk

∑
s∈SD

t

p′stm

∑
g∈G

cVg ygstm + ρty
M
stm +Kty

SH
stm


s.t. x ∈ X ,

z ∈ Zm(x), ∀m ∈ N I(k),∑
g∈G

ygstm +
∑
e∈E

(yDCH
estm − yCH

estm) + yMstm + ySHstm ≥ Ds
t , ∀s ∈ SD

t , t ∈ Tk,m ∈ N I(k),

− ImPM ≤ yMstm ≤ ImPM , ∀s ∈ SD
t , t ∈ Tk,m ∈ N I(k),

zmin
gtm ≤ ygstm ≤ zmax

gtm , ∀g ∈ G, s ∈ SD
t , t ∈ Tk,m ∈ N I(k),

zCH,min
etm ≤ yCH

estm ≤ z
CH,max
etm , ∀e ∈ E , s ∈ SD

t , t ∈ Tk,m ∈ N I(k),

zDCH,min
etm ≤ yDCH

estm ≤ z
DCH,max
etm , ∀e ∈ E , ∀s ∈ SD

t , t ∈ Tk,m ∈ N I(k),

ygstm, y
SH
stm, y

CH
estm, y

DCH
estm ≥ 0, ∀g ∈ G, e ∈ E , s ∈ SD

t , t ∈ Tk,m ∈ N I(k).

We now demonstrate how one can operate a microgrid using models based on I(k)

for k ∈ T , which is similar to those presented in Section 4.3.1. First, model I(1) is

solved before the start of the planning horizon. When islanding events occur no more

than once, the range decision z remains unchanged over the entire planning horizon.
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In addition, regardless of islanding events, a single-period dispatch problem is solved

to derive the exact dispatch decisions under any realized net load dt ∈ R+ for each

period t ∈ T . Note that it is a simple linear programming problem to determine

the dispatch amount in a given range that satisfies the net load, which is written as

follows:

min
∑
g∈G

cVg yg + ρty
M +Kty

SH

s.t.
∑
g∈G

yg +
∑
e∈E

(
yDCH
e − yCH

e

)
+ yM + ySH ≥ dt,

− ĪtPM ≤ yM ≤ ĪtPM ,

zmin
gt ≤ yg ≤ zmax

gt , ∀g ∈ G,

zCH,min
et ≤ yCH

e ≤ zCH,max
et , ∀e ∈ E ,

zDCH,min
et ≤ yDCH

e ≤ zDCH,max
et , ∀e ∈ E ,

yg, y
SH , ySOC

e , yCH
e , yDCH

e ≥ 0, ∀g ∈ G, e ∈ E ,

where Īt is a realized connection state for period t. Note that the problem is always

feasible because the given range variables are determined in advance to satisfy the

constraints linked among periods. When the first islanding event ends at a certain

time period k ∈ T , the range decisions from period k+1 are updated to address the

possibility of the next islanding event. This can be achieved by solving a replanning

model, which is based on model I(k + 1) with initial conditions (i.e. decisions at

period k and on/off decisions for the entire planning horizon), which is a linear

programming problem.

Finally, the number of variables and constraints of the integrated model is
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O
(
σ · T 3

)
, which is much smaller compared to O

(
(2σ)T

)
for the standard mul-

tistage model B(N ) in Section 4.2. This makes the proposed model of practical size

that can be solved in a reasonable amount of computation time.

4.4 Computational experiments

Computational experiments were conducted to demonstrate the effectiveness and

efficiency of the proposed models. First, the scalability and quality of the solutions

from the models were evaluated and compared with those of the standard multistage

model. In addition, solutions from the integrated model, considering the uncertainty

of both factors, were evaluated for practical-sized instances. A microgrid with four

thermal generators and one BESS was tested, where the configuration, nominal net

load data, and electricity price data for 24 time periods were from Lee et al. (2021),

and the details of generators and BESSs are presented in Tables 4.3 and 4.4. In

addition, the value of lost load (Kt) was set to 5,000 $/MWh for every time period

and the maximum amount of transaction with the main grid (PM ) was set to 10

MW.

In the experiments, uncertain islanding events were regarded to follow a bi-

nomial distribution, with islanding probability p for each time period, where p ∈

{0.1, 0.2, 0.3, 0.4, 0.5}. In addition, to represent the uncertain net load, we define pa-

rameters σ and δ to describe each period’s realization in a scenario tree. The branch

parameter σ is defined as the number of realizations, and the deviation parameter

δ indicates how the realizations differ from each other. For simplicity, we assume

that the number of realizations is time-invariant; in other words, σ1 = · · · = σT = σ

and SD
t = {D1

t , D
2
t , . . . , D

σ
t } for t ∈ T . Then, we assign each net load value in St
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Table 4.3: Characteristics of thermal generators

Generators G1 G2 G3 G4

Unit Cost [$/MWh] 27.7 39.1 61.3 65.6
Min-Max Capacity [MW] 2-10 1-5 1-5 0.8-3
Min Up/Down Time [h] 3 3 3 1

Ramp Up/Down Rate [MW/h] 4 3 3 2.5
Start-up Cost [$] 50 20 20 5
Initial State [h] 5 3 -3 -1

Table 4.4: Characteristics of BESS

BESS
Capacity
[MWh]

Max Charging/
Discharging
Power [MW]

SOC
Operation
Range [%]

Initial-
Target
SOC [%]

Charging/
Discharging
Efficiency [%]

E1 10 5 10-90 50 90

by Di
t = γiD̄t, where D̄t is the nominal net load value and the set of coefficients

{γi}i∈{1,...,σ} is affected by the parameter δ. In the experiment, the uncertain net

load is assumed to follow a uniform distribution, specifically, γ ∼ U [1− δ, 1+ δ]. For

each given σ and δ combination, specific coefficients are generated as follows and

shown in Figure 4.4.

• σ = 2 → γ1 = 1− δ, γ2 = 1 + δ

• σ = 2k + 1 for k ∈ Z+ → γi = 1 + (i− k − 1)δ/k for all i = 1, . . . , 2k + 1

The probability of each realization is assigned equal to each other for all realizations.

1− δ 1 + δ1

(a) σ = 2

1− δ 1 + δ1

(b) σ = 3

1− δ 1 + δ11− 1
2δ 1 + 1

2δ

(c) σ = 5

Figure 4.4: Illustration of parameters σ and δ on each period’s net load realizations
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All models were implemented with C++ using a PC with 32GB RAM, where

CPLEX 20.1 with its default setting was used to solve mixed-integer optimization

problems. We set the time limit for solving each optimization model to 600 s. In the

remaining section, the effects of the proposed optimization models under islanding

events are evaluated in Section 4.4.1, and those under net load uncertainty are

demonstrated in Section 4.4.2. The effectiveness of the integrated models under

both uncertain factors is tested in Section 4.4.3.

4.4.1 Effectiveness of proposed model with replanning procedure

under islanding uncertainty

In this subsection, to evaluate the proposed models under islanding uncertainty,

we assume that the net load is certain and is given as a nominal value for the

planning horizon. First, the computation times of the proposed and standard multi-

stage models were analyzed to demonstrate the scalability of the proposed approach.

Specifically, the proposed baseline model (BL in Section 4.3.1) and standard mul-

tistage model (B(N I) in Section 4.2) were tested. The average computation times

among the five p values for T ∈ {6, . . . , 24} are demonstrated in Figure 4.5. It can

be observed from the figure that the computational time exponentially increases as

T increases for the standard multistage model because the number of scenarios is

O(2T ). Consequently, it was impossible to solve the model when T ≥ 17 because of

the out-of-memory status in the commercial solver. On the contrary, the computa-

tion time of model BL gradually increases as T increases, and it can be easily solved

even when T = 24 because the size of the model is O(T 2).

Next, the solutions of the entire planning horizon from the two types of opti-

136



6 8 10 12 14 16 18 20 22 24

10−1

100

101

102

103

T

T
im

e
(s
)

B(N I)

BL

Figure 4.5: Comparison of the computation times for different numbers of time
periods

Table 4.5: Cost statistics ($) for all possible islanding cases for T = 12

Standard method Proposed method

p 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

exp 6,334.7 6,522.2 6,675.2 6,837.3 6,987.7 6,370.2 6,569.0 6,711.5 6,925.0 7,046.8
stdev 550.4 424.8 471.4 292.0 224.2 732.7 924.1 507.8 429.2 273.1

mization models were evaluated and compared. Recall that the solutions from the

proposed baseline model BL itself are not sufficient to deal with all possible islanding

cases because at most one islanding event is considered in the model. Thus, we can

obtain solutions adaptable to all islanding cases by implementing the replanning

procedure mentioned in Algorithm 4.1, which we call the proposed method. In con-

trast, in the standard method, decisions adaptable for all possible islanding cases are

obtained simultaneously by solving B(N I).

The operational costs of the two methods were compared by evaluating the costs

for all possible cases, where the number is 2T , for T = 12, because the standard

multistage model cannot be solved for large T values, as shown in Figure 4.5. The
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expected costs (exp) and standard deviations (stdev) for all islanding cases are

reported in Table 4.5. From the table, it can be seen that when p increases, the

expected costs increase in both models. This is because when the risk of islanding

increases, more generation is required to meet its net load; otherwise, load shedding

is required. On the contrary, the variances in costs tend to decrease as p increases,

showing the robustness of the model BL as p increases. In addition, the results

demonstrate that although the expected costs of the proposed method are slightly

higher than those of the standard multistage model, the differences are small, with

an average gap of 0.8% for all p values.

4.4.2 Effectiveness of proposed model under net load uncertainty

Here, we describe the examination of the proposed scalable optimization models

under net load uncertainty, where the connection states are assumed to be given in

advance. First, we demonstrated the efficiency of the proposed models for various

numbers of time periods and branches, by comparing the computation times of the

proposed model R to the standard multistage model B(ND). Tests were conducted

for T ∈ {4, . . . , 24} and σ ∈ {2, 3, 5}, of which the average computation times

for δ ∈ {0.1, 0.2, 0.3} are reported here. The results in Figure 4.6 emphasize the

scalability of the proposed model R. It can be seen that R obtained the optimal

solution in a substantially short amount of time, even when T = 24. Here, less than

1 second was required to solve the models. However, it is not practical to use the

standard multistage model for real-sized instances, because the computation time

exponentially increases when T increases. In addition, it is more difficult to solve

using a standard multistage model when the number of branches increases. For the
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Figure 4.6: Comparison of the computation times for various numbers of branches

standard multistage model, the times can only be plotted for a restricted number of

time periods; otherwise, the model cannot be completed because of time or memory

limits.

Next, we compared the two objective values from the two models, R and B(ND),

by calculating the relative objective value of the former compared to the latter.

As shown in Section 4.3.2, the objective value of R is not less than that of B(ND)

because the dispatch decisions are more flexible for the latter. Figure 4.7 shows the

relative difference for σ = 2, δ ∈ {0.1, 0.2, 0.3}, where T is within the values at which

B(ND) can be solved. In the figure, each value is calculated as

Difference(%) = 100×
zR − zB(ND)

zB(ND)

,

where zM is the optimal objective value of model M . We show that the differences

are larger when the deviation increases. In addition, although there is a difference

between the two, it is quite small (less than 1% for δ ≤ 0.2). Combining the results

139



4 6 8 10 12 14 16

0

1

2

3

T

D
iff
er
en

ce
(%

)

δ=0.1

δ=0.2

δ=0.3

Figure 4.7: Relative objective values of the proposed model for σ = 2

in Figure 4.6, the proposed models can also yield similar solutions compared with

the standard multistage model, with a superior computation time.

4.4.3 Effectiveness of integrated model under both uncertain fac-

tors

Finally, we demonstrate how an integrated model combining both methodologies

performs when both factors are uncertain for T = 24. First, computational aspects

of the proposed models were evaluated for various p, δ, and σ values. Recall that

the standard multistage model, which has an exponential number of variables and

constraints, cannot be solved for T = 24 even when only one of the two factors is

uncertain. However, the proposed models can be solved in a reasonable amount of

time, as shown in Figure 4.8. In the figure, the computation times for solving the

baseline model I(1) are shown. From the figure, the effects on σ can be observed,

resulting in a higher computational burden as σ increases. On the contrary, the
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Figure 4.8: Computation times of the proposed baseline models for both uncertainty
for T = 24

impact of parameters p and δ is not significant; only slight reductions in computation

times are observed as δ increases. Finally, we emphasize that the models can be

solved within one hour for any combination, which highlights the practical usefulness

of the proposed approaches.

Further, out-of-sample tests were conducted to show how the solutions from

the proposed optimization models are effective over unexpected realizations. For

the islanding uncertainty, test scenarios were obtained from a total 224 number of

possible cases. For the net load uncertainty, test scenarios were obtained from the

uniform distribution, which is U [1− δ, 1+ δ] for δ = 0.1, 0.2, and 0.3. Overall, 1,000

test scenarios were sampled from the joint sample space of both. For each sample,

the operation cost over the planning horizon was calculated using the methods based

on models I(k) for k ∈ T in Section 4.3.3. Two types of costs, base and exp, were

calculated for the out-of-sample evaluations as follows: First, base refers to the cost

when no islanding and no net load deviation occurs, and is obtained by solving the
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baseline model. Then, exp is the expected operation costs of 1,000 test scenarios. The

results in Figure 4.9 demonstrate the two costs under various islanding probabilities

and deviation parameters when σ = 2. First, the expected operation costs increase

as p or δ increases, which indicates that higher penetration of uncertainty increases

the operation costs. In particular, the expected costs become much higher when

both factors are uncertain. On the contrary, the baseline costs are less affected by

the parameters p and δ, showing only slight increases when δ increases. Next, cost

statistics were obtained for various σ values to determine the impact of σ on the

operation costs. The lower quartile (Q1), median (Q2), and upper quartile (Q3) of

operation costs among 1,000 scenarios are shown in Table 4.6. From the table, it

can be seen that the operation costs, especially median costs, slightly decrease as

σ increases. This implies enhanced accuracy of the distribution estimation as the

number of samples increases. However, for a small σ, the cost differences between

upper and lower quartile values are small, which indicates the robustness of the

on/off decisions. In general, it can also be shown that the overall costs increase as

p or δ increases, incurring significant cost damage when both parameter values are

large.

4.5 Summary

In this chapter, scalable optimization models are developed for microgrid operation

under stochastic islanding events and net load. The main purpose of this study is

to significantly reduce the computational burden of solving practical-sized instances

with both factors. For uncertain islanding events, we developed optimization models

along with the replanning procedure based on node sets having a reduced number of
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Figure 4.9: Baseline and expected operation costs for T = 24 and σ = 2

Table 4.6: Operation cost statistics ($) under both uncertain factors for T = 24

p δ
σ=2 σ=3 σ=5

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

0.1
0.1 16,109.0 16,375.3 16,668.3 16,028.0 16,301.2 16,590.4 16,038.6 16,313.0 16,609.3
0.2 16,403.4 16,872.7 17,442.9 16,288.1 16,782.8 17,325.6 16,197.0 16,701.2 17,271.9
0.3 16,621.4 17,383.6 18,278.8 16,525.2 17,289.6 18,207.8 16,475.6 17,231.9 18,144.5

0.2
0.1 16,455.5 16,769.2 17,117.3 16,408.6 16,726.0 17,088.0 16,402.1 16,722.3 17,074.7
0.2 16,816.1 17,389.4 18,079.3 16,805.1 17,380.0 18,088.3 16750.6 17,320.7 18,068.8
0.3 17,048.1 18,089.2 21,329.0 17,029.8 18,045.6 20,996.4 16,993.9 18,036.8 21,236.2

0.3
0.1 16,759.6 17,089.8 17,509.6 16,718.3 17,049.8 17,478.5 16,710.5 17,050.0 17,502.4
0.2 17,124.7 17,849.3 20,140.3 17,121.8 17,837.6 20,231.6 17,089.9 17,795.0 20,185.8
0.3 17,576.3 19,281.5 32,265.9 17,526.3 19,184.4 32,205.1 17,497.7 19,201.8 32,285.1
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nodes, which is quadratically dependent on the number of time periods. In addition,

we developed scalable optimization models under stochastic net load based on the

introduction of range variables to redefine dispatch variables for each period. Lastly,

we proposed the integrated models to operate a microgrid when both islanding and

net load are uncertain. Through various numerical experiments, we demonstrated

the effectiveness of the solutions and the strong advantage in the scalability of the

proposed models, compared to the standard multistage model. The practical useful-

ness of the integrated models was also demonstrated.
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Chapter 5

Conclusion

5.1 Summary and contributions

In this dissertation, we investigated various optimization problems for power system

operation under uncertainty. Since it is computationally demanding when various

uncertain factors are incorporated into the optimization models, we focused on ef-

ficient optimization models and solution approaches to reduce the computational

burden of optimization models. The proposed solution approaches are based on de-

composition to deal with large-scale optimization model with usually comes from

the number of possible realizations. We also presented efficient optimization models

which can be used stand-alone or efficient solution approaches that can easily be

applied. We summarize the contributions of each chapter.

In Chapter 2, we focus on a generic two-stage stochastic program with finite sup-

port in the literature, that is also widely used in power system operation. Although

it is widely used, the large number of scenarios makes it hard to solve the model, and

there also are potential risks of inaccurate estimation of the underlying distribution.

To mitigate the drawbacks, we proposed a novel model, which is a partition-based

risk-averse two-stage stochastic program based on a partition and risk function. Var-

ious risk-averse two-stage models can be represented with the proposed model, and
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various levels of risks can be controlled by changing the partition. We propose an

efficient and generic solution approach based on column-and-constraint generation

to solve the model with a given partition. We also devised partitioning algorithms

for constructing a partition to enable the risk of the model closest to the pre-defined

target. We also presented partitioning schemes to incorporate the proposed parti-

tioning algorithm into the proposed column-and-constraint generation. Numerical

experiments demonstrate that the models with the proposed partitioning methods

induce significantly low deviation from the target, compared to the other methods.

Further, the proposed column-and-constraint generation outperforms the commer-

cial solver or the algorithm based on the literature, and a controllable parameter Γ is

also useful for reducing computation times while obtaining a significantly small op-

timality gap. Lastly, the computational aspects of the adaptive partitioning scheme

show its potential utility over an a priori partitioning scheme.

In Chapter 3, we investigate 1UC problems that arise when an individual power

producer submits its schedule or commitment state to the electricity market. Specif-

ically, we devised efficient dynamic programming algorithms for two types of 1UC

problems: self-scheduling and self-commitment problems. First, to deal with the self-

scheduling problem with stochastic electricity prices, we proposed algorithms that

focus on the dispatch subproblem to efficiently handle a number of scenarios. Second,

for the self-commitment problem, which decides only the on/off status of a generator

to maximize profit, we propose an algorithm with reduced computational complexity

to other existing methods. Then, we presented two unit decomposition approaches

to deal with the general UC problem with stochastic net load, which are decompo-

sition methods that use 1UC problems as subproblems. The approaches include a
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novel approach, which employs the self-commitment problem and has not been ad-

dressed before. We presented Lagrangian relaxation and column generation methods

to implement each unit decomposition method. Through numerical experiments, the

efficiency of the proposed algorithms for 1UC problems is demonstrated for various

numbers of scenarios and time periods. In addition, we compared the efficiency of

various unit decomposition methods to solve the UC problem under stochastic net

load, and we emphasize the scalability of the novel unit decomposition methods

when the number of scenarios increases.

In Chapter 4, we study operating microgrids under stochastic islanding events

and net load. Considering those uncertain factors are sequentially realized in the

planning horizon, a standard multistage stochastic optimization model is widely

used. However, since the size of the model is exponential with the number of possible

realizations in a period, we proposed scalable optimization models to solve practical-

sized instances. For uncertain islanding events, we developed optimization models

along with the replanning procedure based on node sets having a reduced number of

nodes, which is quadratically dependent on the number of time periods. In addition,

we developed scalable optimization models under stochastic net load based on the

introduction of range variables to redefine dispatch variables for each period. Lastly,

we proposed the integrated models to operate a microgrid when both islanding and

net load are uncertain. Through various numerical experiments, we first emphasized

the strong advantage in the scalability of the proposed models to solve practical-

sized instances, compared to the standard multistage model which cannot. We also

demonstrated the effectiveness of the models in the environment that uncertain

factors sequentially realize.
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The optimization models and solution approaches proposed for the two-stage

stochastic program in Chapter 2 are generic and thus have various applications.

The proposed methodology can be used to solve other optimization problems in

power systems, such as capacity expansion planning, and nuclear outage planning

problems. In addition, it can be used to solve problems in other fields, such as supply

chain management, transportation system, and so on. The additional computational

results in Appendix A, which are done for the facility location problem, indicate the

applicability of the proposed methodology.

On the other hand, the optimization models and solution approaches in Chapters

3 and 4 are proposed considering specific characteristics in power systems. However,

it can also be applied to solve other optimization problems that have a similar

structure. For example, since the unit decomposition methods in Chapter 3 are

based on relaxing the system-wise constraints, it can be related to the production

systems where a set of machines are coordinated to meet the customer demands of

items. In addition, since production ramping constraints can also exist in machines

(see Damcı-Kurt et al., 2016), the scalable optimization models that mitigate the

computational burden by exploring ramping requirements can be applied in the

lot-sizing and scheduling problem context.

5.2 Future research directions

Although various optimization models and decomposition approaches are proposed

in the dissertation, there is room for further research. We close the dissertation

by presenting some points of limitation and extension, which is worthwhile for the

follow-up studies.
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First, for the proposed novel optimization model which we call PSP in Chap-

ter 2, various risk functions other than the CVaR function can be considered. As

mentioned, using the relationship between risk-averse stochastic programming and

DRO, the various risk functions in PSP correspond to the various ambiguity sets

in DRO. Whether the proposed column-and-constraint generation approach can be

applied in those contexts and is efficient compared to other existing solution ap-

proaches is worthwhile to investigate. In addition, the proposed partitioning criteria

and problems can be further investigated. There can be various criteria on how to

make a partition, and the clarity of partitioning criteria and ease of the resulting

partitioning problem are also important. Finally, the proposed partitioning methods

could be elaborated for effective embedding in a multi-stage stochastic program,

where they would need to be adapted to settings in which scenarios have complex

relationships.

Next, the single-generator system can be further investigated, which is worth-

while to explore not only to solve 1UC problems efficiently but also to enhance

the solvability of UC problems. For deterministic 1UC problems, various classes

of strong valid inequalities are developed and compact extended formulations that

can describe the convex hull of the feasible solution in higher dimensions are also

proposed in the literature. However, the classes of valid inequalities that can suffi-

ciently characterize the convex hull in the original space have not been proposed,

to the best of our knowledge. If it is possible with efficient separation, it can be

utilized to reduce the computational burden of UC problems. Next, algorithms for

the self-scheduling problem can be further explored. Since the single-generator dis-

patch problem that arises in the self-scheduling problem is a linear program with a
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relatively simple structure, there may be another efficient algorithm for it. Lastly,

1UC problems with various uncertainty modeling frameworks can be investigated,

and whether the corresponding unit decomposition framework to the UC problems

can be efficient also needs to be analyzed.

Further, models and solution approaches for optimization under the sequential

realization of uncertainty can be further investigated. In this case, scalability should

be carefully considered to mitigate the so-called curse of dimensionality. The op-

timization models in Chapters 2 and 3, which are based on a two-stage setting,

can be extended to the multistage setting that the uncertain factors such as net

load sequentially realize. The scalable optimization models in microgrid operation

in Chapter 4 is one efficient method to deal with the environment that needs se-

quential decision-making. Although it has shown superior scalability compared to

the standard multistage model, further acceleration on the models can be considered,

because the computational burden increases as the number of time periods increases.

In addition, it can be compared to other solution approaches or frameworks that can

deal with such situations. Since the proposed optimization framework under stochas-

tic net load is based on efficiently restricting the space of recourse actions, it can be

interesting to relate it to the policy (decision-rule) approximation widely used in the

multistage model. In addition, the proposed framework can be compared to other

well-known frameworks that can deal with sequential decision-making such as ap-

proximate dynamic programming (ADP) or stochastic dual dynamic programming.

The good upper and lower bounds in a relatively short time in Chapter 3 can be

helpful when obtaining good quality solutions in the ADP framework.

Lastly, various characteristics or considerations in the power systems can be
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further considered. For example, although thermal generation is one of the widely

used generators, various types of generators, such as pumped-hydro generators, and

combined-cycle generators can be considered. Especially in microgrid environments,

various distributed energy resources such as electric vehicles and battery energy

storage units are widely utilized. Since each type of generation resource has dis-

tinguished characteristics, the studies need to be extended to incorporate them.

Further, various considerations of the system can be considered. For example, oper-

ational requirements regarding the reliability and security of transmission lines, are

important when dealing with power systems with electricity networks. One repre-

sentative consideration is to impose upper bounds that limit the amount of power

flow in a certain transmission line, where the flow depends on the generation amount

of the generator related to the line. Furthermore, we note that one can consider dis-

crete recourse actions to cope with the realization of uncertainty, such as amending

the on/off status of generators. In stochastic programming, it is related to stochastic

programming with integer recourse, which is much more challenging than continu-

ous recourse. Therefore, the solution approaches need to be further elaborated to

deal with such cases. Finally, we have mentioned the applicability of the proposed

methodologies in the previous subsection that it can be applied to various optimiza-

tion problems other than power system operation. It is worthwhile to investigate

their effectiveness for the problems and develop them by exploring characteristics of

them.
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Appendix A

Additional test results in Chapter 2

Appendix A addresses additional numerical experiments in Chapter 2 for the two-

stage facility location problem. In the problem, a set of facilities is selected to open

in order to meet the demands of customer sites. We first describe a mathematical

formulation of a classical facility location problem with stochastic demand. A set I

denotes a set of possible facilities, and a set J indicates a set of customer sites. In

addition, xi is a binary decision variable that indicates whether a facility i ∈ I is

open or not, and ysij indicates the amount of demand of j ∈ J assigned by facility

i ∈ I for each scenario s ∈ S. Further, for each customer site j ∈ J , usj indicates

the amount of demand that is not satisfied for each scenario s ∈ S. To represent

the risk level for second-stage, ηk for k ∈ K and vs for s ∈ S are also introduced.

The mathematical formulation of the two-stage risk-averse facility location problem

is presented below:

min
∑
i∈I

fixi +
∑
k∈K

p̃kηk +
1

1− α
∑
s∈S

psvs (A.1a)

s.t. vs + ηk ≥
∑

i∈I,j∈J
cijy

s
ij +

∑
j∈J

pju
s
j ∀s ∈ Sk, k ∈ K, (A.1b)

∑
j∈J

ysij ≤ Cixi ∀i ∈ I, ∀s ∈ S, (A.1c)
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∑
i∈I

ysij + usj = dsj ∀j ∈ J,∀s ∈ S, (A.1d)

xi ∈ {0, 1}, usj , ysij , vs ≥ 0 ∀i ∈ I, j ∈ J, s ∈ S. (A.1e)

In the formulation, the objective function (A.1a) minimizes the total cost consist-

ing of fixed opening costs and second-stage costs. Constraints (A.1b) represent the

relationship between second-stage risk and cost for each scenario, where the right-

hand side consists of transportation costs and penalty costs for unmet demand.

Constraints (A.1c) restrict the maximum transportation amount for each facility

and constraints (A.1d) represent the demand balance for each customer site. Con-

straints (A.1e) indicates the domain for each decision variable.

We let |I| = 50 and |J | = 100 and instances are generated as follows, similar to

Basciftci et al. (2021). Each facility i ∈ I and customer site j ∈ J is located in a

two-dimensional space where the x− and y− coordinates of each follow U(0, 100).

The transportation cost of each facility to each customer site, cij for i ∈ I and

j ∈ J , is set equal to the Euclidean distance of i and j. Fixed opening cost fi follows

U(5, 000, 10, 000) and the capacity is Ci = 0.002×fi for i ∈ I. The unit penalty cost

for unmet demand is set to pj = 100, and the nominal demand of each customer site

d̄j follows U(90, 180) for j ∈ J .

A total of 100 scenarios are generated from a normal distribution for the prob-

lem. Various number of groups (K) in {1, 5, 10, 20} and α values in {0.5, 0.75, max}

are tested. The specific value of α = max is a minimum value that corresponding

PSP(K, α) is the same as the RO(K) ((2.2) in Section 2.1), recalling that the latter

corresponds to the model PSP whose risk function is a maximum function. For this
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case, where the probabilities of a scenario are equal to each other and those of a

group also are equal to each other, α = max becomes α = 1 −K/|S|. The quantile

parameter for target risk function β is set to 0 or 0.5.

We first analyze the effectiveness of the proposed partitioning methods in an

a priori partitioning scheme. The methods, with two sets of X̄s, are compared

with two other methods: dagg and rand, which are the same as defined in Section

2.5.1. For the proposed methods, the only difference is in selecting X̄: one is to let

X̄ = XEV and the other is to let X̄ = XMS , as mentioned in Section 2.4.2. Three

measures are recorded for the proposed partitioning algorithm: relobj, time, and

iter. Among them, relobj indicates how the algorithm can reduce the maximum

deviation (DK) from the initial value. We finally note the actual deviation (dev) for

all of the partitioning methods to show how well a partition is constructed according

to the criteria.

Table A.1 presents the performances of the various partitioning methods, in-

cluding the statistics on the partitioning algorithm, for various (α,K) combinations

with β = 0 or 0.5. As can be seen, the partitioning algorithm shows sufficiently

small relobj for most of the α and K combinations, which means that deviations

are much reduced relative to the initial value. There are some exceptions, for ex-

ample, α = max and K = 5, because α is so high that a partition cannot move

sufficiently toward the risk-neutral position (β = 0) by the algorithm. For the rest

case, where K ̸= 5, the values are close to zero, which means that one can find a par-

tition close enough to the target for the given first-stage solutions in X̄. It is shown

that the algorithm works more efficiently for β = 0.5 than for β = 0, where the value

is sufficiently close to zero except for α = max and K = 5. It is also demonstrated
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Table A.1: Partitioning statistics for four partitioning methods for the facility loca-
tion problem

β α K
Proposed partitioning methods

dagg rand
X̄ = XEV X̄ = XMS

relobj (%) time (s) iter dev (%) relobj (%) time (s) iter dev (%) dev (%) dev (%)

0

0.5
5 30.0 2.0 145.4 0.91 30.3 176.8 138.6 0.92 1.26 3.05
10 16.7 1.1 186.0 0.50 18.2 164.3 178.6 0.52 1.00 2.93
20 9.6 0.8 205.6 0.26 12.7 197.2 224.6 0.29 0.82 2.64

0.75
5 29.0 1.8 133.0 1.44 29.3 211.3 142.2 1.44 2.07 4.98
10 16.6 1.1 200.0 0.77 18.1 183.5 191.6 0.80 1.65 4.64
20 10.2 1.0 233.4 0.43 13.0 225.2 251.6 0.48 1.31 4.08

max

5 91.4 2.9 110.0 2.28 91.5 285.4 109.2 2.29 3.41 7.57
10 17.2 2.3 163.2 1.08 19.3 435.3 189.8 1.13 2.32 6.14
20 10.4 1.3 219.8 0.50 13.1 301.5 240.4 0.54 1.49 4.60

avg 25.7 1.6 177.4 0.91 27.3 242.3 185.2 0.93 1.70 4.51

0.5

0.75
5 <0.1 0.6 58.2 <0.01 1.3 116.9 65.6 <0.01 1.04 1.78
10 <0.1 0.3 54.6 0.01 1.0 155.7 69.8 <0.01 1.43 1.45
20 <0.1 0.2 34.0 0.02 1.6 94.1 55.0 <0.01 1.77 0.92

max

5 91.1 2.9 110.0 0.84 91.2 299.1 110.6 0.82 0.27 4.30
10 <0.1 0.7 59.4 0.02 1.3 138.7 67.0 0.02 0.78 2.92
20 <0.1 0.3 39.8 <0.01 1.4 96.7 49.4 0.01 1.59 1.42

avg 15.2 0.8 59.3 0.15 16.3 150.2 69.6 0.14 1.15 2.13

that the actual deviation (dev) is much less than expected (relobj), which is close

enough to zero, even when the partitioning algorithm does not reduce the deviation

very much. When comparing the proposed method with the two sets, the deviation

is similar for both X̄ = XMS and X̄ = XEV , albeit the computational time is sig-

nificantly larger for the former, because a larger number of first-stage solutions in X̄

leads to a computational burden. Compared with the other two methods, the actual

deviations of the proposed partitioning methods are the lowest for all cases, and the

deviation of dagg is lower than that of rand.

We next demonstrate the efficiency of the proposed solution approach, which

is primal implementation of the column-and-constraint generation method detailed

in Section 2.3.1. The computational aspects of the proposed solution approach are

compared with those of two other methods, one of which is dual implementation
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mentioned in Section 2.3.2, and the other being solving extensive formulation of

the master problem (MP=RMPK(S)) by commercial solver CPLEX directly with

the default setting (’CPLEX’). We note that, for the purposes of a fair comparison,

no acceleration scheme is implemented to speed up the solving (restricted) master

problem. In this and the following subsection, we use an a priori partitioning scheme

with X̄ = XEV and β = 0. Also, for the proposed solution approach, we let Γ=1

to implement column-and-constraint generation, while the analysis of the effective-

ness of various Γ values is presented in the following subsection. We recorded the

computational time (time) for each method and we additionally recorded two more

measures for the column-and-constraint-generation methods, where iter means the

number of iterations to converge, and totscn means the number of totally added

scenarios through the algorithm.

The computational performances of the three solution approaches are provided

in Table A.2. First of all, we describe the computational aspects of column-and-

constraint generation. The computational time of the algorithm is proportional to

both the number of iterations and the total number of scenarios added. The total

number of scenarios added is not much different from the minimum number of sce-

narios, which can be calculated analytically, i.e. K⌈(1− α)|S|/K⌉, as mentioned in

Section 2.3.1. The algorithm generally is faster for higher α, since a smaller number

of scenarios are needed to solve the model exactly. For the two implementations, pri-

mal implementation has shown less computational time than dual implementation.

This is due to the fact that when the lower bound of the former is larger than that

of the latter, as shown in Proposition 2.4, fewer iterations are needed for conver-

gence. We lastly note that both of the column-and-constraint-generation methods
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Table A.2: Computational performance of three solution approaches for the facility
location problem

α K
column-and-constraint generation

CPLEX
primal implementation dual implementation

iter totscn time (s) iter totscn time (s) time (s)

0.5

1 3.0 55.2 449.0 3.0 55.2 317.5 674.4
5 3.2 64.6 694.0 3.8 65.4 855.9 1,167.3
10 3.4 70.8 980.4 3.8 71 1,012.7 1,239.0
20 3.6 84.6 1,445.0 4.2 85.8 2,268.4 1,482.7

avg 3.3 68.8 892.1 3.7 69.4 1,113.6 1,140.8

0.75

1 3.0 28.6 100.6 3.2 28.6 100.7 694.1
5 3.4 38.8 288.0 3.8 39.8 359.9 1,235.6
10 3.8 48.6 563.1 4.0 49.4 596.1 1,219.7
20 3.6 66.2 1,043.4 4.4 68.6 1,387.4 1,566.5

avg 3.5 45.6 498.8 3.9 46.6 611.0 1,179.0

max

1 2.2 1.2 5.7 2.2 1.2 4.5 264.7
5 3.8 10.8 38.0 3.8 10.8 33.5 1,266.0
10 4.2 21 114.7 4.2 21 108.5 1,242.7
20 4.2 40.6 453.7 4.2 40.6 472.7 1,449.5

avg 3.6 18.4 153.0 3.6 18.4 154.8 1,055.7

outperform CPLEX for nearly all α and K combinations in terms of computation

time. Especially, the difference is much greater for higher α, where that of column-

and-constraint-generation is much faster and that of CPLEX remains nearly the

same.

We investigate the computational performance of the proposed solution approach

for various Γ values, where one can manage a parameter Γ to control the number

of scenarios generated in one iteration. In the experiment, α ∈ {0.5, 0.75} is tested

for various Γ values in {0.6, 0.8, 1.0, 1.2, 1.4}. We also report iter, scn, and time,

whose meanings are the same as defined in Section 2.5.3. In addition, gap is recorded
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for Γ ∈ {0.6, 0.8}, to evaluate the objective values that might not be optimal.

Table A.3 presents the computational performance of the proposed solution ap-

proach with various Γ values. The results in the table demonstrate a trade-off be-

tween the number of iterations and the number of scenarios. Since more scenarios

are added for higher Γ, it is shown that the total number of generated scenarios

is larger as Γ increases. On the other hand, the number of iterations declines as Γ

increases. For Γ ≥ 1, it is shown that more iterations do not significantly reduce the

number of iterations, and that thus, the computational time increases as Γ increases.

To the contrary, when Γ < 1, although the number of iterations increases given the

lesser number of scenarios added compared with Γ = 1, the gap is significantly low,

which means that the algorithm yields an almost optimal solution. In other words,

although the solution cannot be proved to be optimal (because the lower and upper

bounds do not converge to the same value), the quality is good for Γ < 1, which had

shown nearly a 0.5% gap for Γ = 0.6 or a 0.05% gap for Γ = 0.8. Since the compu-

tation time significantly declines compared to the cases where Γ ≥ 1, it can be used

as an efficient heuristic to solve PSP(K, α), where the large number of scenarios can

still be burdensome.

We lastly examine the effectiveness of the adaptive partitioning scheme by com-

paring its performance with the a priori partitioning scheme. We choose X̄ = XEV

when constructing a partition in the a priori partitioning scheme. We report the

number of iterations (iter), the total number of scenarios added (totscn), compu-

tation time (time) and deviation (dev) for each scheme, each having been defined

in previous subsections. For a priori partitioning, we separate computation time for

constructing a partition (ptime) and solving corresponding model (stime). We also
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report the objective value of the model in each scheme as objval.

Table A.4 provides the performance statistics of the two partitioning schemes. It

can be seen that the objective values of the adaptive partitioning scheme are slightly

larger than those of its a priori counterpart, which implies that a partition from

adaptive partitioning scheme is slightly more risk-averse sense. It has shown similar

performance in terms of dev and it has better performance when β = 0.5, where the

deviation is closer to zero. Although similar characteristics between the two schemes

are shown, the computational effort for adaptive partitioning is much lower than

that of a priori, and the trend is especially more obvious for β = 0. The reason

is that the total number of iterations is lower than with the a priori partitioning

scheme, which can be explained by the fact that a partition is constructed in a

relatively small number of iterations. Especially with the additional advantage that

there is no need to choose X̄ in advance, the results show the practical usefulness of

the adaptive partitioning scheme.
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국문초록

전력시스템은 전력의 생산으로부터 최종 소비자에 이르기까지의 발전, 송전, 배전 단계

로 구성된 시스템이다. 전력시스템의 다양한 의사결정 중, 발전계획 문제로 대표되는

운영계획 단계에서는 매 시구간별 시스템의 전력 수요를 충족시키며 전체 운영 비용을

최소로하는발전원들의발전상태와발전량을결정한다.또한,운영계획수립시신재생

발전량, 부하 수요, 위험 상황 등 점차 다변화되는 불확실한 요소를 사전에 고려해야

실시간 운영을 안정적으로 수행할 수 있다. 그러나 불확실성을 반영한 최적화 모형은

계산 부담이 증가하기 때문에, 이를 완화하기 위한 효과적인 최적화 모형과 효율적인

해법이 필요하다. 본 논문은 불확실성이 존재하는 전력시스템의 효과적이고 안정적인

운영을 위한 최적화 모형과 분해기법을 제안한다.

우선, 전력시스템의 최적화 문제에도 널리 활용되는 불확실성이 시나리오로 표현

되는 일반적인 2단계 확률적 최적화 모형을 탐구한다. 전통적인 모형은 시나리오 수가

증가함에 따라 계산 부담이 비례하여 증가하며 시나리오 확률을 잘못 추정할 위험이

존재한다. 이를 완화하기 위하여 시나리오의 집합을 여러 그룹으로 분할하고 목적함

수를 모든 그룹에 대한 위험 반영 비용의 기댓값으로 표현하는 새로운 최적화 모형을

제안한다. 해당 모형을 효과적으로 해결하기 위하여 변수와 제약식을 점진적으로 생

성하는 해법을 제안하며, 모형의 위험 수준이 의사결정자의 의도에 따라 결정되도록

시나리오 분할 방법을 고안하고 이를 제안한 해법과 결합한다. 제안한 모형과 해법을

2단계 확률적 발전계획 문제에 적용하여, 그 효과성과 효율성을 확인한다.

다음으로, 하나의 발전원을 갖는 발전사업자가 전력 시장에 자신의 발전 계획을 제

안하는 환경에서 발생하는 단일발전원 계획문제를 탐구한다. 확률적인 시장 전력가격

하에서 기대 수익을 최대화하는 확률적 단일발전원 계획문제를 해결하기 위해 확정적
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인 환경에서 제안된 해법을 확장한 동적계획 알고리듬을 제안한다. 또한, 이 해법을

활용하는 수요의 불확실성 하에서의 확률적인 발전계획 문제에 대한 두 종류의 발전원

분해기법을 제안한다. 각 분해기법은 라그랑지안 완화 기법 혹은 열 생성을 통하여 하

한을 도출하고 매 반복단계에서 상한을 도출하는 최적화 해법이다. 수치 실험을 통하여

확률적 단일발전원 계획문제에 대한 동적계획 알고리듬 및 확률적 발전계획 문제를

위한 발전원 분해기법이 다수의 시나리오 하에서 효율적임을 확인한다.

마지막으로, 마이크로그리드 운영자 관점에서 순차적으로 발현되는 불확실성 하에

서의 운영을 위한 최적화 모형들을 탐구한다. 마이크로그리드는 배전 단계에서 독립

운전이 가능한, 다양한 분산 전원들로 이루어진 소규모 전력시스템이다. 기존에 널리

고려된전력수요의불확실성에더불어마이크로그리드가중앙의시스템과한시적으로

분리되는 독립운전의 불확실성을 반영하며 이들이 계획기간 내 순차적으로 발현될 수

있음을 상정한다.해당 상황을 표현하는 일반적인 다단계 확률적 최적화 모형은 필요한

시나리오의 수가 시구간의 수에 지수적이기 때문에 현실 크기의 문제의 해결이 어렵

다. 따라서 이를 적은 계산 부담으로 다룰 수 있는 최적화 모형과 방법론을 제안한다.

독립운전의 불확실성에 대응하기 위해 순차적 재계획 방법을 동반한 최적화 모형을

제안하며, 수요의 불확실성을 다루기 위해 발전 가능량의 범위를 발전 상태와 더불어

결정하는 줄어든 규모의 모형을 제안한다.다단계 확률적 최적화 모형과 비교하는 계산

실험을 통하여 제안한 모형의 줄어든 계산 부담과 실제 운영에서의 효과성을 확인한다.

주요어: 전력시스템 운영, 발전계획, 마이크로그리드, 분해기법, 불확실성 하의 최적화,

확률적 최적화

학번: 2019-36357
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