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Abstract

Single Path Multicommodity Trading
Problem on Acyclic Network: Polyhedral

Structure and Approximability

Seho Yim

Department of Industrial Engineering

The Graduate School

Seoul National University

The Single Path Multicommodity Trading Problem on Acyclic Network(sMTP)

involves finding a single path on an acyclic network that maximizes profits by se-

lectively transporting goods between pairs of nodes as long as the carrying volume

does not exceed the capacity. The operator can earn a profit for fulfilling each trans-

portation request, but they also incur costs that are proportional to the volume of

transportation for every unit of distance traveled. The objective is to select a path

that passes through some of the nodes, maximizes profit, and subtracts the logistic

cost from the revenue. In this paper, we explore the structure of the polyhedron

and investigate the approximability of sMTP. Our Study involves both theoreti-

cal analysis based on integer programming and the development of approximation

algorithms.

Theoretical analysis is conducted by first presenting two models for sMTP, along

with several families of valid inequalities for each model. We also identify the condi-
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tions under which these inequalities serve as facet-defining inequalities and propose

efficient separation algorithms. Next, we delve into the approximability of the prob-

lem. We discuss the inherent limitations in developing approximation algorithms

and address both the inapproximability and the integrality gap. To pave the way for

an approximation algorithm, we focus on specific cases and devise approximation

algorithms tailored to those scenarios. Building upon these algorithms, we present

an approximation algorithm for sMTP. Furthermore, we explore the applicability of

the techniques utilized in our proposed approximation algorithms to other related

problems. Lastly, we conduct a comparative analysis to evaluate the performance of

the algorithms derived from our findings.

Keywords: Freight Logistics, Integer Programming, Valid Inequality, Inapproxima-

bility, Approximation Algorithm

Student Number: 2017-20407
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Chapter 1

Introduction

In this thesis, we consider the Single Path Multicommodity Trading Problem on

Acyclic Network (sMTP). In the situation where a vehicle operator travels from

their origin to their destination in an acyclic network, they want to make a profit

by making transportation between different regions en route. It is possible to per-

form only some of the transportation requests between regions. Each request earns

revenue according to the unit weight transported. On the other hand, logistic costs

proportional to the cargo load occur per unit distance movement of the vehicle.

sMTP is a problem of determining which regions to visit and which transportation

to perform between each region in order to maximize profit, defined as revenue minus

cost.

Problem 1.0.1. Single Path Multicommodity Trading Problem on Acyclic

Network(sMTP) sMTP is a sextuple (G, c,D, d, p, U) where G = (V,A) is an

directed acyclic graph with V = {1, · · · n} and A = {ij | i < j, i, j ∈ V }. There

is a non-negative logistic cost cij incurred by a unit flow on arc ij ∈ A. There is

a set D ⊆ V × V of s-d pairs (k, l) with k < l such that there is a nonobligatory

demand d(k, l) on a product from node k to node l. Vehicle operator gets a revenue

r(k, l) from a unit weight of product traded between s-d pair (k, l). Also denote by
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U the capacity, namely the maximum weight of products that can be carried by the

vehicle. The problem is to find a path P = i1− i2−· · ·− ip and the trading volumes

xiuiv , 1 ≤ u < v ≤ p between s-d pairs along P that maximizes the profit, i.e. the

total revenue minus the total logistic cost.

sMTP arises in various situations. First, a situation similar to the problem itself

can occur. For example, in Dong et al. (2022), a similar problem was considered

to efficiently use cargo in a backhaul situation where the cargo reaches the existing

destination and returns to the original location. In a situation where the owner

of the goods to be transported and the owner of the vehicle are the same, it is

common to solve the problem of transporting all goods to the necessary locations

using the vehicle. However, recently, with the emergence of food delivery platforms,

outsourcing of transportation has become more common, and the situation where

each vehicle owner pursues profit and accepts only some of the requests has increased.

If the utility of transportation for the transportation requester is as much as the

revenue, ultimately, each vehicle plays a role in increasing the total utility, and

therefore, this can be seen as a problem of maximizing marginal utility. From this

perspective, it can be seen that sMTP also appears in the situation of a public

transportation system.

The public transportation system is an attractive option for many people who

need to travel from their origin to their destination, either in terms of time or cost.

Individuals choose different modes of transportation such as train, metro, bus, or air-

plane based on their financial and time constraints, origin-destination pairs, and the

available transportation infrastructure. To establish a public transportation system,

different infrastructures must be installed depending on the means, such as stations,
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railroads, or vehicles, which incurs significant fixed costs. Due to these high costs,

infrastructure related to public transportation tends to be expanded in multiple hori-

zons over time. However, planning multiple horizons at once is extremely difficult,

and there are already various facilities established nowadays. Alternatively, when

planning to introduce a new public transport we consider what sets it apart from

the services provided by existing transports. If it allows for faster travel between

two points that were relatively time-consuming in the existing transportation sys-

tem, the effect can be significant. On the other hand, the larger the volume of people

for whom the service is effective, the greater the effect. Let us consider a situation

of introducing new express train. For instance, if there were only regular trains that

stopped at every station along a railroad path, introducing an express train that

stops only at stations with high traffic can make travel between those stations faster

than regular trains. However, it should be noted that the more stations an express

train stops at, the more beneficiaries of the service there will be, but the longer the

travel time within the same section will be due to more stops. When considering

the trade-off between these two factors, it becomes clear that choosing which sta-

tions to stop at is an import decision. An train network G = (V,A) consists of n

stations V = {1, · · · , n} and a railroad A = {ij|1 ≤ i < j ≤ n} that allows move-

ment between the stations. For each pair of origin-destination stations, or OD pairs,

(k, l)(k, l ∈ V ), there exists travel demand d(k, l). The travel time from station k to

station l in the current system, only with regular trains, is denoted by r(k, l). Now,

we aim to operate a new express train system in which the train departs from station

1 and arrives at station n, passing through certain stations of the route. If the train

passes through station j after station i, the travel time between them is denoted
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by cij . Thus, if the express train passes through v0(= 1) − v1 − · · · − vk(= n), the

passengers can board at vi and disembark at vj for 1 ≤ i < j ≤ k, and the reduced

travel time for such passengers is
∑j−1

a=i cvava+1 . Therefore, the goal is to operate

the express train, determine the route and the passengers to board, with a limit of

carrying only U passengers simultaneously, to maximize the total reduction in travel

time for the boarded passengers.

The total reduction in travel time for the passengers in the express train scenario

can be calculated by subtracting the total travel time with the express train from

that without the use of express train. You can imagine that such situations will arise

when determining the routes of subways and buses, installing highways, or setting

up stations for returning trains.

sMTP is strongly NP-hard, as we would demonstrate in Chapter 3. In this the-

sis, we have conducted theoretical approaches on the polyhedral structure of the

corresponding polyhedron and the approximation algorithm.

1.1 Related Problems

Backhaul Profit Maximization Problem

From the perspective of a freighter, the problem most similar to the sMTP

is the Backhaul Profit Maximization Problem (BPMP) (Yu & Dong 2013, Dong

et al. 2022). BPMP arises in the situation of third-party logistics providers in the

maritime cargo transportation industry. They allow the freight carrier to deviate

from its route during the backhaul process after reaching its original destination,

in order to satisfy some of the other transportation demands and generate income.

Therefore, like the sMTP, there are start and end nodes, it is not necessary to

4



visit all nodes, and the objective is maximizing profit from the voyage. Yu & Dong

(2013) first proposed a mixed integer linear programming (MILP) model using arc

and flow variables for the BPMP and suggested an exact solution procedure. Dong

et al. (2022) presented another MILP formulation using triple variables and proposed

a heuristic algorithm to obtain near-optimal solutions using this formulation. The

BPMP can be considered a generalization of the sMTP, as it assumes that p(k, l) is

proportional to ckl, there is an upper bound on the travel distance, and it assumes

the unsplittable demand, meaning that either all or none of the demand (k, l) should

be transported. However, research on this topic is limited to the formulating and

simple heuristics. Research results on the polyhedral structure or approximation

algorithm of the sMTP could also be helpful for the BPMP.

Line Planning Problem

The Line Planning Problem (LPP) is a problem in network design that simultane-

ously considers the routes that vehicles will pass through and how vehicles will travel

on each route (Borndörfer et al. 2007). Depending on the situation, the problem can

have many options in the modeling process, such as the possibility of transfers be-

tween multiple routes, setting the objective function, and selecting candidate routes

(Schöbel & Scholl 2006, Schöbel 2012, Borndörfer et al. 2008). sMTP appears as

a pricing subproblem when applying a column generation approach to LPP (Park

et al. 2013). The column generation approach repeatedly searches for configurations

that are effective routes in the LPP case when added to a candidate set of vari-

ables. It is motivated by the problem of finding the most helpful halting patterns for

express trains in the existing system (Borndörfer et al. 2007). approached column

generation for LPP in a different way. LPP is a highly complicated problem, and
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it is necessary to compromise in various ways. In Schöbel (2012), a strategy is pro-

posed that focuses on a limited number of candidates, rather than considering all

possible paths in the underlying graph as potential routes. From this perspective,

sMTP compromises by considering paths in an underlying graph in situations where

the graph is acyclic. Although it is undoubtedly easier than a general problem, it is

still a challenge, given that the number of possible paths can be exponentially large.

Traveling Repairman Problem with Profit

sMTP is related to the Traveling Repairman Problem with profit (TRPP) in that

the objective function is formulated as profit minus cost, and not all nodes need to be

visited. In TRPP, a constant-speed vehicle departs from a fixed root node and visits

each node, earning a profit of ri−ti if it visits node i at time ti. If the graph is acyclic,

this can be seen as a special case of sMTP. Coene & Spieksma (2008) presented a

dynamic programming-based polynomial-time algorithm for TRPP when the nodes

of the graph are on a straight line. Other studies on TRPP, such as Dewilde et al.

(2013), have used heuristic approaches, including tabu search and greedy randomized

adaptive search. Attempts have also been made using a hybrid evolutionary search

algorithm and a general variable neighborhood search (Lu et al. 2019, Pei et al.

2020). Therefore, no research has been conducted on the polyhedral structure or

approximation algorithms for this problem.

Traveling Salesman Problem with Profits

Problems called Traveling Salesman Problem with Profits (TSPP) are a type of

vehicle routing problem that takes profits into consideration. While the Traveling

Salesman Problem (TSP) aims to find the shortest distance tour that visits all nodes,

TSPP considers situations where visiting some nodes may not be profitable or where
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time constraints prevent all nodes from being visited (Feillet et al. 2005).

In TSPP, in addition to considering the distance traveled, rewards obtained from

visited nodes or penalties obtained from unvisited nodes are also taken into account.

There are various ways to approach this multi-objective optimization problem. For

example, Balas (1989) studies a TSPP problem that aims to minimize the sum of

the total distance traveled and the penalties associated with unvisited nodes and

investigates valid inequalities for the corresponding polyhedron.

Another way to model TSPP is to use one of the two objectives as the objective

function and the other as a constraint. A representative example of this is the ori-

enteering problem, which aims to visit as many nodes as possible within a limited

travel distance. Studies on the orienteering problem have investigated approximation

algorithms such as those in Blum et al. (2007) and Chekuri et al. (2012), as well as

various exact solution approaches and (meta)heuristics (Vansteenwegen et al. 2011).

TSPP differs from sMTP in that, instead of transporting goods from one node

to another for revenue, a reward is obtained from just visiting each node, and cost

is proportional to the distance traveled and not related to the amount of goods

transported.

Dial-a-Ride Problem

sMTP simultaneously determines routes and profit-maximizing trades. With

each trade having a different origin-destination pair, it can be compared to the Dial-

a-Ride Problem (DaRP). The Dial-a-Ride service provides flexible transportation

services for elderly or disabled individuals who cannot be covered by conventional

public transportation, transporting them from their origin to their destination. A

similar problem is Ridesharing (Furuhata et al. 2013), which can be seen to include
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DaRP semantically, but primarily focuses on researching the profit gained when

sharing the same vehicle from the passenger’s perspective (Molenbruch et al. 2017,

Ho et al. 2018). As survey papers Molenbruch et al. (2017) and Ho et al. (2018)

show, similar diverse problems arise in various industries.

Most studies on DaRP assume that all demands must be satisfied. This seems to

be because it is a service targeting the elderly and disabled who may have difficulty

using other existing modes of transportation. Exceptionally, Parragh et al. (2015)

and Jafari et al. (2016) considered the problem of selecting some of the requests

among the requests. The service quality for each demand is reflected by constraints

such as an upper bound on the ride time for each ride, known as the ride time con-

straint, or the time-window constraint, which requires both the arrival and departure

times of a demand must contained in given time interval. Theoretical perspective on

DaRP, in particular, as mentioned in Ho et al. (2018), research on the strength of

the valid inequalities and the development of approximation algorithms are limited,

despite the existence of research on valid inequalities in Cordeau (2006). This implies

that research on sMTP’s polyhedral structure and approximation algorithms could

aid in the study of DaRP.

1.2 Objectives and contributions

Our objective is twofold. Firstly, we present two Mixed Integer Linear Program-

ming (MILP) models for the sMTP, called Arc-Flow Formulation (AF) and Triple

Formulation (TF), in which we consider binary variables y, the indicator vector of

set of arcs used in a path, and flow and triple variables to represent trade volume.

We then propose new families of valid inequalities for each formulation, and provide
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conditions to be facet defining inequalities, and separation algorithms for some of

these valid inequalities. Finally, we compare the gap between the objective value of

integer solution and the fractional solution of the formulations with and without the

valid inequalities.

Secondly, we study the approximability of the sMTP. We obtain a lower bound

on the approximation ratio of the sMTP’s approximation algorithm, and further

obtain a lower bound on the approximation ratio of the approximation algorithm

that utilizes the LP-relaxation of the MILP formulations. We also present an ap-

proximation algorithm that provides an upper bound on the ratio of approximation

algorithms, while proposing an approximation algorithm for a special case of the

sMTP with a single supply node and t-separable sMTP (with a better ratio than

the approximation algorithm for sMTP). We then apply the techniques used here

to present other cases, including the Traveling Repairman Problem with Profits, for

which an approximation algorithm was previously unknown.

The followings are the contributions of the dissertation:

1. Polyhedral study on sMTP

• We provide two new formulations.

• We propose several families of valid inequalities for each formulation.

• We propose the facet-defining condition and separation algorithm of each

families of valid inequalities.

• We conduct a computational experiment to assess the effectiveness of

the proposed inequalities in improving the tightness of the LP formula-

tion and reducing the computation time required for cut and branch by

9



computational experiment.

2. Approximability of sMTP

• We provide the integrality gap of the formulations.

• We provide inapproximability, a lower bound on approximation ratio of

any polynomial-time algorithm for sMTP.

• We devise approximation algorithms for the special cases of sMTP. They

used as subroutine of the approximation algorithm for sMTP.

• We devise an approximation algorithm for sMTP. Also we design the

approximation algorithms for the problems related to sMTP, by applying

the ideas used in the algorithm for sMTP.

• We modify the algorithm to make it more practical and compare its per-

formance with that of two other naive heuristic algorithms.

This thesis is composed of four chapters. In Chapter 2, two MILP formulations,

named AF and TF are provided. Polyhedral structure of each formulation are stud-

ied, including set of valid inequality, conditions that the inequality becomes facet-

defining, and corresponding separation algorithms. In Chapter 3, inapproximability

result for sMTP, and approximation algorithms for sMTP and other related prob-

lems are presented. Finally in Chapter 5, summarized results and future research

directions are presented.
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Chapter 2

Polyhedral Study

In this chapter, we study the polyhedral structure of sMTP. We introduce two for-

mulations called Arc-Flow Formulation and Triple Formulation and study the valid

inequality for each related integer hull. For the Arc-Flow formulation, we derive a

family of valid inequalities, identify their facet-defining conditions, and present an

O(n4)-time separation algorithm, which is same as the number of variables. Based

on this result, we propose generalized families of valid inequalities for AF. For the

Triple formulation, we investigate their valid inequality in a different manner. We

conduct an experiment to compare the bounds obtained from the LP relaxation of

the formulations with or without adding the valid inequalities.

2.1 Introduction

Many of combinatorial optimization problem can be formulated as follow:

max cTx+ dT y,

subject to Ax+By ≤ b,

x ∈ Rn, y ∈ Zm.

11



Where A and B are rational matrices, b, c, and d are rational vectors. Let Pint

be conv{(x, y)|Ax + By ≤ b, x ∈ Rn, y ∈ Zm}, the set of vectors that can be

respresented as a convex combination of feasible solutions, and P be {(x, y)|Ax +

By ≤ b, x ∈ Rn, y ∈ Rm}. If Pint = P , the LP-rexalation problem, maximize the

objective function on P can be solved fast practically or theoretically using the

simplex method or the ellipsoid method, the optimal solution, which is a vertex

of P , can be obtained and it satisfies the integer condition of y, thus yielding the

optimal solution of the original optimization problem (Grötschel et al. 2012).

In general, P does not guarantee that the y-coefficients of its vertices are integers,

so it is not the same as Pint, and the solution obtained by solving the LP-relaxation

does not guarantee to be a feasible solution of the original problem. Instead, the

objective function value obtained by solving the LP-relaxation becomes an upper

bound of the optimal objective function value because the integer constraints are

relaxed, increasing the feasible solution set. On the other hand, the obtained solution

can provide a lower bound of the objective function from which a good quality

feasible solution may be found nearby. The upper and lower bounds obtained from

this method can be utilized in various methods, including branch-and-bound. When

using these methods, finding a description of P that is closer to Pint provides an

opportunity to obtain better bounds and a better solution. An inequality of the

form aTx+ bT y ≤ k that all elements of Pint satisfies is called a valid inequality, and

ideally, a valid inequality that is necessary to describe Pint is called a facet-defining

inequality.

In this chapter, our aim is to find valid inequalities and facet-defining conditions

in two formulations, the Arc-Flow formulation and the Triple formulation. Addi-
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tionally, if there are so many valid inequalities, usually a procedure to determine

whether a given vector satisfies all inequalities or to identify a violated inequalities

is needed. This procedure is called a separation algorithm, and our research also aims

to find the corresponding separation algorithms for the valid inequalities found. In

the final part of this section, we introduce the Arc-Flow Formulation (AF), review

the relevant literature, and summarize the unsuccessful results obtained from other

integer programming approaches.

2.1.1 Arc-Flow Formulation

The Arc-Flow Formulation (AF) is a straightforward mixed integer programming

formulation. For 1 ≤ k ≤ l ≤ n, let the trade variable xkl be, as before, the volume

of the products supplied from node k to node l. Also denote by the flow variable fkl
ij

for k ≤ i < j ≤ l, the volume of the product from k to l through arc ij. Finally, for

each arc ij with 1 ≤ i < j ≤ n define the binary path variable yij which indicates

whether arc ij is used in the path or not. Note that we may assume d(k, l) ≤ U for

all 1 ≤ k < l ≤ n. Also we will assume d(k, l) > 0 ∀ 1 ≤ k < l ≤ n. This is not a

restriction, from that for otherwise we can reassign to (k, l) d(k, l) = U and r(k, l)

= 0 so that xkl = 0. Since xkl can be expressed as f -variables in constraints (2.3)

with i = k, an equivalent system without xkl can be represented, but we use them

for readability. The (AF) is formulated as an MILP as followings.
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Problem 2.1.1. Arc-Flow Formulation (AF)

max
∑

1≤k<l≤n

(
r(k, l)xkl −

∑
k≤i<j≤l

cijf
kl
ij

)
(2.1)

s.t.
∑

j:i<j≤n
yij −

∑
j:1≤j<i

yji =

 1, i = 1

0, 1 < i < n
, (2.2)

∑
j:i<j≤l

fkl
ij −

∑
j:k≤j<i

fkl
ji =

 xkl, i = k

0, k < i < l
, 1 ≤ k ≤ i < l ≤ n, (2.3)

∑
k≤i<j≤l

fkl
ij ≤ Uyij , 1 ≤ i < j ≤ n, (2.4)

xkl ≤ d(k, l), 1 ≤ k < l ≤ n, (2.5)

yij ∈ {0, 1}, xkl ≥ 0, fkl
ij ≥ 0, 1 ≤ k ≤ i < j ≤ l ≤ n.(2.6)

The constraints (2.2) enforce the arcs (i, j)’s with yij = 1 constitutes a 1-n

path. The constraints (2.3) conserve the flow on the subgraph induced by the nodes

{k, k + 1, . . . , l} so that the volume xkl is sent from k to l. (2.5) are the demand

constraints. They can be tightened if replaced with the constraints

fkl
ij ≤ d(k, l)yij , 1 ≤ k < l ≤ n, k ≤ i < j ≤ l. (2.5′)

It is not difficult to see that the replacement yields a stronger formulation of

sMTP. We will refer to (2.1-2.4), (2.5′), and (2.6) as the Arc-Flow Formulation

(AF). Let the relaxed polytope defined by the constraint expression (AF) be denoted

by P (AF ), and its integer hull be denoted by Pint(AF ). When considering (AF)

explicitly, we may also represent them as P and Pint, respectively.
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2.1.2 Relationships with Other Formulations

In a general graph, the constraint that the characteristic vector of the set of arcs

must form a single path has been extensively studied in various research, including

the Traveling Salesman Problem (TSP) (Goemans 1995, Balas 1989, An et al. 2015).

In fact, this is a polyhedral study of the s-t path TSP problem, where we seek the

starting and ending nodes are fixed and the shortest path that visits all nodes ex-

actly once. However, in the case of sMTP, since an acyclic graph is considered, the

path constraint in the polyhedron is sufficient with (2.2), from that the coefficient

matrix of the constraint is a totally unimodular matrix. On the other hand, with

the exception of path constraints, it becomes similar with network design problem.

The typical formulation for the multicommodity capacitated network design prob-

lem is expressed as follows. This is a substructure that frequently appears in the

formulation of various other problems (Magnanti & Wong 1984).

∑
j

fkl
ij −

∑
j

fkl
ji =

 dkl, i = k

0, i ̸= k, l
, k, i, l ∈ N, (2.7)

∑
k≤i<j≤l

fkl
ij ≤ Uijyij , k, i, j, l ∈ N, (2.8)

yij ∈ Z+
0 , f

kl
ij ≥ 0, k, i, j, l ∈ N. (2.9)

Denote the polyhedron consisting of such constraints as Network Design For-

mulation (NDF). In this problem, the volume of flow that must pass between pairs

of vertices is predetermined. If a facility is installed in an arc, the amount of flow

that can pass through that arc increases. The goal is usually to minimize the cost

15



of installing facilities while ensuring that all flows can pass through by installed

facilities. There can be various conditions. For example, the constraint varies to the

underlying graph is whether undirected or directed graph.

sMTP’s Arc-Flow Formulation (AF), which we introduce, uses the f and y vari-

ables in the formulation. The difference between (NDF) and the structure of sMTP

excluding the path constraint is that xkl becomes a constant dkl. In addition, sMTP

only considers cases where Uij ’s are identical for ij. When Uij ’s are identical, it

is commonly referred to as the Network Loading Problem (Agarwal 2018). When

substituting xkl for dkl in the valid inequality of (NDF), there may be cases where

it becomes a valid inequality of (AF), but there may also be cases where it does

not. One of the typical examples is the class of valid inequalities that apply the

cover inequality of the knapsack problem in (NDF) (Chouman et al. 2017). The

cover inequality refers to an equation in the form of
∑
ij∈S

yij ≥ k or
∑

Uijyij ≥ D,

where S, k, and D are some function values, including rounding for dkl, in order to

satisfy the flow by collecting some demand pairs to meet the obligatory demand. If

we expressed the coefficient as x, the inequality might be nonlinear.

The (NDF) has a large number of constraints and variables. Consequently, at-

tempts to reduce the size of the formulation have been made, even if they have to

sacrifice tight bounds. One such attempt is to treat flows that originate from the

same node as the same commodity. In this case, if we let δli denote the amount

of commodity that departs from node i and arrives at node l, then dil is equal to

−
∑
l>j

djl for i = l, 0 for i > l, and dil for i < l. Also, we denote ulij , the aggregated

flow represents the flow passing through arc ij that ends at node l, then (2.7) can

be expressed as follows:
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∑
i

ulij −
∑
i

ulji = δlj , ∀i, l ∈ N

This method can be applied even when demand is non-obligatory, similar to

sMTP, and we introduce the formulation that uses u and y as variables, named

Triple Formulation (TF). Although it uses fewer variables, it generally provides

worse relaxation bounds than (AF).

Research on the valid inequalities of NDP includes studies on the generalizations

of flow cover inequalities. The flow cover inequality is a formula that relates the

balance of a vertex, the capacities of incoming and outgoing arcs from other vertices,

and is considered as a valid inequality (Gu et al. 1999). While this inequality can

be aggregated to obtain a valid inequality for single-commodity by considering the

problem of multi-commodity, it is not strong enough, so additional lifting procedures

are required.

Efforts have been made to generalize this inequality, which has the advantage

and disadvantage of being simple. Atamtürk et al. (2016) and Atamtürk et al. (2017)

extended the flow cover inequality that could be considered as a relationship between

one vertex and another vertex to the relationship between three vertices and the

relationship between vertices that constitute a path, respectively. Wolsey (1989)

found a broad class of valid inequalities using submodularity.

However, when applying these inequalities to sMTP, many redundant inequalities

are obtained due to the fact that the capacities of the arcs are the same and the

graph is acyclic. Therefore, in order to correspond to the sMTP, including (AF) and

(TF), we need to focus on finding facet-defining inequalities of (NDF).
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Like sMTP, problems with the assumption that the form of the network installed

in NDF should have a specific shape such as tree or ring have been considered

(Chekuri et al. 2013, Lee et al. 2009). This is because when the installation cost of the

network is high, a tree is the best option to ensure connectivity for all nodes, and a

ring is the best option when maintaining connectivity even if a facility corresponding

to a certain edge fails, such as in 2-connectivity. There are also studies on problems

that consider the condition that the flow between each o-d pair must form a single

path.

Budget Design Problem

Wong (1980) considers the Budget Design Problem, which involves a budget

constraint in the Network Design Problem (NDP), i.e., the network installation cost

is not considered but a budget for installation is given. The budget constraint is

represented in the form of
∑

qijyij ≤ B, which sufficiently captures the condition

that y must be a path from 1 to n on an acyclic graph. Wong (1980) showed that this

problem is n1−ε-hard to approximate for any positive ε, using a reduction from the

Steiner Tree problem, while also presenting a 2n-approximation algorithm. However,

no further research has been conducted on this problem.

Unsplittable Flow Problem

The Unsplittable flow problem is a problem with an additional constraint that

the flow for each o−d pair cannot be split into multiple paths, given the situation of

NDP described above. This can be viewed as a problem closer to the sMTP, where

all pairs must flow within a single path, but it is difficult to design a formulation for

it. One simple approach is to use binary variables to indicate which arcs are used for

each o− d pair, but this generates a number of binary variables that is proportional
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to the product of the number of pairs and arcs. Another approach is to create binary

variables that are equal to 1 when a certain path is used for each possible path for

each o−d pair. A typical compromise in solving this problem is to limit the number

of possible paths to a polynomial number, which is weaker than the assumption that

the underlying graph is acyclic.

On the other hand, many studies have been conducted on approximation algo-

rithms for this problem, such as Chakrabarti et al. (2007), Chekuri et al. (2006). This

problem includes all-or-nothing multicommodity flow problems, edge disjoint path

problems, and unsplittable flow problems on paths, and many studies have been con-

ducted on approximation algorithms for these problems (Kawarabayashi et al. 2012,

Chuzhoy & Li 2016, Seguin-Charbonneau & Shepherd 2021, Chekuri & Khanna

2007, Chuzhoy & Kim 2015). These algorithms mostly have a ratio of O(nc) unless

assuming special graphs such as trees or paths, and research has been conducted on

the corresponding hardness of approximation (Ma & Wang 2000, Guruswami et al.

2003, Andrews et al. 2005).

2.1.3 Other Methods

In this subsection, we aim to summarize alternative approaches rather than finding

valid inequalities for sMTP. Firstly, we can consider the Danzig-Wolfe decomposition

using path formulation. A path formulation can be represented as follows.
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max
∑

1≤k<l≤n

r(k, l)
∑

p∈Pkl

fkl
p −

∑
1≤k<l≤n

∑
p∈Pkl

ckl(p)fkl
p

s.t.
∑
p∈P

yp = 1,∑
p∈Pij

∑
k≤i,j≤l

fkl
p ≤ U

∑
p∈Pij

yp, ij ∈ A,∑
p∈Pkl:ij∈A(p)

fkl
p ≤ d(k, l)

∑
p∈Pkl:ij∈A(p)

yp, 1 ≤ k ≤ i < j ≤ l ≤ n,

yp ∈ {0, 1}, xklp ≥ 0, p ∈ P, 1 ≤ k < l ≤ n.

P represents the set of all 1-n paths. Pij represents the set of paths in P that

pass through arc ij. Pkl represents the set of paths in P that pass through nodes

k and l. yp is a binary variable that equals 1 if path p is used and 0 otherwise. fkl
p

represents the value of xkl when path p is used. The following are the subproblems

that arise when applying the Danzig-Wolfe decomposition to the given problem:

max
∑

ij∈A(p)

( ∑
k≤i,j≤l

d(k, l)γklij + Uµij

)
− α

s.t. p ∈ P.

Even when all µij are equal to zero, it becomes a sMTP with no capacity con-

straints, where for every pair of nodes (k, l) traversed by a path, exactly d(k, l) trades

should be conducted.

The remainder of this chapter is organized as follows. In Section 2.2, we analyze

the dimension of the polyhedron corresponding to (AF) and the necessary conditions

for the satisfied valid inequality obtained by projecting from the extended formula-

20



tion. In Section 2.3, we propose families of valid inequalities for (AF). Firstly, we

present the 3-Criteria Inequality, along with the conditions for being a facet-defining

inequality and the separation algorithm. Then, we propose generalized 3-Criteria In-

equality to other families of valid inequalities and suggest conditions for them to be

facet-defining valid inequality. In Section 2.4, we introduce the Triple Formulation,

analyze the basic property, and propose families of valid inequalities.

2.2 Basic Properties of Arc-Flow Formulation

In this section, we present the basic properties of Arc-Flow Formulation (AF), a

condition of an inequality to be a valid inequality and the dimension of polyhedron.

2.2.1 Necessary Conditions of Facet-defining Inequality

We can obtain a exact extended formulation by introducing binary variables path

variables, zp, which is 1 if and only if using and 1-n path p, as well as zklp , which

is the amount of k-l flow if and only if using and 1-n path p and 0 otherwise, and

project this formulation onto the (y, f)-space to obtain the conditions for a valid

inequality. Let P be the set of all 1-n paths, where each path is considered as a set

of nodes and arcs.

Theorem 2.2.1. In (y, f)-space, the only form of facet-defining inequality, apart

from the constraints of (AF), is as follows:

∑
aijyij ≥

∑
bklijf

kl
ij −

∑
cklijf

kl
ij (a, b, c ≥ 0)

The necessary condition for this inequality to be a facet-defining inequality and

the sufficient condition for it to be a valid inequality is that the following holds for
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each p ∈ P:

∑
ij∈p

aij ≥ max
µi≥0

(U
n−1∑
i=1

µi +
∑

k,l∈p
d(k, l)max{

∑
ij∈p

(bklij − cklij )−
l−1∑
i=k

µi, 0})

Proof : We will consider a path formulation, which is an exact formulation, and

project it onto the (y, x, f)-space to obtain the above result. In the (y, x, f) space

of the integer hull Pint(AF ) of the sMTP problem, the yij ’s for 1 ≤ i < j ≤ n are

integers, and hence they constitute a single path. The set of all vertices of Pint(AF )

can be partitioned into those that form 1-n paths with the same y values. A necessary

and sufficient condition for a given (y, x, f) to be an element of Pint(AF ) is that it can

be expressed as a convex combination of the vertices of that path. We can consider

this as a convex combination of multiple convex combinations of vertices that have

the same y values. Maintaining the integer value of y within these combinations,

being an element of Pint(AF ) is essentially being expressible as a convex combination

of the integer solutions of 2n−2 distinct 1-n paths. By integrating this concept into

the constraints, we can derive an exact formulation of Pint(AF ).

A given (y, x, f) is an element of Pint if and only if there exists a set of integer

feasible solutions (yp, xp, fp), p ∈ P that satisfies the following conditions.

(y, x, f) =
∑
p∈P

zp(yp, xp, fp),
∑
p∈P

zp = 1, (yp, xp, fp) ∈ Pint.

yp is the arc characteristic vector of p. Therefore, it is a constant, and comparing

the y components on both sides yields a linear equation in terms of y and zp. In order

to make the equation comparing the coefficients of x on both sides a linear equation

as well, a new variable zklp = zpπkl(xp) is introduced. The equations comparing the

coefficients of y and x are then as follows.
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∑
p∈P:ij∈P

zp = yij , 1 ≤ i < j ≤ n, (2.10a)

∑
p∈P:ij∈p,k,l∈p

zklp = fkl
ij , 1 ≤ k ≤ i < j ≤ l ≤ n, (2.10b)

zklp ≤ d(k, l)zp, 1 ≤ k < l ≤ n, p ∈ P, (2.10c)∑
p∈P,k,l:1≤k≤i,j≤l≤n,k,l,ij∈p

zklp ≤ Uyij , 1 ≤ i < j ≤ n, (2.10d)

zp, z
kl
p ≥ 0, 1 ≤ k < l ≤ n, p ∈ P. (2.10e)

(2.10a) corresponds to (2.2), (2.10b) corresponds to (2.3), and (2.10c) corre sponds

to (2.5). (2.10e) corresponds to (2.6). Since fkl
ij = yijx

kl, the coefficients of f do not

need to be compared. The equal sign in (2.10a) can be changed to ≤ without loss of

generality. If there exists a slack, the slack forms collection of paths from 1 to n, and

can be represented as a conical combination of feasible solutions with f = 0. Since

this is an exact formulation, we will now project it onto the (y, x, f)-space to obtain

a necessary condition and sufficient condition for an inequality to be a facet-defining

inequality of (AF).

From
∑

zp = 1, we obtain (2.2). By Farkas’ Lemma, it is known that if P =

{(z, w) : Az ≤ Bw, z, w ≥ 0}, then πwP = {w|vT ≥ 0, vTA ≥ 0 ⇒ vTBw ≥ 0}.

Here, πwP denotes the projection of P onto the w-space. In this problem, if we

let z = (zklp , zp) and w = (f, y), the constraint Az ≤ Bw is as follows. The non-

negativity constraint is omitted.
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−
∑

p∈P :ij∈p,k,l∈p
zklp ≤− fkl

ij , 1 ≤ k ≤ i < j ≤ l ≤ n, (2.11a)

∑
p∈P :ij∈p,k,l∈p

zklp ≤fkl
ij , 1 ≤ k ≤ i < j ≤ l ≤ n, (2.11b)

zklp − d(k, l)zp ≤0, 1 ≤ k < l ≤ n, r(k, l) ∈ P (2.11c)∑
k,l:1≤k≤i<l≤n,k,l∈p

zklp − Uzp ≤0, 1 ≤ i < n, p ∈ P (2.11d)

∑
p∈P :ij∈p

zp ≤yij , 1 ≤ i < j ≤ n. (2.11e)

Now let us apply the projection above. Let A be the coefficient matrix of the

left-hand side, and consider v such that vT ≥ 0 and vTA ≥ 0. The inequality

obtained from v with only the coefficients of (2.11a) and (2.11b) being nonzero

is (2.3). Excluding the nonnegativity constraint, we can see that it is sufficient to

consider inequalities of the following form here.

∑
aijyij ≥

∑
bklijf

kl
ij −

∑
cklijf

kl
ij (a, b, c ≥ 0)

Assume that b and c are fixed. Then, the zklp coefficients with negative values

should be added by conical combinations of (2.11c) or (2.11d) so that the coefficients

become non-negative. Furthermore, both (2.11c) and (2.11d) decrease the coefficient

of zp, which should be reduced by conical combinations of (2.11e).

We can say that both (2.11c) and (2.11d) play a role in transferring the negative

coefficient of zklp to the negative coefficient of zp. Given p, if the coefficient of (2.11d)

is µi for each 1 ≤ i < n, the coefficient of zklp increases by
∑

k≤i<l

µi. The remaining

negative coefficients of zklp can be precisely converted into coefficients of zp increased
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by a factor of d(k, l) using (2.11c). Therefore, we have shown the first statement of

the theorem. If (2.11d) does not exist, it becomes simpler as in the second statement.

□

Although we obtained a necessary condition for a facet-defining inequality in

Theorem 2.2.1, we may want to find a condition that is sufficient. It was conjectured

that if v0 belongs to an extreme ray of the polyhedron {v|v ≥ 0, vTA ≥ 0} that

appears in the projection, then vT0 By ≥ 0 could be a facet-defining inequality, but

this has been shown to be not always true (Balas 1998). Checking whether a given

inequality is a valid inequality for a general integer program is a problem belonging to

co-NP, and checking whether it is a facet-defining inequality is known to be a problem

belonging to a class called Dp, which includes both NP and co-NP (Papadimitriou

& Yannakakis 1982).

Now, we compute the dimension of this formulation. We can show that this is

equal to the difference between the number of variables and the number of equations.

Proposition 2.2.2. dim(P (AF )) = (n− 1)2 + (n−2)(n−1)n(n+1)
24 .

Proof :

First, we show that the left-hand side is less than or equal to the right-hand side.

There are
(
n
2

)
trade variables xkl and

(
n
2

)
path variables yij . To each trade variable

xkl, the number of corresponding flow variables fkl
ij is

(
l−k+1

2

)
. The total number of

flow variables is (n− 1)
(
2
2

)
+ (n− 2)

(
3
2

)
+ · · ·+1

(
n
2

)
= (n−1)n(n+1)(n+2)

24 . The rank of

(2.2) is n− 1. The rank of (2.3) is 1(n− 1) + 2(n− 2) + · · ·+ (n− 1)(n− (n− 1)) =
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n(n+1)(n−1)
6 . Thus the total rank is n− 1 + n(n+1)(n−1)

6 . Therefore,

dimP ≤ 2
((

n
2

))
+ (n−1)n(n+1)(n+2)

24 − (n− 1)− n(n+1)(n−1)
6

= (n− 1)2 + (n−2)(n−1)n(n+1)
24 .

(2.12)

Now we show that the inequality in the opposite direction also holds. We can

find (n− 1)2 + (n−2)(n−1)n(n+1)
24 + 1 affinely independent integer vectors, where the

integer solution satisfies fkl
ij = xklyij , so we only represent x and y. Any variables

not represented are all equal to 0.

• y1n: y1n = 1

• y1k: y1k, ykn = 1 (for k such that 1 < k < n)

• ykl: y1k, ykl, yln = 1 (for k, l such that 1 < k < l < n)

• xkl: y1k, ykl, yln = 1, xkl = 1 (for k, l such that 1 < k < l < n)

• fkl
ki : y1k, yki, yil, yln = 1, xkl = 1 (for k, l such that 1 < k < l < n)

• fkl
ij : y1k, yki, yij , yjl, yln = 1, xkl = 1 (for k, l such that 1 < k < l < n)

When considering them in order from top to bottom, there exist variables that

were continuously 0 and newly became 1, namely ykn with 1 < k < n and fkl
il with

1 ≤ k ≤ i < l ≤ n. These variables correspond one-to-one with equations in (AF),

so we obtain dimP (AF ) = (n− 1)2 + (n−2)(n−1)n(n+1)
24 . □

2.3 Valid Inequalities for the Arc-Flow Formulation

In this section, we aim to find valid inequalities for the Arc-Flow Formulation (AF).
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2.3.1 Facet-defining Inequalities: 3-Criteria Inequality

3-Criteria Inequality

We now introduce the set of valid inequalities called 3-criteria inequality. Let three

a, b, and c satisfying a < c ≤ b. Define V1 = {i ∈ V |1 ≤ i < a}, V2 = {i ∈

V |a ≤ i < c}, V3 = {i ∈ V |c ≤ i ≤ b}, and V4 = {i ∈ V |b < i ≤ n}. Also

for each pair p, q ∈ {1, 2, 3, 4} with p < q, let Apq = {ij ∈ A|i ∈ Vp, j ∈ Vq},

Cpq = {(k, l)|k ∈ Vp, l ∈ Vq}. Suppose π : A12 → C13 be any function mapping arc

ij to node pair (k, l) so that k ≤ i < j ≤ l. Also suppose ϕ : A34 → C24 maps arc ij

to node pair (k, l) so that k ≤ i < j ≤ l.

Figure 2.1: Apq’s, Cpq’s, π.

Proposition 2.3.1. The followings are valid inequalities of sMTP:

∑
ij∈A12

f
π(ij)
ij

d(π(ij))
≤
∑

ij∈A23

yij (2.13)

∑
ij∈A34

f
ϕ(ij)
ij

d(ϕ(ij))
≤
∑

ij∈A23

yij . (2.14)

Proof Let (y, x, f) be any feasible solution of sMTP. A 1-n path can not use more

than one arc from A23:
∑

ij∈A23
yij = 0 or 1. Suppose

∑
ij∈A23

yij = 0. Then a path
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can not use any arc from A23. Since for (k, l) ∈ C13 and for ij ∈ A12, any flow fkl
ij

should be relayed along an arc from A23, it implies fkl
ij = 0 and hence (2.13) holds.

The validity of (2.14) is similar and omitted. □

In fact, (2.13) and (2.14) define facets of Pint(AF ), the integer hull of the arc

formulation of sMTP. Since the proofs for (2.13) and (2.14) are symmetric, we only

provide the proof for (2.13). Let

H =

w := (y, x, f) :
∑

ij∈A12

f
π(ij)
ij

d(π(ij))
=
∑

ij∈A23

yij

 . (2.15)

Let F be the intersection of the hyperplane H and Pint(AF ). In further discus-

sion, we denote π(ij) = (π1(ij), π2(ij)) and ϕ(ij) = (ϕ1(ij), ϕ2(ij)).

Theorem 2.3.2. The 3-Criteria inequalities, (2.13) defines a facet of Pint(AF )

other than (2.5′) if and only if

1) b ̸= n,

2) ∃p ∈ V1 such that π((a− 1)a) = (p, b),

3) ∃q, r ∈ V1 such that π(ra) = (q, b) and q ̸= p from 2),

4) ∃s, t ∈ V1 such that π(ta) = (s, c), and

5) U > max
ij∈A12

{d(π(ij))}.

Symmetrically, (2.14) defines a facet of Pint(AF ) other than (2.5′) if and only if

1) a ̸= 1,

2) ∃p′ ∈ V4 such that ϕ(b(b+ 1)) = (a, p′),
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3) ∃q′, r′ ∈ V4 such that ϕ2(br′) = (a, q′) and q′ ̸= p′ from 2),

4) ∃s′, t′ ∈ V4 such that ϕ(bt′) = (c− 1, s′), and

5) U > max
ij∈A34

{d(ϕ(ij))}.

Proof : We provide the proof of the first part of the theorem only.

(Necessity) We first establish the necessity of the theorem. In doing so, we rely

on the following two observations.

i) For each quadruple k ≤ i < j ≤ l, F contains a point w = (y, x, f) with y

integral and fkl
ij > 0.

Proof of i): For any quadruple k ≤ i < j ≤ l, consider the face Gkl
ij :=

{x ∈ Pint(AF ) : fkl
ij = 0}. Then Gkl

ij is a proper face of Pint(AF ) since, for

each k ≤ i < j ≤ l, any feasible solution using path 1− k − i− j − l − n with

xkl > 0 belongs to Pint(AF ) \ F .

Also the feasible solution using path traversing every node but no trade be-

tween any pair of nodes and hence having fkl
ij = 0 satisfies (2.13) with strict

inequality. Hence F ̸= Gkl
ij for every quadruple k ≤ i < j ≤ l. It means there

is vertex of F not belong to Gkl
ij for every quadruple k ≤ i < j ≤ l. Thus i)

follows.

ii) (2.5′) defines a proper face of Pint(AF ), i.e. a face which is a proper subset of

Pint(AF ).

Proof of ii): For any k ≤ i < j ≤ l, a feasible solution using path 1− i− j−n

but no flow between nodes satisfies (2.5′) with strict inequality.
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Consider the conditions sequentially.

1) Suppose on the contrary b = n. Then if we add the inequalities (2.5′) for all

ij ∈ A12 such that (k, l) = π(ij), we get
∑

ij∈A12

fπ(ij)

d(π(ij)) ≤
∑

ij∈A12
yij =

∑
ij∈A23

yij .

Since the facet F is generated as a conic combination of inequalities (2.5′), it should

be a facet defined by an inequality from (2.5′) contradicting the assumption of the

theorem.

2) From 1), there is l ∈ V4 such that b < l. Then applying i) to the quadruple

(a−1, a, b, l), there is a feasible solution w = (y, x, f) ∈ F such that f (a−1)l
ab > 0 and

y is integral. In particular, yab = 1 and hence the path traverses nodes a − 1, a, b

and no other node from V3 than b as in Figure 2.2 a).

Figure 2.2: Solutions in the necessity proof

Since the path traverses the first node a of V2 and only b from V3, and f
(a−1)l
ab >

0, there should be p ∈ V1 such that fpb
(a−1)a > 0 in the left hand side of (2.13).

3) Suppose on the contrary π1(i1a) is p, for every i1 ∈ V1 satisfying π2(i1a) = b.

Consider any feasible solution w = (y, x, f) lying on F . If yab = 1, then since ab

∈ A23 there should be a unique ij ∈ A12 such that f
π(ij)
ij = d(π(ij)) and the rest

f -variables are 0 in the left hand side of (2.13). Since a (b, resp.) is the first (last,
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resp.) node of V2 (V3, resp.), there should be unique q and r with q ≤ r < a such

that fqb
ra

d(k,b) = 1 in the left hand side of (2.13). From the assumption we have q = p

and therefore fpb
ra

d(p,b) = 1. As yab = 1, we get fpb
ra

d(p,b) =
fpb
ab

d(p,b) = 1. If on the other

hand yab = 0, then fpb
ab = 0 and yab =

fpb
ra

d(p,b) =
fpb
ab

d(p,b) . Thus w always satisfies (2.5′)

for (k, i, j, l) = (p, a, b, b) implying F is defined by an inequality from (2.5′) and

contradicting to the assumption of the theorem.

4) Similarly with the proof of 2), i) guarantees a feasible solution on F in which

fal
cl > 0 for l ∈ V4 and y is integral, which implies the existence of s, t ∈ V1 such

that fsc
ta > 0 and hence π1(ta) = (s, c). See Figure 2.2 b).

5) Suppose, on the contrary, U = d(π(ij)) for some ij ∈ A12. From 3), we have p,

q ∈ V1 and p ̸= q, and hence |V1| ≥ 2. We can take k ∈ V1 such that k ̸= π1(ij). See

Figure 2.2 c). Consider a feasible solution on F guaranteed by i) such that f
kπ2(ij)
ij

> 0 and y is integral. Since the right hand side of (2.15) is 1 and yij = 1, fπ(ij)
ij =

sπ(ij) = U . Thus on arc ij, the flows fkπ2(ij)
ij and f

π(ij)
ij sum greater than U violating

(2.4).

(Sufficiency) We now prove the sufficiency of the theorem. Let F ′ be a translation

of F containing the origin and S the subspace defined by the linear hull of F ′. Notice

that dimF < dimPint: the feasible solution obtained by letting y1a = yab = ybn = 1,

and the rest of the variables equal to 0 belongs to Pint\F . Hence by Proposition 2.2.2,

to prove F is a facet, it suffices to find a set of independent vectors lying in S whose

cardinality equals to (n− 1)2 + (n−2)(n−1)n(n+1)
24 − 1. Recall we have

(
n
2

)
xkl’s,

(
n
2

)
yij ’s, and

∑n−1
q=1 (n− q)

(
q+1
2

)
fkl
ij ’s. From these, we exclude n− 1 y-variables, namely,

y1n, . . ., y(n−1)n, and
∑n−1

q=1 (n − q)q f -variables, namely, fkl
kl , f

kl
(k+1)l, . . . f

kl
(l−1)l for

all (k, l)’s with 1 ≤ k < l ≤ n. Then the number of excluded variables are the same
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as the rank of the equality constraints. In addition we exclude yab that the number

of remaining variables is (n − 1)2 + (n−2)(n−1)n(n+1)
24 − 1. Hereafter, denote by E

and R the sets of excluded and remaining variables, respectively. I.e.

R = {yij : ij ∈ A, j ̸= n} ∪ {xkl : kl ∈ A} ∪ {fkl
ij : 1 ≤ k ≤ i < j ≤ l ≤ n, j ̸= l}.

(2.16)

Lower-Triangularization Technique

We will find the vectors in S which, if their coordinates are restricted to the

remaining variables R and stacked in rows, constitute a lower triangular matrix

with nonzero diagonal elements. Since |R| = (n − 1)2 + (n−2)(n−1)n(n+1)
24 − 1, the

proof will then be completed. To do so, in each of the cases in the subsequent proof,

we extend the current lower triangular matrix by augmenting the same number

of columns and rows, which correspond to a new set of variables from R and the

subvectors of new independent vectors in S.

current new
variables variables

current +

indep ×
. . .

vectors × . . . +
new × × × +

indep × × × +
vectors × × × +

Figure 2.3: Lower triagularization technique

New subvector has unique nonzero entries on distinct coordinates of new variables

so that they, permutated if necessary, extend the current matrix with nonzero diag-

onal elements as indicated in Figure 2.3. (The empty space means 0’s.) To sustain

the lower triangularity we need to carefully order the introduced variables so that
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existing subvectors have no nonzero entries on the new coordinates of the variables

introduced subsequently. This property will be referred to as Invariant Property. The

procedure is repeated until every variable of R appears in a column of the matrix.

The subsequent part of the proof is therefore about how to find independent vectors

from S and why the order of variables adopted in the proof maintains Invariant

Property throughout. For an easy reference, we summarize, in advance, which set of

variables will be added in columns in which (sub)case of the subsequent proof.

y-variables

Remaining y-variables are {yij : ij ∈ A \ ab, j ̸= n} = {yij : ij ∈ A, j ̸= n ij /∈

A23} (Case 1-1) ∪ {yij : ij ∈ A23 \ ab} (Case 2-5)

x-variables

Recall no x-variable was excluded. {xkl : 1 ≤ k < l ≤ n} = {xkl : 1 ≤ k < l ≤

n, (k, l) /∈ V2 × V3} (Case 1-2-1) ∪ {xkl : 1 ≤ k < l ≤ n, k < l, (k, l) ∈ V2 × V3}

(Case 2-1).

f -variables

The f -variables in R are {fkl
ij : 1 ≤ k ≤ i < j ≤ l ≤ n, j ̸= l} = {fkl

ij : 1 ≤ k ≤

i < j < l ≤ n, ki, ij, jl /∈ A23} (Case 1-2-2, 1-2-3) ∪ {fkl
ij : 1 ≤ k ≤ i < j < l ≤

n, ki, ij, or jl ∈ A23} (Remaining cases).

We summarize in Table 2.1 the variable sets of R \ {fkl
ij : 1 ≤ k ≤ i < j <

l ≤ n, ki, ij, or jl ∈ A23} for extending M and their corresponding cases in the

subsequent proof.

In comparison with (2.16), we see that the sets of Table 2.1 exhaust the y and

x-variables, and f -variables of R except the variables in {fkl
ij : 1 ≤ k ≤ i < j < l ≤

n, ki, ij, or jl ∈ A23}.
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Table 2.1: The partition of the y, x-variables, and the f -variables {fkl
ij : 1 ≤ k ≤ i <

j < l ≤ n, ki, ij, jl ̸∈ A23} in R for extension of M and the corresponding cases.

Row No. Variables Conditions Sets Cases
1 yij ij ∈ A, j < n, ij /∈ A23 A1 ∪A2 1-1
2 yij ij ∈ A, j < n, ij ∈ A23, ij ̸= ab A3 2-5
3 xkl 1 ≤ k < l ≤ n, (k, l) /∈ V2 × V3 B1 1-2-1
4 xkl 1 ≤ k < l ≤ n, (k, l) ∈ V2 × V3 B2 2-1
5 fkl

ij 1 ≤ k = i < j < l ≤ n, ki, ij, jl /∈ A23 Q1 1-2-2
6 fkl

ij 1 ≤ k < i < j < l ≤ n, ki, ij, jl /∈ A23 Q2 1-2-3

The remaining f -variables {fkl
ij : 1 ≤ k ≤ i < j < l ≤ n, ki, ij, or jl ∈ A23} of

R are enumerated in Table 2.2 according to which of Vq, 1 ≤ q ≤ 4 each of k, i,

j, and l belongs to. Since at least one arc is used from V2 to V3, we have H(4, 4)

− 2H(3, 4) + H(2, 4) = 10 combinations. (Here H(n, r) is the number of possible

ways for choosing r from n objects when repetition allowed.) Each combination is

subdivided further into cases to additional conditions on k, i, j, and/or l that are

relevant to maintaining Invariant Property. In the last column, indicated are the

cases of the proof in which the corresponding variables appear in columns and their

values as diagonal elements of the matrix. In the table p stands for the node in V1

such that π2(pa) = b in the assumption 2) of the theorem.

It is worth to emphasize that all the variables in R are exhaustively partitioned

in Table 2.1 and 2.2, or 23 (Sub)cases in the subsequent proof.

We will construct independent vectors in S by taking the difference of two vectors

on F . More specifically, we incrementally find sets of affinely independent vectors

w1, w2, . . ., wK on F whose translation into S, w2 − w1, . . ., wK − w1, if restricted

to the subset of variables discussed above, extend a lower triangular matrix in which
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Table 2.2: The partition of the remaining f -variables {fkl
ij : 1 ≤ k ≤ i < j < l ≤

n, ki, ij, or jl ∈ A23} in R for incremental extension of M and the corresponding
cases.

Row No. V1 V2 V3 V4 Conditions Sets Cases
7 k ≤ i j l (k, l) ̸= π(ij), π2(ij) = b Q3 2-2
8 (k, l) ̸= π(ij), π2(ij) ̸= b Q9 2-9
9 (k, l) = π(ij) Q10 2-10
10 k i < j l (k, l) ̸= (p, b), a = i Q4 2-3
11 (k, l) ̸= (p, b), a ̸= i Q6 2-6
12 (k, l) = (p, b) Q7 2-7
13 k i j < l (k, l) ̸= (p, b) Q5 2-4
14 (k, l) = (p, b) Q8 2-8
15 k i j l Q19 2-19
16 k ≤ i < j l Q16 2-16
17 k ≤ i j < l Q17 2-17
18 k ≤ i j l j = b Q11 2-11
19 j ̸= b Q13 2-13
20 k i < j < l Q18 2-18
21 k i < j l j = b Q12 2-12
22 j ̸= b Q14 2-14
23 k i j < l Q15 2-15

every diagonal element is nonzero. The subsequent part of proof consists of two main

cases, Case 1 and 2, depending on whether the vectors wj ’s satisfy the equation in

(2.15) with 0’s or 1’s on both sides.

Case 1: ‘0=0’

In Case 1, we use feasible solutions wj on F satisfying the equation of (2.15)

with 0’s on both sides, which is the case when path does not have an arc from A23:

yij = 0 for every ij ∈ A23. Throughout the case, we reserve w0 to denote the feasible

solution with a single nonzero entry, y1n = 1.

Case 1-1 (Row No. 1) Case 1-1 begins with construction of a lower triangular
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matrix M with the aforementioned properties with the coordinates {yij : ij ∈ A,

j < n, ij /∈ A23}. In doing so, we perform a two-step extension to illustrate the

principle of Lower Triangularization Technique.

Consider the feasible solution w that uses the path 1− j − n for each 1 < j < n

but has x = 0 and f = 0. Then the nonzero variables in w are y1j and yjn. Define A1

= {1j ∈ A : 1 < j < n} endowed with an arbitrary but fixed order on the elements.

Then {yij : ij ∈ A1} ⊆ R. The subvector yA1 obtained from w by restricting its

coordinates to A1 has a single nonzero entry, namely y1j = 1. Construct a square

matrix M by stacking as rows the subvectors yA1 so that 1j’s with y1j = 1 are in

the same order as in A1. Then M is clearly a lower triangular matrix with a nonzero

diagonal. Since yjn ∈ E (recall, the set of excluded variables) for 1 < j < n, the

rows will not have any zero entry when they are extended by any set of coordinates

from R. Thus M has Invariant Property.

To extend M , consider the feasible solution w using Boobosang path 1− i−j−n

for each ij ∈ A, 1 < i < j < n, and ij /∈ A23, but having x = 0 and f = 0. The

nonzero entries of w are y1i = yij = yjn = 1. Let A2 = {ij ∈ A : 1 < i < j < n, ij /∈

A23}. Note that the coordinates of yA1 and yA2 exhaust the yij ’s in R with ij /∈ A23.

Extend the columns of M with the coordinates corresponding to the variables, yij ,

ij ∈ A2. Since the variables are in R and M has Invariant Property, the new columns

contains no nonzero entry. Thus if we append to M in rows the subvectors (yA1 , yA2)

of w’s so that ij’s with yij = 1 are in the same order as in A2, the obtained matrix

is again a lower triangular matrix with a nonzero diagonal. Also note that in each

feasible solution w, the nonzero variables beside yij , y1i ∈ yA1 , and yjn ∈ E. That

is, Invariant Property is maintained in M .

36



Note w0 has no nonzero entry on R since the only nonzero variable y1n ∈ E.

Therefore w and w − w0 if their coordinates are restricted to R. As the columns of

M will be extended up to R, we can consider the rows of M as the subvectors of w

− w0 ∈ S.

Case 1-2 Consider the feasible solution w using the path 1− k − i− j − l − n for

each quadruple 1 ≤ k ≤ i < j ≤ l ≤ n such that ki, ij, jl /∈ A23 (and thus satisfying

the equation of (2.15) with 0’s on both sides). It has a single trade xkl = ε, where

varε = min{U − d(π(ij)), d(k, l) : ij ∈ A12, kl ∈ A} > 0.

Then the nonzero variables are y1k = yki = yij = yjl = yln = 1, xkl = ε, and fkl
ki

= fkl
ij = fkl

jl = ε. Case 1-2 will be divided further into three subsubcases depending

on whether k = i and/or j = l as in Figure 2.4

Figure 2.4: The three subcases of Case 1-2

Case 1-2-1 (Row No. 3) Suppose in addition k = i and j = l. Then xkl = fkl
kl =

ε, y1k = ykl = yln = 1, and the other variables are all 0. Now we extend the current

matrix M with the columns corresponding to xB1 where B1 = {(k, l) : 1 ≤ k < l ≤

n, (k, l) /∈ V2 × V3}. Then xB1 ⊆ R (Note we are abusing notation for short by not

distinguishing a vector and the set of its entries.) due to Invariant Property of M ,

the new columns should be all zero vectors.

We append the set of subvectors (yA1∪A2 , xB1) of w−w0’s to M in rows so that
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(k, l) with xkl = ε are in the same order as (k, l)’s in B1. Then the extended M is

also lower triangular with nonzero diagonal. Since fkl
kl ∈ E, y1k ∈ yA1 , ykl ∈ yA2 ,

and yln ∈ E, Invariant Property of M is maintained.

Case 1-2-2 (Row No. 5): Suppose k = i and j < l. Then y1k = ykj = yjl = yln

= 1, xkl = ε, fkl
kj = fkl

jl = ε, and the other variables are all 0 in w. Consider the

subvectors (yA1∪A2 , xB1 , fQ1) of (w − w0)’s where Q1 = {(k, i, j, l) : 1 ≤ k = i <

j < l ≤ n, ij, jl /∈ A23}. Then Q1 ⊆ R. Extend M with columns corresponding to

fQ1 which should be all zero vectors due to Invariant Property of M . Append the

subvectors in rows to M so that (k, k, j, l) with fkl
kj = 1 are in the same order as

(k, k, j, l)’s in Q1. Then M is a lower triangular matrix with a nonzero diagonal.

Invariant property again holds for the extended M since the nonzero variables

of each w belongs to the existing coordinates: y1k ∈ yA1 , ykj , yjl ∈ yA2 , yln ∈ E, xkl

∈ xB1 , and fkl
jl ∈ E.

Case 1-2-3 (Row No. 6): Suppose k < i and j < l. Then, the nonzero entries

of each w are y1k = yki = yij = yjl = yln = 1, xkl = ε, and fkl
ki = fkl

ij = fkl
jl =

ε. Consider the subvectors of (yA1∪A2 , xB1 , fQ1∪Q2) of (w − w0)’s. Extend M with

columns corresponding to fQ2 where Q2 = {(k, i, j, l) : 1 ≤ k < i < j < l ≤

n, ki, ij, jl /∈ A23}. Then Q2 ⊆ R and hence the new columns should all zero vectors

due to Invariant Property of M . Thus if we append the subvectors to M so that

(k, i, j, l) with fkl
ij = ε are in the same order as (k, i, j, l)’s in Q2, we get a lower

triangular matrix with a nonzero diagonal.

M inherits Invariant Property since the nonzero variables beside fQ2 satisfy y1k

∈ yA1 , yki, yij , yjl ∈ yA2 , yln ∈ E, xkl ∈ xB1 , fkl
ki ∈ fQ1 , and fkl

jl ∈ E.
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Case 2: ‘1=1’ In Case 2, we use feasible solutions w ∈ F that satisfy (2.15) with

1’s on both sides. More specifically, in each of the subsequent cases, we will find

independent vectors w2−w1 where w1 and w2 feasible solutions that carry a positive

flow on an arc of A23. To secure enough of them, the assumptions of the theorem on

the existence of particular f -terms in the equation of (2.15) play crucial roles.

Case 2-1 (Row No. 4) From the assumption 2) of the theorem, on the left hand

side of the equation of (2.15) is the term fpb
(a−1)a/d(p, b) for p ∈ V1. For each ij ∈

A23, consider the path 1-p-(a − 1)-a-i-j-b-n where a ≤ i < j ≤ b. we consider two

feasible solutions w1 and w2 a path where w1 has a single trade, xpb = d(p, b) while

w2 has an additional trade xij = ε.

Both w1 and w2 satisfy (2.15) with 1’s on both sides and hence w2 − w1 is a

vector in S with the nonzero entries xij = f ij
ij = ε, (i, j) ∈ V2×V3. Let xB2 := {xkl :

(k, l) ∈ V2 × V3}. Extend M with the columns corresponding to xB2 . Then the new

columns are all zero, due to Invariant Property of M . Append to M in rows the set

of subvectors obtained by restricting w2 − w1 to (yA1∪A2 , xB1 , fQ1∪Q2 , xB2) in order

that (i, j)’s with xij = ε are in the same order as (i, j)’s in B2. The M remains to

be lower triangular.

Since the remaining nonzero entry f ij
ij ∈ E, Invariant Property is maintained.

Note 1 Note that all the x-variables have appeared in the columns of M . Thus in

arguing Invariant Property hereafter we may well omit discussing x-variables.

Case 2-2 (Row No. 7) For each quadruple (k, i, j, l) such that k, i ∈ V1, k ≤

i, j ∈ V2, l ∈ V3, (k, l) ̸= π(ij), and π2(ij) = b, consider the path 1 − π1(ij) ↔

k − i − j − l − π2(ij)(= b) − n where u ↔ v means either u ≤ v or v < u. Let w1
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be the feasible solution with a single nonzero trade variable xπ(ij) = d(π(ij)) while

w2 with the additional nonzero trade variable xkl = ε. Note that w1 and w2 satisfy

(2.15) with 1’s on both sides.

Then w2 − w1 ∈ S has as the nonzero variables, xkl = fkl
ki = fkl

ij = fkl
jl = ε if

π1(ij) ≤ k; xkl = fkl
kπ1(ij)

= fkl
π1(ij)i

= fkl
ij = fkl

jl = ε if π1(ij) > k. Consider the set of

the subvectors of w2 − w1 corresponding to the variables (yA1∪A2 , xB1 , fQ1∪Q2 , xB2 ,

fQ3), where Q3 = {(k, i, j, l) : k ∈ V1, i ∈ V1, k ≤ i, j ∈ V2, l ∈ V3, π2(ij) = b, (k, l) ̸=

π(ij)}. Extend M with the columns corresponding to fQ3 , all zero vectors due to

Invariant Property of M . Append the subvectors to M in rows so that (k, i, j, l)

with fkl
ij = ε are in the same order as in Q3. Then the obtained matrix is a lower

triangular matrix with a nonzero diagonal as desired. If π1(ij) ≤ k, the fact that

fkl
ki ∈ Q1 and fkl

jl ∈ E maintains Invariant Property of M . If on the other hand

π1(ij) > k, that fkl
kπ1(ij)

∈ Q1 and fkl
π1(ij)i

∈ Q2 guarantees Invariant Property.

Case 2-3 (Row No. 10) For brevity from now on we present the feasible solutions

wi by specifying only their paths P i for i = 1, 2 and their trade variables x, the

nonzero entries of w2−w1, and the new coordinate set and their values to appear as

new diagonal entries. Also we argue Invariant Property by specifying which of the

coordinate sets so far or E each variable having a nonzero entry in w2−w1 belongs

to.

Feasible solution w1 P1 = 1-p↔ k-(a− 1)-i(= a)-j-l-b-n, with k ∈ V1 j ∈ V2, a < j,

l ∈ V3, and (k, l) ̸= (p, b). xpb = d(p, b).

Feasible solution w2 P2 = P1. xpb = d(p, b) and xkl = ε.

Nonzero entries of w2 − w1 xkl = fkl
k(a−1) = fkl

(a−1)a = fkl
aj = fkl

jl = ε if p ≤ k. xkl =

fkl
kp = fkl

p(a−1) = fkl
(a−1)a = fkl

aj = fkl
jl = ε if p > k.
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New diagonal entries fkl
aj = ε for (k, a, j, l) ∈ Q4 := {(k, a, j, l) : k ∈ V1, a < j, j ∈

V2, l ∈ V3, (k, l) ̸= (p, b)}.

Invariant Property If p ≤ k, fkl
k(a−1) ∈ fQ1 , fkl

(a−1)a ∈ fQ3 , and fkl
jl ∈ E. If p > k, fkl

kp

∈ fQ1 , fkl
p(a−1) ∈ fQ2 , fkl

(a−1)a ∈ fQ3 , and fkl
jl ∈ E.

Case 2-4 (Row No. 13) Feasible solution w1 P1 = 1-p ↔ k-(a − 1)-a-i-j-l-b-n,

k ∈ V1, ij ∈ A23, j < l, l ∈ V3, and (k, l) ̸= (p, b). xpb = d(p, b).

Feasible solution w2 P2 = P1. xpb = d(p, b) and xkl = ε.

Nonzero entries of w2 − w1 xkl = fkl
k(a−1) = fkl

(a−1)a = fkl
ai = fkl

ij = fkl
jl = ε if p ≤ k.

xkl = fkl
kp = fkl

p(a−1) = fkl
(a−1)a = fkl

ai = fkl
ij = fkl

jl = ε if p > k.

New diagonal entries fkl
ij = ε for (k, i, j, l) ∈ Q5 := {(k, i, j, l) : k ∈ V1, ij ∈ A23, j <

l, (k, l) ̸= (p, b)}.

Invariant Property If p ≤ k, fkl
k(a−1) ∈ fQ1 , fkl

(a−1)a ∈ fQ3 , fkl
ai ∈ fQ4 , and fkl

jl ∈ E. If

p > k, fkl
kp ∈ fQ1 and fkl

p(a−1) ∈ fQ2 , fkl
(a−1)a ∈ fQ3 , fkl

ai ∈ fQ4 , and fkl
jl ∈ E.

Case 2-5 (Row No. 2) Feasible solution w1 P1 = 1-n. x = 0.

Feasible solution w2 P2 = 1-q-r-a-i-j-b-n, i ∈ V2, j ∈ V3, (i, j) ̸= (a, b). xqb = d(q, b).

Nonzero entries of w2 − w1 xqb = f qb
qr = f qb

ra = f qb
ai = f qb

ij = f qb
jb = d(q, b), y1q = yqr

= yra = yai = yij = yjb = ybn = 1, y1n = −1.

New diagonal entries yij = 1 for ij ∈ A3 = {ij ∈ A :, j < n, ij ∈ A23, and ij ̸= ab}.

Invariant Property

f qb
qr ∈ fQ1 , f

qb
ra ∈ fQ3 , f

qb
ai ∈ Q4, f

qb
ij ∈ fQ5 , f

qb
jb ∈ E, y1q ∈ yA1 , yqr, yra, yai, yjb

∈ yA2 , and ybn, y1n ∈ E.

Note 2 All the x and y-variables in R have appeared in the columns of M . Hereafter,

we may omit x and y-variables in arguing Invariable Property.
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Case 2-6 (Row No. 11) Feasible solution w1 P1 = 1-p ↔ k-(a − 1)-a-i-j-l-b-n,

k ∈ V1, i, j ∈ V2, a < i < j, l ∈ V3, and (k, l) ̸= (p, b). xpb = d(p, b).

Feasible solution w2 P2 = P1. xpb = d(p, b) and xkl = ε.

Nonzero entries of w2 − w1 fkl
k(a−1)(f

kl
kp and fkl

p(a−1) if k < p) = fkl
(a−1)a = fkl

ai = fkl
ij

= fkl
jl = ε if p ≤ k.

New diagonal entries fkl
ij = ε for (k, i, j, l) ∈ Q6 := {(k, i, j, l) : k ∈ V1, i, j ∈ V2, a <

i < j, l ∈ V3, (k, l) ̸= (p, b)}.

Invariant Property fkl
k(a−1) ∈ fQ1(fkl

kp ∈ fQ1 and fkl
p(a−1) ∈ fQ2 if k < p), fkl

(a−1)a ∈

fQ3 , fkl
ai ∈ fQ4 , and fkl

jl ∈ E.

Case 2-7 (Row No. 12) Feasible solution w1 P1 = 1-k(= p)-(a− 1)-a-i-l(= b)-n,

i, j ∈ V2, i < j. xpb = d(p, b).

Feasible solution w2 P2 = 1-k(= p)-(a − 1)-a-i-j-l(= b)-n, i, j ∈ V2, i < j. xpb =

d(p, b).

Nonzero entries of w2 − w1 fpb
ij = fpb

jb = d(p, b), fpb
ib = −d(p, b)

New diagonal entries fpb
ij = d(p, b) for (p, i, j, b) ∈ Q7 := {(p, i, j, b) : i, j ∈ V2, i < j}.

Invariant Property fpb
jb , and fpb

ib ∈ E.

Case 2-8 (Row No. 14)

Feasible solution w1 P1 = 1-k(= p)-a − 1-a-i-l(= b)-n, i ∈ V2, j ∈ V3, and j < b.

xpb = d(p, b).

Feasible solution w2 P2 = 1-k(= p)-a − 1-a-i-j-l(= b)-n, i ∈ V2, j ∈ V3, and j < b.

xpb = d(p, b).

Nonzero entries of w2 − w1 fpb
ij = fpb

jb = d(p, b), fpb
ib = −d(p, b).

New diagonal entries fpb
ij = d(p, b) for (p, i, j, b) ∈ Q8 := {(p, i, j, b) : i ∈ V2, j ∈

V3, j < b}.
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Invariant Property fpb
jb , and fpb

ib ∈ E.

Case 2-9 (Row No. 8) Feasible solution w1 P1 = 1-π1(ij) ↔ k-i-j-l ↔ π2(ij)-n,

k, i ∈ V1, k ≤ i, j ∈ V2, l ∈ V3, π2(ij) ̸= b and (k, l) ̸= π(ij). xπ(ij) = d(π(ij)).

Feasible solution w2 P2 = P1. xπ(ij) = d(π(ij)) and xkl = ε.

Nonzero entries of w2 − w1 If π1(ij) ≤ k, then fkl
ki = ε, or else, namely π1(ij) > k,

then fkl
kπ1(ij)

= fkl
π1(ij)i

) = ε. And fkl
ij = ε. If l ≤ π2(ij), then fkl

jl = ε, or else, i.e.

l > π2(ij), then fkl
jπ2(ij)

= fkl
π2(ij)l

= ε.

New diagonal entries fkl
ij = ε for (k, i, j, l) ∈ Q9 := {(k, i, j, l) : k, i ∈ V1, k ≤ i, j ∈

V2, l ∈ V3, π2(ij) ̸= b, (k, l) ̸= π(ij)}.

Invariant Property If π1(ij) ≤ k, then fkl
ki ∈ fQ1 . If else, i.e. π1(ij) > k fkl

kπ1(ij)
∈

fQ1 and fkl
π1(ij)i

∈ fQ2 . If l ≤ π2(ij), then fkl
jl ∈ E. If, on the other hand, l > π2(ij)

then k ∈ V1, j ∈ V2, π2(ij), l ∈ V3. Then depending on (k, l) = (p, b) or not, we have

fkl
jπ2(ij)

∈ fQ5 or fQ8 .

Case 2-10 (Row No. 9) Feasible solution w1 P1 = 1-n, i ∈ V1, j ∈ V2, and

(k, l) = π(ij). x = 0.

Feasible solution w2 P2 = 1-k(= π1(ij))-i-j-l(= π2(ij))-n, i ∈ V1, j ∈ V2, and (k, l) =

π(ij). xπ(ij) = d(π(ij)).

Nonzero entries of w2 − w1 f
π(ij)
π1(ij)i

= f
π(ij)
ij = f

π(ij)
jπ2(ij)

= d(π(ij)).

New diagonal entries fπ(ij)
ij = d(π(ij)) for (π1(ij), i, j, π2(ij)) ∈Q10 := {(π1(ij), i, j, π2(ij)) :

i ∈ V1, j ∈ V2}.

Invariant Property f
π(ij)
π1(ij)i

∈ fQ1 , and f
π(ij)
π1(ij)i

∈ E.

Case 2-11 (Row No. 18) Feasible solution w1 P1 = 1-p-(a − 1)-a-k-i-j(= b)-l-n,

k, i ∈ V2, k ≤ i, and l ∈ V4. xpb = d(p, b).
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Feasible solution w2 P2 = P1. xpb = d(p, b) and xkl = ε.

Nonzero entries of w2 − w1 fkl
ki = fkl

ib = fkl
bl = ε.

New diagonal entries fkl
ib = ε for (k, i, b, l) ∈ Q11 := {(k, i, b, l) : k, i ∈ V2, k ≤ i, l ∈

V4}.

Invariant Property fkl
ki ∈ fQ1 , and fkl

bl ∈ E.

Case 2-12 (Row No. 21) Feasible solution w1 P1 = 1-s-t-a-k-c-i-l-n, k ∈ V2,

i ∈ V3, i < b and l ∈ V4. xsb = d(s, b) and xkl = ε.

Feasible solution w2P2 = 1-s-t-a-k-c-i-b-l-n, k ∈ V2, i ∈ V3, and l ∈ V4. xsb = d(s, b)

and xkl = ε.

Nonzero entries of w2 − w1 fkl
ib = fkl

bl = ε, and fkl
il = −ε.

New diagonal entries fkl
ib = ε for (k, i, b, l) ∈ Q12 := {(k, i, b, l) : k ∈ V2, i ∈ V3, i <

b, l ∈ V4}.

Invariant Property fkl
bl , f

kl
il ∈ E.

Case 2-13 (Row No. 19) Feasible solution w1 P1 = 1-p-(a− 1)-a-k-i-b-l-n, k, i ∈

V2, k ≤ i, j ∈ V3, j < b and l ∈ V4. xpb = d(p, b) and xkl = ε.

Feasible solution w2 P2 = 1-p-(a − 1)-a-k-i-j-b-l-n, k, i ∈ V2, k ≤ i, j ∈ V3, j < b

and l ∈ V4. xpb = d(p, b) and xkl = ε.

Nonzero entries of w2 − w1 fpb
ij = fpb

jb = d(p, b), fpb
ib = −d(p, b), fkl

ij = fkl
jb = ε, and

fkl
ib = −ε.

New diagonal entries fkl
ij = ε for (k, i, j, l) ∈ Q13 := {(k, i, j, l) : k, i ∈ V2, k ≤ i, j ∈

V3, j < b, l ∈ V4}.

Invariant Property fpb
ij ∈ fQ8 , f

pb
jb , fpb

ib ∈ E, fkl
jb ∈ fQ12 , and fkl

ib ∈ fQ11 .

Case 2-14 (Row No. 22) Feasible solution w1 P1 = 1-p-(a− 1)-a-k-i-j-b-l-n, k ∈

V2, i, j ∈ V3, i < j < b, and l ∈ V4. xpb = d(p, b).
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Feasible solution w2 P2 = P1. xpb = d(p, b) and xkl = ε.

Nonzero entries of w2 − w1 fkl
ki = fkl

ij = fkl
jb = fkl

bl = ε.

New diagonal entries fkl
ij = ε for (k, i, j, l) ∈ Q14 := {(k, i, j, l) : k ∈ V2, i, j ∈ V3, i <

j < b, l ∈ V4}.

Invariant Property fkl
ki ∈ fQ13 , fkl

jb ∈ fQ12 , and fkl
bl ∈ E.

Case 2-15 (Row No. 23) Feasible solution w1 P1 = 1-s-t-a-k-c-i-j-l-n, k ∈ V2,

i ∈ V3, j, l ∈ V4, and j < l. xsc = d(s, c).

Feasible solution w2 P2 = P1. xsc = d(s, c) and xkl = ε.

Nonzero entries of w2 − w1 fkl
kc = fkl

ci = fkl
ij = fkl

jl ε.

New diagonal entries fkl
ij = ε for (k, i, j, l) ∈ Q15 := {(k, i, j, l) : k ∈ V2, i ∈ V2, j, l ∈

V3, j < l}.

Invariant Property fkl
kc ∈ fQ13 , fkl

ci ∈ fQ14 , and fkl
jl ∈ E.

Case 2-16 (Row No. 16) Feasible solution w1 P1 = 1-p-(a−1)-a-k-i-l-b-n, k, i, j ∈

V2, k ≤ i < j, and l ∈ V3. xpb = d(p, b) and xkl = ε.

Feasible solution w2 P2 = 1-p-(a−1)-a-k-i-j-l-b-n, k, i, j ∈ V2, k ≤ i < j, and l ∈ V3.

xpb = d(p, b) and xkl = ε.

Nonzero entries of w2 − w1 fpb
ij = fpb

jl = d(p, b), fpb
il = −d(p, b), fkl

ij = fkl
jl = ε, fkl

il

= −ε.

New diagonal entries fkl
ij = ε for (k, i, j, l) ∈ Q16 := {(k, i, j, l) : k, i, j ∈ V2, k ≤ i <

j, l ∈ V3}.

Invariant Property

fpb
ij ∈ fQ7 , f

pb
jl , fpb

il ∈ fQ8 , and fkl
jl , f

kl
il ∈ E.

Case 2-17 (Row No. 17) Feasible solution w1 P1 = 1-p-(a−1)-a-k-i-j-l-b-n, k, i ∈
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V2, k ≤ i, j, l ∈ V3, and j < l. xpb = d(p, b).

Feasible solution w2 P2 = P1. xpb = d(p, b) and xkl = ε.

Nonzero entries of w2 − w1 fkl
ki) = fkl

ij = fkl
jl = ε.

New diagonal entries fkl
ij = ε for (k, i, j, l) ∈ Q17 := {(k, i, j, l) : k, i ∈ V2, k ≤ i, j, l ∈

V3, j < l}.

Invariant Property fkl
ki ∈ fQ16 and fkl

jl ∈ E.

Case 2-18 (Row No. 20) Feasible solution w1 P1 = 1-p-(a− 1)-a-k-i-j-l-b-n, k ∈

V2, i, j, l ∈ V3, and i < j < l. xpb = d(p, b).

Feasible solution w2 P2 = P1. xpb = d(p, b) and xkl = ε.

Nonzero entries of w2 − w1 fkl
ki) = fkl

ij = fkl
jl = ε.

New diagonal entries fkl
ij = ε for (k, i, j, l) ∈ Q18 := {(k, i, j, l) : k ∈ V2, i, j, l ∈

V3, i < j < l}.

Invariant Property fkl
ki ∈ fQ17 and fkl

jl ∈ E.

Case 2-19 (Row No. 15) Feasible solution w1 P1 = 1-p ↔ k-a − 1-a-i-j-b-l-n,

k ∈ V1, i ∈ V2, j ∈ V3, and l ∈ V4. xpb = d(p, b).

Feasible solution w2 P2 = P1. xpb = d(p, b) and xkl = ε.

Nonzero entries of w2 − w1 If p ≤ k, then fkl
k(a−1) = fkl

(a−1)a = fkl
ai = fkl

ij = fkl
jb =

fkl
bl = ε. If p > k, then fkl

kp = fkl
p(a−1) = fkl

(a−1)a = fkl
ai = fkl

ij = fkl
jb = fkl

bl = ε .

New diagonal entries fkl
ij = ε for (k, i, j, l) ∈ Q19 := {(k, i, j, l) : k ∈ V1, i ∈ V2, j ∈

V3, l ∈ V4}.

Invariant Property If p ≤ k, then fkl
k(a−1) ∈ fQ1 , fkl

(a−1)a, f
kl
ai , f

kl
jb ∈ fQ2 , and fkl

bl ∈

E. If p > k, then fkl
kp ∈ fQ1 , fkl

p(a−1) ∈ fQ2 , fkl
(a−1)a, f

kl
ai , f

kl
jb ∈ fQ2 , and fkl

bl ∈ E.

As claimed in Table 2.2, the above cases have exhaust the variables of R as the

columns of the lower triangular matrix M whose diagonal elements are all nonzero.
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Each row of M is a vector in S a subspace parallel with F . Therefore, the dimension

of F is |R| = (n − 1)2 + (n−2)(n−1)n(n+1)
24 − 1. Hence by Proposition 2.2.2 and the

observation that dimF < dimPint, F is a facet. □

Separation for 3-Criteria Inequality

Now we propose an separation algorithm for 3-Criteria Inequality.

Algorithm 2.3.3. Separation algorithm for 3-Criteria Inequality

1. For each 1 ≤ i < c ≤ b < n, compute yi[c,b] :=
∑

j=[c,b]

yij. Since yi[c,b−1]+yib

has the same value, each can be calculated in O(1) time, so the overall

computation time is O(n3).

2. For each 1 < a < c ≤ b < n, compute y[a,c,b] :=
∑

i∈[a,c−1]

yi[c,b]. This can be

calculated with an operation y[a−1,c,b] + ya[c,b], so the overall computation

time is O(n3).

3. For each 1 ≤ i < j ≤ l < n, compute f∗l
ij := max

k≤i
fkl
ij . Each can be obtained

by comparing O(n) values, so the overall computation time is O(n4).

4. For each 1 ≤ i < j ≤ c ≤ b < n, compute f
∗[c,b]
ij := max

l∈[c,b]
f∗l
ij . This

can be calculated with an operation by max{f∗b
ij , f

[c,b−1]
ij }, so the overall

computation time is O(n4).

5. For each 1 ≤ i < j ≤ c ≤ b < n, compute f
[a,c,b]
i :=

∑
j∈[a,c−1]

f
∗[c,b]
ij . This

can be calculated with an operation by f
[a+1,c,b]
i + f

∗[c,b]
ia , so the overall

computation time is O(n4).
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6. For each a, compute f [a,c,b] :=
∑

i∈[1,a−1]

f
[a,c,b]
i . Each takes O(n) time, so

the overall computation time is O(n4).

7. Finally, for each 1 ≤ a ≤ c < b < n, compute the maximum value of

f [a,c,b] − y[a,c,b], which represents the maximum violation of the 3-Criteria

Inequality. This can be computed in O(n3) time.

The above algorithm is a separation algorithm for 3-Criteria Inequality with a

computation time of O(n4).

Proposition 2.3.4. There exists an θ(n4)-time separation algorithm for 3-Criteria

Inequality.

Since reading the value of flow variable f takes O(n4) time, we can see that this

separation algorithm provides the best result modulo constant.

2.3.2 Other Valid Inequalities

In this subsection, we present several families of valid inequalities other than the

3-Criteria inequality.

Valid Inequalities for uncapacitated Case

First, consider the uncapacitated sMTP when there is no capacity constraint. Define

f̄kl
ij := fkl

ij /d(k, l) as the normalized fkl
ij , and express the constraint in terms of f̄

and y. In this case of uncapacitated sMTP, there are no parameters other than n.

We will use f̄ as a variable instead of f .

Definition 2.3.5. Let S be an arbitrary set of nodes and arcs. We define P(S) as

the set of all 1-n paths that contain all elements of S. Depending on the situation,
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we can also directly input the elements of S. For example, P({a1, · · · , ak}) is simply

denoted as P(a1, · · · , ak). Let f̄kl
ij (or (k, i, j, l)) generate P(k, l, ij) and yij (or (i, j))

generate P(ij). For any set of paths S that is included in P(k, l, ij) (or P(ij)), we

say that f̄kl
ij (or yij , respectively) covers S.

Let the set of paths generated by the weighted sum of variables be the union

of the sets generated by each path, allowing multiset. Restate the condition for

the uncapacitated case of Theorem 2.2.1 using the terms "generate" and "cover":

for
∑

aklij f̄
kl
ij ≤

∑
bijyij (aklij ∈ Z, bij ∈ Z+

0 ) to be facet-defining inequality, the

set generated by aklij f̄
kl
ij must be covered by bijyij . Now, we generalize the 3-Criteria

inequality using this consideration. First, we consider inequalities that have the same

right-hand side as the 3-Criteria Inequality. The right-hand side generates paths that

pass through the vertices of V2 and V3 exactly once. Additionally, assume that all

coefficients of f̄ on the left-hand side are nonnegative. Then, the coefficients on the

left-hand side must be either 0 or 1, and we must generate disjoint paths.

Check the condition in which P(k1, l1, i1j1) and P(k2, l2, i2j2) are disjoint. The

path belonging to both must pass through k1, k2, l1, l2, and i1j1, i2j2. For there to

be no such path, either k2 or l2 must be included in [i1 + 1, j1 − 1], or k1 or l1 must

be included in [i2 + 1, j2 − 1].

Consider a valid inequality of the form
∑

αkl
ij f̄

kl
ij ≤

∑
a≤i<c,c≤j≤b

yij for some 1 ≤

a < c ≤ b ≤ n. Since the yij on the right-hand side generate non-overlapping paths,

the paths generated by the f̄kl
ij on the left-hand side must also not overlap. In the

3-Criteria inequality, it was guaranteed that these f ’s did not overlap by satisfying

i ≤ t < j for some t. However, the paths generated by both f̄kl
ij and f̄ qr

op must include

node k, l, q, r, and arc ij, and qr simultaneously.
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Proposition 2.3.6. f̄k1l1
i1j1

and f̄k2l2
i2j2

generate disjoint set of path if and only if k1 or

l1 ∈ [i2 + 1, j2 − 1], or k2 or l2 ∈ [i1 + 1, j1 − 1].

Remark 2.3.7. The class of graphs that arise when we map each of the pairs

(k1, i1, j1, l1) and (k2, i2, j2, l2) to nodes and connect the pair of node if they generate

disjoint set of path by an edge includes a class of graphs called interval graphs

(Lekkeikerker & Boland 1962). An interval graph is an undirected graph in which

each node is associated with an interval, and two nodes are connected by an edge if

and only if their corresponding intervals have a nonempty intersection.

Since the set of paths generated by f̄kl
ij on the left-hand side must be covered

by the right-hand side, there must be elements of both V2 and V3 among k, i, j, and

l. This can be divided into three cases: (k, i), (i, j), or (j, l) belongs to A23. The 3-

Criteria Inequality only considers the case where every (j, l)(or (k, i) symmetrically)

of f belongs to A23, but now we examine the cases where two or all three of (k, i),

(i, j), and (j, l) belong to A23.

Proposition 2.3.8. Let ϕ : V2 → V3 be a nonincreasing function, S1 be a subset of

{(k, i, j, l)| 1 ≤ k ≤ i, i ∈ V1, j ∈ V2, l ∈ V3}, and S2 be a subset of {(k, i, j, l)|k ∈

V2, i ∈ V3, j ∈ V4, j ≤ l ≤ n}. The inequality

∑
(k,i,j,l)∈S1

f̄kl
ij +

∑
(k,i,j,l)∈S2

f̄kl
ij ≤

∑
ij∈A23

yij (2.17)

is valid if each ij ∈ A12 satisfies at most one element in S1 such that ϕ(j) < l, and

each ij ∈ A34 satisfies at most one element in S2 such that i ≤ ϕ(k).

Proof : If (k, i, j, l) ∈ S1, then (j, l) ∈ A23 and if (k, i, j, l) ∈ S2, then (k, i) ∈ A23,

so each generates a path set that is covered by the right-hand side. Now, show that
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each generates disjoint paths. Elements belonging to S1 and those belonging to S2

generate paths that contain only distinct ij ∈ A12 and ij ∈ A34, respectively, so they

generate disjoint paths. Now, for arbitrary (k1, i1, j1, l1) ∈ S1 and (k2, i2, j2, l2) ∈ S2,

if k2 < j1, then k2 ∈ V2 and i1 ∈ V1, so the paths they generate are disjoint as they

satisfy k2 ∈ [i1+1, j1−1]. If k2 ≥ j1, then by the condition, ϕ(j1) < l1 and i2 ≤ ϕ(k2).

Since ϕ is nonincreasing, ϕ(k2) ≤ ϕ(j1), so we have i2 < l1. As i2, l1 ∈ V3 and j2 ∈ V4,

we have l1 ∈ [i2 + 1, j2 − 1], so the paths they generate are also disjoint. Therefore,

since all elements generate disjoint paths and each path set generated is covered by

the right-hand side, the given inequality is valid. □

For all (k1, i1, j1, l1) ∈ S1 and (k2, i2, j2, l2) ∈ S2, if there exist some t1 ∈ V2 and

t2 ∈ V3 such that j1 ≤ t1, then l1 < t2 and if k2 ≤ t1, then i2 < t2 hold on the right-

hand side even if we subtract
∑

ij∈A23,i≤t1,t2≤j

yij from it. Therefore, the corresponding

inequality is still valid.

Proposition 2.3.9. Given a non-increasing function ϕ1 : V1 → V3 and a non-

decreasing function ϕ2 : V2 → V3, and sets S1 ⊂ {(k, i, j, l)| 1 ≤ k ≤ i, i ∈ V1,

j ∈ V2, l ∈ V3} and S2 ⊂ {(k, i, j, l)| 1 ≤ k ≤ i, i ∈ V2, j ∈ V3, j ≤ l ≤ n}, the

inequality

∑
(k,i,j,l)∈S1

f̄kl
ij +

∑
(k,i,j,l)∈S2

f̄kl
ij ≤

∑
ij∈A23

yij (2.18)

is valid if for each ij ∈ A12, there is at most one element in S1 with l ≤ min{ϕ1(i), ϕ2(j)},

and for each ij ∈ A23, if k ∈ V1, then max{ϕ1(k), ϕ2(i)} < j, and if k ∈ V2, then

ϕ2(k) < l for at most one element in S2.

Proof : Similar to the proof of Proposition 2.3.8, the elements in S1 and S2 gener-
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ate paths that are disjoint from each other, and are covered by the given inequal-

ity’s right-hand side. Consider two elements (k1, i1, j1, l1) ∈ S1 and (k2, i2, j2, l2) ∈

S2. Since l1 ≤ min{ϕ1(i1), ϕ2(j1)} and ϕ1, ϕ2 are nonincreasing and nondecreas-

ing, respectively, we have k2 ≤ i1, j1 ≤ i2 implies l1 ≤ min{ϕ1(i1), ϕ2(j1)} ≤

max{ϕ1(k2), ϕ2(i2)} < j2. Likewise, j1 ≤ k2, j1 ≤ i2 implies l1 ≤ ϕ2(j1) ≤ ϕ2(k2) <

j2. Therefore, either i1 < k2 < j1 or i2 < j1 or l1 < j2, which means the paths

generated by the two elements are disjoint. □

If only f̄ with positive coefficients exist on the left-hand side, the right-hand

side must cover the set of paths generated by each f̄kl
ij with positive coefficients. To

achieve this, we need to consider the conditions for the minimal set that the arc

index with positive coefficient of right-hand side must include. Let first find which

ypq generate at least not disjoint path with the set of path that f̄kl
ij generate. ypq with

p or q in [i+ 1, j − 1], or one of k, l, i, j is contained in [p+ 1, q − 1] is meaningless.

Therefore, p and q must both belong to [1, k], [k, i], [j, l], or [l, n] simultaneously, or

pq = ij. If yij is present on the right-hand side, then p(k, l, ij) ∈ p(ij), so that itself

is a minimal set. If not, assume that p and q both belong to [1, k], [k, i], [j, l], or [l, n].

Then (p, q) can be divided into four sets that belong to [1, k], [k, i], [j, l], and [l, n],

respectively. One of these four sets must cover the set of paths generated by f̄kl
ij ;

otherwise, ypq in [s, t] generates only paths that use the arc pq. If ypq fails to cover a

path generated by f̄kl
ij , it means that it did not cover the s− t subpath of that path.

Therefore, if the set of ypq belonging to each [1, k], [k, i], [j, l], and [l, n] cannot cover

the cases where they are in the form of p1, · · · , p4, corresponding to 1 − k, k − i,

j− l, and l−n subpaths, respectively, it cannot cover the path p1-p2-ij-p3-p4. Then,

to determine when the sum of ypq in [s, t] covers all paths that pass through all s
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and t, we examine the condition for s− t cuts, which are known to be s− t cuts by

the max-flow min-cut theorem (Dantzig & Fulkerson 2003). Therefore, we define the

minimal cover of
∑

(k,l,i,j)∈S
fkl
ij as the set of

∑
(i,j)∈S′

yij that cover the paths generated

by
∑

(k,l,i,j)∈S
fkl
ij , where removing any ykl from this set will result in a failure to cover.

We call s− t cut minimal s− t cut, if corresponding s ∈ S and t ∈ T are contained

in [s, t].

Proposition 2.3.10. Minimal cover of f̄kl
ij is yij or

∑
pq∈C

ypq where C is one of

minimal 1− k, k − i, j − l, l − n cuts.

Using observations so far, we can obtain the facet-defining condition of (2.19),

which is a generalization of the every valid inequalities so far.

Theorem 2.3.11. Maximal Disjoint Inequality

Given F ⊂ {(k, i, j, l)|1 ≤ k ≤ i < j ≤ l ≤ n}, and 1 < t1 < t2 ≤ t3 < n,

∑
(k,i,j,l)∈F

f̄kl
ij ≤

∑
i∈[t1,t2),j∈[t2,t3]

yij (2.19)

is a facet-defining inequality if and only if F and (t1, t2, t3) satisfy the following:

(i) For every (k, i, j, l) ∈ F , {k, i, j, l} ∩ [t1, t2) ̸= ∅ and {k, i, j, l} ∩ [t2, t3] ̸= ∅,

(ii) for every two different elements (k1, i1, j1, l1), (k2, i2, j2, l2) ∈ F , {k2, i2, j2, l2}∩

[i1 + 1, j1 − 1] or {k1, i1, j1, l1} ∩ [i2 + 1, j2 − 1] is nonempty,

(iii) there exists (k, i, j, l) ∈ F with (k, i), or (j, l) = (t1, t3),

(iv) For any (k1, i1, j1, l1) /∈ F with ki or ij or jl ∈ A23, there exists (k2, i2, j2, l2) ∈

F with k1, i1, j1, l1 /∈ [i2+1, j2−1], k2, i2, j2, l2 /∈ [i1+1, j1−1], and d(k2, l2) <

U .
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Proof : (Necessity)

• Condition (i) is equivalent to the statement that the set of paths generated by

f̄ is covered by the right-hand side. Therefore, this is a necessary condition.

• Condition (ii) is equivalent to that each path generated by f̄kl
ij is disjoint, by

Proposition 2.3.6. Since the right-hand side does not generate more than one

path, this is also a necessary condition.

• Condition (iii) states that if there is no element of F with (k, i) or (j, l) =

(t1, t3), the only case where the path generated by arc t1t3 can overlap is when

there exists an element of F with (i, j) = (t1, t3). If there is no such element in

F , then subtracting yt1t3 from the right-hand side is still valid, so (2.19) is not

facet-defining. Let us consider the case where there is an element (k′, t1, t3, l
′)

in F with (i, j) = (t1, t3). Removing this element means there is no term on

the left-hand side that generates the path t1t3. Therefore, in this case, even if

we subtract f̄k′l′
t1t3 from the left-hand side and yt1t3 from the right-hand side, the

inequality (2.19) is still valid. Since f̄k′l′
t1t3 ≤ yt1t3 , we can conclude that (2.19)

is not facet-defining.

• Condition (iv) means that for any (k1, i1, j1, l1) /∈ F with ki or ij or jl ∈ A23,

there exists (k2, i2, j2, l2) ∈ F such that f̄k2l2
i2j2

= d(k2, l2) and at the same time

f̄k1l1i1j1 = 1 can be true. Let us call such an element of F a corresponding

element. If there are multiple corresponding elements, we choose one of them

arbitrarily as the corresponding element. If there is no corresponding element,

then f̄k1l1
i1j1

is always zero in the case where the equality in (2.19) holds. Since

the right-hand side must be zero when its value is zero, and when the right-
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Table 2.3: Affinely independent vectors with 0 = 0

new variable quantifier path flow
y1n 1− n
yij 1 ≤ i < j < n, ij /∈ A23 1− i− j − n
fkl
kl 1 ≤ k < l ≤ n, kl /∈ A23 1− k − l − n xkl = 1
fkl
kj 1 ≤ k < j ≤ l ≤ n, kj, jl /∈ A23 1− k − j − l − n xkl = 1

fkl
ij 1 ≤ k ≤ i < j ≤ l ≤ n, ki, ij, jl /∈ A23 1− k − i− j − l − n xkl = 1

hand side is one, there must be a term on the left-hand side such that f̄kl
ij = 1,

(2.19) remains valid even if we add f̄k1l1
i1j1

to the left-hand side. This means that

(2.19) is not facet-defining.

(sufficiency) If both the first and second conditions are satisfied, we can see

(2.19) becomes a valid inequality.

Now, we will find affinely independent vectors of the same number as dim(P ). As

in Theorem 2.3.2, we will list the vectors, and each listed vector will have non-zero

components for the first time. Let the name of each feasible solution vector be v(x),

where x is the variable that first becomes non-zero in that vector. First, let’s list the

vectors for the variables that can be non-zero Even if a path does not pass through

a vertex belonging to V2 := [t1, t2 − 1] or V3 := [t2, t3]. Let A23 = ij|i ∈ V2, j ∈ V3.

Table 2.3 exhibits the maximal affinely independent vectors when both sides are

0. Now, we will list the vectors when both sides are 1.

For each (k, i, j, l) ∈ F , v(f̄kl
ij ) satisfies the conditions: the path is 1−k−i−j−l−n

and the flow is xkl = d(k, l).

For the third condition, (k2, i2) = (t1, t3) in (k2, i2, j2, l2) and (j1, l1) = (t1, t3)

in (k1, i1, j1, l1) cannot satisfy condition ii). Without loss of generality, assume that

(k∗, i∗, t1, t3) ∈ F exists.
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When i ∈ V2, j ∈ V3, and (i, j) ̸= (t1, t3), v(yij) satisfies the conditions: the path

is 1− k∗ − i∗ − t1 − i− j − t3 − n and the flow is xk∗t3 = d(k∗, t3).

If (k, i, j, l) /∈ F and ki or ij or jl ∈ A23, then v(f̄kl
ij ) satisfies the conditions:

the path includes 1, n, k, k′, i, i′, j, j′, l, and l′, and the flow is xk′l′ = d(k′, l′) and

xk′l′ = 1. Here, (k′, i′, j′, l′) ∈ F corresponds to the element in condition (iv).

We have provided vectors corresponding to the variables excluding yin (1 < i <

n), yt1t3 , and fkl
il (1 ≤ k ≤ i < l ≤ n). yt1t3 corresponds to (2.2) with i = 1, yin

(1 < i < n) corresponds to (2.2) with 1 < i < n, and fkl
il corresponds one-to-one to

(2.3), so we found dim(P (AF )) affinely independent vectors. Thus, (2.19) becomes

a facet-defining inequality. □

Valid Inequalities for Capacitated Case

We now explore capacitated sMTP. First, look at the 3-Criteria Inequality. The left-

hand side of (2.13) has terms in the form of fkl
ij /d(k, l) for each ij, where l ∈ V3 and

the value is divided by d(k, l) so that it is maximized at 1. If capacity U exists, a valid

option is to replace it with
∑

1≤k≤i,j∈V3

fkl
ij /U . However, this is subject to the constraint

(2.4), which limits it to be no greater than yij. Note that if
∑

k≤i,j≤l

d(k, l) < U , the

inequality using this term becomes redundant due to inequalities using the term

f
π(ij)
ij /d(π(ij)).

Proposition 2.3.12. For 1 ≤ t1 < t2 < t3 < n, let V1 = [1, t1], V2 = [t1 + 1, t2],

V3 = [t2 + 1, t3], and V4 = [t3 + 1, n]. Define Aij = Vi × Vj, ∀ 1 ≤ i < j ≤ 4.

For (i, j) ∈ A12, let S(i.j) = {fkl
ij /d(k, l)|1 ≤ k ≤ i, l ∈ V3} ∪ {

∑
k≤i,j≤l

fkl
ij /U |∑

k≤i,j≤l

d(k, l) > U}.

The following inequality is valid for any selection of each element sij from S(i, j):
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∑
(i,j)∈A12

sij ≤
∑

(i,j)∈A23

yij . (2.20)

Note this idea can also be applied to Propositions 2.3.8 and 2.3.9 to generalize

the conditions for their valid inequality.

2.4 Triple Formulation

2.4.1 Triple Formulation and Basic Properties

Triple formulation (TF) is adapted from a compact representation called Triple

formulation that has been sucessfully applied to the Maximum Concurrent Flow

Problem and Backhaul Profit Maximimzation Problem (Dong et al. 2014, 2022).

The Arc-Flow Formulation is easy to understand in terms of representation, but it

consists of O(n4) variables and O(n4) constraints, making it large in size. Without

tightening, the number of constraints decreases to O(n3). On the other hand, the

Triple Formulation introduced in this subsection consists of O(n3) variables and

O(n2) constraints. (TF), as we will see later, has the advantage of having a shorter

time to solve the LP-relaxation due to its size, even though the LP-relaxation is

looser than that of (AF).

ulij represents the amount of commodities sold at l passing through arc ij, and

for simplicity, θij =
∑
l:j≤l

ulij , the total amount of commodities passing through arc

ij, is also introduced. The Triple Formulation is expressed as follows.
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Problem 2.4.1.

max
∑

1≤i<j≤n
(r(i, j)xij − cijθij) (2.21)

s.t.
∑

j:i<j≤n
yij −

∑
j:1≤j<i

yji =

 1, i = 1

0, 1 < i < n
, i ∈ V, (2.22)

∑
j:k<j≤l

ulkj −
∑
i:i<k

ulik = xkl, 1 ≤ k < l ≤ n, (2.23)∑
j≤l

ulij = θij , 1 ≤ i < j ≤ n, (2.24)

θij ≤ Uyij , 1 ≤ i < j ≤ n, (2.25)

xkl ≤ d(k, l), 1 ≤ k < l ≤ n, (2.26)

yij ∈ {0, 1}, 1 ≤ i < j ≤ n, xij ≥ 0, ulij ≥ 0, 1 ≤ i < j ≤ l ≤ n. (2.27)

Let P(TF) denote the polyhedron defined by the constraints in the formulation,

excluding the integer condition, and refer to this space as the (u, y)-space. Constraint

(2.22) is equivalent to constraint (2.2). Constraint (2.23) corresponds to constraint

(2.3). Constraint (2.25) is a capacity constraint, and constraint (2.26) is a constraint

that sets an upper bound on the demand. The fundamental reason why the problem

can be modeled using the Triple-variable u instead of the flow-variable f is that the

objective function can be expressed in terms of u. This is because the cost per unit

flow imposed on each commodity is the same for each lane.

Proposition 2.4.2. (TF) is a valid formulation for sMTP.

Proof : Consider an integer solution. Let the corresponding path be denoted as

p = v1 − v2 − · · · − vk. Then, according to constraint (2.25), only ulij where ij, l ∈ p

can be positive. Therefore, (2.23) implies that ulv1v2 = xv1l, and for each 1 ≤ i ≤ k−2,
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−ulvivi+1
+ ulvi+1vi+2

= xvi+1l. Thus, we have ulvivi+1
=

i∑
j=1

xil as intended. □

Proposition 2.4.3. P(TF) ⊃ P(AF).

Proof : If each ulij in the constraint of (TF) is replaced with
∑
k≤i

fkl
ij , then the con-

straint (2.22) is equivalent to constraint (2.2), and constraint (2.25) is equivalent to

constraint (2.4). Finally, for each (k, l) satisfying 1 ≤ k < l ≤ n, constraint (2.23)

becomes the same as the constraint of (2.3) when k = i < l, and the constraint of

(2.3) with k < i < l becomes an identity if ulij =
∑
k≤i

fkl
ij . □

Proposition 2.4.4. dim(TF) = (n−1)(n−2)
2 + (n−1)n(n+1)

6

Proof : The u-variable has (n−1)n(n+1)/6 elements, and the y-variable has n(n−

1)/2 elements. Just like when checking the dimension of (AF), we can obtain (n −

1)(n− 2)/2 + 1 affinely independent vectors with u = 0. By using i− j flow on the

1− i− j −n path, we can find vectors where only ujij is positive. By using i− l flow

on the 1− i− j− l−n path, we can find vectors where only one of the ulij satisfying

j < l is positive. We have (n− 1)(n− 2)/2 + (n− 1)n(n+ 1)/6 + 1 vectors, which

is the same as the one plus the total number of variables minus n− 1 equations. □

The conditions for the valid inequality of (TF) can also be obtained, similar to

(AF). The constraints of the extended formulation, excluding the constraint of (2.22)

and the non-negativity constraint, are as follows.
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−
∑

p∈P,k:ij∈p,k≤i,k,l∈p
zklp ≤− ulij , 1 ≤ i < j ≤ l ≤ n, (2.28a)

∑
p∈P,k:ij∈p,k≤i,k,l∈p

zklp ≤ulij , 1 ≤ i < j ≤ l ≤ n, (2.28b)

zklp − d(k, l)zp ≤0, 1 ≤ k < l ≤ n, r(k, l) ∈ P (2.28c)∑
k,l:1≤k≤i<l≤n,k,l∈p

zklp − Uzp ≤0, 1 ≤ i < n, p ∈ P (2.28d)

∑
p∈P :ij∈p

zp ≤yij , 1 ≤ i < j ≤ n. (2.28e)

From this, we can obtain the proposition below.

Proposition 2.4.5. In (u, y)-space, the only form of facet-defining inequality, aside

from the constraints of (TF), is as follows:

∑
aijyij ≥

∑
bliju

l
ij −

∑
cliju

l
ij (a, b, c ≥ 0)

The necessary condition for this inequality to be a facet-defining inequality and

the sufficient condition for it to be a valid inequality are that the following must hold

for each 1-n path p:

∑
ij∈p

aij ≥ max
µi≥0

(U
n−1∑
i=1

µi +
∑

k,l∈p
d(k, l)max{

∑
ij∈p

(blij − clij)−
l−1∑
i=k

µi, 0})

2.4.2 3-Criteria-TF Inequality

In this subsection, we introduce a family of valid inequalities for TF called 3-Criteria-

TF.

First, considering (2.26) in problem 2.4.1, we can establish the following set of

inequalities for each k − l cut (S, S̄) (k ∈ S ⊂ [k, l − 1], ; l ∈ S̄ ∈ [k + 1, l]), based
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on the fact that xkl can only have a positive value when it passes through vertices

k and l.

xkl ≤ d(k, l)

 ∑
i∈S,j∈S̄

yij


By computing the k−l min-cut for each (k, l) pair, we can perform separation for

the entire set of inequalities. However, this separation process is time-consuming, and

in most cases, the inequalites are not facet-defining. Therefore, we aim to consider

only a subset of these cuts. Firstly, we can replace the constraint (2.26) of problem

2.4.1 with two inequalities when S = k or S̄ = l. By doing so, we can obtain a tighter

formulation while maintaining the number of constraints in the problem at O(n2).

xkl ≤ d(k, l)(
∑

k<j≤l

ykj) (2.29a)

xkl ≤ d(k, l)(
∑
k≤i<l

yil) (2.29b)

We can also consider incorporating additional O(n3) constraints below.

xkl ≤ d(k, l)(
∑

k≤i≤t<j≤l

yij) (2.30)

However, the inequality (2.30) does not define a facet when k < t, rather than

inequality (2.29a). When equality holds, for (i, j, l′) where i < k < j ≤ t and t < l′ ≤

l, we can verify that ul
′
ij is always 0. If ul′ij > 0, the right-hand side of (2.30) should

be d(k, l), but the left-hand side of (2.30) cannot be positive since it is not possible

that a path pass through the arc ij and the node k simultaneously. Taking this into
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account, we can derive the following inequality similar to 3-Criteria inequality (2.13)

for any 1 ≤ k ≤ t < l ≤ n and any function π : [1, k] × [k + 1, t] → [t + 1, l]. Let’s

refer to the inequalities as 3-Criteria-TF.

∑
i≤k,k+1≤j≤t

d(k, l)∑
k′≤k

d(k′, π(i, j))
u
π(i,j)
ij + xkl ≤ d(k, l)(

∑
k≤i≤t<j≤l

yij) (2.31)

Proposition 2.4.6. 3-Criteria-TF inequalities are valid for TF.

Proof : Similar to the 3-Criteria inequality, considering the left-hand side of the

equation, where u
π(i,j)
ij represents the edge ij traversing the vertices 1 ≤ i ≤ k and

k + 1 ≤ j ≤ t, and xkl represents the node k being traversed, we observe that only

one term can have a positive value at a time. In the case where only one term exists,

we can confirm its validity by verifying that xkl ≤ d(k, l) and uij ≤
∑
k′≤k

d(k′, π(i, j)).

□

Algorithm 2.4.7. Separation algorithm for 3-Criteria Inequality

1. For each 1 ≤ i < c ≤ b < n, compute yi[c,b] :=
∑

j=[c,b]

yij. Since yi[c,b−1]+yib

has the same value, each can be calculated in O(1) time, so the overall

computation time is O(n3).

2. For each 1 < a < c ≤ b < n, compute y[a,c,b] :=
∑

i∈[a,c−1]

yi[c,b]. This can be

calculated with an operation y[a−1,c,b] + ya[c,b], so the overall computation

time is O(n3).

3. For each 1 ≤ i < j ≤ t < l < n, compute u
[t,l]
ij := max

l′∈[t+1,l]
ulij. This
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can be calculated with an operation by max{ulij , u
[t+1,l−1]
ij }, so the overall

computation time is O(n4).

4. For each 1 ≤ i < j ≤ c ≤ b < n, compute u
[k,t,l]
j :=

∑
i < ku

[t,l]
ij . This

can be calculated with an operation by u
[k−1,t,l]
j + u

[t,l]
(k−1)j, so the overall

computation time is O(n4).

5. For each a, compute u[k,t,l] :=
∑

j∈[k+1,t]

u
[k,t,l]
j . Each takes O(n) time, so the

overall computation time is O(n4).

6. Finally, for each 1 ≤ a ≤ c < b < n, compute the maximum value of

u[k,t,l] + xkl − y[k,t,l], which represents the maximum violation of the 3-

Criteria-TF Inequality. This can be computed in O(n3) time.

2.4.3 Other Valid Inequalities for the Triple Formulation

Now we examine another family of valid inequalities. Let [i, j] be a set of nodes from

i to j, and let d(S, T ) =
∑

s∈S,t∈T d(i, j). Then, we have

ulij ≤ d([1, i], l)yij , ∀ 2 ≤ i+ 1 < j ≤ l ≤ n. (2.32)

Proposition 2.4.8. (2.32) are facet defining inequality if and only if d([1, i], l) < U .

Proof : Let ε be a positive number less than or equal to U −d([1, i], l). Let R be the

set of solutions that have paths in the form of 1-n, 1-a-n, 1-a-b-n (1 < a < b < n)

and do not have a path of the form i-j for (a, b) ̸= (i, j) and (b, c) ̸= (i, j) and

1 ≤ a < b ≤ c ≤ n. Let S be the set of solutions that have a path passing through

nodes a, b, l and a flow of a− l with a value of ε, for (a, b, c) as defined above. Let T

be the set of solutions that have a path of the form 1−2−· · ·− (i−1)− i− j− l−n
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and a− l flow with a value of d(a, l) for 1 ≤ a ≤ i. Let U be the set of solutions that

have a path passing through node j ≤ l′ ̸= l and i− l′ flow with a value of ε. Finally,

let V be the set of solutions that have a− j flow with a value of ε for 1 ≤ a < i and

a path passing through nodes 1, a, i, i + 1, j, n. Then the sets R,S, T, U, and V are

affinely independent and the total number of solutions is 1+ (n− 1)(n− 2)/2+ (n+

1)n(n− 1)/6− 1 = dim(TF ). □

This is relevant only if there exists an i− l flow, there exists an a− l flow for all

a with a < i. This can be complemented by the following inequality.

ulij −
∑

k<a<i

ulai ≤ d([1, k] ∪ i, l)yij , ∀1 ≤ a < i < j ≤ l ≤ n. (2.33)

To generalize this, we can consider the following inequality, which includes the

previous (2.32) and (2.33), and by showing the validity of this inequality, we can

prove the validity of (2.32) and (2.33).

For S ⊆ [1, i− 1] and T = [1, i] \ S, we can consider the following inequality:

ulij −
∑

s∈S,t∈T
ulst ≤ d(T, l)yij (2.34)

Proposition 2.4.9. (2.32-2.34) are valid.

Proof : If the arc ij is not used, the right-hand side is 0, and the left-hand side is

obtained by subtracting a nonnegative value from 0. If the arc ij is used, all flows

starting from any i before l and arriving at l must pass through node i. That is,

there is no direct flow from S to a node with an index larger than i, so the left-hand

side is greater than or equal to the total sum of flows starting from an element
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in S and arriving at l, which can be expressed as
∑

s∈S,t∈T
ulst. The left-hand side is

obtained by subtracting ulij from this value, and it is less than the total sum of flows

starting from a node not in S before i and arriving at l. This total sum is equal to

d([1, i] \ S, l), so (2.34) holds. □

(2.34) can be generalized by the following inequalities for J ⊂ [i+ 1, l].:

∑
j∈J

ulij −
∑

s∈S,t∈T
ulst ≤ d(T, l)

∑
j∈J

yij (2.35)

We call (2.35) as Cutset Inequality. The validity of Cutset Inequality can be

confirmed from the proof that (2.34) is valid. When using arc ij as an argument

for each j ∈ J , it can be observed that the right-hand side is equal to zero and the

left-hand side is non-positive even when arc ij is not used for all j ∈ J , using the

same argument as when arc ij is used for each j ∈ J .

(2.32) and (2.33) have O(n3) and O(n4) constraints, respectively. Therefore,

it is possible to add them to the (TF) from the beginning. However, since (2.34)

and (2.35) is exponentially many, it needs to be added adaptively to the set of

constraints using a separation algorithm. We propose ㅁ separation algorithm in

(2.35). Although we can obtain the separation algorithm in (2.35) from this, there

is no particular benefit in terms of computation time.

Algorithm 2.4.10. Separation algorithm for (2.35)

Repeat the following for each 1 ≤ i < l:

1. Create a graph G(i, l) by adding a new vertex 0 and {i + 1, · · · , l} to the

induced subgraph of original graph defined by vertices 1, · · · , i. The arc is
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composed of A1 = {ab|0 ≤ a < b ≤ i} and A2 = {ba|i+ 1 ≤ b ≤ l, 1 ≤ a ≤

i}.

2. Let the capacity of arcs ab in A1 be ulab, and ba in A3 be d(a, l)yib if a ̸= i

and d(i, l)yib − ulib if a = i.

3. Compute the 0− i min-cut and check if it is smaller than 0. If it is smaller

than 0, the current solution is cut-off by the inequality defined in (2.35),

which has S as the set of nodes of [1, i] on the same side with 0 and J as

the set of nodes of [i+ 1, l] on the same side with 0, in the min-cut.

Proposition 2.4.11. Algorithm 2.4.10 is a polynomial-time separation algorithm

for (2.35).

Proof : (2.35) can be rewritten as follows:

0 ≤
∑

s∈S,t∈T
ulst + d(T, l)

∑
j∈J

yij −
∑
j∈J

ulij

The value on the right-hand side is exactly the capacity of the cut S({0}∪S, T ) in

the graph constructed in Steps 1 and 2 in the Algorithm 2.4.10. Since the algorithm

requires only solving min-cut O(n2) times after the construction of the graph, it

takes polynomial time. □
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Chapter 3

Approximation Algorithm

In this chapter, we present research on the approximability of sMTP. We demon-

strate that the integrality gap of the formulations presented in Chapter 2 is θ(n2),

and that sMTP is 2log
1−ε n-hard to approximate for any ε > 0, unless NP can be

solved in quasi-polynomial time. We present approximation algorithms for ssMTP,

t-separable sMTP, and an approximation algorithm for sMTP that uses approxi-

mation algorithm for sMTP and t-separable sMTP as subroutines. We also provide

approximation algorithms for other problems related to sMTP, including TRPP.

3.1 Introduction

Approximation algorithms are efficient algorithms that aim to guarentee a certain

level of performance even in the worst case.

Definition 3.1.1. We call an polynomial time algorithm α-approximation that out-

puts a feasible solution if the following always holds. We call α the approximation

ratio of the algorithm.

optimal objective value
objective value of the solution returned by the algorithm ≤ α

The development of such approximation algorithms is important for the following
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reasons (Williamson & Shmoys 2011):

• It offers a solid mathematical foundation for the examination of heuristics.

• When designing algorithms, the initial emphasis is often placed on idealized

models rather than their practical application in the real world.

• It provides a measure to quantify the difficulty of the optimization problems.

Furthermore, in cases where there is no information available regarding the re-

alism of a given instance, or in other words, when there is no information about

the probability distribution of the instance, this can be considered the only method

that guarantees the quality of the solution to the problem. This signifies an approx-

imation algorithm with good ratio for a problem is a favorable choice to consider

as a potential solution when encountering the problem for the first time in a new

application. Research on the inapproximability of a certain problem is a study that

aims to demonstrate the non-existence of an approximation algorithm that achieves

a specific ratio for that problem.

Definition 3.1.2. We say a problem is α-hard to approximate, or hard to α-

approximate, if there cannot exists and α-approximation algorithm.

Research on inapproximability or hardness of approximation is important be-

cause it reveals the limitations that we must face when developing approximation

algorithms (Arora & Lund 1996). Since the solutions output by approximation algo-

rithms are feasible, they can be a good alternative when we are interested in worst

case performance and need to compromise on time. Additionally, if the approxima-

tion ratio of an algorithm is α and and the objective function value of the solution

68



is OPTapp, we can determine that the optimal objective function value OPT of the

problem belongs to the range [OPTapp, αOPTapp]. This means that not only can we

obtain a lower bound for OPT from the solution output by the approximation algo-

rithm, but also an upper bound, and this information can be helpful in developing

other types of solution methods. Of course, from the MILPs obtained in Chapter

2, we can also obtain an upper bound for the objective value of the LP relaxation

obtained by relaxing the integer constraints of the variables, which is denoted as

OPTLP. If we know the value of the integrality gap defined below, we can use it to

obtain a lower bound.

Definition 3.1.3. The integrality gap of a given MILP formulation is minimum β

such that the following holds.

optimal objective value of the LP-relaxation problem
optimal objective value ≤ β

For example, if the integrality gap is β, we can guarantee that OPT belongs to

the range [OPTLP/β,OPTLP]. Furthermore, since the integrality gap is no greater

than the ratio of the approximation solution obtained by using LP relaxation, it be-

comes an important indicator for peeking at the limit of the approximation solution

method using the corresponding MILP formulation, its lower bound on the ratio.

One commonly used method for obtaining feasible solutions from LP relaxation is

randomized rounding (Raghavan & Tompson 1987), which involves rounding the

solution obtained from LP relaxation. The approximation ratio of such algorithms

is the product of the ratio of the decrease in the objective function value during the

rounding process to the integrality gap. For this reason, research has been conducted

to find integrality gaps (Chekuri et al. 2006, Chalermsook et al. 2012).
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To establish an inapproximability of sMTP, we consider the Max-Rep (Kortsarz

2001) which is an equivalent variant of the maximization version of the label cover

problem, a fundamental problem in the study on the hardness of approximation of

combinatorial optimization (Arora & Lund 1996).

There is no polynomial approximation algorithm for the Max-Rep with ratio

2log
1−ε n, for any 0 < ε < 1, unless NP is quasi-polynomially solvable (Arora et al.

1997). There is still a large gap between the lower bound and upper bound on

the approximability of the Max-Rep. Charikar et al. (2011) presented O(n1/3)-

approximation algorithm for the Max-Rep. Note that they also show that the inte-

grality gap of a natural MILP for Max-Rep is Ω(
√
n). For a special class of the Max-

Rep, known as “satisfiable," Manurangsi and Manurangsi & Moshkovitz (2017), and

Chlamtáč et al. (2017), respectively, attained O(n1/4) and O(n0.23)-approximation.

Peleg (2007) generalized the Max-Rep with weighted edges and nonuniform sets and

proposed an O(n1/2)-approximation algorithm.

Section 3.2 covers research on the inapproximability of sMTP and the integrality

gap of MILP formulations discussed in Chapter 2 from these perspectives. This can

be seen as research on the inapproximability of approximation solutions using LP

relaxation. In Section 3.3, we discuss approximation algorithms for the special case

of sMTP, which are used as subroutines in the sMTP approximation algorithm. In

Section 3.4, we present an approximation solution for sMTP by utilizing the results

mentioned above. Finally, in Section 3.5, we demonstrate the extension of sMTP’s

approximation solutions to more general problems or cases with minor variations,

including the Traveling Repairman Problem with Profit (TRPP), by utilizing the

techniques used in sMTP’s approximation algorithm.
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3.2 Inapproximability Results

3.2.1 Integrality Gap

Let us analyze the integrality gap of the AF formulation for sMTP. the following is

the AF.

max
∑

1≤k<l≤n

(
r(k, l)xkl −

∑
k≤i<j≤l

cijf
kl
ij

)

s.t.
∑

j:i<j≤n
yij −

∑
j:1≤j<i

yji =

 1, i = 1

0, 1 < i < n
,

∑
j:i<j≤l

fkl
ij −

∑
j:k≤j<i

fkl
ji =

 xkl, i = k

0, k < i < l
, 1 ≤ k ≤ i < l ≤ n,

∑
k≤i<j≤l

fkl
ij ≤ Uyij , 1 ≤ i < j ≤ n,

xkl ≤ d(k, l), 1 ≤ k < l ≤ n,

yij ∈ {0, 1}, xkl ≥ 0, fkl
ij ≥ 0, 1 ≤ k ≤ i < j ≤ l ≤ n.

Theorem 3.2.1. The integrality gap of AF is θ(n2).

Proof : Let an arbitrary instance is given, and consider the LP relaxation. The ob-

jective function can be partitioned into O(n2) values related to each pair k− l, given

by r(k, l)xkl −
∑

k≤i<j≤l

cijf
kl
ij . The solution space remains the same, and among the

optimal solutions to the problem defined by the partitioned objective function, there

exists an integer solution that crosses each k− l shortest path. Furthermore, the sum

of the optimal objective values of each problem defined by the partitioned objective

function is at least OPTLP. Since each integer solution has an objective function
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value less than OPT, we have n(n− 1)/2OPT ≥ OPTLP. Thus, the integrality gap

is O(n2). Note that the best among the feasible solutions that trade only one k − l

pair is an O(n2)-approximation algorithm.

Figure 3.1: An n = 9 instance with large gap

considering the following instance. In this instance, n is an integer of the form

4k + 1 for some integer k. Every length of the arcs is 1, and the arcs are composed

of only the arcs between 2i− 1, 2i, and 2i+ 1, for each i ∈ 1, · · · , 2k. The s-d pairs

are the all pair of nodes with even indices and exactly one of their indices is less

than 2k + 1, with demand 1. The revenue of each s-d pair is equal to one plus the

shortest distance between node pairs. In other words, for each 1 ≤ i < k < j ≤ 2k,

r(2i, 2j) = (j − i) + 2 and d(2i, 2j) = 1. U is a sufficiently large value. Then, each

(2i, 2j) is profitable only if the path does not visit other nodes with even indices

between 2i and 2j. Therefore, only one s-d pair can be profitable at a time, and the

optimal objective value is ((j − i) + 2)− ((j − i) + 1) = 1. On the other hand, let us

consider a fractional solution yij = 1/2 for all defined arcs ij and xkl = 1/2 for all

defined s-d pairs (k, l), with fkl
ij following the k − l shortest path. It is easy to see

that this solution satisfies all constraints, and the corresponding objective value is

k2/2. Therefore, there is a difference between the optimal objective value and Ω(n2).

□

Let the optimal objective value of a sMTP instance be a and let the optimal

objective value of its LP relaxation be denoted as αa. Now, consider the following
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instance. Let the graph of the original instance be G with start and end nodes 1 and

n, respectively. Add new nodes 0 and n+1 and connect them to nodes 1 and n with

arcs of sufficiently large cost (greater than αa is enough). Then create an arc with

cost 0 from node 0 to node n+ 1, and set d(0, n+ 1) = 1 and r(0, n+ 1) = (α− ε)a

for some ε > 0.

If we do not use the arc 0(n+ 1), the integer solution has an objective value of

at most a, while if we use it, the optimal objective value is (α − ε)a. On the other

hand, the optimal objective value of the relaxed problem is αa, which does not use

the arc 0(n+1). Therefore, solutions that consider only the arcs with positive values

in the LP relaxation and do not use the arc 0(n + 1) have an approximation ratio

of at least α − ε. Since the integrality gap of the Triple Formulation is also loose

compared to (AF), we aimed to develop an approximation method that does not

rely on MILP formulation.

Corollary 3.2.2. The integrality gap of TF is θ(n2).

Corollary 3.2.3. Algorithms that output solution with yij = 1 only if yij > 0 in the

LP-relaxation solutions of (AF) or (TF) for any arc ij has an approximation ratio

of O(n2).

3.2.2 Inapproximability of sMTP

In this subsection, we show that sMTP is 2log
1−ε n-hard to approximate for any ε > 0

unless NP ⊆ DTIME(npoly logn). This result is obtained from that the Nonuniform

Weighted Max-Rep is a special case of sMTP and inapproximability result for Max-

Rep. The Nonuniform Weighted Max-Rep problem was originally defined in Peleg

(2007).
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Problem 3.2.4. Nonuniform Weighted Max-Rep Given a bipartite graph G =

(A,B,E), A =
i=n⋃
i=1

Ai, B =
j=m⋃
j=1

Bj , and associated nonnegative integer weight wij

for each pair of sets (Ai, Bj), where Ai = {a1i , · · · , a
ni
i } ∀i ∈ {1, . . . , n}, Bj =

{b1j , · · · , b
mj

j } ∀j ∈ {1, . . . ,m}, choose a node from each Ai and Bj so that the sum

of weights for each pair of sets whose chosen nodes are the endpoints of an edge is

maximized.

We will refer to the special case of this problem as Max-Rep, where n = m,

ni = mj , and wij = 1 for all i, j ∈ {1, · · · , n}.

Lemma 3.2.5. Nonuniform Weighted Max-Rep is a uncapacitated sMTP with zero

arc costs and N-Max-Rep is an uncapacitated sMTP with zero arc costs and binary

revenues per unit of trading.

Proof : Given a Nonuniform Weighted Max-Rep instance G = (A,B,E) and weight

W , construct a sMTP instance as follows.

Let Nk :=
∑k

i=1 ni and Ml :=
∑l

j=1mj . Define node set V = {1, 2, · · · , Nn +

Mm+3} such that Ni−1+j+1 corresponds to aji , and Nn+Mi−1+j+2 corresponds

to bji . Thus, nodes 1, Nn+2, and Nn+Mm+3 do not correspond to any node in G.

Let t = Nn +2. The nodes of V between 1 and t (t and Nn +Mm +3) in increasing

order correspond to the sets of Max-Rep in the order of A1, · · · , An (B1, · · · , Bm,

respectively). We connect each node u ∈ V to every node v with v > u. For each

(a, b) ∈ E, assign revenue 1 and demand wij to each pair of nodes of sMTP that

correspond to a ∈ Ai and b ∈ Bj . There is no other node pair in the constructed

sMTP having a positive demand or revenue. We assign cost 1 to every edge if it

is internal i.e. if its end nodes correspond to nodes from the same Ai or Bi of the

Nonuniform Weighted Max-Rep for some i.
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We will show that there exists an optimal solution of the constructed sMTP

where the path visits exactly one node from each of the node sets corresponding

to Ai and Bi for every i, and where the optimal values of the two problems are

equal. Suppose a path contains an internal arc uv with cost 1. Given the order of

nodes in V corresponding to Ai’s and Bi’s, the demand assignment rule, and the fact

that the maximum revenue from an s-d pair is 1, every positive profit is achievable

only on the subpath from node 1 to node u, or the subpath from node v to node

Nn +Mm + 3. In the former case, we may replace the arc uv and the subpath from

v to Nn +Mm + 3 with a single arc connecting u to Nn +Mm + 3 without affecting

the profit. By repeating similar transformations, if necessary, we may obtain a path

that visits at most one node corresponding to the same Ai or Bi.

Therefore, we can obtain an optimal path using only arcs with cost 0. If the

path does not visit a node corresponding to a set Ai or Bi, then we can insert such

a node by using an arc with zero cost. As a result, the elements of Nonuniform

Weighted Max-Rep corresponding to the nodes of the path form a feasible solution

of Nonuniform Weighted Max-Rep. Clearly, a∗i ∈ Ai and b∗i ∈ Bi are in the feasible

solution if and only if the corresponding nodes are in the path. From the demand

assignment rule in sMTP construction, the sum of the associated weight of edges

between a∗i ’s and b∗i ’s is the same as the profit realized along the path. Conversely,

it is not difficult to see that any feasible solution of the Nonuniform Weighted Max-

Rep, the path visiting the corresponding nodes between nodes 1 and Nn+Mm+3 has

the same profit as the sum of the weights achieved by the feasible solution. Therefore,

optimal solutions of the Nonuniform Weighted Max-Rep and the constructed sMTP

have the same objective value. □
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Lemma 3.2.5 implies the inapproximability result of Max-Rep in Kortsarz (2001)

is transferred to sMTP.

Theorem 3.2.6. Even when there is no bound on the capacity, and the costs, rev-

enues, and demands are all binary, sMTP is inapproximable within the factor of

2log
1−ε n for any ε > 0 unless NP ⊆ DTIME(npoly logn).

3.3 Approximation of some special classes of sMTP

In this section, we devise approximation algorithms for two special classes of sMTP,

that used as a subroutine of the approximation algorithm for sMTP, in Section . In

Subsection 3.3.1, we consider a special class of sMTP’s referred to as ssMTP, that

have a single supply node which is known to be NP-hard (Kim 2015). We will show

ssMTP admits an FPTAS. In Subsection 3.3.2, we consider another class of sMTP’s

referred to as the t-separable sMTP for which we develop an O(n1/2 log rratio)-

approximation algorithm, where rratio = max{r(k, l)}/min{r(k, l)}. Then in Subec-

tion 3.3.3, we suggest a method for boosting the approximability from Subsection

3.3.2 for large rratio. In doing so, the FPTAS for ssMTP in Subsection 3.3.1 is used

as a subroutine.

Note that if a path P is fixed in a sMTP, the problem is reduced to a minimum

cost flow problem and its optimal x, denoted by xP , is polynomially computable.

Let cP (k, l) be the logistic cost of the subpath of P from k to l. Then the objective

value of sMTP is given as

f(P ) =
∑

(k,l)∈D

(
r(k, l)− cP (k, l)

)
xPkl. (3.1)
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The following lemma will be used for approximation factor analysis of proposed

algorithms throughout Section 3.3 and 3.4. Similar lemmas are used for devising

approximation algorithm for other problems (Kleinberg 1996, Balcan & Blum 2006,

Chekuri et al. 2012).

Lemma 3.3.1. Suppose for a given sMTP, there are β problems, sMTP1, . . .,

sMTPβ defined on the same digraph such that each sMTPi, 1 ≤ i ≤ β, has the

objective function fi satisfying

• 0 ≤ fi(P ) ≤ f(P ) ≤
∑β

i=1 fi(P ) ∀ P , and

• there is an optimal path P ∗ of the given sMTP such that fi(P
∗) > 0 for at

most γ i’s.

Then there is i such that an α-approximation of sMTPi is an αγ-approximation

of the given sMTP.

Proof : Since f(P ∗) ≤
β∑

i=1
fi(P

∗) and at most γ sMTPi’s are positive, there is i′

such that fi′(P
∗) ≥ f(P ∗)/γ. Let P̂ be an α-approximation solution of sMTPi′ .

Then f(P ∗) ≤ fi′(P
∗)/γ ≤ fi′(P̂ )/αγ ≤ f(P̂ )/αγ. □

Corollary 3.3.2. Let Di, 1 ≤ i ≤ β, be s-d pair sets on a digraph G such that

D =
β⋃

i=1
Di. Then there is i such that an α-approximation solution of the sMTP,

(G, c,Di, d, p, U), is an αβ-approximation solution of the sMTP, (G, c,D, d, p, U).

3.3.1 An FPTAS for the single-source sMTP

The single-source sMTP or ssMTP is defined as the sMTP in which d(k, l) = 0 for

all k > 1. We propose an FPTAS for ssMTP based on a pseudo-polynomial dynamic
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programming algorithm which is in turn enabled by the acyclicity of the underlying

digraph. Since there are objective terms with factors of the form, revenue minus

cost, even when we scale the revenues or costs so that the ratio of the minimum

to the maximum value is bounded by the 1 + ε for a sufficiently small ε > 0, the

profitability of a trade between an s-d pair may not be preserved if the ratio of

revenue to logistics cost of the pair is less than 1 + ε. Furthermore, such a factor is

multiplied by the traded volume, we need be careful not to let a small profit make

a trade profitable in the scaled problem. To address these concerns, we will propose

a refined recurrence relation that involves appropriate rounding.

The unique supply node enables us to simplify notation: dl := d(1, l), rl := r(1, l),

and xl := x1l for 1 < l ≤ n. Let cmax
i be the maximum distances from node 1 to node

i, namely cmax
i =

∑i−1
j=1 cj(j+1) for i = 2, . . ., n. Let D(j,Γj , P ) be the minimum of

total trade
∑j

k=2 xk of the subproblem induced by the nodes from 1 to j, whose 1-j

path is restricted to have distance no greater than c1j + Γj , and whose profit to be

no less than P . Then we get the following relation.

D(j,Γj , P ) = min
i<j, 0≤xj≤dj

{
D (i,Γj − (cij + c1i − c1j), P − (rj − c1j − Γj)x) + xj

}
.

(3.2)

We now scale so that P , Γj , and xi have polynomially many distinct values in (3.2).

The maximum profit attainable from trading between single s-d pair is given by

ssMTPmax = max
1≤i≤n

{(ri − c1i)di}. The optimal objective value falls onto the interval

[ssMTPmax, nssMTPmax]. We underestimate the objective values from trades at each

node as the closest multiple of 1obj := ssMTPmax/⌈n/ε⌉. Then optimal solution of

the scaled problem is a 1 + ε-approximation solution of the original problem.
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Let ∆cmax = max2≤i≤n{cmax
i − c1i} and C be the set of numbers in the interval

[0,∆cmax] that can be converted to base ⌈n/
√
ε⌉ with exactly 3 significant figures:

C = {0} ∪ {⌈n/
√
ε⌉k l : 0 ≤ k ≤ logn/

√
ε∆cmax − 2, 1 ≤ l ≤ ⌈n/

√
ε⌉3 − 1, l ∈ Z+}.

For 2 ≤ j ≤ n, we round Γj to its closest value Γ̂j in C ∩ {c : 0 ≤ c ≤ cmax
j −

c1j }. This may misestimate a cost by at most ε/n2 times its actual value. Also let

Xj = {x : 0 ≤ x ≤ dj , x = djnk/⌈n2/ε⌉ for some k ∈ Z+}.

Write as D̂(j, Γ̂j , P̂ ) the minimum total trade
∑j

k=2 xk of a solution of the sub-

problem induced by the nodes from 1 to j whose 1-j path is restricted to have dis-

tance no greater than Γ̂j , and the profit to be at least P̂1obj . If P̂1obj is unattainable,

D̂(j, Γ̂j , P̂ ) is set to +∞. Then we get the scaled dynamic relation where D̂(j, Γ̂j , 0)

= 0 for 1 ≤ j ≤ n.

D̂(j, Γ̂j , P̂ ) = min
P̂−⌈n/ε⌉≤P̂i<P̂ ,i<j

{
D̂(i, C(Γ̂j , i, j), P̂i)

+ min{x : x ∈ Xj , (rj − c1j − Γ̂j)x ≥ (P̂ − P̂i)1obj}
}
,

(3.3)

where C(Γ̂j , i, j) is the element of C which, if added by cij + c1i − c1j , is clos-

est to Γ̂j . Return x̂, as the solution of the scaled problem, which corresponds to

the maximum value of a P̂ whose D̂(n, Γ̂n, P̂ ) is less than or equal to U . To go

through the recurrence (3.3), we need to compute O(n× log∆cmax(n/
√
ε)3 × n2/ε)

entries, each requiring O(n2/ε) time at maximum. Thus total computation time is

O(n7 log∆cmax/ε
3), polynomial in the input length and 1/ε.

Theorem 3.3.3. ssMTP admits an FPTAS: an (1 + ε)-approximation can be done

in O(n7 log∆cmax/ε
3) time.

Proof : We will show the solution x̂ is a 1/(1−3ε)-approximation solution of ssMTP,
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as the difference between the objective value of x̂ and the optimal value of ssMTP

does not exceed 3εssMTPmax.

Suppose the path of x̂ visits nodes v1(= 1)-v2-. . .-vk−1- vk(= n), trading x̂vi from

node 1 to vi for i ≥ 2. Then its scaled objective value is

OBJp,c,x(x̂) =

k∑
i=1

⌊(
(rvi − c1vi)x̂vi − Γ̂vi x̂vi

)
/1obj

⌋
1obj. (3.4)

If P is treated exactly, namely not scaled in (3.3), we can attain an objective

value at least

OBJc,x(x̂) =

k∑
i=1

((rvi − c1vi)x̂vi − Γ̂vi x̂vi). (3.5)

Since k ≤ n, the original objective function is no greater than (3.4) by n1obj ≤

εssMTPmax.

If in addition Γ is treated exactly, (3.3) guarantees an objective value no less

than

OBJx(x̂) =
k∑

i=1

((rvi − c1vi)x̂vi − Γvi x̂vi). (3.6)

Note that (rvi−c1vi)x̂vi−Γ̂vi x̂vi ≥ 0 for every 2 ≤ i ≤ k. For otherwise setting x̂vi = 0

would increase OBJp,c,x(x). Hence we have Γ̂vi x̂vi ≤ (rvi − c1vi)x̂vi ≤ ssMTPmax.

Since Γ̂i is obtained by at most n additions at each of which its value increases by

the factor of ε/n2, the cumulated cost overestimation is no greater than ε/n times

Γ̂i. Therefore,

|OBJc,x(x̂)−OBJx(x̂)| ≤
k∑

i=1

ε

n
Γ̂vi x̂vi ≤ εssMTPmax.

Since the value of xj can be chosen within the accuracy djε/n, the difference in
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objective value due to the scaling of the range of x is bounded by
∑k

i=1(rvi − c1vi −

Γ̂vi)dviε/n ≤ εssMTPmax. In sum, the objective value of x̂ can not be greater than

the optimal objective value of SMTP by more than 3εssMTPmax. □

Note that we can also apply the FPTAS to the ssMTP in which the commodity

flow is unsplittable by setting Xj = {0, dj}. It is extendible for the ssMTP with

multiple commodities between the same s-d pair by duplicating each node to nodes

with consecutive indices, and setting the cost between the duplication of the same

node to zero.

Corollary 3.3.4. The ssMTP with unsplittable commodity and the ssMTP with

multiple commodities per s-d pair admit an FPTAS.

Consider a sMTP, not necessarily singly sourced, whose demand d(k, l) > 0

always satisfies k ≤ t ≤ l. We call such a sMTP, t-intersecting. Suppose, in addition,

every path is required to stop at the node t and the subpath up to node t is fixed in

advance. And we call the problem t-intersecting sMTP with fixed subpath. We can

transform this class of sMTP to a single-source sMTP with multiple commodities

per node by changing the supply node of each s-d pair to node t if its index less than

t and compensating for the resulting reduction in logistic costs by subtracting it

from the revenue: for each i < t with d(i, j) > 0, we create an s-d pair (t, j) with the

same demand but with the revenue equal to the original revenue minus the sum of

the cost of arcs of the subpath from node i to node t. Therefore we get the following

corollary.

Corollary 3.3.5. The t-intersecting sMTP with a fixed subpath admits an FPTAS.

Corollary 3.3.4 and 3.3.5 will be used as subroutines of the proposed approxima-
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tion algorithms in the following sections.

Remark 3.3.6. If we decompose a given sMTP with Di = {(k, l) ∈ D|k = i},

we get n ssMTP’s. Thus, by Corollary 3.3.2, the best of the O(1)-approximation of

a resulting ssMTP obtained by the FPTAS is an O(n)-approximation of the given

sMTP.

3.3.2 An approximation algorithm for the t-separable sMTP

Definition 3.3.7. We call a sMTP t-separable if there exists a node t satisfying the

followings : i) k ≤ t ≤ l for all (k, l) ∈ D, and ii) cit = 0 for 1 ≤ i < t and ctj = 0 for

t ≤ j < n.

Consider an instance of t-separable sMTP denoted by the septuple (G, c,D, d, p, U, t).

We decompose it into sMTP’s by replacing D with each set Di of the s-d pairs (k, l)

whose r(k, l) have ratios to pmax belonging to the interval [(1+ ε)i, (1+ ε)i+1). Thus

there are O(log rratio) decomposed problems in each of which there is r̂ such that r̂

≤ r(k, l) ≤ (1+ ε)r̂ for all its s-d pairs (k, l). Now we apply Algorithm 3.3.8 to each

of the decomposed problems. Recall that we denote our path P only ny the nodes

where a positive amount is traded.

Algorithm 3.3.8.

1. Set L0 ← {1, · · · , t− 1} and i← 0.

2. On the subgraph induced by node set Li, find a path Pi(no restrictions on

endpoints) whose cost is no greater than (1 + ε)r̂/3 and whose number of

nodes is no less than n1/2.
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3. If none, go to Step 4. Else, find a (1 + ε)-approximation solution of the

restricted problem whose subpath before t is fixed to Pi. Set Li+1 ← Li \

V (Pi), increase i by 1, and go to Step 2.

4. Let S ← Li. For each case when the path contains exactly one node from

S before t, find a (1 + ε)-approximation solution, and choose the best of

such a solution.

5. Return the best of the solutions from Step 3.

Note the path Pi in Step 2 can be computed by a polynomial time algorithm

for computing a shortest path with a predetermined number of nodes (e.g. Cheng

& Ansari (2004)). The (1 + ε)-approximations in Step 3 and 4 can be done by the

FPTAS for ssMTP by Corollary 3.3.5 and 3.3.4, respectively.

Lemma 3.3.9. Algorithm 3.3.8 guarantees an O(n1/2)-approximation for each prob-

lem obtained by the decomposition.

Proof : Given a sMTP and its subset V ′ of nodes, Denote by sMTP(V ′) the restricted

problem in which only the s-d pairs (k, l) with k ∈ V ′ can be used. We first decompose

a given sMTP into sMTP(({t} ∪ L0) \ S) and sMTP(S). Then it suffices to show

that the solutions from Step 3 and 4 are, respectively, O(n1/2)-approximations of

sMTP(({t} ∪ L0) \ S) and sMTP(S).

Consider first the sMTP(S). The subpath up to t of an optimal path of sMTP(S)

should have a logistic cost no greater than (1+ ε)r̂. For, otherwise, we can not make

any profit from the first node of the path. Also its number of nodes is bound to

less than 3n1/2 − 2. Suppose it contains nodes v1, · · · , vi, t with i ≥ 3n1/2 − 2.

Then one of three paths having the nodes {v1, · · · , vn1/2 , t}, {vn1/2 , · · · , v2n1/2−1, t},
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or {v2n1/2−1, · · · , vi, t}, should have more than n1/2 nodes and its cost should be less

than or equal to (1 + ε)r̂/3 before t, a contradiction. Therefore, by Lemma 3.3.1

applied to the case sMTPi = sMTP({i}) for i ∈ S and γ = 3n1/2 − 2, an (1 + ε)-

approximation solution in Step 4 provides an O(n1/2)-approximation of sMTP(S).

Now consider the sMTP(({t}∪L0) \S). Algorithm 3.3.8 adds a nonempty set to

current partition of L0 = {1, · · · , t − 1} in nested manner whenever it finds a path

Pi satisfying the condition of Step 2. Since the path has at least n1/2 nodes, the

partition may not have more than n1/2 sets. By Corollary 3.3.2, an optimal solution

of the restricted sMTP in which the path may use only the nodes from V (Pi) before

t is an O(n1/2)-approximation solution of sMTP(({t} ∪L0) \S). Now we will see an

optimal solution of the restricted problem whose subpath before t is fixed to Pi is an

O(1)-approximation solution of sMTP({t} ∪ V (Pi)). If so, the best of the solutions

found in Step 3 should be an O(n1/2)-approximation of sMTP(({t} ∪ L0) \ S).

Suppose an optimal solution x∗ of sMTP({t}∪V (Pi)) uses a path l1− l2− · · · −

la− t−r1−r2−· · ·−rb. Since a profitable trade should have the cost of the subpath

from t to rb no greater than (1+ ε)r̂, there exist b1 and b2 with 1 ≤ b1 ≤ b2 ≤ b such

that each cost of the subpaths from r1 to rb1 , from rb1 to rb2 , and from rb2 to rb is

no greater than (1+ ε)r̂/3. Consider three solutions that have the common subpath

before t as x∗ but thereafter the subpaths from r1 to rb1 , from rb1 to rb2 , and from

rb2 to rb, respectively. Let their trades at each node of the paths be the same as x∗.

Then the sum of their revenues is the same as the revenue of x∗ and each of their

logistic costs is no greater than that of x∗. Thus Corollary 3.3.2 implies that the

best of the three feasible solutions is a 3-approximation of x∗. Let the solution be

x′.
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The condition on Pi implies the cost from l1 to t is no greater than (1 + ε)r̂/3.

Therefore the logistic cost either up to t or after t can not exceed (1 + ε)r̂/3. Hence

for every (k, l) with k < t ≤ l, r(k, l) minus the logistic cost from k to l falls onto

the interval [(1− 2ε)r̂/3, (1+ ε)r̂]. Thus the profit from a unit trade between an s-d

pair,which varies depending on the path, does not differ by more than 3(1+ ε)/(1−

2ε). This means (1 + ε)-approximation of the restricted problem whose subpath

before t is fixed to Pi has the objective value no lesser than 3(1+ ε)2/(1− 2ε) times

the objective value of x′. In sum, the path is O(1)-approximation solution of the

restricted sMTP whose path may use only the nodes from V (Pi) before t. □

Theorem 3.3.10. A t-separable sMTP is approximable within O(n1/2 log rratio)

times its optimum.

Proof : The decomposition of t-separable sMTP compromised the approximation

guarantee by the factor O(log rratio). And by Lemma 3.3.9, each resulting sMTP

is O(n1/2)-approximable. Combining the two, we can approximate the t-separable

sMTP within O(n1/2 log rratio) times its optimum. □

The reduction in the proof of Lemma 3.2.5 implies that the Nonuniform Weighted

Max-Rep is a t-separable sMTP with rratio = 1. Hence the approximation algorithm

for the t-separable sMTP from this subsection, applied to the Max-Rep, guarantees

approximation factor, O(n1/2), the same order as the current best by Peleg (2007).

3.3.3 Boosting approximability of the t-separable sMTP’s with large

rratio

The factor log rratio of the approximation guarantee O(n1/2 log rratio) from Subsec-

tion 3.3.2 is due to the partition bounding the ratio between any pair of revenues of
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each problem to 1 + ε. The value log rratio can be as large as Ω(n). This subsection

boosts approximability of the problem for large rratio’s by proposing an intermediate

and coarser partition which combined with the t-separability results in the following

lemma.

Lemma 3.3.11. Let a constant α > nm/ε. If the t-separable sMTP with rratio ≤

α is approximable within f(n,m,α) times its optimum, then the t-separable sMTP

with rratio > α is approximable within O(max{f(n,m,α), n1/2(log rratio/ logα)
1/2})

times its optimum.

Proof : Assume we are given an algorithm approximating the t-separable sMTP

with rratio ≤ α with the factor f(n,m,α). We will denote a given t-separable sMTP

with rratio > α by the septuple (G, c,D, d, p, U, t). We sort the s-d pairs, (k, l) ∈ D,

according to which interval [αq, αq+1) its r(k, l) belongs. We then decompose the

t-separable problem into two problems by partitioning q’s to their parity.

We first consider the problem with the s-d pairs having r(k, l)’s in the intervals of

odd q’s. The other problem determined by the even q’s can be treated analogously.

Let Dr be the set of s-d pairs whose r(k, l) fall into [α2r+1, α2r+2). If two r(k, l)’s

belong to different intervals, the larger is at least nm/ε < α times the smaller. Let

M1 and M2, respectively, be the minimum and the maximum values of r whose Dr

is nonempty. Then M := M2−M1, an upper bound of the number of nonempty Dr,

is O(log rratio/ logα).

In an approximation analysis, an arc ij with cost cij ≤ r(k, l)/α ≤ r(k, l)/(nm/ε)

is insignificant to the s-d pair (k, l): since a path has at most n arcs and covers at

most m s-d pairs, the total logistic cost induced from the such arcs is at most

εmax{r(k, l)d(k, l)} which is, in turn, less than ε times optimal value. It contributes
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at most O(1) factor in approximation guarantee for the problem. On the other hand,

an arc with a cost greater than r(k, l) will not be used for a trade between s-d pair

(k, l). In these senses, we call an arc ij significant to the s-d pairs (k, l) of Dr with

k ≤ i < j ≤ l if cij ∈ Jr := [α2r, α2r+2), M1 ≤ r ≤ M2, insignificant, otherwise.

Note that if cij ∈ JM1−1 := [0, α2M1), ij is insignificant to every s-d pair.

Note that each of the s-d pairs served by a path P belongs to one of three groups

(not necessarily mutually exclusive), the s-d pairs using a significant arc both before

and after t in P , the s-d pairs using only insignificant arcs before t, and the s-d

pairs using only insignificant arcs after t. Thus if we decompose a t-separable sMTP

into three sMTP’s accordingly, namely, by restricting the choice of path to include

or exclude a significant arc before or after node t, they also satisfy the conditions

in Corollary 3.3.2. Hence the best solution from the restricted problems is a 3-

approximation of the original t-separable sMTP. We now show how to approximate

each problem.

Case 1: Significant arcs before and after t

We first consider the t-separable sMTP in which every trade should use a significant

arc both before and after node t. For each r satisfying M1 ≤ r ≤M2+1, let LT rLHr

and RT rRHr be the arcs of P such that 1) their cost is greater than α2r, 2) LHr ≤

t ≤ RT r, and 3) they are closest to node t in P , i.e. an end node of them is closest

to t as a node of P than an end node of any other arc satisfying 1) and 2). We will

denote by LT r and LHr, or RT r and RHr the nodes 1, or n, respectively, if such

an arc does not exist.

Let us make some observations. First, the node indices LTr and LHr decrease
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in r while RTs and RHs increase in s. Note that the node sets {LHr+1, . . ., LTr}

and {RHs, . . ., RTs+1} are mutually disjoint for every r, s ∈ [M1,M2 + 1]. Second,

should a trade be profitable between s-d pair (k, l) with r(k, l) ∈ [α2r+1, α2r+2), it

ought to be LHr+1 ≤ k ≤ LTr and RHr ≤ l ≤ RTr+1. If k < LHr+1 or RTr+1 < l,

the logistic cost from k to l exceeds the revenue. If LTr < k or l < RHr, a trading

between (k, l) will not use any significant arc.

The observations enable the following dynamic programming algorithm. For each

sextuple (a, b, c, d, e, f) of nodes with 1 ≤ a ≤ b ≤ c ≤ t ≤ d ≤ e ≤ f ≤ n, let

Fr(a, b, c, d, e, f) be the maximum profit obtainable from the s-d pairs (k, l) satisfying

k ∈ {a, a+1, . . . , b}, l ∈ {e, e+1, . . . , f}, and (k, l) ∈ Dr where (LHr+1, LTr, LHr,

RTr, RHr, RTr+1) = (a, b, c, d, e, f). Note that all the arcs ij with LHr ≤ i < j

≤ RTr are insignificant to any (k, l) ∈ Dr.

Therefore, we can approximate Fr(a, b, c, d, e, f) within an O(1) error in the

approximation factor by solving the sMTP with the following restrictions: D is

restricted to s-d pairs (k, l) satisfying k ∈ {a, a+ 1, . . . , b} and l ∈ {e, e+ 1, . . . , f};

the path P must use arcs (b, c), (c, t), (t, d), and (d, e); and the arcs between node a

and b, and c and d should have a cost less than α2r+2. The rratio is less than α in this

restricted sMTP hence to which can be applied the given approximation algorithm

guaranteeing the factor f(n,m,α).

Denote by Gr(a, f) the optimal objective value of the sMTP obtained by replac-

ing D of the sMTP in Case 1 with the union of Ds with s ≤ r when a = LHr+1 and

f = RTr+1. Then the optimal value of the sMTP in Case 1 is GM2(1, n) from the
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following relation for M1 ≤ r ≤M2 and 1 ≤ a ≤ t ≤ f ≤ n:

Gr(a, f) = max
a≤b<c≤t≤d<e≤f

{Fr(a, b, c, d, e, f) +Gr−1(c, d), Gr−1(a, f)} , (3.7)

where Gr(t, t) = 0 and GM1−1(a, f) = 0. From the O(1) error in computing F , we

can show GM2(1, n) can be approximated within O(f(n,m,α)) times its exact value

from (3.7).

Case 2: No significant arc before t

Let sMTPns be the sMTP restricted to exclude significant arcs before t in its path.

We will introduce an O(n1/2M1/2) = O(n1/2(log rratio/ logα)
1/2)-approximation al-

gorithm for sMTPns. The third case in which significant arcs are excluded after node

t is also approximable with the same factor if treated symmetrically.

Again sMTPns will be denote by the septuple (G, c,D, d, p, U, t). We first trans-

form sMTPns into an equivalent unrestricted problem, sMTP′ so that the solutions

of two problems correspond one-to-one with the same objective values. Construct

the digraph G′ of sMTP′ as follows.

• The node set of G′ is L′ ∪ R, where L′ := {1, · · · , t− 1} × {M1 − 1, M1, . . .,

M2} and R := {t, · · · , n}. Thus a node of G′ is of the form (i, r) or j. Then

we call i and j the first components of the nodes.

• The arc set of G′ is AL ∪ At ∪ AR, where AL is the set of arcs connecting

(i,max{r, s}) to (j, s) for each ij ∈ A such that i < j ≤ t and cij ∈ Jr, At the

set of arcs connecting (i,M1− 1) to t for each i ≤ t− 1, and AR the set of arcs

connecting i to j for each ij ∈ A with t ≤ i < j.
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• The cost of each arc of G′ is the same as the arc of G which has as the end

nodes the first components of its end points.

• For each r(k, l) ∈
⋃M2

i=u+1Di with M1 − 1 ≤ u ≤M2 − 1 the s-d pair ((k, u), l)

of G′ has the same demand and revenue as the s-d pair (k, l) of G. Each s-d

pair (t, l) of G′ has the same demand and revenue as the s-d pair (t, l) of G.

Notice that for each node (j, s) ∈ L′, there is a unique arc of G′ connecting a

node whose first component is i with i < j to (j, s). Therefore to each path of G,

P := l1 − l2 − · · · − lp − t − r1 − r2 − · · · − rq, corresponds a unique path P ′ of

G′ whose subpath up to t has the nodes represented by the ordered pairs with first

components, l1, · · · , lp, which has the subpath r1 − r2 − · · · − rq right after t and

visits the node (lp,M1−1). Recall that clpt ∈ JM1−1. Also if clili+1
∈ Ju, P ′ contains

the node (li+1, s), and its most expensive arc after li+1 has the cost belonging to Js,

then P ′ contains node (li,max{u, s}) and the largest cost of an arc after li belongs

to Jmax{u,s}. Thus, inductively, if P ′ visits node (li, u), its largest cost of an arc of

the subpath from li to t belongs to Ju.

By construction, the corresponding paths from G and G′ have the same cost.

Also we will see that in an optimal solution, the corresponding paths have the same

revenue from their s-d pairs corresponding to each other. Let x be a feasible solution

of sMTPns, P its path, and P ′ the corresponding path of sMTP′. If there is a trade

between s-d pair (li, rj) in x of sMTPns, and r(li, rj) ∈ Ds, then due to the restriction

of this case, the costs of arcs of li-t subpath of P fall onto
⋃s−1

k=M1−1 Jk. If P ′ contains

node (li, u), the largest cost of an arc of its li-t subpath belongs to Ju. Thus P ′’s

containing node (li, u) implies that each s-d pair (li, rj) of G is connected by a

subpath of P free from a significant arc before t if and only if r(li, rj) ∈
⋃M

i=u+1Di.
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Therefore, by construction, there is one-to-one correspondence between such s-d

pairs (li, rj) of G and the s-d pairs ((li, u), rj) of sMTP′.

We have shown the equivalence between sMTP′ and sMTPns. Also given an opti-

mal solution of one problem, we can construct an optimal solution of the other: from

an optimal path of sMTP′, the corresponding path of sMTPns can be constructed

simply by taking its first components. Conversely, suppose we are given an optimal

path P of sMTPns. Then for each node l of P before t, we replace l with the node

of G′ with the ordered pair (l, s) where Js is the interval to which the largest cost of

an arc on the l-t subpath of P belongs. Therefore we can apply Algorithm 3.3.12 to

sMTP′ to obtain a feasible solution of sMTPns guaranteed the same approximation

factor.

Algorithm 3.3.12.

1. Set L′
0 ← L′ and i← 0.

2. Find a path Pi in L′
i whose number of nodes is no less than (nM)1/2.

3. If none, go to Step 4. Else, set L′
i+1 ← L′

i \ V (Pi). Find a (1 + ε)-

approximation solution xi of the sMTP′ whose path uses exactly the nodes

of V (Pi) before t. Set i ← i+ 1 and go to Step 2.

4. Let S ← L′
i. For each case when a path contains exactly one node from

S, find a (1 + ε)-approximation solution and choose the best of such a

solution.

5. Return the best of the solutions from Step 3 and 4. Set N ← i.

As for Algorithm 3.3.8, the computation of path in Step 2 and the approximation
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in Step 3 and 4 can be performed in polynomial time.

We now claim that the solution returned by Algorithm 3.3.12 is an O((nM)1/2)-

approximation of sMTP′. The argument is similar with but simpler than the proof of

Lemma 3.3.9. Denote by sMTP′(V ′) the sMTP obtained from sMTP′ by restricting

the s-d pairs to the ones whose origin nodes belong to V ′. Decompose sMTP′ into

sMTP′(({t}∪L′
0)\S) and sMTP′(S). Then it suffices to show that the solutions from

Step 3 and 4, respectively, are O((nM)1/2)-approximations of sMTP′(({t}∪L′
0)\S)

and sMTP′(S).

Regarding sMTP′(S), since its every path has less than (nM)1/2 nodes from

S, by Lemma 3.3.1 with sMTPi = sMTP′({i}) ∀i ∈ S and γ = (nM)1/2, one of

(1+ε)-approximation solutions from Step 4 provides an O((nM)1/2)-approximation

of sMTP′(S). Consider now sMTP′(({t} ∪L′
0) \ S). As i increases, at least (nM)1/2

elements are excluded from V ′. Since |L′| = O(nM), we have N = O((nM)1/2).

By Corollary 3.3.2, one of O(1)-approximation solutions of sMTP′({t} ∪ V (Pi)) for

0 ≤ i < N is an O((nM)1/2)-approximation of sMTP′(({t} ∪ L′
0) \ S). Since all the

arcs whose end nodes have indices less than t are insignificant to any s-d pair, fixing

the nodes of path to V (Pi) before t does not compromise approximation factor by

more than O(1). Therefore, one of (1+ε)-approximation solutions in Step 3 provides

an O((nM)1/2)-approximation of sMTP′(({t} ∪ L′
0) \ S).

Since the worst of the approximation factors from Case 1 and Case 2 is O(max{f(n,m,α),

n1/2(log rratio/ logα)
1/2}), Lemma 3.3.11 follows. □

Theorem 3.3.13. For any given constant k ∈ Z+, the t-separable sMTP admits

the following approximation algorithm.

• O(n1/2 log rratio)-approximation algorithm if log rratio = o(logm),
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• O(n1/2 logm)-approximation algorithm if log log rratio < (2k+1) log log(mn/ε),

and

• O(n1/2 log1/k rratio)-approximation algorithm if log log rratio ≥ (2k+1) log log(mn/ε).

Proof : The first case follows from Theorem 3.3.10. Regarding the last two cases, let

r̄ratio be the value of rratio of given t-separable sMTP.

We now prove the second case by induction on k. Suppose log log r̄ratio < log log(mn/ε).

Then O(n1/2 log r̄ratio)-approximation algorithm from Theorem 3.3.10 is an O(n1/2 logm)-

approximation algorithm. Suppose now (2k−1) log log(mn/ε) ≤ log log r̄ratio < (2k+

1) log log(mn/ε)). Then by the induction hypothesis and Lemma 3.3.11 with rratio =

r̄ratio and α satisfying log logα = (2k − 1) log log(mn/ε), we get an approximation

factor, O(max{O(n1/2 logm), n1/2(log r̄ratio/ logα)
1/2} which is O(n1/2 logm). The

inductive arguments shows that we can approximate the t-separable sMTP within

the factor O(n1/2 logm) by applying Lemma 3.3.11 at most k times.

Assume log log r̄ratio > (2k + 1) log log(mn/ε) as in the last case. By Theorem

3.3.10, if we take log log rratio = log log (r̄ratio) /(2k + 1), we can approximate a t-

separable sMTP within the approximation factor of O(n1/2 log1/(2k+1) r̄ratio). Fur-

thermore if we take rratio and α so that rratio = log log r̄ratio and (2k+1) log logα =

(2k − 1) log log r̄ratio, by Lemma 3.3.11 and the induction hypothesis, we can ap-

proximate the t-separable sMTP within the factor O(n1/2 log1/(2k+1) r̄ratio). Hence

by applying Lemma 3.3.11 at most k times, we can get an O(n1/2 log1/(2k+1) r̄ratio)-

approximation algorithm. □

Remark 3.3.14. Each application of Lemma 3.3.11 multiplies the approximation

factor by O(1). Thus if we allow the computation time to be quasi-polynomial, i.e.
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k = O(
√
log rratio) we obtain the approximation guarantee O(n1/2c

√
log rratio) for a

constant c.

3.4 Approximation of general sMTP

In this section, we establish an approximability of sMTP by reducing sMTP to the

t-separable sMTP at the expense of some approximation factor. In so doing, we

use another intermediate problem between the two problems, t-intersecting sMTP,

which is, recall that, defined as the sMTP’s having a node t such that k ≤ t ≤ l for

all (k, l) ∈ D, the first condition of the t-separable sMTP.

3.4.1 Reducing sMTP to t-intersecting sMTP

We will assume by removing any node not in an s-d pair, if necessary, that every

node of a given sMTP is an end node of an s-d pair. Also by introducing at most

n − 2 dummy nodes with an unprofitable demand, we can assume there is q ∈ Z+

such that n = 2q.

We first decompose a given sMTP into O(log n) instances by adopting the idea

in Balcan & Blum (2006). Let Di :=
{
(k, l) : ∃b ∈ N such that k ≤ n(2b−1)/2i ≤ l

}
\
⋃i−1

j=1Dj . Note that the problems, sMTPi, each obtained by replacing D by Di in

the given sMTP, satisfy the condition of Corollary 3.3.2. There are log2 n nonempty

Di’s, D =
⋃log2 n

i=1 Di. And for each (k, l) ∈ Di, there is b: 1 ≤ b ≤ 2i−1 such that

n(b− 1)/2i−1 < k ≤ n(2b− 1)/2i < l < nb/2i−1. (3.8)

Since the sets of consecutive nodes {n(b−1)/2i−1+1, n(b−1)/2i−1+2, . . . nb/2i−1−
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1} are pairwise disjoint for distinct b’s, the sets of s-d pairs satisfying (3.8) are a

partition of Di. Let each of the set be Db
i , 1 ≤ b ≤ 2i−1, and denote by sMTPi

b

the sMTP whose s-d pairs are restricted to each set Db
i . Given feasible solutions of

sMTPi
b, we can construct a feasible solution of sMTPi by concatenating the subpaths

of sMTPi
b’s corresponding to the node intervals {n(b−1)/2i−1+1, n(b−1)/2i−1+2,

. . . nb/2i−1−1}. Therefore we can guarantee sMTPi at least the worst approximation

factor guaranteed for a sMTPi
b. Note each sMTPi

b is a t-intersecting sMTP with t =

n(2b−1)/2i. Thus solving sMTPi has been reduced to solving t-intersecting sMTP’s,

sMTPi
b, 1 ≤ b ≤ 2i−1.

Lemma 3.4.1. Suppose the t-intersecting sMTP admits an f(n,m,min{pmax,mdratio})-

approximation algorithm, where f is a non-decreasing function. Then sMTP admits

an O(f(n,m, min{pmax, mdratio})log n)-approximation algorithm.

3.4.2 Reducing t-intersecting sMTP to t-separable sMTP

Finally we reduce the t-intersecting sMTP to the t-separable sMTP. We represent a

given t-intersecting sMTP by septuple (G, c,D, d, p, U, t). Suppose we know a priori

the last node t̃ such that t̃ ≤ t, an optimal path visits. We then can transform the

sMTP into an equivalent instance in which every optimal path stops by node t.

Assume t̃ ̸= t. Then we may delete arcs kl such that k < t̃ < l and s-d pair (k, l)

such that t̃ < k ≤ t. Then we get a t̃-intersecting sMTP to which we apply the

following procedure to get a t-separable sMTP.

Algorithm 3.4.2. Process

95



1. For each node i, let c̃it̃ = 0 if i ≤ t̃, and let c̃t̃i = 0 if t̃ ≤ i.

2. For each s-d pair (k, j) such that 1 ≤ k ≤ t̃ ≤ t ≤ l ≤ n,

let r̃(k, l)← r(k, l)− ckt̃ − ct̃l.

3. For each node pair i and j such that 1 ≤ i < j ≤ t̃, let c̃ij = cij + cjt̃ − cit̃.

4. For each node pair i and j such that t̃ ≤ i < j ≤ n, let c̃ij = cij + ct̃i − ct̃j.

Clearly, the procedure reduces both the cost of subpath containing t̃ from i to

j and the revenue r(i, j) by cit̃ + ct̃j and hence does not change the objective value

while making the costs of arcs having t̃ as an end node to vanish to 0. For each 1 ≤

t̃ ≤ t, denote the obtained t̃-separable sMTP by sMTPt̃. Note that there is t̃ such

that an optimal solution of sMTPt̃ is an optimal solution of the given t-intersecting

sMTP.

Consider sMTPt̃ for any t̃ and write its s-d pairs, demands, revenues and costs by

D̃, d̃, r̃ and c̃. We will scale sMTPt̃ to make the ratio of minimum to maximum value

of r̃(k, l)d̃(k, l) no greater than m/ε. From D̃, discard (k, l)’s such that r̃(k, l)d(k, l)

≤ max(k,l)∈D̃ r̃(k, l)d(k, l)ε/m. Since max(k,l)∈D̃ r̃(k, l)d(k, l) is a lower bound on the

optimal value, it does not make the optimal value of the resulting problem different

from the original one more than ε times the original optimum. This scaling bounds

the ratio of the minimum to the maximum value of r̃(k, l)d(k, l) no greater than m/ε

as desired.

Note that the values of n, m, and d of sMTPt̃ are the same as the original

t-intersecting sMTP. Regarding r̃ratio we have the following lemma.

Lemma 3.4.3. The value, min{pmax,mdratio/ε} of t-intersecting sMTP is no less

than r̃ratio of sMTPt̃.
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Proof : Due to integrality of parameters, we have r̃ratio ≤ p̃max in sMTPt̃. Further-

more, since we have r̃(k, l) = r(k, l) − ckt̃ − ct̃l ≤ r(k, l) − ckl, p̃max of sMTPt̃ is

no greater than pmax of the t-intersecting sMTP. On the other hand, due to the

additional condition that the ratio of minimum to maximum value of r̃(k, l)d̃(k, l) is

no greater than m/ε, rratio of sMTPt̃ is no greater than mdratio/ε. □

Then we get the following lemma.

Lemma 3.4.4. From an f(n,m,rratio)-approximation algorithm for the t-separable

sMTP, we can derive an O(f(n,m,min{pmax,mdratio/ε}))-approximation algorithm

for the t-intersecting sMTP. Here, f is a monotone non-decreasing function.

Combining Lemma 3.4.1 and 3.4.4, we have the following lemma.

Lemma 3.4.5. From an f(n,m,rratio)-approximation algorithm for the t-separable

sMTP, we can derive an O(f(n,m, min{pmax,mdratio/ε}) log n)-approximation al-

gorithm for sMTP. Here f is a monotone non-decreasing function.

Theorem 3.4.6. Let δ > 0 be an arbitrary constant. The t-intersection sMTP is ap-

proximable within the factor, O
(
n1/2min

{
log pmax, max

{
logm, logδ min{pmax, dratio}

}})
.

The general sMTP is approximable within the factor, O
(
n1/2 log nmin

{
log pmax,

max
{
logm, logδ min{pmax, dratio}

}})
.

Proof : Note the cases in Theorem 3.3.13 exhaust every sMTP, and their approxi-

mation factors can be unified as O
(
n1/2min

{
log rratio, max

{
logm, logδ rratio

}})
.

Applying Lemma 3.4.4 and 3.4.5, respectively, to this factor, we get the approxima-

tion guarantees for the t-intersecting sMTP and the general sMTP as in the theorem.

□
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3.5 Applying to Other Problems

sMTP assumes the logistic cost is linear in the load level. Therefore the model is

appropriate when the vehicle operation cost is a fixed cost. If there is an additional

cost proportional to total travel distance, from the reasons such as the total cost of

fuel is proportional to total weight that include the vehicle’s weight, or in the case

that the driver’s labor cost is arranged as total travel time. We can transform the

problem into an equivalent sMTP by adding a profitable s-d pair from node 1 to n.

The addition of profit changes the hardness of the problem, in contrary to the case

that aims to get an optimal solution. If we consider the sMTP with additional cost

directly, we can show the sMTP is not approximable within any factor.

Theorem 3.5.1. sMTP with additional cost linear in total travel distance cannot

be approximate within any factor.

proof : Let the additional cost be the value obtained by multiplying the driving

distance by a constant k. We will show the inapproximability of this problem by

slightly modifying the reduction in Lemma 3.2.5. Specifically, we will reduce from

the decision version of Max-Rep, which asks whether there exists a feasible solution

with objective function value greater than α for a given instance of Max-Rep.

First, we increase the cost of all edges from vertices with indices less than or equal

to Nn + 2 to vertices with indices greater than t by α/k, and increase the revenue

obtained from all existing unit transactions by the same amount. This decreases

the objective function value by α without changing the feasible solution set (the

objective function value of the original sMTP remains unchanged, while only the

vehicle operation cost increases). In other words, the problem of finding the optimal
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objective function value of this problem is equivalent to the question of whether

the given Max-Rep instance has a "yes" answer. Therefore, assuming the existence

of a polynomial-time approximation algorithm with a positive coefficient for this

problem implies that we can solve the decision version of Max-Rep, which in turn

implies P = NP . □

The validity of the approximation relies on Corollary 3.3.2, on the decomposition

of s-d pairs into the problems with the same feasible paths as the original problem

but whose objective function is no less than the original one, and the availability of

a good approximation algorithm for the t-intersecting sMTP with a fixed subpath,

e.g. an FPTAS from Corollary 3.3.5. Here is a list of the variants of sMTP satisfying

these two conditions that are, hence, approximable within the same order of the

factor as sMTP.

• sMTP in which the revenue is subadditive in trade volume,

• sMTP whose logistic cost is supperadditive in the total load carried along at

each arc,

• sMTP with unsplittable commodities, and

• sMTP in which total travel distance is bounded.

In Subsection 3.5.1, we aim to present the first approximation algorithm for the

Traveling Repairman Problem with Profits (TRPP), which is one of the most rep-

resentative cases, in addition to the itemized cases mentioned above. In Subsection

3.5.2, we prove that TRPP is hard to approximate within a constant.
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3.5.1 Approximation algorithm for TRPP

Problem 3.5.2. Traveling Repairman Problem with Profit, TRPP Let G =

(V,E) be a complete undirected graph with V = {1, · · · , n}. A revenue ri is obtained

from visiting each node i ∈ V except for node 1. It takes time dij to travel across

each edge ij ∈ E. If a repairman arrives at node i at time ti, he obtains a profit of ri

− ti. TRPP is the problem of finding a path for the repairman starting from node 1

at time 0, which maximizes the total profit. We assume that the triangle inequality

is satisfied by the edge weights dij .

Since dij ’s satisfy triangle inequality, it suffices to consider only paths where a

positive profit is realized at every node. In this section, we present an algorithm for

approximating the TRPP. To accomplish this, we first introduce an intermediate

problem called TRPPα. We then use an algorithm based on the previously proposed

approximation algorithm for the orienteering problem to approximate TRPPα.

Problem 3.5.3. Orienteering problem Consider a complete undirected graph

G = (V,E) with V = 1, · · · , n. Each node i ∈ V has a profit of pi which can be

obtained by visiting it. The time required to cross an edge ij ∈ E is dij . Given a

time limit L > 0, the goal is to find a 1-n path with the sum of edge times bounded

by L, while maximizing the sum of node profits.

Let pi = ri − d1i be the potential profit of node i ∈ V , which represents the

maximum profit that can be obtained from node i.

Problem 3.5.4. TRPPα As TRPPα we refer to a TRPP where the ratio of the

minimum to maximum potential profits of nodes is less than a constant α > 0. In

other words, there exists a value p > 0 such that for all i ∈ V \1, we have pi ∈ [p, αp).
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Note that Theorem 3.5.10 implies that there is no polynomial time approximation

scheme for TRPPα, for any α > 0. We adopt the notation of Blum et al. (2007)

and use ti(P ) to denote the arrival time at node i via a path P . We also define

ei(P ) = ti(P )− d1i as the excess of node i in P . When the context is clear, we use

the shorter notations ti and ei.

Problem 3.5.5. Last excess problem Given a complete undirected graph G =

(V,E) with nodes V = 1, . . . , n and edges E, and parameters pi and dij defined as

in the orienteering problem, along with a positive bound M , the task is to find a

path starting at node 1 that maximizes the sum of node profits while ensuring that

the excess of the last node is at most M .

Lemma 3.5.6. The last excess problem is approximable within a factor of 2 + ε.

Proof : To solve a last excess problem, we can consider an orienteering problem for

each node i ∈ V \ 1 on the same graph with the same profits and edge times. The

goal of each orienteering problem for node i is to find a 1-i path whose sum of edge

times is bounded by L = d1i +M . Suppose we have obtained a γ-approximation for

each of the n− 1 orienteering problems. Then, the most profitable γ-approximation

solution is a γ-approximation solution of the last excess problem. By relying on the

2 + ε-approximation algorithm for the orienteering problem (Chekuri et al. 2012),

we obtain the lemma. □

For any path, v0(= 1)− v1− · · · vk, if i < j, then evj = tvj − d1vj = tvi − d1vi +

(d1vi + dvivi+1 + · · · + dvj−1vj − d1vj ) ≥ tvi − d1vi = evi . This means that the later

a node is visited on a path, the larger its excess becomes. Thus, if the excess of the

last node of a path is bounded by a constant, the excess of every node on the path
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is also bounded by the same constant. Moreover, we have evj − evi = (d1vi + dvivi+1

+ · · · + dvj−1vj − dvj ), which is the excess of vj of the subpath that visits vi, vi+1,

. . ., vj excluding the starting node v0(= 1).

Lemma 3.5.7. Let β be a integer with β > α. Then, there exists a β-approximation

solution P ′ of TRPPα such that the excess at every node is at most αp/β.

Proof :

Let P ∗ = v0(= 1)− v1 − · · · vk denote an optimal path of TRPPα. We consider

a partition of the node set {v1, v2, · · · , vk}, and for each set of the partition, we

consider the path that visits its nodes in the same order as in P ∗, starting at node

1. We claim that there exists a partition with at most β sets, such that the excess

of every node is no greater than αp/β in all the paths corresponding to its sets.

Therefore, there must be a set in the partition whose path Q earns at least 1/β

times the profit of P ∗. Since each node of Q is visited no later than in P ∗, Q is a

β-approximation of TRPPα that satisfies the condition in the lemma.

For each l, 1 ≤ l ≤ β, let the set of nodes whose excesses belong to the interval

[(l − 1)αp/β, lαp/β) be Nl. As the profit of every node is positive, the excess of

each node cannot exceed αp. Therefore, if Nl is nonempty, their nodes should be

consecutive in P ∗. The sets Nl form a partition of the node set {v1, v2, · · · , vk} from

P ∗. Let Ql be the path that visits the nodes of Nl in the same order as in P ∗ except

for node 1.

The difference between the excesses of the first and last nodes of Ql is equal to

the difference between the excesses of the first and last nodes of P ∗, which is at most

αp/β. Since the excesses of nodes are monotone non-decreasing in the order of their

visits, Nl’s form the partition that we claimed. □
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Theorem 3.5.8. For any ε > 0 and any integer β > α, the approximation solution

of the last excess problem in Lemma 3.5.6 is a (2 + ε)β2/(β − α)-approximation of

TRPPα defined on the same G, ri’s and dij’s.

Proof : Consider a path P from an approximation solution obtained from Lemma

3.5.6. If we can demonstrate that P is a (2+ ε)β/(β −α)-approximation solution of

TRPPα under the constraint that the excess of every node is no greater than αp/β,

then Lemma 3.5.7 implies the theorem.

In the restricted TRPPα, the profit from each node is between pi−αp/β and pi

(inclusive). As pi is in the range [p, pα) and α/β < 1, pi is at most (1 − α/β)−1 =

β/(β − α) times the actual profit. Thus, the path P from a (2 + ε)-approximation

solution of the excess problem is a (2+ε)β/(β−α)-approximation solution of TRPPα.

Theorem 3.5.8 asserts that TRPPα admits a constant factor approximation when

α is constant. If α is an integer, then the approximation factor is minimized when

β = 2α, and in that case, the approximation factor is (8 + ε)α.

We can use the aforementioned approximation algorithm for TRPPα to construct

an O(log n)-approximation algorithm for TRPP. Given a TRPP instance, we first

remove all nodes i with pi ≤ εmaxj pj/n. Since these nodes contribute at most

nεmaxj pj/n = εmaxj pj to the profit, deleting them cannot reduce the profit of

any solution by more than a factor of ε times its objective value. Thus, we can

guarantee that the objective value of any solution is at least maxj pj .

The ratio of the minimum to maximum pi values among the remaining nodes is

at most n/ε, so we can partition the set of remaining nodes into O(log n) subsets

such that the restricted TRPP, in which a path can only visit nodes from a single

subset of the partition, becomes a TRPPα for some constant α > 0. At least one
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of the resulting TRPPα instances has an optimal solution whose profit is at least

O(1/ log n) times the profit of an optimal solution of TRPP. Therefore, we obtain

an O(log n)-approximation solution to TRPP using the approximation algorithm for

TRPPα as a subroutine.

3.5.2 Hardness of Approximation

In this section, we prove that TRPP is max-SNP-hard, even when the node rev-

enues are identical and dij ’s are either 1 or 2. This implies that TRPP2 is hard to

approximate within an constant, that matches(up to constant) the approximation

algorithm proposed in the previous section. let us denote the TSP, TRP, and TRPP,

whose edge times are either 1 or 2, by TSP-{1, 2}, TRP-{1, 2}, and TRPP-{1, 2},

respectively. We will reduce TSP-{1, 2} which is max-SNP-hard (Papadimitriou &

Yannakakis 1993), to TRP-{1, 2}, which we, in turn, reduce to TRPP-{1, 2}.

We believe that the first reduction preserving APX-hardness from TSP-1, 2 to

TRP-1, 2 was already discovered by Blum et al. (1994). Blum et al. (1994) remark

that TSP-1, 2 can be reduced to TRP, and a scheme similar to our reduction is

described. let us make an observation. Suppose a node i of TRP-{1, 2} has dij = 2

with every adjacent node j. Suppose i is the k-th from last node of a path P . Let

P ′ be a path obtained by moving node i to the last node in P . Comparing the sum

of the arrival times at the nodes of P and P ′, we can observe that the arrival time

at each of the k − 1 nodes after i of P decreases by at least 2, and the the arrival

time at node i increases by at most by 2(k − 1) in P ′. Therefore, the sum of the

arrival times at the nodes of P ′ is no larger than the one from P . The reduction

from TSP-{1, 2} to TRP-{1, 2} relies on the observation.

104



Let G = (V,E) be a graph that represents a TSP-{1, 2} problem. It is known

that this problem cannot be approximated within a factor of 1+α, where α = 1/740

(Engebretsen & Karpinski 2001). Let n be the number of nodes in G. We define G′ as

the graph obtained by adding nM nodes to G, where each added node is connected

to every other node with an edge of distance 2. We denote the set of added nodes

as W , and set M = 1481, which is a value similar to 2/α. If the optimal distance

of TSP-{1, 2} is T , then there exists a Hamiltonian path of G starting at node 1

with a distance of at most T − 1. We can construct a path P in G′ that follows this

Hamiltonian path and then visits the nodes of W in an arbitrary order.

Suppose TRP-{1, 2} can be approximated within a factor 1 + β, where β =

1/2191881, a value similar to 4/α2. Let Q be a path obtained by applying the 1+β-

approximation algorithm to G′. We then reorder the nodes of Q while maintaining

the order among the nodes of V so that the nodes of W are visited later than the

nodes of V . From the above observation, this does not increase the sum of the arrival

times at the nodes. Let the new path be Q′ and the length of the subpath consisting

of the nodes of V be L. Then the objective value of Q′ is at least (L+2+(nM+1))nM .

Since Q′ is a 1 + β-approximation of TRP-{1, 2} on G′, its objective value is no

greater than the total arrival times at each node of P as a solution of the same TRP.

It is not difficult to see that the sum of the arrival times at the nodes of P is no

greater than ((T−1)+2+(Mn+1))Mn+nT . Thus we have (L+2+(Mn+1))Mn ≤

(1 + β) (((T − 1) + 2 + (Mn+ 1))Mn+ nT ).
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Then we get:

L+ 3 ≤ T (1 + β)(1 + 1/M) + βMn+ 2(1 + β)

≤ T (1 + β + 1/M + β/M + βM) + 2(1 + β),

(3.9)

where the second inequality in (3.9) follows from T ≥ n − 1. If α = 1/740,

β = 1/2191881, and M = 1481, then (β+1/M+β/M+βM) < α. Since L, T ≥ n−1,

for sufficiently large n, we have L+2 ≤ (1+α)T . The left-hand side of this inequality

provides an upper bound on the subpath consisting of the nodes of V plus the

distance of the last edge returning to node 1. Therefore, the inequality contradicts

the fact that a 1 + α-approximation is impossible for TSP-{1, 2}.

Theorem 3.5.9. TRP-{1, 2} is NP-hard to approximate within a factor of 2191882
2191881 .

We now reduce the TRP-{1, 2} to TRPP-{1, 2}. To do this, let G = (V,E) be the

graph of TRP-{1, 2}. We consider the TRPP-{1, 2} on the same graph G = (V,E)

with every node assigned the identical revenue 2n − 2. Suppose a path P does

not visit a node i ̸= 1. Then, by visiting i after P , it will earn a profit at least

2n − 2 − 2(n − 2) = 2. This means that an optimal path is Hamiltonian and its

objective value is 2n(n− 1) minus its objective value as a solution of TRP-{1, 2}.

Suppose TRPP-{1, 2} is (1 + α)-approximable. The objective value of TRP-

{1, 2} is no less than n(n − 1)/2 and no greater than n(n − 1). Therefore, the

corresponding objective value of TRPP-{1, 2} is no less than n(n−1) and no greater

than 3n(n−1)/2. A (1+α)-approximation solution of TRPP-{1, 2} is no less than the

optimum by more than 3αn(n− 1)/2, which is in turn no greater than 3α times the

optimum of TRP-{1, 2}. Therefore, a 1+α-approximation of TRPP-{1, 2} is a 1+3α-
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approximation of TRP-{1, 2}. Combining this result with the inapproximability of

TRPP-{1, 2}, we can derive the following theorem.

Theorem 3.5.10. Even with uniform node revenues, TRPP-{1, 2} is NP-hard to

approximate within a factor of 6575644
6575643 .

3.6 Conclusion

We have shown the sMTP is approximable within the factor O
(
n1/2 log nmin

{
log pmax,

max
{
logm, logδ min{pmax, dratio}

}})
whereas inapproximable within nlog−ε n times

the optimum. We also show that the integrality gap is θ(n2). As byproducts, We

gives approximation algorithms for ssMTP and intermediate problems, t-intersecting

and t-separable sMTP. We also provide approximation algorithms for TRPP and

TRPPα, with approximation ratio O(log n) and O(1), respectively.
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Chapter 4

Comparative Experiments

4.1 Introduction

In Chapter 2, we proposed two formulations of sMTP, the Arc-Flow Formulation and

the Triple Formulation, and additional inequalities with corresponding separation

algorithms. In Chapter 3, we proposed an approximation algorithm for sMTP. In

this chapter, we conduct experiments to compare the performance of the previously

proposed modes and algorithms.

First, we examine which inequalities should be initially added to the formulation,

considering the wide range of options available for adding inequalities to the TF.

Next, we compare the performance of the branch-and-bound method for AF and

the improved TF, along with the cut-and-branch method, which involves separating

3-Criteria inequalities and 3-Criteria-TF inequalities at the root nodes of AF and

the improved TF, respectively.

Finally, we compare heuristic algorithms. We compare an algorithm that has

been modified from the approximation algorithm in Chapter 3 to be more practical,

and two basic heuristic algorithms for contrasting purposes.
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4.2 Experimental Setting

The hardware and operating system used for this study were an Intel(R) Core(TM)

i5-6400 CPU @ 2.70 GHz PC with 8GB RAM and Windows 10 Home (64 bits).

The programming language and library for mathematical formulation and LP solver

used were Python and CPLEX 22.1.1.

We used randomly generated instances, where each of the n nodes was assigned

random coordinates in a two-dimensional Euclidean space. The first component of

node i is 100i/n, while the other components were uniformly random integers in the

interval [0, 100].

In the Backhaul Profit Maximization Problem, the positions of nodes 1 and n

are predetermined, while the positions of other nodes are randomly chosen within

an ellipse where the sum of distances from nodes 1 and n, acting as focuses, does

not exceed the upper bound of the total distance (Dong et al. 2022).

Considering the fixed order of nodes, one might argue that it is suitable to

assume a situation where the locations of each node spread out in one direction when

thinking about a railway network. In this case, we can consider a situation where

the ratio between cij + cjk and cik is close to 1 for any three nodes i, j, k. However,

it is unnecessary to specifically consider such cases because it is possible to amplify

the ratio between cij + cjk and cik. By adding or subtracting a constant value to the

cij and r(i, j) values where i ≤ t < j for a certain t, the objective function for the

same set of feasible solutions remains unchanged since it is the difference between

revenue and cost. Therefore, even if, for example, c12 = 51, c23 = 50, and c13 = 100,

the ratio c12+c23
c13

= 1.01 is close to 1, we can still adjust the values through the

aforementioned modification to make c12 = 1, c23 = 0, and c13 = 0. In this case, the
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ratio becomes infinitely large.

Initially, experiments were conducted with instances where the ratio of length to

width was different from [0, 100]×[0, 100]. However, it was observed that this did not

change the difficulty of the problem. However, it was noted that the performance of

each methodology varied significantly depending on the revenue setting. Therefore,

various scenarios were considered. In general, the revenue was set to increase as

the cost increased using three different approaches. Firstly, following the case of the

Backhaul Profit Maximization Problem, the revenue was simply set to 1.2 times the

cost. In this case, the parameter rctype is denoted as A.

Secondly, each revenue r(k, l) was set as the product of a randomly generated

value Xkl, drawn from a uniform distribution uniform[0, α], and the cost ckl between

the corresponding nodes. Here, α was chosen from the set 2, 3. If Xkl became less

than 1, it was considered as if there was no corresponding product. In this case, the

parameter rctype is denoted as B.

Thirdly, the revenue was set as the sum of a value multiplied by 1 and [0, (k−l)β].

Here, β was chosen from the set 2, 3. This configuration encourages long-distance

transportation and results in higher profits for transportation between cities with

larger differences in indices. In this case, the parameter rctype is denoted as C.

Finally, the capacity U was set to a value obtained by multiplying the capacity

that could accommodate all trades by the parameter uratio ∈ {0.05, 0.2, 1}. Five

instances were generated for each quadruple (n, rctype, uratio).

4.3 Computational Comparison of Relaxation Bounds

The following are the candidate inequalities to be initially added to (TF).
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xkl ≤ d(k, l)(
∑
k<i≤l

ykj) ∀k < l (4.1a)

xkl ≤ d(k, l)(
∑
k≤i<l

yil) ∀k < l (4.1b)

xkl ≤ d(k, l)(
∑

k≤i≤t<j≤l

yij) ∀k ≤ t < l (4.1c)

ulij ≤ d([1, i], l)yij , ∀i < j ≤ l (4.1d)

(4.1c) includes both (4.1a) and (4.1b). (TF1) to (TF6) represent the addition

of (4.1b), (4.1a), (4.1a,4.1b), (4.1a, 4.1b, 4.1d), (4.1c), and (4.1c, 4.1d) to (TF),

respectively.

We will use the LP gap (%): (OPTLP − OPT)/OPT to measure the tightness

of the bound between the optimal objective value OPT of the original problem and

the optimal objective value OPTLP of each LP relaxation.

We have shown that the (AF) is tighter than (TF). The experimental results are

shown below. The average LP gap is computed for each case. Instances generated

with n = 20 and n = 25, the average LP gap for each formulation was as follows:

The average computation times were as follows:

We first examined whether it is beneficial to add (4.1d) to the formulation.

Comparing (TF3) and (TF4), the average computation time of (TF4) was found to

be 43% faster and it provided faster answers in 69% of cases. Similarly, comparing

(TF5) and (TF6), the average computation time of (TF6) was 43% faster, and

(4.1d) yielded faster answers in 92% of cases. Based on these two analyses, it can

be concluded that adding (4.1d) to the formulation is generally beneficial. It is

111



0

50

100

150

200

250

(TF) (TF1) (TF2) (TF3) (TF4) (TF5) (TF6) (AF)

LP gap (%)

Figure 4.1: LP gap comparison for different formulations

interesting to note that the decrease in average computation time was similar at

43%.

Next, an analysis was conducted to determine which among (4.1a)-(4.1c) should

be added to the formulation. It was found that including (4.1c) resulted in poorer

performance of (TF5) and (TF6) compared to (TF3) and (TF4), mainly due to

increased computation time for each subproblem. As for whether to include (4.1a)

or (4.1b), it was observed that including both in (TF3) resulted in the fastest average

computation time and outperformed the others in 81% of cases. Consequently, we

decided to adopt (TF4) as the base formulation.

While the LP gap and computation time among instances based on (TF) gener-

ally maintained a consistent relationship with the overall average, the performance

comparison between the (TF) formulation and the (AF) formulation varied signifi-

cantly depending on the instance. On average, the (AF) formulation outperformed

(TF), but this trend varied greatly depending on the instance. Comparing it with
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Figure 4.2: Computation time comparison for different formulations

the best-performing variant of (TF), (TF4), we observe the following:

For (TF4), the average computation time was (2.56, 2.22, 1.09) when the rctype

parameter was set to (A,B,C) respectively. In contrast, (AF) consumed computa-

tion times of (0.14, 0.18, 4.3) for the same parameter values. It is evident that (AF)

particularly incurred longer computation times for instances with an rctype of C.

Upon examining the data generation method, it is apparent that instances with an

rctype of C have a higher ratio of revenue to cost compared to the other two cases.

Note that compared to (AF), (AF) with 3-Criteria inequalities showed an average

decrease of LP gap by about 52%.

4.4 Comparison of Computation time Based on the use

of Cut

In this section, we compare the computation times when applying the branch-and-

bound method to (AF) and (TF) with the addition of the separation process for the
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3-Criteria inequality and 3-Criteria-TF inequality at the root node. We conducted

the comparison for cases where the number of nodes ranges from 30 to 35. We only

considered cases where rctype is either B or C.

The distinctive feature of the 3-Criteria inequality and 3-Criteria-TF inequality

is that both the left-hand side and right-hand side of the equations are less than

or equal to 1. In other words, the degree to which these inequalities violate is not

more than 1. We set the tolerance value to 0.1, which means that we added the cut

obtained from the separation process if the incumbent solution violates the inequality

by more than 0.1.

Let’s denote TF4 as the method of conducting branch-and-bound on (TF4),

and TF4C as TF4 with the additional cut-and-branch process. For the cases where

n = 30 and n = 35, with a time limit of 600s, the following results were obtained:

Table 4.1: Test result with rctype = C

Parameters TF4 TF4C
n rctype uratio num of nodes time num of nodes time num of cuts
30 C 0.05 44.7 11.4 5.5 11.3 6

0.2 31.7 16 4.5 16 9.2
1 572 63.1 108.2 70 144

35 C 0.05 16 16 3 12 4
0.2 42 41 5 59 34
1 1556 320 247 261 211

For n = 30, the number of branch trees decreased on average by a geometric

mean of 4.4 times, while the average computation time increased from 30s to 32s,

resulting in a 7.5% increase. For n = 35, the number of branch trees decreased

on average by a geometric mean of 1.9 times, while the average computation time

decreased from 107s to 96s, resulting in a 11% decrease. For the algorithm with (AF),
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the computation time exceeded an average of 300 seconds when n = 30. In the case

of n = 35, algorithms with (AF) exceeded the time limit of 600s when solving the LP

at the root node for instances with rctype = B and uratio = 0.05, 0.2. However, for

instances with uratio = 1, the LP was solved successfully, but the optimal solution

could not be obtained within the given time limit.

Table 4.2: Test result with n = 35, rctype = B

TF4 TF4C AF
nodes time nodes time cuts nodes time
16626 443 10099 374 39 21 101

In cases where rctype is B, AF demonstrated superior performance compared

to TF4C. Additionally, TF4C solved problems faster in 94% of cases compared to

TF4. Considering cases where rctype is C, we can expect TF4C to outperform TF4

in solving problems with n ≥ 35.

An iteration of adding a cut to (TF) takes 0.5 seconds on average, with separation

accounting for 0.4 seconds of that time. This corresponds to twice the duration when

n = 30, and since (35/30)4 ≃ 1.85, we can once again confirm that the computation

time is proportional to O(n4). The separation of 3-Criteria inequality in AFC takes

approximately 1.1 seconds for n = 30 and 2.2 seconds for n = 35 on average. When

a every cut is added with a threshold of 0.3, it reduces the number of explored nodes

by around 20%. However, the total computation time increases in most cases. This

can be attributed to the relatively small size of the branching tree in AF, consisting

of several hundred nodes, and the LP gap is quite tight as observed.
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4.5 Comparison of Heuristic Algorithms

In this section, we present three heuristic algorithms and compare the performance

of three heuristic algorithms.

Heuristic from Approximation Algorithm

The first approach is an algorithm that utilizes the idea of the approximation

algorithm that proposed in Chapter 3.

1. Let f(i, j) = 0, For each i < j.

2. Repeat the following for each i < j and k ∈ 0, · · · , j − i− 1:

2-1. Find the i-j shortest path p(i, j, k) that passes through k nodes between i

and j.

2-2. Determine the maximum profit achievable through trades within each path

p(i, j, k). If this profit exceeds f(i, j), update the value of f(i, j) with this

profit.

3. Output the length of the longest path from 1 to n, where the cost of each

arc is f(i, j).

In the approximation algorithm in Chapter 3, we divided the original problem

into t-intersecting subproblems defined by vertices i to j and patched them up

accordingly. Each t-intersecting problem was further divided by selecting the shortest

path, among the paths passing through a specific number or fewer vertices according

to Algorithm 3.3.12 or 3.3.8, prior to t. These divided subproblems became ssMTPs,

with an FPTAS computation time of O(n7) for the ssMTP and a pseudo-polynomial

time algorithm that includes a term cmax, representing the maximum cost among
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the terms U and the costs associated with the arcs, making it difficult to solve within

a reasonable computation time. Therefore, we aimed to fix both sides, rather than

just one side, of t by selecting sufficiently good paths. The shortest path between

two nodes among those passing through a specific number or fewer vertices includes

the one with the minimum distance between any two vertices passing through the

same number of vertices. From this reasons, in step 2-1, we calculate p(i, j, k) and

compute the maximum profit obtainable within that path.

Randomized Rounding

The second approach is randomized rounding. After solving the LP relaxation of

(AF), we select each arc ij with the probability corresponding to the value of yij in

the solution. We obtain a feasible 1-n path and then find the optimal x value along

that path. In the experiments, we increased the number of iteration N from 100 to

500 as n increased.

Algorithm 4.5.1.

1. Solve the linear relaxation problem of the (AF) to obtain the optimal so-

lution (x̄, ȳ).

2. Repeat the following steps N times to obtain a set of 1-n paths p1, . . . , pN .

2-1. Set V (p)← {1} and i← 1.

2-2. While i ̸= n, do the following:

- Select j′ with probability ȳij
n∑

m=i+1

ȳim

for j ∈ i+ 1, . . . , n.

- Update V (p) by adding j′, and set i← j′.
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3. For each p ∈ {p1, . . . , pN}, fix the path represented by y in the arc

formulation to p and solve the LP to obtain the optimal x = x∗p.

4. Output the solution with the largest objective function among x∗p, where

p ∈ {p1, . . . , pN}.

2-node Path

The third candidate approach is a naive method where we fix each path to visit a

maximum of two nodes, excluding nodes 1 and n. It solves the optimization problem

(AF) after the path is fixed, and outputs the best feasible solution obtained. This

approach was performed solely for the purpose of comparing computation times.

The quality of the output improves as the number of visited nodes decreases in

the optimal solution. However, in the worst case, it may output a feasible solution

that differs by a factor of O(n2). As shown in Chapter 3, this is equivalent to the

ratio of the objective function value between the worst-case optimal solution and

the randomized rounding algorithm.

For n = 20, the three methods require (9s, 5s, 7s) as a baseline, and in the case of

randomized rounding, the additional time is needed to solve the relaxation of (AF).

For n = 25, n = 30, and n = 40, excluding the time to solve (AF) in randomized

rounding, the methods require (24s, 9s, 18s) and (54s, 29s, 41s), (212s, 54s, 152s)

respectively.

Table 4.3 summarizes the average gap between the objective function and the

optimal solution for each method based on the rctype when n = 20 and n = 30.

The gap with the objective function is calculated as b−a
b , where a is the objective
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Table 4.3: Comparison on the gap between method outputs and optimal solutions

n rctype ApproHeur RanRound

A 0.6% 0.008%
20 B 4% 0.05%

C 4% 0.6%
A 1.9% 0%

30 B 11% 12%
C 10% 3%
A 1.6% 3%

40 B 27% 37%
C 24% 8%

function value obtained and b is the optimal objective function value. ApproHeur

refers to the first method, while RanRound represents the second method, and each

cell denotes the average gap. We cannot consider the 2-node path as producing good

solutions, as even for n = 20, the average gap for each type exceeds 35%.

Note that the solutions from the 2-node Path has, on average, a 41% gap com-

pared to the optimum, even when considering n = 20. As n increases, ApproHeur

is likely to yield better results in terms of both time and solution quality compared

to RanRound. Firstly, when n is 30, the average time required to solve the LP in-

creased by 51s compared to the case when n was 20, resulting in a total of 80s. This

indicates that as n grows larger, the computation time for ApproHeur increases even

more compared to RanRound, potentially exceeding practical time limits. Addition-

ally, ApproHeur exhibits smaller variations in the gap depending on the value of

rctype, while RanRound demonstrates significant gap fluctuations when rctype is

C. For n = 30, the ApproHeur algorithm outputted better solutions for 53% of the

instances with rctype = C. Therefore, for instances with rctype being C, ApproHeur

is more likely to produce better solutions for larger values of n.
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Chapter 5

Conclusion

5.1 Summary of contributions

This study dealt with the Single Path Multicommodity Trading Problem on Acyclic

Network (sMTP). Two mathematical models were proposed for this problem, and

valid inequalities were found for each of them. Some of these were shown to have

necessary and sufficient conditions for facet-defining. The upper bounds obtained

from the linear programming relaxation problems for each model and their models

with added valid inequalities were compared theoretically and experimentally. In

addition, the approximability of this problem was addressed. In this context, while

inapproximability of sMTP and the integrality gap of the proposed mathematical

models were presented, approximation algorithms were also proposed. In the process,

approximation algorithms for special cases of this problem and related problems

were also presented. Since research on facet-defining inequalities and approximation

algorithms related to this problem was lacking, the results of this study have the

potential to be extended and applied to related problems.

In Chapter 2, two formulations of sMTP, the Arc-Flow Formulation and the

Triple Formulation, were presented. The dimensions of each were determined, and

conditions that facet-defining inequalities must satisfy were obtained through pro-

120



jection from perfect extended formulations. A valid inequality called the 3-Criteria

Inequality was presented for the Arc-Flow Formulation, and necessary and suffi-

cient conditions for this to be a facet-defining inequality and a separation algorithm

were provided. In addition, other classes of inequality were generalized from the 3-

Criteria Inequality, and classes of valid inequalities for the Triple Formulation were

also presented.

In Chapter 3, it was shown that sMTP is a generalization of the Max-Rep prob-

lem, and therefore, sMTP has the same inapproximability as Max-Rep. Furthermore,

it was shown that the integrality gap of the formulations introduced in Chapter 2 is

θ(n2), indicating that it cannot provide a better approximation algorithm more than

considering just select only one request. To obtain an approximation algorithm for

sMTP, approximation algorithms were obtained for ssMTP and t-separable sMTP.

The approximation ratio of the basic t-separable sMTP approximation algorithm

can be as large as Ω(n2) depending on the scale of the parameter, but a boosting

method was proposed to improve it and reduce the parameter-related factor. Based

on the relationship that the approximation ratio of sMTP is O(log n) times that

of t-separable sMTP, an approximation algorithm for sMTP was obtained. Finally,

approximation algorithms were obtained for problems similar to sMTP, including

the Traveling Repairman Problem with Profits (TRPP), and the constant upper

and lower bounds for the approximation ratio of the special case of TRPP, TRPPα,

were obtained.

In Chapter 4, we present basic approaches for solving the sMTP using the results

from Chapters 2 and 3, and verify their practical solvability on various instances.

First, we consider various methods for generating instances to conduct experiments.
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We compare the quality of upper bounds obtained by solving the LP relaxation

problem when we add the discovered classes of valid inequalities to the Arc-Flow

Formulation (AF) and Triple Formulation (TF) proposed in Chapter 2. From this

comparison, we determine the set of inequalities that should be added to the formu-

lation from the beginning. Next, we compare the performance of a branch-and-bound

algorithm using the AF and TF models with valid inequalities added, considering

the 3-Criteria Inequalities and 3-Criteria-TF Inequalities found in Chapter 2 as cuts

at each root node, using a cut-and-branch algorithm. Lastly, we propose a heuristic

algorithm that adopts the idea of the approximation algorithm proposed in Chapter

3. We conduct comparative experiments between this heuristic algorithm and an

algorithm that applies randomized rounding to the LP relaxation solution of AF.

5.2 Further Research Directions

We have confirmed that there can be various valid inequalities when the f -variable

of sMTP has negative coefficients. Therefore, in this case, it is possible to consider

lifting existing valid inequalities according to the problem situation. Furthermore,

when considering more valid inequalities for sMTP, it is necessary to find heuristic

separation algorithms, as there may not be an exact polynomial-time separation

algorithm, or the computation time may be too high, such as O(n8).

On the other hand, other formulations can also be considered. Although not

shown in this study, the path formulation using paths as variables and the node

formulation using binary variables to indicate whether a node is traversed or not did

not yield good results.

There are two directions to obtain a better approximation algorithm for sMTP.
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One is to make efforts to remove terms related to parameters such as demand

or revenue from the approximation ratio. The other is to reduce the exponential

term of n, including the possibility of applying Chalermsook et al. (2012)’s O(n1/3)-

approximation algorithm for Max-Rep. However, at present, this algorithm is based

on a solution that seems to have no corresponding concept in sMTP, such as finding

the maximum matching in Max-Rep.

In addition, there may be a direction to perform two studies on sMTP for more

generalized problems. In reality, there are various situations where additional con-

straints need to be considered. One important direction is to extend sMTP to cases

where the underlying graph can be cyclic. If we simply extend it, we can easily see

that satisfying each request one by one in the shortest distance is optimal, as there

is no cost incurred when moving to the empty state. Therefore, we need to consider

various additional conditions, such as upper bounds on the total distance traveled

or time windows for each request. When a cyclic graph exists, the relationship with

t-separable instances becomes unclear. It is possible to decompose the optimal solu-

tion into O(log n) solutions, but we do not know the instances of each decomposed

problem.
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국문초록

무회로 네트워크에서의 단일경로 최대이익다품종거래문제(sMTP)는 정해진 목적지로

가는 차량을 운행하여 마디 쌍 사이에 존재하는 운송 요청을 선택적으로 수행하여 이

익을 최대화하는 문제이다. 무회로 유향 네트워크의 각 마디 쌍에는 한 마디에서 다른

마디로의 운송에 대한 요청이 존재한다. 시작 마디에서 마지막 마디까지의 경로가 정

해지면, 그 경로 위의 각 요청의 출발지와 목적지 간의 물품을 수송량 제한을 넘지 않는

선에서 운송할 수 있다. 이 때 각 운송량에 비례한 수익을 얻는다. 같은 마디 쌍 사이의

운송 요청이라도 일부만 운송하여 일부의 수익만 얻을 수도 있다. 한 편, 운송을 하

는 과정에서 단위 거리를 이동할 때 마다 수송량에 비례하는 비용이 발생한다. 따라서

수송량에 제한이 없더라도, 최대의 수익을 목적으로 모든 마디에 방문하는 것은 너무

멀리 우회를 하게 만들어 더 큰 비용을 초래할 수도 있다. 차량 운행자는 전체 마디 중

일부를 거치는 경로를 선택하고 각 운송 요청의 수행하여, 수익에서 비용을 뺀 이익을

최대화하는 것을 목적으로 한다.

본 논문에서는 sMTP에 대해, 가능해 집합에 대응하는 다면체의 구조와 근사 가

능성에 대해 연구한다. 먼저, 정수 최적화 기반의 이론적 분석을 진행한다. sMTP를

위한 두 가지 모형을 제시한다. 각 모형에 대해 먼저 용량 제약이 없는 경우의 유효

부등식 집단들을 얻고, 각각이 강한 유효 부등식이 될 조건에 대해 논한다. 또한 발견한

유효 부등식들에 대응하는 분리 알고리듬을 제시한다. 다음으로, 해당 문제의 근사 가

능성에 대한 분석을 진행한다. 먼저 근사해법 개발의 근본적 한계에 대해 다룬다. 계산

불가능성과 함께, 최악의 경우의 선형완화 문제의 해가 상한으로서 제공하는 품질의

한계에 대해 다룬다. 이 문제의 근사해법 개발을 위해, 몇몇 특수한 경우에 적용할 수

있는 근사해법을 제시한다. 제시한 해법들을 바탕으로 sMTP의 근사해법을 제시하고,
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제시한 근사해법에 사용된 기법들이 활용될 수 있는 다른 문제들에 대해 다룬다. 마지

막으로, 실험적으로 본 연구에서 제시한 유효 부등식을 이용한 다양한 해법의 성능과

근사해법을 활용한 해법의 성능을 비교한다.

주요어: 화물 운송 문제, 정수 최적화, 유효 부등식, 근사 불능성, 근사해법

학번: 2017-20407
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