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Abstract 

Calculation of hydrogen diffusivity and solubility in bcc metals using machine-

learning potentials and path-integral methods 

 

Hyukjoon Kwon 

Department of Energy Systems Engineering 

The Graduate School of Engineering 

Seoul National University  

 

Hydrogen diffusivity, solubility and permeability in metals has been 

extensively investigated owing to its rich physical characteristics and importance in 

materials engineering. For nuclear materials engineering, the hydride formation in Zr 

alloys used as cladding materials in water-cooled nuclear fission reactors has been 

extensively studied as it significantly degrades the ductility of Zr alloys. For the 

development of nuclear fusion reactors, not only embrittlement/damage caused by 

hydrogen isotopes in metals but also the behavior of tritium itself is an important 

research topic, since the accumulation and leakage of tritium in reactor components 

need to be minimized to satisfy safety regulation due to the radioactivity of tritium 

and the tritium needs to be quickly recovered and used as fuels to sustain the fusion 

fuel cycle.      

In spite of many experimental efforts, there are large deviations in the 

reported experimental data of diffusion coefficients and solubility constants due to 

surface and trapping effects, indicating that accurate measurements are inherently 

difficult, especially at low temperatures. For computational studies, several atomistic 

simulation methods have been proposed and used to determine the true hydrogen 

diffusivity and solubility in the lattice; however, their accuracy remains questionable 
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as most studies have not accurately simulated the force field, dynamic effects, or NQEs.  

In this study, for bcc-Fe and bcc-W, we estimated the diffusivity and solubility 

of dilute hydrogen from long-time path integral simulations using machine-learning 

moment tensor potentials with the accuracy of density functional theory (DFT), 

which accurately handles the three factors (force field, dynamic effects, NQEs) 

simultaneously.  

In the temperature range where the experiments of the diffusion coefficients 

seem reliable (>500 K for Fe, and >1500 K for W), our calculations show excellent 

agreement for the metals. Protium diffusion coefficients exhibited non-linear 

Arrhenius plots due to NQEs at temperatures below 500 K in Fe and W. Regarding 

isotope effects, even for classical diffusion coefficients above 500 K, the diffusivity 

ratio deviated from the square root of the mass ratio. We attributed this to dynamic 

effects caused by hydrogen-phonon coupling. 

Our process to calculate the solubility is theoretically more accurate than the 

methods used in previous studies such as quasi-harmonic approximation (QHA) in 

that coupling of dynamic effects and NQEs is fully included in our process. Our 

solubility results are indirectly compared with the experimental values by 

converting them into permeability because the permeability at high temperatures 

can be more accurately measured than the solubility in experiments. The results 

showed an acceptable level of error compared to the available experimental values, 

while systematic error of DFT is transferred to the solubility to some extent through 

machine-learning potentials. These results demonstrate that precise measurements 

over a wide temperature range remain a challenge in experimental studies and 

simple calculation methods. Until now, many studies have calculated hydrogen 

diffusivity and solubility in metals using QHA without rigorous validation on 

approximations in it. According to this research, when dynamic effects, including 

NQEs are significant (e.g., in bcc-Fe), using QHA can result in errors of several orders 

of magnitude for the hydrogen solubility. This research has increased the 

applicability of molecular dynamics by developing a methodology that accurately 
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considers dynamic effects and NQEs through the combination of path integral 

simulations and statistical mechanical techniques. 

We have developed a systematic methodology to accurately calculate 

hydrogen diffusivity and solubility in bcc metals, with the ability to automate the 

entire process. This research has the potential to create a comprehensive database 

on diffusivity, solubility, and permeability of hydrogen isotopes for fusion reactor 

materials, which can greatly contribute to nuclear fusion materials engineering. 

Additionally, the methods used in this study can be applied to designing functional 

materials that prevent hydrogen-related issues in various applications, including 

nuclear fission reactors and hydrogen ships for the hydrogen economy. 

 

 Keywords: Hydrogen, Diffusivity, Solubility, Permeability, Nuclear quantum 

effects, Molecular dynamics, Machine-learning potential 

 

 Student Number: 2021-29372 
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Abbreviation 
“Engineering and theoretical background” 

PFMs: Plasma-facing materials 

NQEs: Nuclear quantum effects 

FSEs: Finite size effects 

 

“Forcefields” 

DFT: Density functional theory 

PES: Potential energy surface 

MLP: Machine-learning potential 

MTP: Moment tensor potential 

 

“Molecular dynamics” 
CLMD: Classical molecular dynamics 

PIIMD: Path integral molecular dynamics 

AI-PIMD: Ab-initio PIMD 

RPMD: Ring polymer molecular dynamics 

CMD: Centroid molecular dynamics 

PI-QTST Path integral quantum transition state theory 

 

 “Molecular statics” 

NEB: Nudged elastic band 

QHA: Quasiharmonic approximation 

CL-HA: Classical harmonic approximation 
Q-HA: Quantum harmonic approximation  

CL-QHA: Classical QHA 

Q-QHA: Quantum QHA 
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“Others” 

SC: Scaled coordinate 
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Nomenclature 
Physical constants 

𝑘 : Botlzman constant 

ℏ: Reduced Planck constant 

 

General variables 

t: time 

m: mass 

T: temperature 

𝛽 = 1/𝑘 𝑇  

P: Pressure 

V: Volume 

𝑎: Lattice constant 

 

Diffusion 

D: Diffusion coefficient 

𝐸 : Activation energy 

 

Solution 

𝜃: Solution constant 

 

Permeation 

𝜙: Permeation constant 

J: Permeation flux 

 

Thermodynamics 
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𝐺 : Solution Gibbs energy. 

𝐻 : Solution enthalpy. 

𝑆 : Solution entropy. 

𝐺 : Gibbs free energy of system X. 

𝐻 : Enthalpy of system X. 

𝑆 : Entropy of system X. 

𝑈 : Internal energy of system X. 

𝜇 : Chemical potential of system X. 

ℎ : Enthalpy per molecule X. 

𝑠 : Entropy per molecule X. 

 

Statistical mechanics 

∆(𝑁, 𝑃, 𝑇): Isothermal-isobaric partition function at constant N, P, and T. 

𝑄(𝑁, 𝑉, 𝑇): Canonical partition function at constant N, V, and T 

⟨… ⟩ : Ensemble average of an ensemble X. 

𝑊: Virial 
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1. Introduction 
1.1. Issues related to hydrogen isotopes in fusion reactor materials 

A fusion reactor using the nuclear reaction between deuterium (D) and 

tritium (T) is considered to be the earliest feasible fusion energy plant, and has been 

the subject of much research, including a large international project ITER, which is 

currently under construction in France. Tritium is a radioactive hydrogen isotope 

whose natural abundance is extremely low, so in order to use it as fuel in a fusion 

reactor, it must be efficiently produced, recovered, managed, and utilized in the fusion 

reactor. However, the high mobility and permeability of hydrogen in materials makes 

it difficult to thoroughly predict and control the behavior of hydrogen isotopes. The 

issues related to hydrogen isotopes behavior in fusion reactor materials are 

summarized in three aspects as below. 

Firstly, tritium inventory and leakage pose challenges to radiation safety and 

environmental protection due to the radioactivity of tritium. Tritium has a half-life of 

approximately 12.3 years and emits high-energy electrons through 𝛽  decay. Thus, 

the leakage of tritium must be prevented from a perspective of the protection of 

workers and environment. Beryllium and tungsten are typical materials used as 

plasma-facing materials (PFMs) and also act as the first barrier to confine tritium. 

Beryllium can be used in the main vessel walls, and tungsten can be used in the 

divertor. During the operation of the reactor, there is a problem of tritium dissolution 

in the PFMs, leading to a significant amount of tritium remaining in the inventory. For 

example, Roth et al. demonstrated that in a hypothetical scenario where ITER 

operates for around 2500 shots of 400 s discharges, approximately 700g of tritium, 

which is the expected regulation limit for T retention, remains inside the PFMs if the 

Be and W are used as first walls and divertor, respectively[1]. If W is used for both 

first walls and divertor, the T retention can be reduced. However, radiation damages 

caused by fast neutrons are expected to trap T, increasing the retention. Therefore, 

many studies have been performed to identify the effects of radiation defects on T 

retention[2], and this research field is still attracting large attention. 
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1Fig. 1.1-1 Tritium inventory ion material used in ITER after operation time. 

This figure was taken from Ref. [1]. CBC denotes carbon fibre composite. 

 

Secondly, large amount of tritium loss can threaten fuel cycle sustainability. 

Tritium is a radioactive isotope and does not exist as a natural resource; it needs to 

be artificially produced through the tritium breeding process. Maintaining the tritium 

balance (breeding, burning, and loss) is generally a difficult task because tritium loss 

occurs in various ways in fusion reactors. The primary channels for tritium loss are 

trapping in PFMs, leakage through the first wall, and 𝛽  decays as well as leakage in 

fueling systems [3]. While it is inevitable for tritium to be naturally lost through the 

radioactive decay during tritium storage, there is a necessity to minimize the amount 

of tritium lost through trapping and leakage through materials. If this can be achieved 

by developing new materials or processes such as the use of coatings that act as 

tritium permeation barriers, it would increase the cost-effectiveness and 

sustainability of nuclear fusion reactors. 
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2Fig. 1.1-2 Tritium balance in a DT fusion reactor. (𝑻𝒍𝒐𝒔𝒔)𝑽𝑽𝒕𝒓𝒂𝒑: Trapping rate of 
T to plasma facing materials (𝑻𝒍𝒐𝒔𝒔)𝑽𝑽𝑷𝒑: T loss due to permeation through first 
wall (𝑻𝒍𝒐𝒔𝒔)𝑭𝑺: T loss in fuel system (𝑻𝒍𝒐𝒔𝒔)𝑫𝒆𝒄𝒂𝒚: T loss due to 𝛃  decay in T 

inventory. This figure was taken from Ref. [3] 

 

  Finally, hydrogen embrittlement can pose a serious problem for the long-

term operation of fusion reactors by deteriorating the materials properties of PFMs. 

The presence of residual hydrogen in the PFMs can potentially induce hydrogen stress 

cracking or create cavities by exerting additional pressure within the metal. Fang et 

al. reported a maximum hardness increase of approximately 0.5 GPa in tungsten 

exposed to deuterium plasma [4]. To prevent hydrogen embrittlement, it is important 

to find materials for PFMs that minimize hydrogen inventory or find methods or 

operation scenarios to minimize hydrogen inventory. 
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1.2. Basic materials properties on hydrogen behavior: diffusivity, solubility, and 
permeability 

Hydrogen inventory and leakage are determined by three key material 

properties: diffusivity, solubility, and permeability. Hydrogen diffusion refers to the 

phenomenon where hydrogen atoms within a metal randomly migrate between 

interstitial sites. Hydrogen solution describes the phenomenon where H  molecules 

present in a vacuum are dissolved into the metal, maintaining an equilibrium 

concentration. Hydrogen permeation is the phenomenon where hydrogen moves 

from a region of lower concentration to a region of higher concentration due to the 

chemical potential gradient between two spaces with a membrane in between. In 

homogeneous membranes under isothermal conditions, the hydrogen concentration 

gradient can be assumed to be constant, which leads to the relationship, 

Permeability = Diffusivity × Solubility. 

 

 

3Fig. 1.2-1 A schematic diagram illustrating diffusion, solution, and permeation of 
hydrogen in metals. 

 

This relation can be intuitively understood. When the solubility is held 

constant and the diffusivity increases, the speed of movement from low concentration 

to high concentration is accelerated. Therefore, the permeability should grow 

proportionally. On the other hand, when the diffusivity is held constant and the 

solubility increases, the absolute amount of hydrogen present in the metal grows. As 
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a result, the net amount of hydrogen escaping from the high concentration space to 

the low concentration space increases, leading to an increase in permeability 

proportionally. 

 

4Fig. 1.2-2 Hydrogen concentration profile in gas permeation experiments. 

 𝒅 denotes thickness of a specimen. 

 

 The diffusion is quantified by the material property called diffusion 

coefficient. Macroscopically, the diffusion coefficient appears in Fick’s law as follows:  

Fick s 1st law:  𝐽 = −𝐷
𝜕𝜃

𝜕𝑥
, Eq. 1.2-1 

Fick s 2nd law:  
𝜕𝜃

𝜕𝑡
= −

𝜕𝐽

𝜕𝑥
= 𝐷

𝜕 𝜃

𝜕𝑥
 Eq. 1.2-2 

𝐽 denotes the hydrogen permeation flux [mol H ∙ 𝑚 ∙ 𝑠 ∙ MPa . ], and D and 𝜃 

are diffusion coefficients [𝑚 ∙ 𝑠 ]and hydrogen concentration (solution constants 

inside the specimen) [mol H ∙ 𝑚 ∙ MPa . ], respectively. 

Microscopically, D can be expressed as the jump frequency 𝜈  and the 

activation energy (𝐸 )  in lattice where 𝑛   is the number of neighbor sites to 

which a diffusing atom can jump, 𝑓   is a coefficient for jump correlation and 

𝜆  is a unit jump distance. 
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𝐷(𝑇) =
1

6
𝑛 𝑓 𝜆 𝜈 𝑒  Eq. 1.2-3 

 

5Fig. 1.2-3 Minimum energy path of hydrogen migration in bcc-Fe and bcc-W by the 
DFT calculations. 

 

 The solution can be quantified by a material property known as the solubility 

constant. This constant represents the concentration of hydrogen in a material that is 

in equilibrium with the pressure of hydrogen gas 𝑃 . Using the solubility constant, 

the concentration of hydrogen in a metal at equilibrium with a hydrogen gas of a 

partial pressure of 𝑃   can be express with solution entropy (𝑆 )  and solution 

enthalpy (𝐻 ) [5]. 𝑛   denotes the number of interstitial sites in a unit cell, 

which is 6 for the tetrahedral sites in bcc crystals. 

𝜃 𝑃 , 𝑇 = 𝑛
𝑃

𝑃
𝑒𝑥𝑝

𝑆 (𝑃 , 𝑇)

𝑘
𝑒𝑥𝑝 −

𝐻 (𝑃 , 𝑇)

𝑘 𝑇
 Eq. 1.2-4 

This equation is derived by equilibrium theory of thermodynamics at chemical 

equilibrium between hydrogen gas and hydrogen solute state. For some metal-

hydrogen systems such as Nb-H, the concentration of solute hydrogen exceeds the 

threshold concentration, namely, the solubility limit, a hydride phase can be formed. 
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This hardly occurs for other metal-hydrogen systems such as Fe-H and W-H where 

the thermodynamic stability of hydride phases is low. Note that, in the present study, 

we basically focus on hydrogen at a dilute limit, where the hydrogen concentration is 

far lower than the solubility limit and hydrogen-hydrogen interaction in a metal does 

not significantly occur.  

The permeation is quantified by the material property called permeability 

constant. Macroscopically, the permeability coefficient (𝜙)  is derived by solving 

Fick’s 2nd law under the permeation flux at steady state 𝐽 . 

𝜕𝜃

𝜕𝑡
=

𝜕 𝜃

𝜕𝑥
= 0 

𝜃(𝑥, 𝑡) = 𝜃 1 −
𝑥

𝑑
−

2

𝜋
sin

𝑛𝜋𝑥

𝑑
exp −

𝐷𝑛 𝜋

𝑑
𝑡  

𝐽(𝑥, 𝑡) = −𝐷
𝜕𝜃

𝜕𝑥
(𝑥, 𝑡) =

𝐷𝜃

𝑑
1 + 2 𝑛(−1) cos

𝑛𝜋𝑥

𝑑
exp −

𝐷𝑛 𝜋

𝑑
𝑡  

𝐽 = lim
→

𝐽(𝑑, 𝑡) =
𝐷𝜃

𝑑
 

For the saturated hydrogen permeation flux, the permeability coefficient [mol H ∙

𝑚 ∙ 𝑠 ] equals 𝐷 times 𝜃 𝑃 . 

 

  

∴ 𝜙 = 𝐽 𝑑 = 𝐷𝜃  Eq. 1.2-5 
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1.3. Low reliability of experimental data on diffusivity and solubility 

Despite great experimental effort, accurate measurement of diffusion 

coefficients has been hampered by lattice imperfections such as surfaces, impurities, 

and defects[6]. Thus, experimentally measured diffusion coefficients often fail to 

represent actual diffusion coefficients in the lattice. For example, the deviation of 

reported diffusion coefficients for Fe or W is several orders of magnitude at room 

temperature [6–8]. 

 

 

6Fig. 1.3-1 Experimental values of protium diffusion coefficients in Fe. 

This figure was taken from Ref. [6]. 

 

The large scattering in the experimentally data can be explained by three 

factors: surface effects, trap effects sch as impurity and vacancy, and grain-boundary 

effects. 

 Firstly, the differences in experimentally measured diffusivity can be 
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attributed to the high adsorption energy on the metal surface, known as surface 

effects. Studies conducted by Jiang and Carter[9] for bcc-Fe, and Heinola and 

Ahlgren[10] for bcc-W used first principles calculations based on density functional 

theory (DFT) to evaluate the adsorption energy of hydrogen on metal surfaces, which 

ranges 0.38-0.91 eV in reference to H2 gas molecule and 0.58-1.86 eV in reference to 

solute H in metals. The high adsorption energy is identical to high desorption energy, 

which interferes with the recombinational desorption of hydrogen to a gas phase, 

contaminating non-steady state permeability data and reducing the accuracy of the 

H  gas permeation technique in experiments. 
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7Fig. 1.3-2 Energy landscape of hydrogen from 𝐇𝟐 gas to the dissolved state in 
(upper) Fe and (lower) W. DFT was used to calculate the landscapes. These figures 

were taken from Ref. [9,10] 

 

Secondly, the trapping effects of impurities and point defects such as 

vacancies slow down hydrogen diffusion by increasing the activation energy required 

for migration. For hydrogen in bulk Fe and W, Tateyama and Ohno[11] and Ohsawa et 

al[12]. used DFT to determine the negative energy associated with hydrogen trapping 

by mono-vacancies, indicating that hydrogen is more likely to occupy vacancies rather 

than tetrahedral sites. Oda et al. showed by kinetic Monte Carlo simulations that such 

trapping effects cause non-linear relation between logarithm of apparent hydrogen 

diffusion coefficients and reciprocal temperature, depending on the concentration of 

traps, and can explain large deviation observed in experimental data of hydrogen 

diffusivity in W[13], as suggested by Heinola et al.[14] Therefore, at low temperatures 

where the trap effect cannot be negligible even if the trap concentration is relatively 

low, it is essentially difficult to measure the true diffusion coefficient of hydrogen in 

lattice.  
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 Finally, the diffusion of trapped hydrogen at grain boundaries can exhibit a 

different behavior compared to diffusion in a perfect lattice at whole temperature 

ranges. While hydrogen trapped by vacancies cannot migrate without detrapping, 

hydrogen trapped at grain boundaries can still migration with being trapped. Due to 

the wide variety of grain boundaries and the potential for each type to exhibit 

completely different behaviors, the experimental diffusion coefficients were thought 

to show large scattering depending on the microstructure within the specimen. 

 

8Fig. 1.3-3 Potential energy curve for hydrogen in W. GB denotes a grain boundary. 
This figure was taken from Ref. [15] 

 

 Even disregarding the three systematic error factors mentioned earlier 

(surface, trapping, and grain boundary effects), the lag-time method in H  gas 

equilibration technique has a high level of random error in measuring diffusivity. 
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9Fig. 1.3-4 Typical output curve of a lag-time method in 𝐇𝟐 gas equilibration 
experiments. This figure was taken from Ref. [16] 𝜽 𝐚𝐧𝐝 𝑷 in this figure denotes 

time lag and 𝐇𝟐 pressure. 

 

As illustrated in Figure 1.3-4, diffusion coefficients are measured in transient states, 

while permeation constants are measured in stationary states. Generally, the 

permeate pressure highly fluctuate in transient states. Thus, precision of measured 

diffusion coefficients is not as high as that of measured permeation constants in H  

gas equilibration experiments. 

It should be noted that permeability in Fe and W is commonly reported 

consistently in experimental studies[7,17–19], whereas diffusivity showed large 

scattering, leading to lower accuracy in determining solubility. This comes from the 

fact that the effects of traps such as vacancies on apparent diffusivity is cancelled with 

those on apparent solubility, resulting in no trap effects on determined permeability. 

However, this cancellation cannot be fully achieved if hydrogen can diffuse with being 

trapped by GBs, which causes deviation even in permeability data if the temperature 

is low enough for GBs to significantly trap hydrogen[15]. 
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1.4. Low availability of data for deuterium and tritium 

There are two main issues for low availability of experimental data for 

deuterium and tritium. Their large mass results in lower diffusivity than that of 

protium, which not only takes longer to reach the equilibrium state in specimens but 

also decreases the permeation rate, leading to poor experimental accuracy as the 

effects of lattice imperfection become relatively large. In addition, tritium is a 

radioactive isotope, requiring special facilities with the radiation shielding. This 

incurs significant costs for the setup and maintenance of such facilities. 

From the perspective of classical physics, isotope effects on diffusivity and 

solubility are constant at whole temperatures, so deuterium and tritium data can be 

estimated from experimental data of protium. In the case of diffusivity, neglecting the 

dynamic effects owing to the hydrogen-phonon coupling, the diffusivity ratio between 

isotopes is inversely proportional to the square root of their mass ratio[20]. 

Therefore, the diffusion coefficients of deuterium and tritium would be 

approximately √2  and √3  times smaller than that of protium, respectively. 

However, even at high temperatures where classical limit is expected to be satisfied, 

the large discrepancy in measured diffusivity with the classical theory is often 

observed for Fe. Fig. 1.4-1 shows the diffusion coefficient ratio between H and D in 

bcc-Fe [18]. According to Vineyard’s study [20] explained by the strong hydrogen-

phonon interaction[19]in Fe, which may come from relatively small mass of Fe, 

compared to heavy metals, such as W. 
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10Fig. 1.4-1 Ratio of diffusion coefficient of hydrogen to that of deuterium in Fe 
(𝑫𝑯/𝑫𝑫). According to classical physics, 𝑫𝑯/𝑫𝑫 ≅ 𝒎𝑫/𝒎𝑯 = √𝟐. This figure 

was taken from Ref. [18] 

 

As for solubility, it is determined by the Gibbs free energy between the H  

molecule and the dissolved state. Since the classical Gibbs free energy is independent 

of mass, there is no isotope effect on solubility. 

On the other hand, from the perspective of quantum physics, isotope effects 

that take into account NQEs exhibit temperature dependence at low temperatures, 

while they converge to the classical results at sufficiently high temperatures. Qi et 

al.[21] experimentally measured the hydrogen diffusivity in bcc-Nb for all isotopes of 

hydrogen at temperatures above 100 K. 
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11Fig. 1.4-2 Hydrogen diffusion coefficients in bcc-Nb. According to classical rate 
theory, the Arrhenius plots of diffusion coefficients is approximately linear. The 

experimental values are from Ref. [21–23]. 

 

Contrary to the expected temperature dependence of diffusion coefficients 

based on the classical Arrhenius equation, their results showed non-linearity below 

approximately 250 K. That quantum diffusivity is attributed to tunneling effects and 

ZPE. Tunneling effects act as factors that always accelerate the hydrogen diffusion, 

while ZPE can either accelerate or slow down diffusion depending on the change in 

the free energy barrier. Therefore, significant isotope effects are anticipated in 

hydrogen diffusivity. Kimizuka and Shiga [24] demonstrated through path integral 

simulations that the quantum diffusivity of protium in fcc-Ag and fcc-Cu can be 

smaller than the classical diffusivity. Similarly, in the case of solubility, it is expected 

that mass dependence will arise due to NQEs, but research on this aspect is still 

limited.  
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1.5. Objectives of this study 

There is a need to develop new materials or methods that effectively prevent 

hydrogen inventory and leakage in nuclear fusion reactors. However, there are two 

barriers to experimentally designing nuclear materials and prevention methods. 

Firstly, as highlighted in Sections 1.3 and 1.4, the experimental determination of 

hydrogen diffusivity, solubility, and permeability is challenging due to their 

significant dependence on the material's microstructure and unavoidable effects of 

surface and trap effects, making it difficult to obtain precise values. Secondly, the vast 

number of possible combinations of elements and their compositions for new alloy 

development results in an enormous amount of labor and time required. 

Therefore, computational materials design is needed to develop an 

automated process for calculating the properties of materials including hydrogen 

diffusivity and solubility in order to find adequate materials for each application. In 

the pharmaceutical industry, Virtual Screening, a computational chemistry method, 

is used to reduce the number of potential drug candidates before experiments and 

clinical trials. Similarly, for nuclear materials engineering, a computational chemistry 

approach is required to simplify the process of finding alloy compositions that 

optimize material properties in PFMs and cladding materials. To achieve this, there is 

a need for research on automatically and accurately calculating the hydrogen 

transport properties in alloys. 

However, accurate computations of both diffusivity and solubility have not 

been straightforward. One must carefully consider dynamic effects and nuclear 

quantum effects (NQEs) involved in the transport mechanism, which are important 

at high and low temperatures, respectively. Dynamic effects beyond the harmonic 

approximation are not considered in the conventional minimum energy path analysis 

[9,14], whereas NQEs are not considered in classical molecular dynamics (CLMD) 

simulations [25]. Through path integral simulations, it is possible to include dynamic 

effects and NQEs naturally [26,27]. However, the reliability of PI simulations based on 

empirical force fields is questionable, because the results are sensitive to the assumed 
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potential energy surface (PES). Ab initio path integral molecular dynamics (AI-PIMD) 

[28–30] is one of the most ideal approaches for this purpose, fully rooted in first-

principles calculations; however, its application to hydrogen diffusion in metals is not 

yet practical due to the enormous amount of computations. 

Recently, the concept of machine-learning potential (MLP) has emerged, and 

the paradigm of the potential model has dramatically changed [31]. By learning from 

first-principles calculations, the MLP can provide an accurate PES at a low 

computational cost. It has recently been reported that MLPs based on artificial neural 

networks [32] and Bravais-inspired gradient domains [33] work successfully for 

hydrogen diffusion in fcc-Pd. 

In this study, the diffusivity and solubility of dilute hydrogen in Fe and W are 

investigated through PI simulations using a modern MLP known as moment tensor 

potential (MTP) [34]. The objective of this research is to establish accurate and 

efficient computational methods for hydrogen solubility and diffusivity in bcc metals 

and obtain reliable data above 100 K and reveal NQEs and isotope effects on hydrogen 

transport over the entire temperature range. 

The biggest difference between the current target system of study and the 

reality is that we use single crystals, whereas actual materials are polycrystals. 

Generally, the existence of grain boundaries increases the effective diffusivity and 

solubility because the interfaces provide fast diffusion paths and voids which are the 

preferred locations than the tetrahedral sites for the solute hydrogen. 

If the actual material has low concentrations of grain boundaries, the 

difference between single crystal and polycrystal in terms of diffusivity and solubility 

would generally be negligible at sufficiently high temperatures. In this study, we used 

data obtained at sufficiently high temperatures when comparing experimental and 

calculated values. In such cases, the experimental values can serve as good reference 

data for our calculations. On the other hand, if the actual material has high 

concentrations of grain boundaries, even at sufficiently high temperatures, there can 
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be significant differences between the measured values and the calculated values. The 

effects of the lattice imperfections remain as future task, and the results of this study 

can be reference data for it at the low concentration limit. 

In the remainder of this manuscript, after a detailed description of the 

methodology in Section 3, we show that MTP can successfully reproduce first-

principles calculations based on density functional theory, not only for energy, force, 

and stress data but also for characteristic quantities of the transport phenomena such 

as the hydrogen migration barrier and vibrational frequencies. This partially justifies 

the assumption that PI simulations using MTP can produce similar results to ab initio 

PI simulations using DFT.  

In Section 4, the diffusion coefficients calculated using the verified MTPs are 

compared with the available experimental data, demonstrating that the proposed 

method can provide reliable diffusion coefficients for Fe and W. Subsequently, NQEs 

and dynamic effects are identified by comparing the calculations from CLMD and 

three PI methods: ring polymer molecular dynamics (RPMD), centroid molecular 

dynamics (CMD), and path integral quantum transition state theory (PI-QTST). 

In Section 5, we introduce a methodology that utilizes path integral 

simulations to calculate the solubility, taking into account dynamic effects and NQEs 

simultaneously. Section 5.1 provides the theoretical background on this approach, 

while Section 5.2 presents the methods for calculating the two components that 

constitute solubility: solution enthalpy and solution entropy. In Section 5.3, the 

calculated solubility is compared to experimental values after converted to 

permeability because consistent experimental values have been reported for it.  

Hereafter, protium, deuterium, and tritium are referred to as H, D, and T, 

respectively. When discussing without specifying the type of isotope, the term 

‘hydrogen’ is used. 
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12Fig. 1.5-1 Main contents of this thesis 
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2. Methods 
2.1. Moment tensor potential (MTP) 

 MTP imitates target PESs by a set of polynomials. The theoretical concept of 

MTP is described in Ref. [34], and its systematic generation process is illustrated in 

Ref. [35]. The key features of MTP are explained in Section A1 of the Appendix. 

 Two advantages of MTP are worthy of attention. First, angle-dependent 

manybody interactions are embodied from the tensor products of atomic 

displacement, so a variety of atomic environments can be represented by MTP. 

Second, the computational burden is much relieved in that the MTP algorithm is 

devoid of any transcendental function but contains only arithmetic operations of 

polynomials. For several systems, it was confirmed that MTP achieved accuracy 

comparable with that of Gaussian approximation potential, which is often regarded 

as one of the most accurate MLPs, with less than a tenth of the computation time [34]. 
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2.2. Imaginary time path integral theory 

 According to imaginary time path integral theory, the quantum canonical 

partition function of a particle can be approximated to the classical partition function 

of a ring polymer with 𝑛  imaginary time slices [36]. Each imaginary time slice 

can be expressed as “bead” of the ring polymer. Based on this classical isomorphism, 

the one-dimensional quantum canonical partition function of a nucleus in a physical 

potential (𝑉 ) is approximated by 

𝑍 ≅
𝑚𝑛

2𝜋𝛽ℏ
𝑑𝑞( ) ⋯ 𝑑𝑞( ) exp −𝛽𝑉  Eq. 2.2-1 

and the effective potential (𝑉 ) is defined as 

𝑉 =
1

2
𝑚𝜔 𝑞( ) − 𝑞( ) +

1

𝑃
𝑉 𝑞( ) , Eq. 2.2-2 

where 𝑚  is the mass of the nucleus, 𝑞( )  is the position of the s-th bead, and 

𝑞( ) = 𝑞( ) due to periodicity. 𝜔  is a harmonic chain frequency.  

𝜔 =
𝑛

𝛽ℏ
, Eq. 2.2-3 

In the high-temperature limit (𝛽 → 0), the spring constant (𝑚𝜔 ) becomes so large 

that the ring polymers shrink toward their centroids. In this limit, the nucleus loses 

its quantum nature and the quantum partition function converges to its classical one. 

 We used three methods for the time evolution of the beads: PIMD, CMD [37–

40], and RPMD [41,42]. They are very different conceptually as PIMD can only 

calculate static properties whereas CMD and RPMD are designed to calculate dynamic 

properties based on different concepts from each other. In the formulation, however, 

only the choice of the fictitious mass (𝑚 ) of the beads and the use of thermostats 

differ among them[43]. For more information about the choice of mass, see Ref. [43]. 

Finally, classical equations of motion are applied to the dynamics of the beads as 
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shown in Eq. 2.2-4.[43] 

𝑚
( )

�̈�( ) = −
𝜕

𝜕𝑞( )

1

2
𝑚

( )
𝜔 𝑞( ) − 𝑞( ) +

1

𝑃
𝑉 𝑞( )  Eq. 2.2-4 

In this study, PIMD was used for equilibration before CMD and RPMD 

simulations and for free energy profiles in the application of PI-QTST methods. RPMD 

without a thermostat and adiabatic CMD were employed to collect real-time 

trajectories of H. The PIMD code [44] was used for all PI calculations.  
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3. MTP generation and validation 
3.1. MTP generation 

 For each bcc metal, MTPs were trained to reproduce the PESs of DFT in the 

position space relevant to hydrogen dynamics. The DFT calculations for energy, force, 

and stress were performed with the Vienna Ab initio Simulation Package (VASP) [45–

47]. The Perdew-Burke-Ernzerhof functionals [48] were used to describe the electron 

exchange-correlation. The total energy was sampled on a Γ-centered 6 × 6 × 6 k-

point grid by the Monkhorst and Pack scheme [49] with a 650 eV energy cutoff. Spin-

polarized calculations were performed for the systems of Fe, but not for the systems 

of W because their electronic ground states are nonspin polarized. 

The procedure for MTP generation involved supervised learning with 

molecular statics calculations and active learning by CLMD and PIMD. First, to obtain 

an accurate and stable description of key kinetic and thermodynamic properties for 

hydrogen diffusion, the molecular statics configurations were prepared from (1) 

random deformation of unit bcc cells, (2) stable structures for dissolved hydrogen, (3) 

snapshots in nudged elastic band (NEB) calculations [50] for hydrogen migration, and 

(4) finite-displacement structures for quasiharmonic approximation (QHA) 

calculations. Second, the accuracy and stability of MTPs were strengthened through 

active learning with classical NPT ensembles. The machine learning interatomic 

potential (MLIP) package [35], invented by Novikov et al., was used to determine the 

extrapolation grade of configurations, reinforce the training sets, and reoptimize MTP 

parameters. The maximum temperature in active learning with CLMD was 

approximately two-thirds of the melting temperature of pure bcc metals. Finally, 

training was completed by active learning using PIMD with NVT ensembles to 

incorporate the configuration of beads. MTP level was set to 16 for all metals, and the 

maximum cutoff radius was set to 5.5 A for the Fe–H system and 6.0 A for the W–H 

systems. More details of the training sets and active learning are explained in Section 

A2 of the Appendix. The training sets and the MTP parameters used in this study are 

available in Ref. [51]. 
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3.2. MTP validation 

 

13Fig. 3.2-1 Validation of generated MTPs. (a) Scatter plots of energies for training 
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and test sets calculated using DFT and MTPs; (b) Equilibrium lattice constants at 1 
bar estimated by CLMD. Experimental data were obtained from Ref. [52,53] for Fe, 

and Ref. [54,55] for W. Ref. [55] was from a statistical analysis of available 
experimental data. (c) Hydrogen migration barriers at different lattice constants 

(𝒂). 𝒂𝟎 denotes a lattice constant from geometry optimization. The LAMMPS code 
was used for the classical atomistic simulations. 

 

The energy, force, and stress data from DFT fit well with the MTPs. For 

example, good agreement in energy is confirmed in Fig. 3.2-1(a), which compares the 

energies calculated on the training and test sets using DFT and MTPs. 

The lattice constants, lattice thermal expansion, and elastic constants were 

examined for pure bcc metals. Lattice constants from geometry optimization showed 

an error of 0.02% at most in reference to DFT, and an absolute error of 0.02 Å ~ 0.03 

Å from the experiments after correction of the zero-point vibration effect [56]. The 

thermal expansion coefficients calculated by CLMD were nearly identical to those of 

the experiments above 300 K [52–55,57], where quantum effects can be ignored, as 

shown in Fig. 3.2-1(b). The elastic constants were also reasonably reproduced; errors 

with respect to DFT were all less than 10% and the absolute differences from 

experiments [58–60] were 25 GPa at most. The lattice constants and elastic constants 

are provided in Section A3 of the Appendix. 

Fig. 3.2-1(c) shows that the migration barriers obtained by the MTPs are 

similar to those obtained by DFT, including the effect of isotropic lattice deformation 

(-2% ~ 2% strain), which is related to the temperature dependence of the barriers 

due to thermal expansion. The errors from DFT calculations were less than 5% for a 

path via a trigonal site or via an octahedral site. In addition, errors in the normal mode 

frequencies related to H were less than 6% for the tetrahedral site (ground state), 

trigonal site (1st-order transition state), and octahedral site (2nd-order transition 

state), as shown in Table 3.2-1. The frequencies of all vibrational modes are plotted 

in Section A3 of the Appendix, also showing good correspondence between the MTP 

and DFT data. 
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In summary, the validation test results demonstrate that MTP can achieve 

DFT accuracy for PESs and properties related to lattice mechanics/dynamics and 

hydrogen migration in bcc metals. 

 

1Table 3.2-1 Normal mode frequencies related to H. The value in parenthesis 
denotes the error from the DFT calculation ((𝝂𝑴𝑻𝑷 − 𝝂𝑫𝑭𝑻)/𝝂𝑫𝑭𝑻) in percent (%). i 
indicates an imaginary mode. 

Unit: THz  Fe W 

Tetrahedral site 

30.2 (3.25) 35.2 (0.95) 

44.0 (0.61) 47.3 (1.48) 

44.0 (0.61) 47.3 (1.48) 

Trigonal site 

20.4i (4.29) 25.7i (1.00) 

34.6 (-0.30) 46.0 (0.73) 

57.8 (-1.39) 63.2 (0.51) 

Octahedral site 

17.5i (0.56) 27.8i (5.68) 

17.5i (0.56) 27.8i (5.68) 

63.7 (-2.75) 75.5 (0.38) 
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4. Hydrogen diffusivity 
4.1. Diffusion coefficient calculations 

4.1.1. Einstein relation 

The Einstein relation between the mean square displacement and diffusion 

coefficient at three-dimensions is expressed as 

𝐷 =  𝑙𝑖𝑚
→

|𝒓 (𝑡)|

6𝑡
 , Eq. 4.1-1 

where |𝒓 (𝑡)|   represents the mean square displacement of a centroid. The 

diffusion coefficient can be determined in the framework of molecular dynamics with 

a reasonably large t value as 

𝐷 ≅  
|𝒓 (𝑡)|

6𝑡
. Eq. 4.1-2 

 

4.1.2. Path integral quantum transition state theory 

A general concept of PI-QTST was established by Gillan [61], and it was 

combined with the minimum free energy path by Schenter et al. [62]. Althorpe and 

Richardson [63] further developed it by connecting PI-QTST to semiclassical 

instanton theory. For a reaction of interest, the PI-QTST method requires the free 

energy profile which can be obtained by integrating the mean force along a minimum 

energy path [61]. The mean force can be approximately taken during bead sampling 

while the centroid positions of atoms are fixed along the minimum energy path of 

reaction. The combined reaction constant [63–66] is expressed as 

𝛤 (𝑇) ≅ 𝛼(𝑇)
1

2𝜋𝛽𝑚∗

𝑒 ( ∗, )

∫ 𝑑𝑞𝑒 ( , )
∗

∗

 Eq. 4.1-3 
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𝛼(𝑇) = 𝑚𝑖𝑛 1,
2𝜋

𝛽ℏ𝜔 (𝑇)
  Eq. 4.1-4 

 

 𝜔 (𝑇) =
|𝐹 (𝑞∗, 𝑇)|

𝑚∗
, Eq. 4.1-5 

where 𝑞  is a reaction coordinate and 𝑞∗  denotes a barrier top. 𝑞∗  and 𝑞∗  are 

adjacent barrier tops. 𝐹(𝑞, 𝑇) is the free energy at the reaction coordinate 𝑞 and 

temperature T. 𝜔  is the absolute value of the imaginary angular frequency of the 

normal mode at the barrier top 𝑞∗. 𝑚∗ is the effective mass of the diffusing particle 

along the reaction path [20]. For the migration of hydrogen through trigonal sites of 

the bcc lattice of Fe and W, the difference between the effective mass and its physical 

mass of hydrogen was approximately 4%. 𝑇   is a crossover temperature 

below which deep tunneling dominates the reaction rate [63]. 

𝑇 =
ℏ𝜔 (𝑇 )

2𝜋𝑘
 Eq. 4.1-6 

The interstitial atomic diffusion coefficient is analytically expressed for three 

dimensions as 

𝐷 =
1

6
𝑛 𝑓 𝜆 𝛤, Eq. 4.1-7 

where 𝛤  is a jump rate. For hydrogen diffusion in a bcc metal, the dominant 

migration paths are jumps between tetrahedral sites: 𝑛 = 4 and 𝜆 =
√

𝑎 

where a is the lattice constant. Consequently, assuming there is no jump correlation, 

namely, 𝑓 = 1, the diffusion coefficient can be calculated as 

𝐷 (𝑇) =
𝑎

12
𝛤 (𝑇). Eq. 4.1-8 
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4.2. Validation by H diffusivity 

 

14 Fig. 4.2-1. H diffusivity in (a) Fe, and (b) W. The black solid line connecting CLMD 
plots denotes fitted Arrhenius equations. The error bars represent standard errors. 

The experimental data were obtained from Ref. [6,18,67–70] for Fe, and Ref. [7,8,71] 
for W. The simulation conditions of CLMD, CMD, and RPMD are enumerated in 

Section A4 of the Appendix. 
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Fig. 4.2-1 shows Arrhenius plots of the H diffusion coefficients for each 

material from the CLMD, CMD, and RPMD calculations and some experimental data. 

The differences between the CMD and RPMD results were minimal in all cases. The 

overall similarity demonstrates that the conceptual difference between the two 

methods does not lead to incompatible results, as also observed in a previous study 

[72]. In addition, their results converged to those of the CLMD above approximately 

500 K, explained by the classical limit of quantum dynamics. 

 

4.2.1. H diffusivity in bcc Fe 

For Fe, the deviation in the previous experimental data was too large for 

direct comparison with the simulation results. Thus, we made a comparison with the 

recommended empirical equations obtained by Völkl and Alefeld [69] and Kiuchi and 

McLellan [6] by fitting many experimental results. Völkl suggested two plausible 

Arrhenius equations based on the highest value (𝐷 ) and amount of data (𝐷 ). 

The former is based on the assumption that the surface and trapping effects are 

responsible for slowing the diffusion [69]. These two equations intersect at 

approximately 800 K. The CLMD/CMD/RPMD results were at the intersection, and 

agreed with 𝐷   above 800 K. The CMD/RPMD results were also reasonably 

consistent with 𝐷  in the temperature range of 300 K ~ 500 K. Nevertheless, we 

consider the reliability of Völkl’s equations to be limited because Arrhenius equations 

are not valid in such a broad temperature range (200 K ~ 1000 K) due to NQEs, as 

indicated by the current and previous [73] RPMD/CMD simulations. 

Kiuchi organized experimental data based on the methods and conditions, 

and fitted each with an Arrhenius equation in a narrow temperature range: Group A 

(Pd-coated, ultrahigh vacuum, H -gas equilibration), Group B (electrochemical), and 

Group C (H -gas equilibration without a coating) [6]. Kiuchi considered Group A to 

be the most reliable group because the surface effects were expected to be attenuated 
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by attaching a Pd coating to the specimens. However, the reliability of Group A is still 

dubious because it was composed of only three datasets (Miller et al. [67], Nelson et 

al. [68], Quick et al. [70]), of which Miller indirectly determined H diffusivity from the 

ratio of measured permeability to solubility reported by others. Furthermore, the fact 

that the three datasets showed large deviations among Group A, as shown in Fig. 4.2-

1(a), cast doubt on the effectiveness of the Pd coating in determining the true 

diffusivity in the lattice. A theoretical study analyzing the characteristics of the time-

lag method in multiple laminates has shown that the effective diffusion coefficient 

determined by the time-lag method is affected by the thickness and H diffusion 

coefficients in the coatings [74]. Such effects did not appear to have been considered 

by Nelson and Quick. 

Thus, acknowledging that there is room for other interpretations, we 

consider that Kiuchi’s Group C equation (H  -gas equilibration without a coating) 

above 500 K and Völkl’s 𝐷  equation above 500 K, which are in close agreement, 

are the most reliable experimental data available. The following two points support 

our findings. First, the experimental data above 500 K show a relatively small 

variation if the Pd-coating data are ignored, as shown in Fig. 8 of Kiuchi’s study [6]. 

Second, it has been estimated that the effect of surface processes is negligible above 

approximately 500 K [75]. The CLMD/CMD/RPMD results agreed well with the 

experimental data above 500 K. 
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15Fig. 4.2-2 Comparison of H diffusivity in Fe for current simulation results and 
experimental values obtained by electrochemical techniques. The black solid line 
connecting CLMD plots denotes the fitted Arrhenius equation. The error bars of 

CLMD/CMD/RPMD plots represent standard errors. The experimental data were 
obtained from Ref. [76–83]. The Arrhenius equations of McBreen [82] and 

Subramanyan [83] were taken from Table 2 of Kiuchi’s study [6] due to 
inaccessibility to the original literature. 

 

Below 500 K, Kiuchi showed that the diffusion coefficients determined by gas 

equilibrium methods such as permeation, desorption, and time-lag methods varied 

by several orders of magnitude or more, whereas those determined by 

electrochemical methods varied relatively little in the temperature range of 250 K ~ 

350 K [6]. In Fig. 4.2-2, excluding two data sets (Kumnick [81] and Subramanyan [83]), 

the variation in the electrochemical measurements is half an order of magnitude, and 

the CMD/RPMD calculations agree with the measurements within that variation 

range. 
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4.2.2. H diffusivity in bcc W 

For bcc W, the H diffusion coefficients reported by Frauenfelder [7] and 

Holzner et al. [71] are comparable to the CLMD results above 1500 K. Frauenfelder 

fitted the Arrhenius equation in the temperature range of 1100 K ~ 2500 K for H 

diffusion coefficients determined by degassing experiments [7]. Heinola and Ahlgren 

reinterpreted Frauenfelder’s data and suggested that the appropriate fitting region 

should be 1500 K ~ 2500 K to exclude the trapping effects [14]. Subsequent 

theoretical and computational studies have confirmed that trapping effects due to 

vacancies or grain boundaries can explain the deviation in diffusion coefficients 

below 1500 K [13,15]. 

 

4.2.3. Arrhenius equations of H diffusivity 

  

16Fig. 4.2-3 Activation energies and preexponential factors of Arrhenius equations 
of H diffusivity. The current CLMD results and previous experimental studies 
presented in Fig. 4.2-1 are plotted. In the legend, ‘*’ indicates data that were 

reported with a standard error of the activation energy, and ‘**’ indicates data that 
were reported with standard errors of both pre-exponential factor and activation 
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energy. The standard errors in the current CLMD results are negligible. 

 

Fig. 4.2-3 presents the pre-exponential factors and activation energies of the 

Arrhenius equations for H diffusion obtained by CLMD for the three materials, 

together with some experimental results. As the CLMD results were used, the 

calculation results in Fig. 4.2-3 represent the diffusivity at temperatures above 500 K, 

where the NQEs are negligible. Völkl’s 𝐷  for Fe, and Kiuchi’s Group C data for Fe 

agreed well with the corresponding CLMD results. As discussed above, these 

experimental data are considered reliable at high temperatures. 

For W, although the Arrhenius plots in Fig. 4.2-1(b) show good agreement 

between the current calculation and the data of Frauenfelder [7] and Holzner [71], 

the derived Arrhenius equations are inconsistent, as shown in Fig. 4.2-3. The 

inconsistency arises from the large variation in the experimental measurement, as 

seen in Fig. 4.2-1(b). At high temperatures, the data interval for the reciprocal 

temperature scale is short; thus, the fitting error in the Arrhenius plot can easily 

become large if the measurement variation is large. In our estimate, the fitting error 

in the activation energy was 0.05 eV as the standard error of linear fitting of the 

Arrhenius plot of Frauenfelder’s data above 1500 K; Holzner et al. reported a fitting 

error in the activation energy of 0.06 eV. In contrast, because the Arrhenius equation 

for the CLMD results was obtained over a wider temperature range, the estimated 

deviation in the CLMD data was only 0.003 eV. Considering these statistical errors, 

the Arrhenius equation from the current CLMD is more precise than those from 

Frauenfelder’s and Holzner’s data. 

In summary, although the large deviation in experimental data makes it 

difficult to validate the calculation results, in temperature ranges where the reliability 

of experimental data is considered to be high (>500 K for Fe, and >1500 K for W), the 

current calculation shows excellent agreement with experiments for Fe and W. 
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4.3. NQEs, dynamic effects, and isotope effects 

4.3.1. Free energy barriers 

 Although the simulation speed of PIMD with MTP is much higher than that 

of AI-PIMD, applying CMD and RPMD to the Einstein relation at very low 

temperatures is still demanding. Additionally, the calculation for heavier isotopes is 

difficult because NQEs are less considerable in D or T migration; thus, their diffusion 

coefficients are not as large as those of H. To provide a reasonable estimate including 

NQEs, even when the diffusion coefficient is too low, we adopted PI-QTST. 

 

17Fig. 4.3-1 Temperature-dependent free energy barriers for migration of 
hydrogen isotopes in Fe and W through trigonal site. Simulation conditions are 

enumerated in Section A4 of the Appendix. 

 

Several assumptions were made to simplify the PI-QTST process. First, jumps 

through octahedral sites were ignored because they rarely occur compared to jumps 

through tetrahedral sites. Second, the one-dimensional minimum free energy path for 
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hydrogen migration was assumed to be identical to the classical path. This 

assumption is likely to be valid, as Kimizuka et al. reasonably reproduced the 

quantum behavior of hydrogen in fcc metals over a wide temperature range of 75 K 

~ 1200 K [24]. Finally, the thermal expansion effects were neglected for simplicity; 

thus, a geometry-optimized lattice constant was used to construct the supercells. In 

some test cases, we confirmed that the effect of thermal expansion was not significant. 

Fig. 4.3-1 shows the temperature-dependent free energy barriers obtained 

by the PI-QTST method using Eq. 4.3-1, 

∆𝐹(𝑇) = − 𝑑𝒔 ∙ 𝒇𝒎𝒆𝒂𝒏(𝒒, 𝑇), Eq. 4.3-1 

where ∆𝐹(𝑇) is the free energy barrier at temperature T, q is the reaction path, and 

𝒇𝒎𝒆𝒂𝒏(𝒒, 𝑇) is the mean force acting on the beads when the centroid is fixed at q [61]. 

As theoretically expected, the free energy barriers decreased as the temperature fell 

due to NQEs, and the NQEs were more pronounced for lighter isotopes. 
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4.3.2. Dynamic effects and NQEs 

 

18Fig. 4.3-2 Hydrogen diffusivity in (a) Fe, and (b) W. RPMD results are not plotted 
because diffusivity differences between CMD and RPMD are small in comparison 
with their standard errors. Experimental data were obtained from Ref. [18] for Fe 

and Ref. [71] for W. 
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Fig. 4.3-2 (a) ~ (b) show the diffusion coefficients of H, D, and T calculated 

by PI-QTST using Eq. 4.1-3 and Eq. 4.1-8, together with those calculated by CLMD, the 

H diffusion coefficients calculated by CMD, and the experimental results for the three 

isotopes. The H diffusion coefficients calculated by PI-QTST showed good agreement 

with the CMD results at low temperatures, whereas relatively large differences were 

observed at high temperatures. For example, there was a ~50% difference from the 

CMD results at 1000 K for W.  

The high-temperature discrepancy between PI-QTST and CMD is the result 

of dynamic effects. Although the dynamic effects are fully considered in CMD, 

recrossing is neglected in PI-QTST because a centroid position of each atom is fixed 

during bead sampling. We estimated the crossover temperature of the dynamic 

effects, 𝑇  , from the transmission coefficient ( 𝜏 ), which is defined as 

𝜏 = 𝐷 /𝐷  . Fig. 4.3-3(a) shows the temperature-dependent transmission 

coefficients of H diffusivity in Fe and W. Generally, 𝜏 is less than 1 due to recrossing, 

as shown in Fig. 4.3-3(a). 𝜏 = 1 means that the crossing event is not disturbed by 

phonons and that dynamic effects are negligible. Although the uncertainty in W is 

large owing to the large standard errors in 𝐷 , we approximate 𝑇  to be 

300 K for all metals. Our suggested 𝑇  is consistent with the study of Paxton 

and Katzarov [84], which revealed that the transmission coefficient of H diffusion in 

Fe can be approximated as 1 below 300 K by QTST using the magnetic tight binding 

model [85]. PI-QTST can be an accurate alternative to CMD/RPMD for estimating the 

H diffusivity below 𝑇 . 

Furthermore, at very low temperatures, below 𝑇  as defined by Eq. 

4.1-6, the PI-QTST can theoretically be more accurate than the CMD/RPMD. This is 

because the contribution of deep tunneling, which CMD/RPMD cannot describe 

properly and, in contrast, PI-QTST considers with the instanton theory, starts to 

increase below 𝑇  [86]. For H diffusivity, 𝑇  was approximately 100 
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K and 200 K in Fe and W, respectively. 

However, at temperatures above the crossover temperature of NQEs, 𝑇 , 

above which the NQEs are negligible, CLMD can be the best alternative. Fig. 4.3-3(b) 

shows 𝐷 /𝐷   to estimate 𝑇  . Regardless of the metal, 𝑇   in H 

diffusivity was approximately 500 K, and was higher than 𝑇 . 

 

19 Fig. 4.3-3 (a) Dynamic effects of H diffusivity in Fe, and W. The transmission 
coefficients are defined as 𝑫𝑪𝑴𝑫/𝑫𝑷𝑰 𝑸𝑻𝑺𝑻. (b) NQEs on H diffusivity in Fe, and W.   

  

Fig. 4.3-4 illustrates the key factors that affect hydrogen diffusivity and the 

temperature range over which each method can accurately determine the diffusion 

coefficient. PI-QTST and CLMD are accurate below 𝑇   and above 𝑇  , 

respectively. In the temperature range between 𝑇  and 𝑇 , estimated to be 

300 K ~ 500 K for H in the three metals, there is no accurate alternative to CMD/RPMD.  
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20Fig. 4.3-4 Key factors affecting hydrogen diffusion coefficients and applicable 
methods in corresponding temperature ranges. 

 

4.3.3 Isotope effects 

For the heavier isotopes (D and T), the temperature ranges of 𝑇 <

𝑇 < 𝑇  are approximately within that of H for the following reasons. First, Paxton 

and Katzarov confirmed that the transmission coefficients are weakly dependent on 

isotopes [84]. Thus, 𝑇   and 𝑇   were considered comparable to 

𝑇  . Second, 𝑇   and 𝑇   are generally lower than 𝑇   due to the 

heavier atomic masses of D and T, as confirmed by Qi’s experiments [21]. Thus, it is 

justifiable to determine the isotope effects below 300 K using PI-QTST and above 500 

K using CLMD for Fe and W. Fig. 4.3-5 shows the isotope effects of hydrogen diffusivity 

calculated using PI-QTST and CLMD. 
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21Fig. 4.3-5 Hydrogen isotope effects in (a) Fe and (b) W. “H/D” and “H/T” denote 
𝑫𝑯/𝑫𝑫 and 𝑫𝑯/𝑫𝑻, respectively. In (a), the solid lines are from the cubic spline 

method. 𝒎𝑫/𝒎𝑯 and 𝒎𝑻/𝒎𝑯 are the theoretical diffusivity ratios proposed 
by the classical rate theory under harmonic approximation conditions. 

Experimental data were obtained from Ref. [18] for Fe and Ref. [71] for W. The gray 
regions denote the temperature ranges in which both PI-QTST and CLMD results are 

less accurate. 

 

In experiments on bcc metals, H diffusion has always been faster than D 
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diffusion, and significant temperature dependence of the isotope effects has been 

observed [69].  

For Fe, experimental data on H diffusivity are scattered; thus, it is difficult to 

estimate the isotope effects with high accuracy. Although isotope effects have been 

obtained below 500 K in several studies [87,88], we do not refer to these 

experimental data because they likely do not reflect the true diffusion coefficient in 

the lattice, as discussed in Section 4.2.1. The isotopes data of Tahara and Hayashi [18] 

seem to be reasonably accurate because the H diffusivity obtained above 580 K shows 

good agreement with Kiuchi’s Group C and Völkl’s 𝐷   equation, which we 

verified to be the most reliable above 500 K. In Tahara’s study, the isotope effect 

between H and D at high temperatures did not converge to the square root of the mass 

ratio [18], as expected in classical rate theory [20], but became smaller. The CLMD 

results reproduced this trend, as shown in Fig. 4.3-5(a). 

For W, isotope effects between H and D were reported by Holzner et al. [71] 

at 1800 K ~ 2600 K, where NQEs and trapping effects were negligible. As shown in 

Fig. 4.3-5(b), the isotope effects calculated by CLMD were consistent with those of 

Holzner. This consistency further demonstrates that MTPs can accurately describe 

the isotope effects in hydrogen diffusion. 

 

4.3.4 Isotope effects in the classical regime, 𝑇 > 𝑇  

A disparity in isotope effects from the classical rate theory was observed for 

Fe and W, even above 500 K, at which the NQEs can be ignored as 𝑇 > 𝑇 . In Fig. 

4.3-2(a) ~ (b), the slopes of the Arrhenius plots obtained from CLMD are almost 

independent of the isotopes. Thus, at temperatures above 𝑇   where hydrogen 

behaves as a classical particle, the Arrhenius equations for hydrogen isotopes differ 

only in the pre-exponential factor and not in the activation energy. The parameters of 

the Arrhenius equations derived from the CLMD in Fig. 4.3-2 are presented in Table 

2. As the activation energy is almost isotope-independent, the isotope effect can be 
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quantified from the ratio of the pre-exponential factors, with smaller values than 

those from classical rate theory. For example, the diffusivity ratio of H to T in bcc Fe 

obtained by CLMD is 1.28, whereas 𝑚 /𝑚   is 1.73. We consider that dynamic 

effects such as anharmonicity and recrossing caused the difference from classical rate 

theory, although the mechanism is a subject for future research. 

 

2Table 4.2-1 Parameters of Arrhenius equations for hydrogen isotope diffusivity 
from CLMD. 𝑫𝟎 denotes the pre-exponential factors of the Arrhenius equations. 

 Fe W 

Activation energy (meV) 92.7 ± 3.6 203 ± 6 

𝐷  (10 𝑚 𝑠 ) 7.62 ± 0.2 12.3 ± 0.5 

𝐷 /𝐷  1.16 ± 0.06 1.26 ± 0.07 

𝐷 /𝐷  1.28 ± 0.05 1.43 ± 0.09 
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5. Hydrogen solubility 
5.1. Solution constant calculations 

5.1.1. Solubility at dilute concentration limit 

Under the chemical equilibrium at dilute hydrogen concentration limit for an 

isothermal-isobaric condition of a closed system, namely, NPT ensemble, the change 

of Gibbs free energy is zero in terms of hydrogen transfer between the hydrogen gas 

and the hydrogen solute state. 

𝐺 𝑁 , 𝑁 , 𝑃 , 𝑇 = 𝐻 𝑁 , 𝑁 , 𝑃 , 𝑇 − 𝑇𝑆 𝑁 , 𝑁 , 𝑃 , 𝑇

= 0 
Eq. 5.1-1 

The solution entropy (𝑆 )  is the sum of the configurational (𝑆 )  and non-

configurational (𝑆 ) terms. The former only depends on the numbers of hydrogen 

atoms (𝑁 ) and their stable sites (𝑁 )in the lattice. 

𝑆 (𝑁 , 𝑁 ) = 𝑘 ln
𝑁 !

𝑁 ! (𝑁 ! − 𝑁 !)
 Eq. 5.1-2 

For bcc metals, 𝑁 = 6𝑁  as the tetrahedral sites are the most stable interstitial 

sites for hydrogen. At the dilute concentration limit (𝑁 ≪ 𝑁 ) , Stirling’s 

approximation can be applied to the logarithm in Eq. 5.1-2. 

ln
𝑁 !

𝑁 ! (𝑁 ! − 𝑁 !)
≅ − ln

𝑁

𝑁 − 𝑁
≅ − ln

𝑁

𝑁

= − ln
𝑁

6𝑁
= − ln

𝜃

6
 

Eq. 5.1-3 

Consequently, the hydrogen solubility (𝜃)  in bcc metals is expressed by solution 

enthalpy (𝐻 ) and non-configurational solution entropy (𝑆 ). 
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𝐻 𝑁 , 𝑁 , 𝑃 , 𝑇

= 𝐻 𝑁 , 𝑁 𝑃 , 𝑇

− 𝐻 𝑁 , 𝑃 , 𝑇 + 𝑁 ×
1

2
ℎ 𝑃 , 𝑇  

 

Eq. 5.1-4 

𝑆 𝑁 , 𝑁 , 𝑃 , 𝑇 = 𝑆 𝑁 , 𝑁 , 𝑃 , 𝑇 − 𝑆 (𝑁 , 𝑁 )

= 𝑆 𝑁 , 𝑁 , 𝑃 , 𝑇

− 𝑆 𝑁 , 𝑃 , 𝑇 + 𝑁 ×
1

2
𝑠 𝑃 , 𝑇

− 𝑆 (𝑁 , 𝑁 ) 

 

  Eq. 5.1-5 

𝜃 𝑁 , 𝑁 , 𝑃 , 𝑇

= 6 exp
𝑆 𝑁 , 𝑁 , 𝑃 , 𝑇

𝑘
exp −

𝐻 𝑁 , 𝑁 , 𝑃 , 𝑇

𝑘 𝑇
 

 

Eq. 5.1-6 

Thus, to calculate 𝜃 , we need to obtain the enthalpy term, 𝐻 ,  and the non-

configurational entropy term, 𝑆 . 

 

5.1.2. Calculation of solution enthalpy (𝐻 ) 

According to Ref. [89], enthalpy at NPT ensembles is defined as a function of 

isobaric partition function. 

𝐻(𝑁, 𝑃, 𝑇) ≔  𝑘 𝑇
1

∆(𝑁, 𝑃, 𝑇)

𝜕∆(𝑁, 𝑃, 𝑇)

𝜕𝑇
,

 Eq. 5.1-7 

where ∆ is a weighted sum of the canonical partition functions. 

∆(𝑁, 𝑃, 𝑇) =  𝑄(𝑁, 𝑉, 𝑇)𝑒  Eq. 5.1-8 

There are two types of Finite Size Effects (FSEs). One is on the hydrogen-

hydrogen interaction and the other is on the lattice expansion by dissolved-hydrogen. 

The former is not only about the direct interaction, which can be eliminated if the cell 
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length is larger than twice the cutoff radius of interaction, but also the indirect 

interaction via stress field generated around hydrogen, which is usually more long-

ranged. We have found that the latter is significant at NPT ensembles because the 

lattice expansion induced by interstitial hydrogen, which should be negligible at the 

dilute limit, is significant if the supercell size is small. Although it is difficult to 

precisely quantify the FSEs in NPT-MD due to large fluctuations in energy and volume, 

rough estimation by the elastic theory would be sufficient to prove the large FSEs. Fig. 

5.1-1 shows differences of equilibrium lattice constants between hydrogen -

dissolved and pure bcc-W in NPT-CLMD at 500 K, which were calculated up to a 

14 × 14 × 14  supercell. For larger supercells, the 3rd order fitting was applied to 

extrapolate  from the bulk modulus of tungsten (𝐾 ) and hydrogen virial 

(𝑊 ). 

𝐾 = −𝑉
𝑑𝑃

𝑑𝑉
≅ 𝑉

−∆𝑃

𝑉 − 𝑉
 

𝑉 = 𝑉 1 −
∆𝑃

𝐾
 

𝑎 =
(𝑉 )

𝑛
= 𝑎 1 −

∆𝑃

𝐾
 

𝑎 − 𝑎 = 𝑎 1 −
∆𝑃

𝐾
− 1 ≅ 𝑎 −

1

3

∆𝑃

𝐾
=

𝑎

3𝐾

𝑊

𝑉

=
𝑊

3𝐾 𝑛 𝑎
∝ 𝑛  

Eq. 5.1-9 

where n denotes a size of (𝑛 × 𝑛 × 𝑛) supercell. If the difference in the lattice 

constant (𝑎 − 𝑎 ) can be approximated by a specific function as n grows, the 

internal energy change by the FSEs can be roughly estimated using the bulk modulus.  

Additional stress induced by the dissolved hydrogen in a lattice (∆𝑃)  equals the 

hydrogen virial divided by lattice volume (𝑉 ), so the appropriate fitting function of 

(𝑎 − 𝑎 )  is 3rd-order polynomial of n. Good agreement between this model 
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equation and MD results is seen in Fig. 5.1-1. Using this model equation, the internal 

energy change caused by lattice expansion in each supercell was estimated by Eq. 5.1-

10, which is also shown in Fig. 5.1-1. 

∆𝑈(𝑛) 

≅
1

2

𝐾

𝑉 (𝑛)
𝑉 (𝑛) − 𝑉 (𝑛)  

Eq. 5.1-10 

 

22Fig. 5.1-1 (Left axis) Lattice constant difference between hydrogen-dissolved 
tungsten (𝒂𝑯 𝑾) and perfect tungsten (𝒂𝑾) (Right axis) Energy change induced 

by the volume expansion. The standard error of the mean was estimated to be 
𝟕. 𝟒 × 𝟏𝟎 𝟔 Å for (𝒂𝑾 𝑯 − 𝒂𝑾) and 𝟖. 𝟐 × 𝟏𝟎 𝟓 eV for ∆𝑽 in the 

𝟏𝟒 × 𝟏𝟒 × 𝟏𝟒 supercell, for example. 𝑲𝑾 = 𝟑𝟏𝟑 𝐆𝐏𝐚 was determined from the 
strain-stress relation of the MTP for W. 

 

According to the energy change trend in Fig. 5.1-1, approximately 7 × 7 × 7 

supercell is needed to make the energy change smaller than 0.001 eV from the value 

of 𝑛 → ∞, corresponding to the dilute limit. However, increasing the supercell size 

in NPT-MD is practically difficult because the magnitude of system energy 

fluctuation increases with the number of atoms, which necessitates longer 

simulation times to maintain the constant precision in enthalpy calculation. 
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Specifically, the standard error of the mean (SEM) of the system energy is 

proportional to √𝑛 , and thus the simulation length and total simulation cost of MD 

increase in proportional to 𝑛  and 𝑛 , respectively, to achieve a constant precision. 

Note that the precision of the solution enthalpy is relevant with the SEM of the 

system energy, not the SEM of per-atom energy, which is proportional to 1 √𝑛⁄ . 

Since it is impractical to adequately suppress both SEM and FSEs at NPT-MD, 

we propose an effective method that eliminates volume expansion effects by applying 

the same volume to both hydrogen-dissolved and pure lattice in NVT-MD with small 

supercells. In other words, the isothermal-isobaric partition function is approximated 

by a representative canonical partition function whose volume is an equilibrium one 

of the pure metals at the NPT ensembles.  

𝑉 (𝑁 , 𝑃, 𝑇) ≔ ⟨𝑉⟩ (𝑁 , 𝑃, 𝑇) = 𝑉
𝑄(𝑁 , 𝑉, 𝑇)𝑒

∆(𝑁 , 𝑃, 𝑇)
 Eq. 5.1-11 

The FSEs due to the lattice expansion are eliminated since hydrogen 

dissolution does not contribute to the expansion in this method. This approximation 

is likely valid under the dilute hydrogen concentration limits for the following two 

reasons. First, the equilibrium lattice constant difference between the hydrogen-

dissolved and the pure metallic systems and the energy difference induced by the 

lattice expansion converge to zero as the system size grows, as clearly seen in Eq. 5.1-

12 and confirmed in Fig. 5.1-1.  

∆𝑈(𝑛) 

≅
1

2

𝐾

𝑉 (𝑛)
(𝑉 − 𝑉 )  

=
𝑛 𝐾

2𝑎
𝑎 +

𝑊

3𝐾 𝑛 𝑎
− 𝑎  

=
𝑛 𝐾

2𝑎

𝑊

𝐾
𝑛 + 𝑂(𝑛 )  
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∴ ∆𝑈(𝑛) = 𝑂(𝑛 ) Eq. 5.1-12 

 Second, at thermodynamic limit (𝑁 , ⟨V⟩ → ∞),  both NPT ensemble 

with ∆(𝑁, 𝑃, 𝑇)  and NVT ensemble with 𝑄(𝑁, ⟨𝑉⟩ , 𝑇)  should produce the same 

solution enthalpy. Finally, in the NVT ensemble with 𝑄(𝑁, ⟨𝑉⟩ , 𝑇),  the regions 

that strongly interact with hydrogen contribute to the most of solution energy. 

Thus, in this study, the isothermal-isobaric partition functions are 

approximated as Eq. 5.1-13 by using the canonical partition function of the 

equilibrium volumes that dominantly contribute to it. 

∆ 𝑁 , 𝑁 , 𝑃 , 𝑇 ≅  𝑄(𝑁 , 𝑁 , 𝑉, 𝑇)𝑒 𝛿 𝑉 − 𝑉

= 𝑄 𝑁 , 𝑁 , 𝑉 , 𝑇 𝑒  

Eq. 5.1-13 

𝐻 𝑃 , 𝑇  

≔  𝑘 𝑇
1

∆ 𝑃 , 𝑇

𝜕∆ 𝑃 , 𝑇

𝜕𝑇
 

≅  
𝑘 𝑇

𝑄 𝑉 , 𝑇 𝑒

𝜕𝑄 𝑉 , 𝑇 𝑒

𝜕𝑇
 

=
𝑘 𝑇

𝑄𝑒

𝜕𝑄

𝜕𝑇
𝑒 + 𝑄

𝜕𝑒

𝜕𝑇
 

= 𝑘 𝑇
1

𝑄

𝜕𝑄

𝜕𝑇
+

1

𝑒

𝜕𝑒

𝜕𝑇
 

1

𝑄

𝜕𝑄

𝜕𝑇
 

=
1

Q

𝜕

𝜕𝑇
𝑒  
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=
𝐸

𝑘 𝑇
−

1

𝑘 𝑇

𝜕𝐸

𝜕𝑇

𝑒

𝑄
 

=
𝐸

𝑘 𝑇
−

1

𝑘 𝑇

𝜕𝑉

𝜕𝑇

𝜕𝐸

𝜕𝑉

𝑒

𝑄
 

where 𝐸  denotes internal energy of microstate j. Energy of each microstate in the 

canonical ensemble has nothing to do with 𝑃 .  In each microstate, fractional 

coordinates are fixed. 

𝜕𝐸

𝜕𝑉
=

𝜕𝐸

𝜕𝑉
 

𝐸  is a function of position 𝑞  and momentum 𝑝  space, where each position 

𝑞   is defined as the product of volume length 𝑉   and fractional coordinate 

𝑥 . 

𝐸 𝑞 , 𝑝 = 𝐸 𝑉 𝑥 , 𝑝  

For the volume expansion of microstates, the fractional coordinates are fixed. 

𝜕𝐸

𝜕𝑉
=

𝜕𝐸

𝜕𝑞

𝜕𝑞

𝜕𝑉
=

𝜕𝐸

𝜕𝑞

1

3
𝑉 𝑥 = −𝑓

1

3
𝑉 𝑥

= −
1

3𝑉
𝑓 𝑞 = −

1

3𝑉
𝑊  

Where 𝑊  denotes the virialof microstate j. 

1

𝑄

𝜕𝑄

𝜕𝑇
 

=
1

𝑘 𝑇
𝐸

𝑒

𝑄
+

1

𝑘 𝑇

𝜕𝑉

𝜕𝑇
−

1

3𝑉
𝑊

𝑒

𝑄
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=
1

𝑘 𝑇
𝐸

𝑒

𝑄
+

1

𝑘 𝑇

𝜕𝑉

𝜕𝑇
−

𝑊

3𝑉

𝑒

𝑄
 

=
1

𝑘 𝑇
⟨𝐸⟩ 𝑉 , 𝑇 +

1

𝑘 𝑇

𝜕𝑉

𝜕𝑇
−

𝑊

3𝑉
𝑉 , 𝑇  

1

𝑒

𝜕𝑒

𝜕𝑇
 

=
𝑃 𝑉

𝑘 𝑇
−

𝑃

𝑘 𝑇

𝜕𝑉

𝜕𝑇
 

Therefore, the enthalpy is expressed by the equilibrium internal energy (⟨𝐸⟩ ) 

and virial (⟨𝑊⟩ ) of NVT ensembles. 

𝐻 𝑃 , 𝑇 ≅ ⟨𝐸⟩ 𝑉 , 𝑇 + 𝑃 𝑉

+ 𝑇
𝜕𝑉

𝜕𝑇

𝑊

3𝑉
𝑉 , 𝑇 − 𝑃  

Eq. 5.1-14 

 To determine 𝑉 𝑃 , 𝑇 , Quasi-harmonic approximation was used for the 

pure metals in the whole temperature ranges, including ZPE effects. ⟨𝐸⟩  and 

⟨𝑊⟩  were replaced with the time-averaged values in MD.  

 

5.1.3. Calculation of solution entropy 𝑆  

5.1.3.1. Entropy as a function of temperature (𝑻 > 𝑻𝟎) 

The temperature dependence of entropy at an isobaric condition is 

expressed as 

𝜕𝑆

𝜕𝑇
=

1

𝑇

𝜕𝐻

𝜕𝑇
 . Eq. 5.1-15 

Assuming that the entropy at 𝑇  K is known, 𝑆(𝑇 ), the entropy at 𝑇 is calculated 

using the temperature dependence of enthalpy as Eq. 5.1-16. 
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𝑆(𝑇) =
𝜕𝑆

𝜕𝑇
𝑑𝑇 + 𝑆(𝑇 ) =

1

𝑇

𝜕𝐻

𝜕𝑇
𝑑𝑇 + 𝑆(𝑇 ) . Eq. 5.1-16 

Since the enthalpy term is obtained in Section 5.1.2, what we need to calculate is 

𝑆(𝑇 ) here. 

 

5.1.3.2. Absolute entropy at 𝑻𝟎 = 𝟏𝟎𝟎 𝐊: Thermodynamic integration 

If ZPE is comparable to hydrogen migration barrier, the probability of 

hydrogen being distributed even in places far away from the T-site cannot be ignored, 

making it unreasonable to approximate hydrogen dynamics with quantum harmonic 

approximation at sufficiently low temperatures. Therefore, a two-step scheme was 

implemented. First, we approximate the hydrogen-trapped lattice at 100 K with 

classical harmonic oscillators. In this case, since there is no ZPE, the 1-d average 

kinetic energy of hydrogen is about 4.3 meV at 100 K according to the equipartition 

theorem. Considering that the migration energy of hydrogen in typical bcc metals is 

much larger, e.g., 95 meV in Fe and 200 meV in W, classical harmonic approximation 

(CL-HA) is reasonably used to estimate free energy of CLMD at 100 K, as shown in Eq. 

5.1-17. ν denotes vibrational frequency at the tetrahedral sites. 

𝑆 (𝑇 ) ≅ 𝑆 (𝑇 ) = 𝑘 ln
𝑘 𝑇

ℎ𝜈
+ 1  Eq. 5.1-17 

Here, we use CL-QHA at 100 K as the state whose thermodynamic quantities are 

known. 

Subsequently, to take into account the quantum effect without HA, the Scaled 

Coordinate (SC) method suggested by S. Habershon and D. Manopoulos[90], a method 

of thermodynamic integration from classical to quantum state, is used to calculate 

free energy difference between PIMD and CLMD at 100 K. 
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𝑑𝐹

𝑑𝜆
=

1

𝑛
𝑞 − 𝑞

𝜕𝑉 𝑢

𝜕𝑢
 Eq. 5.1-18 

where scaled coordinate of the j-th bead at coupling parameter (λ) is u , and it is 

defined as an interpolation between j-th bead’s position 𝑞   and the centroid 

position (𝑞 ). n is the total number of imaginary time slices, or “beads”. The bracket 

notation ⟨⋯ ⟩  denotes an ensemble average of SC Hamiltonian (𝐻 ). 

𝑞 =
1

𝑛
𝑞  Eq. 5.1-19 

𝑢 = 𝜆𝑞 + [1 − 𝜆]𝑞  Eq. 5.1-20 

𝐻 (𝒑, 𝒒; 𝜆) =
𝑝

2𝑚
+

1

2
𝑚𝜔 𝑞 − 𝑞 + 𝑉 𝑢  Eq. 5.1-21 

Therefore, the absolute entropy of PIMD at 100 K is calculated as follows. 

 

𝐹 → (𝑇 ) 

=
𝑑𝐹

𝑑𝜆
𝑑𝜆 

≅ 𝑈 (𝑇 ) − 𝑈 (𝑇 ) − 𝑇 𝑆 (𝑇 ) − 𝑆 (𝑇 )  

∴ 𝑆 (𝑇 ) = 𝑆 (𝑇 )

+
1

𝑇
−

𝑑𝐹

𝑑𝜆
𝑑𝜆 + 𝑈 (𝑇 ) − 𝑈 (𝑇 )  

Eq. 5.1-22 
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5.1.4. Statistical mechanical description on hydrogen 

5.1.4.1. Partition function of diatomic molecules 

The diatomic molecules have translation, rotational, and vibrational motions 

as well as nuclear and electron spin degeneracy. 

𝑄 = 𝑄 𝑄 𝑄 𝑄 𝑄  Eq. 5.1-23 

For the translational motion (𝑄 ) , it is well approximated by that of 

classical ideal gas because average distance between the molecules (𝑑 )  is far 

longer than their thermal de-Broglie wavelength (𝜆 )  at 100 K. That is, 𝜆 =

= 1.2 Å and 𝑑 = 15 Å because 𝑑 = = . 

𝑄 =
2𝜋𝑚 𝑘 𝑇

ℎ

𝑁 𝑘 𝑇

𝑃
 Eq. 5.1-24 

For the rotational and vibrational motions, the coupled cluster method 

which contains all single and double substitutions (CCSD) was used to calculate the 

exact energy under the vibrational (n) and rotational quantum number (J). Different 

nuclear spin degeneracy was considered for fermion (H , T ) and boson (D ). Thus, 

rotational and vibrational motions as well as nuclear spin degeneracy are coupled in  

𝑄  and 𝑄 . 

𝑄 = (2𝐽 + 1)

 

e ( , )

 

 

+ 3 (2𝐽 + 1)

 

e ( , )

 

 

 

Eq. 5.1-25 

𝑄 = 6 (2𝐽 + 1)

 

e ( , )

 

 

+ 3 (2𝐽 + 1)

 

e ( , )

 

 

 

Eq. 5.1-26 
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For electronic partition function (𝑄 ), only ground state bonding orbital 

was considered because its large gap from the 1st excited energy. The electron spin 

degeneracy at ground state (𝑔 ) is one because they are paired. 

𝑄 = 𝑔 𝑒 ( )

 

≅ 𝑒 ( ) Eq. 5.1-27 

 

5.1.4.2. Spin degeneracy 

3Table 5.1-1 Comparison between previous studies and the current study regarding 
assumptions about the spin states of H nuclei and their electrons. 

# of spin 

states 

Electrons 

of H  

Electrons of 

dissolved H 

Nuclei 

of H  

Nuclei of 

dissolved H 
Remarks 

Fowler [91] 1 1 1 1 

Nuclear rotational 

motions and 

nuclear spins are 

decoupled 

Ogawa [92] 1 2 4 2 

Self-trapped states 

[93]: one electron 

of dissolved H has 

two degeneracy in 

1s(↑) and 1s(↓). 

This study 1 1 4 2  

 

5.1.4.2.1. Electron spin degeneracy 

 (Electrons of H  ) According to the molecular orbital theory [89], two 

electrons are supposed to occupy the bonding orbitals (𝜎 ), the ground state, which 

leads to a spin singlet state and its spin degeneracy to be 1. 
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 (Electrons of dissolved H) Fowler simply assumed that the valence electron 

of dissolved H behaves like a free electron, so its spin degeneracy would be 1. To the 

contrary, Ogawa considered that as 2 because the dissolved hydrogen atom is in a self-

trapped state where the electron of dissolved H has its own spin degenerate states. 

According to our analysis of partial density of states on H in Fe  and W , Fowler’s 

assumption is more likely to valid because hydrogen has only 33 % portion in electron. 

In addition, and the DOS of up-spin electrons is the same with that of down-spin 

electrons, and thus no spin is induced in the system. Therefore, electron spin 

degeneracy of dissolved H should be 1. 

 

23Fig. 5.1-2 Projected density of states of hydrogen in (left) Fe and (right) W below 
fermi energy. The fermi energy is 5.8 eV in Fe and 7.8 eV in W. 

 

5.1.4.2.2. Nuclear spin degeneracy 

bcc-W is paramagnetic, but bcc-Fe is ferromagnetic. Without external 

magnetic fields, nuclear spin degeneracy of hydrogen is 2 in the paramagnetic metal. 

The magnetic field inside bcc-Fe can vary depending on the specific conditions and 

properties of specimens. Nevertheless, we consider that the energy level splitting 

from the intrinsic magnetic field is negligibly small. The magnetic moment of the 

proton is 
ℏ

~   in SI unit [94]. Then, the magnetic field should be at least 

10000 T to make energy difference of 0.1 meV between the spin-up and spin-down 

states. Thus, nuclear spin degeneracy of hydrogen in metals is 2 in both W and Fe. 
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 In Fowler’s H solution model, nuclear rotational motions and nuclear spins 

are decoupled. At high temperatures, this assumption can be justified because the 

energy levels of rotational motion are approximately continuous. However, since our 

target temperature is above 100 K, we considered their coupling effects. 
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5.2. Solution enthalpy 

 

24Fig. 5.2-1 A schematic diagram of methods and assumptions in calculating 
hydrogen solution enthalpy 

Solution enthalpy of H is defined as the enthalpy difference from a gas H  

molecule to H-dissolved state. 

𝐻 (𝑇, 𝑃 ) ≔ [𝐻 (𝑇, 𝑃 ) − 𝐻 (𝑇, 𝑃 )] −
1

2
𝐻 (𝑇, 𝑃 ) 

𝐻 (𝑇) − 𝐻 (𝑇)

= ⟨𝐸⟩ 𝑉 , 𝑇 − ⟨𝐸⟩ 𝑉 , 𝑇

+ 𝑇
𝜕𝑉

𝜕𝑇
⟨𝑊⟩ 𝑉 , 𝑇 − ⟨𝑊⟩ 𝑉 , 𝑇  

 

where 𝑉 = ⟨𝑉⟩ (𝑁 , 𝑃 , 𝑇) and 𝑃  is consistently 1 bar in this study.  

Note that the enthalpies of the hydrogen molecule were consistently calculated using 

the Q-HA method for the rotational and vibrational energies. H   and T   were 

considered ideal Fermi gases, while D  was assumed to be an ideal Bose gas. Fig. 5.2-

2 shows the hydrogen solution enthalpies from PIMD/CLMD/quantum 

quasiharmonic approximation (Q-QHA) with reference to the classical 

quasihaarmonic approximation (CL-QHA) results. The only difference between 

harmonic and quasiharmonic approximation is inclusion of volumetric change in the 

calculations. The quasiharmonic approximation includes thermal expansion effects, 

so it’s more accurate than harmonic approximation.  Because the three methods 

were used to calculate the pure and hydrogen-dissolved metals, enthalpies of H , D , 
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and T  were cancelled out.  

 

25Fig. 5.2-2 Hydrogen solution enthalpy in (a) Fe and (b) W. Black, red, and blue 
colors denote 𝐇𝟐, 𝐃𝟐, and 𝐓𝟐, respectively. The enthalpies of PIMD/CLMD/Q-QHA 

were subtracted by the CL-QHA values. 

 

According to the Trotter-Suzuki approximation[95,96], a sufficiently large 

number of beads should be used to accurately reflect the NQEs at low temperatures 

in PIMD. On the other hand, at high temperatures, the influence of NQEs is small, so 

smaller numbers of beads are sufficient to maintain the same accuracy. In Fig. 5.2-2, 

The bead convergence was checked for H  solution enthalpy by varying the number 

of beads from 4 to 96 above 100 K. This bead convergence test should be performed 

in the whole temperature ranges to minimize computation cost while maintaining 

accuracy: 64 beads for 100K ~ 200 K, 32 beads for 300 K ~ 400 K, 16 beads for 500 

K ~ 1100 K, 4 beads for 1200 K ~ 2000 K. Conservatively, the estimated optimal 

numbers for H were applied for D and T at the same temperatures since the NQEs are 

less significant for heavier isotopes. In Fig 5.2-2, the following three points are worthy 

to discuss: NQEs, dynamic effects, and isotope effects. 

In Section 4, we confirmed that the classical-quantum crossover 

temperatures of H diffusion in Fe and W are 500 K. However, in the case of H solubility, 
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the enthalpies of Q-QHA and PIMD exhibited substantial deviations from their 

classical outcomes, at temperatures exceeding 800 K in both metals. For example, the 

difference in H solution enthalpy between PIMD and CLMD in Fe was 65 ± 4 meV at 

1000 K whose Boltzmann factor is around 0.5. If CLMD was used to predict the 1000 

K solution enthalpy, solubility would be overestimated by about twice as much. The 

reason why the NQEs of solution appear more pronounced than those of diffusion at 

temperatures above 500 K is owing to the difference in compactness between the 

most stable site (T-site) and its counterpart. In the case of the solution, the 

counterpart state of hydrogen in T-site is a gas in vacuum, so atomic density near 

hydrogen significantly changes during the dissolution. On the other hand, the 

diffusion process occurs when hydrogen migrates from a T-site to saddle sites. The 

change in atomic compactness during the migration must be very small, compared to 

that during the solution process. Therefore, the NQEs of solution are significant even 

above the crossover temperature of diffusion, and classical approaches may fail to 

predict accurate hydrogen solubility. 

The dynamic effects can be estimated from the difference between the 

results of MD and QHA in the same approach. Generally speaking, the energy of 

hydrogen decreases at low temperatures, leading to a reduction in thermal 

displacement. This causes hydrogen to be strongly bound to the most stable site (T-

site), making the dynamic effects negligible. If so, harmonic approximation can 

effectively replace MD. In a classical approach, the enthalpies of CLMD must converge 

to those of CL-QHA since kinetic energy becomes zero at 0 K limit. However, in a 

quantum approach, the kinetic energy of hydrogen does not decrease in proportion 

to temperature. As a result, anharmonicity does not completely vanish at the limit of 

0 K. As shown in Fig. 5.2-2, CLMD enthalpies converged to CL-QHA enthalpies below 

200 K in the metals. While the dynamic effects of PIMD are negligible below 500 K in 

W, the PIMD enthalpies for Fe substantially deviated from the Q-QHA enthalpies 

below 200 K, which imply that the low-temperature dynamic effects including NQEs 

are significant only in Fe. 
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Isotope effects were not observed in classical methods, which is consistent 

with classical statistical mechanics. On the other hand, the quantum isotope effects 

were observed in Fe where the difference in the solution enthalpies between PIMD 

and Q-QHA decreased below 200 K as hydrogen mass increased. However, such 

quantum isotope effects were not observed in W. 
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5.3. Solution entropy 

 

26Fig. 5.3-1 A schematic diagram of methods and assumptions in calculating 
hydrogen solution entropy 

 

5.3.1. Solution entropy at 𝑇  

Thermodynamic integration from CLMD to PIMD was conducted for 

calculating ∆𝐹 →  which is used to estimate PIMD solution entropy (𝑆 ) 

at 100 K by the following equations 

∆𝑆 → = (∆𝑈 → − ∆𝐹 → ) 

𝑆 = 𝑆 + ∆𝑆 →  

Fig. 5.3-2. shows the 𝑑𝐹/𝑑𝜆  values of MD and HA by the SC method[90] for the 

thermodynamic integration. Habershon and Manopoulos[90] analytically derived 

mathematical forms of the SC method with quantum harmonic approximation.  

𝑑𝐹  

𝑑𝜆
=

𝑦 𝜆 𝑐𝑜𝑡ℎ(𝑦 𝜆) − 1

𝛽𝜆
 Eq. 5.3-1 

where 𝑦 = 𝛽ℎ𝜈 /2. In this study, all vibrational modes of both hydrogen and metals 
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are considered in the QHA. 

 

27Fig. 5.3-2 Thermodynamic integration of MD and HA from classical (𝛌 = 𝟎) to 
quantum (𝛌 = 𝟏) approach at 100 K in (a) Fe and (b) W. Black, red, and blue colors 
denote H, D, and T, respectively. 7-points Gauss-Lobatto quadrature was applied for 

the numerical integrations from CLMD to PIMD. 

 

While analytical form of 𝑑𝐹/𝑑𝜆 was derived in HA, massive computations 

with 64 beads/atom are required to increase the number of data points in 

“CLMD→PIMD”. Because small number of data points can lead to large error in the 

numerical integration, there is a need to discuss the most suitable numerical 

integration method for application of the SC method to our purpose. 

Rather than using equal distance for numerical integration of PIMD results, 

it is considered more efficient to use Gaussian quadrature with few points. In 

particular, for the SC method, the values of the two endpoints (λ = 0, 1)  can be 

calculated without additional computations by understanding the physical meaning 

in the formulas. 𝑑𝐹/𝑑𝜆 at the right endpoint (λ = 1) can be obtained from twice of 

the difference in kinetic energy between CLMD and PIMD, while the value of the left 

endpoint (λ = 0) is zero by definition[90]. If the Gauss-Lobatto rule, which includes 

both endpoints in the quadrature, is used, it is considered the most efficient 

integrator for performing the SC thermodynamic integration. In this study, the 7-point 
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Gauss-Lobatto rule was used because it resulted in at most 0.02 meV error in the 

numerical integration from CL-HA to quantum harmonic approximation (Q-HA) 

where analytical solution of HA is known. Table 5.3-1. shows the change of 

thermodynamic variables from classical to quantum approaches at 100 K. 

It is worth discussing how the agreement between MD and HA varies 

depending on the metals. While there is a large difference of 35 meV in ∆𝐹 →  

between HA and PIMD for H in Fe, the difference is only at 8.8 meV for H in W. This 

discrepancy indicates that the HA method agrees well with PIMD only for W due to 

the weak dynamic effects, while it failed to reproduce similar results of PIMD for Fe. 

A scientific discussion of these phenomenological differences will be provided in 

more detail in Section 5.5.2. In terms of isotope effects, the gap between HA and PIMD 

decreases as the mass of the isotope increases for Fe and W, which can be understood 

that the NQEs become smaller for the heavier isotopes. 
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4Table 5.3-1 Change of thermodynamic variables from classical to quantum 
approaches at 100 K. 

Unit: meV H in Fe H in W 

Method 
CLMD → 

PIMD 

CL-HA → Q-

HA 
CLMD → PIMD CL-HA → Q-HA 

∆𝐹 →  153.6 188.6 177.4 186.2 

∆𝑈 →  211.0 ± 0.5 252.8 228.4 ± 0.7 236.1 

∆𝑆 →  57.4 64.2 51.0 49.9 

 

Unit: meV D in Fe D in W 

Method 
CLMD → 

PIMD 

CL-HA → Q-

HA 
CLMD → PIMD CL-HA → Q-HA 

∆𝐹 →  101.3 116.7 113.0 118.2 

∆𝑈 →  146.1 ± 0.5 166.8 155.9 ± 0.5 160.2 

∆𝑆 →  44.8 50.1 42.9 42.0 

 

Unit: meV T in Fe D in W 

Method 
CLMD → 

PIMD 

CL-HA → Q-

HA 
CLMD → PIMD CL-HA → Q-HA 

∆𝐹 →  78.1 86.9 85.5 89.3 

∆𝑈 →  117.7 ± 0.5 129.2 124.4 ± 0.7 126.4 

∆𝑆 →  39.6 42.3 38.9 37.1 

 

5.3.2. Entropy change above 100 K 

As can be seen from the fact that the CLMD solution enthalpy converges to 

that of CL-QHA in the 0 K limit in Fig. 5.2-2, it is evident that the entropy CLMD can 
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be replaced with that of CL-QHA at sufficiently low temperatures due to its small 

thermal displacement. 

𝑆 (100 𝐾) ≅ 𝑆 (100 K) Eq. 5.3-2 

By correcting the entropy difference between CLMD and PIMD obtained in Table 5.3-

1, the 100 K solution entropy of PIMD can be calculated. 

𝑆 (100 K) ≅ 𝑆 (100 K) + ∆𝑆 → (100 K) Eq. 5.3-3 

Using the relationship 𝑑𝑆 =   of the isobaric-isothermal ensembles, 

the PIMD solution entropy above 100 K in the form of an integrated solution enthalpy 

is represented as Eq. x. 

𝑆 (𝑇) =
1

𝑇 

𝜕𝐻

𝜕𝑇
𝑑𝑇 + 𝑆 (100 𝐾)

≅
1

𝑇 

𝜕𝐻

𝜕𝑇
𝑑𝑇 + 𝑆 (100 K)

+ ∆𝑆 → (100 K) 

Eq. 5.3-4 

For the integration, the cubic spline method was used to approximate the continuous 

values of 𝐻 (𝑇)  because its exact function form is unknown. The solution 

entropy of CL-QHA, Q-QHA, and PIMD are plotted in Fig 5.3-2. 
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28Fig. 5.3-3 Hydrogen solution entropy calculated by CL-QHA, Q-QHA, and PIMD in 
(a) Fe and (b) W. Black, red, and blue colors denote 𝐇𝟐, 𝐃𝟐, and 𝐓𝟐, respectively. 

Note that the plots denote only non-configurational entropies. 

 

As shown in Fig. 5.3-3, the 100 K PIMD solution entropy was estimated by 

the following procedure. At first, 𝑆 (100 K)  values were calculated for all 

vibrational modes. Secondly, PIMD solution entropies at 100 K were calculated by 

adding ∆𝑆 → (100 K)   to the corresponding 𝑆 (100 K) . Finally, the 

entropy changes from 100 K were calculated by the thermodynamic relation 

𝑑𝑆 =  . In Fig 5.3-2, the following two points are worthy to discuss: 

dynamic effects and isotope effects. 

Similar to the phenomena observed in Fig. 5.2-2 and Fig. 5.3-2, the PIMD solution 

entropies for Fe substantially deviated from those of Q-QHA, while the PIMD solution 

entropies for W showed good agreement with Q-QHA. To be specific, in the case of W, 

both methods exhibited a similar trend above approximately 800 K. However, in the 

case of Fe, the values and slopes varied between PIMD and Q-QHA. 

In the case of isotope effects, PIMD produced consistent results above 500 K 

for all cases in the metals, except for H  in Fe. It exhibits not only different values but 

also distinct slopes compared to the trends of D₂ and T₂. This indicates that the NQEs 
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of H₂ alone remain significant even at a temperature as high as 1000 K. 
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5.4. Solubility and Permeability 

5.4.1. Binding energy correction 

The MTPs were only trained in hydrogen-dissolved bulk systems, so they do 

not represent the accurate hydrogen binding energy with DFT accuracy. Thus, a 

correction term should be added to make the 0 K binding energies of the MTPs 

equivalent to those of the DFT calculations. The correction only deals with classical 

potential energy, not ZPE although its volume is fixed to the 0 K volume (𝑉 ) of 

the pure metals including ZPE effects determined by Q-QHA. 

𝐵𝐸 ≔ 𝑃𝐸 (𝑉 ) − 𝑃𝐸 (𝑉 ) −
1

2
𝑃𝐸

− 𝑃𝐸 (𝑉 ) − 𝑃𝐸 (𝑉 ) −
1

2
𝑃𝐸  

Eq. 5.4-1 

Then, the accurate form of the solution enthalpy is written as follows. 

𝐻 (𝑇, 𝑃 ) 

         = 𝐵𝐸 + ⟨𝑈⟩ 𝑉 (𝑇, 𝑃 ), 𝑇 − ⟨𝑈⟩ 𝑉 (𝑇, 𝑃 ), 𝑇

+ 𝑇
𝜕𝑉 (𝑇, 𝑃 )

𝜕𝑇

𝑊

3𝑉
𝑉 (𝑇, 𝑃 ), 𝑇

− ⟨𝑃⟩ 𝑉 (𝑇, 𝑃 ), 𝑇 −
1

2
𝐻 (𝑇, 𝑃 ) 

Eq. 5.4-2 

Regarding the 0 K binding energy correction term (𝐵𝐸 ), DFT should not be 

necessarily very accurate for it because the DFT systematic errors may not be 

sufficiently cancelled out when calculating the total energy difference between a 

hydrogen molecule in vacuum and hydrogen solute in lattice[97]. We estimate that 

the DFT error would be low for the migration energy in diffusion since the two 

systems being compared have the same lattice structure. On the contrary, in the case 

of solutions, the two systems being compared are of different types, namely a metal 

and a diatomic molecule. Therefore, the systematic error inherent in each system 

would not be fully canceled out but rather included in the 0 K DFT binding energy. 

The estimated error in the DFT binding energy will be discussed in Section 5.5.1.1. by 
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comparing activation energies of permeability between PIMD and experiments. 

 

5Table 5.4-1 0 K Binding energy of H in T-sites predicted by DFT calculations. ZPE 
corrections are not included here. 

Unit: eV Fe W 
Supercell 

size 
K-space 

grid 

Energy 
cutoff 
(eV) 

Volume 

This study 0.183 0.909 4 × 4 × 4 5 × 5 × 5 650 

0 K 
volume 

including 
ZPE 

effects. 
Jiang and 
Carter[9] 

0.20  4 × 4 × 4 2 × 2 × 2 350 
Geometry 
optimized 

volume 
 

Lee et 
al.[98] 

 0.94 2 × 2 × 2 8 × 8 × 8 450 

Kong et 
al.[99] 

 0.89 3 × 3 × 3 5 × 5 × 5 500 
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5.4.2. Solubility and permeability 

 

29Fig. 5.4-1 𝐇𝟐 solubility and its isotope effects with 𝐃𝟐 and 𝐓𝟐 in (a) Fe and (b) 

W. 𝜽𝑸𝑯𝑨
𝑫𝒆𝒄𝒐𝒖𝒑𝒍𝒆𝒅

 denotes hydrogen solubility calculated with Q-QHA excluding every 

vibrational motion of the metals. 

 

In Section 3.1. and 3.2., we proposed systematic ways to use PIMD and the 
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MTPs for accurate consideration of NQEs and dynamic effects when estimating 

solution enthalpy and entropy above 100 K. Fig. 5.4-1. shows the predicted solubility 

of H  and the its isotope effects with D  and T  in the metals. In the case of Fe, 

there was a significant difference of approximately 60-fold between Q-QHA solubility 

and PIMD solubility at 100 K. On the other hand, in the case of W, the difference was 

only around two-fold at the same temperature, which indicate that using Q-QHA in 

predicting hydrogen solubility in W can be well justified while it cannot be in Fe.  

According to classical statistical mechanics, solubility does not depend on 

hydrogen mass, so the H  solubility should be equal to the D  and T  solubility. 

However, according to quantum mechanics, isotope effects arise due to the difference 

in ZPE between hydrogen molecule and the hydrogen-dissolved states, which 

depends on the mass. This can be observed in the insets of Fig. 5.4-1. The prominently 

high solubility specifically for H in Fe is attributed to the significantly higher solution 

entropy compared to other isotopes, as shown in Fig. 5.3-3. 

One notable point is that, regarding the solubility of H , in the case of Fe, the 

Arrhenius plots of Q-QHA showed significant non-linearity above 800 K unlike that of 

W. This phenomenological difference can be explained by the coupling between 

hydrogen vibrations and lattice phonons. In the case of W, the vibrational motions of 

the dissolved hydrogen are almost decoupled from the lattice phonons, whereas in Fe, 

they are strongly coupled. This can be understood by observing how the phonon 

frequency changes depending on the presence of hydrogen. In W, the phonon 

frequency changes by a maximum of 0.05 THz (0.7 %) after hydrogen dissolution at 

the 0 K volume. In contrast, in Fe, it changes significantly by at most 0.5 THz (4 %). As 

the temperature arises, the change equilibrium volume affects the vibrational 

frequencies. The phonon vibrations of W show only small difference from the 

dissolved hydrogen, so the thermal expansion effects on lattice phonons are cancelled 

out in the solution enthalpy and entropy. On the contrary, in Fe, the vibrating motions 

are strongly dependent on the presence or absence of hydrogen under the thermal 

expansion. Therefore, the metallic vibrations of Fe caused by the thermal expansion 
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has a meaningful influence on the entropy and enthalpy, which resulted in non-linear 

Arrhenius plots in Fig. 5.4-1 (a). 

According to this analysis, for metals with weak hydrogen-metal coupling, 

the use of HA without volume change can be justified. Lee et al. used HA to estimate 

solubility with the 0 K solution energy and vibrational frequencies of only hydrogen, 

but produced very similar results with ours. Kong et al. considered the thermal 

expansion effects in their solubility calculations. However, their solubility exhibits a 

noticeably different slope compared to ours, which cannot be solely attributed to the 

difference in the binding energy presented in Table 5.3-1. This discrepancy can be 

caused by the fact that they used experimental data to determine the solution entropy 

and neglected the temperature dependence of entropy in their calculations. 

If hydrogen is strongly coupled to metals, like Fe, the differences in metallic 

motions due to thermal expansion effects can have a significant impact on solubility, 

indicating the importance of QHA for the systems. While there are numerous reported 

experimental values that could be compared with our computational results, we 

decided not to directly compare them for the following reasons.  

Firstly, some direct measurement techniques are not available because the 

hydrogen concentrations in Fe and W are too low. The direct solubility measurement 

techniques, such as Differential scanning calorimetry (DSC), thermal desorption 

spectroscopy (TDS), have limitations in materials with dilute hydrogen concentration 

because the magnitude of gas signals are too weak to detect. Secondly, solubility in 

hydrogen permeation experiments is derived indirectly by dividing permeability by 

diffusivity. While reported diffusivity values may exhibit significant deviations, 

permeation data tends to have relatively smaller deviations. Hence, solubility data is 

also expected to have significant deviations [100]. Finally, similar to diffusivity, 

solubility is significantly influenced by the microstructure and can be challenging to 

compare with our current computational results, which assume a defectless lattice. 

The impact of microstructural effects makes direct comparisons difficult. Therefore, 

it would be reasonable to compare our calculated permeability with corresponding 
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experimental values which is free from large deviation. This allows for a meaningful 

comparison with reported experimental values, as the diffusivity and solubility were 

calculated by the same moment tensor potential.  

 

30Fig. 5.4-2 𝐇𝟐 permeability in (a) Fe and (b) W. “CLMD+PIQTST” denotes the 
parameterized functions which were fitted to the diffusion coefficients of CLMD 

above 500 K and PIQTST below 300 K[101]. Semi-classical transition state theory 
(SCTST) is harmonic approximation to calculate diffusivity including ZPE and 
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tunneling effects. 𝑫𝑺𝑪𝑻𝑺𝑻 values were calculated with Eq. (12) in Di Stefano’s study 
including metallic vibrational modes. 

 

To convert the solubility into permeability for comparison with experimental 

values, we selected corresponding methods that are consistent with Q-QHA and PIMD. 

𝐷  is consistent with 𝜃  as it takes into account ZPE and tunneling effects 

under the harmonic approximation, while using migration barrier and vibrational 

frequencies at the thermal equilibrium volume. 𝐷   represents the 

parameterized functions obtained by fitting CLMD diffusivity at temperatures above 

500 K and PIQTST diffusivity at temperatures below 300 K. It closely reflects dynamic 

effects above 500 K as it provides values similar to CLMD, but it has the limitation of 

incorporating harmonic approximation in PIQTST at low temperatures. However, 

PIQTST is a relatively accurate method with an accuracy that shows a difference of 

only about twice the value of RPMD/CMD at 100 K. Since most experimental values 

are measured at temperatures above 300 K, multiplying them by 𝜃   is a 

reasonable approach to compare with the experimental values. 

 The converted PIMD permeability = 𝜃 × 𝐷  shows good 

agreement with the available experimental values at high temperatures as seen in Fig. 

5.4-2 (a) and (b). On the other hand, the converted Q-QHA permeability 

(= 𝜃 × 𝐷 ) showed a similar trend to the experimental values only for H in 

W, while it exhibited significant differences for H in Fe. As mentioned earlier, this 

highlights the fact that the harmonic approximation cannot produce accurate 

solubility for H in Fe. 
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5.5. Discussion 

5.5.1. Error analysis in solubility 

5.5.1.1. Systematic error: binding energy and finite system size effects 

 

31Fig. 5.5-1 Activation energy of hydrogen permeability in (a) Fe and (b) W. 

 

In Fe, an error of about 0.01 eV scale was observed, while in W, it is on the 

scale of 0.1 eV. However, since the experimental values have GB effects, it is difficult 

to fully trust them. 
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32Fig. 5.5-2 FSEs in solubility determined by CLMD-NVT. y-axis denotes 

𝒆𝒙𝒑
𝑯𝒔𝒐𝒍(𝑻) 𝑯𝒔𝒐𝒍

𝟒×𝟒×𝟒(𝑻)

𝒌𝑩𝑻
 . 

 

According to the analysis of FSEs by CLMD in Fig. 5.5-2, there can be a 

systematic error of approximately 10 % ~ 20 % in the low-temperature solubility 

induced by FSEs for a 4×4×4 supercell size. 

 

5.5.1.2. Random error: Numerical precision of solution enthalpy & solution 
entropy 

𝜃(𝑇) = 6 𝑒𝑥𝑝
𝑆 (𝑇 )

𝑘
+

1

𝑘
𝑑𝑆 −

𝐻 (𝑇)

𝑘 𝑇
 

The first term is determined by ∆𝐹 → (𝑇 ) and ∆𝑈 → (𝑇 ), 

but we suggest that the former has higher uncertainty than that of latter. This is 

because uncertainty of   vanishes at 𝜆 → 0  limit, so the random error of 

∆𝐹 → (𝑇 ) should be smaller than that of ∆𝑈 → (𝑇 ). 
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𝜎
𝑆 (𝑇 )

𝑘
≅ 𝜎

𝐻 (𝑇 )

𝑘 𝑇
 

 The second term is calculated by the numerical integration with equal 

intervals (∆T = 100 K in this study). 

1

𝑘
𝑑𝑆 =

1

𝑘

1

𝑇

𝜕𝐻

𝜕𝑇
𝑑𝑇 

=
1

𝑘

1

𝑇

𝜕𝐻

𝜕𝑇
𝑑𝑇

∆

+
1

𝑇

𝜕𝐻

𝜕𝑇
𝑑𝑇

∆

∆

+ ⋯

+
1

𝑇

𝜕𝐻

𝜕𝑇
𝑑𝑇

∆

 

≅
1

𝑘

𝐻 (𝑇 + ∆𝑇) − 𝐻 (𝑇 )

∆𝑇

1

𝑇
𝑑𝑇

∆

+ ⋯

+
𝐻 (𝑇) − 𝐻 (𝑇 − 𝑇 )

∆𝑇

1

𝑇
𝑑𝑇

∆

 

≅
1

𝑘

𝐻 (𝑇 + ∆𝑇) − 𝐻 (𝑇 )

∆𝑇
ln

𝑇 + ∆𝑇

𝑇
+ ⋯

+
𝐻 (𝑇) − 𝐻 (𝑇 − 𝑇 )

∆𝑇
ln

𝑇

𝑇 − ∆𝑇
 

≅
1

𝑘 ∆𝑇
−𝐻 (𝑇 ) ln

𝑇 + ∆𝑇

𝑇

+ 𝐻 (𝜏) ln
(𝜏 + ∆𝑇)(𝜏 − ∆𝑇

𝜏

 

∆ ,   ∆ ,   ⋯,   ∆

+ 𝐻 (𝑇) ln
𝑇

𝑇 − ∆𝑇
 

The variation of the third term is as follows. 

𝜎 −
𝐻 (𝑇)

𝑘 𝑇
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The major error term of the first term 
( )

 is negatively correlated 

with the first term of the second term  −
( )

∆
ln

∆
.  Likewise, the third 

term −
( )

 is also negatively correlated with the last term of the second term 

( )
ln

∆
. Based on the negative correlation between the error terms in 

each term, it can be inferred that even if the individual error terms are large, the 

overall error in the final value, solubility, becomes smaller due to error cancellation. 

 

 

33Fig. 5.5-3 Random error in each term of solubility. 

 

At 100 K, since the errors are completely canceled out, there is no 

uncertainty due to PIMD precision, only systematic errors exist. However, above 100 

K, the uncertainty in PIMD enthalpy accumulates gradually. Starting from 500 K and 

above, there is approximately a 4-5% uncertainty in the solubility of Fe and W owing 

to this accumulated uncertainty in the PIMD enthalpy. 
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5.5.2. Validation of harmonic approximation 

 

34Fig. 5.5-4 H distribution on 001 plane calculated by PIMD-NVT at 100 K. 
𝟔 × 𝟔 × 𝟔 supercell was adopted to reasonably fix center of mass. 

 

Anharmonicity is determined by relative difference between the ZPE and 

classical migration barrier. Table 5.5-1 shows the migration quantities through the 

trigonal sites in Fe and W. Because the ZPE calculation is based on harmonic 

approximation, there may be systematic errors in ZPE. 

 

6Table 5.5-1 Classical migration barrier and ZPE with respect to the dominant 
migration path (T-Tri-T). 

Unit: meV H in Fe H in W 

Classical migration barrier 97 208 

ZPE 51 42 

 



96 

 

6. Conclusion 
In this thesis, I developed and validated accurate and easy-to-use 

computational methods for predicting hydrogen diffusivity and solubility in bcc 

metals. While the use of QHA is not justified in some due to the large dynamic effects, 

our method can be applied to any bcc metal regardless of its element. 

In Section 3, MLPs were trained to reproduce the DFT force field near the 

configuration space related to hydrogen dynamics in bcc metals using MS calculation 

results and active learning. The migration barriers and normal mode frequencies 

were reproduced with reasonable accuracy compared to those of DFT. The fast speed 

of the MLPs also allowed long-time quantum dynamics simulations using large 

numbers of atoms and beads, which is currently difficult with AI-PIMD. Consequently, 

the simulation results in this study attained high accuracy at the DFT level and high 

numerical precision. 

 In Section 4, the H diffusion coefficients obtained from CLMD/CMD/RPMD 

were compared to analyze the NQEs. Their diffusion coefficients were almost 

indistinguishable above 500 K considering the statistical errors. This implies that 

NQEs should be considered for H dynamics below 500 K for all metals tested in this 

study. Although there is an abundance of experimental data, most data show 

inconsistent trends, mainly due to surface and trapping effects. Reviewing and 

interpreting previous studies, we identified experimental data that were considered 

reliable. The calculated results were in good agreement with the experimental data. 

 In Section 5, hydrogen solubility was predicted from PIMD, and compared to 

experimental values after conversion to permeability. The NV(P)T approximation 

removed the significant system size effects and calculation time that is required for 

the NPT simulations. For the high migration barrier case (W), our process produced 

almost the same solubility as QHA, while there was large difference for the low barrier 

case (Fe). The calculated activation energy of permeability fell within the distribution 

of the experimental values at high temperatures. We consider that the 0 K solution 
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enthalpy of DFT is a main culprit for the difference from experimental results, which 

should be overcome by exploiting more accurate ab-initio quantum chemistry 

calculations. 

We have presented a systematic methodology in our research that accurately 

and automatically calculates hydrogen diffusivity and solubility in bcc metals 

important for nuclear engineering. The most powerful aspect of this research is its 

design to automate the entire process, from the generation of MLPs to the calculation 

of diffusivity, solubility, and permeability. By pre-setting the elements and other 

details of the metal, diffusivity and solubility can be calculated by the path integral 

simulations. First of all, the established method can be used to construct a database 

on diffusivity, solubility and permeability of all hydrogen isotopes for fusion reactor 

materials. Considering the scarcity and large deviation in currently available data, 

such a database generated by accurate computational methods will have a large 

impact and contribution to nuclear fusion materials engineering. In addition, this 

research can be applied to computational materials designs for finding better 

functional materials that effectively reduce hydrogen inventory and leakage in 

nuclear fusion reactors. Likewise, the methods developed in this study can be used to 

better understand and predict hydrogen behavior in zirconium cladding alloys for 

nuclear fission reactors. It also can be applied to designing functional materials that 

prevent hydrogen-induced corrosion or hydrogen leakage in hydrogen ships 

transporting liquefied hydrogen for hydrogen economy. 
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Appendix 
A1. Key features of moment tensor potential 

The building blocks of moment tensor potential are moment tensor descriptors, 

𝑀 , (𝑛 ) = 𝑓 𝒓 , 𝑧 , 𝑧  𝒓 ⊗ ⋯ ⊗ 𝒓 , Eq. A1 

where 𝑛  is the atomic environment of the i-th atom, and 𝒓  is the position of the 

j-th atom relative to the i-th atom. “𝒓 ⊗ ⋯ ⊗ 𝒓 ” denotes ν times of outer products 

of 𝒓 , and it describes the angular part of the interaction. 𝑓  addresses the radial 

part of the interaction, 

𝑓 𝒓 , 𝑧 , 𝑧 = 𝑐 , , 𝑄 𝒓 , Eq. A2 

where 𝑧   and 𝑧   are the atomic types of the i-th and j-th atoms, respectively. 𝒄 =

𝑐 , ,  is a set of radial parameters where 𝜇 is the index of radial parameters. 𝑁  

is the number of radial basis functions, and 𝑄 𝒓   is the 𝛽 -th radial basis 

function which consists of invariant polynomials and a smooth damping function. 

These polynomials are symmetric to Euclidean transformations (translations, 

rotations, and reflections) and permutation of equivalent atoms [34]. 

Moment tensor descriptors lower than a target level of moments are 

contracted to a set of basis functions {𝐵 }, which constructs the site energy of 𝑛  

as 

𝑉 (𝑛 ) = 𝜉 𝐵 (𝑛 ). Eq. A3 

Here, 𝝃 = {𝜉 }  is a set of coefficients for basis functions 𝐵  . Finally, the potential 

energy of a specific configuration (cfg) can be calculated from the sum of every atom’s 

site energy as 
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𝐸 (𝑐𝑓𝑔) = 𝑉 (𝑛 ). Eq. A4 

A set of MTP parameters 𝜽 = {𝝃, 𝒄}  are optimized by fitting to a training set 

composed of energy, force, and stress data, which were prepared by first-principles 

calculations. The target level of moments is called the MTP level, and it largely 

determines the accuracy and efficiency of MTP. 

 

A2. Conditions for construction of the MTP training sets 

7Table A1. The number of configurations included in the initial training sets. 

 

The expected effects of the initial training sets are as follows. First, the 

training sets from Markov-Chain Monte Carlo (MCMC) method with random 

distortions of lattice vectors were expected to ensure not only reasonable stability of 

bcc phases at wide temperature and stress conditions, but also accurate elastic 

properties. Second, Geometry optimized calculations for hydrogen at T, Tri, and O 

sites at linearly expanded or contracted 3 × 3 × 3 supercells (96% ~ 108% from 0 

K lattice constant) would enhance the accuracy of bulk modulus. Third, NEB images 

of hydrogen migration from T-site to Tri-site, and from T-site to O-site at different 

lattice parameters (96% ~ 104% from the 0 K lattice constant) are collected to the 

training sets. Hydrogen migration at thermal lattice fluctuations would be improved 

by the NEB training sets. Finally, irreducible configurations for the QHA calculations 

Method Number of 
atoms  

(Metal; H) 

Number of 
configurations 

MCMC* 2;0 122 123 
Geometry 

optimization 
54;1 180 180 

NEB 54;1 144 96 
QHA with H 54;1 45 45 

QHA without H 54;0 24 24 
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with finite displacement methods with and without one hydrogen atom at T, Tri, and 

O sites were collected. The degrees of finite displacement were 0.03 A, 0.10 A, or 0.30 

A in isotropically deformed structures (0.96, 1.00, or 1.04 as the linear 

contraction/expansion coefficients) to partly include the information of 

anharmonicity. 

8Table A2. Simulation conditions of the active learning scheme. 

 

* 𝛾 is the extrapolation grade which indicates a magnitude of extrapolation from a 

training set [35].  
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A3. MTP validation 

 

35Fig. A1 Root-mean-square error (RMSE) of MTP energies in the training sets. 

 

9Table A3. Lattice constants (𝒂𝟎, unit: A) and elastic constants (𝑪𝒊𝒋, unit: GPa) of pure 
bcc metals. In the calculation, 𝒂𝟎  and 𝑪𝒊𝒋  were obtained from geometry 
optimization and the stress-strain relation without kinetic contribution, respectively. 
In the experimental values, the vibration effect at zero-point energy was removed for 
𝒂𝟎 [56], and 𝑪𝒊𝒋 was the extrapolated value at 0 K of the measured data near 4 K 
[58–60]. 

 

 Fe W 
 MTP DFT Exp. MTP DFT Exp. 

𝑎0  2.832 2.832 2.855 3.172 3.172 3.161 
𝐶11  258 278 239 533 543 533 
𝐶12  142 148 136 203 198 205 
𝐶44  96 98 121 140 137 163 
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36Fig. A2 Vibrational frequencies of normal modes in (a)𝐅𝐞𝟓𝟒𝐇𝟏, and (b)𝐖𝟓𝟒𝐇𝟏. 
Negative frequencies denote imaginary frequencies. Translational modes are not 

considered in mean relative error (MRE) and root-mean-square relative error 
(RMSRE). 

 

A4. Simulation conditions of MD simulations 

10Table A4. Simulation conditions of CLMD/CMD/RPMD/PI-QTST. 

Method   CLMD RPMD CMD PI-QTST 
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Constraints 

System 
One hydrogen atom in a periodic 4×4×4 bcc 

supercell 

Ensemble NVT NVE NVE NVT 

System size 
Thermal equilibrium volume of pure 

metal by CLMD 

0 K 

lattice 

constant 

Time 

Equilibration 

time (ns) 
1 0.2* 0.2* 0 

Production 

time (ns) 
20 3 3 0.025 

Real 

timestep 

length (fs) 

1 0.25 0.1   

Imaginary 

timestep 

length (fs)**  

  0.25 0.01 0.1 

Control of 

temperature 

Thermostat 

Nosé-

Hoover 

thermostat  

  
Massive Nosé-Hoover 

Chain[102] 

Number of 

chains [103] 
1   3 4 

Adiabaticity 

parameter 
      0.0625   

* PIMD simulations under the NVT ensemble were implemented for equilibration of 

the CMD/RPMD simulations.[104,105] 

** Reference system propagator algorithm (RESPA) [106] was employed for time 

integration. 

 



104 

 

A5. Codes used in this study 

The machine learning interatomic potential (MLIP) package [35], invented 

by Novikov et al., was used to determine the extrapolation grade of configurations, 

reinforce the training sets, and reoptimize MTP parameters. 

The Vienna Ab Initio Simulation Package (VASP) [45–47] was used to 

calculate electronic energy, force, and stress of atomic configurations by DFT. 

Especially, VASP utilizes plane wave basis sets and pseudopotentials to efficiently 

perform DFT calculations. 

The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 

[107] and Path Integral Molecular Dynamics [44] were used to perform atomistic 

simulations of nuclei in classical and quantum regimes, respectively. 
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국문초록 

수소의 확산도, 용해도 및 투과도는 그 풍부한 물리적 특성과 재료 

공학에서의 중요성으로 인해 광범위하게 연구되었다. 원자력 재료 공학에서는 

핵연료 피복관 재료로 사용되는 Zr 수소화물이 합금의 연성을 심각하게 

저하시키기에 이를 깊이 연구하고 있다. 핵 융합 반응로의 개발을 위해, 금속 

내에서 수소 동위원소로 인한 취약화/손상뿐만 아니라 삼중수소 자체의 

거동도 중요한 연구 주제이다. 방사성 삼중수소에 대한 안전 규정을 충족하기 

위해 핵 반응로 구성 요소에서의 삼중수소 축적과 누출을 최소화해야 한다. 

따라서, 핵융합의 삼중수소 연료 주기를 유지하기 위해서도 삼중수소의 

손실은 최대한 예방되어야 한다.  

많은 실험적 노력에도 불구하고, 표면 및 포집 효과로 인해 수소의 

확산 계수와 용해도 상수에 대한 실험 데이터에는 큰 편차가 있으며, 특히 

낮은 온도에서 정확한 측정이 내재적으로 어렵다. 계산 연구를 위해, 특정 

원자 시뮬레이션으로 격자 내의 실제 수소 확산성과 용해도를 결정하는 데 

사용되었지만, 대부분의 연구에서는 힘장 (force field), 동적 효과 또는 핵 

양자 효과를 정확하게 모사하지 못해 그 정확성이 의문스럽다. 

본 연구에서는 체심입방구조의 철과 텅스텐에 해 긴 시간의  경로 

시뮬레이션을 사용하여 머신러닝 모멘트 텐서 포텐셜과 밀도 범함수 

이론(DFT)의 정확도로 작은 농도의 수소 확산성과 용해도를 추정하였다. 이 

방법은 힘장, 동적 효과, 핵 양자 효과(NQE) 이 세 가지 요소를 동시에 

정확하게 처리한다. 

확산 계수 실험 결과, 신뢰할 만한 온도 범위(철의 경우 500 K 이상, 

텅스텐의 경우 1500 K 이상)에서 본 계산 결과가 실험값과의 높은 일치도를 

보였다. 수소의 확산 계수는 철과 텅스텐에서 500 K 미만의 온도에서 핵 양자 
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효과로 인해 비선형 아레니우스 그래프를 보였다. 동위원소 효과에 관해서는, 

500 K 이상의 고전적인 확산 계수에 대해서도 확산도의 비율이 질량 비율의 

제곱근에서 벗어났다. 이는 수소-포논 결합에 의해 야기되는 동적 효과로 

설명할 수 있다. 

 본 용해도 계산 과정은 이전 연구에서 사용된 준조화 가정(QHA)과 

같은 방법에 비해 동적 효과와 핵 양자 효과의 결합이 완전히 포함되어 있어 

이론적으로 더 정확하다. 높은 온도에서 용해도보다 투과성이 실험에서 더 

정확하게 측정될 수 있기 때문에 용해도의 정확성을 투과성으로 변환시켜 

간접적으로 실험값과 비교했다. 결과는 사용 가능한 실험값과 비교하여 허용 

가능한 오차 수준을 보였으며, 동시에 밀도 범함수 이론의 체계적인 오차가 

머신러닝 포텐셜을 통해 일부 용해도로 전달되었을 것이라 예측하고 있다. 

이러한 결과는 넓은 온도 범위에서 정밀한 측정이 실험 연구와 간단한 계산 

방법에서 여전히 어려운 도전임을 보여준다. 지금까지 많은 연구에서는 

QHA를 사용하여 금속에서 수소의 확산성과 용해도를 계산했으나, 근사법의 

엄격한 검증 없이 수행되었다. 본 연구에 따르면, 동적 효과(예: 철에서의 핵 

양자 효과)가 중요한 경우에는 QHA를 사용하면 수소의 용해도에 대해 수십 

배의 오차가 발생할 수 있다. 본 연구는 경로 적분 시뮬레이션과 통계 역학적 

기법의 결합을 통해 동적 효과와 핵 양자 효과를 정확하게 고려하는 

방법론을 개발함으로써 분자 동력학의 적용 가능성을 높였다. 

 본 연구자는 체심입방구조 금속에서 수소의 확산성과 용해도를 

정확하게 계산하는 체계적인 방법론을 개발했으며, 전체 과정을 자동화할 수 

있도록 하였다. 이 연구는 핵융합 반응로 재료를 위한 수소 동위원소의 

확산도, 용해도 및 투과도에 관한 포괄적인 데이터베이스를 생성하는 데에 

사용될 수 있으므로 핵융합 재료 공학의 발전에 크게 기여할 수 있다. 또한, 

본 연구에서 사용된 방법은 핵 분열 반응로 및 수소 경제에서 발생하는 수소 
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관련 문제를 해결하는 기능성 재료의 설계에도 적용할 수 있다.  
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