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Abstract

Calculation of hydrogen diffusivity and solubility in bcc metals using machine-

learning potentials and path-integral methods

Hyukjoon Kwon
Department of Energy Systems Engineering
The Graduate School of Engineering

Seoul National University

Hydrogen diffusivity, solubility and permeability in metals has been
extensively investigated owing to its rich physical characteristics and importance in
materials engineering. For nuclear materials engineering, the hydride formation in Zr
alloys used as cladding materials in water-cooled nuclear fission reactors has been
extensively studied as it significantly degrades the ductility of Zr alloys. For the
development of nuclear fusion reactors, not only embrittlement/damage caused by
hydrogen isotopes in metals but also the behavior of tritium itself is an important
research topic, since the accumulation and leakage of tritium in reactor components
need to be minimized to satisfy safety regulation due to the radioactivity of tritium
and the tritium needs to be quickly recovered and used as fuels to sustain the fusion

fuel cycle.

In spite of many experimental efforts, there are large deviations in the
reported experimental data of diffusion coefficients and solubility constants due to
surface and trapping effects, indicating that accurate measurements are inherently
difficult, especially at low temperatures. For computational studies, several atomistic
simulation methods have been proposed and used to determine the true hydrogen

diffusivity and solubility in the lattice; however, their accuracy remains questionable
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as most studies have not accurately simulated the force field, dynamic effects, or NQEs.

In this study, for bce-Fe and bee-W, we estimated the diffusivity and solubility
of dilute hydrogen from long-time path integral simulations using machine-learning
moment tensor potentials with the accuracy of density functional theory (DFT),
which accurately handles the three factors (force field, dynamic effects, NQEs)

simultaneously.

In the temperature range where the experiments of the diffusion coefficients
seem reliable (>500 K for Fe, and >1500 K for W), our calculations show excellent
agreement for the metals. Protium diffusion coefficients exhibited non-linear
Arrhenius plots due to NQEs at temperatures below 500 K in Fe and W. Regarding
isotope effects, even for classical diffusion coefficients above 500 K, the diffusivity
ratio deviated from the square root of the mass ratio. We attributed this to dynamic

effects caused by hydrogen-phonon coupling.

Our process to calculate the solubility is theoretically more accurate than the
methods used in previous studies such as quasi-harmonic approximation (QHA) in
that coupling of dynamic effects and NQEs is fully included in our process. Our
solubility results are indirectly compared with the experimental values by
converting them into permeability because the permeability at high temperatures
can be more accurately measured than the solubility in experiments. The results
showed an acceptable level of error compared to the available experimental values,
while systematic error of DFT is transferred to the solubility to some extent through
machine-learning potentials. These results demonstrate that precise measurements
over a wide temperature range remain a challenge in experimental studies and
simple calculation methods. Until now, many studies have calculated hydrogen
diffusivity and solubility in metals using QHA without rigorous validation on
approximations in it. According to this research, when dynamic effects, including
NQEs are significant (e.g., in bcc-Fe), using QHA can result in errors of several orders
of magnitude for the hydrogen solubility. This research has increased the

applicability of molecular dynamics by developing a methodology that accurately
10



considers dynamic effects and NQEs through the combination of path integral

simulations and statistical mechanical techniques.

We have developed a systematic methodology to accurately calculate
hydrogen diffusivity and solubility in bcc metals, with the ability to automate the
entire process. This research has the potential to create a comprehensive database
on diffusivity, solubility, and permeability of hydrogen isotopes for fusion reactor
materials, which can greatly contribute to nuclear fusion materials engineering.
Additionally, the methods used in this study can be applied to designing functional
materials that prevent hydrogen-related issues in various applications, including

nuclear fission reactors and hydrogen ships for the hydrogen economy.

Keywords: Hydrogen, Diffusivity, Solubility, Permeability, Nuclear quantum

effects, Molecular dynamics, Machine-learning potential

Student Number: 2021-29372

11



Abbreviation

“Engineering and theoretical background”
PFMs: Plasma-facing materials
NQEs: Nuclear quantum effects

FSEs: Finite size effects

“Forcefields”

DFT: Density functional theory
PES: Potential energy surface
MLP: Machine-learning potential

MTP: Moment tensor potential

“Molecular dynamics”
CLMD: Classical molecular dynamics

PIIMD: Path integral molecular dynamics
AI-PIMD: Ab-initio PIMD

RPMD: Ring polymer molecular dynamics
CMD: Centroid molecular dynamics

PI-QTST Path integral quantum transition state theory

“Molecular statics”
NEB: Nudged elastic band
QHA: Quasiharmonic approximation

CL-HA: Classical harmonic approximation
Q-HA: Quantum harmonic approximation

CL-QHA: Classical QHA
Q-QHA: Quantum QHA
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“Others”

SC: Scaled coordinate
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Nomenclature

Physical constants
kg: Botlzman constant

h: Reduced Planck constant

General variables
t: time

m: mass

T: temperature

B =1/kgT

P: Pressure

V: Volume

a: Lattice constant

Diffusion
D: Diffusion coefficient

E,: Activation energy

Solution

@: Solution constant

Permeation
¢: Permeation constant

J: Permeation flux

Thermodynamics
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Gso;: Solution Gibbs energy.

Hg,;: Solution enthalpy.

Sso1: Solution entropy.

Gy: Gibbs free energy of system X.
Hy: Enthalpy of system X.

Sx: Entropy of system X.

Uy: Internal energy of system X.
Uyx: Chemical potential of system X.
hy: Enthalpy per molecule X.

Sy: Entropy per molecule X.

Statistical mechanics

A(N, P, T): Isothermal-isobaric partition function at constant N, P, and T.
Q(N,V,T): Canonical partition function at constant N, V, and T
(...)*: Ensemble average of an ensemble X.

W : Virial
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1. Introduction

1.1.Issues related to hydrogen isotopes in fusion reactor materials

A fusion reactor using the nuclear reaction between deuterium (D) and
tritium (T) is considered to be the earliest feasible fusion energy plant, and has been
the subject of much research, including a large international project ITER, which is
currently under construction in France. Tritium is a radioactive hydrogen isotope
whose natural abundance is extremely low, so in order to use it as fuel in a fusion
reactor, it must be efficiently produced, recovered, managed, and utilized in the fusion
reactor. However, the high mobility and permeability of hydrogen in materials makes
it difficult to thoroughly predict and control the behavior of hydrogen isotopes. The
issues related to hydrogen isotopes behavior in fusion reactor materials are

summarized in three aspects as below.

Firstly, tritium inventory and leakage pose challenges to radiation safety and
environmental protection due to the radioactivity of tritium. Tritium has a half-life of
approximately 12.3 years and emits high-energy electrons through S~ decay. Thus,
the leakage of tritium must be prevented from a perspective of the protection of
workers and environment. Beryllium and tungsten are typical materials used as
plasma-facing materials (PFMs) and also act as the first barrier to confine tritium.
Beryllium can be used in the main vessel walls, and tungsten can be used in the
divertor. During the operation of the reactor, there is a problem of tritium dissolution
in the PFMs, leading to a significant amount of tritium remaining in the inventory. For
example, Roth et al. demonstrated that in a hypothetical scenario where ITER
operates for around 2500 shots of 400 s discharges, approximately 700g of tritium,
which is the expected regulation limit for T retention, remains inside the PFMs if the
Be and W are used as first walls and divertor, respectively[1]. If W is used for both
first walls and divertor, the T retention can be reduced. However, radiation damages
caused by fast neutrons are expected to trap T, increasing the retention. Therefore,
many studies have been performed to identify the effects of radiation defects on T
retention[2], and this research field is still attracting large attention.

16
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Fig. 1.1-1 Tritium inventory ion material used in ITER after operation time.

This figure was taken from Ref. [1]. CBC denotes carbon fibre composite.

Secondly, large amount of tritium loss can threaten fuel cycle sustainability.
Tritium is a radioactive isotope and does not exist as a natural resource; it needs to
be artificially produced through the tritium breeding process. Maintaining the tritium
balance (breeding, burning, and loss) is generally a difficult task because tritium loss
occurs in various ways in fusion reactors. The primary channels for tritium loss are
trapping in PFMs, leakage through the first wall, and £~ decays as well as leakage in
fueling systems [3]. While it is inevitable for tritium to be naturally lost through the
radioactive decay during tritium storage, there is a necessity to minimize the amount
of tritium lost through trapping and leakage through materials. If this can be achieved
by developing new materials or processes such as the use of coatings that act as
tritium permeation barriers, it would increase the cost-effectiveness and

sustainability of nuclear fusion reactors.
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Fig. 1.1-2 Tritium balance in a DT fusion reactor. (T10sS)yyrqp: Trapping rate of

T to plasma facing materials (Tloss)yypp: T loss due to permeation through first

wall (Tloss)ps: T loss in fuel system (T10SS)pecqy: T loss dueto B~ decay in T
inventory. This figure was taken from Ref. [3]

Finally, hydrogen embrittlement can pose a serious problem for the long-
term operation of fusion reactors by deteriorating the materials properties of PFMs.
The presence of residual hydrogen in the PFMs can potentially induce hydrogen stress
cracking or create cavities by exerting additional pressure within the metal. Fang et
al. reported a maximum hardness increase of approximately 0.5 GPa in tungsten
exposed to deuterium plasma [4]. To prevent hydrogen embrittlement, it is important
to find materials for PFMs that minimize hydrogen inventory or find methods or

operation scenarios to minimize hydrogen inventory.
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1.2. Basic materials properties on hydrogen behavior: diffusivity, solubility, and
permeability

Hydrogen inventory and leakage are determined by three key material
properties: diffusivity, solubility, and permeability. Hydrogen diffusion refers to the
phenomenon where hydrogen atoms within a metal randomly migrate between
interstitial sites. Hydrogen solution describes the phenomenon where H, molecules
present in a vacuum are dissolved into the metal, maintaining an equilibrium
concentration. Hydrogen permeation is the phenomenon where hydrogen moves
from a region of lower concentration to a region of higher concentration due to the
chemical potential gradient between two spaces with a membrane in between. In
homogeneous membranes under isothermal conditions, the hydrogen concentration
gradient can be assumed to be constant, which leads to the relationship,

Permeability = Diffusivity X Solubility.

o

% T Hydrogen permeation
@ Solution

@ Diffusion

® Permeation

Fig. 1.2-1 A schematic diagram illustrating diffusion, solution, and permeation of
hydrogen in metals.

This relation can be intuitively understood. When the solubility is held
constant and the diffusivity increases, the speed of movement from low concentration
to high concentration is accelerated. Therefore, the permeability should grow
proportionally. On the other hand, when the diffusivity is held constant and the

solubility increases, the absolute amount of hydrogen present in the metal grows. As

19
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a result, the net amount of hydrogen escaping from the high concentration space to
the low concentration space increases, leading to an increase in permeability

proportionally.

0 Specimen
A
einlet
eoutlet
<+“—> xv
d

Fig. 1.2-2 Hydrogen concentration profile in gas permeation experiments.

d denotes thickness of a specimen.

The diffusion is quantified by the material property called diffusion

coefficient. Macroscopically, the diffusion coefficient appears in Fick’s law as follows:

a0
Fick's 1stlaw: | = —D —, Eq.1.2-1
dx
a0 9] 9%6
Fick’s 2nd law: — = ——] D— Eqg. 1.2-2

at  ox  ox?

] denotes the hydrogen permeation flux [mol H, -m™2-s~1-MPa=%5],and Dand 6

2

are diffusion coefficients [m? - s~1]and hydrogen concentration (solution constants

inside the specimen) [mol H-m™3 - MPa~%], respectively.

Microscopically, D can be expressed as the jump frequency (Vjump) and the
activation energy (E,) in lattice where nj,;, is the number of neighbor sites to
which a diffusing atom can jump, fj,m, is a coefficient for jump correlation and

Ajump 1S @ unit jump distance.
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Fig. 1.2-3 Minimum energy path of hydrogen migration in bcc-Fe and bee-W by the
DFT calculations.

The solution can be quantified by a material property known as the solubility
constant. This constant represents the concentration of hydrogen in a material that is
in equilibrium with the pressure of hydrogen gas (PH2 ) Using the solubility constant,
the concentration of hydrogen in a metal at equilibrium with a hydrogen gas of a
partial pressure of Py, can be express with solution entropy (Ss,;) and solution

enthalpy (Hgy)[5]- nsires denotes the number of interstitial sites in a unit cell,

which is 6 for the tetrahedral sites in bcc crystals.

P Ssot(Pipars T Hso1(Pipar T
G(PHZ’ T) = nsites Hz exp SOI( 1bar ) exp _M Eq 12-4
Plbar kB kBT

This equation is derived by equilibrium theory of thermodynamics at chemical
equilibrium between hydrogen gas and hydrogen solute state. For some metal-
hydrogen systems such as Nb-H, the concentration of solute hydrogen exceeds the

threshold concentration, namely, the solubility limit, a hydride phase can be formed.

21



This hardly occurs for other metal-hydrogen systems such as Fe-H and W-H where
the thermodynamic stability of hydride phases is low. Note that, in the present study,
we basically focus on hydrogen at a dilute limit, where the hydrogen concentration is
far lower than the solubility limit and hydrogen-hydrogen interaction in a metal does

not significantly occur.

The permeation is quantified by the material property called permeability
constant. Macroscopically, the permeability coefficient (¢) is derived by solving

Fick’s 2nd J]aw under the permeation flux at steady state (]steady).

06 026

ot  ox?

x 2 o mmx Dn?m?
0(x,t) = Oipper |1 — rin gz sin (T) exp| —— t
n

L42 Z (1) (nﬂx) Dn?m? .
n cos (——) exp 7z
n

a0 Deinlet
.](xrt) - _Da(xrt) _T

. DO
]steady = gl_)lgj(d; t) = ZL <

For the saturated hydrogen permeation flux, the permeability coefficient [mol H, -

m~t-s71] equals D times 6(Py,).

s = ]steadyd = DOinter Eq. 1.2-5
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1.3. Low reliability of experimental data on diffusivity and solubility

Despite great experimental effort, accurate measurement of diffusion
coefficients has been hampered by lattice imperfections such as surfaces, impurities,
and defects[6]. Thus, experimentally measured diffusion coefficients often fail to
represent actual diffusion coefficients in the lattice. For example, the deviation of
reported diffusion coefficients for Fe or W is several orders of magnitude at room

temperature [6-8].

Tempergfure (°C)

18 e
8 Ho®
20
- i0°
- T -~
N\ w
E 22 . = -~
Q *~—e H, gas equilibratioen (steady state) - _J_‘c,, _E,
c e-- H, gos equilibration( transient) 2 Q
T 24k e--= Electrochemical _J
o Point data
™ —‘40"
261 -
2 -
HO*
281~ -
O O GO N TS [ TP T [
[[¢] 20 40

Reciprocal temperature (10°/7,K™

Fig. 1.3-1 Experimental values of protium diffusion coefficients in Fe.

This figure was taken from Ref. [6].

The large scattering in the experimentally data can be explained by three
factors: surface effects, trap effects sch as impurity and vacancy, and grain-boundary

effects.

Firstly, the differences in experimentally measured diffusivity can be

23



attributed to the high adsorption energy on the metal surface, known as surface
effects. Studies conducted by Jiang and Carter[9] for bcc-Fe, and Heinola and
Ahlgren[10] for bcc-W used first principles calculations based on density functional
theory (DFT) to evaluate the adsorption energy of hydrogen on metal surfaces, which
ranges 0.38-0.91 eV in reference to H; gas molecule and 0.58-1.86 eV in reference to
solute H in metals. The high adsorption energy is identical to high desorption energy,
which interferes with the recombinational desorption of hydrogen to a gas phase,
contaminating non-steady state permeability data and reducing the accuracy of the
H, gas permeation technique in experiments.
Hin the

subsurface ot
Fe(110)

0.

0
Fe+1zH,

Hin the
subsurface of 0.38 eV
0.71eV Fe(100)

H / Fe(100)

k.

H/Fe(110)
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lattice interior

vacuum surface

adsorption
site

Fig. 1.3-2 Energy landscape of hydrogen from H, gas to the dissolved state in
(upper) Fe and (lower) W. DFT was used to calculate the landscapes. These figures
were taken from Ref. [9,10]

Secondly, the trapping effects of impurities and point defects such as
vacancies slow down hydrogen diffusion by increasing the activation energy required
for migration. For hydrogen in bulk Fe and W, Tateyama and Ohno[11] and Ohsawa et
al[12].used DFT to determine the negative energy associated with hydrogen trapping
by mono-vacancies, indicating that hydrogen is more likely to occupy vacancies rather
than tetrahedral sites. Oda et al. showed by kinetic Monte Carlo simulations that such
trapping effects cause non-linear relation between logarithm of apparent hydrogen
diffusion coefficients and reciprocal temperature, depending on the concentration of
traps, and can explain large deviation observed in experimental data of hydrogen
diffusivity in W[13], as suggested by Heinola et al.[14] Therefore, at low temperatures
where the trap effect cannot be negligible even if the trap concentration is relatively
low, it is essentially difficult to measure the true diffusion coefficient of hydrogen in

lattice.
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Finally, the diffusion of trapped hydrogen at grain boundaries can exhibit a
different behavior compared to diffusion in a perfect lattice at whole temperature
ranges. While hydrogen trapped by vacancies cannot migrate without detrapping,
hydrogen trapped at grain boundaries can still migration with being trapped. Due to
the wide variety of grain boundaries and the potential for each type to exhibit
completely different behaviors, the experimental diffusion coefficients were thought

to show large scattering depending on the microstructure within the specimen.

Lattice Lattice GB Lattice
site site site site

Fig. 1.3-3 Potential energy curve for hydrogen in W. GB denotes a grain boundary:.
This figure was taken from Ref. [15]

Even disregarding the three systematic error factors mentioned earlier
surface, trapping, and grain boundary effects), the lag-time method in H, gas
( pping, and g y g 2 8

equilibration technique has a high level of random error in measuring diffusivity.
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Fig. 1.3-4 Typical output curve of a lag-time method in H, gas equilibration
experiments. This figure was taken from Ref. [16] 8 and P in this figure denotes
time lagand H, pressure.

As illustrated in Figure 1.3-4, diffusion coefficients are measured in transient states,
while permeation constants are measured in stationary states. Generally, the
permeate pressure highly fluctuate in transient states. Thus, precision of measured
diffusion coefficients is not as high as that of measured permeation constants in H,

gas equilibration experiments.

It should be noted that permeability in Fe and W is commonly reported
consistently in experimental studies[7,17-19], whereas diffusivity showed large
scattering, leading to lower accuracy in determining solubility. This comes from the
fact that the effects of traps such as vacancies on apparent diffusivity is cancelled with
those on apparent solubility, resulting in no trap effects on determined permeability.
However, this cancellation cannot be fully achieved if hydrogen can diffuse with being
trapped by GBs, which causes deviation even in permeability data if the temperature

is low enough for GBs to significantly trap hydrogen[15].
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1.4. Low availability of data for deuterium and tritium

There are two main issues for low availability of experimental data for
deuterium and tritium. Their large mass results in lower diffusivity than that of
protium, which not only takes longer to reach the equilibrium state in specimens but
also decreases the permeation rate, leading to poor experimental accuracy as the
effects of lattice imperfection become relatively large. In addition, tritium is a
radioactive isotope, requiring special facilities with the radiation shielding. This

incurs significant costs for the setup and maintenance of such facilities.

From the perspective of classical physics, isotope effects on diffusivity and
solubility are constant at whole temperatures, so deuterium and tritium data can be
estimated from experimental data of protium. In the case of diffusivity, neglecting the
dynamic effects owing to the hydrogen-phonon coupling, the diffusivity ratio between
isotopes is inversely proportional to the square root of their mass ratio[20].
Therefore, the diffusion coefficients of deuterium and tritium would be
approximately v2 and +3 times smaller than that of protium, respectively.
However, even at high temperatures where classical limit is expected to be satisfied,
the large discrepancy in measured diffusivity with the classical theory is often
observed for Fe. Fig. 1.4-1 shows the diffusion coefficient ratio between H and D in
bcc-Fe [18]. According to Vineyard’s study [20] explained by the strong hydrogen-
phonon interaction[19]in Fe, which may come from relatively small mass of Fe,

compared to heavy metals, such as W.
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Fig. 1.4-1 Ratio of diffusion coefficient of hydrogen to that of deuterium in Fe

(Dy/Dp). According to classical physics, Dy/Dp = /mp/my = V2. This figure
was taken from Ref. [18]

As for solubility, it is determined by the Gibbs free energy between the H,
molecule and the dissolved state. Since the classical Gibbs free energy is independent

of mass, there is no isotope effect on solubility.

On the other hand, from the perspective of quantum physics, isotope effects
that take into account NQEs exhibit temperature dependence at low temperatures,
while they converge to the classical results at sufficiently high temperatures. Qi et
al.[21] experimentally measured the hydrogen diffusivity in bcc-Nb for all isotopes of
hydrogen at temperatures above 100 K.
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Fig. 1.4-2 Hydrogen diffusion coefficients in bcc-Nb. According to classical rate
theory, the Arrhenius plots of diffusion coefficients is approximately linear. The
experimental values are from Ref. [21-23].

Contrary to the expected temperature dependence of diffusion coefficients
based on the classical Arrhenius equation, their results showed non-linearity below
approximately 250 K. That quantum diffusivity is attributed to tunneling effects and
ZPE. Tunneling effects act as factors that always accelerate the hydrogen diffusion,
while ZPE can either accelerate or slow down diffusion depending on the change in
the free energy barrier. Therefore, significant isotope effects are anticipated in
hydrogen diffusivity. Kimizuka and Shiga [24] demonstrated through path integral
simulations that the quantum diffusivity of protium in fcc-Ag and fcc-Cu can be
smaller than the classical diffusivity. Similarly, in the case of solubility, it is expected
that mass dependence will arise due to NQEs, but research on this aspect is still

limited.
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1.5. Objectives of this study

There is a need to develop new materials or methods that effectively prevent
hydrogen inventory and leakage in nuclear fusion reactors. However, there are two
barriers to experimentally designing nuclear materials and prevention methods.
Firstly, as highlighted in Sections 1.3 and 1.4, the experimental determination of
hydrogen diffusivity, solubility, and permeability is challenging due to their
significant dependence on the material's microstructure and unavoidable effects of
surface and trap effects, making it difficult to obtain precise values. Secondly, the vast
number of possible combinations of elements and their compositions for new alloy

development results in an enormous amount of labor and time required.

Therefore, computational materials design is needed to develop an
automated process for calculating the properties of materials including hydrogen
diffusivity and solubility in order to find adequate materials for each application. In
the pharmaceutical industry, Virtual Screening, a computational chemistry method,
is used to reduce the number of potential drug candidates before experiments and
clinical trials. Similarly, for nuclear materials engineering, a computational chemistry
approach is required to simplify the process of finding alloy compositions that
optimize material properties in PFMs and cladding materials. To achieve this, there is
a need for research on automatically and accurately calculating the hydrogen

transport properties in alloys.

However, accurate computations of both diffusivity and solubility have not
been straightforward. One must carefully consider dynamic effects and nuclear
quantum effects (NQEs) involved in the transport mechanism, which are important
at high and low temperatures, respectively. Dynamic effects beyond the harmonic
approximation are not considered in the conventional minimum energy path analysis
[9,14], whereas NQEs are not considered in classical molecular dynamics (CLMD)
simulations [25]. Through path integral simulations, it is possible to include dynamic
effects and NQEs naturally [26,27]. However, the reliability of PI simulations based on

empirical force fields is questionable, because the results are sensitive to the assumed
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potential energy surface (PES). Ab initio path integral molecular dynamics (AI-PIMD)
[28-30] is one of the most ideal approaches for this purpose, fully rooted in first-
principles calculations; however, its application to hydrogen diffusion in metals is not

yet practical due to the enormous amount of computations.

Recently, the concept of machine-learning potential (MLP) has emerged, and
the paradigm of the potential model has dramatically changed [31]. By learning from
first-principles calculations, the MLP can provide an accurate PES at a low
computational cost. It has recently been reported that MLPs based on artificial neural
networks [32] and Bravais-inspired gradient domains [33] work successfully for

hydrogen diffusion in fcc-Pd.

In this study, the diffusivity and solubility of dilute hydrogen in Fe and W are
investigated through PI simulations using a modern MLP known as moment tensor
potential (MTP) [34]. The objective of this research is to establish accurate and
efficient computational methods for hydrogen solubility and diffusivity in bcc metals
and obtain reliable data above 100 K and reveal NQEs and isotope effects on hydrogen

transport over the entire temperature range.

The biggest difference between the current target system of study and the
reality is that we use single crystals, whereas actual materials are polycrystals.
Generally, the existence of grain boundaries increases the effective diffusivity and
solubility because the interfaces provide fast diffusion paths and voids which are the

preferred locations than the tetrahedral sites for the solute hydrogen.

If the actual material has low concentrations of grain boundaries, the
difference between single crystal and polycrystal in terms of diffusivity and solubility
would generally be negligible at sufficiently high temperatures. In this study, we used
data obtained at sufficiently high temperatures when comparing experimental and
calculated values. In such cases, the experimental values can serve as good reference
data for our calculations. On the other hand, if the actual material has high

concentrations of grain boundaries, even at sufficiently high temperatures, there can
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be significant differences between the measured values and the calculated values. The
effects of the lattice imperfections remain as future task, and the results of this study

can be reference data for it at the low concentration limit.

In the remainder of this manuscript, after a detailed description of the
methodology in Section 3, we show that MTP can successfully reproduce first-
principles calculations based on density functional theory, not only for energy, force,
and stress data but also for characteristic quantities of the transport phenomena such
as the hydrogen migration barrier and vibrational frequencies. This partially justifies
the assumption that PI simulations using MTP can produce similar results to ab initio

PI simulations using DFT.

In Section 4, the diffusion coefficients calculated using the verified MTPs are
compared with the available experimental data, demonstrating that the proposed
method can provide reliable diffusion coefficients for Fe and W. Subsequently, NQEs
and dynamic effects are identified by comparing the calculations from CLMD and
three PI methods: ring polymer molecular dynamics (RPMD), centroid molecular

dynamics (CMD), and path integral quantum transition state theory (PI-QTST).

In Section 5, we introduce a methodology that utilizes path integral
simulations to calculate the solubility, taking into account dynamic effects and NQEs
simultaneously. Section 5.1 provides the theoretical background on this approach,
while Section 5.2 presents the methods for calculating the two components that
constitute solubility: solution enthalpy and solution entropy. In Section 5.3, the
calculated solubility is compared to experimental values after converted to

permeability because consistent experimental values have been reported for it.

Hereafter, protium, deuterium, and tritium are referred to as H, D, and T,
respectively. When discussing without specifying the type of isotope, the term

‘hydrogen’ is used.
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Fig. 1.5-1 Main contents of this thesis
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2. Methods

2.1. Moment tensor potential (MTP)

MTP imitates target PESs by a set of polynomials. The theoretical concept of
MTP is described in Ref. [34], and its systematic generation process is illustrated in

Ref. [35]. The key features of MTP are explained in Section A1 of the Appendix.

Two advantages of MTP are worthy of attention. First, angle-dependent
manybody interactions are embodied from the tensor products of atomic
displacement, so a variety of atomic environments can be represented by MTP.
Second, the computational burden is much relieved in that the MTP algorithm is
devoid of any transcendental function but contains only arithmetic operations of
polynomials. For several systems, it was confirmed that MTP achieved accuracy
comparable with that of Gaussian approximation potential, which is often regarded

as one of the most accurate MLPs, with less than a tenth of the computation time [34].
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2.2. Imaginary time path integral theory

According to imaginary time path integral theory, the quantum canonical
partition function of a particle can be approximated to the classical partition function
of a ring polymer with ny,,4s imaginary time slices [36]. Each imaginary time slice
can be expressed as “bead” of the ring polymer. Based on this classical isomorphism,
the one-dimensional quantum canonical partition function of a nucleus in a physical
potential (V) is approximated by

np

ead
_ (MNpeaa\ 2 _
£= (ZNﬁhZ ) qu(l) - dq® exp(—=BVesr) Eq. 2.2-1

and the effective potential (Vss) is defined as

P
1 2 1
Verr = Z [zmw% (¢®@ —q=+V)" + prn(q(s))]' Eq.2.2-2
s=1

where m is the mass of the nucleus, ¢ is the position of the s-th bead, and

g®P*D = g due to periodicity. wp is a harmonic chain frequency.

_ ¥ 'bead Eq. 2.2-3

wp = Bh

In the high-temperature limit (§ — 0), the spring constant (mwg) becomes so large
that the ring polymers shrink toward their centroids. In this limit, the nucleus loses

its quantum nature and the quantum partition function converges to its classical one.

We used three methods for the time evolution of the beads: PIMD, CMD [37-
40], and RPMD [41,42]. They are very different conceptually as PIMD can only
calculate static properties whereas CMD and RPMD are designed to calculate dynamic
properties based on different concepts from each other. In the formulation, however,
only the choice of the fictitious mass (my) of the beads and the use of thermostats
differ among them[43]. For more information about the choice of mass, see Ref. [43].

Finally, classical equations of motion are applied to the dynamics of the beads as
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shown in Eq. 2.2-4.[43]

Npead

d 1 2 1
Z [Em}(f)w}%(q(s) —qEt) EVph(q(s))] Eq.2.2-4
s=1

aq(s)

m}@q(s) - _

In this study, PIMD was used for equilibration before CMD and RPMD
simulations and for free energy profiles in the application of PI-QTST methods. RPMD
without a thermostat and adiabatic CMD were employed to collect real-time

trajectories of H. The PIMD code [44] was used for all PI calculations.
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3. MTP generation and validation

3.1. MTP generation

For each bcc metal, MTPs were trained to reproduce the PESs of DFT in the
position space relevant to hydrogen dynamics. The DFT calculations for energy, force,
and stress were performed with the Vienna Ab initio Simulation Package (VASP) [45-
47]. The Perdew-Burke-Ernzerhof functionals [48] were used to describe the electron
exchange-correlation. The total energy was sampled on a T'-centered 6 X 6 X 6 k-
point grid by the Monkhorst and Pack scheme [49] with a 650 eV energy cutoff. Spin-
polarized calculations were performed for the systems of Fe, but not for the systems

of W because their electronic ground states are nonspin polarized.

The procedure for MTP generation involved supervised learning with
molecular statics calculations and active learning by CLMD and PIMD. First, to obtain
an accurate and stable description of key kinetic and thermodynamic properties for
hydrogen diffusion, the molecular statics configurations were prepared from (1)
random deformation of unit bec cells, (2) stable structures for dissolved hydrogen, (3)
snapshots in nudged elastic band (NEB) calculations [50] for hydrogen migration, and
(4) finite-displacement structures for quasiharmonic approximation (QHA)
calculations. Second, the accuracy and stability of MTPs were strengthened through
active learning with classical NPT ensembles. The machine learning interatomic
potential (MLIP) package [35], invented by Novikov et al., was used to determine the
extrapolation grade of configurations, reinforce the training sets, and reoptimize MTP
parameters. The maximum temperature in active learning with CLMD was
approximately two-thirds of the melting temperature of pure bcc metals. Finally,
training was completed by active learning using PIMD with NVT ensembles to
incorporate the configuration of beads. MTP level was set to 16 for all metals, and the
maximum cutoff radius was set to 5.5 A for the Fe-H system and 6.0 A for the W-H
systems. More details of the training sets and active learning are explained in Section
A2 of the Appendix. The training sets and the MTP parameters used in this study are
available in Ref. [51].

38



3.2. MTP validation
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and test sets calculated using DFT and MTPs; (b) Equilibrium lattice constants at 1
bar estimated by CLMD. Experimental data were obtained from Ref. [52,53] for Fe,
and Ref. [54,55] for W. Ref. [55] was from a statistical analysis of available
experimental data. (c) Hydrogen migration barriers at different lattice constants
(a). ay denotes a lattice constant from geometry optimization. The LAMMPS code
was used for the classical atomistic simulations.

The energy, force, and stress data from DFT fit well with the MTPs. For
example, good agreement in energy is confirmed in Fig. 3.2-1(a), which compares the

energies calculated on the training and test sets using DFT and MTPs.

The lattice constants, lattice thermal expansion, and elastic constants were
examined for pure bcc metals. Lattice constants from geometry optimization showed
an error of 0.02% at most in reference to DFT, and an absolute error of 0.02 A ~ 0.03
A from the experiments after correction of the zero-point vibration effect [56]. The
thermal expansion coefficients calculated by CLMD were nearly identical to those of
the experiments above 300 K [52-55,57], where quantum effects can be ignored, as
shown in Fig. 3.2-1(b). The elastic constants were also reasonably reproduced; errors
with respect to DFT were all less than 10% and the absolute differences from
experiments [58-60] were 25 GPa at most. The lattice constants and elastic constants

are provided in Section A3 of the Appendix.

Fig. 3.2-1(c) shows that the migration barriers obtained by the MTPs are
similar to those obtained by DFT, including the effect of isotropic lattice deformation
(-2% ~ 2% strain), which is related to the temperature dependence of the barriers
due to thermal expansion. The errors from DFT calculations were less than 5% for a
path via a trigonal site or via an octahedral site. In addition, errors in the normal mode
frequencies related to H were less than 6% for the tetrahedral site (ground state),
trigonal site (1st-order transition state), and octahedral site (2md-order transition
state), as shown in Table 3.2-1. The frequencies of all vibrational modes are plotted
in Section A3 of the Appendix, also showing good correspondence between the MTP

and DFT data.
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In summary, the validation test results demonstrate that MTP can achieve
DFT accuracy for PESs and properties related to lattice mechanics/dynamics and

hydrogen migration in bcc metals.

Table 3.2-1 Normal mode frequencies related to H. The value in parenthesis
denotes the error from the DFT calculation ((Vyrp — Vprr)/Vprr) in percent (%). i
indicates an imaginary mode.

Unit: THz Fe w

30.2 (3.25) 35.2(0.95)

Tetrahedral site 44.0 (0.61) 47.3(1.48)
44.0 (0.61) 47.3 (1.48)

20.4i (4.29) 25.7i (1.00)

Trigonal site 34.6 (-0.30) 46.0 (0.73)
57.8 (-1.39) 63.2 (0.51)

17.5i (0.56) 27.8i (5.68)

Octahedral site 17.5i (0.56) 27.8i (5.68)
63.7 (-2.75) 75.5 (0.38)

41



4. Hydrogen diffusivity

4.1. Diffusion coefficient calculations
4.1.1. Einstein relation

The Einstein relation between the mean square displacement and diffusion
coefficient at three-dimensions is expressed as
. Ircent (t) |2
m —

D=l

t->0 6t ’

Eq. 4.1-1

where |7, (t)|?> represents the mean square displacement of a centroid. The
diffusion coefficient can be determined in the framework of molecular dynamics with

areasonably large t value as

2
D= M. Eq. 4.1-2
6t

4.1.2. Path integral quantum transition state theory

A general concept of PI-QTST was established by Gillan [61], and it was
combined with the minimum free energy path by Schenter et al. [62]. Althorpe and
Richardson [63] further developed it by connecting PI-QTST to semiclassical
instanton theory. For a reaction of interest, the PI-QTST method requires the free
energy profile which can be obtained by integrating the mean force along a minimum
energy path [61]. The mean force can be approximately taken during bead sampling
while the centroid positions of atoms are fixed along the minimum energy path of

reaction. The combined reaction constant [63-66] is expressed as

1 e—BF(@"T)
Ipj—qrst(T) = a(T) Znpm | T dgepran Eq. 4.1-3
qa;
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21
a(T =min[1,—] Eq. 4.1-4
(7) Bhaoy (1) q
FII *’T
w, (T) = |(:l—*)|’ Eq.4.1-5

where g is a reaction coordinate and q* denotes a barrier top. q; and g, are
adjacent barrier tops. F(q,T) is the free energy at the reaction coordinate g and
temperature T. w; is the absolute value of the imaginary angular frequency of the
normal mode at the barrier top q*. m* is the effective mass of the diffusing particle
along the reaction path [20]. For the migration of hydrogen through trigonal sites of
the bcc lattice of Fe and W, the difference between the effective mass and its physical
mass of hydrogen was approximately 4%. Ti,stanton IS @ crossover temperature

below which deep tunneling dominates the reaction rate [63].

hwp (Tinstanton)
Tinstanton = Zl;;;:n = Eq.4.1-6

The interstitial atomic diffusion coefficient is analytically expressed for three
dimensions as

1
D = gnjumpf}'ump/‘l]zumppf Eq. 4.1-7

where I' is a jump rate. For hydrogen diffusion in a bcc metal, the dominant

migration paths are jumps between tetrahedral sites: njy;,p =4 and Ajymy = \/;a

where a is the lattice constant. Consequently, assuming there is no jump correlation,

namely, fj,mp = 1, the diffusion coefficient can be calculated as

2

DPI—QTST(T) = EFPI—QTST(T)- Eq 4.1-8
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4.2. Validation by H diffusivity
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Fig. 4.2-1. H diffusivity in (a) Fe, and (b) W. The black solid line connecting CLMD
plots denotes fitted Arrhenius equations. The error bars represent standard errors.
The experimental data were obtained from Ref. [6,18,67-70] for Fe, and Ref. [7,8,71]

for W. The simulation conditions of CLMD, CMD, and RPMD are enumerated in

Section A4 of the Appendix.
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Fig. 4.2-1 shows Arrhenius plots of the H diffusion coefficients for each
material from the CLMD, CMD, and RPMD calculations and some experimental data.
The differences between the CMD and RPMD results were minimal in all cases. The
overall similarity demonstrates that the conceptual difference between the two
methods does not lead to incompatible results, as also observed in a previous study
[72]. In addition, their results converged to those of the CLMD above approximately

500 K, explained by the classical limit of quantum dynamics.

4.2.1. H diffusivity in bcc Fe

For Fe, the deviation in the previous experimental data was too large for
direct comparison with the simulation results. Thus, we made a comparison with the
recommended empirical equations obtained by V6lkl and Alefeld [69] and Kiuchi and
McLellan [6] by fitting many experimental results. Volkl suggested two plausible
Arrhenius equations based on the highest value (D,,,,) and amount of data (D, 4e)-
The former is based on the assumption that the surface and trapping effects are
responsible for slowing the diffusion [69]. These two equations intersect at
approximately 800 K. The CLMD/CMD/RPMD results were at the intersection, and
agreed with D,,,4. above 800 K. The CMD/RPMD results were also reasonably
consistent with D,,,, in the temperature range of 300 K ~ 500 K. Nevertheless, we
consider the reliability of Volkl’'s equations to be limited because Arrhenius equations
are not valid in such a broad temperature range (200 K ~ 1000 K) due to NQEs, as
indicated by the current and previous [73] RPMD/CMD simulations.

Kiuchi organized experimental data based on the methods and conditions,
and fitted each with an Arrhenius equation in a narrow temperature range: Group A
(Pd-coated, ultrahigh vacuum, H,-gas equilibration), Group B (electrochemical), and
Group C (H,-gas equilibration without a coating) [6]. Kiuchi considered Group A to

be the most reliable group because the surface effects were expected to be attenuated

45



by attaching a Pd coating to the specimens. However, the reliability of Group A is still
dubious because it was composed of only three datasets (Miller et al. [67], Nelson et
al. [68], Quick et al. [70]), of which Miller indirectly determined H diffusivity from the
ratio of measured permeability to solubility reported by others. Furthermore, the fact
that the three datasets showed large deviations among Group A, as shown in Fig. 4.2-
1(a), cast doubt on the effectiveness of the Pd coating in determining the true
diffusivity in the lattice. A theoretical study analyzing the characteristics of the time-
lag method in multiple laminates has shown that the effective diffusion coefficient
determined by the time-lag method is affected by the thickness and H diffusion
coefficients in the coatings [74]. Such effects did not appear to have been considered

by Nelson and Quick.

Thus, acknowledging that there is room for other interpretations, we
consider that Kiuchi’s Group C equation (H,-gas equilibration without a coating)
above 500 Kand Volkl's D,,,4. €quation above 500 K, which are in close agreement,
are the most reliable experimental data available. The following two points support
our findings. First, the experimental data above 500 K show a relatively small
variation if the Pd-coating data are ignored, as shown in Fig. 8 of Kiuchi’s study [6].
Second, it has been estimated that the effect of surface processes is negligible above
approximately 500 K [75]. The CLMD/CMD/RPMD results agreed well with the

experimental data above 500 K.

46



Temperature (K)

1000500 300 200 100
I I I I 400 300 250I
107" 4 1.2x1078
R %,
E ' 8x107°
8]
§ 107
% ] 4x107°
)
3 4
S
e 10795 A
= ] L]
&5 { ®m CLMD A CMD ® RPMD © Hayashi
1 © Yamakawa Beck O Hagi Asano
10_10 ) IKumr:ick ‘—EMCB[een] S‘ubrarinanyalm .
0 20 40 60 80 100

Reciprocal temperature (10000/K)

Fig. 4.2-2 Comparison of H diffusivity in Fe for current simulation results and
experimental values obtained by electrochemical techniques. The black solid line
connecting CLMD plots denotes the fitted Arrhenius equation. The error bars of
CLMD/CMD/RPMD plots represent standard errors. The experimental data were
obtained from Ref. [76-83]. The Arrhenius equations of McBreen [82] and
Subramanyan [83] were taken from Table 2 of Kiuchi’s study [6] due to
inaccessibility to the original literature.

Below 500 K, Kiuchi showed that the diffusion coefficients determined by gas
equilibrium methods such as permeation, desorption, and time-lag methods varied
by several orders of magnitude or more, whereas those determined by
electrochemical methods varied relatively little in the temperature range of 250 K ~
350 K[6]. In Fig. 4.2-2, excluding two data sets (Kumnick [81] and Subramanyan [83]),
the variation in the electrochemical measurements is half an order of magnitude, and
the CMD/RPMD calculations agree with the measurements within that variation

range.
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4.2.2. H diffusivity in bcc W

For bcc W, the H diffusion coefficients reported by Frauenfelder [7] and
Holzner et al. [71] are comparable to the CLMD results above 1500 K. Frauenfelder
fitted the Arrhenius equation in the temperature range of 1100 K ~ 2500 K for H
diffusion coefficients determined by degassing experiments [7]. Heinola and Ahlgren
reinterpreted Frauenfelder’s data and suggested that the appropriate fitting region
should be 1500 K ~ 2500 K to exclude the trapping effects [14]. Subsequent
theoretical and computational studies have confirmed that trapping effects due to
vacancies or grain boundaries can explain the deviation in diffusion coefficients

below 1500 K [13,15].

4.2.3. Arrhenius equations of H diffusivity

10 5

CLMD (Fe)

Quick**

Miller**

Nelson

Kiuchi (A)

Kiuchi (B)

Kiuchi (C)

VOIKI (D0,

VOIkl (D,0e)

CLMD (W)
Frauenfelder** (>1100 K)
Frauenfelder** (>1500 K)
Holzner*

Otsuka*

Sal

107 1

] R
fax

Preexponential factor (m?/s)

nnumOOé[bmjnuD:'t

10-8 M T N T N T T T r T T T T T T 1
00 01 02 03 04 05 06 07 08
Activation energy (eV)

Fig. 4.2-3 Activation energies and preexponential factors of Arrhenius equations
of H diffusivity. The current CLMD results and previous experimental studies
presented in Fig. 4.2-1 are plotted. In the legend, **’ indicates data that were

reported with a standard error of the activation energy, and “** indicates data that
were reported with standard errors of both pre-exponential factor and activation

48



energy. The standard errors in the current CLMD results are negligible.

Fig. 4.2-3 presents the pre-exponential factors and activation energies of the
Arrhenius equations for H diffusion obtained by CLMD for the three materials,
together with some experimental results. As the CLMD results were used, the
calculation results in Fig. 4.2-3 represent the diffusivity at temperatures above 500 K,
where the NQEs are negligible. Volkl's D,,,4. for Fe, and Kiuchi’s Group C data for Fe
agreed well with the corresponding CLMD results. As discussed above, these

experimental data are considered reliable at high temperatures.

For W, although the Arrhenius plots in Fig. 4.2-1(b) show good agreement
between the current calculation and the data of Frauenfelder [7] and Holzner [71],
the derived Arrhenius equations are inconsistent, as shown in Fig. 4.2-3. The
inconsistency arises from the large variation in the experimental measurement, as
seen in Fig. 4.2-1(b). At high temperatures, the data interval for the reciprocal
temperature scale is short; thus, the fitting error in the Arrhenius plot can easily
become large if the measurement variation is large. In our estimate, the fitting error
in the activation energy was 0.05 eV as the standard error of linear fitting of the
Arrhenius plot of Frauenfelder’s data above 1500 K; Holzner et al. reported a fitting
error in the activation energy of 0.06 eV. In contrast, because the Arrhenius equation
for the CLMD results was obtained over a wider temperature range, the estimated
deviation in the CLMD data was only 0.003 eV. Considering these statistical errors,
the Arrhenius equation from the current CLMD is more precise than those from

Frauenfelder’s and Holzner’s data.

In summary, although the large deviation in experimental data makes it
difficult to validate the calculation results, in temperature ranges where the reliability
of experimental data is considered to be high (>500 K for Fe, and >1500 K for W), the

current calculation shows excellent agreement with experiments for Fe and W.
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4.3. NQEs, dynamic effects, and isotope effects

4.3.1. Free energy barriers
Although the simulation speed of PIMD with MTP is much higher than that
of AI-PIMD, applying CMD and RPMD to the Einstein relation at very low
temperatures is still demanding. Additionally, the calculation for heavier isotopes is
difficult because NQEs are less considerable in D or T migration; thus, their diffusion
coefficients are not as large as those of H. To provide a reasonable estimate including

NQEs, even when the diffusion coefficient is too low, we adopted PI-QTST.
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Fig. 4.3-1 Temperature-dependent free energy barriers for migration of
hydrogen isotopes in Fe and W through trigonal site. Simulation conditions are
enumerated in Section A4 of the Appendix.

Several assumptions were made to simplify the PI-QTST process. First, jumps
through octahedral sites were ignored because they rarely occur compared to jumps

through tetrahedral sites. Second, the one-dimensional minimum free energy path for
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hydrogen migration was assumed to be identical to the classical path. This
assumption is likely to be valid, as Kimizuka et al. reasonably reproduced the
quantum behavior of hydrogen in fcc metals over a wide temperature range of 75 K
~ 1200 K [24]. Finally, the thermal expansion effects were neglected for simplicity;
thus, a geometry-optimized lattice constant was used to construct the supercells. In

some test cases, we confirmed that the effect of thermal expansion was not significant.

Fig. 4.3-1 shows the temperature-dependent free energy barriers obtained

by the PI-QTST method using Eq. 4.3-1,

AF(T) = — de “fmean(q, T), Eq. 4.3-1

where AF(T) is the free energy barrier at temperature T, q is the reaction path, and
fmean(q,T) isthe mean force acting on the beads when the centroid is fixed at q [61].
As theoretically expected, the free energy barriers decreased as the temperature fell

due to NQEs, and the NQEs were more pronounced for lighter isotopes.
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4.3.2. Dynamic effects and NQEs
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Fig. 4.3-2 Hydrogen diffusivity in (a) Fe, and (b) W. RPMD results are not plotted
because diffusivity differences between CMD and RPMD are small in comparison
with their standard errors. Experimental data were obtained from Ref. [18] for Fe

and Ref. [71] for W.
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Fig. 4.3-2 (a) ~ (b) show the diffusion coefficients of H, D, and T calculated
by PI-QTST using Eq. 4.1-3 and Eq. 4.1-8, together with those calculated by CLMD, the
H diffusion coefficients calculated by CMD, and the experimental results for the three
isotopes. The H diffusion coefficients calculated by PI-QTST showed good agreement
with the CMD results at low temperatures, whereas relatively large differences were
observed at high temperatures. For example, there was a ~50% difference from the

CMD results at 1000 K for W.

The high-temperature discrepancy between PI-QTST and CMD is the result
of dynamic effects. Although the dynamic effects are fully considered in CMD,
recrossing is neglected in PI-QTST because a centroid position of each atom is fixed
during bead sampling. We estimated the crossover temperature of the dynamic
effects, Tyynamic, from the transmission coefficient (7 ), which is defined as
T = Demp/Dpr—gr - Fig. 4.3-3(a) shows the temperature-dependent transmission
coefficients of H diffusivity in Fe and W. Generally, 7 is less than 1 due to recrossing,
as shown in Fig. 4.3-3(a). 7 = 1 means that the crossing event is not disturbed by
phonons and that dynamic effects are negligible. Although the uncertainty in W is
large owing to the large standard errors in D¢yp, we approximate Tyynamic to be
300 K for all metals. Our suggested Tyynamic is consistent with the study of Paxton
and Katzarov [84], which revealed that the transmission coefficient of H diffusion in
Fe can be approximated as 1 below 300 K by QTST using the magnetic tight binding
model [85]. PI-QTST can be an accurate alternative to CMD/RPMD for estimating the

H diffusivity below Tyynamic-

Furthermore, at very low temperatures, below Tj,stanton as defined by Eq.
4.1-6, the PI-QTST can theoretically be more accurate than the CMD/RPMD. This is
because the contribution of deep tunneling, which CMD/RPMD cannot describe
properly and, in contrast, PI-QTST considers with the instanton theory, starts to

increase below Tiystanton [86]. For H diffusivity, Ti,stanton Was approximately 100
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Kand 200 K in Fe and W, respectively.

However, at temperatures above the crossover temperature of NQEs, Tyqgs,
above which the NQEs are negligible, CLMD can be the best alternative. Fig. 4.3-3(b)
shows Dcyp/Deryp to estimate Tygps . Regardless of the metal, Tyggs in H

diffusivity was approximately 500 K, and was higher than Tgynamic-
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Fig. 4.3-3 (a) Dynamic effects of H diffusivity in Fe, and W. The transmission
coefficients are defined as D¢yp/Dpj—grsr- (b) NQEs on H diffusivity in Fe, and W.

Fig. 4.3-4 illustrates the key factors that affect hydrogen diffusivity and the
temperature range over which each method can accurately determine the diffusion

coefficient. PI-QTST and CLMD are accurate below Tyynqmic and above Tyqgs,
respectively. In the temperature range between Tyynamic and Tyggs, estimated to be

300 K~ 500 K for Hin the three metals, there is no accurate alternative to CMD /RPMD.
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Fig. 4.3-4 Key factors affecting hydrogen diffusion coefficients and applicable
methods in corresponding temperature ranges.

4.3.3 Isotope effects

For the heavier isotopes (D and T), the temperature ranges of Tgynamic <
T < Tyqgs are approximately within that of H for the following reasons. First, Paxton
and Katzarov confirmed that the transmission coefficients are weakly dependent on
isotopes [84]. Thus, Tc?ynamic and TdTynaml-C were considered comparable to
Tiynamic- Second, Tops and Tyogs are generally lower than Tifygs due to the
heavier atomic masses of D and T, as confirmed by Qi’s experiments [21]. Thus, it is
justifiable to determine the isotope effects below 300 K using PI-QTST and above 500
Kusing CLMD for Fe and W. Fig. 4.3-5 shows the isotope effects of hydrogen diffusivity
calculated using PI-QTST and CLMD.
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Fig. 4.3-5 Hydrogen isotope effects in (a) Fe and (b) W. “H/D” and “H/T” denote
Dy/Dp and Dy/Dr, respectively. In (a), the solid lines are from the cubic spline

method. /mp/my and /my/my are the theoretical diffusivity ratios proposed
by the classical rate theory under harmonic approximation conditions.
Experimental data were obtained from Ref. [18] for Fe and Ref. [71] for W. The gray
regions denote the temperature ranges in which both PI-QTST and CLMD results are
less accurate.

In experiments on bcc metals, H diffusion has always been faster than D
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diffusion, and significant temperature dependence of the isotope effects has been

observed [69].

For Fe, experimental data on H diffusivity are scattered; thus, it is difficult to
estimate the isotope effects with high accuracy. Although isotope effects have been
obtained below 500 K in several studies [87,88], we do not refer to these
experimental data because they likely do not reflect the true diffusion coefficient in
the lattice, as discussed in Section 4.2.1. The isotopes data of Tahara and Hayashi [18]
seem to be reasonably accurate because the H diffusivity obtained above 580 K shows
good agreement with Kiuchi’s Group C and VO6lkl's D,,,4. equation, which we
verified to be the most reliable above 500 K. In Tahara’s study, the isotope effect
between H and D at high temperatures did not converge to the square root of the mass
ratio [18], as expected in classical rate theory [20], but became smaller. The CLMD

results reproduced this trend, as shown in Fig. 4.3-5(a).

For W, isotope effects between H and D were reported by Holzner et al. [71]
at 1800 K ~ 2600 K, where NQEs and trapping effects were negligible. As shown in
Fig. 4.3-5(b), the isotope effects calculated by CLMD were consistent with those of
Holzner. This consistency further demonstrates that MTPs can accurately describe

the isotope effects in hydrogen diffusion.

4.3.4 Isotope effects in the classical regime, T > Ty

A disparity in isotope effects from the classical rate theory was observed for
Fe and W, even above 500 K, at which the NQEs can be ignored as T > Tyqgs. In Fig.
4.3-2(a) ~ (b), the slopes of the Arrhenius plots obtained from CLMD are almost
independent of the isotopes. Thus, at temperatures above Tyogs where hydrogen
behaves as a classical particle, the Arrhenius equations for hydrogen isotopes differ
only in the pre-exponential factor and not in the activation energy. The parameters of
the Arrhenius equations derived from the CLMD in Fig. 4.3-2 are presented in Table

2. As the activation energy is almost isotope-independent, the isotope effect can be
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quantified from the ratio of the pre-exponential factors, with smaller values than
those from classical rate theory. For example, the diffusivity ratio of H to T in bcc Fe
obtained by CLMD is 1.28, whereas m is 1.73. We consider that dynamic
effects such as anharmonicity and recrossing caused the difference from classical rate

theory, although the mechanism is a subject for future research.

Table 4.2-1 Parameters of Arrhenius equations for hydrogen isotope diffusivity
from CLMD. D denotes the pre-exponential factors of the Arrhenius equations.

Fe w
Activation energy (meV) 92.7+ 3.6 203+ 6
DY (1078m?2s71) 7.62+ 0.2 12.3+ 0.5
DE /DY 1.16 £+ 0.06 1.26 £+ 0.07
D¥ /DY 1.28 4+ 0.05 1.43 4+ 0.09
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5. Hydrogen solubility

5.1. Solution constant calculations
5.1.1. Solubility at dilute concentration limit

Under the chemical equilibrium at dilute hydrogen concentration limit for an
isothermal-isobaric condition of a closed system, namely, NPT ensemble, the change
of Gibbs free energy is zero in terms of hydrogen transfer between the hydrogen gas

and the hydrogen solute state.

Gsot(Ni, Nu, Pu,, T) = Hsot(Nu, Na, Prayy T) = TSs01(Nety Nag, Pra, T)
=0

Eq.5.1-1

The solution entropy (Sso;) is the sum of the configurational (SS,) and non-

configurational (S1;) terms. The former only depends on the numbers of hydrogen

atoms (Ny) and their stable sites (Ng;t)in the lattice.

Sscol(NHr Nsite) = kB ln( Nsite! ) EQ- 5.1-2
Ny! (Nsige! = Npg!)

For bcec metals, Ngj;, = 6Ny, as the tetrahedral sites are the most stable interstitial
sites for hydrogen. At the dilute concentration limit (Ny < Np) , Stirling’s

approximation can be applied to the logarithm in Eq. 5.1-2.

Nsite! ~ NH ~ NH
In =—In(———)=-In
NH! (Nsite! - NH!) Nsite - NH Nsite
Ny 0
= ““(m) =-n(g)

Consequently, the hydrogen solubility (6) in bcc metals is expressed by solution

Eq.5.1-3

enthalpy (H,;) and non-configurational solution entropy (Sis;).
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Hiot (N, Ny, Pa, T)
= HH+M(NH:NMPH2JT) Eq.5.1-4
1
- [HM(NMrPHZ'T) + Np X Eth(PHz'T)]

S;)CI(NH'NM'PHz' T) = Ssol(NHrNMrPHz' T) - Sscol(NH'NM)

= SH+M(NHJ Ny, PHZJ T)

1 Eqg.5.1-5
— [Sm(NM,PHZ, T) + Ny X > SH, (PHer)]
— Sso1(Ny, Ny)
H(NH’NM'PHZIT)
= 6 EXp <S;lOCI(NH’IICVBMI PHz’ T)) exp <_ HSOI(NHI;]:?, PHZ' T)) Eq 51-6

Thus, to calculate 8, we need to obtain the enthalpy term, H,,;, and the non-

configurational entropy term, SI.

5.1.2. Calculation of solution enthalpy (H,;)

According to Ref. [89], enthalpy at NPT ensembles is defined as a function of

isobaric partition function.

H(N,P,T) = kgT? ! OAW.P.T)
Ly o B A(N, P, T) aT Eq 51'7
NP
where A is a weighted sum of the canonical partition functions.
AN,P.TY= ) QN V. TP Eq.5.1-8
v

There are two types of Finite Size Effects (FSEs). One is on the hydrogen-
hydrogen interaction and the other is on the lattice expansion by dissolved-hydrogen.

The former is not only about the direct interaction, which can be eliminated if the cell
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length is larger than twice the cutoff radius of interaction, but also the indirect
interaction via stress field generated around hydrogen, which is usually more long-
ranged. We have found that the latter is significant at NPT ensembles because the
lattice expansion induced by interstitial hydrogen, which should be negligible at the
dilute limit, is significant if the supercell size is small. Although it is difficult to
precisely quantify the FSEs in NPT-MD due to large fluctuations in energy and volume,
rough estimation by the elastic theory would be sufficient to prove the large FSEs. Fig.
5.1-1 shows differences of equilibrium lattice constants between hydrogen -
dissolved and pure bcc-W in NPT-CLMD at 500 K, which were calculated up to a

14 X 14 X 14 supercell. For larger supercells, the 31 order fitting was applied to

extrapolate —L  from the bulk modulus of tungsten (Ky,) and hydrogen virial
ag+w—aw
Wh4w)-
K VdP v —AP
w av = YV =V
AP
Virw = Voo (1= @)
1 1
(Vw4n)3 AP\3
Au+w = n = aw (1 - E)
1
_ (1 AP>3 _ ( 1 AP) aw Wyiw
Eq.5.1-9
_ WH+W -3
=——0—xn
3Kyn3al,

where n denotes a size of (n X n X n) supercell. If the difference in the lattice
constant (ay,w — ay) can be approximated by a specific function as n grows, the
internal energy change by the FSEs can be roughly estimated using the bulk modulus.
Additional stress induced by the dissolved hydrogen in a lattice (AP) equals the
hydrogen virial divided by lattice volume (¥}, ), so the appropriate fitting function of

(ag+w — ay) ™! is 3rd-order polynomial of n. Good agreement between this model
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equation and MD results is seen in Fig. 5.1-1. Using this model equation, the internal

energy change caused by lattice expansion in each supercell was estimated by Eq. 5.1-

10, which is also shown in Fig. 5.1-1.

AU(n)

1 Ky

Eq.5.1-10
Em(Vmw(H) - Vw(n))z

———T——7—T— 71— 11— 1072
X A 3rd-order fitting
1073 4 v MDNPT
1Y B AU(m) = 5‘/}:‘(‘;1)(%7” (n) = Vig(n))?
"
* 3
g [ 'Q'* g
§ N o
1077 l. » 710 S
= m ¥ >
& ] A o
S ] A (]
- 0
m - A A
| = A
o A
] A
L = ‘
5 |
10 LI &
—————————7——T1—— 11— 107

Supercell size, n

Fig. 5.1-1 (Left axis) Lattice constant difference between hydrogen-dissolved
tungsten (ay,w) and perfect tungsten (ay) (Right axis) Energy change induced
by the volume expansion. The standard error of the mean was estimated to be

7.4x107% A for (ay,y —ay) and 8.2 x 1075 eV for AV in the
14 X 14 X 14 supercell, for example. Ky, = 313 GPa was determined from the
strain-stress relation of the MTP for W.

According to the energy change trend in Fig. 5.1-1, approximately 7 X 7 X 7
supercell is needed to make the energy change smaller than 0.001 eV from the value
of n — oo, corresponding to the dilute limit. However, increasing the supercell size
in NPT-MD is practically difficult because the magnitude of system energy
fluctuation increases with the number of atoms, which necessitates longer

simulation times to maintain the constant precision in enthalpy calculation.
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Specifically, the standard error of the mean (SEM) of the system energy is

proportional to Vn3, and thus the simulation length and total simulation cost of MD
increase in proportional to n3 and n®, respectively, to achieve a constant precision.

Note that the precision of the solution enthalpy is relevant with the SEM of the

system energy, not the SEM of per-atom energy, which is proportional to 1/Vn3.

Since it is impractical to adequately suppress both SEM and FSEs at NPT-MD,
we propose an effective method that eliminates volume expansion effects by applying
the same volume to both hydrogen-dissolved and pure lattice in NVT-MD with small
supercells. In other words, the isothermal-isobaric partition function is approximated
by a representative canonical partition function whose volume is an equilibrium one

of the pure metals at the NPT ensembles.

Q(Ny,V,T)e PPV
Y Eq.5.1-11

I/T'EP(NMiPrT) = (V>NPT(NM7P1 T) = E 4 A(N P T)
ML,
|74

The FSEs due to the lattice expansion are eliminated since hydrogen
dissolution does not contribute to the expansion in this method. This approximation
is likely valid under the dilute hydrogen concentration limits for the following two
reasons. First, the equilibrium lattice constant difference between the hydrogen-
dissolved and the pure metallic systems and the energy difference induced by the
lattice expansion converge to zero as the system size grows, as clearly seen in Eq. 5.1-

12 and confirmed in Fig. 5.1-1.

3 3 2
_n Ky Whiw - d
2a3, (\"" " 3Kkyn3a? v
n3Ky (W, 2
= 3W [ HEW =3 4 0(n‘6)]
2a;, L Ky
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~AUM) =0(n™?) Eq.5.1-12

Second, at thermodynamic limit (N, (V)*T - ), both NPT ensemble
with A(N,P,T) and NVT ensemble with Q(N, (V)"PT,T) should produce the same
solution enthalpy. Finally, in the NVT ensemble with Q(N,(V)NPT,T), the regions

that strongly interact with hydrogen contribute to the most of solution energy.

Thus, in this study, the isothermal-isobaric partition functions are
approximated as Eq. 5.1-13 by using the canonical partition function of the

equilibrium volumes that dominantly contribute to it.

A(Ny, Ny, Py, T) = Z Q(Ny, Ny, V, Te PPV §(V — V)
v Eq.5.1-13
= Q(Ny, Ng, Vyepp, T)e PPz Vren
H(Py,, T)

= kBTZ

1 <8A(PH2, T))

A(PHZ’ T) orT

Hj

_ kpT? <0Q(Vrep, T)e—ﬂPHerep>
 Q(Vrep, T)e™FPiatrer or P

2 —BPy. Vre
= kB—T (a_Q> e_BPHZVrep + Q <M>
oT p

Hj

- -BPy,Vre
Qe B Hj 14 PHZ aT 0
1/,0Q 1 de PP Vrep
= kpT? —(—) t— < )
Q\aT Py, € BPH,Vrep aT Pi,
2 ()
Q\ar/p,
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B Z E; 1 (0E e PEs
T L\ kgT? kT \OT 0
] H>

Z E; 1 (OV) <6Ej> <e‘BEj>
= 2—_ — —
C\koT? " kg 0T, \3V ), J\"Q

where E; denotes internal energy of microstate j. Energy of each microstate in the

canonical ensemble has nothing to do with Py,. In each microstate, fractional

), @),

E; is a function of position {ql} and momentum {pl} space, where each position

coordinates are fixed.

Hp

(qij ) is defined as the product of volume length (VE) and fractional coordinate

()
5/} o!) = 5 (e} 1)

For the volume expansion of microstates, the fractional coordinates are fixed.

(5, 2T -t

3N 3N
A=

Where W; denotes the virialof microstate j.
2 ()
Q\aT/p,,

—BEj —BEj
“ero( ) ), X ) ()

J
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a2 () ), (T

 kgT? : ) kgT \0T /p,,, : 3V Q
1 1 0V w\N'T

— NVT —(— -

kpT? (E) (I/rep’T)+kBT<aT)pH2< 3V> (Vrep: T)

1 ae_ﬂPHZVrep
e_ﬁPHZVTeP oT p

PHZV;'ep _ PHZ <8Vrep>
P

H>

kT2  kgT\ oT

H>
Therefore, the enthalpy is expressed by the equilibrium internal energy ((E)"'T)

and virial ((W)"YT) of NVT ensembles.

H(Pu,, T) = [(EYYT (Vrep, T) + P, Vrep |

oV, w\NVT Eq.5.1-14
(), [ memn]
Py,

oT 3V

To determine V.., (PHz’ T), Quasi-harmonic approximation was used for the
pure metals in the whole temperature ranges, including ZPE effects. (E)"'Tand

(W)HNVT were replaced with the time-averaged values in MD.

5.1.3. Calculation of solution entropy Ss.;
5.1.3.1. Entropy as a function of temperature (T > Ty)

The temperature dependence of entropy at an isobaric condition is

expressed as

(65) _1<6H) Eq. 5115
ar), ~T\ar)," 491

Assuming that the entropy at T, K is known, S(T,), the entropy at T is calculated

using the temperature dependence of enthalpy as Eq. 5.1-16.
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T

T8s 1 ,0H
S(T) = fT <ﬁ)p dT + S(Ty) = fT 7<ﬁ)p dT + S(Ty) . Eq.5.1-16
0 0

Since the enthalpy term is obtained in Section 5.1.2, what we need to calculate is

S(Ty) here.

5.1.3.2. Absolute entropy at Ty = 100 K: Thermodynamic integration

If ZPE is comparable to hydrogen migration barrier, the probability of
hydrogen being distributed even in places far away from the T-site cannot be ignored,
making it unreasonable to approximate hydrogen dynamics with quantum harmonic
approximation at sufficiently low temperatures. Therefore, a two-step scheme was
implemented. First, we approximate the hydrogen-trapped lattice at 100 K with
classical harmonic oscillators. In this case, since there is no ZPE, the 1-d average
kinetic energy of hydrogen is about 4.3 meV at 100 K according to the equipartition
theorem. Considering that the migration energy of hydrogen in typical bcc metals is
much larger; e.g., 95 meV in Fe and 200 meV in W, classical harmonic approximation
(CL-HA) is reasonably used to estimate free energy of CLMD at 100 K, as shown in Eq.

5.1-17. v denotes vibrational frequency at the tetrahedral sites.

kBTO
v

n ) + 1] Eq.5.1-17

SCLMD (TO) ~ SCL—QHA (TO) — Z kB [ln(
%
Here, we use CL-QHA at 100 K as the state whose thermodynamic quantities are

known.

Subsequently, to take into account the quantum effect without HA, the Scaled
Coordinate (SC) method suggested by S. Habershon and D. Manopoulos[90], a method
of thermodynamic integration from classical to quantum state, is used to calculate

free energy difference between PIMD and CLMD at 100 K.
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SC
av, U
Z(q] ac) <%()> Eq.5.1-18
]
A

where scaled coordinate of the j-th bead at coupling parameter (A) is uf, and it is

] )
defined as an interpolation between j-th bead’s position (qj) and the centroid
position (g.). n is the total number of imaginary time slices, or “beads”. The bracket

notation (- )ic denotes an ensemble average of SC Hamiltonian (H3°).

n
1
;2 q; Eq.5.1-19
j=1
ul =2q; +[1 - Mg, Eq.5.1-20
n 2
p;j 1 2
H:C(p.q; 1) = Z [ﬁ +oman(q; = qj-1) + V(ut) Eq.5.1-21
=1

Therefore, the absolute entropy of PIMD at 100 K is calculated as follows.

FERMP=PIMD (T
-[(E)e
da
= [URIMP (To) — USKMP (To)] — To[SEIMP(Ty) =SS (To)]

2 SEIMP (7)) = SE5° Q“A(m

sol

d/1 yPIMD (T Y CLMD (T Eq.5.1-22
d/1 + sol ( 0) sol ( 0)
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5.1.4. Statistical mechanical description on hydrogen
5.1.4.1. Partition function of diatomic molecules

The diatomic molecules have translation, rotational, and vibrational motions

as well as nuclear and electron spin degeneracy.

QHZ = QtransQrothianuleelec ECI- 5.1-23

For the translational motion (Qtqns), it is well approximated by that of
classical ideal gas because average distance between the molecules (dg,e) is far

longer than their thermal de-Broglie wavelength (4,,) at 100 K. That is, A =

S _ am sV _ kgl
o kaT 1.2A and dg,, = 15 A because 3 d3,e = N
3
0 _ <27TmH2kBT>2 <NH2kBT> Eq.5.1-24
trans h2 P
Hy

For the rotational and vibrational motions, the coupled cluster method
which contains all single and double substitutions (CCSD) was used to calculate the
exact energy under the vibrational (n) and rotational quantum number (J). Different
nuclear spin degeneracy was considered for fermion (H,, T,) and boson (D,). Thus,

rotational and vibrational motions as well as nuclear spin degeneracy are coupled in

fermion boson
Qrovib and Qrovib .

Qlarmion = z 2(2] + 1) e~FBcasp ()

even] n
Eq.5.1-25
+3 z Z(Zj + 1) e PEccsp(n))
odd] n
Fosip =6 z Z(Zj + 1) e~ FEccsp(n))
even] n
Eq.5.1-26
+3 z Z(Zj + 1) e PEccsp(n))
odd] n
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For electronic partition function (Q,..), only ground state bonding orbital
was considered because its large gap from the 1st excited energy. The electron spin

degeneracy at ground state (g,) is one because they are paired.

Qelec = z gle_ﬁEelec(l) ~ e_ﬁEelec(O) Eq. 51-27
l

5.1.4.2. Spin degeneracy

Table 5.1-1 Comparison between previous studies and the current study regarding
assumptions about the spin states of H nuclei and their electrons.

# of spin Electrons | Electrons of | Nuclei Nuclei of
Remarks
states of H, dissolved H of H, | dissolved H
Nuclear rotational
motions and
Fowler [91] 1 1 1 1
nuclear spins are
decoupled
Self-trapped states
[93]: one electron
Ogawa [92] 1 2 4 2 of dissolved H has
two degeneracy in
1s(T) and 1s({).
This study 1 1 4 2

5.1.4.2.1. Electron spin degeneracy

(Electrons of H,) According to the molecular orbital theory [89], two
electrons are supposed to occupy the bonding orbitals (o), the ground state, which

leads to a spin singlet state and its spin degeneracy to be 1.
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(Electrons of dissolved H) Fowler simply assumed that the valence electron
of dissolved H behaves like a free electron, so its spin degeneracy would be 1. To the
contrary, Ogawa considered that as 2 because the dissolved hydrogen atom is in a self-
trapped state where the electron of dissolved H has its own spin degenerate states.
According to our analysis of partial density of states on Hin Fes, and W;,, Fowler’s
assumption is more likely to valid because hydrogen has only 33 % portion in electron.
In addition, and the DOS of up-spin electrons is the same with that of down-spin
electrons, and thus no spin is induced in the system. Therefore, electron spin

degeneracy of dissolved H should be 1.

(a) Fe (byw

# of states/eV

# of states/eV

Energy (eV) Energy (eV)

Fig. 5.1-2 Projected density of states of hydrogen in (left) Fe and (right) W below
fermi energy. The fermi energy is 5.8 eV in Fe and 7.8 eV in W.

5.1.4.2.2. Nuclear spin degeneracy

bcc-W is paramagnetic, but bcc-Fe is ferromagnetic. Without external
magnetic fields, nuclear spin degeneracy of hydrogen is 2 in the paramagnetic metal.
The magnetic field inside bcc-Fe can vary depending on the specific conditions and
properties of specimens. Nevertheless, we consider that the energy level splitting

from the intrinsic magnetic field is negligibly small. The magnetic moment of the

0~ 8evV

. eh 1
proton Is — ~
mpc

in SI unit [94]. Then, the magnetic field should be at least

10000 T to make energy difference of 0.1 meV between the spin-up and spin-down

states. Thus, nuclear spin degeneracy of hydrogen in metals is 2 in both W and Fe.
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In Fowler’s H solution model, nuclear rotational motions and nuclear spins
are decoupled. At high temperatures, this assumption can be justified because the
energy levels of rotational motion are approximately continuous. However, since our

target temperature is above 100 K, we considered their coupling effects.
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5.2. Solution enthalpy

H-H interaction ; Dilute limit Full dynamics | Harmonic
— | —) — —

Thermodynamic limit Thermal expansion

; Q-QHA Q-HA
: H NViep(T)T M H NViep(0 K)T M

H 1(1%71“1 ) H IE%D (1) = |H Iﬁ{le,(T)T €))

Fig. 5.2-1 A schematic diagram of methods and assumptions in calculating
hydrogen solution enthalpy

Solution enthalpy of H is defined as the enthalpy difference from a gas H,

molecule to H-dissolved state.

1
Hso1(T, Po) = [Hy 41 (T, Po) — Hu (T, Po)] — > i, (T, Py)

Hy ey (T) — Hy(T)
= [(E>%‘:-7;-I (Vrep: T) - <E)%VT (V;‘ep: T)]

T <avre,,> (W (Ve T) = W (e T))]

aT

where Vo, = (V)YPT(Ny, Py, T) and P, is consistently 1 bar in this study.

Note that the enthalpies of the hydrogen molecule were consistently calculated using
the Q-HA method for the rotational and vibrational energies. H, and T, were
considered ideal Fermi gases, while D, was assumed to be an ideal Bose gas. Fig. 5.2-
2 shows the hydrogen solution enthalpies from PIMD/CLMD/quantum
quasiharmonic approximation (Q-QHA) with reference to the classical
quasihaarmonic approximation (CL-QHA) results. The only difference between
harmonic and quasiharmonic approximation is inclusion of volumetric change in the
calculations. The quasiharmonic approximation includes thermal expansion effects,
so it’'s more accurate than harmonic approximation. Because the three methods

were used to calculate the pure and hydrogen-dissolved metals, enthalpies of H,, D,
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and T, were cancelled out.

0.3
(a) Fe ——Q-QHA (b) W ——Q-QHA

<> PIMD (96 beads) <> PIMD (96 beads)
= 0 PIMD (64 beads) [0 PIMD (64 beads)
@0 2] O PIMD (32 beads)|| | 2 PIMD (32 beads)
' A PIMD (16 beads) PIMD (16 beads)
c % W/ PIMD (4 beads)
& *
()
£
©
2014 4
©
¥ -
e y
w A\
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i
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Fig. 5.2-2 Hydrogen solution enthalpy in (a) Fe and (b) W. Black, red, and blue
colors denote H,, D, and T,, respectively. The enthalpies of PIMD/CLMD/Q-QHA
were subtracted by the CL-QHA values.

According to the Trotter-Suzuki approximation[95,96], a sufficiently large
number of beads should be used to accurately reflect the NQEs at low temperatures
in PIMD. On the other hand, at high temperatures, the influence of NQEs is small, so
smaller numbers of beads are sufficient to maintain the same accuracy. In Fig. 5.2-2,
The bead convergence was checked for H, solution enthalpy by varying the number
of beads from 4 to 96 above 100 K. This bead convergence test should be performed
in the whole temperature ranges to minimize computation cost while maintaining
accuracy: 64 beads for 100K ~ 200 K, 32 beads for 300 K ~ 400 K, 16 beads for 500
K ~ 1100 K, 4 beads for 1200 K ~ 2000 K. Conservatively, the estimated optimal
numbers for H were applied for D and T at the same temperatures since the NQEs are
less significant for heavier isotopes. In Fig 5.2-2, the following three points are worthy

to discuss: NQEs, dynamic effects, and isotope effects.

In Section 4, we confirmed that the classical-quantum crossover

temperatures of H diffusion in Fe and W are 500 K. However, in the case of H solubility,
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the enthalpies of Q-QHA and PIMD exhibited substantial deviations from their
classical outcomes, at temperatures exceeding 800 K in both metals. For example, the
difference in H solution enthalpy between PIMD and CLMD in Fe was 65 + 4 meV at
1000 K whose Boltzmann factor is around 0.5. If CLMD was used to predict the 1000
K solution enthalpy, solubility would be overestimated by about twice as much. The
reason why the NQEs of solution appear more pronounced than those of diffusion at
temperatures above 500 K is owing to the difference in compactness between the
most stable site (T-site) and its counterpart. In the case of the solution, the
counterpart state of hydrogen in T-site is a gas in vacuum, so atomic density near
hydrogen significantly changes during the dissolution. On the other hand, the
diffusion process occurs when hydrogen migrates from a T-site to saddle sites. The
change in atomic compactness during the migration must be very small, compared to
that during the solution process. Therefore, the NQEs of solution are significant even
above the crossover temperature of diffusion, and classical approaches may fail to

predict accurate hydrogen solubility.

The dynamic effects can be estimated from the difference between the
results of MD and QHA in the same approach. Generally speaking, the energy of
hydrogen decreases at low temperatures, leading to a reduction in thermal
displacement. This causes hydrogen to be strongly bound to the most stable site (T-
site), making the dynamic effects negligible. If so, harmonic approximation can
effectively replace MD. In a classical approach, the enthalpies of CLMD must converge
to those of CL-QHA since kinetic energy becomes zero at 0 K limit. However, in a
quantum approach, the kinetic energy of hydrogen does not decrease in proportion
to temperature. As a result, anharmonicity does not completely vanish at the limit of
0 K. As shown in Fig. 5.2-2, CLMD enthalpies converged to CL-QHA enthalpies below
200 K in the metals. While the dynamic effects of PIMD are negligible below 500 K in
W, the PIMD enthalpies for Fe substantially deviated from the Q-QHA enthalpies
below 200 K, which imply that the low-temperature dynamic effects including NQEs

are significant only in Fe.
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Isotope effects were not observed in classical methods, which is consistent
with classical statistical mechanics. On the other hand, the quantum isotope effects
were observed in Fe where the difference in the solution enthalpies between PIMD
and Q-QHA decreased below 200 K as hydrogen mass increased. However, such

quantum isotope effects were not observed in W.
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5.3. Solution entropy

H-H interaction ; Dilute limit
)|
! Thermodynamic limit
: _ PIMD
SN : Skpr(T) | = SiVyep(7(T)
1 )”// MD \
(T)T
AS = f —<7> dT
i a7 p
PIMD
Snv. (T)T(IOO K)

4
Thermodynamicintegration
from quantum to classical

Absolute [ cL—QHA
entropy [ MVrep(DT

(100K)| ~ [Syvreryr(100 K)

Dynamic effects

Fig. 5.3-1 A schematic diagram of methods and assumptions in calculating
hydrogen solution entropy

5.3.1. Solution entropy at T

Thermodynamic integration from CLMD to PIMD was conducted for

FCliMD—>PIMD

calculating AFg, which is used to estimate PIMD solution entropy (SZ/MP

sol

at 100 K by the following equations

CLMD—-PIMD __ CLMD—-PIMD CLMD—-PIMD
ASsol - (AUsol - AFsol

PIMD _ cCLMD CLMD—PIMD
Ssol - Ssol + ASsol

Fig. 5.3-2. shows the dF/dA values of MD and HA by the SC method[90] for the
thermodynamic integration. Habershon and Manopoulos[90] analytically derived

mathematical forms of the SC method with quantum harmonic approximation.

A y;Acoth(y;A) — 1
= Z Eq.5.3-1

where y; = fhv;/2. In this study, all vibrational modes of both hydrogen and metals
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are considered in the QHA.

a) Fe| (b) W]
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Fig. 5.3-2 Thermodynamic integration of MD and HA from classical (A = 0) to
quantum (A = 1) approach at 100 K in (a) Fe and (b) W. Black, red, and blue colors
denote H, D, and T, respectively. 7-points Gauss-Lobatto quadrature was applied for

the numerical integrations from CLMD to PIMD.

While analytical form of dF/dA was derived in HA, massive computations
with 64 beads/atom are required to increase the number of data points in
“CLMD—PIMD”. Because small number of data points can lead to large error in the
numerical integration, there is a need to discuss the most suitable numerical

integration method for application of the SC method to our purpose.

Rather than using equal distance for numerical integration of PIMD results,
it is considered more efficient to use Gaussian quadrature with few points. In
particular, for the SC method, the values of the two endpoints (A =0,1) can be
calculated without additional computations by understanding the physical meaning
in the formulas. dF /dA atthe right endpoint (A = 1) can be obtained from twice of
the difference in kinetic energy between CLMD and PIMD, while the value of the left
endpoint (A = 0) is zero by definition[90]. If the Gauss-Lobatto rule, which includes
both endpoints in the quadrature, is used, it is considered the most efficient

integrator for performing the SC thermodynamic integration. In this study, the 7-point
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Gauss-Lobatto rule was used because it resulted in at most 0.02 meV error in the
numerical integration from CL-HA to quantum harmonic approximation (Q-HA)
where analytical solution of HA is known. Table 5.3-1. shows the change of

thermodynamic variables from classical to quantum approaches at 100 K.

It is worth discussing how the agreement between MD and HA varies
depending on the metals. While there is a large difference of 35 meVin AFSLMP—PIMD
between HA and PIMD for H in Fe, the difference is only at 8.8 meV for H in W. This
discrepancy indicates that the HA method agrees well with PIMD only for W due to
the weak dynamic effects, while it failed to reproduce similar results of PIMD for Fe.
A scientific discussion of these phenomenological differences will be provided in
more detail in Section 5.5.2. In terms of isotope effects, the gap between HA and PIMD

decreases as the mass of the isotope increases for Fe and W, which can be understood

that the NQEs become smaller for the heavier isotopes.
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Table 5.3-1 Change of thermodynamic variables from classical to quantum
approaches at 100 K.

Unit: meV H in Fe HinW
CLMD - CL-HA - Q-
Method CLMD - PIMD | CL-HA - Q-HA
PIMD HA
AFEEMD—PIMD 153.6 188.6 1774 186.2
AyEEMP—PIMD 211.0+0.5 252.8 2284+ 0.7 236.1
ASELMD=PIMD 57.4 64.2 51.0 49.9
Unit: meV D in Fe DinW
CLMD - CL-HA - Q-
Method CLMD - PIMD | CL-HA - Q-HA
PIMD HA
AFEEMP—PIMD 101.3 116.7 113.0 118.2
AyEEMP—PIMD 146.1+ 0.5 166.8 155.9+ 0.5 160.2
ASELMD—PIMD 44.8 50.1 42.9 42.0
Unit: meV T in Fe DinW
CLMD - CL-HA - Q-
Method CLMD - PIMD | CL-HA - Q-HA
PIMD HA
AFEEMP—PIMD 78.1 86.9 85.5 89.3
AU ELMD—PIMD 117.7+ 0.5 129.2 124.4 4+ 0.7 126.4
ASELMD—PIMD 39.6 42.3 38.9 37.1

5.3.2. Entropy change above 100 K

As can be seen from the fact that the CLMD solution enthalpy converges to

that of CL-QHA in the 0 K limit in Fig. 5.2-2, it is evident that the entropy CLMD can
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be replaced with that of CL-QHA at sufficiently low temperatures due to its small

thermal displacement.

SEEMP (100 K) = SEHH4(100 K) Eq. 5.3-2

sol

By correcting the entropy difference between CLMD and PIMD obtained in Table 5.3-
1, the 100 K solution entropy of PIMD can be calculated.

SPIMP (100 K) = SE57"4(100 K) + ASSHMP=PIMD (100 K) Eq.5.3-3
PIMD
Using the relationship dSPIMD - (aHz—"Tl) of the isobaric-isothermal ensembles,

the PIMD solution entropy above 100 K in the form of an integrated solution enthalpy

is represented as Eq. x.

T (oHEn
s = | dr + SEMP (100 K)
1 P

wox T\ T

T 1 /9HEIMD Eq.5.3-4
gf 7( il ) dT + SE59H4 (100 K) a

100 K P

+ ASEEMP=PIMP (100 K)

For the integration, the cubic spline method was used to approximate the continuous
values of HI!MP(T) because its exact function form is unknown. The solution

entropy of CL-QHA, Q-QHA, and PIMD are plotted in Fig 5.3-2.
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(a) Fe (b) W
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Fig. 5.3-3 Hydrogen solution entropy calculated by CL-QHA, Q-QHA, and PIMD in
(a) Fe and (b) W. Black, red, and blue colors denote H,, D,, and T,, respectively.
Note that the plots denote only non-configurational entropies.

As shown in Fig. 5.3-3, the 100 K PIMD solution entropy was estimated by

the following procedure. At first, S5"% (100K) values were calculated for all

sol

vibrational modes. Secondly, PIMD solution entropies at 100 K were calculated by

adding ASEEMP=PIMD (100 K) to the corresponding SSCOLI_QHA(NO K). Finally, the
entropy changes from 100 K were calculated by the thermodynamic relation

PIMD
dsPmMD _ L (aHsol

sol ] e ) In Fig 5.3-2, the following two points are worthy to discuss:

dynamic effects and isotope effects.

Similar to the phenomena observed in Fig. 5.2-2 and Fig. 5.3-2, the PIMD solution
entropies for Fe substantially deviated from those of Q-QHA, while the PIMD solution
entropies for W showed good agreement with Q-QHA. To be specific, in the case of W,
both methods exhibited a similar trend above approximately 800 K. However, in the

case of Fe, the values and slopes varied between PIMD and Q-QHA.

In the case of isotope effects, PIMD produced consistent results above 500 K
for all cases in the metals, except for H, in Fe. [t exhibits not only different values but

also distinct slopes compared to the trends of D, and T,. This indicates that the NQEs
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of H; alone remain significant even at a temperature as high as 1000 K.
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5.4. Solubility and Permeability
5.4.1. Binding energy correction

The MTPs were only trained in hydrogen-dissolved bulk systems, so they do
not represent the accurate hydrogen binding energy with DFT accuracy. Thus, a
correction term should be added to make the 0 K binding energies of the MTPs
equivalent to those of the DFT calculations. The correction only deals with classical
potential energy, not ZPE although its volume is fixed to the 0 K volume (V;pg_o ) of

the pure metals including ZPE effects determined by Q-QHA.

1
BEZpE_ok = [PEIQI;TH(VZPE—OK) — PER"" (Vzpp—ox) — EPEQZFT]

1 Eq.5.4-1
- [PEI\%II}-)I (Vzpe—o ) — PEx"" (Vzpg—ok) — EPEII-‘I/IZTP]
Then, the accurate form of the solution enthalpy is written as follows.
Hsol(Tv PO)
= BEZE o+ [(UMH (Veep (T, Po), T) = (UMY (Vi (T, Po), T))]
WVrep (T, Po)\ [iW\M'"
+ Ty | —=——= <—> Viep(T, Py), T Eq.5.4-2

1
= (P (Veep (T, Po), T)] =5 Hu, (T, Po)

corr

Regarding the 0 K binding energy correction term (BEzpr_,x), DFT should not be
necessarily very accurate for it because the DFT systematic errors may not be
sufficiently cancelled out when calculating the total energy difference between a
hydrogen molecule in vacuum and hydrogen solute in lattice[97]. We estimate that
the DFT error would be low for the migration energy in diffusion since the two
systems being compared have the same lattice structure. On the contrary, in the case
of solutions, the two systems being compared are of different types, namely a metal
and a diatomic molecule. Therefore, the systematic error inherent in each system
would not be fully canceled out but rather included in the 0 K DFT binding energy.
The estimated error in the DFT binding energy will be discussed in Section 5.5.1.1. by
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comparing activation energies of permeability between PIMD and experiments.

Table 5.4-1 0 K Binding energy of H in T-sites predicted by DFT calculations. ZPE
corrections are not included here.

Energy
Unit: eV Fe w Sup.ercell K—sp.ace cutoff Volume
size grid (eV)
0K
volume
This study | 0.183 0.909 4x4%x4 | 5x5x%x5 650 including
ZPE
effects.
Jangand |, 5 4x4x4 | 2x2x2 | 350
Carter[9] Geometry
Lee et optimized
0.94 2X2x2 | 8x8x8 450
al.[98] volume
Kong et
al.[99] 0.89 3x3x3 | 5Xx5x%X5 500
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5.4.2. Solubility and

permeability
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Fig. 5.4-1 H, solubility and its isotope effects with D, and T, in (a) Fe and (b)

Decoupled
w. eQHA

vibrational motion of the metals.

denotes hydrogen solubility calculated with Q-QHA excluding every

In Section 3.1. and 3.2., we proposed systematic ways to use PIMD and the
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MTPs for accurate consideration of NQEs and dynamic effects when estimating
solution enthalpy and entropy above 100 K. Fig. 5.4-1. shows the predicted solubility
of H, and the its isotope effects with D, and T, in the metals. In the case of Fe,
there was a significant difference of approximately 60-fold between Q-QHA solubility
and PIMD solubility at 100 K. On the other hand, in the case of W, the difference was
only around two-fold at the same temperature, which indicate that using Q-QHA in

predicting hydrogen solubility in W can be well justified while it cannot be in Fe.

According to classical statistical mechanics, solubility does not depend on
hydrogen mass, so the H, solubility should be equal to the D, and T, solubility.
However, according to quantum mechanics, isotope effects arise due to the difference
in ZPE between hydrogen molecule and the hydrogen-dissolved states, which
depends on the mass. This can be observed in the insets of Fig. 5.4-1. The prominently
high solubility specifically for H in Fe is attributed to the significantly higher solution

entropy compared to other isotopes, as shown in Fig. 5.3-3.

One notable point is that, regarding the solubility of H,, in the case of Fe, the
Arrhenius plots of Q-QHA showed significant non-linearity above 800 K unlike that of
W. This phenomenological difference can be explained by the coupling between
hydrogen vibrations and lattice phonons. In the case of W, the vibrational motions of
the dissolved hydrogen are almost decoupled from the lattice phonons, whereas in Fe,
they are strongly coupled. This can be understood by observing how the phonon
frequency changes depending on the presence of hydrogen. In W, the phonon
frequency changes by a maximum of 0.05 THz (0.7 %) after hydrogen dissolution at
the 0 K volume. In contrast, in Fe, it changes significantly by at most 0.5 THz (4 %). As
the temperature arises, the change equilibrium volume affects the vibrational
frequencies. The phonon vibrations of W show only small difference from the
dissolved hydrogen, so the thermal expansion effects on lattice phonons are cancelled
outin the solution enthalpy and entropy. On the contrary, in Fe, the vibrating motions
are strongly dependent on the presence or absence of hydrogen under the thermal

expansion. Therefore, the metallic vibrations of Fe caused by the thermal expansion
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has a meaningful influence on the entropy and enthalpy, which resulted in non-linear

Arrhenius plots in Fig. 5.4-1 (a).

According to this analysis, for metals with weak hydrogen-metal coupling,
the use of HA without volume change can be justified. Lee et al. used HA to estimate
solubility with the 0 K solution energy and vibrational frequencies of only hydrogen,
but produced very similar results with ours. Kong et al. considered the thermal
expansion effects in their solubility calculations. However, their solubility exhibits a
noticeably different slope compared to ours, which cannot be solely attributed to the
difference in the binding energy presented in Table 5.3-1. This discrepancy can be
caused by the fact that they used experimental data to determine the solution entropy

and neglected the temperature dependence of entropy in their calculations.

If hydrogen is strongly coupled to metals, like Fe, the differences in metallic
motions due to thermal expansion effects can have a significant impact on solubility,
indicating the importance of QHA for the systems. While there are numerous reported
experimental values that could be compared with our computational results, we

decided not to directly compare them for the following reasons.

Firstly, some direct measurement techniques are not available because the
hydrogen concentrations in Fe and W are too low. The direct solubility measurement
techniques, such as Differential scanning calorimetry (DSC), thermal desorption
spectroscopy (TDS), have limitations in materials with dilute hydrogen concentration
because the magnitude of gas signals are too weak to detect. Secondly, solubility in
hydrogen permeation experiments is derived indirectly by dividing permeability by
diffusivity. While reported diffusivity values may exhibit significant deviations,
permeation data tends to have relatively smaller deviations. Hence, solubility data is
also expected to have significant deviations [100]. Finally, similar to diffusivity,
solubility is significantly influenced by the microstructure and can be challenging to
compare with our current computational results, which assume a defectless lattice.
The impact of microstructural effects makes direct comparisons difficult. Therefore,

it would be reasonable to compare our calculated permeability with corresponding
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experimental values which is free from large deviation. This allows for a meaningful
comparison with reported experimental values, as the diffusivity and solubility were

calculated by the same moment tensor potential.
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Fig. 5.4-2 H, permeability in (a) Fe and (b) W. “CLMD+PIQTST” denotes the
parameterized functions which were fitted to the diffusion coefficients of CLMD
above 500 K and PIQTST below 300 K[101]. Semi-classical transition state theory
(SCTST) is harmonic approximation to calculate diffusivity including ZPE and
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tunneling effects. Dgcrsr values were calculated with Eq. (12) in Di Stefano’s study
including metallic vibrational modes.

To convert the solubility into permeability for comparison with experimental
values, we selected corresponding methods that are consistent with Q-QHA and PIMD.
Dgcrsr is consistent with 6,_oy  as it takes into account ZPE and tunneling effects
under the harmonic approximation, while using migration barrier and vibrational
frequencies at the thermal equilibrium volume. D¢pypipigrsr represents the
parameterized functions obtained by fitting CLMD diffusivity at temperatures above
500 K and PIQTST diffusivity at temperatures below 300 K. It closely reflects dynamic
effects above 500 K as it provides values similar to CLMD, but it has the limitation of
incorporating harmonic approximation in PIQTST at low temperatures. However,
PIQTST is a relatively accurate method with an accuracy that shows a difference of
only about twice the value of RPMD/CMD at 100 K. Since most experimental values
are measured at temperatures above 300 K, multiplying them by 6p;yp is a

reasonable approach to compare with the experimental values.

The converted PIMD permeability (= Opimp X Dermp+pigrs ) shows good
agreement with the available experimental values at high temperatures as seen in Fig.
54-2 (a) and (b). On the other hand, the converted Q-QHA permeability
(= Op;up X Dscrst) showed a similar trend to the experimental values only for H in
W, while it exhibited significant differences for H in Fe. As mentioned earlier, this
highlights the fact that the harmonic approximation cannot produce accurate

solubility for H in Fe.
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5.5. Discussion

5.5.1. Error analysis in solubility

5.5.1.1. Systematic error: binding energy and finite system size effects
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Fig. 5.5-1 Activation energy of hydrogen permeability in (a) Fe and (b) W.
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In Fe, an error of about 0.01 eV scale was observed, while in W, it is on the

scale of 0.1 eV. However, since the experimental values have GB effects, it is difficult

to fully trust them.
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Fig. 5.5-2 FSEs in solubility determined by CLMD-NVT. y-axis denotes

(Hsou(M-HEPHM))
exp KT .

According to the analysis of FSEs by CLMD in Fig. 5.5-2, there can be a
systematic error of approximately 10 % ~ 20 % in the low-temperature solubility

induced by FSEs for a 4x4x4 supercell size.

5.5.1.2. Random error: Numerical precision of solution enthalpy & solution
entropy
SEMPT) 1 (T e HEP D)

O(T) = 6 exp [ kB kB sol kBT
To

The first term is determined by AFSIMP=PIMD (T Y and AUSEMP=PIMD (T,

but we suggest that the former has higher uncertainty than that of latter. This is
PIMD

. dF,
because uncertainty of %

AFEEMD=PIMD (7Y should be smaller than that of AUSEMP=PIMD (T,

vanishes at 4 —» 0 limit, so the random error of
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(S _ L, (HEMP(T)
kg kpTo
The second term is calculated by the numerical integration with equal

intervals (AT = 100 K in this study).
QHPIMD
s =g+ ()
1 fTo+AT 1 (@HEIMD A J-T0+2AT 1 (@HEIMD i) s
kB T oT T T\ 0T
0+AT
T 1 aHPIMD
(o (5%) )

_ L [(HEGI (T + AT) — HGP (T,) fT°+AT1dT N
AT T

kg
(O (7 1,
AT r-ar T

1 K HEIMP(Ty + AT) — ;i,’lMD(To)>m (T0+AT) N

kp AT Ty
(Hm BTt Ty
AT T — AT
1 Ty + AT
Em HEMP (Ty) In ( - )
LPIMD (T +AT)(t — AT
+ Z sol ( )l 72
T=To+AT, To+2AT, -, T—AT
+ P (1) In (-——-)

The variation of the third term is as follows.

([ HEe )
kgT
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. . HPIMD (1)
The major error term of the first term <S"—

) is negatively correlated
kpTo

: ' HEIMP (T, To+AT : : .
with the first term of the second term( - S"kl A; o) ln( °;r )) Likewise, the third
B [
HPIMD(T)
term <— S"}é—T) is also negatively correlated with the last term of the second term
B

PIMD
(Hsol (T) ln( T

pc 7 AT)). Based on the negative correlation between the error terms in
5 —

each term, it can be inferred that even if the individual error terms are large, the

overall error in the final value, solubility, becomes smaller due to error cancellation.
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Fig. 5.5-3 Random error in each term of solubility.

At 100 K, since the errors are completely canceled out, there is no
uncertainty due to PIMD precision, only systematic errors exist. However, above 100
K, the uncertainty in PIMD enthalpy accumulates gradually. Starting from 500 K and
above, there is approximately a 4-5% uncertainty in the solubility of Fe and W owing

to this accumulated uncertainty in the PIMD enthalpy.
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5.5.2. Validation of harmonic approximation
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Fig. 5.5-4 H distribution on 001 plane calculated by PIMD-NVT at 100 K.
6 X 6 X 6 supercell was adopted to reasonably fix center of mass.

Anharmonicity is determined by relative difference between the ZPE and
classical migration barrier. Table 5.5-1 shows the migration quantities through the
trigonal sites in Fe and W. Because the ZPE calculation is based on harmonic

approximation, there may be systematic errors in ZPE.

Table 5.5-1 Classical migration barrier and ZPE with respect to the dominant
migration path (T-Tri-T).

Unit: meV Hin Fe HinW
Classical migration barrier 97 208
ZPE 51 42
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6. Conclusion

In this thesis, I developed and validated accurate and easy-to-use
computational methods for predicting hydrogen diffusivity and solubility in bcc
metals. While the use of QHA is not justified in some due to the large dynamic effects,

our method can be applied to any bcc metal regardless of its element.

In Section 3, MLPs were trained to reproduce the DFT force field near the
configuration space related to hydrogen dynamics in bcc metals using MS calculation
results and active learning. The migration barriers and normal mode frequencies
were reproduced with reasonable accuracy compared to those of DFT. The fast speed
of the MLPs also allowed long-time quantum dynamics simulations using large
numbers of atoms and beads, which is currently difficult with AI-PIMD. Consequently,
the simulation results in this study attained high accuracy at the DFT level and high

numerical precision.

In Section 4, the H diffusion coefficients obtained from CLMD/CMD/RPMD
were compared to analyze the NQEs. Their diffusion coefficients were almost
indistinguishable above 500 K considering the statistical errors. This implies that
NQEs should be considered for H dynamics below 500 K for all metals tested in this
study. Although there is an abundance of experimental data, most data show
inconsistent trends, mainly due to surface and trapping effects. Reviewing and
interpreting previous studies, we identified experimental data that were considered

reliable. The calculated results were in good agreement with the experimental data.

In Section 5, hydrogen solubility was predicted from PIMD, and compared to
experimental values after conversion to permeability. The NV(P)T approximation
removed the significant system size effects and calculation time that is required for
the NPT simulations. For the high migration barrier case (W), our process produced
almost the same solubility as QHA, while there was large difference for the low barrier
case (Fe). The calculated activation energy of permeability fell within the distribution

of the experimental values at high temperatures. We consider that the 0 K solution
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enthalpy of DFT is a main culprit for the difference from experimental results, which
should be overcome by exploiting more accurate ab-initio quantum chemistry

calculations.

We have presented a systematic methodology in our research that accurately
and automatically calculates hydrogen diffusivity and solubility in bcc metals
important for nuclear engineering. The most powerful aspect of this research is its
design to automate the entire process, from the generation of MLPs to the calculation
of diffusivity, solubility, and permeability. By pre-setting the elements and other
details of the metal, diffusivity and solubility can be calculated by the path integral
simulations. First of all, the established method can be used to construct a database
on diffusivity, solubility and permeability of all hydrogen isotopes for fusion reactor
materials. Considering the scarcity and large deviation in currently available data,
such a database generated by accurate computational methods will have a large
impact and contribution to nuclear fusion materials engineering. In addition, this
research can be applied to computational materials designs for finding better
functional materials that effectively reduce hydrogen inventory and leakage in
nuclear fusion reactors. Likewise, the methods developed in this study can be used to
better understand and predict hydrogen behavior in zirconium cladding alloys for
nuclear fission reactors. It also can be applied to designing functional materials that
prevent hydrogen-induced corrosion or hydrogen leakage in hydrogen ships

transporting liquefied hydrogen for hydrogen economy.
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Appendix
A1l. Key features of moment tensor potential

The building blocks of moment tensor potential are moment tensor descriptors,

My (n) = 2 fullrijl zi ) i ® -+ @ 13, Eq. Al

J
where n; is the atomic environment of the i-th atom, and r;; is the position of the
j-th atom relative to the i-th atom. “r;; @ -+ @ r;;” denotes v times of outer products
of r;j, and it describes the angular part of the interaction. f, addresses the radial

part of the interaction,

No
fullrish 20 2) = 2 Gy @ (ris]), Eq. A2
B=1

where z; and z; are the atomic types of the i-th and j-th atoms, respectively. ¢ =

{cf_ zi.z,-} is a set of radial parameters where u is the index of radial parameters. N,

is the number of radial basis functions, and Qﬁ(|rij|) is the p-th radial basis
function which consists of invariant polynomials and a smooth damping function.
These polynomials are symmetric to Euclidean transformations (translations,

rotations, and reflections) and permutation of equivalent atoms [34].

Moment tensor descriptors lower than a target level of moments are
contracted to a set of basis functions {B,}, which constructs the site energy of n;

as
V) = ) EaBe(n). Eq. A3
a

Here, & = {{,} is a set of coefficients for basis functions B, . Finally, the potential
energy of a specific configuration (cfg) can be calculated from the sum of every atom'’s

site energy as
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n
E™P(cfg) = Z V™ (n,). Eq. A4
i=1

A set of MTP parameters 6 = {§,c} are optimized by fitting to a training set
composed of energy, force, and stress data, which were prepared by first-principles
calculations. The target level of moments is called the MTP level, and it largely

determines the accuracy and efficiency of MTP.

A2. Conditions for construction of the MTP training sets

Table A1. The number of configurations included in the initial training sets.

Method Number of Number of

atoms configurations
(Metal; H)
MCMC* 2;0 122 123
Geometry 54:1 180 180
optimization

NEB 54;1 144 96

QHA with H 54;1 45 45
QHA without H 54;0 24 24

The expected effects of the initial training sets are as follows. First, the
training sets from Markov-Chain Monte Carlo (MCMC) method with random
distortions of lattice vectors were expected to ensure not only reasonable stability of
bcc phases at wide temperature and stress conditions, but also accurate elastic
properties. Second, Geometry optimized calculations for hydrogen at T, Tri, and O
sites at linearly expanded or contracted 3 X 3 X 3 supercells (96% ~ 108% from 0
K lattice constant) would enhance the accuracy of bulk modulus. Third, NEB images
of hydrogen migration from T-site to Tri-site, and from T-site to O-site at different
lattice parameters (96% ~ 104% from the 0 K lattice constant) are collected to the
training sets. Hydrogen migration at thermal lattice fluctuations would be improved

by the NEB training sets. Finally, irreducible configurations for the QHA calculations
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with finite displacement methods with and without one hydrogen atom at T, Tri, and

O sites were collected. The degrees of finite displacement were 0.03 A,0.10 4, or 0.30

A in isotropically deformed structures (0.96, 1.00, or 1.04 as the linear

contraction/expansion

anharmonicity.

coefficients) to partly

include the

information of

Table A2. Simulation conditions of the active learning scheme.

Active learning CLMD PIMD (64 beads)
ensemble NPT (0 GPa) NVT (0 K lattice constant)
Structure One H atom in a periodic 3x3x3 bcc supercell.

Fes, H, : 1000K

learning temperature W..H,:2400K 100K, 300K
timestep length (fs) 1 0.2
Maximum time (ps) 500 50
Vselect™ 2
Voreak 100 2

* y is the extrapolation grade which indicates a magnitude of extrapolation from a

training set [35].
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A3. MTP validation
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Fig. A1 Root-mean-square error (RMSE) of MTP energies in the training sets.

Table A3. Lattice constants (ag, unit: A) and elastic constants (C;;, unit: GPa) of pure

i
bcc metals. In the calculation, ag and C;; were obtained from geometry
optimization and the stress-strain relation without kinetic contribution, respectively.
In the experimental values, the vibration effect at zero-point energy was removed for
ay [56], and C;; was the extrapolated value at 0 K of the measured data near 4 K

[58-60].

Fe \'\
MTP DFT Exp. MTP DFT Exp.
ag 2.832 2.832 2.855 3.172 3.172 3.161
Ci1 258 278 239 533 543 533
Ciz 142 148 136 203 198 205
Cys 96 98 121 140 137 163
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Fig. A2 Vibrational frequencies of normal modes in (a)Fes4H4, and (b)W54H;.
Negative frequencies denote imaginary frequencies. Translational modes are not
considered in mean relative error (MRE) and root-mean-square relative error

(RMSRE).

A4. Simulation conditions of MD simulations

Table A4. Simulation conditions of CLMD/CMD/RPMD/PI-QTST.

Method

CLMD

RPMD

CMD PI-QTST
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One hydrogen atom in a periodic 4x4x4 bcc
System
supercell
Ensemble NVT NVE NVE NVT
Constraints
0K
Thermal equilibrium volume of pure
System size lattice
metal by CLMD
constant
Equilibration
1 0.2* 0.2* 0
time (ns)
Production
20 3 3 0.025
time (ns)
_ Real
Time
timestep 1 0.25 0.1
length (fs)
Imaginary
timestep 0.25 0.01 0.1
length (fs)**
Nosé-
Massive Nosé-Hoover
Thermostat Hoover _
Control of Chain[102]
thermostat
temperature
Number of
1 3 4
chains [103]
Adiabaticity
0.0625
parameter

* PIMD simulations under the NVT ensemble were implemented for equilibration of

the CMD/RPMD simulations.[104,105]

** Reference system propagator algorithm (RESPA) [106] was employed for time

integration.
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A5. Codes used in this study

The machine learning interatomic potential (MLIP) package [35], invented
by Novikov et al., was used to determine the extrapolation grade of configurations,

reinforce the training sets, and reoptimize MTP parameters.

The Vienna Ab Initio Simulation Package (VASP) [45-47] was used to
calculate electronic energy, force, and stress of atomic configurations by DFT.
Especially, VASP utilizes plane wave basis sets and pseudopotentials to efficiently

perform DFT calculations.

The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
[107] and Path Integral Molecular Dynamics [44] were used to perform atomistic

simulations of nuclei in classical and quantum regimes, respectively.
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