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Abstract 

 

Development of SPH-MHD Code for 

Wire X-Pinch Plasma Simulation 

 

Su-San Park 

Department of Energy System Engineering 

The Graduate School 

Seoul National University 

 

 

 

High-Energy-Density Physics (HEDP) is the study of matter under extreme 

states of pressure, temperature, and density, which are found in nuclear fusion, 

star formation, and high-energy-density experiments. Recent advances in 

experimental and computational techniques have increased the research capacity 

for HEDP, and the use of HEDP research is increasing in various fields. Pinch 

plasma, a phenomenon in which plasma is compressed by a magnetic field to 

form high density, is widely observed and studied as a means of achieving high-

energy-density. Especially, the X-pinch has been attracting attention as a valuable 

tool for exploring high-energy-density physics, as it utilizes a relatively small 

amount of current to generate intense X-rays. 

 

The computational study of X-pinch plasmas driven by pulsed power 
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generators is essential because it can replace experimental research that requires 

a high-performance power supply. Most magnetohydrodynamics (MHD) models 

for simulating pinch plasmas are based on grid-based methods, which are very 

mature for well-defined and fixed domains. However, it has been reported that 

the mixed cell commonly used as the boundary processing between plasma and 

vacuum causes various errors in the grid-based method. In contrast, Lagrangian 

numerical methods allow physical fields to move along with particles and are 

relatively free from such problems. Especially, utilizing the Lagrangian-based 

Smoothed Particle Hydrodynamic (SPH) methods that completely separate the 

vacuum and plasma area can be an effective modeling approach. In this respect, 

an SPH-MHD model has been developed in this study by integrating an MHD 

model capable of encompassing the extreme conditions of pinch plasma into the 

SPH framework. 

 

The developed SPH-MHD model has incorporated several numerical 

treatments, such as a correction term to satisfy the 𝛻∙B constraint and some 

artificial dissipation terms to govern the shock wave. Moreover, it includes the 

evaluation of a novel SPH discretization for non-ideal MHD terms, including 

current density calculations. The proposed model has been verified with three 

benchmark cases: (1) Brio & Wu shock tube (ideal MHD), (2) resistive MHD 

shock simulation, and (3) magnetized Noh Z-pinch problem. The simulation 

results have been compared with the results of some reference Eulerian MHD 

simulations and analytical solutions. The simulations well agree with the 

reference data, and the introduced numerical treatments are effective. 
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Ultimately, the performance of the developed SPH-MHD code has been 

assessed by comparing its predictions with experimental data derived from the X-

pinch experiment. To accomplish this, detailed physics models specialized for X-

pinch physics were integrated into the code. First, the SPH-MHD code was 

extended to a two-temperature equation that separates the energies of electrons 

and ions. Because the numerical time step size is much shorter than the electron-

ion collision time scale, a two-temperature description of the plasma is adequate 

in HED plasma. Next, to effectively capture the HED plasma characteristics in 

the X-pinch condition, the equation of states (EOS) based on the Thomas-Fermi 

theory was employed. Specifically, it addresses the overestimation of ionization 

in the low-density regions by adopting the Desjarlais correction model as the 

plasma ionization balance model. Additionally, a radiation model based on the 

flux-limited diffusion approximation was incorporated into the code to account 

for the energy loss through X-ray emission over a wide energy range. 

 

Finally, X-pinch simulations were conducted in full 3D dimensions using the 

developed code, and these results were compared with experimental data from 

the X-pinch device at Seoul National University. The simulation successfully 

captured the implosion behavior of X-pinch plasma, accurately reproducing the 

four-step X-pinch evolution process commonly observed in various 

configurations. Additionally, the simulations provided comprehensive 

spatiotemporal information on various plasma parameters, including density, 

temperature, velocity field, and radiated power. Notably, the electron temperature 

and density at the hot spot were well-reproduced when compared with the 

experimental values, showcasing the accuracy and reliability of the developed 
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simulation code. Furthermore, the radiation data exhibited significantly higher 

accuracy compared to previous simulation results, confirming the effectiveness 

of the proposed model. 

 

The developed SPH-MHD code is expected to be a good alternative for some 

plasma simulation, which were challenging to address using traditional numerical 

methods since the numerical scheme used in the code have a high potential for 

simulation of complicated physics with highly deformable interfaces. To 

conclude, the developed code is confirmed to be a reliable Lagrangian particle-

based CFD tool for HEDP studies, and it shows a high potential to provide 

comprehensive knowledge of the complex behavior of pinch plasma. 

 

Keywords 

High Energy Density Physics (HEDP), Magnetohydrodynamics (MHD), 

Smoothed Particle Hydrodynamics (SPH), Pinch Palsma, X-pinch, Flux-

limited Diffusion Approximation Model  

 

Student Number: 2018-34777  
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Chapter 1  

Introduction 

 

 

 

 

1.1 Background 

 

High-Energy-Density Physics (HEDP) is the study of matter under extreme 

states of pressure (> 1 Mbar), which are found in nuclear fusion, star formation, 

and high-energy-density experiments. Recent advances in experimental and 

computational techniques have increased the research capacity for HEDP, and 

many scientists and engineers striving to devise new methods for exploring and 

managing matter under extreme conditions. Accordingly, the need for HEDP 

research is increasing in various fields such as astrophysics, material science, and 

nuclear fusion energy. This trend is supported by statistical data on research trends. 

Figure 1.1 illustrates the number of publications and citations per year obtained 

using the keyword "HEDP." Both the number of publications and citations have 

been increasing steadily. Furthermore, it can be seen that the number of citations 

compared to the number of publications is very large. This phenomenon is 

believed to be due to the high demand for research in this area, despite the limited 

number of groups with the expertise required to conduct HEDP research. 

A pinch plasma refers to a particular type of plasma configuration where a 

strong self-generated magnetic field compresses the plasma towards its axis. This 
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compression occurs due to the interaction of electric currents flowing through the 

plasma. The magnetic field created by these currents can exert a significant force 

on the plasma, leading to compression and concentration of plasma along the 

pinch axis. The resulting plasma column can reach high temperatures and 

densities belonging to the HED regime (Figure 1.2). One of the various pinch 

configurations, the X-pinch stands out as a particularly intriguing option for 

small-scale experimentation, as it utilizes a relatively small amount of current to 

generate intense X-rays. The inherent geometry of two or more thin metallic wires 

intersecting at a single point leads to very high plasma compression when a fast-

rising current of a few hundred kA is applied (Figure 1.3). Because of this 

efficiency, X-pinch plasma has been attracting attention as a valuable tool for 

exploring high-energy-density physics. 

However, the experimental implementation of pinch plasma is inherently 

challenging due to the requirements of high-performance current sources and a 

diverse array of diagnostic equipment. Therefore, various numerical approaches 

have been proposed to describe the complex behavior of pinch plasmas. In recent 

decades, various pinch simulations have been performed mainly by the Eulerian 

magnetichydrodynamics (MHD) code and have built up an understanding of the 

physics of the pinch plasma. However, the Eulerian method requires additional 

numerical processes to handle complex and deformable boundaries due to their 

reliance on pre-defined and fixed meshes. Thus, utilizing the Lagrangian-based 

computational fluid dynamics (CFD) methods that completely separate the 

vacuum and plasma area can be an effective modeling approach. This approach 

allows for more concise expressions in MHD calculations conducted at the 

plasma-vacuum interface. 
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In this regard, an in-house code was developed by integrating an MHD model 

capable of encompassing the extreme conditions of pinch plasma into the 

Lagrangian-based CFD method. Specifically, the code was implemented using 

the Lagrangian Smoothed Particle Hydrodynamics (SPH) method, widely 

employed in various physics disciplines. Moreover, a novel non-ideal MHD 

model was proposed and incorporated for simulating pinch plasma. The 

performance of the developed SPH-MHD code is assessed by comparing its 

predictions with experimental data derived from the X-pinch experiment. To 

accomplish this, detailed physics models specialized for X-pinch physics are 

integrated into the code. 

The developed SPH-MHD code is expected to be a good alternative for some 

plasma simulation, which were challenging to address using traditional numerical 

methods since the numerical scheme used in the code have a high potential for 

simulation of complicated physics with highly deformable interfaces. In addition, 

this code system can contribute to HEDP research by enabling numerical 

experiments to be performed under diverse and challenging conditions that are 

difficult to test. 

 

 

1.2 Previous studies 

1.2.1 Previous studies for pinch simulation  

 

Various resistive MHD model-based Eulerian code has been used to accurately 

capture rapid changes in pinch plasma behavior. This model is useful for 

describing plasmas whose local resistivity varies with temperature and pressure. 
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These previous studies are summarized in Table 1.1. 

 

Multi-dimensional resistive MHD codes, such as FLASH, MARED 2D, ZEUS, 

and ATHENA, have been utilized to study the magnetized Noh Pinch problem 

and the implosion evolution of simple wire-array Z-pinches (J .Huang et al., 2012; 

P. Tzeferacos et al., 2012; A. L. Velikovich et al., 2012; N. Ding et al., 2016). The 

Eulerian modular code PLUTO was recently used to simulate the plasma 

dynamics of X-pinch experiments with two tungsten wires (A. Skoulakis et al., 

2022). Particularly, the GORGON code has been determined to be ideal for MHD 

plasma applications involving X- and Z-pinch wire configurations (F. N. Beg et 

al., 2006; J. P. Chittenden et al., 2007; D. Haas et al., 2007; G. W. Collins et al., 

2012).  

 

The presence of a vacuum necessitates a specialized numerical approach when 

dealing with the plasma-vacuum interface within the computational domain. To 

prevent the occurrence of "non-physical" shocks and ensure stable simulations, 

researchers have proposed multi-material approximations (W .Fuyuan et al., 2018; 

A. C. Robinson et al., 2004; W. Neal et al., 2007). Additionally, mixed material 

elements have been employed to represent the interface between the plasma and 

the low-density background in ALEGRA code (A. C. Robinson et al., 2008). A 

transitional region surrounding the plasma can be utilized to model the interface, 

while the remainder of the domain, characterized by a specific density threshold, 

is considered a vacuum. In this approach, the vacuum is treated using the vacuum 

form of Maxwell's equations, which incorporates the displacement current (A. 

Ciardi et al., 2007). 
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1.2.2 Previous studies for SPH-MHD code development 

 

Although Eulerian codes are widely used to simulate pinch plasmas under 

extreme conditions, they require additional numerical processes to handle 

complex and deformable boundaries due to their reliance on pre-defined and fixed 

meshes. In contrast, Lagrangian numerical methods allow physical fields to move 

along with particles and are relatively free from such problems. 

Smoothed particle hydrodynamics (SPH) is a Lagrangian-based particle 

method for solving fluid dynamics equations. Although few SPH codes have been 

developed to describe the complex behavior of the pinch plasma, it has been 

employed to simulate various MHD scenarios since it was first proposed by 

Monaghan in the late 1970s. In 2012, Tricco and Price proposed a smoothed 

particle MHD (SPMHD) scheme that incorporates the hyperbolic divergence 

cleaning method. They improved the existing method of Price and Monaghan 

(2004) by altering the discretization forms for 𝛻∙B and 𝛻φ. Iwasaki (2011) 

proposed an SPMHD method based on the Godunov SPH proposed by Inutsuka 

(2002). Instead of employing the artificial dissipation term used in Price and 

Monaghan, Iwasaki used a solution of the non-linear Riemann problem to reduce 

the numerical dissipation. Tsukamoto (2013) suggested an SPH discretization of 

Ohmic dissipation, and Vela (2019) extended it to the pinch plasma problem 

through a new boundary treatment method. However, the previously proposed 

SPMHD methodologies do not afford a consistent SPH discretization for non-

ideal MHD terms. Furthermore, pinch plasma constitutes extreme conditions of 

high temperature of over 106 K and high density of over 103 kg/m3, which have 
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not been analyzed in previous studies. A novel process is required to obtain and 

verify the SPH discretization suitable for pinch plasma simulations under extreme 

conditions. 

 

1.3 Objectives 

 

The purpose of this study is to construct a numerical code that can simulate the 

complex behavior of X-pinch plasma. To this end, the research proceeds in the 

following order: (1) to develop 3D Lagrangian SPH-MHD code valid under 

extreme conditions of pinch plasma, (2) to integrate detailed physics models for 

X-pinch simulation, and (3) to further give better understanding and insight on 

X-pinch dynamics and effect of radiation on X-pinch evolution. The research 

scope derived here also consists of three stages and the overview of the scope is 

illustrated in Figure 1.4. 

In Chapter 2, the non-ideal MHD model is developed and implemented in the 

SPH framework with valid form under the extreme conditions of pinch plasma. 

The developed model integrates multiple numerical techniques, each of which is 

individually validated through separate benchmark simulations. Chapter 3 

describes the continued expansion of the developed code through the 

incorporation of the detailed physics model essential for X-pinch simulation. The 

chapter proceeds by offering a comprehensive description of the applied physics 

model and outlines the process of extending the algorithm to accommodate these 

advancements. Finally, Chapter 4 introduces simulation results and some 

discussions on the X-pinch simulation, including a comparison with experiments. 
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Table 1.1. Previous studies on pinch simulation 

 

 

 

Table 1.2. Previous studies on SPH-MHD code development 
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Figure 1.1. Citations and publications over time with the keyword 'HEDP' 

 
 

 
 

Figure 1.2. The approximate magnitude of various plasma. Here, the blue box 

represents pinch plasma, and the red line represents the pressure criterion of 1 

Mbar classified as a high-energy-density (HED) regime. 
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Figure 1.3. Conceptual description of X-pinch 

 

 

 

 

 

 

 
 
 

Figure 1.4. Overview of the research scope  
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Chapter 2 

Development of SPH-MHD code 

 

 

 

 

2.1 Smoothed particle hydrodynamics 

 

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian based particle 

method to solve fluid dynamics equations. Recently, it has been used in various 

fields with the development of computing techniques. The SPH method has 

definite advantages over the traditional grid-based numerical methods in dealing 

with applications that involve large deformations. For this reason, it is relatively 

easy to implement various types of physics, and therefore it is expected to be fit 

well into the simulation of pinch plasma. In this section, the basic concept of SPH 

method and the SPH formulations of the MHD model used to simulate plasma 

behavior are explained. 

 

2.1.1 Mathematical concept of SPH 

 

In the SPH method, the entire fluid system is expressed by a finite number of 

particles representing the material properties of that space, and the physical 

quantities such as density, momentum, and internal energy are calculated through 

the smoothing of neighboring particles. The smoothing procedure in the SPH 

method is based on the theory of integral interpolants using a delta function. 



11 

 

𝑓(𝑟)  = ∫ 𝑓(𝑟′)𝛿(𝑟 − 𝑟′, ℎ)𝑑𝛺

 

𝛺

 (2.1) 

 

However, the delta function is a discontinuous function, and hence it is difficult 

to handle numerically. To solve this problem, the delta function can be 

approximated as a continuous function W (known as the smoothing kernel 

function) with a characteristic width h (known as the smoothing length), and the 

integral interpolant of a function f is defined as follow: 

 

𝑓(𝑟)  = ∫ 𝑓(𝑟′)𝑊(𝑟 − 𝑟′, ℎ)𝑑𝛺

 

𝛺

+ 𝒪(ℎ2) (2.2) 

 

The integral form of Eq. (2.2) can be discretized by representing the integral 

with a summation expression, and it ensures the second-order accuracy for h. 

 

< 𝑓(𝒓𝑖) > = ∑ 𝑓𝑗𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ)𝑉𝑗

𝑗

 (2.3) 

 

where, 𝑓(𝒓𝑖)  is a function at the position 𝒓𝑖 , subscript 𝑗  is the nearby 

particles of center particle 𝑖, and 𝑉(= 𝑚/𝜌) is the particle volume. Applying 

the relation between mass and density, the above Eq. (2.3) can be transformed to 

the equation below:  

 

< 𝑓(𝒓𝑖) > = ∑ 𝑓𝑗𝑊(𝒓𝑖 − 𝒓𝑗, ℎ)
 𝑚𝑗

𝜌𝑗
𝑗

 (2.4) 
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Figure 2.1 shows the particle distribution with the kernel function. The value 

of the kernel function is determined by the distance between particles, and it must 

be normalized over the entire computational domain. 

 

 

2.1.2 SPH kernel weighting function 

 

In order for the kernel function to be applied as an averaging weighting 

function in the SPH method, it has to satisfy some mathematical properties of the 

delta function (G. R. Liu, 2003). The first condition for the kernel function is the 

'unity condition', which means that the integral value over the entire volume 

should have the value of one, the same as the delta function. In addition, since it 

is not possible to perform a calculation for an infinite area, the value of the kernel 

function must be zero outside the support domain (compact condition), and it 

must always have a positive value within the support domain (positive condition). 

Also, the 'decay condition' that the kernel function value monotonically decreases 

as the distance from the reference particle increases, the 'delta function condition' 

that the function becomes the same as the Dirac-delta function as ℎ approaches 

to zero, and the 'symmetric condition' that it must be symmetric function, must be 

satisfied. These conditions are summarized in Table 2.1. 

 

Various types of kernel functions that satisfy these conditions have been 

proposed, and each kernel function has some characteristic pros and cons. 

Therefore, it is important to select and use the appropriate one depending on the 

applied physical model. The SPH model developed in this study equipped three 

types of kernel functions (Gaussian/Quartic/Wendland), and each weighting 



13 

 

function is summarized in Table 2.2. Among these, the Wendland function is 

known to be able to prevent particle clustering because it has a non-negative 

Fourier transform in the multi-dimensional analysis (W. Dehnen et al., 2012). 

Additionally, through some simulations, it has been confirmed that the Wendland 

kernel function yields the most converged results for the kernel approximation, 

surpassing the other two options. As a result, the Wendland function is utilized as 

the kernel function in this study to simulate various physical problems. 

 

2.1.3 SPH kernel approximation 

 

The approximation for the scalar field gradient can be derived by taking the 

spatial derivative of Eq. (2.2). Since the function that depends on 𝒓 on the right 

side is only the smoothing kernel function 𝑊, 

 

∇𝑓(𝑟)  = ∫ 𝑓(𝑟′)∇𝑊(𝑟 − 𝑟′, ℎ)𝑑𝛺

 

𝛺

+ 𝒪(ℎ2) (2.5) 

 

Finally, this may be discretized in the same way as Eq. (2.4), to give 

 

< ∇𝑓(𝒓𝑖) >= ∑ 𝑓𝑗  ∇𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ) 

𝑗

 𝑚𝑗

𝜌𝑗
 (2.6) 

 

Eq. (2.6) is a widely used SPH gradient approximation, but since it is not a 

symmetrical shape for particle 𝑖 and particle 𝑗, it leads to quite poor gradient 

estimates. In addition, the adaptive SPH (ASPH) method (detail explained in 



14 

 

Section 4.3) is applied for simulations with particle imbalance occurring caused 

by shock. In the ASPH method, it has been observed that the utilization of the 

asymmetrical form leads to non-conservation of physical quantities. By 

considering the vector calculus presented below, a symmetric form for the SPH 

gradient interpolation is derived, which holds true for all 𝑛 ∈ ℝ. 

∇(𝑓𝜌𝑛) = 𝑛𝑓𝜌𝑛−1∇𝜌 + 𝜌𝑛∇𝑓 (2.7) 

Summarizing this for ∇𝑓, 

∇𝑓 =
1

𝜌𝑛
[∇(𝑓𝜌𝑛) − 𝑛𝑓𝜌𝑛−1∇𝜌] (2.8) 

 

By substituting 𝑓𝜌𝑛 and 𝜌 into Eq. (2.6), a general interpolant for ∇𝑓 can 

be obtained, 

 

< ∇𝑓(𝒓𝑖) >=
1

𝜌𝑖
𝑛 ∑  𝑚𝑗[𝑓𝑗𝜌𝑗

𝑛−1 − 𝑛𝑓𝑖𝜌𝑖
𝑛−1] ∇𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ) 

𝑗

 (2.9) 

 

In particular, in the case of 𝑛 = −1 , the symmetrical SPH gradient 

approximation can be obtained as follows: 

  

< ∇𝑓(𝒓𝑖) >= 𝜌
𝑖
∑  𝑚𝑗 [

𝑓
𝑖

𝜌
𝑖
2

+
𝑓

𝑗

𝜌
𝑗
2
]  ∇𝑊(𝒓𝑖 − 𝒓𝑗, ℎ) 

𝑗

 (2.10) 

 

Similarly, other SPH formulations for differential operators, such as divergence 

and curl, can be derived based on the kernel interpolation scheme (J. J. Monaghan 

et al., 2001). 
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2.2 Magnetohydrodynamics 

 

Magnetohydrodynamics (MHD) is the study of the magnetic properties and 

behavior of electrically conducting fluids, specifically plasmas. Plasma is a state 

of matter that comprises charged particles such as ions and electrons. In principle, 

to describe plasma behavior, the equation of motion of each particle needs to be 

calculated. However, since plasma contains abundant particles, solving the 

equations of motion for each particle is impractical. Instead, MHD equations are 

derived by treating the plasma as a continuum, where the fluid is assumed to have 

the same properties at each unit domain (H. Alfven, 1942). This simplification 

allows for a more tractable description of plasma behavior and has been proven 

to be a powerful tool for understanding and predicting plasma dynamics. The 

MHD equations are a combination of the Navier–Stokes equations of fluid 

dynamics and Maxwell’s equations of electromagnetism. These differential 

equations need to be simultaneously solved, either analytically or numerically. 

Various MHD equations can be derived depending on the type of plasma and 

applied assumptions. 

 

2.2.1 Resistive MHD governing equations 

 

The MHD equations used herein are the resistive MHD equations that include 

the effect of plasma resistivity in ideal MHD. In this section, the governing 

equations constituting the MHD equations are described. The main variables 

characterizing an electrically conductive fluid are the bulk plasma velocity 

field 𝒗, internal energy 𝑢, mass density 𝜌, and thermodynamic pressure 𝑃. The 
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flowing charged particles are the source of the magnetic field 𝑩 , and current 

density J. All these parameters generally vary with time 𝑡 . By neglecting the 

displacement current, plasma viscosity, and thermal conduction, the equations 

based on the resistive MHD model can be expressed using the Lagrangian 

derivative 𝑑/𝑑𝑡 = 𝜕/𝜕𝑡 + 𝒗 ∙ ∇ , as shown below (T. Boyd and J. Sanderson, 

1920): 

𝑑𝜌

𝑑𝑡
+ 𝜌(𝛻 ∙ 𝒗) = 0 (2.11) 

𝑑𝒗

𝑑𝑡
=

1

𝜌
𝛻 ∙ (

𝑩 ⊗ 𝑩

𝜇0
− (

|𝑩|2

2𝜇0
+ 𝑃) �⃡� ) (2.12) 

𝑑𝑩

𝑑𝑡
= −𝑩(𝛻 ∙ 𝒗) + (𝑩 ∙ 𝛻)𝒗 − 𝛻 × 𝜂𝑱 (2.13) 

𝑑𝑢

𝑑𝑡
= −

𝑃

𝜌
(𝛻 ∙ 𝒗) +

𝜂|𝑱|2

𝜌
 (2.14) 

 

where the current density J is obtained as follows according to the Ampere’s 

law: 

𝑱 =
1

𝜇0
𝛻 × 𝑩 (2.15) 

 

2.2.2 Equation of sate 

 

The above governing equations are closed by the equation of state (EOS), 

which determines the fluid pressure as a function of density and internal energy. 

For accurate hydrodynamic simulations, the EOS model should be chosen as it 

yields accurate thermodynamic properties of a matter over a wide range of 
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relevant physical conditions. 

The ideal gas EOS is the simplest EOS and can be easily and quickly 

incorporated in MHD simulations despite its restrictions on the valid physical 

conditions:  

𝑃 = (𝛶 − 1)𝜌𝑢 (2.16) 

 

where 𝛶 = C𝑃/𝐶𝑉 is the adiabatic index, 𝐶𝑉 is the specific heat at constant 

volume, and C𝑃 is the specific heat at constant pressure.  

Various EOS models that are practically applicable to real materials have been 

developed based on fundamental thermodynamic and statistical physics, such as 

the chemical equilibrium model of Saha equation (M. N. Saha, 1920; D. –K. Kim 

and I. Kim, 2003) and the Thomas–Fermi theory of quotidian equation of state 

(QEOS) (A. Kemp et al., 1998). In this study, the SPH-MHD model has been 

configured to utilize a tabulated form of EOS in order to enable the utilization of 

various EOS suitable for interpretation problems. More details on this content are 

covered in Chapter 3. 

 

2.3 SPH-MHD model development 

 

2.3.1 SPH formulation for resistive MHD 

 

Applying the SPH formulation for the differential operator described in section 

2.1.3, the set of resistive MHD governing equations consisting of continuity 

equation, momentum equation, induction equation, energy equation, and equation 
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of states is expressed as follows: 

𝝆𝑖 = 𝑚𝑖 ∑ 𝑊𝑖𝑗

𝑗

 (2.17) 

𝑑𝒗𝒊

𝑑𝑡
= ∑ 𝑚𝑗 (

𝑴𝑖
 ⃡   

𝜌𝑖
2 +

𝑴𝑗
 ⃡   

𝜌𝑗
2 ) ∙ 𝛻𝑖𝑊𝑖𝑗

𝑗

 (2.18) 

𝑑𝑩𝒊

𝑑𝑡
=

1

𝜌𝑖
∑ 𝑚𝑗(𝑩𝑖𝒗𝑖𝑗 − 𝒗𝑖𝑗𝑩𝑖) ∙ 𝛻𝑖𝑊𝑖𝑗

𝑗

+ (
𝑑𝑩𝒊

𝑑𝑡
)

𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙
 (2.19) 

𝑑𝑢𝑖

𝑑𝑡
=

1

2
∑ 𝑚𝑗 (

𝑃𝑖

𝜌𝑖
2 +

𝑃𝑗

𝜌𝑗
2) 𝒗𝑖𝑗 ∙ 𝛻𝑖𝑊𝑖𝑗

𝑗

+
1

𝜌𝑖
𝜂𝑱𝑖

2 (2.20) 

𝑃𝑖 = 𝑃(𝑢𝑖 , 𝜌𝑖) (2.21) 

 

where �⃡�   = 𝑩𝑩 − (𝑩2/2 + 𝑃)�⃡� is the Maxwell stress tensor, 𝒗𝑖𝑗 = 𝒗𝑖 − 𝒗𝑗 is 

the relative velocity between two particles, and 𝑊𝑖𝑗 = 𝑊(𝒓𝑖 − 𝒓𝑗 , ℎ)  denotes 

the kernel function. For this implementation, a unit for the magnetic field is used 

that normalizes the permeability μ0 to 1 in the same way as some previous MHD 

studies. 

 

2.3.2 Numerical techniques applied in the SPH-MHD model 

 

The SPH simulation for pinch plasma has various features that threaten the 

numerical stability and numerical accuracy. In this section, several characteristics 

of pinch plasma that cause inaccurate SPH calculation are discussed, and 

numerical treatment techniques applied for controlling these incorrections are 

introduced. 
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① ∇∙B Correction term 

According to Gauss's law for magnetism, magnetic monopoles cannot exist, so 

the magnetic field line is always a closed curve, and then, 𝛻∙𝐵 is always zero. 

However, in the numerical MHD simulation, 𝛻∙𝐵 is not accurately zero because 

of numerical noise. This violation of the divergence constraint causes severe 

stability problems. 

The problem of dealing with these 𝛻∙𝐵 constraints is not an inherent problem 

of the SPH methodology. As noted by Toth (2000), in the case of Eulerian-based 

numerical MHD codes, three schemes are mainly used: Harten’s TVD, van Leer’s 

TVD-MUSCL, or Yee’s TVD Lax–Friedrich scheme to deal with these 𝛻∙𝐵 

constraints (G.Toth, 1998). The approach of Børve (2007), commonly utilized in 

the SPH field, explicitly negates the effect of the non-vanishing 𝛻∙𝐵 by adding a 

corrective term in Eq. (2.23) to the momentum equation. The SPH-MHD model 

developed in this study also incorporates this method. 

 

(
𝐷𝒗

𝐷𝑡
)

𝛻∙𝑩 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
= −𝑩𝑖 ∑ 𝑚𝑗 (

𝑩𝑖

𝜌𝑖
2 +

𝑩𝑗

𝜌𝑗
2) ∙ 𝛻𝑊𝑖𝑗

𝑗

 (2.23) 

 

② Artificial dissipation term 

In early shock simulation studies, it was recognized that a shock wave 

accompanied by a sharp velocity discontinuity boundary caused inaccurate 

calculations during numerical simulations. In more detail, a shock wave is not a 

true discontinuity, but a very narrow transition zone whose thickness is only a 

few molecular mean-free paths. Because the size of the computational domain 
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used in most numerical schemes is not small enough, this short transition length 

can lead to inaccurate calculations in numerical codes. Some investigators were 

able to make the transition zone thick enough to resolve computationally by 

introducing an unphysical viscosity, called 'artificial viscosity' (W.F Noh et al., 

1998; M. L. Wilkins, 1980). Various types of ‘artificial viscosity' have been 

proposed and developed in various numerical schemes over the past several 

decades. In this study, an artificial viscosity form commonly utilized in the SPH 

methodology is employed to address the occurrence of discontinuous boundaries 

during plasma compression. The employed artificial viscosity is an improved 

version of the one introduced by Monaghan & Gingold (1983). 

 

(
𝑑𝒗𝑖

𝑑𝑡
)

𝑑𝑖𝑠𝑠
= − ∑ 𝑚𝑗𝛱𝑖𝑗𝛻𝑖𝑊𝑖𝑗

𝑗

 

 

(2.24) 

 

𝛱𝑖𝑗 =

{
 
 

 
  

−𝛼𝑐𝑖𝑗̅̅ ̅𝜙𝑖𝑗 + 𝛽𝜙𝑖𝑗
2

𝜌𝑖𝑗̅̅̅̅
 𝑖𝑓 (𝒗𝑖𝑗 ∙ 𝒓𝑖𝑗 < 0)

      0        𝑖𝑓 (𝒗𝑖𝑗 ∙ 𝒓𝑖𝑗 ≥ 0)

 𝑤ℎ𝑒𝑟𝑒 𝜙𝑖𝑗

=
ℎ𝑖𝑗  𝒗𝑖𝑗 ∙ 𝒓𝑖𝑗

|𝒓𝑖𝑗|
2

+ 𝜑2
 

 

Here, 𝛼 and 𝛽 are constants that are typically set at approximately 1.0, and 

𝜑 = 0.1ℎ𝑖𝑗 is applied to prevent numerical divergences. In this case, 𝜌𝑖𝑗̅̅̅̅  and 

𝑐𝑖𝑗̅̅ ̅ denote the mean value of the density and the speed of sound between particle 

𝑖 and 𝑗. 

Since the viscosity coefficient 𝛱𝑖𝑗 is symmetric with particles 𝑖 and 𝑗, the 

viscous force between any pair of interacting particles also will be symmetric 
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along the line joining the particles. Hence linear momentum and angular 

momentum are still preserved. However, there is a problem that the total energy 

is not conserved due to energy loss caused by the artificial viscous term. To 

conserve the total energy, the work done needs to be compensated for against the 

viscous force, as shown below: 

(
𝐷𝑢

𝐷𝑡
)

𝑑𝑖𝑠𝑠
=

1

2
∑ 𝑚𝑗𝛱𝑖𝑗𝒗𝑖𝑗 ∙ 𝛻𝑖𝑊𝑖𝑗

𝑗

 (2.25) 

 

In MHD simulations, shocks can lead to discontinuities in the magnetic field, 

which induce numerical instability. To address this issue, artificial resistivity can 

be introduced, which is similar to artificial viscosity. This approach is commonly 

used in SPH. This study employes the artificial resistivity proposed by Price 

(2012), which helps stabilize the simulation when magnetic field discontinuities 

caused by shocks are present. 

 

(
𝑑𝑩𝑖

𝑑𝑡
)

𝑑𝑖𝑠𝑠
= 𝜌𝑖 ∑ 𝑚𝑗

𝛼𝐵𝑣𝑠𝑖𝑔
𝐵

2𝜌𝑖𝑗̅̅̅̅ 2

𝑗

(𝑩𝑖 − 𝑩𝑗)�̂�𝒊𝒋 ∙ 𝛻𝑊𝑖𝑗 (2.26) 

 

where 𝑣𝑠𝑖𝑔
𝐵  is the averaged Alfvén speed, �̂�𝒊𝒋 is the unit vector in the 𝒓𝒊𝒋, and 

𝛼𝐵 is the artificial resistivity coefficient set using the switch described in Tricco 

and Price (2013): 

𝛼𝐵 = min ( 
ℎ|𝛻𝑩|

|𝑩|
, 1 ) (2.27) 

 

③ Adaptive SPH method 
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In SPH simulations involving shockwaves with expansion, the spacing 

between particles rapidly changes, leading to “particle inconsistency,” where the 

smoothing length does not comprise a sufficient number of particles. This 

problem can significantly affect the accuracy of SPH simulations (M. B. Liu and 

G. R. Liu, 2006). Various methods have been proposed to solve this particle 

inconsistency problem (J. Bonet and S. Kulasegaram, 2000; G. R. Johnson et al., 

1996; P. W. Randles and L. D. Libersky, 1996), such as adaptive SPH (ASPH). 

ASPH is a method wherein a different smoothing length is applied to each particle 

to increase the accuracy of the SPH approximation in a situation where the 

spacing between particles changes, as shown in Figure 2.2. In the pinch plasma 

simulation, this ASPH application is essential because the distance between 

particles can rapidly increase or decrease due to explosion or implosion due to 

shock. 

This study utilizes the ASPH method proposed by Owen (1998) to adjust the 

smoothing length of particles based on the number of particles in the original 

search range. If excess particles are present, the search range is narrowed to 

improve the computational speed. On the other hand, if too few particles are 

present, the search range is widened to solve the “particle inconsistency” problem, 

which can reduce the calculation accuracy. This process is performed by defining 

and using a reference density value: 

 

𝜌𝑟𝑒𝑓 = 𝑚 (
𝜎

ℎ
)

𝑑

 (2.28) 

 

where d is the system dimension, and 𝜎 is a parameter specifying the smoothing 
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length in units of average particle spacing (𝑚/𝜌)1/𝑑 , which is 1.2 herein. To 

select an appropriate smoothing length, the below iteration process is used to 

compare the reference density with the density derived from the SPH calculation. 

This iteration is repeated until the difference between the two smoothing lengths 

ℎ𝑘and ℎ𝑘+1 converges below a specified criterion. The smoothing length h is 

updated in each iteration using the following formula: 

 

ℎ𝑘+1 = ℎ𝑘 −
∂ℎ𝑘

∂𝜌

𝜌𝑟𝑒𝑓(ℎ𝑘) − 𝜌(ℎ𝑘)

1 −
∂ℎ𝑘

∂𝜌
∑ 𝑚𝑗

∂𝑊(ℎ𝑘)
∂ℎ𝑘

𝑗

 
(2.29) 

 

∂ℎ

∂𝜌
= −

1

𝑑

ℎ

𝜌
 (2.30) 

 

∂𝑊

∂ℎ
= −

𝑟

ℎ
𝛻𝑊 −

𝑑

ℎ
𝑊 (2.31) 

 

To account for the changes in the smoothing length, a smoothing length 

gradient correction factor 𝛺 is used, which is determined as follows:  

 

Ω = 1 −
∂ℎ𝑘

∂𝜌
∑ 𝑚𝑗

∂𝑊(ℎ𝑘)

∂ℎ𝑘
𝑗

 (2.32) 

 

The variable 𝛺 is applied to Eqs. (2.17)–(2.20) to account for the changes in 

the smoothing length. This correction is important as it ensures the calculation 

accuracy with varying smoothing length. For example, if ASPH is applied to Eq. 

(2.18), it is converted into the following equation: 
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𝑑𝒗𝒊

𝑑𝑡
= ∑ 𝑚𝑗 (

𝑴𝑖
 ⃡   

Ωi𝜌𝑖
2 ∙ 𝛻𝑖𝑊𝑖𝑗 +

𝑴𝑗
 ⃡   

Ωj𝜌𝑗
2 ∙ 𝛻𝑗𝑊𝑖𝑗)

𝑗

 (2.33) 

 

2.3.3 Non-ideal MHD terms of the SPH method  

 

To calculate the non-ideal MHD term in the resistive MHD, the current density 

J needs to be accurately calculated first. Previous SPMHD studies calculated the 

current density via the following two ways: 

 

𝑱𝑖 = −
1

𝜌𝑖
∑ 𝑚𝑗(𝑩𝑖 − 𝑩𝑗) × 𝛻𝑖𝑊𝑖𝑗

𝑗

 (2.34) 

𝑱𝑖 = −𝜌𝑖 ∑ 𝑚𝑗 (
𝑩𝑖

𝜌𝑖
2 +

𝑩𝑗

𝜌𝑗
2) × 𝛻𝑖𝑊𝑖𝑗

𝑗

 (2.35) 

 

For example, to obtain the current density, Wurster (2016) used the difference 

operator of Eq. (2.34) and Price (2010) used the symmetric operator of Eq. (2.35). 

In this study, a more suitable SPH formulation is employed to calculate the current 

density under pinch plasma conditions, wherein a large magnetic field 

discontinuity can occur. A detailed explanation of this process is provided in next 

section along with suitable example problems. 

The flexibility of SPH approximations enables a diverse set of constructions, 

and the SPH formula for the non-ideal MHD term has also been used in various 

ways. For instance, Bonafede et al. (2011) and Tsukamoto et al. (2013) addressed 

this term by directly taking the second derivatives of the magnetic field. Wurster 

(2014) computed this term by applying a curl calculation to the current density. 
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However, it is unclear which of the two approaches has numerical advantages 

when using SPH for simulations involving the non-ideal MHD term. Further 

investigation and comparison between the two methods are necessary to 

determine the approach that is more accurate or efficient in practical applications. 

Basically, the first derivative of the current density is computed first using 

symmetric and difference operators. An “inter-particle” formulation that is known 

to be effective between two phases with significantly different properties is 

adopted. Consequently, the SPH model developed in this study is equipped with 

four types of derivatives for the non-ideal MHD term (i.e., symmetric, difference, 

Laplacian, and inter-particle), and the derivative forms are summarized in Table 

2.3. 

 

2.4 SPH-MHD model implementation 

 

2.4.1 Algorithm of developed SPH-MHD model 

 

Figure 2.3 shows a basic algorithm of the developed SPH-MHD model. The 

model is based on the existing SPH-based hydrodynamics code, SOPHIA (Y. B. 

Jo et al., 2019), but it includes some additional calculations that are essential for 

analyzing pinch plasmas. First, the initial positions, properties, and conditions of 

each particle. Then, the nearest-neighboring particle search process is conducted 

for each particle based on each position. Then, the density and current density of 

each particle are estimated using the Eq. (2.21) and Eq. (3.34). After that, the 

pressure is calculated for each particle through the EOS table in the form of Eq. 

(2.21). After the pressure is calculated, Then, the change in velocity, density, 
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magnetic field, and internal energy of each particle is calculated according to the 

governing equations represented by Eq. (2.18) – (2.20). Then, all physics 

quantities including each particle's velocity and position are updated. Upon 

updating the particle positions, the neighbor particle searching (NNPS) process 

is repeated based on the new position. This iterative calculation persists until the 

termination condition is met. 

 

2.4.2 Nearest Neighbor Particle Search (NNPS) 

 

In general, the neighbor particle searching (NNPS) process is known to be the 

most time-consuming step in SPH calculations. To estimate the properties of a 

specific particle, denoted as particle 'i,' it is necessary to search for neighboring 

particles within a kernel radius, which in this study is set as three times the initial 

particle distance. Under these conditions, the number of neighboring particles is 

approximately 25 to 30 in 2D simulations and 100 to 120 in 3D simulations. The 

intuitive approach for neighbor particle searching involves searching all particles 

throughout the entire computational domain based on the particle distance 

condition. However, this NNPS algorithm is inefficient and computationally 

demanding, scaling proportionally to the number of particles (~N2). Therefore, 

for high-resolution analysis, an efficient NNPS algorithm is essential, and in this 

study, a constant grid-based NNPS algorithm is adopted. Regularly spaced grids 

are allocated across the entire computational domain, depending on user 

specifications. Subsequently, only particles belonging to the grid adjacent to the 

center grid, where the particle of interest 'i' resides, are searched, and neighboring 

particles 'j' within the search range are selected. This NNPS algorithm enables 
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efficient searching calculations and significantly reduces computation time (Xia, 

2016). 

 

2.4.3 Time integration 

 

In this study, a modified predictor–corrector time-stepping scheme proposed 

by Gomez-Gesteira (2012) is applied. The predictor–corrector scheme divides the 

time integration into two steps. First, the prediction step extrapolates the physical 

variables (e.g., velocity, density, magnetic field, and internal energy) as follows: 

 

𝒗
𝑡+

∆𝑡
2

𝑝
= 𝒗𝑡 +

∆𝑡

2
(
𝑑𝒗

𝑑𝑡
)

𝑡
 (2.36) 

𝜌
𝑡+

∆𝑡
2

𝑝
 = 𝜌𝑡 +

∆𝑡

2
(
𝑑𝜌

𝑑𝑡
)

𝑡
 (2.37) 

𝑩
𝑡+

∆𝑡
2

𝑝
 = 𝑩𝑡 +

∆𝑡

2
(
𝑑𝑩

𝑑𝑡
)

𝑡
 (2.38) 

𝑢
𝑡+

∆𝑡
2

𝑝
 = 𝑢𝑡 +

∆𝑡

2
(
𝑑𝑢

𝑑𝑡
)

𝑡
 (2.39) 

 

where ∆t is the time step, and the superscript p denotes “predictor.” The time 

derivatives of velocity, density, magnetic field, and internal energy are evaluated 

by solving Eqs. (2.36)–(2.39) using the predicted values. Then, the field variables 

are re-calculated over the entire time step using the updated time derivatives in 

the correction step. 

𝒗𝑡+∆𝑡 
𝑐 = 𝒗𝑡 + ∆𝑡 (

𝑑𝒗

𝑑𝑡
)

𝑡+
Δ𝑡
2

 (2.40) 
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𝜌𝑡+∆𝑡
𝑐  = 𝜌𝑡 + ∆𝑡 (

𝑑𝜌

𝑑𝑡
)

𝑡+
Δ𝑡
2

 (2.41) 

𝑩𝑡+∆𝑡 
𝑐 = 𝑩𝑡 + ∆𝑡 (

𝑑𝐵

𝑑𝑡
)

𝑡+
Δ𝑡
2

 (2.42) 

𝑢𝑡+∆𝑡
𝑐  = 𝑢𝑡 + ∆𝑡 (

𝑑𝑢

𝑑𝑡
)

𝑡+
Δ𝑡
2

 (2.43) 

 

where the superscript c denotes “corrector.” These corrected values become the 

initial values for the next time step. 

 

2.4.4 GPU Parallelization 

 

The numerical expressions used in the SPH method are highly linear, and 

calculations of particles are performed explicitly. Therefore, there is no problem 

even if the calculations of particles are conducted independently. As a result, the 

SPH method is optimized for GPU (Graphics Processing Unit) parallelization, 

which is crucial for reducing SPH interpolation errors by utilizing a large number 

of SPH particles and achieving high-resolution simulations. 

 

The GPU is composed of multiple blocks, with each block containing several 

threads. All particles involved in the simulation are allocated to individual threads, 

enabling simultaneous parallel calculations across all threads. The calculation for 

the neighboring particle is performed within each thread using a loop, and the 

summation operation of the estimated values is carried out through parallel 

reduction. In this study, the SPH-MHD model is parallelized based on the NVIDIA 
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CUDA architecture (GPGPU), improving computational efficiency. 

 

 

2.5 Model verification 

In this section, the results of the simulation performed to verify the constructed 

SPH model are explained. The simulations using the implemented models are 

conducted for three benchmark cases: (1) Brio and Wu shock tube (ideal MHD), 

(2) resistive MHD shock tube simulation, and (3) magnetized Noh Z-pinch 

problem, and summarized in Table 2.4. All simulation results are compared with 

the simulation results and analytical solutions of some reference Eulerian code. 

 

 

2.5.1 Brio and Wu shock tube simulations 

 

The Brio & Wu shock tube problem generalizes the classic hydraulics Sod 

shock tube to MHD (M. Brio and C. C. Wu, 1988). In the Brio & Wu shock tube, 

the right and left states are initialized to different values. The components of the 

anti-parallel magnetic field on the two sides of the initial discontinuity lead to 

four waves, i.e., fast rarefaction wave, slow compound wave, slow shock wave, 

and fast shock wave, resulting in complex property distribution. In this test, the 

left and right states are initialized as (𝜌, 𝑣x, 𝑣y, 𝐵𝑥, 𝐵𝑦, 𝑃) = [1,0,0,0.75,1,1] and 

[0.125,0,0,0.75,−1,0.1], respectively. This example tests whether the model can 

accurately represent the shocks, rarefactions, contact discontinuities, and 

compound structures of MHD. Thus, it has been widely used as a benchmark 

problem to validate ideal MHD calculations (J. J. Monaghan, R. A. Gingold, 1983; 

S. Vanaverbeke et al., 2009). In this study, the “1.5D” Brio & Wu shock tube 

problem (i.e., 1D but with 2D magnetic and velocity fields) is analyzed with 1000 
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particles in the range  𝑥 ∈ [−0.5,0.5] . Four physical quantities (i.e., density, 

pressure, x,y-directional velocity, internal energy, and magnetic field) of the Brio 

& Wu shock problem are obtained through the constructed SPH model. Figure 

2.4 depicts the simulation results of the Brio & Wu shock tube at 0.1 s. In the 

figure, the black dots represent the physical quantities of all the particles and the 

red lines represent the numerical solution obtained using a proven Riemann solver 

(D.S. Balsara, 1998). The results show that the proposed SPH model yields 

numerically accurate simulations of the ideal MHD problem. 

The effect of numerical techniques such as the correction terms to satisfy the 

𝛻∙𝐵 constraints and artificial dissipation terms to handle shocks through this 

problem is also verified. Figure 2.5 shows that the applied numerical treatments 

are effective. First, whether the numerical instability caused by the 𝛻∙𝐵 constraint 

can be effectively controlled is determined by introducing Eq.(2.23). The 

comparison of Figure 2.5 (a) and (b) shows that various numerical errors are 

removed after the introduction of the correction term. Figure 2.5(c) displays the 

calculation results obtained after the incorporation of the artificial resistivity of 

Eq. (21) into the result of Figure 2.5(b). As shown in the figure, the dissipation 

term for the magnetic field partially controls the existing numerical instability. 

 

2.5.2 Resistive MHD shock tube simulations 

 

In actual pinch plasma simulations, the effect of plasma resistivity on plasma 

behavior must be considered. Therefore, the resistive term is added in the 

induction and energy equations. Additionally, the current density needs to be 

calculated to derive these resistive terms. To verify the accurate functioning of 
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these added terms, resistive MHD shock tube simulations are performed, wherein 

plasma resistivity is distributed in the ideal MHD shock tube, which is 

represented by the Brio & Wu shock tube. The left and right states are initialized 

as (𝜌𝐿 , 𝑣𝑥
𝐿 , 𝑃𝐿) = [1, 0, 1] and (𝜌𝑅 , 𝑣𝑥

𝑅 , 𝑃𝑅) = [0.125, 0, 0.1], respectively. To 

calculate the exact peak value of the current density, the initial magnetic field is 

applied as the following steep sigmoidal function: 

 

𝑩y =
0.5 − 0.5 exp (𝑥/𝑑)

1 + exp (𝑥/𝑑)
 (2.44) 

 

where d is the value that determines the magnetic field gradient in the steep region, 

which is 0.0005 m herein. In this case, the peak value of current density is 500. 

Here, high resolution is required to capture the sharp current density peak. 

Therefore, a sensitivity analysis of the particle resolution is performed, and the 

result is shown in Figure 2.6. Subsequently, simulations are conducted with the 

particle spacing of 0.00025 m, which is four times closer than that in the Brio & 

Wu shock tube. 

Fig. 5 presents the SPH current density profiles of the resistive MHD shock 

tube simulations. As described in Section 2.3.3, two types of SPH discretization 

are used to compute the current density. Figure 2.7 clearly shows that the current 

peak at x = 0 is underestimated when the symmetric operator is employed. This 

tendency becomes more pronounced as the discontinuity of the magnetic field at 

the interface becomes steeper. Figure 2.8 displays the current profile when d is 

0.00005 m. In this case, the difference operator well captures the current peak and 

the symmetric operator yields an additional non-physical current peak. These 
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results emphasize the importance of using the correct discretization method to 

obtain accurate results at the discontinuous interface of pinch plasmas. 

To accurately model the non-ideal MHD effects in the simulation, 

investigations are conducted to identify the appropriate SPH discretization form 

for this term. The plasma resistivity is simulated as a function of density (𝜂 =

10−3𝜌−6) , and the results are evaluated via comparison with the data from a 

reference Euler code (PLUTO code (Mignone et al., 2007). As mentioned in 

Section III.E, four types of SPH formulations are considered for the non-ideal 

MHD term. Figure 2.9(a) displays the time derivative of the magnetic field 

obtained using each of the four discretization methods at t = 0.0002 s. Non-

physical oscillations can be observed in the time derivative of the magnetic field 

for some SPH discretization types. These oscillations grow over time and have a 

significant negative impact on the computational accuracy. Figure 2.9(b) shows 

the difference between the simulation results and the reference data. The figure 

shows that the inter-particle type of non-ideal MHD term is the most effective in 

reducing the current density noise stemming from the discretization of the initial 

large magnetic field discontinuity. This methodology is expected to be effective 

for various types of pinch plasmas accompanied by discontinuous magnetic fields 

and resistivities. 

 

 

2.5.3 Magnetized Noh Z-pinch Problem 

 

Velikovich (2011) proposed the magnetized Noh problem as an example for 

verifying the pinch plasma analysis ability. The Noh problem has been used  for 

many years to verify codes designed to deal with implosions such as in inertial 
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confinement fusion to investigate the hydrodynamic component of MHD codes. 

The extension of this classic gas dynamics Noh problem to the electromagnetic 

problem is known as the magnetized Noh Z-pinch problem. The operation of a Z-

pinch is very simple. A current driven through the cylindrical column of the 

plasma causes the material to rapidly compress axially through the 𝑱 ×  𝑩 

force. To simulate this multi-dimensional pinch plasma, an initial plasma state is 

considered that is defined as a function of r, which represents the distance from 

the central point. The initial properties of plasma including the density (ρ), radial 

velocity (vr ), toroidal magnetic field (B𝜙 ), and plasma pressure (𝑃 ) are ρ =

3.1831 × 10−5r2 g/cm3, vr = −3.24101 × 107 cm/𝑠 , B𝜙 = 6.35584 ×

108r gauss , and 𝑃 = 𝛽 × B𝜙
2  , respectively. Here, the ratio of the plasma 

pressure and magnetic pressure (𝛽) is 8π × 10−6. 

The SPH particles are arranged with spacings of 0.01 cm on a 2D plane in the 

range of −3 cm < x < 3 cm and −3 cm < y < 3 cm. For the boundary condition, an 

approach similar to that in a previous study is followed (A. L. Velikovich et al., 

2011). Specifically, the outermost 10 layers of particles are assigned as boundary 

particles, and the physical properties of the last layer of plasma particles are 

copied. Accordingly, the ρ , vr , B𝜙 , and 𝑃  values of the boundary particle 

satisfy the zero gradient condition at rout (= 3 cm). This approach is effective 

because the boundary is far enough from the center of the plasma, preventing 

significant influence on the internal dynamics within the first 30 ns of the 

simulation.  

During the simulation, the plasma undergoes temporal evolution, which leads 

to a significant change in its properties. Therefore, a crucial criterion for 

determining the effectiveness of the MHD code for simulating multi-dimensional 
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pinch plasma is its ability to reproduce the self-similar solution for this problem. 

To evaluate the accuracy of developed model, the problem is simulated and the 

density, velocity, and pressure of the plasma at 30 ns are analyzed. 

Through this 2D simulation, the application effect of the introduced ASPH 

method is confirmed. Figure 2.10 (b) presents the comparison of the analytic 

solution and the simulation result obtained through the SPH moel before the 

ASPH application. As shown in the figure, the peak value of physical properties 

in the compressed region significantly differs from that in the analytic solution. 

Two factors contribute to this error. First, the smoothing length at the center point 

is too large. As shown in Figure 2.11 (a), the strong compression by the magnetic 

field causes the particles to gather with a high number density at the central point. 

If ASPH is not applied, the initial smoothing length used in the simulation may 

be too large to yield a high number density. Previous studies using Eulerian codes 

have reported that physical variables are underestimated when the mesh is not 

dense enough in the magnetized Noh problem. Similarly, in the SPH simulations, 

an excessively wide smoothing length relative to the particle number density 

results in the underestimation of physical quantities at the peak point (A. L. 

Velikovich et al., 2011). Second, the tensile instability during the simulation is 

observed. As shown in Figure 2.11 (a), during the simulation of the magnetized 

Noh problem, the particles aggregated and assembled in the same direction. These 

particle arrangements are known to cause tensile instability, which is 

accompanied with significant numerical errors in SPH simulations (T. A. 

Shelkovenko et al., 2018). For the above problems, significant improvement has 

been achieved through the application of the ASPH method. Figure 2.10 (c) 

shows the comparison between the simulation results with the ASPH method 
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applied and the analytic solution for the magnetized Noh problem. The figure 

shows that the accuracy of the SPH model greatly improves in the compression 

problems after the application of the ASPH method. In addition, as shown in 

Figure 2.11 (b), the existing tensile instability is successfully removed due to the 

application of the ASPH method. 
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Table 2.1. Conditions of kernel function 

Condition Mathematical Expression 

Unity Condition ∫ 𝑊(𝑟, ℎ)𝑑𝛺

 

𝛺

= 1 

Symmetry Condition W(𝑟, ℎ) = W(−𝑟, ℎ) 

Delta-function Approximation lim
ℎ→0

𝑊(𝑟, ℎ) = 𝛿(𝑟) 

Compact Support Condition 𝑊(𝑟, ℎ) = 0 for |𝑟| > 𝜅ℎ 

Positive Condition 𝑊(𝑟, ℎ) ≥ 0 for any r 

Monotonic Decrease Condition 𝑊′(𝑟, ℎ) < 0 

 

Table 2.2. Types of kernel functions 

Kernel function Formulation 

Gaussian 

𝑊(𝑅, h)

=

{
  
 

  
 

1

(𝜋0.5ℎ)
𝑒−𝑅2

                           𝑓𝑜𝑟 1𝐷

1

(𝜋0.5ℎ)2
𝑒−𝑅2

                          𝑓𝑜𝑟 2𝐷

1

(𝜋0.5ℎ)3
𝑒−𝑅2

                          𝑓𝑜𝑟 3𝐷

 

Quartic 𝑊(𝑅, h) =

{
 
 

 
 

1

ℎ
(
2

3
−

9

8
𝑅2 +

19

24
𝑅3 −

5

32
𝑅4)           𝑓𝑜𝑟 1𝐷

15

7𝜋ℎ2
(
2

3
−

9

8
𝑅2 +

19

24
𝑅3 −

5

32
𝑅4)        𝑓𝑜𝑟 2𝐷

315

208𝜋ℎ3
(
2

3
−

9

8
𝑅2 +

19

24
𝑅3 −

5

32
𝑅4)      𝑓𝑜𝑟 3𝐷

 

Wendland C2 𝑊(𝑅∗, ℎ) =

{
  
 

  
 

5

4(2ℎ)
(1 − 𝑅∗)3(1 + 3𝑅∗)             𝑓𝑜𝑟 1𝐷

7

𝜋(2ℎ)2
(1 − 𝑅∗)4(1 + 4𝑅∗)            𝑓𝑜𝑟 2𝐷

21

2𝜋(2ℎ)3
(1 − 𝑅∗)4(1 + 4𝑅∗)          𝑓𝑜𝑟 3𝐷
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Table 2.3. Four types of SPH derivatives for the non-ideal MHD term 

SPH discretization SPH Formulation 

Symmetric (
𝑑𝑩

𝑑𝑡
)

𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙
= 𝜌𝑖 ∑ 𝑚𝑗 (

𝜂𝑖𝑱𝑖

𝜌𝑖
2 +

𝜂𝑗𝑱𝑗

𝜌𝑗
2 ) × 𝛻𝑖𝑊𝑖𝑗

𝑗

 

Difference (
𝑑𝑩

𝑑𝑡
)

𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙
= −

1

𝜌𝑖

∑ 𝑚𝑗(𝜂𝑖𝑱𝑖 − 𝜂𝑗𝑱𝑗) × 𝛻𝑖𝑊𝑖𝑗

𝑗

 

Laplacian (
𝑑𝑩

𝑑𝑡
)

𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙
= ∑

4𝜂𝑖𝜂𝑗

𝜂𝑖 + 𝜂𝑗

𝑚𝑗

𝜌𝑗
(𝑩𝑖 − 𝑩𝑗)

𝒓𝑖𝑗 ∙ 𝛻𝑖𝑊𝑖𝑗

|𝒓𝑖𝑗|
2  

𝑗

 

Inter-particle (
𝑑𝑩

𝑑𝑡
)

𝑛𝑜𝑛−𝑖𝑑𝑒𝑎𝑙
= −

𝜌𝑖

𝑚𝑖
∑(

𝑚𝑖
2

𝜌𝑖
2 +

𝑚𝑗
2

𝜌𝑗
2 )

𝜌𝑖𝜂𝑗𝑱𝑗 + 𝜌𝑗𝜂𝑖𝑱𝑖

𝜌𝑖 + 𝜌𝑗
× 𝛻𝑖𝑊𝑖𝑗

𝑗

 

 

 

 

 

Table 2.4. Benchmark problems for developed SPH-MHD model verification  
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Figure 2.1. Particle System of Smoothed Particle Hydrodynamics (SPH) 

 

 

 

 

 

 

Figure 2.2. Schematic diagram of particle kernel radius in non-uniform particle 

distribution (a) before applying ASPH, and (b) after applying ASPH 
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Figure 2.3. Simplified algorithm of SOPHIA-MHD model 
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Figure 2.4. Biro&Wu shock tube simulation results 

 

 

 

Figure 2.5. The pressure field profiles of Brio&Wu shock tube simulation (b) after 

applying the 𝛻∙𝐵 correction term, and (c) artificial resistivity term. 
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Figure 2.6. Effects of particle resolution on SPH current density profiles in 

resistive MHD shock tube simulation. This sensitivity analysis of particle 

resolution demonstrates that a sufficiently high resolution is required to capture 

the sharp peak in current density. 

 

 

 

Figure 2.7. SPH current density profiles of resistive MHD shock tube simulation 

using (a) difference operator, and (b) symmetric operator. (d = 0.0005) 
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Figure 2.8. SPH current density profiles of resistive MHD shock tube simulation 

using (a) difference operator, and (b) symmetric operator. (d = 0.00005) 

 

 

 

 

 

Figure 2.9. (a) Time derivative of magnetic field according to the SPH 

discretization and (b) deviation from reference data at t=0.0002 sec.  
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Figure 2.10. Magnetized Noh simulation results from 2-dimensional SPH model: 

(a) the time evolution of density, velocity, and pressure distributions, and the 

profiles of the variables (b) before and (c) after applying ASPH. The solid curve 

is the self-similar solution at 30 ns to the magnetized Noh problem. 

 

 

Figure 2.11. Particle arrangement in magnetized Noh simulation (a) before and 

(b) after applying ASPH  
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Chapter 3 

Physics Model for X-pinch Simulation 

 

 

 

 

3.1 Challenges for X-pinch simulations 

 

In this section, the main challenges encountered in the simulation of X-pinch 

phenomena are summarized. Each challenge addresses a specific aspect of the 

simulation process and highlights the modifications made to the code to overcome 

these challenges. Firstly, in the high-temperature conditions of pinch plasma, the 

insufficiency of electron-ion collisions renders the one-temperature model 

inadequate. To address this, the code has been expanded to incorporate a two-

temperature equation, allowing for the separation of electron and ion energies. 

Secondly, selecting an appropriate Equation of State (EOS) is crucial for 

accurately capturing the non-ideal characteristics of plasma under extreme 

conditions. The code incorporates a Thomas-Fermi model-based EOS, 

specifically tailored to describe the non-ideal effects of High-Energy-Density 

Plasmas (HEDP). Thirdly, an accurate plasma transport model is essential for 

reflecting the energy transport and electromagnetic properties of pinch plasma. 

Desjarlais' modified model, which addresses overestimated ionization in low-

density regions, has been integrated into the code to provide a more realistic 

representation of plasma dynamics. Lastly, given the presence of both optically 

thin and optically thick regions in X-pinch phenomena, an appropriate radiation 



45 

 

model is necessary to cover the entire plasma column. The code employs the flux-

limited diffusion model, enabling comprehensive radiative calculations 

throughout the X-pinch region. By addressing these challenges, the enhanced 

simulation code offers a more accurate and comprehensive representation of X-

pinch phenomena, facilitating a deeper understanding of the complex physics 

involved in HEDP. 

 

 

3.2 SPH governing equations for X-pinch simulations 

 

Understanding transport processes in plasma, including particle diffusion, heat 

conduction across magnetic fields, electric resistivity, and energy transfer, is 

essential for addressing critical challenges in X-pinch research. However, the 

existing SOPHIA-MHD code developed in Chapter 2 lacks a comprehensive 

model that incorporates these processes, requiring enhancements to enable 

effective X-pinch simulation. This section provides a detailed description of the 

MHD model specifically designed for X-pinch simulation and derives its SPH 

formulation. 

 

3.2.1 Single-fluid two-temerature model 

 

The most commonly employed model for dense pinch plasmas is the one-fluid, 

two-temperature Magnetohydrodynamics (MHD) model developed by Braginskii 

(1963) and Rosenbluth (1956). This model combines the individual fluid 

equations governing ions and electrons while incorporating several 

approximations (Krall and Trivelpiece, 1973; T. G. Cowling, 1957; and others) to 
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derive the one-fluid MHD equations. In some cases, equations describing the 

ionization kinetics or radiative energy transport should be added to the system. 

The model includes equations of mass and charge continuity, the equation of 

motion, and the energy equations for ions and electrons as follow: 

 

𝑑𝜌

𝑑𝑡
+ 𝜌(𝛻 ∙ 𝒗) = 0 (3.1) 

𝑑𝒗

𝑑𝑡
=

1

𝜌
𝛻 ∙ (

𝑩 ⊗ 𝑩

𝜇0
− (

|𝑩|2

2𝜇0
+ 𝑃) �⃡� ) (3.2) 

𝑑𝑢𝑖𝑜𝑛

𝑑𝑡
= −

𝑃𝑖𝑜𝑛

𝜌
(𝛻 ∙ 𝒗) +

1

𝜌
𝛻 ∙ 𝒒𝑖𝑜𝑛 +

1

𝜌
𝛥𝑖𝑒 (3.3) 

𝑑𝑢𝑒𝑙𝑒𝑐

𝑑𝑡
= −

𝑃𝑒𝑙𝑒𝑐

𝜌
(𝛻 ∙ 𝒗) +

1

𝜌
𝛻 ∙ 𝒒𝑒𝑙𝑒𝑐 +

𝜂|𝑱|2

𝜌
− Qrad +

1

𝜌
𝛥𝑒𝑖 (3.4) 

 

Here, 𝜌, 𝒗, 𝑃, 𝑢  represent the mass density, velocity, pressure, and specific 

internal energy respectively. Radiation effects are included through a radiation 

losses sink term Qrad and Ohmic heating is given by the source term 𝜂|𝑱|2, where 

𝜂 is the resistivity. The ion and electron thermal fluxes are given, respectively, 

by 𝒒𝑖𝑜𝑛 = −𝑘𝑖𝑜𝑛∇𝑇𝑖𝑜𝑛  and 𝒒𝑒𝑙𝑒𝑐 = −𝑘𝑒𝑙𝑒𝑐∇𝑇𝑒𝑙𝑒𝑐 , where 𝑘  is the thermal 

conductivity. In the single-fluid approximation, the plasma momentum is 

primarily influenced by the ions, neglecting electron inertia. So, the flow is 

described by a single momentum equation, as given in Eq. (3.2). As mentioned in 

the previous section, the HED plasma regime presents challenges when assuming 

equal temperatures for electrons and ions. In such cases, the energy of electrons 

and ions is treated separately, considering their significant mass ratio. 

Consequently, two distinct energy equations are obtained: Eq. (3.3) for ions and 
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Eq. (3.4) for electrons. The energy equations for electrons and ions are coupled 

through the electron-ion energy exchange term ∆𝑒𝑖 (= −∆𝑖𝑒). The calculation of 

this term, along with Qrad, is discussed in detail in the subsequent section. 

 

In cases involving very high currents or particle beams interacting with dense 

pinch plasmas, where relativistic effects are significant, the single-fluid 

approximation proves inadequate. Instead, a two-fluid model of a non-neutral 

plasma should be utilized (Meierovich and Sukhorukov, 1975; Solov'ev, 1984). 

When dealing with low-density plasmas found in RFPs or EXTRAP, alternative 

fluid models such as the perpendicular MHD model and the CGL model may be 

more relevant. Some stability issues cannot be adequately addressed using a fluid 

model alone and necessitate a kinetic approach. However, for dense pinch 

plasmas, Eq. (3.1)-(3.4) has been known to be valid in most cases (M. A. 

Liberman et al., 1999). Notably, the validity of the single-fluid assumption under 

the X-pinch condition was confirmed by Byun(2022) through a comparison of 

collision time (τei), collisional mean free path (λmfp) and pulse duration, plasma 

length scales. Figure 3.1 illustrates that the contours of τei and λmfp are 

predominantly small in comparison to the pulse duration (100 ns to a few µs) and 

plasma length scales (mm). Therefore, the single-fluid model was utilized for the 

X-pinch simulation in this study. 

 

3.2.2 Electron-ion exchange model 

 

The electron-ion exchange term ∆𝑒𝑖  is expressed as Eq. (3.5) from the 

temperature difference of electron and ion (R. Ramis et al., 2012). 
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Δ𝑒𝑖 =
3𝑚𝑒

𝑚𝑖
2 𝑍𝑒𝑓𝑓𝜈𝑒𝑖 (𝑇𝑒 − 𝑇𝑖) (3.5) 

 

where 𝜈𝑒𝑖 is the electron-ion collision frequency, 𝑚𝑒,𝑖 are the electron and 

ion mass respectively, and 𝑍∗  is the average ionization level. To determine the 

collision frequency of the plasma, the Spitzer model has traditionally been 

employed (L. Spitzer and R. Härm, 1953).  

 

𝜈𝑆𝑝𝑖𝑡𝑧𝑒𝑟 =
4

3
(2𝜋)

1
2

𝑍∗ 𝑒4𝑚𝑒𝑛𝑒

(𝑚𝑒𝑘𝐵𝑇𝑒)3/2
𝑙𝑛(𝛬) (3.6) 

 

where e denotes the unit charge, 𝑛𝑒 reperesents the electron density, 𝑙𝑛(𝛬) 

is the Coulomb logarithm, and 𝑘𝐵 stands for the Boltzmann constant. However, 

this model yields significantly different values from reality, particularly in the 

low-temperature region (M. Basko, 1997). Given that the X-pinch phenomenon 

encompasses low-temperature regions where the Spitzer model is not valid, it is 

necessary to obtain a collision frequency 𝜈𝑒𝑖 , that is applicable over a wide 

temperature range, including the cold, solid state of plasma. Within this specific 

region, the dependence of collision frequency on electron temperature diminishes 

due to the electrons being in a degenerate state. Instead, the interaction between 

electrons and phonons or lattice vibrations becomes the governing factor for the 

collision frequency. This electron-phonon model accurately characterizes the 

behavior of solid states at low temperatures below the melting point. Under 

conditions of a cold solid state, denoted as 𝑣F ≪ 𝑐  and ℏωpi ≪ 𝑘𝐵𝑇𝑖𝑜𝑛 , this 

model is known to be able to approximated using the following form: 
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𝜈𝑒𝑙𝑒𝑐−𝑝ℎ𝑜𝑛𝑜𝑛 ≈ 2𝑘𝑠

𝑒2𝑘𝐵𝑇𝑖

ℏ2𝑣𝐹
 (3.7) 

 

Here, 𝑐  is the speed of light, ωpi  the ion plasma frequency, and 𝑣F  the 

Fermi velocity 𝑣F (= ℏ(3π2𝑛𝑒)
1

3/𝑚𝑒). 𝑘𝑠 is a numerical constant, for which 

the value 13 is given in the previous study (D.G. Yakovlev and V.A. Urpin, 1980). 

Finally, the classical Spitzer collision frequency is combined with the electron-

phonon collision frequency through interpolation as shown in Eq. (3.8). 

 

𝜈𝑒𝑖
−1 = 𝜈𝑆𝑝𝑖𝑡𝑧𝑒𝑟

−1 +  𝜈𝑒𝑙𝑒𝑐−𝑝ℎ𝑜𝑛𝑜𝑛
−1  (3.8) 

 

The energy exchange term in Eq. (3.5) can be accurately calculated in the low-

temperature region by utilizing the collision frequency in Eq. (3.8). Figure 3.2 

shows a schematic diagram of collision frequency as a function of temperature. 

 

3.2.3 Radiation model 

 

It is necessary to include an accurate radiation model to reproduce the actual 

physical phenomena that occur in the X-pinch, such as neck breaking. In many 

previous X-pinch simulation studies, the optically thin assumption was employed. 

In this case, the radiation power generated in the plasma can be calculated from 

the radiation losses that occur through electronic transitions (Byun et al., 2022; 

Koundourakis, 2020; Skoulakis 2022). However, the actual X-pinch plasma 

exhibits a complex nature, encompassing regions that are both optically thin and 
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optically thick. Therefore, it is necessary to utilize a radiation model capable of 

addressing both aspects of the phenomenon. The radiation model employed in 

this study is the flux-limited diffusion model. This model is an extension of the 

diffusion approximation radiation model, which estimates thermal spread by 

assuming equal magnitude of radiation in multiple directions. A full description 

of the flux-limited diffusion approximation is given by Turner & Stone (2001). 

This section provides a summary of the main points. 

In this model, additional transport equations are necessary for the calculation 

of radiation energy. The derivation of radiation transport equations assumes local 

thermal equilibrium (LTE) and utilizes the diffusion approximation and gray 

approximations. In this context, the formulas for computing the specific internal 

energy of electrons and specific radiation energy (𝜉) are proposed as follows (S. 

Whitehouse, 2004):  

 

𝑑𝑢𝑒𝑙𝑒𝑐

𝑑𝑡
= −

𝑃𝑒𝑙𝑒𝑐

𝜌
(𝛻 ∙ 𝒗) +

1

𝜌
𝛻 ∙ 𝒒𝑒𝑙𝑒𝑐 +

𝜂|𝑱|2

𝜌
          

                   +𝑐𝜅𝑝 (𝐸𝑟𝑎𝑑 −
4𝜎𝐵

𝑐
𝑇𝑒𝑙𝑒𝑐

4 ) 

(3.9) 

𝑑(𝜉𝑟𝑎𝑑)

𝑑𝑡
= −

1

𝜌
𝛻 ∙ 𝑭 −

1

𝜌
𝛻𝑣: �⃡�  − 𝑐𝜅𝑝 (𝐸𝑟𝑎𝑑 −

4𝜎𝐵

𝑐
𝑇𝑒𝑙𝑒𝑐

4 ) (3.10) 

 

where 𝑭 denotes the radiative flux, c is the speed of light, 𝜅𝑝 is the planck 

mean opacity, 𝜎𝐵  is the Stefan-Boltzmann constant with a value of 5.67 ×

10−8 W/m2𝐾4  and 𝐸𝑟𝑎𝑑  is the radiation energy density (𝐸𝑟𝑎𝑑 = 𝜌𝜉𝑟𝑎𝑑 ). At 

this stage, considering that 𝑢𝑒𝑙𝑒𝑐 is significantly larger than 𝜉𝑟𝑎𝑑 under most 

conditions, Eq. (3.11) is derived by combining Eq. (3.9) and Eq. (3.10): 
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𝑑

𝑑𝑡
(𝑢𝑒𝑙𝑒𝑐) ≈ −

𝑃𝑒𝑙𝑒𝑐

𝜌
(𝛻 ∙ 𝒗) +

1

𝜌
𝛻 ∙ 𝒒𝑒𝑙𝑒𝑐 +

𝜂|𝑱|2

𝜌
−

1

𝜌
𝛻𝑣: �⃡�  −

1

𝜌
𝛻 ∙ 𝑭 (3.11) 

 

Here, assuming the radiation temperature is equal to the electron temperature, 

Eq. (3.11) can be solved without the need for a separate calculation of the 

radiation energy density. Although these assumptions are not strictly based on 

physical principles, it was employed in this study due to their advantage of 

ensuring calculation stability and allowing for radiation calculations within the 

hydrodynamic time step. In the diffusion approximation model, 𝑭  expressed 

using the rosseland mean opacity 𝜅𝑅 as 

 

𝑭 = −
𝑐

3𝜌𝜅𝑅
𝛻𝐸𝑟𝑎𝑑 (3.12) 

 

This expression provides accurate flux in regions with high optical thickness. 

However, the diffusion equation, while easy to solve, becomes inaccurate in 

regions with low optical thickness and a large energy density gradient. In optically 

thin regions, where 𝜌𝜅𝑅  approaches zero, the flux tends to approach infinity, 

whereas in reality, the magnitude of the flux should not exceed the speed of light 

times the energy density (𝑭 ≤ 𝑐|𝐸𝑟𝑎𝑑|). To address this issue, the flux-limited 

diffusion approach imposes a limitation on the flux in optically thin environments, 

ensuring that it always satisfies the aforementioned inequality. To this end, 

Levermore & Pomraning (1981) formulated the radiation flux using below Fick's 

law of diffusion: 
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𝑭 = −
𝑐𝜆

𝜌𝜅𝑅
𝛻𝐸𝑟𝑎𝑑 (3.13) 

 

The dimensionless function 𝜆 is called the flux limiter. To determine the flux 

limiter, an appropriate expression needs to be selected. In this study, the flux 

limiter proposed by Levermore & Pomraning is chosen. 

 

𝜆(𝑅) =
2 + 𝑅

6 + 3𝑅 + 𝑅2
 (3.14) 

 

where R is the dimensionless quantity 𝑅 = |∇𝐸𝑟𝑎𝑑|/𝜌𝜅𝑅𝐸𝑟𝑎𝑑. In the optically 

thin limit,  

 

lim
𝑅→∞

𝜆(𝑅) =
1

𝑅
 (3.15) 

 

resulting in a flux magnitude approaching |𝑭| = 𝑐|∇𝐸𝑟𝑎𝑑|/𝜌𝜅𝑅𝑅 = 𝑐𝐸𝑟𝑎𝑑. In 

the optically thick limit, 

 

lim
𝑅→0

𝜆(𝑅) =
1

3
 (3.16) 

 

leading to the flux value given by Eq (3.11). Several alternative forms of flux 

limiter have been developed to provide more realistic performance in various 

problem scenarios (Turner and Stone, 2001). 
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3.2.4 SPH Governing equations 

Through the preceding discussions, the SPH governing equations outlined in 

Chapter 2, which include the conservation of mass, momentum, induction, 

specific ion and electron internal energy equation are extended and employed in 

X-pinch simulations. 

 

𝝆𝑖 = 𝑚𝑖 ∑ 𝑊𝑖𝑗

𝑗

 (3.17) 

 

𝑑𝒗𝒊

𝑑𝑡
= ∑ 𝑚𝑗 (

𝑴𝑖
 ⃡   

𝜌𝑖
2 +

𝑴𝑗
 ⃡   

𝜌𝑗
2) ∙ 𝛻𝑖𝑊𝑖𝑗

𝑗

 (3.18) 

 

𝑑𝑩𝒊

𝑑𝑡
=

1

𝜌𝑖
∑ 𝑚𝑗(𝑩𝑖𝒗𝑖𝑗 − 𝒗𝑖𝑗𝑩𝑖) ∙ 𝛻𝑖𝑊𝑖𝑗

𝑗

−
𝜌𝑖

𝑚𝑖
∑ (

𝑚𝑖
2

𝜌𝑖
2 +

𝑚𝑗
2

𝜌𝑗
2 )

𝜌𝑖𝜂𝑖𝑱𝑖 + 𝜌𝑗𝜂𝑗𝑱𝑗

𝜌𝑖 + 𝜌𝑗
× 𝛻𝑖𝑊𝑖𝑗

𝑗

 

(3.19) 

 

𝑑𝑢𝑖
𝑖𝑜𝑛

𝑑𝑡
=

1

2
∑ 𝑚𝑗 (

𝑃𝑖
𝑖𝑜𝑛

𝜌𝑖
2 +

𝑃𝑗
𝑖𝑜𝑛

𝜌𝑗
2 ) 𝒗𝑖𝑗 ∙ 𝛻𝑖𝑊𝑖𝑗 −

3𝑚𝑒𝑙𝑒𝑐

𝑚𝑖𝑜𝑛
2 𝑍∗ 𝜈𝑒𝑖 (𝑇𝑖

𝑒𝑙𝑒𝑐 − 𝑇𝑖
𝑖𝑜𝑛)

𝑗

+ ∑
4𝑘𝑖

𝑖𝑜𝑛𝑘𝑗
𝑖𝑜𝑛

𝑘𝑖
𝑖𝑜𝑛 + 𝑘𝑗

𝑖𝑜𝑛 

𝑚𝑗

𝜌𝑖
(𝑇𝑖

𝑖𝑜𝑛 − 𝑇𝑗
𝑖𝑜𝑛)

𝒓𝑖𝑗 ∙ 𝛻𝑊𝑖𝑗

|𝒓𝑖𝑗|
2

𝑁

𝑗=1

 

(3.20) 

 

𝑑𝑢𝑖
𝑒𝑙𝑒𝑐

𝑑𝑡
=

1

2
∑ 𝑚𝑗 (

𝑃𝑖
𝑒𝑙𝑒𝑐

𝜌𝑖
2 +

𝑃𝑗
𝑒𝑙𝑒𝑐

𝜌𝑗
2 ) 𝒗𝑖𝑗 ∙ 𝛻𝑖𝑊𝑖𝑗

𝑗

+
1

𝜌𝑖
𝜂𝑖𝑱𝑖

2

−
4𝜎𝐵

𝑐𝜌
𝑇𝑖

𝑒𝑙𝑒𝑐4
(𝛻 ∙ 𝒗)𝑖𝑓𝑖 +

3𝑚𝑒𝑙𝑒𝑐

𝑚𝑖𝑜𝑛
2 𝑍∗ 𝜈𝑒𝑖 (𝑇𝑖

𝑒𝑙𝑒𝑐 − 𝑇𝑖
𝑖𝑜𝑛)

+ ∑
4𝑘𝑖

𝑒𝑙𝑒𝑐𝑘𝑗
𝑒𝑙𝑒𝑐

𝑘𝑖
𝑒𝑙𝑒𝑐 + 𝑘𝑗

𝑒𝑙𝑒𝑐  

𝑚𝑗

𝜌𝑖
(𝑇𝑖

𝑒𝑙𝑒𝑐 − 𝑇𝑗
𝑒𝑙𝑒𝑐)

𝒓𝑖𝑗 ∙ 𝛻𝑊𝑖𝑗

|𝒓𝑖𝑗|
2

𝑁

𝑗=1

+ ∑
4𝜇𝑖 𝜇𝑗

𝜇𝑖 + 𝜇𝑗  

𝑚𝑗

𝜌𝑖
(𝑇𝑖

𝑒𝑙𝑒𝑐 − 𝑇𝑗
𝑒𝑙𝑒𝑐)

𝒓𝑖𝑗 ∙ 𝛻𝑊𝑖𝑗

|𝒓𝑖𝑗|
2

𝑁

𝑗=1

 

(3.21) 
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Here, 𝑢𝑖𝑜𝑛  and 𝑢𝑒𝑙𝑒𝑐  are specific ion/electron internal energy, 𝑘𝑖𝑜𝑛  and 

𝑘𝑒𝑙𝑒𝑐  are ion/electron thermal conductivity, 𝑇𝑖𝑜𝑛and 𝑇𝑒𝑙𝑒𝑐  are ion/electron 

temperature, 𝑍∗   and 𝜈𝑒𝑖  ars the average ionization level and collision 

frequency of i particle, and 𝜇 is the radiation thermal conductivity obtained from 

Eq. (3.13) and expressed as 

𝜇𝑖 =
16𝜆𝑖𝜎𝐵

𝜌𝑖𝜅𝑅_𝑖
𝑇𝑖

𝑒𝑙𝑒𝑐3
 (3.22) 

 

𝑓 is the Eddington factor expressed as the flux-limiter λ. 

 

𝑓𝑖 = 𝜆𝑖 + 𝜆𝑖
2  [ 

|𝛻𝑇𝑖
𝑒𝑙𝑒𝑐|

𝜌𝑖𝜅𝑅_𝑖 𝑇𝑖
𝑒𝑙𝑒𝑐 ] 

(3.23) 

 

In Eq. (3.20) and Eq. (3.21), heat transfer terms due to radiation and conduction 

involve second-order spatial derivatives. Direct computation of second-order 

derivatives using standard SPH techniques is well known to be sensitive to 

particle disorder and may lead to unstable integration. To overcome this difficulty, 

Cleary & Monaghan (1999) proposed a reformulation of the second-order 

derivative as a first-order derivative using a Taylor series expansion. A detailed 

description of this reformulation can be found in the work of Jubelgas (2004). 

 

 

3.3 Physical property model 

 

The solution of Eqs. (3.17) – (3.21) necessitates detailed plasma property 

values spanning a wide range of temperatures and densities. These values were 
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derived using suitable material property models, including EOS, plasma transport, 

and radiation models, and organized in tabular format. In this section, a 

comprehensive explanation of the detailed physics model used to obtain each 

material property is provided. Furthermore, the subsequent section presents an 

algorithm of the entire code, including how the obtained plasma properties are 

effectively incorporated. 

 

3.3.1 Plasma ionization balance model 

 

The average ion charge state (𝑍∗) implies the ionization degree on each plasma 

state, and electron/ion densities (𝑛𝑒 , 𝑛𝑖 ) are determined from the ionization 

process. Accurate ionization calculations are crucial as they has a strong effect on 

many plasma properties found in Eqs. (3.17) to (3.21). To achieve precise 

modeling of plasma dynamics, an accurate calculation of the ionization degree is 

essential. A variety of methods have been adopted to determine the degree of 

ionization for strongly coupled plasmas. Two representative approaches that can 

classify the various approximation methods are the Saha equation method (W. 

Ebeling et al., 1976) and the Thomas-Fermi (TF) statistical atomic model. In this 

study, the average degree of ionization for a dense plasma is calculated using the 

modified Lee-More model based on the TF method.  

 

The Lee-More model has demonstrated its efficacy in determining the average 

properties of atomic systems, including the equation of state and degree of 

ionization. It also has been widely employed in various high-density physics 

problems. With the generic Lee-More model, the electron density is commonly 
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determined using a TF ionization model. This approach is advantageous due to 

its natural connection to TF model-based EOS and its ability to cover a wide range 

of densities and temperatures. However, the TF model fails to accurately capture 

the metal-insulator transition because it neglects atomic structure effects on 

ionization equilibrium. As a result, it overestimates the ionization level under 

low-density conditions, which are known to produce very low ionization levels. 

To overcome this limitation, this study employed a Desjarlais corrected model 

(2001) that combines the TF model with a single ionization Saha model, 

incorporating a pressure ionization correction. In this corrected model, the 

effective ionization calculation is done as Eq. (3.24). 

 

𝑍𝑒𝑓𝑓 = 𝑓𝑒
2 𝑍𝑇𝐹

2⁄
𝑍𝑇𝐹 + (1 − 𝑓𝑒

2 𝑍𝑇𝐹
2⁄

) 𝑓𝑒 (3.24) 

 

where 𝑓e is the ionization level by simplified non-ideal Saha, and 𝑍𝑇𝐹 is the 

ionization level by Thomas-Fermi approximation. The effective ionization level 

for copper was computed using Eq. (3.4). As a results, the Desjarlais corrected 

model offers a comprehensive approach that smoothly transitions from Thomas-

Fermi to non-ideal Saha in regions where the ionization calculated from the non-

ideal Saha model is significantly less than 1.0, as depicted in Figure 3.4. 

 

3.3.2 Plasma transport model 

 

The Spitzer and Braginskii formulas are commonly used for calculating plasma 

transport coefficients, but these models are only applicable to fully ionized non-
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degenerate plasmas (Y. T. Lee et al., 1984). In the case of X-pinch plasma, non-

ideal effects become significant. There are two common approaches for obtaining 

transport coefficients in these kinds of high-density plasmas. The first approach 

involves using tabular data, such as SESAME tables, which provide explicit 

plasma transport coefficients values. The second approach involves employing 

an implicit model with in-line calculations, such as the Lee & More model (1984). 

In this study, a combination of these two approaches is used. First, the Lee & 

More model is improved to better account for the non-ideal plasma conditions in 

the X-pinch scenario. These improvements enable the derivation of various 

transport coefficients necessary for the X-pinch simulation. Following that, the 

derived coefficients are organized and transformed into a tabular format, 

representing them as functions of density and temperature. Finally, the resulting 

property table is directly utilized for calculations. 

 

There are several improvements based on the Lee & More model to accurately 

describe non-ideal plasma behavior. Firstly, the corrected Coulomb logarithm is 

taken into account to incorporate the non-ideal effects in the metal-insulator state. 

Instead of using the classical Coulomb logarithm, ln(1 + 1.4𝛬𝑚
2 )1/2 is utilized 

(R. J. Zollweg and R. W. Libermann, 1987). In this case, 𝛬𝑚  represents a 

modified form derived from the classical Coulomb logarithm value (𝛬), which 

can be expressed as 

 

𝛬𝑚 = 𝛬 [1 + (
𝑎𝑖

𝜆𝐷
)

2

]

1/2

 (3.25) 
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Here, 𝑎𝑖  represents the inter-ionic distance, and 𝜆𝐷  corresponds to the 

Debye shielding length. The corrected ratio of the cutoff shielding length (𝑏𝑚𝑎𝑥) 

to the impact parameter (𝑏0) in Coulomb collisions is considered to account for 

the dense plasma condition. Secondly, the inclusion of electron-neutral atom 

collisions is considered when calculating the electrical conductivity of the plasma. 

The electrical conductivity of a plasma medium is greatly influenced by the 

degree of ionization. In fully ionized plasma, the movement of electrons is 

primarily governed by Coulomb interactions with ions, whereas in weakly 

ionized plasma, collisions between electrons and neutral atoms play a significant 

role. For partially ionized plasma, the electrical conductivity (σ) can be 

represented by a simple model that strikes a balance between the fully and weakly 

ionized conditions (Kim, 2003). 

 

1

𝜎
=

1

𝜎𝑒−𝑖
+

1

𝜎𝑒−𝑛
 (3.26) 

𝜎𝑒−𝑖 =
1

38

𝑇𝑒
3/2

 

𝑍𝑒𝑓𝑓

𝛾𝐸

ln(1 + 1.4𝛬𝑚
2 )1/2

   (3.27) 

𝜎𝑒−𝑛 =
𝑛𝑒𝑒2 

𝑚𝑒𝜈𝑒−𝑛
 (3.28) 

 

where 𝜎𝑒−𝑖  and 𝜎𝑒−𝑛  represent the electrical conductivities associated with 

electron-ion and electron-neutral collisions, respectively. 𝛾𝐸   is the correction 

factor for electron-electron collisions, and 𝜈𝑒−𝑛  is the mean electron-neutral 

collision frequency calculated using the Chapman-Enskog theory (R.J. Rosa et 

al., 1991). At this point, the Desjarlais modified model, introduced in the previous 

section, can be utilized to calculate Eq. (3.27). The impact of these improvements 
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on the electrical conductivity of copper is illustrated in Figure 3.4. 

 

3.3.3 Plasma opacity model 

 

Opacity is a quantity that determines the transport of radiation through matter 

and is important for various problems in physics and astronomy. In particular, 

calculating opacity in HED (High-Energy-Density) plasma is essential for 

understanding the energy transport by radiation within the plasma and its effects. 

It is known that quantum mechanical effects, such as degeneracy, impact opacity 

because plasma is compressed in high-energy-density plasma, and the distance 

between ions is at the Debye length level. Therefore, to calculate opacities, atomic 

data for numerous processes involving the absorption and scattering of radiation 

is required. 

 

In this study, the Rosseland mean opacity of copper is calculated using the 

ATOMIC code (J. Colgan et al., 2016). ATOMIC is a multi-purpose plasma 

modeling code (Magee et al., 2004; Hakel et al., 2006; Fontes et al., 2015) that 

can be operated in LTE or non-LTE mode. It provides the necessary Rosseland 

mean opacity data for calculating Eq.(3.21) across the temperature range from 0.5 

eV to 10 keV. In ATOMIC code, Rosseland mean opacity was defined as (Weiss 

et al., 2004) : 

 

𝜅𝑅 =
∫

1
𝜅𝜈

𝑛𝜈
3 𝜕𝐵𝜈

𝜕𝑇
𝑑𝜈

∞

0

∫
𝜕𝐵𝜈

𝜕𝑇
𝑑𝜈

∞

0

 (3.29) 
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where 𝜈 is the photon frequency, 𝐵𝜈 represents the Planck function (Huebner 

& Barfield, 2014), 𝑛𝜈 denotes the frequency-dependent refractive index defined 

by Armstrong et al. (2014), and 𝜅𝜈 represents the frequency-dependent opacity. 

𝜅𝜈 encompasses several contributions that can be summarized as follows: 

 

𝜅𝑣 = 𝜅𝐵𝐵 + 𝜅𝐹𝐹 + 𝜅𝑆𝐶  (3.30) 

 

Here, the sum of bound-bound (BB), bound-free (BF), free-free (FF), and 

scattering (SC) contributions is considered. The first three contributions involve 

a factor accounting for stimulated emission. For a detailed description of the 

calculations of each of these contributions, refer to J. Colgan (2016). The finally 

obtained copper opacity data can be found in Figure 3.5. 

 

 

3.3.4 Algorithm of SOPHIA-X code 

 

The SOPHIA-X code, based on the SPH governing equations discussed in the 

previous section, is computed in a specific order as illustrated in Figure 3.6. 

Developed as an enhancement of the SOPHIA-MHD code discussed in Chapter 

2, the SOPHIA-X code is specifically tailored for X-pinch analysis. This section 

highlights the main improvements made to the code. Firsty, the following parts 

of the SOPHIA-MHD code are modified for X-pinch analysis:  (1) reading the 

input data, (2) updating various plasma properties using the EOS table, (3) 

solving the momentum conservation equation, and (4) solving the induction 
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equation, (5) updating the physical properties over time. Additionally, to account 

for radiation effects, the energy conservation equation is separated into separate 

equations for ions and electrons. At this time, all tabulated plasma properties used 

are determined by the temperature and density of the plasma. Therefore, a process 

of updating the plasma temperature through the internal energy value updated in 

the energy conservation equation must be added. 

 

𝑑𝑇

𝑑𝑡
= (

𝑑𝑢

𝑑𝑡
−

𝜕𝑢

𝜕𝜌
 
𝑑𝜌

𝑑𝑡
) (

𝜕𝑢

𝜕𝑇
)

−1

 (3.31) 

𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 + (
𝑑𝑇𝑖

𝑑𝑡
) 𝛥𝑡 (3.32) 

 

Finally, the temperature gradient is obtained and used for radiation calculation. 

This process is performed concurrently with the calculation of the momentum 

conservation. 
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Figure 3.1. (Above) Electron and ion collision time τei and (Below) Collisional 

mean free path λmfp on the X-pinch plasma regime [Byun, 2022]. It indicates that 

the τei and λmfp contours are primarily small compared to pulse duration. 
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Figure 3.2. The schematic diagram for collision frequency as a function of the 

temperature Te = Ti  (thick solid line). The thin solid line is the result of the 

interpolation Eq. (3.8), and the dashed line is the upper limit of the collision 

frequency given by the requirement λ > r0 [Eidmann, 2000]. 
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Figure 3.3. Effective ionization level of copper as a function of temperature and 

density. The dotted line represents the ionization levels obtained before applying 

the Desjarlais correction model, while the solid line represents the ionization 

levels after applying the model. The graph demonstrates that the corrected model 

accurately captures the insulator-like plasma state in the low-temperature, low-

density condition. 
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Figure 3.4. Electric conductivity of copper as a function of temperature and 

density. The dotted line represents the electric conductivity obtained before 

applying the Desjarlais correction model, while the solid line represents the 

electric conductivity after applying the model. 
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Figure 3.5. Rosseland mean opacity of copper calculated in ATOMIC, with a 

densites ranging from 1 to 105 (kg/m3) and a temperature ranging from 5 ×

10−4 to 10 keV. The obtained opacity data is utilized for the radiation transport 

calculation in the X-pinch simulation. 
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Figure 3.6. Simplified algorithm of SOPHIA-X code 
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Chapter 4  

X-pinch Simulation  

 

 

 

 

 

In this chapter, various numerical results obtained from the developed SPH-

MHD code are examined. X-pinch simulations are conducted in full 3D 

dimensions, and the obtained results are compared with various previous findings, 

including experimental data from the X-pinch device at Seoul National 

University (SNU) (Ryu et al., 2021). The primary focus of this chapter is to 

compare the radiation loss power with the measured X-ray data. To achieve this, 

appropriate initial conditions for the simulations were designed to replicate the 

experimental setup. Subsequently, several key parameters of the X-pinch plasma 

obtained in the simulations are compared with the experimental results. The 

developed code demonstrates its capability to accurately handle the numerical 

demands of the X-pinch plasma evolution and provides precise insights into the 

mechanisms of plasma expansion, jet formation, and pinch generation. 

Additionally, it showcases the influence of radiation transport on the dynamic 

behavior of the simulated X-pinch plasma. The following sections present 

detailed simulation results and discussions related to these findings. 
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4.1 Experimental setup 

 

In this section, experiments conducted to validate the developed SPH-MHD 

code for X-pinch analysis are described. Several experiments were designed and 

carried out at Seoul National University to investigate the radiation generation 

process in X-pinch (Ryu et al., 2021). The experiments were performed using an 

elaborately designed pulse generator capable of producing a peak current of 

approximately 100 kA, with a rise time of 523 ns. The generator was loaded with 

two thin copper wires, each having an initial diameter of 15~30 µm, which 

formed an X-pinch load. The distance between the anode and cathode was 10 mm, 

and the X-pinch wires were set at an angle of 90 degrees. 

As illustrated in Figure 4.1, X-ray emissions were measured using a filtered 

absolute extreme ultraviolet (AXUV) diode array, which is capable of detecting 

soft X-ray spectra within the energy range of 1 to 10 keV. Previous studies 

utilizing this device have employed a comparison between experimentally 

measured X-rays and synthetic data to estimate the parameters of a copper plasma 

generated by an X-pinch (Ham et al., 2022). The experimental data obtained in 

this way are used as comparative data to evaluate the simulation results. 

 

 

4.2 X-pinch simulation setup 

 

4.2.1 Initial conditions for X-pinch simulation 
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The SPH particles are arranged with spacings of 30 𝜇m in a 3D volume in the 

range of -2 mm < x < 2 mm, -2 mm < y < 2 mm, and -2 mm < z < 2 mm for X-

pinch simulation. In this simulation, two copper wires are precisely positioned 

along the y and z axes. During the initialization of the simulation, the initial 

condition of the copper wire is represented as a cylindrical plasma with a higher 

temperature and lower density compared to the solid state. In this case, the copper 

wire with a diameter of 15 - 30 μm is replaced by a plasma with a diameter of 

400 μm and a density ranging from 12.5 to 50.0 kg/m³, while maintaining the line 

density. For all computational domains, the temperature of ions and electrons is 

initially set to 1000 K. However, the temperature inside the plasma rises rapidly 

due to the compression of the plasma that occurs in the initial stage of the 

simulation. Additionally, an initial low-density background of 0.1 kg/m³ is set to 

model the vacuum. The distribution of the magnetic field is calculated using the 

provided experimental sinusoidal current through the approach described in the 

next section. The distribution of the magnetic field is calculated by utilizing the 

experimental sinusoidal current provided, employing the approach described in 

the subsequent section. To visually illustrate these initial conditions, Figure 4.2 

presents the density and magnetic field distribution of the YZ plane, as well as 

the waveform of the current utilized in both the experiment and simulation. 

 

4.2.2 Numerical modelling for X-pinch simulation 

 

In various studies that have conducted pinch simulations, time-dependent 

magnetic field boundary conditions are often employed to solve this type of 

magnetic field-driven problem (Koundourakis et al., 2020; Byun et al., 2022;). 
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These conditions help impose the correct current density and energy flow within 

the system. In this approach, a transient time duration is required for the steady 

state to be reached after the propagation of a numerical wave back and forth 

(Fuyuan, 2018), several times, through the vacuum region where the induction 

equation relaxes to the Laplace equation. This characteristic transient time is 

inversely proportional to the resistivity and results in a significantly increasing 

time step for explicit codes. Moreover, applying time-dependent magnetic field 

boundary conditions can be challenging in complex geometries such as X-pinch. 

To overcome these limitations, a new procedure is proposed. The initial current 

density value of the simulation is determined using the current value at a specific 

experimental time moment. This current 𝐼0 is uniformly distributed in the initial 

cylindrical plasma with radius R, so the azimuthal magnetic field 𝐵(𝑟) due to 

each wire is given by Eq. (4.1). 

 

𝐵(𝑟) = 𝐼0 × {
 

𝜇0𝑟

2𝜋𝑅2
, 0 ≤ 𝑟 ≤ 𝑅

𝜇0

2𝜋𝑟
 , 𝑅 < 𝑟

 (3.26) 

 

Here, r is the distance from the center of the wire. At this time, the magnetic 

field distribution is derived over the global computational domain by linearly 

superposing the calculated values of each wire. In this study, instead of using a 

time-dependent magnetic field at the boundary planes, a different approach is 

employed to account for the imposed energy flow due to external current. In this 

approach, the magnitude of the magnetic field is updated proportionally across 

the entire computational domain based on the experimentally measured current. 

By solving the induction equation described in Eq.(3.19) using the updated 
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magnetic field, it is possible to determine the magnetic field distribution for the 

entire domain, taking into account the energy increase caused by the external 

current. 

 

For a more stable and practical SPH simulation, this study incorporates certain 

constraints. Firstly, an upper limit on resistivity is imposed. According to the CFL 

condition that determines the time step, the time scale of the resistive MHD 

simulation is proportional to the material conductivity. This implies that a very 

small time step is required due to the high resistivity of the vacuum. To address 

this issue, a resistivity limiter is employed, set at a value of 10−5 Ωm . This 

allows for a reasonable time-step value, in a similar way to the approach used in 

previous studies (Skoulakis, 2022). Next, an additional constraint was 

implemented to ensure accurate radiation diffusion calculations in the low-

temperature region. As described in Section 3.3.3, obtaining an accurate 

Rosseland mean opacity value of the plasma is crucial for radiation calculations, 

which is obtained using the ATOMIC code. However, the opacity data provided 

by the ATOMIC code is limited to temperatures above approximately 5 ×

10−4 (K), resulting in potential inaccuracies in radiation calculations for the low-

temperature region. To overcome this limitation, the approach employed in the 

ALEGRA code was adopted. In the ALEGRA code, the diffusion coefficient 𝐷 =

𝑐𝜆/𝜅𝑅𝜌 is replaced by the free streaming 𝐷𝐹𝑆 = 𝐸𝑅/|𝐸𝑅| when the flux limiter 

value is low (T. A. Brunner, & T. A. Mehlhorn, 2009). In a similar way, this study 

avoids the use of the Rosseland mean opacity by utilizing the free-streaming 

coefficient 𝐷𝐹𝑆 in the region 𝑅 > 100. 
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4.3 X-pinch simulation results and discussions 

 

4.3.1 Evolution of an X-pinch 

 

X-pinches undergo several stages that are generally common to all X-pinch 

configurations: ablation, formation of micro-Z-pinches, hot spot formation, 

intense X-ray emission, Z-pinch collapse, and electron-beam emission. This 

process was also confirmed through an X-pinch simulation conducted on a 30μm-

thick copper wire, as depicted in Figure 4.3, illustrating the implosion behavior 

of the X-pinch plasma in the crossed wire plane. In this section, each step of the 

X-pinch's time evolution is described in detail, based on the various investigated 

plasma parameters. 

 

4.3.2 Evolution of an X-pinch: Micro-Z pinch formation 

In the initial stages of the simulation (0–50 ns), the JxB force acts toward the 

center of the wire due to the current flowing in the plasma, resulting in 

compression of the plasma. This rapid compression leads to a significant increase 

in the plasma density at the cross point. This process is corroborated by Figure 

4.4, which illustrates the temporal evolution of the maximum plasma density. 

Initially distributed at a density of 50 kg/m3, the plasma undergoes compression, 

reaching a density of 100 kg/m3 within a brief duration of 50 nsec. This 

compression subsequently leads to the formation of a high-pressure region, 

generating an expansive force. As a result of strong compression, a neck, similar 

in shape to that of a classical Z-pinch, forms at the crossing point of the X-pinch. 

This neck persists in a long-term quasi-equilibrium state, maintaining a nearly 
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constant density until the expansive force surpasses the compressive force (50–

300 ns). 

 

4.3.3 Evolution of an X-pinch: Jet formation 

The overall shape of the X-pinch neck leads to an increase in the azimuthal 

magnetic field Bϕ, accelerating the implosion of the plasma towards the axis. In 

Figure 4.5, it can be observed that the azimuthal magnetic field rapidly increases 

starting at 100 nsec, which aligns with the formation of the neck, in comparison 

to the externally applied current waveform. The rapid increase in the azimuthal 

magnetic field results in plasma transport in the vertical direction, known as a jet. 

Simultaneously, a new azimuthal global magnetic field is generated along the jet, 

as depicted in Figure 4.6. This global magnetic field continuously accelerates the 

jet. The evolution of the jet is analyzed and presented in Figure 4.7, where the 

instantaneous axial velocity of the plasma fluid is calculated along the vertical 

axis at specific time intervals. The accelerated jet reaches a convergence value 

after 150 ns, and the actual formation of the jet is observed at 250 ns in Figure 

4.3. The maximum velocity remains constant between 15 km/s and 22 km/s until 

350 ns, as indicated by the purple and navy curves. The axial jet velocity observed 

in the simulation corresponds to a physically reasonable value when compared to 

previous experimental and simulation studies. In particular, the convergence trend 

for the jet velocity observed in this study closely matches the simulation results 

conducted by Koundourakis (2020), confirming that the developed code 

accurately captures the dynamics of the X-pinch jet. 
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4.3.4 Evolution of an X-pinch: Hot spot formation 

When the neck formed in the previous process continues to undergo 

compression and reaches a critical point, a hot spot is formed. This hot spot 

represents the region where the highest plasma parameters are achieved and serve 

as a source of X-ray emission with extreme characteristic. Accurately interpreting 

the hot spot in X-pinch plasma simulations is crucial due to its significant impact 

on the properties of the generated plasma. The radiation emitted by the hot spot 

serves as a valuable diagnostic tool, enabling researchers to gain insights into the 

characteristics of X-pinch plasma. Furthermore, precise interpretation of hot spots 

aids in optimizing the experimental designs of X-pinches, enhancing their overall 

performance and effectiveness. 

As mentioned in previous studies, it is natural to expect that the maximum 

plasma parameters will be reached at the moment of maximum plasma 

compression, specifically in the neck when it reaches its minimal size. Although 

this statement may seem obvious, it is crucial to verify its validity. The developed 

SPH-MHD code is suitable for confirming this validity because it provides 

comprehensive information on the spatiotemporal evolution of various X-pinch 

parameters. I tracked the hot spot by analyzing the time-varying changes in the 

maximum electron temperature measured during the simulation. According to the 

simulation results, a hot spot characterized by the highest electron temperature 

occurs at 313 nsec when the neck is compressed to its maximum extent, as 

depicted in Figure 4.3 and 4.8. The electron temperature at this time is 

approximately 6.34 × 106 K, and the electron density is measured to be around 

2.54 × 1022 cm−3. These plasma parameters obtained through analysis are then 

compared with the results estimated in the experiment. In the experiment (Ham 
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et al., 2023), the diagnostic system measured spatially integrated X-ray data, 

allowing for the estimation of various plasma parameters within the X-pinch. The 

plasma parameter near the hot spot, estimated using this method, is illustrated in 

Figure 4.8. In the experiment conducted under the same conditions as the 

simulation, the electron temperature and electron density at the hot spot were 

estimated as 1.36 × 107 K and 9. 54 × 1022 cm−3, respectively. These results 

are summarized in Figure 4.9. The disparity between the measured plasma 

parameters in the experiment and the lower values observed in the X-pinch 

simulation can be attributed to several factors. Firstly, the diagnostic system 

employed in the experiment captures spatially integrated X-ray data, which 

means it collects information from various plasma regions within the X-pinch. 

This amalgamation of different plasmas, including high-energy electron 

components, can result in an upward estimation of parameters such as electron 

temperature and density. Secondly, the method of analyzing a wide range of 

spectra in the experiment introduces uncertainties due to the significant influence 

of continuum and K-shell radiation. Consequently, these factors collectively 

contribute to the possibility of overestimating the plasma parameters in the 

experiment. Taking these factors into consideration, it is assessed that the 

simulation reasonably reproduces the plasma parameters. 

Another important aspect of X-pinch hot spot dynamics pertains to the 

emission of high-energy radiation from the hot spot. A more comprehensive 

analysis regarding the radiation characteristics of the hot spot has been conducted 

and will be presented in the following section. 
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4.3.5 Evolution of an X-pinch: Neck breaking 

The final phase of X-pinch dynamics begins after the occurrence of the X-ray 

burst. During this stage, the thin neck that formed at one or two locations starts 

to dissipate, leading to the gradual dissipation of the X-pinch over time. As shown 

in the radiograph of Figure 4.10, the gap created by this process exhibits a 

significantly lower plasma density compared to that found in the neck. This gap 

is accurately reproduced in the simulation. As evident from the density 

distribution at 350 nsec shown in Figure 4.3, the formation of a hot spot and rapid 

mass loss immediately follow the occurrence of the X-ray burst. In the X-pinch 

simulations conducted under various conditions, I confirmed that the mass in the 

region measuring 0.2 mm x 0.2 mm x 0.2 mm near the cross point was reduced 

by over 70% within the time of hot spot formation +10 nsec. The exact reasons 

for the disassembly of the X-pinch are still uncertain, and despite the existence of 

various theories, no consensus has been reached among them. In this process, 

estimating plasma parameters is challenging due to the lack of sufficient radiation 

signals, leaving us with only limited inferences based on radiographs. However, 

the simulation conducted in this study directly confirms the velocity field, which 

is challenging to measure in experiments, providing a means to verify the 

disassembly process directly. 

Figure 4.11 presents the velocity fields at 300 nsec and 350 nsec before and 

after the emission of radiation. Additionally, Figure 4.12 specifically illustrates 

the velocity field in the direction perpendicular to the axis of the plasma jet. As 

observed in the velocity field, the plasma, initially compressed along the axial 

direction prior to radiation emission, exhibits movement away from the axis after 

the emission. This transport of plasma originates within the wire plasma and 
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gradually extends outward, with the plasma spreading at a velocity of 

approximately 3 m/sec at 350 nsec. Subsequently, this tendency of the velocity 

field remains consistent until the complete dissipation of the pinch. 

 

 

4.3.6 Radiation emission from the X-pinch hot spot 

 

Radiation power was measured to verify the emission characteristics of X-

pinch radiation. The radiation power was calculated by integrating the power 

density values obtained at each time step within a 1 mm ×  1 mm ×  1 mm 

region near the cross point. The calculated radiation power, along with the 

temporal evolution of X-pinch density, is presented in Figure 4.13. Examining 

these results along with the electron temperature change depicted in Figure 4.8, 

the simulated X-pinch process follows this sequence: (1) Hot spot formation (313 

nsec), (2) Radiation emission (327 nsec), and (3) Neck breaking (334 nsec). 

Figures 4.14 to 4.18 present the measurements of X-ray emissions under 

various conditions, comparing them with experimental data. The simulation 

results demonstrate that the radiation power derived from the simulations 

accurately captures the experimentally measured X-ray profile in quantitative 

terms. However, there are some discernible discrepancies between these two 

datasets. Firstly, the simulation exhibits a lower radiation yield compared to the 

experimental measurement and fails to capture the sharp and sudden X-ray 

characteristics. I tentatively speculate this difference to the insufficient resolution 

employed in the simulation. A low resolution does not accurately capture a hot 

spot formed in a very narrow area and may underestimate the electron 

temperature. Moreover, energy transport, which is crucial for radiation emission, 
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may disperse extensively in the surrounding space, leading to a delay in X-ray 

generation. As another distinguishing feature, the simulation can not measure 

power peaks above 7.0 keV. This difference seems natural because this hard X-

ray (HRX) emission is experimentally associated with the electron beam of the 

neck break structure and the single fluid model used in this simulation is not 

capable of producing the electron beam effect. However, despite these disparities, 

notable advancements have been observed when comparing them to previously 

proposed simulation models. Figure 4.19 displays the outcomes of measuring the 

radiation power of the copper X-pinch using the STHENO code under conditions 

akin to those employed in this study (Byun, 2021). Although this reference code 

comprehensively elucidated the radiation characteristics of pinch plasma under 

diverse conditions, there exists a significant disparity in the radiation power 

values when compared to the experiment conducted in this study, differing by 

several orders of magnitude. On the other hand, the simulation conducted in this 

study accurately predicts the magnitude of the radiant force, which is comparable 

to the experimental measurements. This comparison indicates the effectiveness 

of the radiation model employed in this study under specific pinch conditions. 

Finally, the variation in radiation emission time was verified and compared 

with experimental data under different conditions. Comparing the total radiation 

power with the experiment is challenging, and due to the difficulty in precisely 

capturing the maximum peak, the radiation emission time was determined based 

on the first peak observed in the radiation power above 1.6 keV. These 

comparison results are summarized in Table 4.1. As mentioned earlier, the 

simulation exhibits a delay in radiation emission compared to the experiment, but 

it demonstrates a similar trend. Specifically, it was observed that in both cases, an 
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increase in wire diameter led to a decrease in the rate of radiation emission, while 

an increase in voltage resulted in a faster rate of radiation emission. 
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Table 4.1 Comparison of X-ray emission time between experiment and simulation 
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Figure 4.1. Schematic view of SNU X-pinch device with the filtered AXUV diode 

array. [Ham et al., 2022] 
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Figure 4.2. Initial condition of the X-pinch simulation 

 

 

 
 

Figure 4.3. Time evolution of density distribution in X-pinch simulations 
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Figure 4.4. The time evolution of the maximum plasma density  

 

 

 

Figure 4.5. The time evolution of the maximum azimuthal magnetic field  

 



85 

 

 

 

 

 

 

 

Figure 4.6. The time evolution of the azimuthal magnetic field distribution 
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Figure 4.7. Time evolution of the axial fluid jet velocity, along the vertical axis at 

50 - 350 ns 
 

 

 

Figure 4.8. Time evolution of the maximum electron temperature 
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Figure 4.9. Temporal evolution of estimated electron densities, electron 

temperatures, and fast electron fractions around the X-pinch hot spot 

 

 

 

 
Figure 4.10. A series of radiographs of wire X-pinch just after the emission of its 

X-ray burst (T. A. Shelkovenko et al., 2001) 
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Figure 4.11. Velocity profile of X-pinch simulations at 300 and 350 nsec 

 

 

 

 

Figure 4.12. Time evolution of the radial jet velocity 
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Figure 4.13. Time evolution of the radiation power  
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Figure 4.14. Comparison between the simulated radiation power (dashed line) 

and the measured X-ray power (line). Experiments and simulations were 

conducted by applying a voltage of 55 kV to copper wires (ϕ30μm) 

 

 
 

Figure 4.15. Comparison between the simulated radiation power (dashed line) 

and the measured X-ray power (line). (55 kV, ϕ25μm) 
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Figure 4.16. Comparison between the simulated radiation power (dashed line) 

and the measured X-ray power (line). (55 kV, ϕ20μm) 

 

 

 

Figure 4.17. Comparison between the simulated radiation power (dashed line) 

and the measured X-ray power (line). (50 kV, ϕ25μm) 
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Figure 4.18. Comparison between the simulated radiation power (dashed line) 

and the measured X-ray power (line). (50 kV, ϕ15μm) 

 

 

 

Figure 4.19. Radiation loss power of the copper X-pinch (ϕ30μm) (Byun, 2021) 
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Chapter 5  

Conclusion and Recommendation 

 

 

 

 

5.1 Conclusions 

 

In this study, the SPH-MHD code was developed to simulate the complex X-

pinch plasma evolution under extreme conditions. This study is the first 

implementation of an X-pinch simulation using the SPH methodology, and it can 

be used as a valuable tool for generating data that is challenging to confirm 

through experiments or aiding in experimental design. Throughout the study, the 

achievements, results, and findings are as follows. 

 

(1) Development of SPH-MHD model  

A Lagrangian resistive MHD model was developed using the smoothed particle 

hydrodynamics method. The model has incorporated several advanced numerical 

treatments, such as a correction term to satisfy the 𝛻∙B constraint and some 

artificial dissipation terms to govern the shock wave. Notably, the introduction 

and implementation of a novel SPH discretization for non-ideal MHD terms 

enable the model to effectively capture the non-ideal effects of plasma that were 

unaccounted for in the existing SPH-MHD model. Furthermore, verification with 

extensive benchmark problems confirms the model's reliability, as the simulation 
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results exhibited excellent qualitative and quantitative agreement with reference 

data. 

 

(2) Integration of physics models for X-pinch simulation  

Detailed physics models were integrated into the code for the realistic X-pinch 

simulation. In this study, the SPH-MHD code was expanded to incorporate a two-

temperature equation, which allows for the separation of electron and ion energies. 

Given that the numerical time step size is significantly smaller than the electron-

ion collision time scale, a two-temperature description adequately represents the 

plasma under high-energy-density (HED) conditions. The code utilizes the 

equation of state (EOS) based on the Thomas-Fermi theory to accurately capture 

the characteristics of the HED plasma in the X-pinch scenario. Specifically, it 

addresses the overestimation of ionization in the low-density regions by adopting 

the Desjarlais correction model as the plasma ionization balance model. Moreover, 

a radiation model based on the flux-limited diffusion approximation was 

integrated into the code to account for energy loss through X-ray emission across 

a broad energy range. 

 

(3) Simulation of the X-pinch plasma evolution 

Using the developed code, X-pinch simulations were conducted in full 3D 

dimensions, and the obtained results were compared with experimental data from 

the X-pinch device at Seoul National University under the same conditions. The 

simulations successfully reproduced the four-step X-pinch evolution process (1. 

Neck formation, 2. Jet formation, 3. Hot spot formation, 4. Neck breaking) 

commonly observed in various X-pinch configurations. Additionally, the 
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simulations provided comprehensive spatiotemporal information on a wide range 

of plasma parameters, including density, temperature, velocity field, and radiated 

power. Notably, the electron temperature and density at the hot spot were well 

reproduced at a reasonable level when compared with the experimental values, 

demonstrating the accuracy and reliability of the developed simulation code. 

Moreover, the radiation data showed significantly higher accuracy compared to 

previous simulation results, further affirming the effectiveness of the proposed 

model. Finally, the simulations provided valuable information about various 

plasma parameters that are challenging to measure in experiments. Specifically, 

in this study, the formation and evolution of the jet were accurately captured 

through the velocity field near the X-pinch cross point. These results can be 

utilized as reference points for the design of experimental and diagnostic devices 

for X-pinch studies. 

 

5.2 Recommendations 

 

The result of this research suggests following further studies. 

  

1. In this study, X-pinch plasma simulation and validation were conducted 

under limited conditions consistent with the experimental conditions. 

Further simulations are recommended to be performed to investigate the 

effect of various variables such as current magnitude, frequency, and wire 

material on X-pinch dynamics. 

2. The discrepancy in radiation power estimation during X-pinch simulations 

is presumed to result from potential issues related to particle resolution. 
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Some studies suggest that a resolution of at least 10 𝜇m is required to 

accurately follow hot spot formation in the X-pinch. To overcome 

computational resource limitations hindering higher-resolution research, 

the 3D X-pinch problem can be effectively addressed by remapping it into 

a 2D domain. 

3. The developed code employs an EOS table derived from the Thomas-Fermi 

theory, offering the advantage of efficient and straightforward EOS 

calculations. However, this approach relies on an empirical formula, 

limiting its realism. The integration of more advanced theories, such as 

Density Functional Theory (DFT) and DFT-Molecular Dynamics (DFT-

MD) based on first principles, is anticipated to enhance the accuracy of X-

pinch 

4. This study incorporates the flux-limited diffusion model as the radiation 

model, enabling more realistic X-pinch calculations compared to previous 

studies that relied on optically thin assumptions. However, the two-

temperature equation employed in this study implies the assumption that 

the temperatures of electrons and radiation are equal, which may deviate 

from the actual scenario. To achieve greater physical accuracy, it is proper 

to employ the 3-temperature equation, which directly computes the 

radiation energy, in the calculations. For this, a set of equations to calculate 

the radiation energy (𝐸𝑅) needs to be added, and a new material property 

table (𝜅𝑝) is required. 

5. The model utilized in this study does not incorporate the ablation process, 

where a solid wire is transformed into plasma. Consequently, the 

simulation assumes the complete conversion of the metallic wire to plasma 
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in the initial condition. Considering the non-negligible power consumed in 

the ablation process, it is crucial to include a model for this phenomenon 

in future investigations. 
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국문 초록 

 

고에너지밀도 물리학(HEDP)은 핵융합, 고에너지밀도 실험, 별의 

생성과정 등에서 발견되는 극한 물성의 물질을 연구하는 학문이다. 

최근 실험 및 계산 기술의 발전으로 고에너지밀도 물리학에 대한 

연구 역량이 높아지면서 다양한 분야에서 극한 물성 연구에 대한 

활용이 증가하고 있다. 이러한 고에너지 밀도를 달성하는 수단 중 

하나로 플라즈마가 자기장에 의해 압축되어 고밀도를 형성하는 

현상인 핀치 플라즈마가 연구되고 있다. 특히 X-핀치 플라즈마는 

비교적 적은 양의 전류로 강력한 X-선을 발생시키기 때문에 고에너지 

밀도 물리학을 탐구하는 데 효과적인 도구로 주목받고 있다. 

 

핀치 플라즈마의 실험적 구현은 고성능 전류원이 필수적으로 

필요하기 때문에 큰 규모의 실험실이나 연구소 중심으로 이루어져 

왔으며, 매우 좁은 공간에서 짧은 시간동안 유지되는 특성 때문에 

실험적 진단에 한계가 있다. 따라서 핀치 플라즈마에 대한 보다 

상세한 물리 연구를 위해서는 실험적 진단을 보완할 수 있는 
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수치해석적 연구가 필수적이다. 핀치 플라즈마를 시뮬레이션하기 

위해 개발된 기존의 자기유체역학 (MHD) 모델들은 격자기반으로 

계산이 이루어지는 오일러리안 방식을 채택하고 있다. 하지만 이러한 

방식은 플라즈마와 진공사이의 경계처리에 추가적인 수치 처리가 

요구되며, 이러한 처리가 다양한 오류를 유발하는 것으로 보고되고 

있다. 반면, 공간과 함께 물리량이 이동하는 라그랑지안 수치기법은 

이러한 문제에 대해 상대적으로 자유롭다. 특히, 해석영역을 입자로 

처리하여 진공과 플라즈마 영역을 완전히 분리할 수 있는  

완화입자유체동역학 (SPH) 방법은 이러한 문제에 효과적이다. 이러한 

관점에서 본 연구에서는 극한 조건의 핀치 플라즈마를 시뮬레이션 할 

수 있는 SPH-MHD 모델을 개발하였다. 

 

개발된 SPH-MHD 모델에는 자기장의 발산 제약을 만족시키는 

보정 항과 충격파를 제어하기 위해 도입된 인공 소산 항 등 여러 

가지 수치 기법들이 통합되었다. 또한 비이상적 MHD 항에 대한 

새로운 SPH 이산화 식을 제안하고 도입하였다. 이렇게 개발된 

모델을 검증하기 위해 세 가지 벤치마크 문제에 대한 해석을 
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수행하였다. 결과적으로, 수행된 시뮬레이션 결과는 다른 검증된 

시뮬레이션 결과 및 이론적 결과와 잘 일치하여 도입된 수치 처리 

방법들이 유효함이 확인되었다. 

 

본 연구의 최종 목적은 개발된 코드를 활용하여 X-핀치 

시뮬레이션을 수행하는 것이다. 이를 위해 X-핀치 물리에 특화된 

상세 물리 모델이 코드에 통합되었다. 첫째로, 전자와 이온의 

에너지를 분리하는 2 온도 방정식으로 코드를 확장했다. 수치 계산에 

사용되고 있는 시간 단계의 크기가 전자-이온의 충돌 시간보다 훨씬 

짧기 때문에 두 온도를 같다고 가정할 수 없고, 이러한 모델이 

적절하게 활용된다. 다음으로는 X-핀치 조건에서 고에너지밀도 

플라즈마 특성을 효과적으로 포착하기 위해 토마스-페르미 이론에 

기반한 상태방정식을 도출하고 적용하였다. 특히 데잘레의 보정 

모델을 플라즈마 이온화에 대한 균형 모델로 채택하여 저밀도 

영역에서 발생하는 이온화 과대평가 문제를 해결하였다. 마지막으로, 

플럭스 제한 확산 근사법을 기반으로 하는 복사 모델이 코드에 

통합되어 넓은 에너지 범위에서 X-선 방출을 통한 에너지 손실을 
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설명한다. 

 

마지막으로, 개발된 코드를 사용하여, 3차원 X-핀치 시뮬레이션을 

수행하였고, 이 결과를 서울대학교 X-핀치 장치에서 얻어진 

실험데이터와 비교하였다. 수행된 시뮬레이션은 X-핀치 플라즈마의 

내파 거동을 성공적으로 포착하여, 다양한 X-핀치 구성에서 

일반적으로 관찰되는 4단계의 발전과정을 정확히 재현한다. 이때, 

시뮬레이션은 밀도, 온도, 속도장 및 복사 전력을 포함한 다양한 

플라즈마 매개변수에 대한 포괄적인 시공간 정보를 제공한다. 특히 

핫스팟에서의 전자 온도와 밀도는 실험값과 비교했을 때 합리적인 

수준으로 잘 재현되어 개발된 코드의 정확성과 신뢰성을 입증하였다. 

또한 시뮬레이션을 통해 계산된 방사선 데이터는 이전 시뮬레이션 

결과에 비해 월등히 높은 정확도를 보여 제안 모델의 유효성을 

확인할 수 있다. 

 

본 연구에서 개발된 SPH-MHD 코드는 기존의 수치 기법으로는 

해결하기 어려웠던 일부 플라즈마 시뮬레이션에 대한 좋은 대안이 될 
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것으로 기대된다. 결론적으로 이 코드는 핀치 플라즈마의 복잡한 

거동에 대한 전반적인 지식을 제공할 수 있는 훌륭한 수단으로 

확인되었으며, 고에너지밀도 물리학 연구에 기여할 수 있는 높은 

잠재력을 보여준다. 
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