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Abstract 
 

In recent decades, there has been significant research activity in 

resistance random access memory (RRAM) for both one transistor-

one resistor and crossbar array configurations. Conventional RRAM 

devices based on conductive filaments (CFs) suffer from issues such 

as hard breakdown during electroforming, non-uniformity, and high 

power consumption. In contrast, electronic bipolar resistance 

switching (e-BRS) devices, which rely on the trapping and de-

trapping of carriers, offer a more favorable alternative. The gradual 

current switching in e-BRS reduces the likelihood of electrical 

breakdown, and the absence of an electroforming step is an 

advantage. Moreover, e-BRS devices exhibit area scalability, making 

them suitable for integration in crossbar arrays, resulting in reduced 

power consumption. These devices have also shown potential in 

flexible memory, security applications, and artificial synapse 

implementations. However, the endurance and retention performance 

of many reported e-BRS devices have been unsatisfactory. These 

issues necessitate the development of suitable methods to prevent 

oxygen loss and improve device performance. 

The Al/TiO2/Al resistance random access memory (RRAM) showed 

an area-type electronic bipolar resistive switching (e-BRS) 
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mechanism, which was mediated by the trapping and detrapping of 

the carriers at the trap centers. The area-type e-BRS device had 

area-scalable characteristics and excellent uniformity, which are 

beneficial for large-scale integrated applications. However, the 

unsatisfactory endurance and retention performance needed to be 

improved. In this work, a 1-2nm-thick ZrO2 thin layer was deposited 

by the thermal atomic layer deposition on the 25nm-thick sputter-

deposited TiO2 layer to form an Al/ZrO2/TiO2/Al memory cell. The 

thin ZrO2 layer effectively prevented the active Al top electrode from 

absorbing oxygen from the TiO2 resistive switching (RS) layer 

without significantly affecting the asymmetric energy barrier 

structure of the device. The suppression of oxygen loss from the 

TiO2 RS layer retained the desired trap density of the RS layer even 

after the extended switching cycle operation. This suppression effect 

significantly improved the RS performances, such as endurance, 

uniformity, and retention. The switching endurance was enhanced 

over two orders of magnitudes (from <103 to >105). The ZrO2 layer 

also increased the overall resistance values of the memory cell, 

making it more suitable than the Al/TiO2/Al structure for high-

density applications. 

Spiking neural networks (SNN) have attracted considerable interest 

as a more energy-efficient alternative to deep learning 
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methodologies. The crucial requirement for artificial synapses in 

neuromorphic systems lies in their capacity to demonstrate synaptic 

plasticity, enabling the modulation of synaptic strength through 

electrical stimulation. Nonvolatile memory devices, such as resistive 

random access memory, hold promise for emulating artificial synapse 

functions. Despite the simplicity and flexibility offered by RRAM, 

many devices suffer from undesired properties due to their reliance 

on conductive filaments-controlled mechanisms, which exhibit abrupt 

and stochastic behavior. In contrast, non-filamentary RRAM devices 

present superior attributes including enhanced uniformity, scalability, 

and reduced power consumption. However, research on non-

filamentary memristors for synaptic applications remains limited. 

Hence, there is significant potential in exploring and optimizing non-

filamentary RRAM as a viable solution for artificial synapses in future 

studies. 

This study presented an Al/ZrO2/TiO2/Al (AZTA) memristor based on 

a non-filamentary mechanism for simulating artificial synapses in 

spiking neural networks (SNN) for neuromorphic computing. This 

device feasibly implemented short-term plasticity, long-term 

plasticity, paired-pulse facilitation, and spike-timing-dependent 

plasticity through precise modulation of the shapes of pre- and post-

synaptic spikes. Additionally, the AZTA device demonstrated high 
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linear and symmetrical potentiation and depression under identical 

pulse operation conditions, facilitating multivalued conductance 

without auxiliary circuits. The trapping and de-trapping of electrons 

control the synaptic weight at different depth energy levels provided 

by oxygen vacancy traps. Also, the AZTA memristor showed 

promising potential for low power consumption and high operating 

speed due to its area-dependent behavior based on the electronic 

bipolar resistance switching mechanism. The simulation of the 

multilayer perceptron with 400 input, 100 hidden, and 10 output 

neurons using the AZTA synapses can reach 94.9% accuracy of the 

MNIST dataset. 

 

Keywords: TiO2-based resistance random access memory, electronic 

bipolar resistive switching mechanism, ZrO2 insertion layer, area-

dependent behavior, artificial synapses, non-linearity, spiking neural 

networks, neuromorphic computing 
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Chapter 1. Introduction 
 

1.1. Resistance random access memory (RRAM) 
 

Non-volatile memory is a storage technology that is very different 

from traditional random access memory (RAM), such as DRAM or 

SRAM, in that it is able to store data in the event of power failure. In 

the past decade, this type of non-volatile memory device has 

developed rapidly and is widely used in many fields, such as smart 

electronic devices (such as mobile phones, computers, in-vehicle 

systems), encryption technology, artificial intelligence, etc.1-4 The 

resistance random access memory has been widely concerned 

because of its excellent performance, such as fast read and write 

speed, low power consumption, and compatibility with CMOS 

technology.5-9 

Resistive switching was first observed by Hickmott in 1962 in binary 

oxides, but it was in the early 2000s only when the resistive 

switching effect caught huge interest triggered by the search for 

alternative memory technology. The concept of RRAM used for 

neural networks and logic circuits was first published in Nature by 

HP in 2008.10 The paper titled ‘‘The Missing Memristor Found’’ 

triggered another heat of RRAM development.  

Usually, Resistance random access memory consists of a metal-
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insulator-metal (MIM) structure, including a top electrode, an 

intermediate layer as the resistance switching layer, and a bottom 

electrode.11 Such a typical MIM-structured RRAM device is 

schematically shown in Figure 1.1 (a). Under the action of applied 

voltage, the resistance of the device will be reversibly switched to 

realize data storage and reading, as shown in Figure 1.1 (b). 
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Figure 1.1. (a) Schematic diagram showing typical metal-insulator-

metal (MIM) structure of ReRAM with electrical biasing. (b) 

Schematic illustration of bipolar switching characteristics in ReRAM. 

For the bipolar switching, “set” and “reset” processes occur at 

different polarity.11 
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1.2. Two resistance switching mechanisms 
 

At present, the mainstream resistance switching mechanism can be 

divided into the filamentary type and non-filamentary type, also 

known as the interface type.  

Filamentary-type resistance random access memory devices are 

controlled by the random formation and rapture of conductive 

filaments, which are usually composed of oxygen vacancies or active 

metal ions (such as copper ions, silver ions, etc.), so the resistance 

transition relies on highly localized conductive filaments, usually tens 

or tens of nanometers in diameter. There is no doubt that the 

formation of conductive filaments will inevitably lead to the problem 

of high power consumption, and the randomly formed conductive 

filaments also lead to the problem of poor uniformity and low 

reliability.  

In contrast, non-filamentary types of resistance random access 

memory devices based on oxygen vacancy/ion movement or carrier 

capture and release control have irreplaceable advantages in some 

aspects and maybe a better choice. The resistance switching of this 

type of resistive device occurs over the entire area, so it usually 

exhibits slow resistance changes, resulting in excellent uniformity, 

and is not prone to hard breakdown that can cause device failure. In 

addition, the power consumption of non-filamentary type devices can 
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be reduced proportionally with the reduction of device size, and this 

area scalability is particularly beneficial for improving the integration 

of CBA RRAM. Unfortunately, although non-filamentary resistive 

devices show many advantages, the reported devices are usually 

accompanied by poor endurance and retention performance. 

 



 

 ６ 

 

Figure. 1.2. I-V curves for (a) unipolar (nonpolar) switching in a 

Pt/NiO/Pt cell and (b) bipolar switching in a Ti/La2CuO4/La1.65Sr0.35 

CuO4 cell. In unipolar switching, the switching direction depends on 

the amplitude of the applied voltage. Bipolar switching shows 

directional resistance switching according to the polarity of the 

applied voltage. Proposed models for resistive switching can be 

classified according to either (c) a filamentary conducting path, or (d) 

an interface-type conducting path. (Part (a) courtesy of I. H. Inoue, 

AIST.)12 
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1.3. Artificial synapses based on nonvolatile 

memristors for the neural networks 

 

Current neural networks are based on von Neumann architecture, 

combined with machine learning as a combination of software and 

hardware components based on complementary metal oxide 

semiconductor (CMOS) technology. However, the von Neumann 

computing system requires a central processing unit (CPU) to 

perform serial operations, its structural design is very inflexible and 

requires a large number of transistors. Because of this von Neumann 

bottleneck, the data processing speed of the storage device is limited 

between the memory and the CPU, forming a storage wall that 

requires great power consumption and space. Therefore, there is an 

urgent need for a new neuromorphic computing system with high 

computing speed, low energy consumption, and small size. 

In order to meet this requirement, various memory materials have 

been studied to simulate the various functions of human brain 

synapses, as shown in Figure 1.3.13 A memristor device can function 

as a single synaptic unit without the need for additional software 

programming support. The neuromorphic architecture based on a 

non-volatile memristor is implemented by parallel operation, which 

has the characteristics of low power consumption, small volume, and 
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high data processing capacity. 

The concept of artificial synapses can be traced back to the 1940s 

when researchers first began exploring the construction of artificial 

neural networks. These networks were designed to perform tasks 

similar to the human brain, and early prototypes employed simple 

circuits to implement artificial synapses. In recent years, the rapid 

advancement of technology has allowed researchers to investigate 

more complex neural networks to achieve more advanced artificial 

intelligence systems. As a result, artificial synapses have received 

widespread attention as a key electronic component of these systems, 

designed to simulate the behavior of biological synapses, which are 

the connections between neurons in the brain. The primary 

requirement for artificial synapses that can be used in neuromorphic 

systems is their ability to exhibit synaptic plasticity, which is the 

ability to change synaptic strength based on electrical stimulation.1, 3, 

14-16 In addition to synaptic plasticity, other crucial indicators that 

must be considered include power consumption, scalability, signal-

to-noise ratio, operation speed, reliability, non-linearity and so on.17-

21 Currently, there are numerous emerging non-volatile memory 

devices, including resistive random access memory (RRAM),22-28 

magnetic random access memory (MRAM),29, 30 phase change 

memory (PCM),31, 32 and ferroelectric memory (FRAM),33-36 that have 
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been reported to simulate artificial synapses in neuromorphic 

computing systems. However, few devices can simultaneously fulfill 

all the necessary requirements for an ideal artificial synapse. Out of 

these options, metal-oxide RRAM has been widely studied due to its 

exceptional physical properties, electrical adjustability, and 

compatibility with traditional complementary metal-oxide-

semiconductor (CMOS) integration processes.37, 38
 A schematic 

diagram of artificial synapses stimulating biological synapses based 

on ReRAM is shown in Figure 1.4.13 
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Figure. 1.3. Recent memristive materials applied for artificial 

synapses: metal oxides, organic materials, 2D materials, and 

emerging materials.13 
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Figure. 1.4. Comparison between biological synapses and artificial 

synapses. a) Schematic diagram of a preneuron, postneuron, and 

synapse. Reproduced with permission. b) Schematic diagram of 

neurotransmission process. c) A general structure of two terminal 

memristors-based artificial synapses.13 
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1.4. Nonlinearity of the artificial synapses based on 

RRAM devices 

 

As mentioned in the previous section, an ideal artificial synapse 

needs to meet a variety of performance indicators, among which 

non-linearity is a very important one, as shown in Figure 1.5.17 

Under ideal conditions, the device can greatly reduce the design 

pressure of the peripheral circuit, and it is expected to obtain 

satisfactory multiple operable states. 

Ideal linearity is defined as a state in which changes in conductance 

update due to a potentiation/depression do not depend on the current 

conductance state. To obtain the linearity factor of the potentiation 

(NLP) and depression (NLD), the conductance as a function of the 

normalized pulse number is modeled by: 

                          （1） 

, where the GP and GD are the conductance value for each 

potentiation and depression. Gmax and Gmin are the maximum and 

minimum conductance values, respectively. Pn and Pmax are the 

normalized pulse number and maximum normalized pulse number 

(Pmax=1), respectively. K is the function of NL to fit the GP and GD 
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functions within the range of Gmax, Gmin, and Pmax. When the NL is 

zero, the conductance update is ideally linear. 

Many resistive switching devices have been shown to possess 

superior potential in achieving synaptic functions for neuromorphic 

systems.23-26, 39-41 Memristors based on CFs have received 

widespread attention due to their exceptional performance as 

memory devices, which includes low programming voltage, high 

on/off ratio, and good endurance and retention properties. As a result, 

filamentary-type RRAM has been extensively studied to simulate 

artificial synapses and successfully showed various basic features 

such as short-term and long-term synaptic plasticity, PPF, and STDP. 

However, the randomly formed and broken filaments result in 

relatively poor uniformity, and the current of the device cannot be 

uniformly scaled with device size, leading to high power consumption. 

Also, the conductance change of synapses based on the filamentary 

mechanism usually exhibits unsatisfactory non-linearity. In order to 

achieve near-linear modulation of conductance change to improve 

synaptic performance, the devices need to apply gradually varying 

electrical stimuli, such as gradually increasing or decreasing the 

amplitude or width of the pulse trains, which poses significant 

challenges in peripheral circuit design.30, 42-45 Although some 

researchers have attempted to achieve linearly modulated 
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conductance by doping, this approach still cannot solve the high 

power consumption issue associated with such devices.46 In contrast, 

RRAM based on a non-filamentary mechanism may represent a 

better choice for simulating synapses to achieve superior synaptic 

properties. This is because, unlike filaments that form and break at 

random, such non-filamentary type memristors participate in 

electrical conduction throughout the entire electrode area, generally 

displaying excellent uniformity and good scalability behavior, 

whereby the area of the device can be scaled to achieve very low 

power consumption.7, 21, 47  This unique mechanism makes this device 

promising to obtain better nonlinearity. However, the synaptic 

devices based on non-filamentary memristors have been the subject 

of limited research, and the modulation mechanism of conductance to 

simulate synaptic behavior still requires further discussion and 

exploration. 48, 49 
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Figure. 1.5. Schematic illustration of non-ideal synaptic device 

properties modeled in the MLP simulator, including (1) nonlinear 

weight update (a), (2) weight precision, (3) device-to-device weight 

update variation, (4) cycle-to-cycle weight update variation, (5) 

dynamic range (conductance ON/OFF ratio) and (6) conductance 

variation (b). 
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1.5. Research scope and objective 
 

The objective of this paper is to investigate the unique electronic 

bipolar resistive switching mechanism in non-filamentary-type TiO2-

based RRAM. Based on the analysis of its degradation mechanisms, a 

method is proposed to improve its resistance switching performance 

by inserting an ultra-thin ZrO2 layer. Additionally, based on this 

optimized AZTA RRAM device, the various synaptic characteristics 

are simulated, exploring its application in neuromorphic computing. 

The demand for memory devices is increasing with the development 

of information technology. Traditional storage devices have some 

limitations, such as high-power consumption and poor reliability. 

Therefore, the researchers began to focus on new types of memory 

devices, including electronic bipolar resistance switching (e-BRS) 

RRAM, which is controlled by the switching of resistance states 

through the capture and release of electrons. Compared with other 

types of memory devices, e-BRS RRAM has the characteristics of 

low failure risk and no current formation. The study aimed to 

improve the performance of e-BRS RRAM devices, in particular, to 

improve their durability and data retention capabilities. In Chapter 2, 

the method of inserting a protection layer in the resistance switching 

process is proposed, hoping to prevent the active aluminum electrode 
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from continuously absorbing oxygen ions, thereby increasing the trap 

density in the resistance switching layer, and thereby improving the 

stability and consistency of the device. The main objective of the 

study was to evaluate the performance improvement after the 

insertion of ZrO2 layers at the top interface of the Al/TiO2/AlOx/Al 

RRAM structure. By comparing the Al/TiO2/AlOx (ATA) structure 

with no protective layer inserted, it is expected to observe improved 

durability, data retention, consistency, and reduced power 

consumption. At the same time, it is also hoped to verify that the 

selection of the ZrO2 layer meets the requirements of the protective 

layer and does not have a negative impact on the e-BRS mechanism. 

The resistive conversion process based on the space charge limiting 

current mechanism will also be discussed in detail. The results of 

this study will help advance the development of e-BRS RRAM 

technology and provide a potential solution for the application of 

high-density memory devices. 

With the rapid development of artificial intelligence systems, the 

third-generation artificial neural morphologic network has been 

widely studied. Artificial neural networks need to simulate the 

connections between biological neurons, so artificial synapses, as an 

important electronic component, have attracted much attention. In 

order to simulate the performance of brain synapses, artificial 
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synapses need to have key indicators such as plasticity, low power 

consumption, scalability, high signal-to-noise ratio, fast operation 

speed, and reliability. Among many new non-volatile memory devices, 

metal oxide resistance random access memory (RRAM) has been 

widely studied due to its excellent physical properties, electrical 

performance, and compatibility with traditional integrated processes. 

In Chapter 3, based on the previously developed non-filamentary 

Al/ZrO2/TiO2/Al RRAM device, which has excellent uniformity, no 

formation operation, and scalability, the ability of the device to 

simulate artificial synapses is systematically investigated. It also 

demonstrates excellent synaptic plasticity under more complex 

biological synaptic functions such as long-term enhancement, long-

term inhibition, pulse-pair enhancement, and time-dependent 

plasticity. By optimizing the pulse stimulation conditions, near-linear 

long-term enhancement and inhibition changes are achieved. The 

conductive mechanism that governs the synaptic plasticity of the 

non-fiber RRAM device, namely the trap-assisted space charge-

limiting current mechanism, is also revealed. In addition, due to its 

area-scalable behavior, non-fiber AZTA synaptic devices show 

potential for ultra-low power consumption and fast operating speeds. 

The purpose of this study is to explore and understand the synaptic 

performance and conduction mechanism of non-fiber Al/ZrO2/TiO2/Al 
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RRAM devices, so as to promote the development of artificial 

synapses and improve the performance of neural networks. 
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Chapter 2. Performance improvement of 

Al/TiO2/Al electronic bipolar resistive 

switching memory via inserting an ultra-thin 

ZrO2 layer at the top interface 

 

2.1. Introduction 
 

Over the past decades, the research of resistance switching random 

access memory (RRAM) with either one transistor-one resistor or 

crossbar array (CBA) has been very active.1-13 In both configurations, 

the resistive switching (RS) is mainly controlled by the formation and 

rupture of conductive filaments (CFs), which are prone to hard 

breakdown during electroforming.14-16 Also, the stochastic nature of 

the CF generally induced non-uniformity and low-reliability issues. 

Moreover, the operating current of this type of device is relatively 

high, which causes relatively high-power consumption. In contrast, 

the electronic bipolar resistance switching (e-BRS) device, induced 

by the trapping and de-trapping of the carriers (electrons), could be 

a better option. This assertion is based on the finding that the 

gradual current switching makes the catastrophic failure by the 

electrical breakdown much less probable. This improvement is also 

supported by the electroforming-free nature of the e-BRS 
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mechanism. Also, the area-scalable characteristic of the e-BRS 

device is especially conducive to improving integration for CBA 

RRAM, that the power consumption will decrease proportionally with 

the reduction of device size.17-19 In addition, RRAM based on the e-

BRS mechanism has also been found to have potential applications in 

highly flexible memory devices,20-23 security applications,24 and 

artificial synapse applications.25-29  

Kim et al. initially suggested the working e-BRS mechanism in the 

Pt/TiO2/Pt RRAM cells in 2011.30 They asserted that the e-BRS 

performance of the Pt/TiO2/Pt RRAM, which has to be electroformed 

first due to the high Schottky barrier between the Pt and TiO2, was 

mediated by the electron trapping (low resistance state, LRS) and 

de-trapping (high resistance state, HRS) at the defect sites (oxygen 

vacancies, VO) in the TiO2-x region between the Pt electrode and 

residual CF composed of magnéli phase Ti4O7. They performed a 

detailed analysis of defect density and the space-charge limited 

conduction (SCLC) mechanism. They indicated that the asymmetric 

potential barrier, i.e., high and low Schottky barrier at the Pt/TiOx 

and TiOx/magnéli CF, constituted the fundamental reason for the 

emergence of the BRS mechanism. 

Also, Jeong et al. demonstrated stable e-BRS is closely related to the 

top and bottom interface domains in metal/amorphous-TiO2/metal 
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RRAM devices.4 They regarded that the top interface with mobile 

oxygen ions would induce the redox reaction during the set 

(switching from HRS to LRS) and reset (switching from LRS to HRS) 

processes. In contrast, the bottom interface played a role as the 

blocking layer, which prevented the electric breakdown. In 2011, Kim 

et al. proved the formation of the Al-Ti-O interface layer at the top 

electrode in the Al/amorphous-TiO2/Al RRAM structure owing to the 

strong oxidation power of the Al.31 They also suggested that the 

reversible formation and dissociation processes of the Al-Ti-O 

interface layer by the migration of oxygen ions under an applied bias 

constituted the RS mechanism.  

Then, in 2015, Shao et al. reported Al/TiOx/Al structure e-BRS 

devices showed outstanding RS performance, such as 

electroforming-free and area-scalable behavior.19 An ~5 nm 

insulating AlOx layer was naturally formed at the bottom Al electrode 

interface, which was not the case at the top Al interface. Therefore, 

this different interface configuration provided the necessary 

asymmetric potential barrier, in which the electron injection and 

ejection at the top interface were fluent. In contrast, they were 

prohibited at the bottom interface. Unfortunately, the switching 

endurance of such devices was not satisfactory, and the operation 

current level was generally too high. Detailed electrical and chemical 
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analysis showed that the top Al/TiOx interface gradually changed 

from the quasi-Ohmic contact property to the Schottky-type contact. 

This change means that the top electrode Al was slowly oxidized to 

AlOx due to continuous electrostimulation. At the same time, the top 

part of the TiOx RS layer became more oxygen-deficient, which no 

longer provided effective trap centers. This electrochemical reaction 

is unnecessary for the e-BRS mechanism to operate efficiently. 

Therefore, inserting a protective layer at the top electrode interface 

can be a feasible method to prevent the active Al electrode from 

continuously absorbing oxygen ions in the resistance layer TiO2 as 

the cycle increases, which may improve RS endurance.  

Nonetheless, the inserted protective layer must meet the following 

conditions: 1) The protective layer should not affect the e-BRS 

mechanism. That is, it should not form a too high potential barrier, 

thus not affecting the fluent injection and ejection of the electrons. 2) 

It should not absorb oxygen ions in the TiO2 layer as efficiently as Al, 

meaning that the oxidation potential should be close to the TiO2. 3) 

The thickness of the protective layer needs to be accurately adjusted, 

not causing the device operation condition to deviate too much. 

To this end, several oxide barrier materials (ZrO2, HfO2, Al2O3) and 

different insertion layer thicknesses (1 – 5 nm) were studied, which 

are grown by thermal atomic layer deposition (ALD). Among them, 
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the HfO2 and Al2O3 layers were too insulating even at a thickness of 

1 nm, interfering adversely with the fluent Ohmic contact property. In 

contrast, the 1-2 nm thick ZrO2 layer met the above requirements 

well.  

Therefore, this work evaluated the performance improvement, 

especially the endurance, and retention, by inserting the ZrO2 layer 

at the top interface of the Al/TiO2/AlOx (natively formed)/Al RRAM 

structure. The Al/TiO2/AlOx/Al and Al/ZrO2/TiO2/AlOx/Al structures 

are called the "ATA" and "AZTA" samples, respectively. In the AZTA 

sample, the ultra-thin ZrO2 layer blocked the undesired reduction 

TiO2 layer in contact with the Al top electrode. As a result, the trap 

density in the TiO2 resistive layer was maintained robustly even with 

the increasing number of the switching cycle, demonstrating the 

electroforming-free behavior, improved endurance to 105 times, and 

optimized uniformity and retention. In addition, the inserted thin ZrO2 

layer also generally decreased the operation current, making the 

device suitable for high-density array applications. 
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2.2. Experimental 
 

First, the 100 nm-thick Al bottom electrode film was deposited by 

the electron beam evaporator (Sorona, SRN-200i) on a 5nm-thick 

Ta2O5 adhesion layer/SiO2/Si substrate. Next, the samples were 

transported to the TiO2 RS layer sputtering chamber via the air 

atmosphere, so the bottom Al electrode was oxidized to form an 

~5nm-thick AlOx layer. Then, a 35nm-thick TiO2 film was deposited 

on this AlOx/Al/Ta2O5/SiO2/Si substrate by a laboratory-made radio 

frequency sputter using a Ti4O7 target and O2/Ar reactive gas at 

room temperature (RF power: 125 W, deposition pressure: 0.015 

Torr, oxygen concentration: 20% O2). For fabricating the AZTA 

samples, the different thick ZrO2 layer was then deposited on the 

TiO2 layer by the thermal ALD system (Quros, Plus 200) with the 5, 

10, and 20 deposition cycles, respectively (precursor: 

Zr[N(CH3)(C2H5)]4, oxygen source: O3, deposition temperature: 

250 ℃). The growth per cycle for the ZrO2 film was ~0.13 nm/cycle, 

so 10 ALD cycles deposited ~1.3nm-thick ZrO2 layer on the TiO2 

film. Finally, the 100nm-thick Al top electrode was deposited by the 

electron beam evaporator. The bottom and top Al electrodes were 

patterned into line shapes with the width of 4, 6, 8, and 10 μm, 

respectively, via the lift-off process, so the fabricated RRAMs have 

16, 36, 64, and 100 μm2 areas. The fabricated samples were 
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annealed at 250 ℃ for 60 minutes to stabilize the contact property.  

The composition and the film thickness of the TiO2 and ZrO2 films 

were examined by an X-Ray fluorescence analyzer (Thermo 

Scientific, ARL Quant'X EDXRF) and spectroscopic ellipsometry 

(Woollam, ESM-300, J. A.), respectively. In addition, the chemical 

structure of the TiO2 and ZrO2 film was examined by X-ray 

photoelectron spectroscopy (XPS, ThermoFisher Scientific, Sigma 

Probe). 

The current-voltage (I–V) characteristics were measured using a 

semiconductor parameter analyzer (Hewlett Packard, 4145B) for the 

direct current (DC) sweep mode. The top electrode was biased, while 

the bottom electrode was grounded. The semiconductor parameter 

analyzer (Hewlett Packard, 4155B), a pulse generator (Tektronix, 

AFG3010C), and an oscilloscope (LeCroy, Wave Surfer 62MXs-B) 

were used for the pulse switching measurement. All data in this work 

were tested from the ATA and AZTA samples with an electrode area 

of 10×10 μm2. 
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2.3. Results and Discussions 

2.3.1. Optimization of the ZrO2 insertion layer 

thickness 

First, the optimal thickness of the ZrO2 layer was evaluated by 

estimating the RS performance of the ATA and ATZA samples with 

the ZrO2 ALD cycles of 5, 10, and 20, respectively. Figure 2.1(a) 

shows the typical I-V characteristics of the samples, which exhibit 

gradual set and reset switching at the positive and negative biases, 

respectively, with no involvement of the electroforming step. For 

these tests, an appropriate compliance current (Icc) of 1 μA was 

settled to ensure that all traps in the TiO2 layer could be sufficiently 

filled with electrons while preventing permanent device degradation. 

These properties coincide with the previous reports on a similar 

structure, suggesting that they follow the e-BRS mechanism.19, 32 

Specifically, the fluent electron injection from the top electrode and 

their trapping within the TiO2 layer under the negative bias set the 

device. The de-trapping and trapping of the electrons under the 

positive bias reset the device.  

The initial resistance values of all samples showed no significant 

difference. Still, the set voltage (Vset) and LRS resistance (RLRS) 

increased with the increasing thickness of the ZrO2 layer. The Vset 
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and the RLRS are tested at an Icc of 1 μA from 20 cells for statistical 

accuracy, as shown in Figure 2.1(b), with the different thickness ZrO2 

insertion layer. The ATA sample in Figure 2.1(b) underwent the 

same annealing process as the AZTA samples (250 ℃, for 1 hour). 

This step was necessary to make all the samples' initial HRS 

resistance (RHRS) similar. The long ALD time (40 to 80 min for 5 to 20 

cycles) for the AZTA samples rendered the initial RHRS smaller as the 

ZrO2 film thickness increased, as shown in Figure 2.2. This abnormal 

behavior must be due to the structural relaxation of the TiO2 layer 

caused by the annealing effect during ALD, which decreased the trap 

density. Figure 2.1(b) shows that the total RLRS, measured at 0.1 V, 

increases almost linearly with the ZrO2 layer thickness, which 

indicates that the ZrO2 layer act as a series resistance in the LRS in 

such a thin thickness range. Therefore, the |Vset| also increased 

almost linearly with the ZrO2 layer thickness. The slope of the best-

linear-fitted graphs indicated the increase rates in the RLRS and 

|Vset| was 3.37×108 Ω/nm and 0.66 V/nm, respectively. Figure 

2.1(c) shows the cumulative distribution of the RHRS and the RLRS for 

each sample from the 20 cycles in one cell. The uniformity of the 

samples was improved as the ZrO2 layer thickness increased, but the 

resistance ratio tended to decrease mainly due to the rapid increase 

of the RLRS. The high non-uniformity of the ATA sample could be 
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ascribed to the irregular chemical interaction between the top Al 

electrode and TiO2 layer, which the adopted ZrO2 protection layer 

could suppress. The 5 ALD cycles of ZrO2 correspond to a physical 

thickness of 0.65nm, slightly thicker than the one unit-cell thickness 

of the ZrO2 (~0.5nm). Therefore, suppressing such side effects by 

the 0.65nm-thick ZrO2 layer could be insufficient. Therefore, the 

data in Figures 2.1 (b) and (c) indicate that the 1.3nm-thick (10 

cycles) ZrO2 layer is the optimum protection layer at the top 

interface. In the following sections, therefore, the data for the ATA 

and AZTA samples with the 1.3nm-thick ZrO2 layer are compared to 

evaluate the ZrO2 layer effects. 



 

 ３８ 

 

Figure 2.1. The resistance switching characteristics of ATA 

(annealed) sample and AZTA samples with 5, 10, and 20 deposition 

cycles of the ZrO2 film. (a) Typical e-BRS I-V curves with an Icc of 1 

μA. (b) RLRS at the read voltage of 0.1 V and VSET at the Icc of 1 μA 

from 20 memory cells. (c) The cumulative probability graphs of LRS 

and HRS from the 20 I–V sweeps in a single memory cell. 
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Figure 2.2. (a) Typical e-BRS I-V curves of ATA sample (without 

annealing), AZTA sample (5 cycles, 40 minutes), AZTA sample (10 

cycles, 60 minutes), and AZTA sample (20 cycles, 80 minutes) 

fabricated by the thermal ALD with the different deposition time. (b) 

The I-V curves with a smaller range clearly show the degradation of 

HRS. 
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2.3.2. The resistance switching performance 

comparison 

Figures 2.3 (a) and (b) showed the typical I-V curves of the ATA and 

AZTA samples, respectively, measured at room temperature with an 

Icc of 0.5 μA during the set. Both samples exhibited a gradual 

set/reset process without the abrupt current jump, which is 

consistent with the typical electronic type RS characteristics.19, 30, 33 

However, the two samples showed distinctive I-V curves with the 

increasing number of switching cycles. For the case of the ATA 

sample, the HRS current (IHRS, read at -0.5V) increases rapidly from 

2.1×10-2 nA at the first cycle to 1.4×10-1 nA at the 10th cycle and 

then slowly to 4.7×10-1 nA at the 100th cycle. The possible reason 

for such IHRS variation was discussed in the later section, which 

examined the detailed conduction mechanisms. In contrast, the IHRS of 

the AZTA sample remained almost unvaried with a value of 3.3 – 7.1 

×10-2 nA at the same read voltage during the 100 switching cycles. 

This improvement could be ascribed to the suppression of the 

unwanted side effect of the top Al electrode by adopting the reaction 

barrier ZrO2 layer. Besides, the |Vset| of the AZTA sample increased 

from ~2.5V for the ATA sample to ~3.2V by the voltage partake 

effect of the ZrO2 layer. The electrode area (S)-dependent behavior 
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of the AZTA sample is shown in Figure 2.4. The RHRS and RLRS 

showed a slope of ~1 in the log R vs. log S graph, indicating a 

uniform current flow across the entire electrode area. 

Figures 2.5 (a) and (b) showed the endurance performance of two 

samples from I-V sweeps up to 200 cycles. Icc was set to 0.5 μA, and 

the resistance value was read at 0.5V for both samples. For the ATA 

sample, the RHRS rapidly decreased from ~ 1×1010 Ω in the first cycle 

to ~ 1×109 Ω in the 20th cycle, then slowly down to ~ 8×108 Ω in 

the 100th cycle. The RLRS did not show a notable variation and 

remained at ~ 8×107 ohms. The resistance ratio decreased from ~ 

200 to ~ 10. While the resistance ratio of 10 is not insufficient for a 

feasible RRAM operation, such a substantial variation adds a burden 

to the drive circuit.  

However, this was not the case in the AZTA sample, as shown in 

Figure 2.5 (b). The RHRS and RLRS values and their ratio (~ 65) did not 

show notable variations up to 100 I-V cycles. A similar contrasting 

trend could be found for the pulse-type switching, which is more 

relevant to the actual RRAM operation, as shown in Figures 2.5 (c) 

and (d). The resistance switching characteristics of the AZTA sample 

in the pulse test mode as shown in Figure 2.6. The resistance 

changes gradually with the pulse amplitude and length. A similar 

resistance ratio can be achieved at the pulse conditions with the 
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increasing pulse amplitude and decreasing pulse length. However, to 

achieve the best endurance performance in the pulse test, a set pulse 

with a relatively small pulse amplitude and a long pulse length was 

chosen to avoid a hard breakdown of the devices. At the same time, 

a reset pulse with a relatively large pulse amplitude and a long pulse 

length is chosen to confirm that the trapped electrons are fully 

detrapped. Finally, the set and reset pulses of -2.5 V/20 ms and 2.7 

V/20 ms were selected for the ATA, and -4.0 V/20 ms and 5.0 V/20 

ms were for the AZTA sample. For statistical accuracy, three cells 

per sample were tested. The unusually long pulse (normal RRAM 

requires < 1 μs) must also be ascribed to the relatively large area of 

the test cells (100 μm2). Because the whole electrode region of the 

device participates in the electrical transportation for e-BRS devices. 

However, the size of the randomly formed conduct filaments for the 

filamentary-controlled devices is usually only a few tens of 

nanometers or even smaller.14, 34, 35 Therefore, the area-type 

switching requires sufficient time to supply the required charges, but 

it also implies that the much smaller area device (ca. 4×10-4 μm2) 

might require a much shorter switching time (~ 0.1 μs), which can be 

estimated by the resistance switching characteristics of the AZTA 

sample with different electrode areas in the pulse test mode, as 

shown in Figure 2.7. While the ATA sample showed significant decay 
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of the RHRS and RLRS, even after 1000 cycles, at which the RHRS 

became even smaller than RLRS of the initial state, AZTA samples 

showed stable RHRS and RLRS values up to 105 switching cycles. This 

level of stability has not been reported for the TiO2-based e-BRS 

RRAMs, demonstrating the superiority of the AZTA sample to the 

previous works.19, 22, 36, 37 

The cell-to-cell and cycle-to-cycle uniformity performance of the 

ATA and AZTA samples are shown in Figures 2.8 (a) and (b), 

respectively. Both samples showed high device-to-device uniformity, 

which corroborates the general expectation that the e-BRS type 

device would have better uniformity than the CF-based ionic RS 

mechanism device. In contrast, only the AZTA sample exhibited high 

cycle-to-cycle uniformity in both the RHRS and RLRS.  

The retention of the ATA and AZTA samples was measured at room 

temperature and 85℃ for up to 105 s, and the results are shown in 

Figures 2.9 (a) and (b), respectively. The retention characteristic of 

the RRAM based on the SCLC mechanism is closely related to the 

electrons de-trapping from the traps by the influence of thermal 

noise. Because of the electron trapped configuration in LRS, the RLRS 

was generally more prone to increase in its value than the RHRS.
19, 22, 

25 This was also the case in this work, especially at 85℃, and the 

tendency was more evident for the ATA sample. The retention 
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behavior of the HRS for ATA and AZTA sample after different 

cycling numbers at the temperature of 85℃, as shown in Figure 2.10, 

further confirm the failure of the device is closely related to the trap 

depth (Ea). That is, electrons in the trap level closer to the 

conduction band are more easily to be excited. In addition, the 

relative resistance ratio in Figure 2.10, normalized to the data at 1 s, 

decreased by ~ 69 % and ~ 54% for the ATA and AZTA samples, 

respectively. The improvement could be ascribed to the electron 

barrier effect of the thin ZrO2 layer against the carrier detrapping 

under no bias conditions. 
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Figure 2.3. Typical e-BRS I-V curves of (a) ATA and (b) AZTA 

samples at the 1st, 2nd, 5th, 10th, 20th, 50th, and 100th cycles with 

an Icc of 0.5 μA. The arrows and numbers indicate the switching 

sequences. 
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Figure 2.4. The I-V curves of the AZTA sample with the different 

electrode sizes without the Icc. (b) The electrode area-dependence of 

LRS and HRS for AZTA sample. Each data point was achieved from 

20 cells. 
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Figure 2.5. The endurance test results from the DC I-V sweeps of 

(a) ATA and (b) AZTA samples, with an Icc of 0.5 μA. The AC 

endurance test results of (c) ATA and (d) AZTA samples from the 

pulse operation mode. The set and reset pulse conditions of the ATA 

sample (-2.5 V/20 ms and 2.7 V/20 ms), and AZTA sample (-4 V/20 

ms and 5 V/20 ms) were tuned to achieve the best test results. The 

read voltage was 0.5 V. 
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Figure 2.6. The resistance state of the AZTA sample with 100 μm2 

area after applying different (a) set and (b) reset pulse excitations. 

The initial HRS is ~ 8 GΩ for the set process, and the initial LRS is ~ 

0.2 GΩ for the reset process, obtained after applying a -4V/20ms set 

pulse. The read voltage is 0.5V. 
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Figure 2.7. The resistance ratio variation of the AZTA samples with 

different electrode areas after applying set pulses with different 

pulse lengths when the set pulse amplitude is fixed to -4V. 
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Figure 2.8. The cumulative probability graphs of LRS and HRS for 

ATA and AZTA samples, respectively. (a) The 20 I-V sweeps from 

20 memory cells, and (b) the 20 I-V sweeps from a single memory 

cell. The Icc is 500nA, and the read voltage is 0.5 V. 
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Figure 2.9. The retention characteristics of HRS, LRS, and resistance 

ratio were measured at room temperature (grey symbols) and 85℃ 

(color symbols) of (a) ATA and (b) AZTA samples, respectively. The 

read voltage is 0.5 V. 
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Figure 2.10. The retention behavior of the HRS for (a) ATA and (b) 

AZTA samples after different cycling numbers at the temperature of 

85℃. 
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2.3.3. The characteristics test and analysis 

In this section, the scrutinized chemical properties of the ATA and 

AZTA by XPS are discussed. The Al top electrode was not deposited 

for this analysis. The XPS binding energy was calibrated with the C-

C binding energy of the adventitious C signal (284.6 eV). Figures 

2.11 (a) and (b) showed the XPS Ti 2p and O 1s spectra of the TiO2 

film in the ATA and AZTA samples, respectively. There is no 

significant shift of the Ti 2p peak position between the two samples, 

meaning that no significant loss of oxygen has occurred in the TiO2 

film after the deposition of the ZrO2 film. The weaker peak intensity 

of the AZTA sample was ascribed to the presence of the 1.3nm-thick 

ZrO2 layer on top of the TiO2 layer. The binding energy difference 

between the Ti 2p 1/2 (463.7 eV) and Ti 2p 3/2 (457.9 eV) peaks 

was ~ 5.8eV, indicating that the TiO2 films are fully oxidized for both 

samples.38 The O 1s peak corroborates the Ti 2p spectrum. The 

529.4 eV binding energy of the O 1s peak from the ATA and AZTA 

samples showed no shift and is consistent with the reported value for 

the Ti–O bonding in TiO2 (529.7 eV). Also, the 531.3 eV binding 

energy of another O 1s peak from the AZTA sample is consistent 

with the Zr–O bonding in ZrO2 (531.2 eV).39 These results confirm 

that the TiO2 layer of the AZTA sample was almost unaffected by the 
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deposited ZrO2 layer and maintained its initial oxidized chemical state. 

Nonetheless, these XPS data do not necessarily imply that the TiO2 

layer had a defect- (or trap-) free property. Sputtered TiO2 films 

usually have a VO density of 1% or less, which is sufficiently high to 

induce the e-BRS mechanism but still too low to be detected by XPS. 

Furthermore, the two peaks of the Zr 3d spectrum of the AZTA 

sample showed a binding energy difference of 2.4 eV, as shown in 

Figure 2(c), which corresponds to the Zr4+ in ZrO2, suggesting that 

the ZrO2 layer was fully oxidized.40 Therefore, such a thin, fully 

oxidized ZrO2 may play a tunneling barrier role, not the RS layer.  

In addition, the cross-section TEM images of the ATA and AZTA 

sample (10 cycles) were included in Figure 2.12. Both samples show 

the presence of a ~5nm-thick AlOx layer at the bottom interface, 

which provided the necessary asymmetric barrier for the e-BRS 

mechanism. Also, the high-resolution TEM image shown in Figure 

2.12 (f) revealed the presence of an ~2nm-thick ZrO2 layer at the 

top interface of the AZTA sample. At the same time, the STEM-EDS 

mapping confirmed the presence of the different layers according to 

the suggested device structures, as shown in Figures 2.13 and 2.14, 

respectively. 
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Figure 2.11. The XPS spectra of (a) Ti 2p and (b) O 1s of ATA and 

AZTA samples, respectively. (c) Zr 3d core level XPS spectrum of 

AZTA sample. 
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Figure 2.12. (a) - (c) The TEM images with the different 

magnifications of the ATA sample. (d) - (f) The TEM with the 

different magnifications of the AZTA sample. HRTEM images 

correspond to the blue square region in low magnification images. 
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Figure 2.13. STEM-EDS mapping analysis of ATA sample: (a) TEM 

image of the corresponding area; (b) Overlay of Zr-Al-Ti-O; (c) Zr-

L; (d) Al-K; (e) Ti-K; (f) O-K. 
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Figure 2.14. STEM-EDS mapping analysis of AZTA sample: (a) TEM 

image of the corresponding area; (b) Overlay of Zr-Al-Ti-O; (c) Zr-

L; (d) Al-K; (e) Ti-K; (f) O-K. 
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2.3.4. Fitting and analysis of degradation mechanism 

Figure 2.15 shows the double-log fitting data of set and reset I-V 

curves of the ATA and AZTA samples, shown in Figure 2.3, 

according to the analysis method suggested by Shao et al..19 Both 

samples exhibited a reasonable fit to the SCLC mechanism, which is 

also consistent with previously reported devices with similar 

structures.31, 32, 37 For the negative voltage sweep (set process, 

Figures 2.15 (a) and (b) for the ATA and AZTA samples, 

respectively), the slope of the absolute-low-voltage region is ~1.1, 

which can be understood as the Ohmic conduction region of the 

SCLC mechanism. In this region, thermally generated carriers 

dominate, and the transport of carriers (electrons) conforms to the 

hopping mechanism. With the increasing (absolute) voltage, the 

density of carriers (electrons) injected from the top interface 

gradually increases, and the SCLC gradually dominates, which is 

accompanied by the increase in the slope of the fitted graph. Finally, 

electrons fill all the traps, reaching the trap-filling region, and an 

abrupt current jump occurs at the trap-filling-limit voltage (VTFL), 

which corresponds to the set (VTFL ~ Vset). It is noted that the 

transition between these two mechanisms was gradual. 

Interestingly, with the increasing number of cycles, the slope of the 
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ATA sample in the SCLC gradually decreased from 4.6 to 4.0. 

According to Child's theory of SCLC, the slope of the SCLC region 

must be 2 when a single trap level exists, but it could be higher when 

there are exponential distributions of the trap levels for the trap-

assisted SCLC model.30, 37 Therefore, these observed slopes 

decrease in the indicated region suggested deep traps in the band 

gap became inactive. Such a variation could be identified as the deep 

traps being permanently filled with the injected electrons, or the 

deeper trap centers were annihilated during the electrical cycling. At 

the same time, the absolute |VTFL| of the ATA sample decreased 

with the increasing number of cycles, which was also ascribed to the 

decrease in the effective trap density. As the bottom Al electrode 

interface involved a naturally formed robust AlOx film, such an 

adverse effect should probably occur at the top Al/TiO2 interface.  

In contrast, the slope in the SCLC region and |VTFL| of AZTA 

samples remain unvaried as the number of cycles increases, which 

also supports the hypothesis that the inserted ZrO2 layer effectively 

prevents the undesired chemical interaction (oxygen migration) at 

the top interface. As the applied voltage swept back to 0 V, the I-V 

curves showed a high current flow (set current, Iset), indicating that 

the nonvolatile set switching had occurred. The slope of the two 

samples in the absolute-high-voltage reign is ~ 2.4, which is a 
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typical SCLC mechanism. In contrast to the set switching, where the 

slope was ~ 4.0 – 4.6, all the traps were filled with the electrons in 

the LRS, so a slope near 2 was obtained. When the applied absolute 

voltage is reduced, the injected carrier density is lower than the 

thermally generated carrier density. Then, the Ohmic conduction 

mechanism dominates again, and the slope drops to ~1.1. The same 

slope value in the LRS of the two samples indicates that the inserted 

ZrO2 film at the top interface did not form a significant Schottky 

barrier and unaffected the asymmetric barrier structure. This ultra-

thin ZrO2 layer only acts as a series resistance, where electrons are 

injected into the TiO2 layer via a tunneling mechanism. Subsequently, 

for the positive voltage sweep process (reset process, Figures 2.15 

(c) and (d) for the ATA and AZTA samples, respectively), a high 

enough positive bias voltage was applied to release the trapped 

electrons from the trap centers, recovering the HRS. As for the set 

process, when decreasing the voltage, the slope in the SCLC region 

of the ATA decreased from ~ 5.4 to ~ 4.6 with the increasing cycle 

number, but that of the AZTA sample remained unvaried at ~ 4.7 

during the 100 switching cycles. These behaviors in the reset 

process corroborated the conclusion of the set process of the two 

types of samples.  

The temperature-dependent I-V curves were acquired to clarify the 
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ATA sample's degradation mechanism further and delineate the 

positive effects of inserted ZrO2 film. The I-V curves at the HRS 

after the first and 100th cycles of the two samples were measured in 

the temperature range of 303 - 343 K, as shown in Figures 2.16 (a) 

- (d), which were converted to the Arrhenius-type plots, as shown in 

Figures 2.16 (e) - (h), respectively. The I-V curves of the two 

samples showed evident temperature dependency in the absolute-

low-voltage region both before and after the cycles. In contrast, the 

temperature dependency gradually weakened with the increase of 

the absolute voltage, which was consistent with typical 

characteristics of the SCLC mechanism. Because the absolute-low-

voltage region of the SCLC mechanism conforms to the hopping 

conduction, the transport of carriers is determined by thermally 

generated carriers. Therefore, the tunneling rate of electrons 

between adjacent trap sites can be expressed by the effective 

diffusion process between them, which can be represented by the 

Arrhenius-type plots involving the apparent activation energy (Ea).
19, 

30 With the increase of the absolute voltage, the injected carriers 

gradually dominate, which gradually fill the trap from the deep to the 

shallow level. Therefore, a decreasing Ea should be acquired with the 

increasing voltage when viewing this effect from the electrons' 

diffusion, which was indeed the case for both samples. Ea at each 
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voltage was calculated from the slopes of the best-linear-fit 

Arrhenius-type plot in Figure 2.16 (e) - (h), and the results are 

summarized in Figure 2.17.  

For both samples at the 1st and 100th cycles, the Ea generally 

decreases with the increasing absolute voltage, confirming the 

previous e-BRS behavior.19, 25, 30 However, the ATA sample showed a 

significant decrease in the Ea values all over the voltage region, 

suggesting the gradual annihilation or permanent filling of the deep 

traps with the increasing cycle number. In contrast, the AZTA sample 

showed minimal variation in the Ea across the entire test voltage 

region even after the 100 cycles of switching, again demonstrating 

stability. It was noted that its initial Ea values were generally lower 

than those of the ATA sample, but after the 100 cycles, they were 

even higher due to its invariability. The ZrO2 ALD process, involving 

the highly reactive O3 injection step, might cure the deeper traps in 

the sputtered TiO2 layer, rendering the initial Ea relatively smaller.  

The initial Ea values of the ATA sample and the AZTA sample, 0.31 

eV and 0.27 eV, in this work, are larger than the previously reported 

Ea values, such as 0.25 eV from Kim et al.,30 0.15 eV from Shao et 

al.,19 and 0.23 eV from Yan et al.25 Because these values are 

intimately related to the distance between the nearby trap sites, the 

higher value of this work implied lower trap density than in the 
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previous cases. The most probable origin of these trap sites is VO. 

The sputtering process using the Ti4O7 target in this work may result 

in a more stoichiometric composition of the TiO2 film than in other 

works, where the metal Ti target was adopted.19, 25 The higher Ea 

values resulted in a higher RHRS/RLRS. 

Based on the above analysis, the improvement in the electrical 

performance of the AZTA sample over the ATA sample could be 

explained using the schematic band diagrams shown in Figure 2.18. 

The upper panels of Figure 2.18 show the schematic band diagram of 

the ATA and AZTA samples at the initial (or pristine) state. The 

middle and lower panels of the same figure show the set and reset 

processes, respectively, after ca. 100 cycles. At the initial state, the 

Al top electrode and the TiO2 constitute a quasi-Ohmic contact, 

whereas the intervened AlOx layer at the bottom interface renders 

the contact Schottky-like. Due to the presence of the traps, the 

conduction band profile varies as depicted. For the active trap 

density of 1019 cm-3 (~ 1% of lattice), the average distance between 

them is ~ 4.6nm. Therefore, the figure must be taken only 

qualitatively, not quantitatively precise. The deeper average trap 

depth (0.31 eV) of the ATA than that of AZTA (0.27 eV) is also 

displayed. 

As shown in the middle panels, the set process coincides with the 
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trapping of injected electrons from the top Al electrode at the trap 

sites, while the electron travel to the bottom Al electrode was less 

efficient due to the presence of the AlOx barrier layer. The 

extremely thin ZrO2 layer in the AZTA sample minimally affects this 

set operation, given that the applied negative bias voltage was 

appropriately increased. The reset process moves back the trapped 

electrons to the top Al electrode. At the same time, the electron 

injection from the bottom electrode is also minimized by the 

presence of the AlOx barrier layer. Also, the thin ZrO2 layer in the 

AZTA does not interfere with this operation.  

For the case of the ATA sample, the top interface portion of the TiO2 

layer could be reduced by the oxygen loss to the Al top electrode, 

especially during the reset step. Then, the trap density increases and 

the potential well depth in that region decreases by more severe 

overlapping of the potential profiles near the trap centers. Therefore, 

this region becomes filled with almost free electrons, making it 

electrically conductive. At the same time, the remaining part of the 

TiO2 film closer to the bottom Al electrode also gradually loses 

oxygen atoms, lowering the trap depth. As a result, the Ea value of 

the ATA sample decreases from 0.31 eV to 0.15 eV, which 

accompanies the RHRS and RHRS/RLRS ratio decreases. In contrast, the 

ZrO2 layer in the AZTA sample prohibited such an adverse reduction 
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near the top Al electrode, which could be ascribed to the oxidation 

potential of ZrO2. The standard Gibbs free energy of formation at 

298K of Al2O3, ZrO2, and TiO2 is -1582.3, -1042.8, and -888.8 kJ per 

mole, respectively.41 The intermediate oxidation potential of ZrO2 

prohibits not only the migration of oxygen from TiO2 into Al but also 

retains the oxygen ions of ZrO2 itself from their reaction toward the 

AlOx formation. Therefore, the initial Ea value could be stable during 

the repeated switching operation, and the endurance could be 

secured even up to 105 cycles. 



 

 ６７ 

 

Figure 2.15. Double-log scales and linear fitting of SCLC mechanism 

for different repetition cycles of (a) set process and (b) reset 

process for the ATA sample and of (c) set process and reset process 

for the AZTA samples, respectively. 
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Figure 2.16. (a) - (d) show the temperature dependence 

characteristics of HRS after the 1st and 100th cycles were measured 

at the temperature range of 303 K to 343 K of the ATA and AZTA 

samples, respectively. The Arrhenius-type plots of the (a) - (d) data 

are shown in (e) - (h) for calculating the activation energy (Ea). 
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Figure 2.17. The Ea at each voltage for HRS of (a) ATA and (b) AZTA 

samples, respectively, were calculated from the slopes of the best-

linear fitting of figure 2.16 (e) - (h). 
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Figure 2.18. The schematic band diagram of ATA and AZTA samples 

at the initial state (upper panels), set process (middle panels), and 

reset process (middle panels) after 100 switching cycles. The color 

code of the subfigures is Al electrode, blue square; AlOx layer, gray 

square; ZrO2 layer, dark blue square; electrons, gray spheres; traps 

(oxygen vacancies), hollow red spheres; traps filled with electrons 

(charged oxygen vacancies), hollow red spheres filled with gray; 

oxygen atoms, violet spheres; direction of current flow, orange 

arrow; trapping and detrapping of the electrons, red arrow; and 

direction of oxygen diffusion, violet arrow. 
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2.4. Summary 
 

In summary, the 1.3nm-thick ZrO2 insertion layer at the top interface 

of the Al/TiO2/Al memristor cell significantly improves its resistive 

switching (RS) performance. It is worth noting that, in pulse 

switching tests, the inserted ZrO2 layer increases the endurance from 

~103 cycles to ~105 cycles. This is attributed to the migration of 

oxygen atoms from the TiO2 layer to the top Al electrode, which is 

suppressed by the presence of ZrO2. The ZrO2 layer acts as a 

suitable reaction barrier between TiO2 and Al due to its intermediate 

oxygen affinity between Ti and Al. Moreover, in extended switching 

cycles, the loss of oxygen is minimized. The ultra-thin structure of 

the ZrO2 used does not significantly alter the asymmetric barrier 

distribution in the Al/TiO2/Al sample, which is essential for the 

electron-bulk resistive switching mechanism. 

Furthermore, in the Al/ZrO2/TiO2/Al sample, the retained oxygen 

concentration in the TiO2 layer near the top Al electrode ensures 

stability for electron trapping and enhances data retention over time. 

On the other hand, compared to previous studies, the higher 

stoichiometry of the TiO2 thin film in this research results in deeper 

trap levels and higher resistance ratios. The addition of the ZrO2 

layer and the higher stoichiometric composition of TiO2 contribute to 

a higher resistance value in the storage cell, making Al/ZrO2/TiO2/Al 
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suitable for large-scale array applications. 

Additionally, excessively thin (0.65 nm) or thick (2.6 nm) ZrO2 

layers present issues of incomplete blocking or reduced resistance 

ratio. Therefore, the 1.3nm-thick ZrO2 layer offers optimal barrier 

performance, suppressing undesirable chemical reactions between 

the top Al electrode and the RS TiO2 layer, while minimizing their 

adverse effects. 
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Chapter 3. Artificial Synapse Based on an 

Al/ZrO2/TiO2/Al Electronic Bipolar Resistance 

Switching Memristor 

 

3.1. Introduction 
 

Brain-inspired artificial neural networks, such as spiking neural 

networks (SNN), attract much attention as an alternative to the 

deep-learning-based back-propagation method, which lacks energy 

efficiency due to the excessive energy cost of the training steps. The 

primary requirement for artificial synapses that can be used in 

neuromorphic systems is their ability to exhibit synaptic plasticity, 

which is the ability to change synaptic strength (weight) following 

electrical stimulation.1-5 Linear increase (potentiation) and decrease 

(depression) characteristics with the numbers of the selected pulse 

voltages are necessary to emulate the brain synapses efficiently. 

Other crucial indicators include power consumption, scalability, 

signal-to-noise ratio, operation speed, and reliability.6-10 Several 

emerging nonvolatile memory devices, including resistive random 

access memory (RRAM),11-16 magnetic random access memory,17, 18 

phase change memory,19, 20 and ferroelectric memory,21-24 were 

reported to show the artificial synapse functions. Among these 
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candidates, metal-oxide RRAM has been widely studied due to its 

electrical adjustability and compatibility with the conventional 

complementary metal-oxide-semiconductor (CMOS) integration 

processes.25-27 The two-terminal configuration of the RRAM offers 

flexibility and simplicity in fabricating the synaptic array devices for 

the neuromorphic systems, compared to devices with three-terminal 

configurations, such as transistors. 28-31 

However, many RRAM devices have conducting filament (CF)-based 

switching mechanisms, which generally accompany abrupt and 

stochastic switching properties due to the random localized formation 

and rupture of the CFs.32-34 These properties are undesirable and 

degrade synaptic functions, such as linear potentiation/depression, 

paired-pulse facilitation (PPF) and spike-timing-dependent plasticity 

(STDP). 

In contrast, non-filamentary RRAM may represent a better choice for 

superior synaptic properties. Unlike CF-based RRAMs, such non-

filament-controlled memristors participate in electrical conduction 

throughout the entire electrode area. They generally encompass 

better uniformity and higher area scalability, whereby the smaller 

device area induces low power consumption.10, 35, 36 Nonetheless, the 

synaptic devices based on non-filamentary memristors have been the 

subject of limited research.37, 38 
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In the previous chapter, the authors reported a non-filamentary 

Al/ZrO2/TiO2/Al (AZTA) RRAM device that exhibited various 

promising properties, including excellent uniformity, forming-free 

characteristics, and area-scalable behavior.39 These performances 

were based on the electronic bipolar resistive switching (e-BRS) 

mechanism. This study further investigated the ability of the AZTA 

RRAM device to simulate artificial synapses. It demonstrated 

unprecedentedly linear synaptic plasticity (potentiating and 

depression) among the two-terminal devices, which allowed for more 

complex biological synaptic functions such as long-term potentiation, 

long-term depression, PPF, and STDP under different pulse lengths, 

amplitudes, and frequency conditions. The electrical conduction 

mechanism analysis of the AZTA device could scrutinize the origin of 

such superior synaptic functionalities. The space-charge-limited 

current (SCLC) mechanism dominates the synaptic behavior, allowing 

for multilevel or almost analog-type memory states. The notably 

high online learning capability of multilayer perceptron using the 

AZTA as the synaptic is also demonstrated using simulations. 

 



 

 ８３ 

3.2. Experimental 
 

First, a 100-nm-thick Al film was deposited onto a Ta2O5 (5nm)/SiO2 

(200nm)/Si substrate utilizing an electron beam evaporator (Sorona, 

SRN-200i), which served as the bottom electrode. The bottom Al 

layer will swiftly oxidize to form a ~5 nm-thick AlOx layer at the 

surface during transfer to the next process chamber through the air 

atmosphere. Subsequently, using a lab-made sputtering system, a 

25-nm-thick TiO2 film was deposited under the deposition 

conditions; a Ti4O7 target, deposition temperature of 25°C, RF power 

of 125 W, deposition pressure of 0.015 Torr, O2/Ar pressure ratio of 

1:4, and a deposition duration of 17.3 min. Next, the thermal atomic 

layer deposition system (Quros, Plus 200) was employed to deposit 

~2-nm-thick ZrO2 layers atop the TiO2 layer. The deposition 

conditions were as follows; 10 deposition cycle times, 

Zr[N(CH3)(C2H5)]4 Zr-precursor, O3 oxygen source, and 250 °C 

deposition temperature. Finally, a 100 nm-thick Al top electrode was 

deposited using the same electron beam evaporator. The top and 

bottom electrodes were patterned by photolithography and lift-off 

techniques to generate cross-point structured samples of varying 

electrode areas (4 × 4 μm2, 6 × 6 μm2, 8 × 8 μm2, 10 × 10 μm2). 

The TiO2 and ZrO2 layers were not patterned to mitigate etching 
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damage. 

The Al top electrode is connected to the bias voltage, while the Al 

bottom electrode is grounded. Direct current (DC) current-voltage 

(I-V) characteristics were measured using a semiconductor 

parameter analyzer (Hewlett Packard, 4145B). For pulse-switching 

tests, a semiconductor parameter analyzer (Hewlett Packard, 4155B), 

a pulse generator (Tektronix, AFG3010C), and an oscilloscope 

(LeCroy, WaveSurfer 62MXs-B) were employed. Due to the 

extremely high initial resistance (~9×109 Ω @Vread = 0.5 V) of the 

AZTA device with the electrode area of 100 μm2 and the high input 

impedance of the oscilloscope of 2 MΩ, the accurate current reading 

in pulse mode was impossible. Therefore, the device's conductance 

was measured using the DC sweep mode. A switching box was used 

to switch between DC and pulse modes. The in-house built test 

program controls the test interval between switching modes. All data 

in this work were achieved from the electrode area of 100 μm2, 

except for the area-dependent tests. 
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3.3. Results and Discussions  
 

3.3.1. The gradually changing resistance 

characteristics 

Figure 3.1 shows typical the current-voltage (I-V) characteristics of 

the AZTA resistance switching memory device at the DC sweep 

mode. The voltage sweep sequence is set as 0 → -4 V → 0 → 4 V → 

0. The set process occurs at the negative bias with a compliance 

current of 1 μA, and the device is converted from the high resistance 

state (HRS) to the low resistance state (LRS). Then, a reset process 

occurs at the positive bias, returning the device to HRS again. The 

resistance ratio of HRS and LRS is about 500 at the read voltage of 

0.5 V. This differentiates the binary state, which can be used to store 

a logic "0" or "1" for the non-volatile memory applications. However, 

in order to simulate the function of biological synapses, an analog 

memristor with multiple resistance states between HRS and LRS is 

expected, which means the synaptic weights (i.e., resistance or 

conductance) of the AZTA device can be progressively regulated. 

This is one of the essential factors for artificial synaptic devices to 

be applied in artificial neural networks. Figures 3.1 (b) and (c) show 

the I-V characteristics at the different-voltage DC sweep mode of 
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the set and reset process, respectively. The sweep voltages are 

applied following the numerical sequence (1st to 6th for the set; 7th to 

12th for the reset). First, a continuous set process is performed with 

the set stop voltage increasing from -3.7 V to -4.2 V, accompanied 

by a gradual decrease of the resistance value from HRS to LRS 

(9.0×109 Ω to 5.4×107 Ω @Vread = -0.5 V). Subsequently, a 

continuous reset process is performed with the reset stop voltage 

increasing continuously from 3.9V to 4.4V and the resistance value 

increasing from LRS to HRS (6.5×107 Ω to 7.2×109 Ω @Vread = 0.5 V). 

Both processes show gradually changing resistance as the increasing 

applied voltage. This gradual changing behavior of the resistance at 

the low voltage sweep range is more clearly shown in the 

illustrations of Figures 3.1 (b) and (c). In addition, Figures 3.1 (d) and 

(e) shows the real-time gradual changing behavior of the current at 

the pulse test mode for the set and reset process, respectively, 

which also strongly demonstrated that the resistance of the AZTA 

device could be progressively regulated to achieve multiple states. 

Also, Figure 3.2 suggests that the gradually changing resistance is 

substantiated to control by the trap-assisted SCLC mechanism, 

indicating the AZTA device belongs to a typical non-filamentary type 

conduction mechanism.35, 36, 40 Driven by the applied voltage, 

electrons are captured or released by the traps (most of the oxygen 
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vacancies and defects) in the TiO2 layers, and these traps are at 

different depths of trap energy levels. Therefore, as the electrons 

gradually fill up the different-depth trap energy levels, multiple 

resistance states will be obtained.  

Importantly, the resistance regulation mode based on the trap-

assisted SCLC mechanism will not be easily affected by the previous 

operation, thus conducive to achieving the precise regulation of the 

resistance with the same operating conditions in the repeat operation. 

In contrast, devices controlled by filamentary-type mechanisms 

usually modulate the resistance by setting different compliance 

currents or reset stop voltages, closely related to the partial 

formation or annihilation of CFs.41-43 After repeated operations, the 

formation of stronger and larger diameter CFs or multiple CFs will 

have a continuous impact on subsequent operations. This typically 

results in a stronger electrical stimulation being required to restore 

the device's resistance to its initial state. Even sometimes, greater 

stimulation cannot return the device to the corresponding previous 

state yet. Therefore, these randomly formed and easily continuously 

enhanced CFs make it challenging to accurately adjust the resistance 

in the continuous endurance test. 
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Figure 3.1. (a) Typical I-V curves with an Icc of 1 μA. (b) The set 

process with gradually decreasing sweep voltage from -3.6 V to -4.1 

V. (c) The reset process with gradually increasing sweep voltage 

from 4.0 V to 4.5 V. The I-V curves in the semi-log scale within the 

low sweep voltage range are shown in the inset figures. (d) The set 

and (e) reset process in pulse operation mode with an input voltage 

of -4 V and 4 V, respectively. The interval and pulse length are both 

1 ms. 
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Figure 3.2. The double log fitting of the I-V curves of (a) set process 

and (b) reset process for AZTA memristor, showing the typical SCLC 

mechanism. The threshold voltage is approximately -3.4V. The poor 

linear fitting in the HRS region is due to the current level being close 

to the detection limit of the equipment. 
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3.3.2. Evaluation of the artificial synapse performance 

Figure 3.3 (a) shows a schematic diagram of the AZTA memristor 

that simulates the artificial synapse. The charge trapping and 

detrapping in the TiO2 resistance switching layer changes the 

conductance of the AZTA sample, adjusting the synaptic weight, 

which emulates the human synapse function mediated by the Ca2+ 

ion channel. The gradual resistance-changing property of the AZTA 

sample will allow for the fine-tuning of the synaptic weight by 

changing the pulse amplitude, length, frequency, and number of input 

pulses. Here, a Gn/G0 index is introduced to indicate the effect 

degree of different stimuli on synaptic plasticity (G0 represents the 

initial synaptic weight, and Gn represents the synaptic weight after 

the stimulus). Figure 3.3 (b) suggests the synaptic weight can be 

effectively modulated by changing the pulse amplitude of the 

stimulus signal of negative pulses. When the absolute value of 

applied pulse amplitude was less than 3.4V, synaptic plasticity did 

not show a noticeable change after applying five consecutive pulses, 

and the Gn/G0 remained at 1. However, when the pulse amplitude 

exceeds 3.4V, the synaptic weight gradually increases with the 

increase of the pulse numbers, of which the trend is strengthened 

with the increasing amplitude. For example, after five consecutive 
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pulses with a pulse amplitude of 4.2 V, the Gn/G0 index increased to 

~20.8. Notably, the pulse amplitude of 3.4 V is consistent with the 

threshold voltage of the SCLC mechanism, as discussed in the 

following section. When the applied voltage exceeds the threshold 

voltage during the DC sweep, all traps in the TiO2 layer are filled 

with the injected electrons. The subsequently injected electrons will 

move into the conduction band, resulting in the trap-filled SCLC 

mechanism. However, for the pulse operation mode, the electrons 

may not rapidly fill all the traps at the relatively low pulse length but 

gradually fill the traps with different energy levels, gradually 

increasing conductance.  

Next, the modulating effects of the pulse length and frequency on the 

synaptic plasticity of the AZTA device are demonstrated. Figure 3.3 

(c) shows synaptic plasticity changes by a single pulse with different 

pulse lengths. The synaptic weight is enhanced with the increasing 

pulse length. Notably, the pulse length of the single applied pulse 

should be long enough to obtain the discernable weight change for 

the multilevel operation application (more than 500 μs at least for 

one state). Figure 3.3 (d) shows the influence of the pulse frequency 

change on synaptic weight. The higher the pulse frequency, the more 

pronounced the enhancement of synaptic weight. These results 

indicated that the synaptic plasticity of the AZTA artificial synapses 
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could be precisely regulated by modulating the parameters of the 

pulse stimulus, and the transition between short-term and long-term 

memory behaviors can be achieved.  

Based on the above results, suitable pulse conditions were selected 

to examine the long-term plasticity characteristics of the AZTA 

artificial synapses, as shown in Figure 3.4. For efficient artificial 

synapses in neural network computing, the synapse cell should have 

a nearly linear response over the conductance range, with each pulse 

changing only a tiny fraction of the overall dynamic range of 

conductance.10 For this purpose, the nonlinearity values of the 

potentiation (NLP) and depression (NLD) are introduced to evaluate 

the device's performance. The smaller the NLP and NLD, the more 

linear the conductance change.44 Figure 3.4 (a) shows the long-term 

potentiation characteristics of the AZTA synapses, showing the 

conductance increase with the number of applied pulses under 

different pulse amplitudes. The conductance increases rapidly at high 

applied pulse amplitude and reaches a high saturation value. In 

contrast, the conductance increases slowly at low applied pulse 

amplitude and reaches a relatively low saturation value. The NLP 

decreases notably with the decrease of the applied pulse amplitude, 

which is closely related to the trap-filling rate with electrons. 

Although the best NLP is obtained at -3.8 V, the conductance ratio is 
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too low for practical application. Therefore, a pulse amplitude of -4V 

was selected as the best test condition for long-term potentiation. 

Here, the conductance ratio is ~20 (initial conductance (G0) and after 

50 pulses (G50) are ~ 0.2 nS and 4.5 nS, respectively). The G50 of 

the potentiation process was selected as the initial state of the 

subsequent depression test with different pulse amplitudes, as shown 

in Figure 3.4 (b). The higher the amplitude of the applied pulse, the 

faster the discharge rate of the trapped electrons in the traps, which 

leads to a high NLD value. Therefore, similar to the potentiation 

process, the NLD value of the conductance change is lower at 

relatively low pulse amplitudes. However, for the too-low pulse 

amplitudes, some trapped electrons may not be fully de-trapped 

during the 50 pulses, resulting in the conductance not returning to its 

initial value. Similar results were verified in the DC sweep test 

shown in Figure 3.5; to return the conductance to the initial value, 

the sweep times of the reset process with a low reset voltage must 

be longer than those of the set process with a high set voltage. 

Finally, Figure 3.4 (c) shows five consecutive long-term plasticity 

test results with the optimized conditions of -4.0V/500 μs and 4.2 

V/500 μs for potentiation and depression, respectively. The pulse 

number was set to 30 to eliminate the effect of the conductance 

saturation region for optimal nonlinearity. Figure 3.4 (d) shows the 
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average results of these five consecutive cycles, suggesting that the 

conductance variation of the AZTA synapse is highly linear, with NLP 

and NLD values of 0.17 and -0.70, respectively. The achieved 

conductance ratio was ~ 12.0 (Gmin and Gmax = 0.28 nS and 3.40 nS). 

The energy consumption can be calculated by Econs = V× I × t, 

where V, I, and t represent the input pulse amplitude (-4 V), the 

current (0.6 μA), and the pulse length (500 μs), respectively. Econs 

for one step of the potentiation is ~ 1.2 nJ, much higher than the 

human synapses (1 - 10 fJ).38, 45 Nonetheless, because of the area-

dependent characteristics of the AZTA device, power consumption is 

expected to be decreased with the device size scaling. In addition, it 

is worth noting that this linear variation in conductance is obtained 

under identical pulse test conditions, a critical merit of this device 

compared to other reports. The identical pulse condition eliminates 

the complexity of the control circuit for making non-identical pulse 

conditions.18, 46-49 

Moreover, further research was conducted to test the potential for 

more operable conductance states of the device, as shown in Figure 

3.6. When the total input pulse trains are constant (i.e., the input 

pulse amplitude is -4 V and the total pulse length is 8 ms), the pulse 

length is equally divided into smaller pulse lengths (500 μs, 200 μs, 

80 μs, and 32 μs) with the DC read operation after each pulse. The 
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number of pulses for these tests is 16, 40, 100 and 250, respectively. 

As the pulse length decreases and the pulse number increases, the 

reading conductance fluctuation increases significantly. However, 

this degradation was not due to the inherent device performance but 

the test artifacts; the frequent switching of pulse mode and DC 

reading mode caused a transient response, thus affecting the 

accuracy of the measurement results. Nevertheless, the linear fitting 

slope of the conductance to the pulse number decreased, indicating 

the final conductance also gradually decreased after the same input 

pulse trains. 

However, when inputting the pulse trains without the DC reading 

steps, even if the pulse length is divided into tiny equal parts, the 

conductance did not decay, as shown in Figure 3.7. This finding 

suggests that frequent switching between operating modes affected 

the memory state of the AZTA device, leading to conductivity 

attenuation. Notably, similar potentiation and depression 

characteristics were obtained, even after 1000 pulse tests, as shown 

in Figure 3.4 (e), which strongly demonstrated the outstanding ability 

to maintain the linearity for the AZTA synapses. 
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Figure 3.3. (a) Schematic diagram of the AZTA memristor simulating 

the working mechanism of a biological synapse. Excitatory post-

synaptic current (EPSC) under different (b) pulse amplitudes (The 

pulse length and interval are 500 μs with leading and training times 

of 100 μs), (c) pulse lengths (The pulse amplitude is -4 V), and (d) 

pulse frequencies (The pulse amplitude is -4 V and the pulse length 

is 500 μs), respectively. The leading and training times were not set 

in the pulse length and frequency tests for better comparison and 

calculation. 
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Figure 3.4. (a) Long-term potentiation characteristics under different 

pulse amplitudes from -3.8 V to -4.6 V. (b) Long-term depression 

characteristics under different pulse amplitudes from 3.8 V to 4.6 V. 

(c) Five consecutive long-term plasticity tests with the pulse 

conditions of -4.0 V/500 μs and 4.2 V/500 μs for potentiation and 

depression, respectively. (d) The average results of five consecutive 

cycles with the conductance ratio of 12.0. (e) The potentiation and 

depression test after 1000 pulse cycles. 



 

 ９８ 

 
 

Figure 3.5. The gradual changing I-V characteristics of AZTA 

memristor at DC sweep mode. (a) The set sweep voltage is set to -

3.6V. (b) The reset sweep voltage is set to 2.8V.  
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Figure 3.6. The conductance change trend as the different pulse 

lengths and pulse numbers. The switching box switches between 

pulse trains and 0.5V DC reading operations with a time interval of 1 

second. The red dash line is the best linear fitting for the 

conductance. 
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Figure 3.7. (a) The schematic diagram of all pulse trains, while the 

testing was performed in numerical order from 1 to 5. The total 

applied pulse length and interval time was equal for all pules trains, 

both 20ms. (b) I-V curves at DC sweep mode, where the reset 

sweeps were performed to confirm that the device had returned to 

its initial state. (c) The read currents after the pulse trains at a read 

voltage of 0.5 V. 
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3.3.3. The work mechanism analysis based on the 

trap-assisted SCLC mechanism 

The trap-assisted SCLC mechanism of the AZTA synaptic devices 

makes a pivotal contribution to this excellent adjustment of the 

synaptic plasticity. As shown in Figure 3.8 (a), four different states 

are obtained, named State 1, State 2, State 3, and State 4, 

respectively, by continuously applying the same pulse trains. Figure 

3.8 (b) shows the I-V curves of the four states under a DC sweep 

operation from 0 to 0.6V. The conductance increase for four states is 

linear (0.21 nS, 1.32 nS, 2.30 nS, and 3.37 nS, inset figure) at a Vread 

of 0.5 V, corresponding to the data shown in Figure 3.4. 

Subsequently, the I-V curve in Figure 3.8 (b) is replotted in the 

double logarithmic scale, as shown in Figure 3.8 (c). In the low 

voltage range, the fitting slope values of all four states are close to 1, 

indicating that the electron transport follows the hopping conduction 

mechanism and the current is mainly dominated by thermally 

generated carriers. As the sweep voltage increases, the injected 

carriers gradually become dominant. Thus, the electronic transport 

mechanism shifts towards the SCLC mechanism and the fitting slope 

values of four states in the trap-filling region increase. It is worth 

noting that the slope values in the trap-filling region of State 1 to 
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State 4 gradually increased (1.6, 1.8, 2.8, and 3.7), indicating that 

electrons are gradually filled traps from the deep trap level to the 

shallow trap level. The transition voltage (Von) increases from 0.20 V, 

0.24 V, and 0.27 V to 0.31 V for the four states also verified such a 

trend. The electrons trapped at shallower energy levels can again 

participate in the electron transport process through recombination 

and release with thermally generated carriers, thereby increasing the 

effective lifetime and concentration of thermally generated carriers. 

Therefore, a higher Von is required to inject more carriers and drive 

the current transition from the hopping to the SCLC mechanism. Also, 

through temperature test and linear fitting calculation based on the 

Arrhenius formula, as shown in Figure 3.9, the activation energy (Ea, 

the energy level for traps) for four states was obtained from 0 V to 

0.6 V, as shown in Figure 3.8 (d). The activation energy of all states 

decreases as the applied voltage increases, indicating that the 

electron gradually filled the traps. Subsequently, the best nonlinear 

fitting of Figure 3.8 (d) was performed to estimate the trap energy 

levels at zero electric field, which are ~ 0.27 eV, 0.20 eV, 0.15 eV, 

and 0.12 eV for the States 1, 2, 3, and 4, respectively.  

Based on the above results, Figure 3.8 (e) shows a schematic 

diagram of the potentiation process of the AZTA synaptic device. 

Under continuous pulse train stimulation, electrons are injected from 



 

 １０３ 

the Al/ZrO2 interface, gradually filling the trap energy levels from 

deep to shallow. The conductance values corresponding to each state 

were closely related to the depth of the trap energy level and 

showed a nearly linear change. In contrast, the trap energy 

difference of adjacent states gradually decreased. The trap-assisted 

SCLC current (J) follows the Eq. (1) when a single energy level trap 

presents: 

                 (1) 

, where the θ is , , and  are the free carrier and trapped 

carrier density, respectively.50, 51 At a fixed read voltage, the reading 

conductance is proportional to θ because the other parameters are 

constant. When the reading voltage is low,  is much greater than 

, therefore, the reading conductance can be roughly proportional to 

. Also,  can be defined with single energy level Et as: 

                        (2) 

, where Nt, EF, k, and T are trap density, Fermi energy level, 

Boltzmann constant, and ambient temperature, respectively. Then, 

the electrical conductance is approximately proportional to 

. Here, the value of Ea in each state is regarded as Et, and 

the absolute value of EF (n-type TiO2 has several hundred millivolts) 

is greater than the absolute value of Et. Then, by plugging in the 
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activation energies Ea for each of the four states into the exponential 

relationship, the energy level differences between states 1-2, 2-3, 

and 3-4 are 0.7 eV, 0.5 eV, and 0.2 eV, resulting in an approximately 

linear change in the conductance. However, it should be noted that 

this analysis is based on the assumption that the traps are in a single 

energy level to help understand this unique potentiation process. The 

actual situation may be more complex than this simple assumption. 

The traps in the AZTA synaptic devices will likely exhibit an 

exponential distribution from deep to shallow level due to the 

characteristic factor (slopes of the trap-filling region) greater than 

2,52 requiring further research. Moreover, the previous work has 

confirmed that the trap energy levels of AZTA synaptic devices 

remained unchanged during the endurance test.39 This property 

allows for consistent modulation of synaptic weight after many 

cycles, meaning similar conductance values can be achieved under 

the same pulse stimulation. 

In addition, the "voltage-time dilemma" in many CF-based RRAM, a 

trade-off between programming speed (requiring a low energy 

barrier to facilitate defects motion) and retention (requiring a high 

energy barrier to prevent defect dispersion), could be overcome with 

the AZTA sample.10, 32 First, the retention failure time ( ) of 

AZTA synaptic devices is related to the trap energy level where the 
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trapped electrons were located, . Figure 3.8 (f) 

shows the retention characteristics of four states at room 

temperature for 105s. The conductance of all states decreases 

slightly over time because the trapped electrons are continuously 

detrapped by thermal noise. As the Ea decreases from State1 to State 

4, they become more easily thermally excited and released, resulting 

in lower retention performance. After 105 seconds, the conductance 

values from State 1 to State 4 were decreased by ~ 2.3%, 14.8%, 

19.5%, and 22.2%, respectively. Although the retention performance 

of the AZTA synaptic device is still not satisfactory compared to 

filamentary-type RRAM devices, the conductance range used by this 

device is a portion close to the deep trap level. Therefore, the 

retention performance as a synaptic device has been optimized 

somewhat compared to the conductance range used as a digital 

memory device. 

Figure 3.8 (g) shows the trend of synapse weight versus pulse length 

for different-size AZTA synapse devices. The conductance ratio 

gradually increases as the pulse length increases for all devices. As 

the device size decreases, the required pulse length to achieve the 

same conductance ratio gradually decreases. For example, the 

required pulse length to achieve the same conductance ratio of 10.8 

(gray line) gradually decreases from 10 ms, 6 ms, and 3.5 ms to 1.6 
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ms for the devices with electrode areas of 100 μm2, 64 μm 2, 36 μm 2, 

and 16 μm2, indicating that the required pulse length is 

approximately proportional to the device area. This finding means 

that reducing the device size can effectively increase the operating 

speed. For example, it is speculated that the AZTA synaptic device 

with an electrode size of 0.01 μm2 may require a pulse length of 1μs 

to achieve a similar conductance ratio. The smaller device area will 

decrease the output current when the pulse is applied. As a result, 

power consumption will correspondingly decrease significantly, 

possibly even below the level of the human brain synapse. 
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Figure 3.8. (a) Four different conductance states were obtained by 

continuously applying the same pulse trains. (b) The I-V curves of 

the four states under a DC sweep mode from 0 to 0.6 V. The 

conductance of four states at the read voltage of 0.5 V is shown in 

the inset figure. (c) The double log plot of I-V curves in four states. 

The red and yellow lines represent the fitting of the hopping and 

SCLC mechanisms, respectively. The intersection point of the two 

lines is the transition voltage. (d) The activation energies of four 

states were obtained from 0 V to 0.6 V by the temperature test and 

Arrhenius fitting. The red dash line is the best nonlinear fitting of 4 

states. (e) Schematic diagram of electronic injection during the 

potentiation process. Electrons at the top interface are massively 

injected through the ultra-thin ZrO2 layer, while their loss at the 
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bottom interface is minimized due to the high potential barrier of 

Al2O3. The dash lines of various colors represent trap energy levels 

at different depths. The number of segments in the dashed lines 

represents a qualitative comparison of the number of traps. (f) The 

retention behavior of the four conductance states and the low 

resistance state (LRS) for the first reset process at room 

temperature over 105 seconds. (g) The conductance ratio changes of 

devices with different areas (100 μm2, 64 μm2, 36 μm2, and 16 μm2) 

under different pulse lengths from 1 ms to 10 ms. The solid gray line 

represents the conductance ratio is 10.8. The red dash line is the 

best nonlinear fitting for each state. 
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Figure 3.9. (a) The temperature dependence characteristics of the 

four states at the temperature range of 300 K to 340 K of the AZTA 

artificial synapse. (b) The Arrhenius-type plots of the temperature 

test data for calculating the activation energy (Ea) from 0.1 V to 0.6 

V. 
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3.3.4. Neuromorphic computing application 

PPF is an essential test for analyzing the short-term plasticity of 

temporary information in the brain. In SNNs, it can simulate temporal 

correlation between pre-synaptic neurons, thereby altering the 

efficiency of synaptic transmission to facilitate information 

processing and transfer between neurons. Figure 3.10 (a) shows an 

example of pulse stimulation for AZTA artificial synapse simulating 

PPF testing. The interval (Δt) between two consecutive pulses 

regulates this short-term synaptic plasticity. When the second pulse 

arrives, the current caused by the first pulse does not immediately 

disappear, increasing the post-synaptic current. The following 

equation defines the PPF index:  

                            (3) 

Figure 3.10 (b) further demonstrates that the results of PPF testing 

can be well-fitted with a double exponential function for time 

intervals ranging from 10 μs to 5 ms: 

          (4) 

, where τ1 and τ2 are the time constants of fast and slow relaxations, 

which are approximately 0.5 ms and 216.4 ms, respectively, 

comparable to biological synapses and previous reports.53-55 Three 
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data points were taken for each time interval sample to improve the 

accuracy of the fitting results, and the detailed data are shown in 

Figure 3.11. 

Furthermore, the STDP learning strategy is one of the most 

representative forms of long-term plasticity in SNNs. It is also one 

of the most common methods of synaptic weight updating. The 

connection between two neurons depends on the relative timing of 

pre-synaptic and post-synaptic activations (Δt). If the pre-synaptic 

spike arrives before the post-synaptic spike, it can result in a long-

term potentiation (LTP) effect. Conversely, if the post-synaptic spike 

arrives before the pre-synaptic spike, it can cause long-term 

depression (LTD). The following equation can describe the 

relationship between the change in weight and the time interval: 

                           (5) 

The Δω is the change of the synaptic weight, defined by 

. A+ (A−) is a scaling factor, and τ+ (τ−) is the time 

constant corresponding to the potentiation and depression of the 

synaptic connection.41 For the AZTA synapse device, the pre-

synaptic and post-synaptic pulse parameters were set to -4 V/500 

μs and 4 V/500 μs, respectively, as shown in Figure 3.10 (c). The 

modulation of weights by the AZTA synapse based on the STDP 
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learning rule is shown in Figure 3.10 (d), demonstrating typical 

antisymmetric Hebbian learning characteristics. By fitting with a 

single exponential function, τ+ and τ- were estimated to be 

approximately 9.3 ms and 10.1 ms, respectively, comparable to the 

time window of biological synapses in the human brain. These 

excellent features suggest that this AZTA synaptic device has 

promising potential for neuromorphic computing applications. 

Finally, a fully connected neural network was constructed to evaluate 

the performance of AZTA synaptic devices, as shown in Figure 3.12 

(a). The neural network consists of a 2-layer multilayer perceptron 

(MLP) with 400 input neurons, 100 hidden neurons, and 10 output 

neurons for recognizing handwritten digits from the MNIST dataset. 

The 400 neurons in the input layer correspond to a 20 × 20 MNIST 

image, while the 10 neurons in the output layer correspond to the 10 

classes of digits. During the online learning, the neural network 

based on AZTA synaptic devices was trained using NeuroSim 

software with randomly selected images (60,000 images) from the 

MNIST dataset.56 Figure 3.12 (b) shows the accuracy evaluation 

results obtained using the synaptic parameters shown in Figure 3.4. 

Detailed parameters are summarized in Table 3.1. The results 

indicate that the final inference accuracy in this artificial neural 

network (ANN) is closely related to the number of conductance 
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states of the synaptic device. When utilizing 30 conductance states, 

the inference accuracy reaches approximately 83.1%, which already 

surpasses the performances of similar MLPs in several previous 

reports.3, 57, 58 Moreover, the potential of AZTA devices for 

accommodating a higher number of conductance states has been 

demonstrated. By setting 250 conductance states, the inference 

accuracy will be significantly enhanced to 94.9%, approaching the 

accuracy of the software baseline (96% - 97%). These findings 

suggest the remarkable potential of AZTA devices for achieving 

excellent performance in neural networks. 
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Figure 3.10. (a) Schematic diagram of pulse train stimulation for the 

PPF test. The pulse train parameter is -4 V/500 μs with the leading 

and trailing time is 100 μs. (b) PPF index is plotted as a function of 

the interval time (blue dot ball), extracted from 3 independent tests. 

The red dash line best fits the data points with a double exponential 

function. (c) The pre-synaptic and post-synaptic pulses were set to 

-4 V/500 μs and 4 V/500 μs, respectively. The AZTA synapse was 

read with a 0.5 V DC voltage before and after the pulse train to 

determine changes in synaptic weight. (d) The asymmetric STDP 

behavior of the AZTA artificial synapse. Synaptic weight changes are 
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plotted as a function of the interval between the pre-synaptic and 

post-synaptic pulses. The red dashed line best fits the data points 

with an exponential function. 
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Figure 3.11. EPSC characteristics at different interval times for the 

PPF test. 
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Figure 3.12. (a) Schematic diagram of MLP neural network based on 

the AZTA synaptic devices. (b) Identification accuracy under 

different conductance states. 
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Table 3.1. Online learning accuracy results and detailed simulation 

parameters in NeuroSim software. 

 

Potentiation pulse Depression pulse Gmax (nS) Gmin (nS) Conductance Ratio Nonlinearity (P/D)

 Average/maximum standard

deviation of the potentiation

process (nS)

  Average/maximum standard

deviation of the depression

process (nS)

-4V/500μs 4.2V/500μs 3.3965 0.2830 12.0 0.17/-0.70

 Conductance states (P/D)
Online learning accuracy

( Average of the last 10 epochs)

94.20%

94.90%

0.2638/0.6197 0.2559/0.5166

30

60

250

83.10%
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3.4. Summary 
 

In summary, the non-filamentary and e-BRS AZTA memristor has 

excellent potential for simulating artificial synapses in neuromorphic 

computing. By controlling the amplitude, length, and frequency of 

applied pulses, the weight of the synapse can be precisely regulated. 

As a result, the AZTA synapse exhibited highly linear and symmetric 

potentiation/depression with a conductance ratio of ~12 under 

identical pulse trains. Furthermore, the synaptic weight variation 

remained consistent with the initial trend even after 1000 pulse 

cycles. These excellent synaptic characteristics are attributed to the 

trap-assisted space charge-limited conduction mechanism of e-BRS 

resistive switching devices. The conductance modulation is 

controlled by the trapping and detrapping electrons of traps. The 

conductive transport properties of this mechanism are also discussed 

in detail. 

Moreover, this unique conduction mechanism avoids the voltage-time 

problem in many CF-based RRAMs. Therefore, it exhibits 

tremendous potential in low-power consumption and high-speed 

operation. PPF and STDP tests have also been successfully 

performed, indicating that the device is expected to be integrated 

into spiking neural networks. The 2-layer multilayer perceptron with 

400 input, 100 hidden, and 10 output neurons using the AZTA 
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synapses can reach a remarkable accuracy of 94.9% for MNIST 

dataset recognition, despite the limited number of synapses (4 x 105). 
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Chapter 4. Conclusion 

 

In the past few decades, there has been increasing research activity 

on resistance random access memory. Compared to traditional RRAM 

devices based on conducting wires, electronic bipolar resistive 

switch devices have many advantages, such as the low risk of 

electrical breakdown, no electroforming step, high scalability, and 

low power consumption. In this study, we propose to insert a ZrO2 

layer at the top electrode interface to optimize the resistance 

switching performance of the device and thus form an 

Al/ZrO2/TiO2/Al structure based on a non-filamentary type 

mechanism RRAM device, which can also simulate various artificial 

synaptic functions in the spiking neural network, and demonstrate 

good synaptic performance. 

The Al/TiO2/Al resistance random access memory showed an area-

type electronic bipolar resistive switching mechanism, which was 

mediated by the trapping and de-trapping of the carriers at the trap 

centers. The area-type e-BRS device had area-scalable 

characteristics and excellent uniformity, which are beneficial for 

large-scale integrated applications. However, the unsatisfactory 

endurance and retention performance needed to be improved. In the 

first part of this work, a 1-2nm-thick ZrO2 thin layer was deposited 
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by the thermal atomic layer deposition on the 25nm-thick sputter-

deposited TiO2 layer to form an Al/ZrO2/TiO2/Al memory cell. The 

thin ZrO2 layer effectively prevented the active Al top electrode 

from absorbing oxygen from the TiO2 resistive switching (RS) layer 

without significantly affecting the asymmetric energy barrier 

structure of the device. The suppression of oxygen loss from the 

TiO2 RS layer retained the desired trap density of the RS layer even 

after the extended switching cycle operation. This suppression effect 

significantly improved the RS performances, such as endurance, 

uniformity, and retention. The switching endurance was enhanced 

over two orders of magnitudes (from <103 to >105). The ZrO2 layer 

also increased the overall resistance values of the memory cell, 

making it more suitable than the Al/ TiO2/Al structure for high-

density applications. 

Furthermore, based on the above optimized e-BRS AZTA memristor 

with excellent performance, and holds high potential for being used 

as an artificial synapse in neuromorphic computing applications. 

Essential synapse functions such as short-term weight, long-term 

weight, spike-timing dependent weight, paired-pulse facilitation 

(PPF), and spike-timing-dependent plasticity (STDP) are 

successfully implemented in this AZTA device by finely modifying 

the shapes of pre- and post-synapse spikes. Importantly, compared 
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to traditional filamentary-type memristors, the conductance of this 

e-BRS AZTA device, controlled by electron trapping and de-trapping, 

is less influenced by previous operations, making it beneficial for 

achieving accurate and controllable conductance states with similar 

non-linearity in repeated endurance tests. Additionally, this AZTA 

device demonstrates high near-linear and symmetrical 

potentiation/depression under identical pulse test conditions, 

effectively reducing the difficulties of external programming and 

facilitating multivalued conductance without auxiliary circuits. 

Moreover, due to the area-dependent behavior, the AZTA memristor 

showed promising potential for low power consumption and high 

operating speed. 
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Abstract in Korean 
 

TiO2 기반 전자 양극성 저항 전환 메모리스트의 

성능 최적화 및 신경형 컴퓨팅 응용 

 

지난 몇십 년간 저항 스위치 랜덤 액세스 메모리(RRAM)에 대한 연구가 

활발히 진행되었습니다. 특히, 하나의 트랜지스터-하나의 저항체 또는 

크로스바 어레이(CBA) 구성을 사용한 RRAM 연구가 주목받았습니다. 

이러한 구성에서 저항 스위칭은 주로 전도성 필라멘트(CF)의 형성과 

파괴에 의해 제어되며, 이는 전기 형성 과정 중 하드 브레이크다운과 

같은 문제를 야기합니다. 또한, CF의 확률적 특성으로 인해 비균일성과 

신뢰성이 낮아집니다. 이와 대조적으로 전자 양극성 저항 스위칭(e-

BRS) 기기는 캐리어(전자)의 포획과 이탈에 의존하며, 전류의 점진적 

전환은 전기적 브레이크다운의 가능성을 줄이고, 전기 형성 단계가 없는 

장점을 제공합니다. 또한, e-BRS 기기는 크로스바 어레이 통합에 

적합한 면적 확장성을 가지며, 이는 전력 소비의 감소와 관련이 

있습니다. 이러한 기기는 유연한 메모리, 보안 응용 프로그램 및 인공 

시냅스 구현에 잠재력을 보여주고 있습니다. 그러나 많은 기기의 

내구성과 보존 성능이 만족스럽지 못하며, 이는 산소 손실을 방지하고 

기기 성능을 개선하기 위한 적절한 방법의 개발이 필요함을 의미합니다. 

Al/TiO2/Al 저항 랜덤 액세스 메모리(RRAM)는 전자 양극성 저항 

스위칭(e-BRS) 메커니즘을 보이며, 캐리어의 포획과 이탈이 함점에서 
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중재된다는 것을 보여주었습니다. 면적형 e-BRS 기기는 큰 규모의 통합 

응용 프로그램에 유리한 면적 확장성과 우수한 균일성을 가지고 

있습니다. 그러나 내구성과 보존 성능이 만족스럽지 않았습니다. 이 

연구에서는 25nm 두께의 스퍼터 증착 TiO2 층 위에 열 원자층 증착을 

통해 1-2nm 두께의 ZrO2 얇은 층을 형성하여 Al/ZrO2/TiO2/Al 메모리 

셀을 제작했습니다. 얇은 ZrO2 층은 TiO2 저항 스위칭(RS) 층에서 

활성화된 Al 상위 전극이 산소를 흡수하는 것을 효과적으로 

방지하였습니다. 이로써 기기의 비대칭 에너지 장벽 구조에 큰 영향을 

주지 않으면서도 TiO2 RS 층의 산소 손실을 억제하였습니다. 이 억제 

효과는 확장된 스위칭 주기 동안 RS 층의 원하는 함점 밀도를 유지하게 

하였습니다. 이 억제 효과는 내구성, 균일성, 보존력과 같은 RS 성능을 

크게 향상시켰습니다. 스위칭 내구성은 103 이하에서 105 이상으로 

향상되었습니다. 또한, ZrO2 층은 메모리 셀의 총 저항값을 증가시켜 

고밀도 응용 프로그램에 더 적합하도록 만들었습니다. 

스파이킹 신경망(SNN)은 딥 러닝 방법론에 비해 에너지 효율성이 

뛰어난 대안으로 주목받고 있습니다. 뉴로모픽 시스템에서 인공 

시냅스의 중요한 요구 사항은 전기적 자극을 통해 시냅스 강도를 

변화시킬 수 있는 시냅틱 플라스티시티를 구현할 수 있는 능력입니다. 

저전력 소비를 가능케 하는 저변동 메모리 장치인 저항성 랜덤 액세스 

메모리(Resistive RAM, RRAM)는 인공 시냅스 기능을 흉내 내는 데 

유망한 기술입니다. 그러나 많은 기기가 급격하고 확률적인 특성을 

보이는 전도성 필라멘트 기반 스위칭 메커니즘에 의존하기 때문에 
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원하지 않는 특성을 가지고 있습니다. 이에 반해 비 필라멘트 RRAM 

기기는 향상된 균일성, 확장성 및 저전력 소비와 같은 우수한 특성을 

보입니다. 그러나 시냅스 응용에 대한 비 필라멘트 메모리스터에 대한 

연구는 아직 제한적입니다. 따라서 비 필라멘트 RRAM을 인공 시냅스에 

대한 해결책으로 탐구하고 최적화하는 것에 상당한 잠재력이 있습니다. 

본 연구에서는 뉴로모픽 컴퓨팅의 스파이킹 신경망(SNN)에서 인공 

시냅스를 모방하기 위한 비 필라멘트 메커니즘을 기반으로 한 

Al/ZrO2/TiO2/Al (AZTA) 메모리스터를 제안했습니다. 이 장치는 프리 

시냅스 및 포스트 시냅스 스파이크의 형태를 정밀하게 변조하여 단기적 

가소성, 장기적 가소성, 페어드 펄스 증가 및 스파이크 타이밍 종속적 

가소성을 구현할 수 있었습니다. 또한, AZTA 장치는 보조 회로 없이 

동일한 펄스 동작 조건에서 높은 선형성과 대칭성을 가진 증폭 및 

감소를 보여주며, 보조 회로 없이 다중 값 전도도를 가능하게 

하였습니다. 전자(전자의 포획 및 이탈)는 산소 공석 함정이 제공하는 

서로 다른 깊이 에너지 수준에서 시냅틱 가중치를 제어합니다. 또한, 

AZTA 메모리스터는 전력 소비가 낮고 작동 속도가 빠른 특성을 가진 

면적에 의존적인 동작을 기반으로 하므로 저전력 소비 및 고속 작동에 

대한 유망한 잠재력을 보여주었습니다. AZTA 시냅스를 사용하여 

400개의 입력, 100개의 히든, 10개의 출력 뉴런을 가진 다층 

퍼셉트론으로 MNIST 데이터셋의 94.9% 정확도를 달성할 수 

있었습니다. 
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스파이킹 신경망, 뉴로모픽 컴퓨팅 
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