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Abstract

Recently, terahertz (THz) communications have received much attention to alleviate
spectrum bottleneck and support high data rates for 6G wireless communications. Using
the abundant spectrum resource in the THz frequency band (0.1 ~ 10THz), THz
communications can support immersive mobile services such as digital twin, metaverse
realized by XR devices, and high-fidelity mobile holographic displays. Well-known
drawback of the THz communications is the severe attenuation of the signal power
caused by the high diffraction and penetration losses and atmospheric absorption. To
deal with the problem, a beamforming technique realized by the massive multiple-
input multiple-output (MIMO) has been widely used. Since the beamforming gain is
maximized only when the beams are properly aligned with the signal propagation paths,
the base station (BS) needs to acquire the accurate channel information.

In the first part of the dissertation, we study a channel feedback technique for the
frequency-division-duplexing (FDD)-based cell-free mmWave and THz systems. Cell-
free system where a group of base stations (BSs) cooperatively serves users has received
much attention as a promising technology for the future wireless systems. In order to
maximize the cooperation gain in the cell-free systems, acquisition of downlink channel
state information (CSI) at the BSs is crucial. While this task is relatively easy for the
time division duplexing (TDD) systems due to the channel reciprocity, it is not easy
for the frequency division duplexing (FDD) systems due to the CSI feedback overhead.
This issue is even more pronounced in the cell-free systems since the user needs to feed
back the CSIs of multiple BSs. In our work, we propose a novel feedback reduction
technique for the FDD-based cell-free systems. Key feature of the proposed technique
is to choose a few dominating paths and then feed back the path gain information (PGI)
of the chosen paths. By exploiting the property that the angles of departure (AoDs) are

quite similar in the uplink and downlink channels (this property is referred to as angle



reciprocity), the BSs obtain the AoDs directly from the uplink pilot signal.

In the second part of the dissertation, we study a channel estimation technique for
reconfigurable intelligent surface-assisted THz systems. Recently, an RIS that controls
the reflection characteristics of incident signals has received a great deal of attention.
To make the most of the RIS-aided systems, an acquisition of RIS reflected channel
information at the base station (BS) is crucial. However, this task is by no means easy
due to the pilot overhead induced by the large number of reflecting elements. In our work,
we propose an efficient channel estimation and phase shift control technique reducing
the pilot overhead of the RIS-aided mmWave systems. Key idea of the proposed scheme
is to decompose the RIS reflected channel into three major components, i.e., static
BS-RIS angles, quasi-static RIS-UE angles, and time-varying BS-RIS-UE path gains,
and then estimate them in different time scales. By estimating the BS-RIS and RIS-
UE angles occasionally and estimating only the path gains frequently, the proposed
scheme achieves a significant reduction on the pilot overhead. Further, by optimizing
the phase shifts using the channel components with relatively long coherence time, we
can improve the channel estimation accuracy.

In the third part of the dissertation, we study a channel estimation technique for
time-division-duplexing (TDD)-based THz ultra-massive (UM) multiple-input multiple-
output (MIMO) systems. THz UM-MIMO system is envisioned as a key technology
to support ever-increasing data rates in 6G communication systems. To make the most
of THz UM-MIMO systems, acquisition of accurate channel information is crucial.
However, the THz channel acquisition is not easy due to the humongous pilot overhead
that scales linearly with the number of antennas. In our work, we propose a novel deep
learning (DL)-based channel acquisition technique for the THz UM-MIMO systems.
By learning the complicated mapping function between the received pilot signal and the
sparse channel parameters (e.g., angles, distances, path gains) using Transformer, the

proposed scheme can make a fast yet accurate channel estimation with a relatively small

ii



amount of pilot resources. Moreover, using the attention mechanism of Transformer,
we can promote the correlation structure of the received pilot signals in the feature
extraction, thereby improving the channel parameter estimation quality significantly.
In the fourth part of the dissertation, we study a beam management technique for
wideband THz systems. One main difficulty of the THz communications is the severe
attenuation of signal power caused by the high diffraction and penetration losses and
atmospheric absorption. To compensate for the severe path loss, a beamforming tech-
nique realized by the massive multiple-input multiple-output (MIMO) has been widely
used. Since the beamforming gain is maximized only when the beams are appropriately
aligned with the signal propagation paths, acquisition of accurate beam directions is of
great importance. A major issue of the conventional beam management schemes is the
considerable latency being proportional to the number of training beams. In this chapter,
we propose a THz beam management technique that simultaneously generates multiple
frequency-dependent beams using the true time delay (TTD)-based phase shifters. By
closing the gap between the frequency-dependent beamforming vectors and the desired
directional beamforming vectors using the TTD-based signal propagation network
called intensifier, we generate very sharp training beams maximizing the beamforming

gain.

keywords: 6G, wireless communications, terahertz, channel estimation, channel
feedback, beam management

student number: 2016-25925
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Chapter 1

Introduction

1.1 Background

Recently, terahertz (THz) communications have received much attention to alleviate
spectrum bottleneck and support high data rates for 6G wireless communications. Using
the abundant spectrum resource in the THz frequency band (0.1 ~ 10THz), THz
communications can support immersive mobile services such as digital twin, metaverse
realized by XR devices, and high-fidelity mobile holographic displays. Well-known
drawback of the THz communications is the severe attenuation of the signal power
caused by the high diffraction and penetration losses and atmospheric absorption. To
deal with the problem, a beamforming technique realized by the massive multiple-
input multiple-output (MIMO) has been widely used. Since the beamforming gain is
maximized only when the beams are properly aligned with the signal propagation paths,

the base station (BS) needs to acquire the accurate channel information.

1.1.1 Terahertz Channel Characteristics

In this subsection, we discuss a few useful properties of THz channel. We first explain
the LoS-dominant property that the transmit energy is mostly concentrated on the LoS

path in the THz channel and then explain the THz near-field effect that the channel is a



function of the communication distance.

Due to the high directivity and path loss, the scattering and refraction of signal
are negligible in the THz band so that the LoS path becomes the dominant means of
propagation. Two major factors contributing to the LoS-dominant property of THz
channel are 1) highly directional propagation of THz signal and 2) significant power
gap between the LoS and NLoS path signals. First, since the power of diffracted signal
decreases sharply with the signal frequency, diffraction is almost negligible in the high
frequency band like THz band, meaning that the signal power is concentrated on a few
dominant paths. Indeed, from the extensive measurements on the THz channel, it has
been shown that the number of dominant paths in 256-antenna UM-MIMO systems
operating at 0.3 THz band is less than 4 [1]. Second, the power gap between the LoS
and NLoS path signals is significant due to the huge reflection and diffuse scattering
losses. The reflection of signal can be roughly categorized into two types: 1) specular
reflection where the signal is reflected to a definite angle at smooth surfaces and 2)
diffuse scattering where the signal is reflected to all directions at rough surfaces. In
the THz band, the wavelength (e.g., 100 pm in 3 THz band) is smaller than the surface
roughness' of objects (e.g., the roughness of concrete wall is 300 ~ 1000 m) so that
the diffuse scattering is the dominant means of reflection. Since the reflected signal is
not focused on a specific direction but scattered over an area, the power of reflected
signal in the NLoS path is much smaller than that of the LoS path signal. For example,
the Rician K-factor, a ratio of the power of the strongest path over the sum of powers of
other paths, is around 20 dB in 0.4 THz band [2], which implies that the power of LoS
path signal is almost 100 times stronger than that of NLoS path signals.

Due to the short communication distance and the extremely large number of an-
tennas in the THz systems, the THz channel is categorized as the near-field channel
where the EM radiation is modeled as spherical waves. In the near-field THz channel,

the array steering vector is expressed as a joint function of the azimuth/elevation angles

'The surface roughness is defined as the standard deviation of surface heights from the mean line.



and the distance. In general, the EM radiation field can be divided into two categories:
1) far-field region where the EM radiation can be approximated as plane waves and
2) near-field region where the EM radiation is modeled by the spherical waves. To
distinguish two regions, the Rayleigh distance Z = NTQ’\ (N is the number of antennas
and A\ is the signal wavelength) is widely used. In the THz systems, due to the extremely
large number of antennas, the Rayleigh distance can be up to a hundred meters, covering
most of the small cell area [3]. For example, in the 256-antenna UM-MIMO systems
operating at 0.1 THz band, the Rayleigh distance is around 100 m. In the near-field
region, the signal wavefronts have spherical shapes so that the phase delay between two
adjacent antenna elements is affected not only by the azimuth angle 6, the elevation
angle ¢, but also the distance r. Thus, the near-field array steering vector should be

expressed as a function of spherical coordinates (r, 0, ).

1.1.2 Terahertz Channel Estimation

In FDD systems, where separate frequency bands are allocated for uplink and downlink
communication, the downlink channel estimation process plays a vital role in estab-
lishing reliable communication between the transmitter and receiver. One common
technique is the use of pilot signals or reference symbols. The transmitter inserts known
symbols into the downlink transmission at regular intervals. The receiver detects and
analyzes these symbols to estimate the channel response. By comparing the known
symbols with the received ones, the receiver can determine the effects of the channel
on the transmitted signal. Another approach is channel sounding, where the transmitter
actively transmits signals with specific properties to probe the channel. The receiver
measures the channel response by analyzing these transmitted signals. This technique
provides more detailed information about the channel’s characteristics. Through these
methods, the receiver estimates the downlink channel response, including its gain,
phase, and frequency response. This information is crucial for adapting the receiver’s

equalization and decoding techniques to compensate for channel impairments, such



as fading and interference. In some cases, the receiver may provide feedback to the
transmitter in the form of channel state information (CSI). This feedback conveys the
estimated channel characteristics, enabling the transmitter to adapt its transmission
parameters accordingly. For example, based on the CSI, the transmitter can adjust the
transmit power, modulation scheme, or even perform beamforming to enhance the
quality and reliability of the downlink communication.

In TDD systems, where transmission and reception occur in the same frequency
band but at different time intervals, the downlink channel estimation process differs
slightly. Similar to FDD, synchronization is the first step, ensuring accurate timing
and frequency references. However, in TDD, channel estimation takes advantage of
the reciprocity property of wireless channels. During specific time slots allocated for
channel estimation, the receiver transmits known pilot symbols or reference signals.
The receiver then measures the channel response by analyzing the received signals
during these time slots. By comparing the known pilot symbols with the received ones,
the receiver estimates the downlink channel characteristics. Similar to FDD, TDD
systems may also involve feedback mechanisms where the receiver provides channel
state information (CSI) to the transmitter. This feedback helps the transmitter adjust its

transmission parameters based on the estimated channel characteristics.

1.2 Contribution and Organization

In this dissertation, we introduce a DL-based wireless communication systems for 6G.

In Chapter 2, we propose a novel feedback reduction technique for FDD-based
cell-free systems. The key feature of the proposed scheme is to choose a few dominating
paths among all possible propagation paths and then feed back the path gain information
(PGI) of the chosen paths. Key observations in our work are that 1) the spatial domain
channel is represented by a small number of multi-path components (AoDs and path

gains) and 2) the AoDs are quite similar in the uplink and downlink channel owing to



the angle reciprocity so that the BSs can acquire AoD information directly from the
uplink pilot signal. Thus, by choosing a few dominating paths and only feed back the
path gain of the chosen paths, we can achieve a significant reduction in the feedback
overhead.

In Chapter 3, we propose an efficient channel estimation framework to reduce the
pilot overhead of RIS-aided mmWave systems. Key idea of the proposed scheme is to
decompose the RIS reflected channel into three major components, i.e., static BS-RIS
angles, quasi-static RIS-UE angles, and time-varying BS-RIS-UE path gains, and then
estimate these components in different time scales. In doing so, the number of channel
parameters to be estimated at each stage can be reduced significantly, resulting in a
reduction of pilot overhead. Also, by optimizing the RIS phase shifts using the channel
components with relatively long coherence time, we could further improve the channel
estimation accuracy without requiring additional pilot resources.

In Chapter 4, we propose a DL-based channel acquisition technique for the THz
UM-MIMO systems. In recent years, a remarkable success of DL in various disci-
plines (e.g., image classification, speech recognition, and language translation) has
stimulated increasing interest in applying this paradigm to wireless communication
systems. Intriguing feature of the proposed scheme is to promote the nonuniform and
irregular correlation structures of the received pilot signals using Transformer, a DL
architecture that differently weights each input data based on the correlations between
the input data. By exploiting the attention mechanism of Transformer, T-PCA can
facilitate the extraction of spatially and temporally-correlated features inherent in the
THz UM-MIMO systems. In doing so, fast yet accurate channel parameter estimation
can be made with small pilot overhead.

In Chapter 5, we propose a THz beam management scheme that simultaneously
generates multiple frequency-dependent beams using the TTD-based phase shifters. By
employing the generated FDB beams as the training beams, the proposed technique

can search multiple directions simultaneously, thereby reducing the beam management



latency. Intriguing feature of the proposed frequency-dependent beamforming (FDB)
is to exploit a deliberately designed true time delay (TTD)-based signal propagation
network called intensifier to bridge the gap between the desired beamforming vectors
and the frequency-dependent beamforming vectors. In doing so, RSRP of the beam
aligned with the channel propagation path gets larger while those of the misaligned
beams get smaller, resulting in a significant improvement of the beam direction accuracy.

Chapter 6 summarizes the contribution of the dissertation and discuss the future

research directions based on studies of this dissertation.



Chapter 2

Downlink Pilot Precoding and Compressed Channel

Feedback for FDD-Based Cell-Free Systems

In this chapter, we introduce a channel feedback technique for the frequency-division-
duplexing (FDD)-based cell-free mmWave and THz systems. Cell-free system where
a group of base stations (BSs) cooperatively serves users has received much attention
as a promising technology for the future wireless systems. In order to maximize the
cooperation gain in the cell-free systems, acquisition of downlink channel state infor-
mation (CSI) at the BSs is crucial. While this task is relatively easy for the time division
duplexing (TDD) systems due to the channel reciprocity, it is not easy for the frequency
division duplexing (FDD) systems due to the CSI feedback overhead. This issue is even
more pronounced in the cell-free systems since the user needs to feed back the CSIs of
multiple BSs. In our work, we propose a novel feedback reduction technique for the
FDD-based cell-free systems. Key feature of the proposed technique is to choose a few
dominating paths and then feed back the path gain information (PGI) of the chosen
paths. By exploiting the property that the angles of departure (AoDs) are quite similar
in the uplink and downlink channels (this property is referred to as angle reciprocity),

the BSs obtain the AoDs directly from the uplink pilot signal.



2.1 Introduction

In recent years, ultra dense network (UDN) has received a great deal of attention as
a means to achieve a thousand-fold throughput improvement in 5G wireless commu-
nications [4]. Network densification can improve the capacity of cellular systems by
overlaying the existing macro cells with a large number of small (femto, pico) cells.
However, throughput improvement of dense networks might not be dramatic as ex-
pected due to the poor cell-edge performance. This is because the portion of users in
the cell-boundary (cell-edge users) increases sharply yet cell-edge users suffer from
significant inter-cell interference due to the reduced cell size. To address this problem,
an approach to entirely remove the notion of cell from the cellular systems, called
cell-free systems, has been introduced recently [5]. When compared to the conventional
cellular systems in which a single base station (BS) serves all the users in a cell, a
group of BSs cooperatively serves users in the cell-free systems (see Fig. 2.1). In the
cell-free systems, BSs are connected to the digital unit (DU) via advanced backhaul
links to share the channel state information (CSI) and the transmit data. Since the cell
association is not strictly limited by the regional cell, notions like cell and cell boundary
are unnecessary in the cell-free systems. Also, since the DU intelligently recognizes
the user’s communication environments and then organizes the associated BSs for each
user, cell-free systems can control inter-cell interference efficiently, thereby achieving
significant improvement in the spectral efficiency and coverage.

In order to maximize the gain obtained by the BS cooperation, acquisition of
accurate downlink CSI at the BS is crucial. While this task is relatively easy for
the time division duplexing (TDD) systems due to the channel reciprocity, it is not
easy for the frequency division duplexing (FDD) systems due to the CSI feedback
overhead [6, 7]. For this reason, most efforts on the cell-free systems to date are based
on the TDD systems [8,9]. In practice, however, TDD-based cell-free systems have some
potential problems. For example, due to the switching between the uplink and downlink

transmission in the TDD systems, users may not be able to obtain the instantaneous
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Figure 2.1: Comparison between (a) the conventional cellular systems and (b) the

cell-free systems.

CSI when the transmission direction is directed to the uplink [10]. Further, the channel
reciprocity in TDD systems might not be accurate due to the calibration error in the
RF chains [6]. These observations, together with the fact that the FDD systems have
many benefits over the TDD systems (e.g., continuous channel estimation and small
latency), motivate us to study FDD-based cell-free systems. One well-known drawback
of the FDD systems is that the amount of CSI feedback needs to be proportional to
the number of transmit antennas to achieve the rate comparable to the system with the
perfect CSI [11]. This issue is even more pronounced in the cell-free systems since the
user needs to estimate and feed back the downlink CSIs of multiple BSs. Therefore,
it is of a great importance to come up with an effective means to relax the feedback
overhead in the FDD-based cell-free systems.

The primary purpose of this paper is to propose an approach to reduce the CSI
feedback overhead in the FDD-based cell-free systems. Key feature of the proposed
technique is that the spatial domain channel can be represented by a small number of
multi-path components (angle of departure (AoD) and path gain) [12]. By exploiting

the property referred to as angle reciprocity [13] that the AoDs are quite similar in the



uplink and downlink channels, we only feed back the path gain information (PGI) to the
BSs. As a result, the number of bits required for the channel vector quantization scales
linearly with the number of dominating paths, not the number of transmit antennas.
Moreover, by choosing a few dominating paths maximizing the sum rate, we can further
reduce the feedback overhead considerably. In order to support the dominating PGI
acquisition and feedback at the user, we use spatially precoded downlink pilot signal.

Through the performance analysis, we show that the proposed dominating PGI
feedback scheme exhibits a smaller quantization distortion than that generated by the
conventional CSI feedback scheme. In fact, the number of feedback bits required to
maintain a constant gap to the system with perfect PGI scales linearly with the number
of dominating paths which is much smaller than the number of transmit antennas.
From the simulations on realistic scenarios, we show that the proposed dominating PGI
feedback scheme achieves more than 60% reduction in the feedback overhead over the
conventional scheme relying on the CSI feedback. We also show that the performance
gain of the proposed dominating PGI feedback scheme increases with the number of
propagation paths while no such benefit can be obtained from the conventional CSI
feedback scheme. This implies that the proposed dominating PGI feedback scheme is
an appealing solution to reduce the feedback overhead for both the limited scattering
and rich scattering environment.

Notations: Lower and upper case symbols are used to denote vectors and matrices,
respectively. The superscripts (-)T, (-)H, and (-)* denote transpose, Hermitian transpose,
and pseudo-inverse, respectively. ® denotes the Kronecker product. ||x| and ||X]|g
are used as the Euclidean norm of a vector x and the Frobenius norm of a matrix X,
respectively. tr (X) and vec (X)) denote the trace and vectorization of X, respectively.
Also, diag (X1, X2) denotes a block diagonal matrix whose diagonal elements are X;
and Xs. In addition, x, is a subvector of x whose i-th entry is x(A(7)) and X, is a
submatrix of X whose i-th column is the A(7)-th column of X fori =1,--- | |A] (A is

the set of partial indices and |A| is the cardinality of A).
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Figure 2.2: Narrowband ray-based channel model and angle reciprocity between the

uplink and downlink channels.

2.2 Cell-Free System Model

In this section, we introduce the FDD-based cell-free systems and the multi-path channel
model. We also discuss the angle reciprocity between the uplink and downlink channels

and the conventional quantized channel feedback scheme.

2.2.1 Cell-Free System Model

We consider the FDD-based cell-free systems with M BSs and K users. Each BS is
equipped with a uniform linear array of N antennas and each user is equipped with
a single antenna. Let B = {1,--- ,M}and U = {1,--- , K} be the sets of BSs and
users, respectively. In our work, we consider the narrowband ray-based channel model
consisting of P paths (see Fig. 2.2) [14]. The downlink channel vector h,,, ;, € cN

from the BS m to the user k is expressed as

P
hm,k = ng,k,ia(em,k7i)’ (21)
=1

11



where 0,,, . ; is the AoD and gy, 1. ; is the complex path gain of the ¢-th path, respectively.
We assume that for every m, k, and i, g, . ; ~ CN (0, 1) are independent and identically
distributed (i.i.d.) random variables. In addition, a(6,, % ;) € CN is the array steering

vector given by

)

T
_i2ndg _ L i(N_1)2rd .
a<6m,k,i) — 1,6 ARSY Slnem,k,z’ e J(N-1) X Slnem,k,l (22)

where d is the antenna spacing and ) is the signal wavelength. The matrix-vector form

of By, is

hy k= Ay k8mok, (2.3)
where A, 1 = [a(Om k1), s a(0mkpP)] € CN*P is the array steering matrix and
Emk = [Imk1, ,gmyk,p]T € CP is the PGI vector. It is worth mentioning that

the AoDs vary much slower than the path gains. In fact, since scatterers affecting the
signal transmission do not change their positions significantly, the AoDs are readily
considered as constant during the channel coherence time. Also, it has been shown
that the number of propagation paths P is quite smaller than the number of transmit
antennas N [15]. We note that P is completely determined by the scattering geometry
around the BS. Since the BSs are usually located at high places such as a rooftop of a
building, only a few scatterers affect the signal transmission. For example, P is 2~ 8§
for 6 ~ 60 GHz band due to the limited scattering of the millimeter-wave signal [16].
Also, for the sub-6 GHz band, P is set to 10 ~ 20 (3GPP spatial channel model [17])
while N is 32~ 256 in the massive multiple-input multiple-output (MIMO) regime. In

this setting, the received signal y;, € C of the user k is given by

M K M
ye= Y W wi s+ > > Bl w s+, 2.4)
m=1 j#k m=1

where w,,, . € CV is the precoding vector from the BS m to the user &, s, € C is the

data symbol for the user k, and ny, ~ CN(0,02) is the additive Gaussian noise. The

12



corresponding achievable rate Ry, of the user & is

2

M H
‘Zm:l hm,kwm»k?

Ry =E|logy |1+ 5 2.5)
K M
D ik ‘Zmzl hg,kaJ‘ +op
Approximately, we have'
M H 2
Ry ~logy | 1+ 5 . (2.6)

K M
Zj;ﬁk E[ ‘Zm:l %,kwm,j

} +o2
2.2.2 Angle Reciprocity between Uplink and Downlink Channels

As mentioned, the AoDs in the uplink and downlink channels are fairly similar in the
FDD systems when their carrier frequencies do not differ too much (typically less than a
few GHz). The reason is because only the signal components that physically reverse the
uplink propagation path can reach the user during the downlink transmission [13] (see
Fig. 2.2). Since the changes of relative permittivity and conductivity of the scatterers are
negligible in the scale of several GHz, reflection and deflection properties determining
the propagation paths in the uplink and downlink transmissions are fairly similar [19],
which in turn implies that the propagation paths of the uplink and downlink channels
are more or less similar. This so-called angle reciprocity is very useful since the BS
can acquire the AoDs from the uplink pilot signal. In estimating the AoDs, various
algorithms such as multiple signal classification (MUSIC) [20] or estimation of signal

parameters via rotational invariance techniques (ESPRIT) [21] can be employed.

2.2.3 Conventional Quantized Channel Feedback

In the conventional quantized channel feedback, a user estimates the downlink channel

vector from the downlink pilot signal. Then, the user quantizes the channel direction

'This approximation becomes more accurate as the number of transmit antennas N increases [18,

Lemma 1].
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Em,k = HEmi:H and then feeds it back to the BS. Specifically, a codeword c; is

chosen from a pre-defined B-bit codebook C = {cy, - ,cy5} as

— pH o2
Cj,,, — &g max ‘hm’kc| . 2.7

Im,k

Then, the selected index Emk is fed back to the BS. It has been shown that the number
of feedback bits B needs to be scaled linearly with the channel dimension N and SNR
(in decibels) to properly control the quantization distortion as [11]

(V1)
3

B =

x SNR. (2.8)

In the FDD-based cell-free systems, since multiple BSs cooperatively serve users, a user
should send the downlink CSIs to multiple BSs. Thus, the feedback overhead should
also increase with the number of associated BSs M. For example, if M = 6, N = 16,
and SNR = 10dB, then a user has to send B = 300 bits (2 ~ 3 resource blocks in LTE
systems) just for the CSI feedback.

2.3 Dominating Path Gain Information Feedback in Cell-

Free Systems

The key idea of the proposed dominating PGI feedback scheme is to select a small
number of paths based on the AoD information and then feed back the measured path
gains of the chosen paths. As mentioned, the AoDs are acquired from the uplink pilot
signal by using the angle reciprocity. Since the number of propagation paths is smaller
than the number of transmit antennas, we can achieve a considerable reduction in
the quantized channel dimension using the dominating PGI feedback. We can further
reduce the feedback overhead from multiple BSs by choosing a few dominating paths
among all possible multi-paths.

In a nutshell, overall operations of the proposed dominating PGI feedback scheme

are as follows: 1) user transmits the uplink pilot signal and then BSs acquire AoDs

14
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Figure 2.3: Overall transceiver structure of the proposed dominating PGI feedback

scheme.

from the received pilot signal, 2) DU performs the dominating path selection based on
the acquired AoDs, 3) BSs transmit the precoded downlink pilot signal, 4) each user
acquires the dominating PGI from the precoded downlink pilot signal and then feeds
it back to the BSs, and 5) BSs perform the downlink data transmission based on the

dominating PGI feedback (see Fig. 2.3).

2.3.1 Uplink AoD Acquisition

Since the AoDs are quite similar in the uplink and downlink channels, the BS can
acquire the AoD information from the uplink pilot signal. Roughly speaking, there
are two types of AoD estimation technique: 1) noise subspace-based methods (e.g.,
MUSIC [20], Capon [22]) and 2) signal subspace-based methods (e.g., ESPRIT [21],
ML [23]). In this work, we used the MUSIC algorithm since it is easy to implement and

performs comparable to the subspace-based approaches?. In the MUSIC algorithm, the

“This is because the MUSIC algorithm exploits the information about the whole array geometry of the
transmit antennas while the ESPRIT algorithm exploits only the partial information related to the array

geometry.
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BS estimates the uplink channel vector hg‘k and then computes the channel covariance
matrix REnLk =E [hg&khg?}f} . Key idea of the MUSIC algorithm is to decompose
the eigenspace of R%Lk, into two orthogonal subspaces: signal subspace and noise
subspace. The eigenvectors of Rgsz corresponding to the P largest eigenvalues form
the signal subspace matrix E; and the rest form the noise subspace matrix E,. Since
E,, is orthogonal to the signal subspace, the AoD 6 should satisfy EHa (6) = 0p. Thus,

the AoDs are obtained from the peak of spectrum function fyusic given by

1
all () E,EHa (0)

fmusic(0) = (2.9)

2.3.2 Dominating Path Selection Problem Formulation

Main advantage of the dominating PGI feedback over the conventional CSI feedback is
the reduction of the channel vector dimension to be quantized. However, since the user
should feed back the PGI to multiple BSs, feedback overhead is still considerable. In the
proposed scheme, by choosing a few dominating paths among all possible multi-paths
between each user and the associated BSs, we can control the feedback overhead at the
expense of marginal degradation in the sum rate.

In order to choose the paths that contribute to the sum rate most, we first need to
express the sum rate as a function of the dominating paths. Let A,,, , € {1,---, P}
be the index set of the dominating paths from the BS m to the user k and gy, , =
[Gm ki, © € Am,k]T € ClAmnkl pe the dominating PGI vector. For example, if the first
and the third paths are chosen as the dominating paths, then A,,; = {1,3} and
8Am i = [Im k15 gm7k73]T. Also,let Ay, = {Aq1, -+, Anr } be the combined index set
for the user k and g, = [g}l,k, e ,gXMJJ " e CL be the corresponding dominating
PGI vector. Note that L is the total number of dominating paths for each user. For
example, if M = 3, L = 4,and Ay, = {1}, Ao, = {1,3}, and A3, = {2}, then
A ={{1},{1,3},{2}} and ga, = 916,15 92,61, 928,35 93,k,2]T (see Fig. 2.4). Then,
the user £ estimates and feeds back gx, to the DU. The downlink precoding vector

Wik € CN from the BS m to the user k, constructed from the dominating PGI
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Figure 2.4: Illustration of the dominating path selection

feedback, is

k= VA, 8. (2.10)

where V€ CN*IAmkl is the precoding matrix to transform |A,, x|-dimensional
vector gAm’ . into N-dimensional vector w,, ;. and gAm} . € Clmikl i the dominating
PGI vector fed back from the user. In the following theorem, we express the achievable
rate of the dominating PGI feedback scheme as a function of the dominating path
indices {A, «} and the precoding matrices {V},, , }. Using this theorem, we can find
out {A, x} and {Vy,, , } maximizing the sum rate performance of the dominating PGI

feedback.

Theorem 1. The achievable rate R(ldeal) of the user k for the ideal system with perfect

PGI is
2
H
R g (14 ‘Zm 1tr(A VAM)] + oM 1HAm,€VAmk .|
@.11)
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where Ay, = [a(Om ki), i € Ami] € CN*IAm.kl js the submatrix of A -
Proof. See Appendix A. O

Then, the dominating path selection problem to choose L paths maximizing the sum

rate for each user can be formulated as

K
(ideal)
Py : max R (2.12a)
{Am,kvam’k} ; k

M
s.t. > [Amil=L, Vkeu (2.12b)

m=1

K
ZHVA,H,kH;:P%, VYm € B, (2.12¢)

k=1

where P™ is the transmission power of BS m. Note that (2.12b) is the dominating path

number constraint and (2.12c) is the transmit power constraint.

2.3.3 Alternating Dominating Path Selection and Precoding Algorithm

Major obstacle in solving P; is the strong correlation between the dominating path
index set A, x, and the precoding matrix V. In fact, since the column dimension of
Vv Aok is the number of dominating paths |A,, x|, Ay, 1 and V Apnj, CANNOL be determined
simultaneously. Since it is not possible to solve P; directly, we propose an algorithm to
determine {A, ;} and {V,, , } in an alternating way (see Table 2.1): 1) First, we fix
{A1} and then find out the optimal precoding matrices {V 4, , } maximizing the sum
rate. 2) We then update {A,, .} by removing the path index giving the minimal impact
on the sum rate. We repeat these procedures until L dominating paths remain for each
user. Although this relaxation will be sub-optimal, it helps to reduce the computational

complexity required for solving P;.
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Table 2.1 Alternating dominating path selection and precoding algorithm
Input: Path AoDs {6,,,}, BS set BB, user set &/, number of propagation paths P,

number of dominating paths L, BS maximum transmit power { P** }
Initialization: A,,, = {1,---,P}, Ym € B, Vk € U, {Vy,,} =

Precoding_matrix_optimization ({A,, 1 })

Iteration:
while 2%21 |Ap k| > L for some k do
(Check the number of dominating paths)
for k €U do
it M |Ayuk| > L then
(M, ik) =arg min SLNR,, ;;

mGB, iGAmyk
(Find the path index with minimum SLNR)

A ke = N\ {01}
(Remove the chosen path index)
end if
end for
{VA,,.,} = Precoding_matrix_optimization ({A;, 1 })
end while

Output: {A,, 1}, {Va,, .}

Precoding Matrix Optimization

We first discuss the way to find out the optimal precoding matrices {V},,, , } when
{A;, 1} are fixed®. Unfortunately, the problem P is highly non-convex and also con-
tains multiple matrix variables. To address these issues, we first vectorize and concate-

nate the variables of multiple BSs Vi, ,, -+, Va,,, into Xy, . Then, by exploiting the

3Even though L is chosen to be larger than the effective number of propagation paths, the precoding ma-
trix would be optimized such that the transmit power is focused on the best column vectors (corresponding

to the dominant paths).
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notion of leakage, we decompose the sum rate maximization problem into the distributed
leakage minimization problems for each x,, . After obtaining x,, , we de-vectorize and
de-concatenate x,, to obtain the desired precoding matrices Vo, ,, -+, Va,, .

When {A,, 1} are fixed, the precoding optimization problem P, is formulated as

K
Py max Ride) (2.13a)
Vanst 123
K
st Y [Va,ulp=Pa vmes. (2.13b)
k=1

Then, using the rate expression in (2.11), we vectorize the variables (x5, , = vec(Vy, ),

ky,, , = vec(Ayp, ,)) and then concatenate the variables of multiple BSs (x5, =

T T T _ T T T .
[XAL];;’ o XA]M’]J ’ I”I'Ak - [HAI,IC’ R “ANI,k] )to Obtaln

2
H 2
- ma Sty [114 R ]I .
3 1 max 089 IR 3 14a
1E2VS itk HFEkXAJ‘ I”+ o3
K
st Y ||xa,.lF=P%, vmeB, (2.14b)
k=1
where T ik = I, | ® Appand Ty = diag(T'y j k, -+, T k). Here, we use

the properties tr(AXm’kVAm’k) = vec(Ay,, ) vec(Vy,, ) and ||AR Vi e =
| (Tt © Ar) veeVa,,,)]|

The modified problem Ps looks simpler than the original problem P, but it is
still hard to find out the optimal solution because the rate expression in (2.14a) is a
non-convex quadratic fractional function (i.e., both numerator and denominator are
quadratic functions) so that Ps is a non-convex optimization problem. Furthermore,
P53 requires joint optimization for x4, -+ , XA, and thus it is difficult to find out the
global solutions simultaneously. As a remedy, we introduce the notion of leakage, a

measure of how much signal power leaks into the other users [24]. To be specific, the
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signal-to-leakage-and-noise-ratio (SLNR) of the user k£ is given by

2
E H Z%:l hEn,ka,k’ }

SLNR; = (2.15)

K M H 2 2

Zj;ék E H Zmzl hm,jwmyk" ] +o5

2 2
olpttonn] ¢ I e
= K 3 s .
S [Tkl + o

where (a) comes from (2.14a)*. While (2.14a) is a function of x,, - -+ , X, SLNRy,

in (2.16) is a sole function of x,, . Thus, for each user k, we can find out the optimal
Xy, maximizing SLNRy, separately. While this solution is sub-optimal, it is simple and
easy to calculate because we can obtain the tractable closed-form solution.

The distributed SLNR maximization problem for the user k is given by

2
ey

Py Xt ‘“%kXA’“
41Xy, =arg  max % 3
s I=v/PE g [T %, || + 02

where P, is the transmit power allocated to the user & from the BS m and P* =

: 2.17)

2%21 Pf;; 1. 1s the total transmit power allocated to the user k. When we try to solve
P4, we should know the information about the allocated power FP;*. In this chapter, we
use a simple yet effective proportional power allocation strategy satisfying the per-BS
transmit power constraint. In this scheme, the transmit power is set to be proportional
to the channel magnitude as [25]

2
||Fm,k,k”F Ptx

2
kH - =K 2 :
D S S [ S

P = ||xa (2.18)

Note that since the BSs have information about the AoDs and the dominating PGIs
only, we use I'yy, . 1, = I| A ® A, i as an effective channel matrix instead. One can

easily see that the power constraint (2.14b) is satisfied (Zszl P, = DP).

“When compared to the signal-to-interference-and-noise-ratio (SINR) of the user k in (2.5), one can
observe that the only difference is the exchange of user index at the denominator between h?n, i Wm,k and

h'fn, xWm,j. Hence, we can easily obtain the closed-form expression of SLNRy, from (2.14a).
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Once the transmit power allocation is determined, we can convert the objective

function (i.e., SLNRy) of P4 as a Rayleigh quotient form as

H
Xf\Ik (MAka\Ik + LTk ) XA,

SLNRj, = o = ” — (2.19)
X, (2o Trg Ty + ?]?INIAkI)XAk
xN Upx
_ HAk P (2.20)
XAkaXAk
2
where Uy, = :U’Ak“%k + Fk,kl"llik and Wy, = Zj;k I‘k,jI‘I,ij + %‘:"INMH' Then, Py
is re-expressed as
xN Upx
Py: x3, =arg  max Ty R (2.21)

e[ =/ X8 Wik,

In the following lemma, we provide a closed-form solution of Pj.

Lemma 1. The solution X}, of P is given by [24]

Uk max
X* — Ptx 5
A b g maxl|”

(2.22)

where Uy, 4y is the eigenvector corresponding to the largest eigenvalue of W;lUk.

Using Lemma 1, we can obtain the closed-form solution xj\k of P4. Then, from the
de-concatenation and de-vectorization of x}"\k, we obtain the desired precoding matrices
Vj‘h,k, e ,V}*\M’k for each BS. Finally, we normalize each V}k\m’k and multiply the
allocated power P, in (2.18) to satisfy the per-BS transmit power constraint. The

proposed precoding matrix optimization algorithm is summarized in Table 2.2.

Dominating Path Index Update

Once we obtain {V, , } from the precoding matrix optimization, we then update the
dominating path indices {A,, ;. } by removing the path index giving the minimal impact
on the sum rate. While this task is conceptually simple, it is very difficult to find out

the desired path index since the sum rate is a joint function of precoding matrices and

22



Table 2.2 Precoding matrix optimization

Input: Path index set {A,, .}, BS set B, user set I/, number of propagation paths P,

number of dominating paths L, BS maximum transmit power { P** }

T
I vec(Anp,, . )s Mo, = [“Al o 7“TXA47;€] ,Vme B, Vkel
I‘m»ch = I|Am7]| ® Am7k7 jvk = dlag(rlyjzk7 e ’I‘M’j»k)7
VYm e B, Vi, kel

T,
P = H k kHF Ptx Ptx ZM Ptxk’vm eB kel
m, Z] 1||FmJJ||F m
for k € U do
U, = U’Akﬂﬁk + Fk,kl“?,k
Wy = YK, T T 4 2T
k J#k © k% kg T PXN|Ag
Uy, max = Max_eigenvector (W,;lUk)
\/ﬁ Uk max
”uk max ||
* T *
[(XAl’k)T? ) (XA]\/[ k)T] = XAk
ﬁVCC 1( )
end for

return {V} }
end function

Output: {V, .}

dominating path indices. As a remedy, we remove the path index generating minimum

SLNR as

(Mg, %k) = argmegnilenA SLNR;, ;i (2.23)
m,k
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where SLNR,;, ;. ; the SLNR of i-th path between the BS m and the user k given by

E U hg,kvm,kvi ‘ 2]

K 2
Zj;ékE[‘hI:@,ijk,i} } + o

SLNR,, 1 = (2.24)

2

2 H
+ HAm,kvm7k7Z

(a) ’aH(0m7k7i)Vm,k:,i

, (2.25)
K
Ej;ékz HAEn,ij,kvi

2
+ 02

. corresponding to the i-th path and (a)

where v, 1. ; is the column vector of VAm,
is obtained in a similar way with (2.16). Since SLNR,,, ;. ; is a sole function of the
dominating path index ¢, we can easily find out the path index generating minimum
SLNR. In our simulation results in Section VI, we show that this approach can achieve
performance comparable to the optimal path selection strategy obtained from the
exhaustive combinatorial search. The precoding matrix optimization and the dominating
path index update are repeated iteratively until only L paths remain for each user.
Once the dominating paths maximizing the sum rate are chosen, each user acquires
the corresponding dominating PGI from the downlink pilot signal, quantizes the ac-

quired dominating PGI, and then feeds it back to the BSs. In the following section, we

will discuss this issue in detail.

2.4 Downlink Pilot Precoding for Dominating Path Gain In-

formation Acquisition

In the FDD systems, a user acquires the downlink CSI from the downlink pilot signal
and then feeds the quantized channel vector back to the BS [26]. In contrast, in the
proposed scheme, a user acquires the dominating PGI and then feeds back the quantized
dominating PGI vector to the BS. However, there are some difficulties in the dominating
PGI acquisition. First, since each user needs to selectively feed back PGIs of the
dominating paths, the BS must assign additional resources to indicate the desired path

information. Also, it is computationally inefficient for the user to estimate the gains of
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Figure 2.5: Downlink pilot precoding for dominating PGI acquisition

all possible paths. To handle this issue, we propose a new downlink training scheme
based on the spatially precoded pilot signal in the acquisition of dominating PGI.

In essence, a key idea of precoded pilot signal is to convert the downlink channel
vector into the dominating PGI vector so that the user can easily estimate the dominating
PGI using the conventional channel estimation techniques such as the linear minimum
mean square error (LMMSE) estimator [27] (see Fig. 2.5). Additionally, since the
dimension of dominating PGI (i.e., the number of dominating paths) is reduced and
thus becomes much smaller than that of the downlink CSI (i.e., the number of transmit
antennas), we can reduce the pilot resources for the downlink pilot signal.

When the pilot precoding matrix Wﬁ% e € ClAm kXN s applied, the downlink

precoded pilot signal x5, (¢) € CN of the BS m at time slot ¢ is given by
K
= war’zljgdjm,k(t)? t= 1; e, T, (226)
k=1

where {1,,, .(t)}7_; C ClAm+l is the downlink pilot sequence from the BS m to the

user k. Then, the received signal y? (t) € C of the user k at time slot ¢ is

M
yrt) =) (WP by ¢m k(1) + Z Z (Wp, jhmk) ¢m,j(t) + 21 (1),
m=1 j#k m=1
(2.27)
where 21, (t) ~ CN(0,02) is the Gaussian noise. The user k collects this received
signal for each slot, i.e., y} = [y (1), ,yk(T)} € C™ and then multiplies ¥, , =
] |
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[¢m,k(1)a T a'wm,k(T)] € C‘Am’k‘XT to get

M M K
U, 0yh = \I/mk< S W hp 4+ > > WE WP b+ zk> (2.28)
m=1 m=1 j£k

YW B+, (2.29)

where z;, = [2,(1),-- -, z1(7)]" € C" and nj, = ®,,, y2;, € CA .+l Note that (a) is
due to the orthogonality of pilot sequence.
From (2.29), we observe that if the BS uses a pilot precoding matrix an i

satisfying Wﬁl wRmk = 8a,, . then the user can extract the dominating PGI vec-

P

m.k» W€ ba-

tor gy,, , from \Ilm,kyz. To generate the desired precoding matrix W
sically need to perform two operations: 1) application of the matrix inversion of
A;L’k = (Ag’kAmk)*lAI:%k and 2) compression of g, . into g4 ,, , . Note that A;:’k
exists as long as AS% A 1 18 invertible, which is easily guaranteed by the fact that the
array steering vectors corresponding to different AoDs are independent and the number

of transmit antennas [V is larger then the number of paths P. Thus,

(@)
A:’Wk‘hm’k é A’;;,,k:A'm7kgm,]€ = gm,k, (230)

where (a) is from (2.3). Once g,  is obtained, we then extract Ak from g, 1.

using the path selection matrix Gy, ;. For example, if the number of paths is 3 and

1 0
A =41, 3}, then G, , = and thus,
0 0 1
10 0 Im,k,1
Im k1
G k8mk = gz =17 = 8- (2.31)
0 1 Im,k,3
9m.k,3

In summary, the pilot precoding matrix me ;. from the BS m to the user k is given by

W) = GrirAf L. (2.32)
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Using Wg%k in (2.32), we can convert h, j into ga,, , (i.e., ng,khmk = BAp i)

Hence, (2.29) can be re-expressed as

U, kYh = 8A,, . + D (2.33)

Finally, the user k acquires gy, , from \Ilm,kyz by using the linear MMSE estima-
tion [27] as

1

N\ P 2.34

gAm,k =

After the estimation of the dominating PGI, each user quantizes it and then feeds it

back to the BS. To be specific, the user k concatenates ga, ., - ,ga,,, into a single
T . .

vector gz, = (g}, T BA, k} € C’ and then quantizes gy, into a codeword

index %k as
~ _ 2
1 = arg rnzax ‘gxkci‘ (2.35)

A k

HgAm,k ’
one can use the random vector quantization (RVQ) codebook [11]. Note that the user

where gz, = and c; is the codeword. In the codebook generation, for example,

k also quantizes the dominating PGI magnitude |/g, || and then feeds it back to the

DU. After receiving i;, and llga, ||, DU reconstructs the original dominating PGI as

gne = lleacll e, -

2.5 Performance Analysis of the Dominating Path Gain In-

formation Feedback
In this section, we provide the performance analysis of the proposed dominating PGI
feedback scheme. Specifically, we analyze the upper bound of rate gap between the

ideal system with perfect PGI and the realistic system with finite rate PGI feedback. To

this end, we first express the rate gap as a function of the normalized distortion induced
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from the quantization of dominating PGI vector g, . We then find out the upper bound
of the normalized quantization distortion and also the rate gap. Finally, we obtain the

number of feedback bits required to maintain a constant rate gap with the ideal system.

2.5.1 Rate Gap Analysis of the Dominating PGI Feedback

The achievable rate Ry, of the user k in the realistic system with finite rate feedback is

2
E|| Y gh (AL Va8,
Ry =logy| 14+ — H li btk ”“2} (2.36)
Zj#kEHZmzlgg,kAEn,lyAm,j B ; ] +o2
DSy + US;,
=logy (14+———F ) 2.37
where g, , is the dominating PGI feedback and
2
DSy = H ZgA AR VAL 8L } (2.38)
2
H H ~
US; = EH Z gAEn’kAAgL’kVAm’kgAm’k } (2.39)
K 2
ISy, = ZEH Z gh cAN Vi BA } (2.40)

J#k
Note that Ry, consists of the desired signal part DSy, the unselected signal part USy,
and the interference signal part ISy, respectively. Since gp,, , is independent of g AC,
and g, j (J # k), 8A,,,, 1s also independent of gAC, and g, ; (j # k) so that the
quantization of g, , only affects DSy This means that US, and IS, remain unchanged
regardless of the quantization. Thus, the achievable rates for the realistic system [y

(ideal)

and the ideal system R, are given by

DS; + US
Ry, = log, (1 + M) (2.41)
(ideal)
(ideal) _ 1 DS, + US, 40
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where DSSdeal) is the desired signal constructed from perfect PGI as DSSdeal) =

2
] . Then the rate gap ARy, is

M
]E H Zm:l gKm,kAmekVAm,k gAm,k

AR, =R _ R, (2.43)
(ideal)
DS, + US;, DS;, + US;
—log, [14+—k " 28 ) ogy (14 —2 220k ) (244
OgQ( + IS —I-O'% ) 0g2< + ISy, +0% ( )

As mentioned, the only difference between Rikdea] and Ry, is the desired signal part.
Based on this observation, we express ARy, as a function of signal-to-noise-ratio (SNR)

and the normalized quantization distortion Dy, of the desired signal DSy. Dy, is defined

as
Dy Dsgdeal) — DS, .45
B (ideal) :
DS,

Proposition 1. The upper bound of rate gap ARy, between the ideal system with perfect
PGI and the realistic system with finite rate feedback of the user k is expressed as a

function of SNR and Dy. That is,

ARy, < log, <1 + 1 ?’bk : il\;RN R) . (2.46)
Proof. From (2.44), the rate gap ARy, is expressed as
s )
=log, (1 + DS,Sd;‘Z; = DSy, +U5€SjIS;€ +ag> (2.48)
Hlog, <1+ 1 = 5, DS, —I—U;)ks—llilsk—i—a%) ! 249)

where (a) is from the definition of Dy in (2.45). By using the fact that SNR =

W’ we obtain the desired upper bound of ARy, as

n

Dy, DSy
ARy =log, 1+ 2.50
g g2< 1-Dy, (14 55x) (DSk+USk+ISk)) (250
D SNR
< T . .
<log, (1+ 1-Dy 1+SNR> 2.51)
O
:I-! LI ]
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Now, we analyze the upper bound of the normalized quantization distortion Dy,
to find out the closed-form upper bound of the rate gap ARj. In order to simplify
the expression in (2.45), we use the notation Ay, = diag(AAl,k, e ,AAM’k) and

Va, =diag(Va, ., -, Vay,,,)- Then, we have

2 r 2
. E[|gf A% Vaen| | -E[[eh AL Vi ] .
k= - 5 :
- 2_
E[|gh, A%, Va8,
=1- — 3 (2.53)
E[|gf, A%, Vaen,
_ 2
@, E“'gAk”ﬂggkA}AlkVAkch‘ ] (2.54)
OF | Sl _
B[ llga, ||, A%, Va,&n|°]
_ 2
= — — - - 5 s .
E_’glf_\lkAI[_XIkVAkgAk’ }

where (a) is due to the independence of the dominating PGI magnitude ||gx, || and the
dominating PGI direction gy, . In the following proposition, we provide an upper bound

of Dk.

Proposition 2. The normalized quantization distortion Dy of the user k is upper

bounded as
L — 9y __B_
Dy < 27T, 2.56
M=)+ o) (2.56)
here 5, = == VanalE o Dyi I bounded
wnere 0 — |Z%:1 tr(AII{mkVAm’k”Q. urtnermore, k 1S generally upper bounded as
Dy <27 To1,

Proof. From the simplified expression in (2.55), what we need to do is to compute the
closed-form expression of the numerator E U g%k Af\lk Va.c;, ﬂ and the denominator
E Ung AIKkVAk gA, ﬂ . When the B-bit RVQ codebook Ci, = {c1,- - ,cyn} is used,

2
the correlation between the dominating PGI direction g, and the chosen

7H .
&2, Cip
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codeword c;, is the maximum of 27 independent $-distributed random variables with
parameters 1 and L — 1 [11]. Moreover, it has been proved that the expectation of this

correlation is lower bounded as

2 L
} —1-283 <2B,> >1_97107, (2.57)

_ =H
v=E UgAkcik L—1

where [3(a, b) is the beta function defined as 5(a, b) = Fr(?a)ig;)' Unfortunately, we can-
not directly use this result since Algk V4, isinserted in the middle of E [\g‘,{k A%k Va +Ci, !2} .
To handle this, we exploit the property that the dominating PGI direction g, can be
written as a sum of two vectors: one in the direction of the chosen codeword c;, and

the other s isotropically distributed in the null space of c;, [11]:

gr, = ﬁc;k ++1—Zs, (2.58)
2
where Z is S-distributed according to ‘gf{k c%k‘ so that E [Z] =  and is independent

with s. By plugging (2.58) into the nominator E D gh, AR, Va,c;,

2
] , we obtain

~ 2
E[[gh, A% Vaie, [*] = B[l VA, Ay (Ze;, o +(1-2)ss") A Va0, |
(2.59)
2 2
= WE“CECARI,CVA,CC%J } +(1- V)EDSHARIICVAR%’ }
(2.60)

Using Lemma 3 (see Appendix A), we obtain the closed-form expression of the first

term of (2.60) as

1
E[\CZAXkVAkCzkﬂ :m(\tr(AfkvAkﬂQ + HAXkVAkHi)' 2.61)

Since s is in the null space of c;, and s and c;, are correlated, it is difficult to obtain

the closed-form expression of the second term of (2.60). As a remedy, we use the law
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of total expectation given by

HAH
Es c. Us AAkVAkC%k

i,

2 2
] = Ee, [IES USHAngVAkc;k

| Cz’“” (2.62)

Ec;k [cgﬂVRIkAAkIEs [ssH \ C%J ARkVAkc;k] .

(2.63)

In the following lemma, we present the closed-form expression of Eg [SSH | C%J .

Lemma 2. The conditional covariance of s for a given c;, is

Es [SSH | c%k] = ﬁ (IL —c CH> i (2.64)

Proof. See Appendix B. O

By plugging (2.64) into the second term of (2.60), we obtain

2 1
E|[s"Af, Vac; ] ——F, (VI An, (T o AR, Vi, | 269)
1 H 2 H A H 2
TL-1 (Ec%k[‘AA’“VA’“Cik‘ } B EcikUC%kAAkVAkcik‘ D

(2.66)

1 /1 p 1
=77 (L AR, Vs - m(’tf(AIKkVAk) k

+ || AR, Ve Hi)) (2.67)

1

|
=7 (HA}K,CVAICHIZ: = 7 [ (AR, Vi) \2) . 268)

Finally, by plugging (2.61) and (2.68) into (2.60), we get the closed-form expression of
the nominator E Ugﬁk AK}C Vi, c; ‘ 2] as
2

L(L+1)

1— 1
o (AL VA - TeAl VA ) 2o

L
Ly—1 L—~ 2
LIZ=1) AR Vel

E[gh, A, Vi, [°] = (Jr (AR V) [* + AR Vi, )

2
— mhr(Af\IkVAk)} + i

(2.70)
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Next, we consider the denominator E U gf\lk AII_XI;CVAI@ gA, ﬂ in (2.55). Since both gx,
and c; are uniformly distributed on the surface of a L-dimensional unit sphere, the
closed-form expression of [E [! gﬁk Aﬁk Va8, ﬂ can be obtained in the same way to
(2.61). Combining (2.61) and (2.70), the closed-form expression of the upper bound of
Dy, is simplified as

2
L(L2 1 ‘tr(AH VAk)‘ L(L2 1 HA VA, .
Di=1- .71

2
yremsy) (‘U(A V)| +HA Vau F>

2
Lo Ll (A% va ) - A% va ],

=7 . 5 - 5 2.72)
o (AR V)| + [V
L — 0y,
_ 1— 2.73
CT-Da+o Y 27
(@) L — oy, B
< 27 L-1, 2.74
~ (L-=1)(1+ ) 79
SR Vi, ICIIE
where §;, = Pl “(AHmkVAm,kW and (a) is due to (2.57). Noting that 1 < = (C)F|2,
we obtain a simple upper bound of Dy, as
Do< LTI g g (2.75)
- & L—-1 — L-1, .
-0+
L]

Slnce < Ok, Dy is smaller than the quantization distortion of the conventional -
dimensional vector quantization 1 — ~ in (2.57). Note also that Dy, is a function of the
number of dominating paths L, not the number of transmit antennas V.

In Fig. 2.6, we plot the normalized quantization distortion Dy, as a function of the
number of dominating paths L. In this figure, we plot the numerical evaluation of Dy,
the upper bound in (2.74), the simplified upper bound in (2.75), and the conventional
L-dimensional vector quantization using RVQ codebook in (2.57). One can observe

that the numerical evaluation is close to the derived upper bound. One can also observe
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Figure 2.6: Normalized quantization distortion as a function of the number of dominat-

ingpaths L(M =5, K =5,N =8, P=6,8 =9,SNR =17dB)

that the normalized quantization distortion of the proposed scheme is much smaller
than that of the conventional vector quantization.
Finally, by using Proposition 2, we obtain the closed-form expression on the upper

bound of ARy.

Theorem 2. The per user rate gap A Ry, between the ideal system using the perfect PGI

and the realistic system using the finite rate feedback of the user k is upper bounded as

B
SNR L —6,)2 -1
AR, <log, (1+ ( k) > , (2.76)
LHSNR (1 1)(1 4 63) — (L— §;)27 77
where SNR is the signal-to-noise-ratio.
Proof. By plugging (2.56) into (2.46), we get
_L-b  o9—7P
SNR T D502
AR, <1 1 2.77
k_0g2<+1+SNR1_ L=t o125 @77
(L=1)(1+0)
B
SNR L — )2 -1
=log, (1+ ( ) _ > (2.78)
L4+SNR (1, 1)(1+6,) — (L—6)2 -1
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Figure 2.7: Per user rate as a function of SNR (M =5, K =5, N =8, P =6, L = 8§,
B =9

O]

We can also obtain the number of feedback bits required to maintain a certain rate gap

with the ideal system.

Proposition 3. 7o maintain a rate gap between the proposed scheme with the ideal
system with perfect PGI within log,(b) bps/Hz per user, the number of feedback bits
should satisfy

(2.79)

BZ(L_I)lOg2<(b(SNR+1)—1 L -5 )

SNR +1)(b—1) (L—1)(1+06g)
Proof. To maintain ARy, < log, (b), the number of feedback bits B should satisfy

B
SNR L — )27 1-1
1+ (L= %) 5 <b. (2.80)
L+SNR (1 _1)(146,) — (L — 6,)27 1
After simple manipulations, we get the desired result. O

In Fig. 2.7, we plot the per user rate as a function of SNR. We observe that the

analytic upper bound obtained from the Theorem 2 is close to the upper bound obtained

] 2] 8
l ] 1
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from the numerical evaluation. This means that by using a proper scaling of feedback

bits in Proposition 3, the rate gap can be controlled effectively.

2.5.2 Dominating Path Number Selection

In the subsection, we discuss how to choose the dominating path number. In a nutshell,
we compute the lower bound of the sum rate S5, Ry, (I) foreach (I = 1,--- , M P)

and then choose the value L maximizing the sum rate. That is

K
L = arg L max ; Ri(1). (2.81)

Note that Ry (l) is obtained from the dominating path selection algorithm. In each
iteration of this algorithm (see Section III.C), we obtain the dominating path indices
{Asn.1} and the precoding matrices {V},, , } and then compute the lower bound of the

rate using {Ap, i} and {Vy, , }°.

2.6 Simulation Results

In this section, we investigate the sum rate performance of the proposed dominating
PGI feedback scheme. For comparison, we use the conventional CSI feedback schemes
with the AoD-adaptive subspace codebook [15] and the RVQ codebook [11]. Note that
we use the same precoding scheme (centralized SLNR precoding [28]) and the power
allocation strategy [25] for the conventional schemes as well as the proposed scheme.

In our simulations, we consider the FDD-based cell-free systems where M = 5
BSs equipped with N = 8 transmit antennas cooperatively serve K = 5 users equipped
with a single antenna. We set the maximum transmit power of BS to 2 W and the total

transmit power of cooperating BS group to 10 W. Also, we distribute the BSs and

>To be specific, the lower bound of the rate is Ry, (1) = R,Sdeal) (I) — ARy(l) where R,(;deal) (1) is the
rate of ideal system with perfect PGI (see Theorem 1) and ARy (1) is the upper bound of the rate gap over

the ideal system (see Theorem 2).
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Figure 2.8: Sum rate as a function of SNR (M =5, K =5, N =8, P =6, L = 8§,
B =9

users randomly in a square area (size of a square is 1 x 1km?). We use the downlink

narrowband multi-path channel model whose carrier frequency is f. = 2 GHz and set

the number of propagation paths to P = 6. The angular spread of AoD is set to 10°.

In the proposed dominating PGI feedback scheme, we select L = 8 dominating paths
among all possible M P = 30 paths. Further, we use Bcs; = 6 and Bcgr = 3 for the
channel direction and channel magnitude feedbacks so that the total number of feedback
bits is B = Bcst + Begr = 9. In addition, we fix the transmit SNR into 17 dB. To
avoid special scenarios where the proposed technique is favorable (or unfavorable), we
used 1000 randomly generated cell-free system realizations.

In Fig. 2.8, we plot the sum rate performance as a function of SNR. We observe
that the proposed scheme outperforms the conventional schemes by a large margin in
the mid and high SNR regions. For example, at 17 bps/Hz region, the proposed scheme
achieves 8 dB gain over the conventional CSI feedback schemes. We also observe that

the sum rate loss of the proposed scheme over the perfect PGI system is within 3 dB
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Figure 2.9: Sum rate as a function of the number of feedback bits B (M = 5, K = 5,
N =8, P=6,L=8,SNR=17dB)

whereas the conventional AoD-adaptive codebook scheme and the RVQ codebook
scheme suffer more than 5 dB and 15 dB loss. As mentioned, this is because the number
of feedback bits of the proposed scheme required to control the rate gap scales linearly
with the number of dominating paths L while such is not the case for the conventional
schemes. Further, it is worth mentioning that in the high SNR region, the performance
of the proposed scheme increases linearly while no such behavior is observed for the
conventional scheme. This is because the proposed scheme allocates power to a few
dominating paths maximizing the sum rate while the conventional schemes allocates
the power uniformly to every propagation paths.

In Fig. 2.9, we plot the sum rate as a function of the number of feedback bits B.
We observe that the proposed dominating PGI feedback scheme achieves a significant
feedback overhead reduction over the conventional schemes. For example, in achieving
23 bps/Hz, the proposed dominating PGI feedback scheme requires B = 6 bits while

the AoD-adaptive subspace codebook scheme requires more than B = 18 bits, resulting
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Figure 2.10: Sum rate as a function of the number of dominating paths L (M = 3,

K=3N=8 P=2,B=9,SNR=17dB)

in more than 60% reduction in feedback overhead. Further, the proposed scheme
requires only B = 9 bits to maintain 3 bps/Hz rate gap with the ideal system while
the conventional AoD-adaptive codebook scheme requires more than B = 24 bits to
maintain the same rate gap.

In order to show the effectiveness of the proposed SLNR-based dominating path
selection, we compare the proposed dominating path selection with the optimal path
selection and the random path selection in Fig. 2.10. In the optimal path selection
approach, we exhaustively search all possible choices of dominating paths and then
find out the one maximizing the sum rate. Also, in the random path selection, we feed
back the PGI of randomly selected paths. Note that due to the huge computational
complexity of the optimal path selection (e.g., if M =5, K =5, P =6,and L = 8§,

we need to search over K (") = 55852925 possible choices), we set M = 3, K = 3,
and P = 2 so that the total number of paths is M P = 6. Overall, we observe that the

proposed SLNR-based dominating path selection performs comparable to the optimal
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path selection and also provides a considerable sum rate gain over the random path
selection.

In Fig. 2.11, we plot the sum rate as a function of the number of propagation paths

P.Weset L = L AM P

WJ so that the number of dominating paths increases linearly
with the number of propagation paths. Interestingly, the performance of the proposed
dominating PGI scheme increases with the number of propagation paths while no
such effect is observed from the conventional CSI feedback schemes. The reason is
because when the number of propagation paths increases, we can choose the dominating
paths from increased number of total paths so that we can achieve the gain obtained
from the path diversity. Indeed, the performance gain of the proposed scheme over the
conventional scheme increases from 6 bps/Hz to 9 bps/Hz when P increases from 4 to
12. This clearly demonstrates that the proposed scheme performs well even in the rich
scattering environment.

In Fig. 2.12, we plot the sum rate as a function of the number of BSs. Similar to Fig.
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11, we set L = {%J . We observe that when the number of BSs increases, the
rate loss of the proposed scheme is much smaller than that of the conventional schemes.
In particular, when M increases from 2 to 10, the rate loss of the proposed scheme
increases from 0.5 bps/Hz to 5 bps/Hz while that of the conventional scheme increases
sharply from 3 bps/Hz to 17 bps/Hz.

In Fig. 2.13, we investigate the performance of proposed dominating PGI feedback
when only one BS serves users in a cell. Although the gain obtained from the BS
cooperation would not be significant in this scenario, we can still obtain fairly accurate
dominating PGI and use this to control the inter-cell interference. As a result, the
proposed scheme achieves more than 2.5dB gain in the high SNR region over the

AoD-adaptive subspace codebook scheme.

41



40 T T T T T T T T T
A4

35t R

Sum rate (bps/Hz)

— B — Dominating PGI feedback (perfect PGI)
Dominating PGI feedback (finite rate feedback)

— % — Conventional CSI feedback (perfect CSI)

—©— Conventional CSI feedback (AoD-adaptive codebook)

Conventional CSI feedback (RVQ codebook)

0
0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

Figure 2.13: Sum rate as a function of SNR (M =1, K = 5, N = 16, P = 16,
L=12,B=3)

2.7 Summary

In this chapter, we proposed a novel feedback reduction technique for FDD-based cell-
free systems. The key feature of the proposed scheme is to choose a few dominating
paths among all possible propagation paths and then feed back the PGI of the chosen
paths. Key observations in our work are that 1) the spatial domain channel is represented
by a small number of multi-path components (AoDs and path gains) and 2) the AoDs
are quite similar in the uplink and downlink channel owing to the angle reciprocity so
that the BSs can acquire AoD information directly from the uplink pilot signal. Thus, by
choosing a few dominating paths and only feed back the path gain of the chosen paths,
we can achieve a significant reduction in the feedback overhead. We observed from the
extensive simulations that the proposed scheme can achieve more than 60% of feedback

overhead reduction over the conventional schemes relying on the CSI feedback.
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2.8 Proofs

2.8.1 Proof of Theorem 1

We first compute the closed-form expression of numerator of [ and then compute the
closed-form expression of denominator of Rj. Since the channel vector is decomposed

as

hy = Ap k8m ik (2.82)

= ANk 8Amx T AN BAC (2.83)

the numerator of Ry, is given by

M 2 M 9
E[ > hh kWi }—E[ > e AL VAL 8 ] (2.84)
m=1 m=1
2
:E[\ngAXkVAkgAkﬂ+EHgKgA;‘gVAkgAk } (2.85)
(@) 4 _ _ 2
2 B, 2], A%, Vs ]
2
+E[len 2 leacIPE[[ghc Al Vaen ] 286)

3

— L(L+ 1E [}gg‘kA;‘kvAkgAk ﬂ + I°E HgKiAfivAkgAk

(2.87)

where (a) is due to the independence of the vector norm ||g, || and the vector direction
ga,- Since ga, and g AC are independent, the closed-form expression of the second
term in (2.87) is
2
sH vH 5 H AH 5
| =E[r(eh Vi AcareicAlVaen)| @89

— u(E[gn gl ] VE AxcE el |AlVy,)  289)

B[eicAlc Vi,

H 2
Afva, | . (2.90)

1
=1
Whereas, the closed-form expression of the first term in (2.87) is not easy to compute.

To address this issue, we use the following lemma.
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Lemma 3. Let A be a L x L matrix, g be a L x 1 complex normal vector, and g = %I‘

Then,

_ _ 1
E[lg"Ag’] = T (AP + AR, 291)

Proof. Let (i, j)-th element of A be a; ; and i-th element of g be g;. Then,
Hoa 2 « |2
E[\gHAg| } :E[‘Zai,jgigj‘ } (2.92)
2
5|2 .2
=E[| Y aiiloil’[ +E[(Zai,jging 293)
—ZMH‘ E |gz Za“aw |92| |95 ]

i#]
+ Y lai "E[lgil*|g;17] (2.94)
i#j
@ _ 2 2 1 ‘g
- L(L%].) Zi:|a7,,l| + L(L+1) ;CL%Z(Z],]
1 2
TSy Z'a” 25
L+ 3 <)Za +Z|am|2> (2.96)
__ 1 2 2
= 2 o) I (AP + 1AL, (2.97)
where (a) is due to the fact that E[|g;|*] = (L+1) and E[|g;|*] = E[|gi*|g;]*] =
ﬁ. O
By plugging the result of Lemma 3 and (2.90) into (2.87), we get
- H ? H 2 H 2 H 2
EH SR Wi ] = [w(AR, V)| + (AR, Vaulr+ [Afeva, | @98)
m=1
2
= (AR Vi) |+ ARV (2.99)
M 2 M )
= ‘ > ow(AR V) + D0 AL VA, lE - 2.100)
m=1 m=1
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Next, since g, , and gp,, ; are independent, the denominator of Ry, can be obtained

similarly to (2.88)—(2.90) as

H Z han,ka J
m=1

:| - H Z gm chm k'VAm JgAmj
J#k

- Z Z HAm /CVAMJ HF

j#k m=1

JF#k

2
] (2.101)

(2.102)

Combining (2.100) and (2.102), we obtain the data rate expression in Theorem 1.

2.8.2 Proof of Proposition 2

Let {Cik’ uy,- - ,uz_1} be the orthonormal basis of C%. Also, let U = [uy, - - -

7uL—1] S

CL*(L=1) Then, the null space of c;, can be represented as {Ua | [|a|| = 1} where

« is isotropically distributed on the (L — 1)-dimensional unit sphere. Hence, we have

E [SSH ] C%J = UE [aaH] Ut

1
= ——UuUH
L—-1
@ 1 H
= 7[/ — 1 (IL - c%kc’zk> 3
where (a) is due to the fact that
I = [c; , Ullc; , UM
=c;, c? +Uut
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Chapter 3

Efficient Channel Probing and Phase Shift Control for
mmWave Reconfigurable Intelligent Surface-Aided Com-

munications

In this chapter, we introduce a channel estimation technique for reconfigurable in-
telligent surface-assisted THz systems. Recently, an RIS that controls the reflection
characteristics of incident signals has received a great deal of attention. To make the
most of the RIS-aided systems, an acquisition of RIS reflected channel information at
the base station (BS) is crucial. However, this task is by no means easy due to the pilot
overhead induced by the large number of reflecting elements. In our work, we propose
an efficient channel estimation and phase shift control technique reducing the pilot
overhead of the RIS-aided mmWave systems. Key idea of the proposed scheme is to
decompose the RIS reflected channel into three major components, i.e., static BS-RIS
angles, quasi-static RIS-UE angles, and time-varying BS-RIS-UE path gains, and then
estimate them in different time scales. By estimating the BS-RIS and RIS-UE angles oc-
casionally and estimating only the path gains frequently, the proposed scheme achieves
a significant reduction on the pilot overhead. Further, by optimizing the phase shifts
using the channel components with relatively long coherence time, we can improve the

channel estimation accuracy.
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3.1 Introduction

As the standardization of 5G phase 2 (Rel. 16) has been completed and the commer-
cialization is in progress, the visioning and planning of 6G communications have been
initiated recently, with an aim to accomplish a hyper-connected society in 2030. The
IMT vision forecasts that 6G will provide two orders of magnitude improvement over
5G in terms of throughput, energy efficiency, and operation cost [4]. As a means to
achieve this relentless goal, reconfigurable intelligent surface (RIS)-aided communica-
tions have received a great deal of attention recently [29]. In essence, RIS is a planar
array consisting of a large number of low-cost passive reflecting elements, each of
which can induce a phase shift to the incident signal. In contrast to the traditional com-
munication systems where the wireless channel is unchangeable, RIS-aided systems
proactively modify the wireless channel by adjusting the phase shifts of reflecting ele-
ments, thereby enhancing the throughput significantly. For instance, when the direct link
between the base station (BS) and the user equipment (UE) is blocked by obstacles, RIS
can provide a virtual line-of-sight (LoS) link via intelligent signal reflection, resulting
in an improvement of coverage.

To make the most of the RIS-aided systems, the phase shifts of RIS reflecting ele-
ments should be properly configured based on the wireless propagation environments.
To do so, an acquisition of downlink channel information at the BS is of great impor-
tance!. However, this task is by no means easy due to the huge pilot overhead induced
by the large number of RIS reflecting elements. In fact, in the RIS-aided systems, the BS
needs to acquire not only the conventional direct channel between the BS and UE but
also the channels reflected by RIS (i.e., BS to RIS and RIS to UE channels). Since the

reflecting elements have no dedicated RF chains to transmit or receive the pilot signals,

'To avoid the necessity of RIS reflected channel estimation, a beam training-based RIS phase shift
control techniques have been proposed in [30,31]. Potential drawback of these schemes is that the RIS
phase shifts are chosen from a pre-defined codebook with finite number of codewords so that the BS

cannot obtain the optimal RIS phase shifts maximizing the throughput.
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the BS needs to indirectly estimate the RIS reflected channels from the pilot signals.
This clearly indicates that a considerable amount of pilot resources is needed for the
acquisition of RIS reflected channel information. Indeed, this issue is pronounced in
the RIS-aided mmWave systems due to the short coherence time of mmWave channel.

Recently, various approaches have been proposed to address the channel estimation
issue of RIS-aided systems [32-35]. In [32], an on/off-based technique that turns on only
a single reflecting element at a time and then estimates the channel of corresponding
reflecting element has been proposed. In [33], a minimum mean squared error (MMSE)-
based channel estimation has been proposed. In [34], a channel estimation technique
that employs the parallel factor decomposition of RIS-aided channels has been proposed.
Also, in [35], a technique that estimates the BS-RIS channel in a large time scale and
estimates the RIS-UE channel in a small time scale has been proposed. Potential problem
of these approaches is that the pilot overhead is considerable since the full-dimensional
RIS reflected channel should be estimated.

To reduce the dimension of channel to be estimated, approaches that convert the
original spatial-domain channel to the angular-domain channel have gained much
interest recently [36—39]. In [36], a compressed sensing (CS)-based channel estimation
scheme has been proposed. In [37], a channel estimation technique using the double-
structured sparsity of the RIS reflected channels for multi-user RIS-aided systems has
been proposed. Also, in [38,39], manifold optimization (MO)-based channel estimation
techniques that exploit the low-rank property of RIS reflected channel have been
proposed. In these schemes, the total number of angular bins is unduly large (e.g.,
order of hundreds or thousands) since the BS-RIS angles, the RIS-UE angles, and the
path gains are estimated simultaneously. In this case, the columns of system matrix
(a.k.a. sensing matrix) will be highly correlated, degrading the estimation accuracy
considerably.

An aim of this paper is to propose an efficient channel estimation framework

reducing the pilot overhead of RIS-aided mmWave systems. Main idea of proposed
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scheme, henceforth referred to as three-stage angular-domain channel estimation
(TAD-CE), is to decompose the angular-domain RIS reflected channel into three major
components, i.e., static BS-RIS angles, quasi-static RIS-UE angles, and time-varying
BS-RIS-UE path gains, and then estimate these components in different time scales.
Our strategy is justified by two crucial observations that 1) the coherence time of angles
is an order of magnitude longer than that of path gains [40] and 2) BS-RIS angles are
quasi-static over the RIS-UE angles [35]. Using the proposed strategy, we can reduce
the number of multi-path components to be estimated at each stage significantly over
the conventional schemes estimating all components simultaneously. This, together
with the fact that the number of multi-path components is much smaller than the number
of reflecting elements, implies that TAD-CE requires far smaller pilot resources than
the conventional scheme requires.

The main contributions of this work are as follows:

* We propose a novel three-stage channel estimation technique for the RIS-aided
mmWave systems. Specifically, since the BS-RIS angles are determined primarily
by the scattering geometry around the BS and RIS, they are not affected by the
UE, and thus we estimate the BS-RIS angles before the UE connection. After
the UE connection, since the angles vary much slower than the path gains, we
estimate the RIS-UE angles occasionally and estimate only the BS-RIS-UE path
gains frequently. In doing so, we can avoid the waste of pilot resources required

for the frequent estimation of static or quasi-static channel components.

* We propose a phase shift control scheme to assist the proposed channel estimation
framework. While the conventional studies focus on the design of phase shifts
maximizing the throughput, not much work has been done on the design of phase
shifts improving the channel estimation accuracy. Indeed, an accurate phase
shift control in the channel estimation process is difficult since the BS cannot
acquire the channel information used for the phase shift control before the channel

estimation. In the proposed TAD-CE scheme, we exploit the channel components
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with relatively long coherence time to optimize the RIS phase shifts. By adjusting
the RIS phase shifts to satisfy the desirable properties of system matrix (e.g.,
column orthogonality), we can improve the channel estimation accuracy without

requiring additional pilot resources.

* We analyze the channel estimation error induced by the mismatch between the
true angles and the discretized angular bin from which we demonstrate that
the channel estimation error of TAD-CE is much smaller than that of the CS-
based scheme. Also, from the numerical evaluations on the realistic RIS-aided
mmWave systems, we show that TAD-CE outperforms the conventional schemes
in terms of the normalized mean squared error (NMSE) and the pilot overhead
reduction. For example, TAD-CE achieves more than 7 dB NMSE gain and 80%
pilot overhead reduction over the MMSE-based scheme. Even when compared
with the CS-based scheme, TAD-CE achieves 5 dB NMSE gain and 60% pilot

overhead reduction.

Notations: Lower and upper case symbols are used to denote vectors and matri-
ces, respectively. The superscripts ()T, (-)H, and (-)' denote the transpose, hermitian
transpose, and pseudo-inverse, respectively. ||x|| and || X||r are used as the Euclidean
norm of a vector x and the Frobenius norm of a matrix X, respectively. tr(X) denotes
the trace of X and diag(x) denotes a diagonal matrix whose diagonal elements are
x. X ®Y and X © Y denote the Kronecker and Hadamard products of X and Y,
respectively. In addition, X * Y and X e Y denote the column-wise and row-wise

Khatri-Rao products of X and Y, respectively.

3.2 RIS-Aided mmWave Systems

In this section, we discuss the RIS-aided mmWave systems and the conventional channel
estimation scheme. We then present useful properties to develop our channel estimation

framework.
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3.2.1 RIS-Aided mmWave System Model

We consider the RIS-aided mmWave systems where a single-antenna UE transmits an
uplink pilot signal and the BS equipped with a linear array of M antennas estimates
the uplink channel from the pilot signal of UE. An RIS is equipped with a planar array
of N = N, x N, passive reflecting elements, each of which is connected to the RIS
controller responsible for the phase shift control. By exploiting the channel reciprocity
of time-division duplexing (TDD) systems, the BS can recycle the acquired uplink
channel information for the downlink data transmission.

In the RIS-aided systems, other than the direct channel between the BS and UE,
the reflected channels (BS-RIS channel G € CM*N and RIS-UE channel h, € CV)
need to be considered. Since we focus on the estimation of RIS reflected channels, we
assume that the direct link is blocked so that the uplink channel h € CM from the UE
to the BS is?

h = Gdiag(¢)h, = Gdiag(h,)¢ = Ho, 3.1)

where H = Gdiag(h,.) € CM*¥ is the RIS reflected channel matrix, ¢p = [e/“1 - - . JN|T ¢
CV is the phase shift vector, and w,, € [0, 27) is the phase shift of n-th reflecting ele-

ment3 .

3.2.2 RIS-aided mmWave Channel Model

We assume the narrowband block-fading multi-path channel model where the channel
remains unchanged within a block of 7 symbols and changes from block-to-block (see

Fig. 3.1) [6, 14].

By switching off all the reflecting elements, the direct channel can be acquired via conventional

channel estimation technique.
3We assume the ideal phase shift model where the reflection amplitude and the phase shift are

independent and the phase shifts can take a continuous value in [0, 27). Note that the proposed scheme

can be readily extended to the practical systems with finite level of phase shifts via the phase quantization.
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Figure 3.1: RIS-aided mmWave multi-path channel model.

The uplink channel matrix G € CM*¥ from the RIS to the BS is expressed as

Pg

G = Z fygyiaB(gg,i)aE(wg,h Spg,i) (3.2)
=1

= Ag(0,)diag(v,) AR (g, @,), 3.3)

where P, is the path number, 6, ; is the angle of arrival (AoA), (14, ¢g,i) are the

azimuth and elevation angles of departures (AoDs), v4.; ~ CN (0, py) is the gain of the

i-th path where p, is the large-scale fading coefficient. We assume that the path gains in

adjacent blocks are uncorrelated. Also, ag(f,;) = [1---e /" M-Dsinby T ¢ cM

and agr (Vg.i, 0gi) = aRw(VgisPgi) @ ary(pg:) € CV are the BS and RIS ar-

ray response vectors where ag ;(q,i, 9g:) = [1- --e‘j”(Nz_l)Sin%}icos‘pgvi]T €

CNe and ag y(pgi) = [1---eI™WNy=DsinggT ¢ CNv, In addition, Ag(8,) =
[a(0g,1) - - - aB(0g,p,)] € CM*Fs is the BS-RIS AoA matrix, Ag(¢,, 9,) = [ar (Vg,1, ©g,1)
--ar(1g,p,» g,p,)] € CN*Py i the BS-RIS AoD matrix, and Yo = (Vg1 -'yg,pg]T c

C" is the BS-RIS path gain vector where 84 = (0,1 - - - 64, p, ], Yy =Yg tg,p, T

and ¢, = (091~ ¢g.p,]"-
Similarly, the uplink channel vector h, € C" from the UE to the RIS is expressed

A2t ek
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as

Py

hr = Z ’Yr7iaR(¢r,i7 Spr,i) (34)
=1

= AR(¢T‘7 Lpr)’)/r) (35)

where P, is the path number, (¢,.;, ;) are the azimuth and elevation AoAs, and 7, ; ~
CN (0, p,) is the gain of the i-th path where p, is the large-scale fading coefficient.
Also, AR(Y,, ¢,) = [ar(Vr1,9r1) - @R(Yr,p,, or,p,)] € CV77 s the RIS-UE

AoA matrix and v, = [y,,1 -+ p,]T € CP" is the RIS-UE path gain vector where

1/’1" = W}r,l e 'wr,PT]T and $r = [(107",1 t ‘pT,Pr}T'

The RIS reflected channel H can be expressed as a function of multi-path compo-

nents [36].

Lemma 4. The RIS reflected channel matrix H = Gdiag(h,.) can be expressed as [36]

H = (1p, ® Ap(6,))diag(v)(Ax (¥, ¢,) ® AR (1, )", (3.6)

where vy =, ®7,. Also, the vectorized RIS reflected channel vec(H) can be expressed
as

vec(H) = ((AR(%,, @) @ Ak (1, 9,)) * (1), ® Ap(6y)))7. 3.7

Typically, the number of paths P is much smaller than the number of reflecting

elements N (e.g., P = 2 ~ 8 while N = 64 ~ 1024) due to the high path loss and

directivity of mmWave signal [17]. Thus, one can greatly reduce the pilot overhead

by estimating the channel parameters, i.e., 84, (¢, ¥,), (¥, ¥,), 7, instead of the

full-dimensional RIS reflected channel matrix H.

3.2.3 Conventional RIS Reflected Channel Estimation

In the conventional channel estimation strategy, the BS directly estimates H from the
uplink pilot signal of UE. To be specific, the received pilot signal y; € CM of BS at
the ¢-th symbol is

ye=H¢pi+ng, t=1,---,7p, (3.8)
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where 7, is the number of pilot symbols, p; is the uplink pilot symbol of UE, and
¢, € C! is the phase shift vector at the ¢-th symbol. The received signal matrix
Y=[yi1- -y € CMx7p ig

Y =H([¢p1 -~ ¢, pr,) + [01---n, ] = HIT+ N, (3.9)

where I = [¢yp1--- ¢, pr,] € CN*™ and N = [n; ---n,,] € CM*™_ After the

vectorization of Y into y = vec(Y) € CM™», we obtain a simple linear system model:

y = vec(HII + N) (3.10)
= (' @ Ip;)vec(H) + n (3.11)
= 3(®)vec(H) + n, (3.12)

where 3(®) = IT" ® I is the system matrix and ® = [, - - - ¢,,] is the RIS phase
shift matrix. Note that 3(®) is a function of ®. Since the estimation accuracy of
vec(H) is determined by 3(®), one can improve the channel estimation accuracy by
deliberately designing ®.

To accurately estimate H from y, the number of pilot symbols 7;, should be larger
than the number of reflecting elements N. For example, when N = 1024, at least 13
resource blocks (RBs) (12 x 7 resources for each RB) are needed just for the pilot

transmission.

3.2.4 Angular-Domain Channel Coherence Property

In this subsection, we discuss useful properties to develop our channel estimation

framework.

Remark 1. The coherence time of angles (i.e., AoAs and AoDs) is typically an order

of magnitude (around 40) longer than that of path gains [41]. Specifically, the angle
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coherence time Ty and the path gain coherence time T’y are given by [40]

D, -

To= vsinHEB[COS 1((ﬁ2+72)10g<+1>]7 (3.13)
1—(1+~2log()?

! \/i(1+v2log<)(”%‘j9)2+(27rfD)274 (3.14)

where fp = 3 is the maximum Doppler frequency, v is the speed of UE, X is the signal
wavelength, 0 is the angle, vy is the beamwidth, 3 is the spatial lobe width which is
modeled as a Gaussian random variable, D, is the scattering radius, and  ~ 0.5 is

the coherence coefficient.

Remark 1 is due to the fact that the angles are determined by the dominant scatterers
(e.g., buildings and trees) which do not change their positions significantly. In contrast,
the path gains depend on dynamically varying scatterers (e.g., cars and leaves) around
UE. By plugging the RIS speed vgis = 0 m/s and the UE speed vyg = 1 ~ 5m/s to

(3.13), we obtain the following property.

Remark 2. The BS-RIS angles remain unchanged whereas the RIS-UE angles vary
over time due to the UE mobility [35,42].

Using Remark 1 and 2, we obtain the angular-domain channel coherence property.

Remark 3 (angular-domain channel coherence property). The RIS reflected channel
matrix H can be decomposed into three major components with different coherence

time:
1. Static BS-RIS AoAs (8,) and AoDs (1, ¢ ),
2. Quasi-static RIS-UE AoAs (1,., p,),
3. Time-varying BS-RIS-UE path gains (v = 7, ® ¥,4)-

This property justifies the three-stage processing of our channel estimation frame-

work.
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Figure 3.2: Overall structure of proposed three-stage angular-domain channel estima-

tion.

3.3 Three-Stage Angular-Domain Channel Estimation for

RIS-Aided mmWave Systems

A potential problem in the RIS reflected channel estimation is that the pilot overhead is
considerable due to the large number of reflecting elements. To address this issue, we
exploit the angular-domain channel coherence property that the RIS reflected channel
H can be decomposed into three channel components: 1) static BS-RIS angles 8, and
(14, ¥4), 2) quasi-static RIS-UE angles (1,., ¢,.), and 3) time-varying BS-RIS-UE path
gains =. Since the BS-RIS angles are determined by the scattering geometry around
the BS and RIS, they are not affected by UE so that we can estimate them before the
UE connection. Whereas, components related to UE such as the RIS-UE angles and the
BS-RIS-UE path gains are estimated after the UE is connected to the BS. Also, since
the coherence time of angle is much longer than that of path gains, we can estimate the
RIS-UE angles infrequently, achieving a substantial reduction of the pilot overhead.
Further, by optimizing the phase shifts of RIS reflecting elements using the channel
components with relatively long coherence time (e.g., BS-RIS and RIS-UE angles), we
can improve the channel estimation accuracy without using additional pilot resources.

In a nutshell, the proposed TAD-CE scheme consists of three major steps (see Fig.

3.2). First, the BS estimates the BS-RIS angles before the UE connection. Second, when

e g ke
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Figure 3.3: Block diagram of BS-RIS angle estimation.

the UE is connected to BS, the BS estimates the RIS-UE angles occasionally. Third, the

BS estimates the BS-RIS-UE path gains in each channel coherence block.

3.3.1 Stage I: BS-RIS Angle Estimation

Before the UE connection, the BS estimates the BS-RIS AoAs 6, and AoDs (9, ¢,)
from the uplink pilot signal of adjacent BS* (see Fig. 3.3). Since the locations of BS
and RIS are fixed, the BS-RIS angles can be considered to be static, meaning that the
BS can collect a large number of pilot measurements. In any case, to account for the
situations where the BS-RIS angles might change, the BS periodically estimates the
BS-RIS angles when the RIS is not serving the UE. One option to estimate the BS-RIS
angles is the subspace-based methods (e.g., MUSIC, ESPRIT [20]). When compared to
the CS-based angle estimation scheme where the mismatch between the true angle and
the discretized angular bin is unavoidable, the subspace-based method can estimate the

continuous BS-RIS angle without quantization [43]. In the subspace-based method, we

4Since the BS-RIS angles remain unchanged, the BS-RIS angles can be measured at any time before
the UE connection (e.g., during the initial installation of the RIS from the network operator). When there
is no BS near the RIS, one can utilize an RF signal generator, which is typically used for wireless channel
measurements, to transmit the uplink pilot signal to the RIS. By collecting the uplink pilot measurements

reflected at the RIS, the BS can acquire the BS-RIS angle information.
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construct the sample covariance matrix> and then decompose its eigenspace to signal
and noise subspaces. Since the signal subspace is spanned by the array response vectors
of BS-RIS angles while the noise subspace is orthogonal to the signal subspace, we can
acquire the BS-RIS angles from the null space of the noise subspace.

When we use the subspace-based technique, we need to make sure that the signal

covariance matrix is a full-rank matrix since otherwise its eigenspace (i.e., signal

subspace) would be spanned by the array response vectors of incorrect angles [20].

To guarantee the accurate estimation of BS-RIS angles, we first express the signal
covariance matrices as functions of RIS phase shifts and then find out the phase shifts

ensuring the full-rank condition.

BS-RIS Angle Estimation

In this stage, the BS collects the pilot measurements for L, blocks and then estimates
the BS-RIS AoAs 6, and AoDs (9, ¢,). Let p; € C be the uplink pilot symbol of
adjacent BS and ¢, € CV be the phase shift vector at the ¢-th symbol. Then the received
signal ygl) € CM of BS at the ¢-th symbol of [-th block is

vy =HO¢p +nl", t=1. 7i1=1-. L, (3.15)

where H() is the RIS reflected channel at the I-th block and ngl) ~ CN(0,021,;) is the

Gaussian noise. The combined received signal matrix Y () = [ygl) K yg)] € CMx7 s

Y(l) :H(l) [¢1 T ¢T]diag(p17 to 7p7') + [ngl) T ng'l)] (316)
a)

—

(3.17)

where (a) is from Lemma 1, ® = [¢); - -- ¢.] € CV*7 is the phase shift matrix, and
P = diag(p; - - - p,) is the pilot matrix.
By collecting the received signals Y for L, blocks, the BS constructs the

sample covariance matrices R, = E[YOYOH] ~ Lig ijl YOYOH and R, =

>Note that the sample covariance matrix is different with the channel covariance matrix in [44].
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E[YORY )] ~ L%; Zile YOHY O, In our experience, we could not observe any
meaningful difference in acquiring the sample covariance matrices when L is larger
than 100. In the following proposition, we obtain the closed-form expressions of R,

and R;.

Proposition 4. The sample covariance matrices Rs and Ry can be expressed as

RS :png'AB(Hg)diag(HPH@HBlAE(’lpm Lpr)”l% e

IPHSHB, Ak (v, 0,)[R) AR (6,) + 021y (3.18)
Rt :MpngPH(I)H(A;i(’l)DT’ 807‘) o AR(wgp Qog))
(AR(,, 0,) @ AR(,, ,)) ' ®P + 071, (3.19)

where B; = diag(ar (vg,i, ¢g.i)) € CN*N fori=1---P,
Proof. See Appendix A. O

One can see that R, has the form of R, = S+ U,%I where S is the signal covariance
matrix. Since S has the same column space with the BS-RIS AoA matrix Ag(6,), the
BS can acquire the BS-RIS AoA 6, from R, via the subspace-based algorithms. In
the MUSIC algorithm, for example, the BS computes the signal subspace matrix E;
and the noise subspace matrix E,, from the eigenspace of R;. Since E,, is orthogonal
to Eg, 99 is obtained from P, highest peaks of AoA spectrum function faoa(f) =
1/|[EHap ()|

A~

04 = argmélx faoa(d), i=1,---,P,. (3.20)

The estimation of BS-RIS AoD (1, ¢,) from Ry is a bit difficult since the BS-
RIS AoD matrix Agr(t),, ¢,) is coupled with the RIS-BS AoA matrix Ag(%,., ¥,)
which is unknown to the BS at stage 1. To deal with this issue, the BS exploits the
RIS-BS AoA of the LoS path (¢r.1Los, ¢r.Los) Which can be obtained directly from the
relative locations of RIS and BS. In the MUSIC algorithm, for example, ({pg, ¢g)

is obtained from the P, highest peaks of AoD spectrum function faop(?,¢) =
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1/||FEPH'1’H(3§(¢r,Los, SOT,LOS) © ar (v, ‘P))HQ as

(’&g,ia@g,i) = arggbla)i fAOD(¢790)7 i = 17 o 7Pg7 (321)

)

where F, is the noise subspace matrix constructed from R.

RIS Phase Shift Control

As mentioned, for the accurate estimation of the BS-RIS angles using the subspace-

based method, the signal covariance matrix should be full-rank:

rank (AB(eg)dlag(HPHq)HBlAl*{(,lbrv ¢r)”F7 ) HPH(I)HBP(;AI*Q(I:DT? LPT‘)”F)) = Pg7
(3.22)
rank (PY®" (AR (¢,,0,) ¢ Ar(¥,, ¢,))) = PPy (3.23)

If these conditions are not satisfied, then the eigenspace of signal covariance matrix
would be spanned by the array response vectors of incorrect angles, deteriorating the
angle estimation performance severely [20]. Since the covariance matrices are functions
of phase shift matrix ® (see Proposition 1), we design ® such that (3.22) and (3.23)

are satisfied.

Proposition 5. The phase shift matrix ® = [f; - --f,;] € CN*7 satisfies (3.22) and

(3.23) where £, - - - , £ are T randomly chosen column vectors of N-point DFT matrix.

Proof. See Appendix B. O

3.3.2 Stage II: RIS-UE Angle Estimation

When the UE is connected to the BS, the BS estimates the RIS-UE AoAs (,., ¢,)
from the pilot signal of UE (see Fig. 3.4). Due to the UE mobility, the coherence time of
RIS-UE angles is shorter than that of BS-RIS angles, which means that the BS cannot
collect a large number of measurements for the RIS-UE angle estimation. In this case,

the CS-based technique can be useful since it can generate the angle estimate even
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Figure 3.4: Block diagram of RIS-UE angle estimation.

with a small amount of measurements [45]. In the CS-based technique, we formulate
the block-sparse linear system model where the RIS-UE angles and the path gains are
mapped to the positions of non-zero blocks (i.e., support) of a block-sparse vector. By
employing the block-sparse recovery algorithm, we can find out the support of the
block-sparse vector using which we can recover the RIS-UE angles.

It is worth mentioning that the block-sparse recovery performance of the CS al-
gorithm depends on the correlations between the submatrices of the sensing matrix.
Since the sensing matrix is a function of RIS phase shifts, we can improve the RIS-UE
angle estimation accuracy by adjusting the phase shifts such that the adjusted phases

minimize the column correlation of sensing matrix.

RIS-UE Angle Estimation

In this stage, the BS estimates the RIS-UE AoAs (v,., ¢,.) for L, blocks. Specifically,

the CS-based angle estimation consists of three major steps:

* Angular-domain sparse mapping: We map (v,., ¢,.) and ~y,. to the positions of

non-zero blocks (i.e., support £2) of the block-sparse path gain vector.

* Block-sparse representation: We formulate the block-sparse linear system
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Y = XTI + N where X is the angular-domain sensing matrix and T is the

block-sparse path gain matrix.

* Block-sparse recovery and angle reconstruction: Using the block-sparse recov-

ery algorithm, we find out the support 2 of T' from which we recover (1,., ¥,.).

Let (1, ®) = {(¥i, @i) | i = 1,--- , W} be the quantized angle set where W is the

number of angular bins and "yq(nl) € CW be the corresponding sparse RIS-UE path gain

vector such that ||’7,(ﬂl) llo = P, and supp(if,(nl))

BS-RIS-UE path gain vector is 5() = (l) ® ’y( ) e CWhs, Using (1), @) and ~® | the

= 2. Then the combined block-sparse

received signal matrix Y () € CM*7 of BS at the I-th block YY) can be expressed as

YO =HO®P + NO (3.24)

=(1fy © Ap(8,))diag(Y") (AR (¥, @) » AR (v, )" @P + N 1 =1, | L,
(3.25)

where ® = [¢; - - ¢,] € CV*7 is the phase shift matrix and P = diag(p; - - - p,) is
the pilot matrix.
Now, to convert (3.25) to the block-sparse linear system, we vectorize Y(®) to

y(l) = VCC(Y(l))i

y(l) :(P@T ® IM)VGC(H(Z)) + n(l) (3.26)

D (POT(AR(P, @) o Aj (¥, 0,))) * (1 ® Ap(0,))7" + 0 (327)

=370 +n®  1=1,--. L, (3.28)

=

where (a) is from Lemma 1 and the property of Khatri-Rao product such that (A ®
B)(C x D) = (AC) * (BD). Also, & € CM™WFy i5 the angular-domain sensing

matrix defined as

3 = (PRT(Ar(¥, @) e AR(Y,. ,))) * (Lj ® Ag(6y)). (3.29)

In the following remark, we explain the block-sparse structure of 4.
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Remark 4. Since '?q(al) is a sparse vector, 7)) = ;),7(]) ® 'y(gl) is a block-sparse vector®.

By a block-sparse vector, we mean that non-zero elements appear in a few blocks of the
vector. Also, since the RIS-UE AoAs are constant in the RIS-UE angle estimation stage,

~W ... 3 have a common index set of non-zero blocks Q.

Since 4, - -+, (L) have the common support €2, the problem to identify € from
{y(l) }f;l can be modeled as a joint block-sparse recovery problem. Thus, by exploiting
the measurements of L, blocks simultaneously, one can greatly enhance the block-
sparse recovery performance.

To do so, we combine {y(V};, into a measurement matrix Y = [y ... y(tr)] €
CMrxLr 5

Y =3I + N, (3.30)

where & € CM™WPF ig the angular-domain sensing matrix in (3.29) and T' =
['7(1) EE W(L*)] € CWPsxLr is the block-sparse path gain matrix such that the non-zero
rows appear in a few P, x L, size blocks’. Then the joint block-sparse recovery problem

P to find out 2 from Y is

P: min_ |Y - XT3 (3.31a)
T=[[] Ty "
W —
st. Y _ZI(||Tillr) = P, (3.31b)
=1

where Z(x) is the indicator function such that Z(z) = 1if ¢ # 0 and Z(x) = 0
otherwise.

In solving P, one can use the block-sparse recovery algorithm such as BOMP [45].
When using the BOMP algorithm, an index of the submatrix of the sensing matrix is

chosen at a time using a greedy strategy and then the residual is updated. To be specific,

For example, if ~7§l> = [1,0,0,1]T and 72” = [1,2]", then 70 = ”yg) ® ’yé” =
[1,2,0,0,0,0,1,2] .

"For example, if Py, = 2, L, = 2, 'ygl) = (1,2, 'yf) = [3,4]", and 4 = 5 = [1,0,0,1]",
thenT = 3V ® 'yél),'?@) ® '7512)} =[12000012]T The indices of non-zero 2 x 2 block matrices
are Q = {1,4}.

] 2l
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in the n-th iteration, an index &, corresponding to the submatrix ¥, € CM7*Fy

=03 EW]) which is maximally correlated with the residual is chosen:

G =arg_max [|S{'Zalf n=1, P (3:32)

) )

where Z,,_1 = (I — Efzn 2}] )Y is the residual, Q, 1= {®1,-+ ,Wn_1}, and

n—1

8

-1
3o, , = [Zs -2, ] The iteration is repeated until P, indices are chosen®.

Once € is recovered, the RIS-UE AoAs are obtained from the quantized angle set as

(’(:brv ‘12’7‘) = ({bfh Q_DQ)

RIS Phase Shift Control

As mentioned, the block-sparse recovery performance depends on the correlations
between the submatrices {E_JZ-}ZVL (i.e., block-mutual coherence) of the sensing matrix
3 = [¥; - Zw]. Since X is a function of the RIS phase shift matrix ® (see (3.29)),
we can improve the block-sparse recovery performance by designing ® such that the
block-mutual coherence of X is minimized. To be specific, the block-mutual coherence

p of X is defined as

I=](@)%;(®)]
&) — I J . 333
(@)=, max 1Z:(@)[2]1Z;(®)]l2 39

Then the block-mutual coherence minimization problem Py to find out the optimal

phase shift matrix ® minimizing p(®) is formulated as

P : min pu(®), (3.34a)

st. |[®ne=1,n=1,-- N, t=1,--- 7. (3.34b)

8To estimate the block-sparsity level, one can use the cross-validation technique [46]. In this scheme,
the measurement matrix is divided into two parts: a training matrix and a validation matrix. In the first
step, using the training matrix, a sequence of supports with different block-sparsity levels is generated. In
the second step, using the acquired supports and the validation matrix, the validation error is computed.

Finally, a block-sparsity level corresponding to the minimum validation error is returned.
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sl (@)= (e)

= (@)%, (@) Pt can be reformulated as

By defining the auxiliary matrix Y; ; =

Pn:min  max [['Y; |2, (3.35a)
Y, & 1<i<j<W
55 (®)35(®)
st. Yij=—=— J , <i<ji<W, (3.35b)
T IZ(@)[|2M125(®)]]2
|[®]ni| =1, n=1,-- N, t=1,--- 7, (3.35¢)

Due to the quadratic fractional structure of (3.35b) and the unit-modulus constraints
(3.35c¢), Py is a non-convex problem in which finding out the global optimal solution is
very difficult. Also, since 3 and ® are coupled with each other in (3.35b), it is not easy
to optimize them simultaneously.

To find out a tractable solution of Py, we employ the augmented Lagrangian relax-
ation technique that converts a complicated constrained problem to an unconstrained
problem by adding a quadratic penalty term to the objective function. Specifically, the

modified objective function L, so-called the augmented Lagrangian, is given by

LY, ®,A) = max [[Yi;2+ Lu(®)+

1<i<j<w
oH
g A L TL RN
2V .
1<z<]<W {®)ll2 HE( )2 P Ilf

where M = {® € CN*7 : |[®],,+| = 1,Vn,Vt} is the complex circle manifold, a
set of the phase shift matrices satisfying the unit-modulus constraints (3.35¢c), A is the
Lagrangian multiplier matrix, and p > 0 is the scaling factor. Using L(Y, ®, A), the

dual problem P, can be expressed as
P max r\r{l’i}}} L(Y,®,A). (3.37)

Since Pj; is an unconstrained problem, it would be much easier to handle than
the primary problem Py. Note, based on the weak duality, the optimal value of Pj;
corresponds to the lower bound of the optimal value of Py;. Unfortunately, it is still not

easy to solve P since the augmented Lagrangian L is a joint function of Y, ®, and
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A. To address this issue, we use an approach that alternately updates the block-mutual

coherence matrix Y, the phase shift matrix ®, and the Lagrangian multiplier matrix A:

v+ — argn%i:nL(Y, @(t)7A(t))’ (3.38)
H+) — arg H}Ii)nL(Y(tH), o, A(t)), (3.39)
sH g t+1)V$ . (H (t+1)
(t+1) _ A (D) t+1) B (VT3 (@VTY)
A= Aiﬂ‘*”(“ﬂ‘ IS(@e)L @), O

First, the block-mutual coherence matrix optimization problem Py corresponding

to (3.38) is
: p (t)
: Y = Y;;—Z, 41
Py imin max [Yigla+5 >, | I, (3.41)
1<i<j<Ww
() SH@O)S(@W) 1 4() : :
where Z; =I5 (‘W))Ihllz @) pAi’j. Note that Py is a spectral norm min-

imization problem which can be equivalently converted to the convex semidefinite
program (SDP)° [47]. Thus, we can obtain the global optimal solution Y* using the
convex optimization tool (e.g., CVX).

Second, the optimization problem Pg corresponding to (3.39) is given by

HCIDC O

Pa g H ol (3.42)
® 1<i<j<W HE H HE ( >H2 i F
StH(I)]n,t‘ :1,77,:1,-.. ’N’ t:l, ’7-’ (342b)

A®D
where Wl(t]) = Y(Hl) + A ] . One major obstacle in solving Pg is the non-convex

unit-modulus constraint (3.42b). To handle this issue, one can exploit the smooth
Riemannian manifold structure of the set of unit-modulus phase shift matrices such that
‘Pa is converted to an unconstrained optimization problem on the Riemannian manifold.
Since the optimization over the Riemannian manifold is conceptually analogous to that

in the Euclidean space, optimization tools of Euclidean space (e.g., conjugate gradient

The spectral norm constraint 'Y |l2 < t can be equivalently converted to the linear matrix inequality

constraint Y?Y < ¢I.
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Figure 3.5: Block diagram of BS-RIS-UE path gain estimation.

method) can be readily employed to solve the problem on the Riemannian manifold
(e.g., Riemannian conjugate gradient (RCG) method) [29].

Lastly, once we obtain Y1) and ®(+1) we update A using the dual ascent
method. The update procedures (3.38)-(3.40) are repeated until ® converges.

We briefly discuss the computational complexity of the proposed RIS phase shift
control scheme. First, in the block-mutual coherence matrix update process, the primal-
dual interior-point method is used to solve the SDP. The computational complexity of
the block-mutual coherence matrix update process is Cy = O(P; WG) [48]. Second,
in the RIS phase shift matrix update process, the RCG method is used to solve the
problem. The computational complexity of this process is Co = O(M2N73P,W?).
Third, the computational complexity of the Lagrangian multiplier matrix update process

is Ca = O(M?72P,W?).

3.3.3 Stage III: BS-RIS-UE Path Gain Estimation

After the RIS-UE angle estimation, the BS estimates the BS-RIS-UE path gains from
the pilot signal of UE (see Fig. 3.5). Since the coherence time of path gains is relatively
shorter than that of the path angles, the BS-RIS-UE path gains are estimated at each

channel coherence block. Recall that in the previous stage, the BS formulates a block-
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sparse linear system for the recovery of the block-sparse path gain vector (see (3.28)).
By solving the linear system using the LS estimation technique, one can obtain the
path gains after which the BS reconstructs the RIS reflected channel matrix using the
acquired channel components (see Lemma 1).

We note that the MSE of the LS estimate is determined by the sensing matrix. For
example, it has been shown that MSE is minimized when the columns of the sensing
matrix are mutually orthogonal [49]. Since the sensing matrix is a function of the RIS
phase shifts (see (3.46)), by designing the RIS phase shifts such that the columns of the
sensing matrix are mutually orthogonal, we can improve the estimation accuracy of the

path gains.

BS-RIS-UE Path Gain Estimation

In this stage, the BS estimates the BS-RIS-UE path gains from the uplink pilot signal
for 7, symbols and then transmits the downlink data for 7 — 7, remaining symbols. To

be specific, the received matrix Y = [y -- -y, ] € CMx7p of BS is given by

Y =H®P + N (3.43)

=(1p, ® Ap(0y))diag(v) (AR (¥, ¢, ¢ Ar(¥,,9,)) " ®P + N, (3.44)

where @ = [¢p; - ¢, | € CN*7 s the phase shift matrix and P = diag(p1,- - , pr,)
is the pilot matrix. By vectorizing Y to y = vec(Y), we obtain the linear system with

respect to the BS-RIS-UE path gain vector « as (see (3.26)-(3.28))
y =27 +n, (3.45)
where ¥ € CM7™»* PPy is the sensing matrix given by
2 = (PR (AR(%,, ¢,) @ Aj(y, #,))) * (15, @ Ap(6,))  (3.46)
Then the LS estimate of BS-RIS-UE path gains is

4= (=ix)~ixty. (3.47)
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Once we obtain the BS-RIS-UE path gains 4, together with the BS-RIS angles 6,
(@Zg, ®,) and the RIS-UE angles (1., @,), we reconstruct H as

H = (1}, ® Ag(0y))diag(v) (AR (¥, @,) ® Ar(,, ¢,)).  (3.48)

RIS Phase Shift Control
Note that the MSE of the LS estimate is given by
MSE = E[|¥ - v[*] = one((Z"%)7), (3.49)

where o2 is the noise variance. Since X is a function of RIS phase shift matrix ® (see
(3.46)), we can improve the path gain estimation accuracy by optimizing ® to minimize
the MSE.

Specifically, the MSE minimization problem is formulated as
P : min tr(ZH(@)Z(@)) ), 3.50
s min w(57(@)T(@) ) (3.502)

where M = {®cCN*7 . HtI)]n,t’ = 1,Vn,Vt} is the complex circle manifold, a set
of the phase shift matrices satisfying the unit-modulus constraints. By exploiting the
linear matrix inequality and the Cauchy-Schwarz inequality, we obtain the lower bound

of the optimal value of Pry:

PP,
: _ , 1
Dnin r(ZH(@)z(®) ) > Inin ; T @)@)). (3.51)
(PrPg)Q
~ maxgen tr(SH(@)Z(P))’ (3:52)

where the first inequality is from [49, Example 4.3] and the second inequality is
from the Cauchy-Schwarz inequality. Note that the equality condition of (3.52) is
SH (@)X (®) = cI for some c. Thus, one can see that the optimal solution of Py can

be re-expressed as

arg min tr((ZH(@)X(®))™!) = arg max r(SH(@)Z(®)). (3.53)
PeM sH(8)S(®)=cI
PeM

In the following proposition, we provide the asymptotic optimal solution of (3.53).
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Proposition 6. The feasible solution of (3.53) exists only when 1, > P.P,. Also, when

Tp = P Py, the asymptotic optimal solution of Py satisfying (3.53) is given by

D = AR(Y,, ;) @ Ar(Y,, ¥,)- (3.54)

Proof. See Appendix C. O

3.4 Performance Analysis of Three-Stage Angular-Domain

Channel Estimation

3.4.1 Channel Estimation Error Analysis

Since the RIS-UE angles are chosen from the quantized angle set, a mismatch between
the true angle (v, ¢,) and the quantized angle (1., @, ) is unavoidable in the RIS-
UE angle estimation, which causes a distortion of the linear system at the BS-RIS-
UE path gain estimation and the degradation of the RIS reflected channel estimation
performance.

In this section, we analyze the RIS reflected channel estimation error induced by
the RIS-UE angle quantization'®. To this end, we first derive the distortions AAg, and
A® of RIS-UE AoA matrix in (3.5) and phase shift matrix in (3.54). We then derive the
distortions A and A~y of sensing matrix in (3.46) and BS-RIS-UE path gain estimate
in (3.47), from which we find out the NMSE of constructed RIS reflected channel
E[||AH||Z/|/H]|2]. For notational simplicity, we use the notations Ag = Ag(6,),
ARy = Ar(Y,, ¥p,), and AR ; = AR(¥,, ¢,). Also, we assume the noiseless scenario
to simplify the analysis.

Let (A, Ap,) = (¥,,p,) — (1., @,) be the quantization error vectors. Using

the first-order Taylor expansion, we can obtain the distortion of RIS-UE AoA matrix

!ONote that in this analysis, we do not consider the BS-RIS angle estimation error. This is because since
the BS-RIS angle can be readily approximated as static information, the BS can collect a large number of
pilot measurements for the BS-RIS angle estimation. Hence, the BS-RIS angle estimation error is almost

negligible compared to the RIS-UE angle estimation error.
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AAg, as
AAR; ~ Vy AR A%, + Vi, AR, Ap, (3.55)
=R ® AR,'r- (356)
Here, R = [r; ---rp,| € CV*F" where r; = p; A, + q; Ay, ; and
pi = —jmsing, j(cos,(n, ® 1y, ) — sin wr,i(lNy ®ng)), (3.57)
q; = —J7Cos Qpr,i(Sin ¢r7i(ny ® 1Nz) + cos wr,i(lNy & nr))a (3.58)

wheren, = [0--- N, —1]Tandn, = [0 - - N,, — 1]T. Recall that the phase shift matrix
at the BS-RIS-UE path gain estimation stage is ® = Al*w o AR 4 (see (3.54)). Thus,

the distortion of the phase shift matrix A® is given by
AP =AAR, ¢ ARy~ (RO AR,;)" @ Agy. (3.59)

In the BS-RIS-UE path gain estimation stage, the sensing matrix is given by 3 =
(P®T (AR, e A} ) * (1}, @ Ap) (see (3.46)). Then the distortion of sensing matrix

AY can be approximated as
AY ~(PA®"(Ag, e A} ) + P®'(AAR, ¢ A} ,)) (15, ® Ag).  (3.60)

Due to the distortion of the sensing matrix, the performance of LS estimation of BS-
RIS-UE path gains will be degraded. In the following proposition, we provide the

distortion of ~.

Proposition 7. The distortion of BS-RIS-UE path gain estimate in (3.47) can be

approximated as
Ay~ — (ZUD) 'S (PRT(AAR, A} ) * (15, ® Ap))Y. (3.61)
Proof. See Appendix D. O

Finally, using (3.56), (3.59), (3.60), and (3.61), we obtain the asymptotic closed-

form expression of the NMSE of RIS reflected channel estimation.
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Figure 3.6: NMSE vs. number of RIS-UE angle quantization bits.

Theorem 3. When the number of RIS reflecting elements N is large, the NMSE of
RIS reflected channel estimation induced by the RIS-UE angle quantization can be

approximated as

2 2 2 4
[ L N F s

_|_
IH 13 144 Wg 4w
where N = N, x N, is the number of RIS reflecting antennas and W = Wy, x Wy is

the number of angular bins for the RIS-UE angle quantization.
Proof. See Appendix E. O

In Fig. 3.6, we plot the NMSE as a function of the number of RIS-UE angle
quantization bits. We observe that the analytic NMSE obtained from Theorem 1 is close
to the numerical result. We can infer from these results that by properly scaling the
number of RIS-UE angle quantization bits using Theorem 1, one can effectively control
the RIS reflected channel estimation error. We also observe that the NMSE of TAD-CE
is much smaller than that of the conventional CS-based channel estimation scheme [36].

Since the conventional CS-based scheme quantizes and estimates the BS-RIS and the
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RIS-UE angles simultaneously, the quantization distortion of the estimated channel is
considerable. Whereas, using the property that the BS-RIS angles remain unchanged,
TAD-CE continuously estimates the BS-RIS angles before the UE connection. Then,
when the BS is connected to the UE, the BS quantizes and estimates only the RIS-UE

angles.

3.4.2 Pilot Overhead Analysis

In this subsection, we analyze the pilot overhead of the proposed TAD-CE scheme.
As mentioned, TAD-CE consists of three major steps: 1) estimation of the BS-RIS
angles before the UE connection, 2) estimation of the RIS-UE angles occasionally (once
every L, blocks'!"), and 3) estimation of the BS-RIS-UE path gains at each channel
coherence block. Note that the number of pilot symbols used for the BS-RIS angle
estimation is not considered in the pilot overhead analysis since the BS-RIS angles are
estimated before the UE connection. Recall that in the RIS-UE angle estimation, we use
the block-sparse recovery algorithm to estimate the BS-RIS angles. Thus, the number
of measurements required for the RIS-UE angle estimation is 9 = P, log W P, [50].
After the RIS-UE angle estimation, we estimate the BS-RIS-UE path gains using the
LS estimation. Thus, the number of pilot measurements required for the BS-RIS-UE
path gain estimation is 73 = P, P;. In conclusion, the pilot overhead of TAD-CE is

1 P,
T= IVLTQ—‘ + 713 = {L log WPg—‘ + P.P,. (3.63)

In Table 3.1, we compare the pilot overhead of TAD-CE with two benchmark
schemes: 1) CS-based scheme [36] and 2) BALS scheme [34]. One can see that TAD-
CE achieves a significant pilot overhead reduction over the benchmark schemes. One
can also see that while the pilot overheads of conventional schemes increase sharply

with the number of reflecting elements, that of TAD-CE does not change significantly.

17 is the RIS-UE angle coherence time in terms of channel coherence block.
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Table 3.1: Pilot overhead comparison of different channel estimation schemes

Pilot overhead for various NV
Pilot overhead
N =256 | N =512 | N =1024
Proposed TAD-CE | [1=log W P,] + P, P, 11 11 12
CS-based scheme [ P, Pylog W?| 44 49 55
BALS scheme N 256 512 1024

3.5 Simulation Results

3.5.1 Simulation Setup

In this section, we investigate the channel estimation performance of the proposed
TAD-CE technique. We consider the RIS-aided mmWave systems where a BS equipped
with M = 8 antennas serves a single-antenna UE with the aid of an RIS equipped with
N = 16 x 16 reflecting elements. The RIS and UE are located randomly around the BS
within the cell radius of R = 50 m. We use the block-fading multi-path channel model
where the number of path is P, = P, = 3, the carrier frequency is f. = 28 GHz, and
the channel bandwidth is 100 MHz. The channel remains unchanged within a block of
7 =14 x 9 = 126 symbols (9 subframes = 9 ms). By exploiting the angular-domain
channel coherence property, we assume that the BS-RIS angles are constant and the
RIS-UE angles are coherent for 40 blocks whereas the BS-RIS-UE path gains vary

Ish?sh

over block [40]. The large-scale fading coefficients are modeled as p = PL x 10710

where PL represents the path loss and 10710" represents the shadow fading where
osh = 4dB and zg, ~ CN (0, 1). Also, we use the path loss model in 3GPP Rel. 16 [17].
The small-scale fading coefficients are generated according to the complex normal
distribution (i.e. v ~ CN (0, 1)). We set the uplink transmit power of UE and the noise
power to 1 W and —110 dBm/Hz, respectively.

For comparison, we use 5 benchmark schemes: 1) oracle-LS scheme where the
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Figure 3.7: NMSE vs. transmit SNR.

BS-RIS and RIS-UE angles are perfectly estimated and only the BS-RIS-UE path gains
are estimated using the LS technique, 2) MO-EST scheme that uses the optimization
technique on the Riemannian manifold of low-rank RIS reflected channel matrices [51],
3) CS-based scheme that estimates the BS-RIS angles, the RIS-UE angles, and the BS-
RIS-UE path gains simultaneously using the OMP algorithm [36], 4) BALS scheme that
uses the parallel factor decomposition of RIS reflected channel [34], and 5) LMMSE-
based scheme [33]. As a performance metric, we use the NMSE defined as E[|H —
H||2/|H||3]. In the proposed TAD-CE scheme, by exploiting the angular-domain
channel coherence property, the BS-RIS angles are estimated only once before the
UE connection, the RIS-UE angles are estimated once every 40 blocks, and the BS-
RIS-UE path gains are estimated at each block. Specifically, we use L, = 50 blocks
for the BS-RIS angle estimation, L, = 5 blocks for the RIS-UE angle estimation,
and 7, = 14 x 4 = 56 uplink symbols for the BS-RIS-UE path gain estimation.
We measure the NMSE for 40 — 5 = 35 blocks after the RIS-UE angle estimation.

To make fair comparisons with the benchmark schemes, we measure the NMSEs of
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Figure 3.8: NMSE vs. number of pilot symbols.

benchmark schemes for 35 blocks but with different numbers of uplink symbols (i.e.,

Tpconv = Tp+ [Lgrgﬂ) so that the total number of pilot symbols used for the RIS reflected

channel estimation would be the same with that of TAD-CE!2.

3.5.2 Simulation Results

In Fig. 3.7, we plot the NMSE as a function of the transmit SNR. We observe that the
proposed TAD-CE scheme outperforms the conventional channel estimation schemes
by a large margin. For instance, when SNR = 10 dB, the proposed scheme achieves
almost 7dB and 9 dB NMSE gains over the conventional MO-EST scheme and BALS
scheme. Even when compared to the conventional CS-based channel estimation scheme,
the NMSE gain of the proposed scheme is more than 5 dB. In fact, in the high SNR

regime, the performance of TAD-CE is similar to that of the oracle-LS scheme, meaning

that the estimated BS-RIS and RIS-UE angles of TAD-CE are close to the genie angles.

2The pilot symbols used for the estimation of BS-RIS angles is not counted since they are estimated

before the UE connection.
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Figure 3.9: NMSE vs. number of reflecting elements.

This is because TAD-CE estimates the BS-RIS and RIS-UE angles sporadically and
estimates the path gains frequently so that the number of channel parameters to be
estimated in each stage is quite small. Thus, TAD-CE can accurately estimate the
channel parameters even with a small amount of pilot measurements.

In Fig. 3.8, we set N = 64 and then plot the NMSE as a function of the number

of pilot symbols 7,,. To make a fair comparison, we also change the number of pilot

LyT

symbols of conventional schemes 7, cony = 7p + [ 5

| as well. We observe that
the proposed TAD-CE achieves more than 80% pilot overhead reduction over the
conventional schemes. For example, to achieve the NMSE of —11 dB, TAD-CE requires
only 7, = 14 symbols whereas both the conventional LS and BALS schemes require
more than 7, = 70 symbols. This is because the number of pilot symbols of TAD-
CE required to estimate the sparse channel parameters scales with the number of
propagation paths while those of conventional schemes required to estimate the full-

dimensional RIS reflected channel matrix scale with the number of reflecting elements.

In Fig. 3.9, we investigate the NMSEs of the proposed TAD-CE and benchmark
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Figure 3.10: NMSE vs. number of propagation paths.

schemes as a function of the number of RIS reflecting elements /NV. From the simulation
results, we observe that the NMSE gain of TAD-CE over the conventional schemes
increases with the number of reflecting elements. In particular, when N increases from
64 to 160, the NMSE gain of TAD-CE over the conventional BALS scheme increases
from 2.8 dB to 10 dB. This implies that TAD-CE would be more effective in improving
the channel estimation performance of the RIS-aided terahertz (THz) systems where
the number of reflecting elements is extremely large.

In Fig. 3.10, we plot the NMSE as a function of the number of propagation paths
P. We observe that TAD-CE outperforms the conventional schemes by a large margin.
For example, when P = 6, TAD-CE achieves 7dB and 8.1 dB NMSE gains over
the conventional CS-based and BALS schemes, respectively. We also observe that
when the number of paths increases, the NMSEs of conventional schemes increase
sharply whereas that of TAD-CE does not increase much. Note that the performance
of CS technique depends heavily on the sparsity (in our case, the number of paths).

Since the conventional CS-based scheme estimates all channel components simultane-
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Figure 3.11: NMSE vs. transmit SNR.

ously, the performance degradation is severe when the number of propagation paths is
large. In contrast, since TAD-CE separately estimates these channel components, the
performance degradation is marginal even in the rich scattering environments.

In order to examine the effectiveness of the proposed phase shift control scheme, we

compare the NMSE performance of the proposed scheme with two benchmark schemes:

1) DFT-based phase shift control scheme that uses the columns of DFT matrix as the
phase shift vectors and 2) random phase shift control scheme that randomly chooses the
phase shifts of RIS reflecting elements. In all schemes under test, we use TAD-CE for
the RIS reflected channel estimation. In Fig. 3.11, we observe that the proposed scheme
outperforms the benchmark schemes. This is because the proposed scheme optimizes
the phase shifts using the channel components with relatively long coherence time but
the conventional schemes have no such mechanism to improve the channel estimation
accuracy. Interestingly, we observe that the random phase shift control scheme performs
better than the DFT-based scheme. The reason is that due to the large number of RIS

reflecting elements, the RIS reflected beams are very narrow so that the SNR decreases
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sharply when the phase shift vectors generated from the DFT matrix are not properly
align with the propagation paths of the RIS reflected channel. This implies that the
proper phase shift control is crucial for the accurate acquisition of RIS reflected channel

information.

3.6 Summary

In this chapter, we proposed an efficient channel estimation framework to reduce the
pilot overhead of RIS-aided mmWave systems. Key idea of the proposed TAD-CE
scheme is to decompose the RIS reflected channel into three major components, i.e.,
static BS-RIS angles, quasi-static RIS-UE angles, and time-varying BS-RIS-UE path
gains, and then estimate these components in different time scales. In doing so, the
number of channel parameters to be estimated at each stage can be reduced significantly,
resulting in a reduction of pilot overhead. Also, by optimizing the RIS phase shifts
using the channel components with relatively long coherence time, we could further
improve the channel estimation accuracy without requiring additional pilot resources.
We demonstrated from the channel estimation error and pilot overhead analyses and
numerical evaluations that the proposed TAD-CE scheme is effective in saving the pilot
resources. In our work, we assumed the ideal phase shift model where the reflection
amplitude and the phase shifts are independent, but an extension to the realistic scenarios
where the reflection is imperfect and is affected by the RIS phase shifts would be an

interesting future work worth pursuing.

3.7 Proofs

For notational simplicity, we denote Ag = Ag(6y), Ar,g = AR(ng, Lpg), and AR, =
AR(":[Jra ‘pr)
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3.7.1 Proof of Proposition 1

Let c; be the i-th column vector of PH<I>H(A}§7T e AR 4). Then we obtain

R, =(1}, ® Ap)E[[{""c1 755 cp,p M er b ep,p )] (1], © Ap)H

(3.64)

=pgpr(1p, © Ag)diag(|lci|)?, -+, llep,p,|1*) (15, © Ap)™ (3.65)

=pgprAp ZPT: diag([lci-1yp,11l1% -+ s lleir, I”) AR (3.66)
=1

=pgpr Apdiag(|[PT®"B AR [, -, [PH®"Bp AR, |*) AL (3.67)

The closed-form expression of R; can be obtained similarly with R;.

3.7.2 Proof of Proposition 2

We will show that ./\/'(‘I’H(AET e Ar,)) = {0} which is equivalent to N'(®™) N
C(AR,®AR,) = {0} where N/(-) and C(-) are the null and column spaces, respectively.
Let Fy = [f - - - fi] be the N-point DFT matrix and without the loss of generality, let
® = [f; ---f,]. Then N(®M) = C(®)* = span{f, 1, -, fi}. Due to the property of
Khatri-Rao product, the column vectors of A . @ AR 4 are also array response vectors
and thus, they are independent with 1, -+ , f5. Thus, N(<I>H) N C(Ai‘i,r e Ary) =
span{f; i1, ,fN} NC(AR, @ Agy) = {0}.

3.7.3 Proof of Proposition 3

From the definition of X in (3.46), one can easily see that we need 7, > PP, to make
3 into an orthogonal matrix. Also, since the column vectors of Ay , @ Ag 4 are also
array response vectors, ® = Ag , e Ag 4 € M. Now, to show that 3 asymptotically
becomes an orthogonal matrix when ® = A , e Ag 4, we use the mutual orthogonality

between the array steering vectors, i.e., ag(wm, ©ri)ar(Vrj, rj) = No; ;. Using
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this property, 3 can be re-expressed as

3 = (P(Ag, ® Ary) (Ar, @ Ag ) * (15, ® Ap) (3.68)

~ NP x (1}, ® Ag). (3.69)

Then one can see that 3 becomes an orthogonal matrix as

sHY ~ N*(PPP) 0 (1}, ® Ap)" (1} ® Ap)) (3.70)
= N?PyIpp, © ((1p1p) ® (AFAR)) (3.71)
= MN?Pylp,p,, (3.72)

where Py is the BS transmit power. Also, note that tr(3"3) can be expressed as

(3% =3 (3.73)
=|(POT(Ar(¥,, #r) @ Ak (W, 0,))) * (1, @ An(8y)[F (374
DM |PaT (AR, o AL (3.75)

where (a) is from the definition of column-wise Khatri-Rao product. Due to the mutual
orthogonality of array steering vectors, Ay . ® AR 4 is an orthogonal matrix, and thus
|£||% is maximized when ® = A} . e Ag,. Therefore, ® = A}, e Ag, is the

asymptotic optimal solution of (3.53).

3.7.4 Proof of Proposition 4

The distortion of BS-RIS-UE path gain estimate is

SISy — (3.76)
)BT+ AR )y 4, (3.77)
where 3 is the estimated sensing matrix generated from ('l:bT, @,.)- Note that y is equal

to (X + AX')y, not £ where AX = (PA®" (AR, o A} ) * (1], ® Ap). This

is because the BS uses the estimated phase shift matrix 3 generated from ({br, ®,)
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so that the effective uplink channel is a function of ®. Also, (ﬁ]HﬁJ)_lﬁ)H can be

approximated as
') 15" x(sHs + ASHE + BHAR) (S + AS)H (3.78)
Wishs)l - (i) H(ASHES + SHAS)(SHE) 1)z + AD)!
(3.79)
~(xix) et (i) ~iast - (el axstiys 4 =HAY)

(xHx)~ixH (3.80)
where (a) is from the matrix inversion lemma. By plugging (3.80) into (3.77), we obtain

Ay =((ZPx)~Ixf 4 (s tazt - (2is)l(Asis

+ SHAS)(ZES) I (D + AX )y — 4 (3.81)
~(ZIE) IsHAY - AX)y (3.82)
=— (2"%) 'S (PR (AAR, ¢ Ak ) * (15, ® Ag))7. (3.83)

3.7.5 Proof of Theorem 1

As shown in Lemma 1, vec(H) can be expressed as vec(H) = W~ where ¥ =

(Ar, @ AR ) * (I}T ® Ag). Then the distortion of vectorized RIS reflected channel is
Avec(H) =~ AW~ + TA~, (3.84)

where AW = (AAg, e Ag )+ (15, ® Ap) = (RO Ar,) e Af ) * (15 © Ap).

In the following lemma, we provide the approximated expression of A-~y.

Lemma 5. When the number of RIS reflecting elements is large, A~ can be approxi-
mated as

Ay =~ diag(z ® 1p,)~. (3.85)

Here, z = [21 - zp,|T where z; = x;AYy; + yilNpri, i = sin gy ;(cos (N, —
1) — sinty;(Ny — 1)), and y; = cos pr;(sin ), ;(Ny — 1) + cos b, ; (N — 1)).
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Proof. By plugging (3.54), (3.56), (3.69), and (3.72) into (3.61), we obtain

Ay~ — M((NP * (1p, ® AB))H((P(AI*Q,T e Ar,)"(RO Ag,) @ Ai,))
«(1p ® Ag))y 556
T M]ifPtx (P'"P(AR, ® Ary) (RO Ar,) e Ak ) ® (15, ® Ap)" (15,
®As))y (3.87)
=— ﬁ(((AE,r ¢ Ary) (RO Ag,) e Ag ) @ (1p,1%) ® (A5 AB))).

(3.88)
To compute (3.88), we use the property of Khatri-Rao product that AeB = [diag(a;)B - - - diag(ay;)B]

where A = [a; - - - a)z]. Using this property, we obtain

Al*i,r ® ARy =[diag(ag (¢¥r1, SDT,I))AR,g -+ - diag(ag (¢, p, , SDT,PT))AR,g]a

(3.89)

(RO Ag,) @ A , =[diag(r1 © ar(¢r1, ¢r1))Ag g - - - diag(rp, © ar(Yr ., ¢r,p,)) AR 4,
(3.90)

where r; = p; A, ;+q;Ap,; is the i-th column vector of R (see (3.56)). Thus, one can

easily check that the (7, j)-th submatrix of (Ag . AR )T(ROAR,) @ Ag ,) has the

form of Aggdiag(aﬁ(wm, pri) Or; Oar(Yrj, prj)) AR - Also, the (k, 1)-th element

of Ag,gdiag(al*z(wr,ia Pri)Or;Oar (Yr,j, @T,j))Al*z,g is ag(@bg,ka ©g.)diag(ag (¢ri, pri)©

r; ®ag(Vrj, ¢rj))ag(¥g.1, Pg,1). From the mutual orthogonality of array steering vec-

tors, (3.57), and (3.58), we obtain
ag(wm'a ‘Pr,i)diag(pj)aR(wr,ja SDr,j) = — jmwsing;; (aR,y (@Z’m‘a Sor,i) ® aRr,z (¢m’a Sﬁr,i))H
(COS wr,j(Ny & INx) — sin 1/}7«0‘ (INy & Nx))

(aR,y (wr,ja (Pr,j) @ aRr,x <¢r,j7 @r,j)) (3.91)

iNT; ;.
=— ]Tw sin . j(cos 1y ;(Ny — 1)
— sindhy (N, — 1)) (3.92)
NS
=T, (3.93)
2
.-':lx_i-l -'%;: | !: =], T'll
| = | I L=

84



where N, = diag(0,--- , N, —1) and N, = diag(0, - - - , N, —1). Similarly, we obtain

) JNT6;
aﬁ(d}m, or.i)diag(qj)ar (Vrj, ¢rj) = — 5 7 cos orj(sin e j (N, — 1)
+ cos . j(Ng — 1)) (3.94)
iNTO; i
_ ‘]T]y] (3.95)

This means that the mutual orthogonality between the array response vectors holds even

when R is multiplied in the middle. Based on this observation, we obtain

* * N .
(Ag, » Ary) (RO Ar,) e Af,) = —2 5 diag(z® Lp,). (3.96)
By plugging (3.96) into (3.88), we obtain the desired results. 0

Using (3.84) and (3.85), the NMSE of RIS reflected channel estimation can be

approximated as

|AH|Z [Avec(H)||?
E| |H||F] E[ [vec(H ”2} (3:97)
(AP~ + BAY)H(ATY + A
wE[ i IZ)H( il 7)] (3.98)
e i e’
(@) 1 R _
2 W E[||A®5|?] — 7 Re{jE [¥"diag(z ® 1p,)" T ATS]}
+ %E[H‘I’dwg(z@ 1p,)7| ]) (3.99)

where ¥ = v/|v|| and (a) is from ¥"¥ ~ MNIp, p,. The first term of (3.99) is

computed as

E[||A®5|?] =E[tr(ATHFTATH)] (3.100)
@ 1 2
_PgPTE[HA‘IlHF] (3.101)
=5 5 E[[(RO Ar;y) e Agy) « (15, ® Ap)llF],  (3.102)
gtr

-

where (a) is from ]E[ = %Pgl P, p,- Similar to (3.89)-(3.96), one can easily check

the mutual orthogonality between the column vectors of (R ©® Ag ;) ® Ay . Thus, we
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obtain
(RO Agr,) e Af ) (R® Ag,) ® Af ) ~ diag(t ® 1p,), (3.103)

where t is the diagonal element vector of RMR. Thus, E[|| A®+||?] can be re-expressed

as
55 E[[(RO Ar;) e Ag ) * (15, ® Ap)llF] (3.104)
gtr
=55 E[tr(diag(t ® 1p,) ® (15,13 ) ® (A5Ag)))] (3.105)
g-r
M &
=5 > E[pill*1A¢n i + lail*[Aeril]- (3.106)
Ti=1

From the definition of p; in (3.57), we obtain

E[llpi|*|A¢rl*] =n*E[sin® prillcos ¢ri(ny ® 1n,) = sintri(Ly, @ o) || A¢r].

(3.107)
Note that for arbitrary real values a and b, we obtain
2 . 2 2 CL2 + 62 ~ 9
E[sm ©rilacosy; — bsiny;|“| Ay ] == E[(l + cos (2¢r; + 200, + @) | Ay 4] ]
(3.108)
a CL2 + 62
[ (3.109)
72(a? 4 b?)
3.110
oWz ( )

—a . A
where tana = 7. Also, from 1,.; ~ U{%i‘izow,wﬂ_l}, Ay ~ U )

and fy [, @* cos (z 4 y)dady = —x* cos (x + y) + 2z sin (& + y) +2 cos (z + y), we
obtain IEA% i [|Az/)m-|2 cos (2Av¢,; + 2@[17«724 + a)] = 0 from which we obtain (a).
Thus, E[||pi||*|A¢y.;i|?] is computed as

- Nz—1Ny—1
ElloilF1avel] =jomm 2 2 (% +47) (3.111)
LT — i —";
N7t
=gz (Ve = 1)(2Nz —1) + (Ny = 12Ny —1)).  (3.112)
az
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Similarly, since @ ; ~ M{WLIZ‘M:_WSI/QV... Way2y @and Apy ~ U =

)> We obtain
ZWel ’ 2Wel

N 4
B[l il A¢nil’] = ggiva (Ne = DENe = 1) + (N, = DN, ~ 1)). G.113)
el

By plugging (3.112) and (3.113) into (3.106), we obtain the first term of (3.99) as

MNr* 1 1
B[ A%*] =25 ((No = DN = 1)+ (Ny = DNy = 1) (35 + )
(3.114)

The second term of (3.99) can be computed as

Re{jE[¥"diag(z ® 1p,) " TATY]} = lp Re{jE|tr(diag(z ® 1p,)" ¥"AW)]}

ag-r
(3.115)

a -“4 l‘ . .
@ TFE[tr(dlag(z ® 1p,)"(diag(z ® 1p,)))]
2PgPr g9 g9

(3.116)
MNT('

ZE |2 A + 4Dl

(3.117)

®) MNm? e YN E S 1

= S (=12 (= D) (g + )
(3.118)

where (a) is from the definition of ¥ and (3.96) and (b) is from (3.110).

Lastly, the third term of (3.99) can be computed as

E[||®diag(z @ 1p,)7°] =

E[tr(diag(z ® 1p,)" ¥ Wdiag(z ® 1p,))]

P,P,
3.119)
MNr? 1 1
= N, —1)? N, - 1)) (— + — ).
g (Ve = D% = ) (5 + g0
(3.120)

Finally, by plugging (3.114), (3.118), and (3.120) into (3.99), we obtain the desired

result.
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Chapter 4

Transformer-based Channel Parameter Acquisition for

Terahertz Ultra-Massive MIMO Systems

In this chapter, we introduce a channel estimation technique for time-division-duplexing
(TDD)-based THz ultra-massive (UM) multiple-input multiple-output (MIMO) systems.
THz UM-MIMO system is envisioned as a key technology to support ever-increasing
data rates in 6G communication systems. To make the most of THz UM-MIMO
systems, acquisition of accurate channel information is crucial. However, the THz
channel acquisition is not easy due to the humongous pilot overhead that scales linearly
with the number of antennas. In our work, we propose a novel deep learning (DL)-
based channel acquisition technique for the THz UM-MIMO systems. By learning the
complicated mapping function between the received pilot signal and the sparse channel
parameters (e.g., angles, distances, path gains) using Transformer, the proposed scheme
can make a fast yet accurate channel estimation with a relatively small amount of pilot
resources. Moreover, using the attention mechanism of Transformer, we can promote
the correlation structure of the received pilot signals in the feature extraction, thereby

improving the channel parameter estimation quality significantly.
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4.1 Introduction

As a key technology to meet the demand for ever-increasing data rate in 6G, terahertz
(THz) ultra-massive multiple-input multiple-output (UM-MIMO) communication has
received a great deal of attention recently [2]. By exploiting the plentiful spectrum
resources in the THz frequency band (0.1 ~ 10THz) along with a large number
of antennas, THz UM-MIMO communications can support way higher data rates
than the conventional sub-6GHz and millimeter-wave communications can offer. To
maximize the potential gain of THz UM-MIMO systems, the base station (BS) needs
to acquire accurate downlink THz channel information. Main challenge of the THz
UM-MIMO systems is that the channel exhibits the near-field characteristics since
the array aperture of the massive number of antenna elements is comparable to the
communication distance [52]. While the signal wavefront can be readily approximated
as a planar wave in the conventional far-field region, the electromagnetic (EM) radiation
is performed through the spherical wave in the near-field region [53, 54]. Due to the
spherical wavefront, the near-field THz channel can be expressed as a function of a few
parameters in the spherical domain including angles, distances, and path gains.

Recently, various techniques have been proposed for the acquisition of the THz
channel parameters [55-59]. In [55, 56], compressed sensing (CS)-based channel acqui-
sition approaches have been proposed. In [57-59], deep learning (DL)-based approaches
that learn the mapping function between the received pilot signals and the channel pa-
rameters using deep neural network (DNN) have been proposed. Among various DNN
architectures, a convolutional neural network (CNN) is popular due to its simplicity and
ability to extract spatial features from the received pilot signals [59]. A major drawback
of CNN, in the perspective of the THz channel parameter acquisition, is that it might
not be effective in extracting the correlation between the spaced-apart pilot signals since
the filter kernel and convolution operations are performed locally.

In the DL-based channel parameter estimator, a feature map is extracted from the

DNN using the received pilot signals. By the feature map, we mean the low-dimensional
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Figure 4.1: Correlation structure of the received pilot signal in THz UM-MIMO systems.

vector containing core information (e.g., MIMO antenna array structure, locations of
scatterers, and mobility of user equipment (UE)) of the large-dimensional input. To
facilitate the feature extraction, one should deliberately handle the correlation structure
of the received pilot signals. Notable characteristics of the received pilot signal of THz
UM-MIMO systems are twofold; First, the received pilot signals will have meaningful
power only for a few time slots. During the channel acquisition process, the BS employs
multiple sharp training beams, each of which is directed to distinct directions. Thus, the
received pilot signal will have a high power only when the training beams are aligned
with the direction of UE (see Fig. 1). Second, the THz channel is determined primarily
by the scattering geometry around the BS so the received pilot signals for each and
every subcarrier can be expressed as functions of the same geometric parameters (e.g.

angles, distances), which means that the received pilot signals, irrespective of their
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subcarrier positions, are highly correlated.

An aim of this paper is to propose a DL-based channel acquisition technique for
the THz UM-MIMO systems. The proposed technique, dubbed as Transformer-based
parametric THz channel acquisition (T-PCA), estimates the channel parameters (angles,
distances, path gains) using Transformer, a DL architecture that differentially weights
the significance of each input data (in our case, the received pilot signals) via the
attention mechanism [60]. To make the most of the correlation structures of the received
pilot signal, we employ two distinct Transformer networks, viz., temporal Transformer
network (TTN) and spatial Transformer network (STN). In TTN, using the received
pilot signals as inputs, the temporally-correlated features are extracted from the product
of the attention weight and the received pilot signal. Since only a small portion of
received pilot signals have a meaningful power, Transformer in TTN is trained such
that these dominant received pilot signals will have relatively high attention weights. In
doing so, one can facilitate the extraction of the temporally-correlated features. After
that, using the low-dimensional features generated from TTN as inputs, the spatio-
temporally correlated features are extracted in STN. As mentioned, the received pilot
signals for all subcarriers are expressed as functions of the same channel parameters
so that all received pilot signals, regardless of their positions, are correlated to each
other. Main purpose of Transformer in STN is to capture the correlated features of both
the adjacent and spaced-apart received pilot signals. Finally, the extracted features are
converted to the channel parameters via the fully-connected network.

From the simulation results, we demonstrate that T-PCA outperforms the con-
ventional channel acquisition schemes in terms of the normalized mean square error
(NMSE). For example, T-PCA achieves more than 5dB NMSE gain over the CS-based
scheme. Even when compared with the CNN-based scheme, T-PCA achieves around

2.5dB NMSE gain.
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4.2 Terahertz UM-MIMO System Model

We consider the THz UM-MIMO OFDM systems where a single-antenna UE transmits
an uplink pilot signal to a BS equipped with a uniform linear array (ULA) of M antennas.
Specifically, T" time slots and S subcarriers are used for the uplink pilot transmission
(see Fig. 1). By exploiting the channel reciprocity of time-division duplexing (TDD)
systems, the BS can recycle the acquired uplink channel information for the downlink
data transmission [61]. In case when the uplink and downlink channels are not exactly
the same, one can bridge the gap between the uplink and downlink channels through
the reciprocity calibration [62].

In this setup, the received pilot signal vector y; s € CNr>1 of the s-th pilot subcar-

rier at t-th time slot is given by
Yt = Wihgzy s + Wilngs = / PaWith, + fig 5, 4.1

where N, is the number of RF chains in BS, z; s = /Py is the uplink pilot, Py is

CMx1 i the THz channel vector at s-th subcarrier,

the transmit power of UE, h, €
W, € CM*Nr is the receive beamforming matrix at the ¢-th time slot, and n; s ~
CN(0,021),) is the additive Gaussian noise. Note that W is generated from the
column vectors of M -point DFT matrix. By concatenating the received pilot signals
over T’ time slots, we obtain the received pilot signal matrix at the s-th subcarrier
Yo =[y1s--yrs" € CT¥N,

One notable characteristic of THz UM-MIMO systems is that the channel exhibits
the near-field characteristics [52]. Since the signal wavefronts are spherical in the
near-field channel, the phase difference between two antenna elements is affected by
the distance r as well as the angle 6. Therefore, the near-field array steering vector

is expressed as a function of spherical coordinates (0, ). In fact, the near-field array

steering vector b (6, r) at s-th subcarrier is given by [56]

by(6,7) = [ IR AHRI—D) L TR “2)
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where f. is the carrier frequency, f; is the baseband frequency of the s-th subcarrier,
and r,, is the distance between the UE and the m-th BS antenna, given by

5 d? cos? 6

Tm=1r—(m—1)dsing + (m — 1) 5

4.3)

In this work, we use the near-field multipath THz channel model where the uplink

channel vector h from the UE to the BS at the s-th subcarrier is expressed as

P
hs — Z ape_jQWfsprs(0p7 Tp), (44)
p=1

where P is the number of propagation paths, ¢, is the AoA, r, is the distance, 7,
is the time delay, and «, is the path gain of the p-th path. Let 8 = [0 ---0p]T
and r = [r;---7rp|T be the angle and distance vectors, respectively, and a; =
[ape=72mfsTi ... qpeI2mfs7PT be the path gain vector for the s-th subcarrier, then

h, can be succinctly expressed as a function of channel parameters:
h, = BS(07 r)a87 4.5)

where B4(0,1) = [bs(61,71) -+ - bs(0p,7p)] € CM*F is the near-field array steering
matrix. Note that h, is parameterized by a few THz channel parameters, i.e., angles 0,
distances r, and path gains as, whose numbers are the same as the number of paths.
Since the number of paths P (e.g., P = 1 ~ 3) is much smaller than the number
of antennas M (e.g., M = 256 ~ 1024) in the THz UM-MIMO systems, one can
significantly reduce the required number of measurements by estimating the sparse

channel parameters instead of the full-dimensional channel vector h [41].

4.3 Transformer-based parametric Terahertz Channel Ac-
quisition

Main goal of the proposed T-PCA is to estimate the sparse THz channel parameters

(i.e., angles, distances, and path gains) using Transformer. Major benefit of T-PCA is
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that we can extract the features of the THz UM-MIMO received pilot signals using the
attention mechanism of Transformer. In essence, the attention mechanism facilitates
the generation of the attention weights that represent the correlations between input
data. Using the product of the attention weights and the received pilot signals as input,
one can extract the spatially and temporally-correlated features inherent in the THz
UM-MIMO systems. Key ingredient of T-PCA is the combination of Transformer and
fully-connected network to learn a complicated nonlinear mapping between the received

pilot signals {Ys}f:1 and the THz geometric channel parameters (6, r):

{6,8} = g({Y.}o_;T), (4.6)

where ¢ is the mapping function and I" are the network parameters. Once 0 and t
are acquired, the path gains {ds}§:1 can be easily estimated using the conventional

approaches such as the least squares (LS) estimator:
&s = (VPWIB,(8, 1)) vee(YT), s=1,---,5, 4.7)

where W = [W; --- Wy] € CM*TNr_ Using the obtained the channel parameters o,

t, {&s}5_,), we can reconstruct the THz channels {h,}5_:

h, = B,(0,f)é&,, s=1,---,5. (4.8)

4.3.1 Basic of Transformer

In the conventional CNN-based acquisition technique, the features are extracted by
performing the convolution operation of a 2D/3D-shaped weight matrix (called kernel)
and a part of the received pilot signal [58]. While CNN is effective in extracting the
locally correlated features (e.g. correlation among antennas), it might not be efficient in
extracting the globally correlated feature due to the locality of the filter kernel. Also,
since the same kernel is multiplied to all input signals, the nonuniform and irregular

correlation structures of the received pilot signals cannot be captured properly.
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Figure 4.2: Attention map of TTN Figure 4.3: Attention map of STN

In a nutshell, Transformer extracts the features using the attention mechanism. In the
attention layer of Transformer, the correlations between the input data (a.k.a., attention
weight or attention map) are calculated and then multiplied to the input to generate
the weighted input matrix [60]. Since the correlations between each and every element
in the input sequences (a.k.a., token) are used for the attention weight generation,
Transformer can extract both the locally and globally correlated features eftectively.

To be specific, using the sequence of D x 1 input vectors Y = [y ---y|T € CEXP,
the attention layer constructs three different embedding matrices, i.e., the query Q =
YW, the key K = YWk, and the value V = YWy where W, Wi, Wy €
CP*P are the weight matrices and L is the number of input sequences. Since the query

Q and the key K contains the features of the input data, by performing the inner product

of Q and K, we obtain the attention map M € CL*1:

M = fsoftmax (QKT/\/E)a (4.9)

where fiofimax (YY) is a row-wise softmax function defined as [ fsotimax (Y)}i,; = eYii/y y eYii,

Finally, by multiplying the attention map M with the value V, we obtain the weighted

input matrix Z € CL*P:

Z =MV = fooftmax (QKT/\/E)V7 (4.10)
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After that Z passes through the fully-connected network, generating the output feature
of Transformer.

To demonstrate the effect of the attention map in capturing the correlation structure
of the received pilot signals, we plot the attention maps of TTN and STN in Fig. 4.2 and
4.3. From Fig. 4.2, one can observe that the attention weights of TTN are concentrated
on a small number of column vectors. Due to the extremely narrow beamwidth of
THz UM-MIMO systems, the received pilot signals will contain the noise only when
the training beams are not aligned with the signal propagation paths. This means that
only a few row vectors of the received pilot signal matrix Y = [y1,---y7, s]T have
relatively high values (same for the key K generated from Y ). Since the attention map
is constructed from the inner product of QQ and K, the attention weights are concentrated

on a few column vectors corresponding to the dominant received pilot signals.

4.3.2 Network Architecture of T-PCA

In this subsection, we explain the detailed network architecture of T-PCA (see Fig. 2).
In T-PCA, the received pilot signal y; , is first separated into the real and imaginary
parts ;s = [Re(yrs)! Im(yes)T|T € R2V-*! and then the concatenated matrices

T € RT*2Nr pass through the fully-connected network to generate

Ys = [yis Y15
X, =Y ,W.+b, € RT*P (W, € R2N*D ig the weight matrix and b, € RP*!
is the bias vector). Then a representative vector X s € RP*1 a trainable vector
containing the correlated feature of the input data, is appended to the input matrices as
X, = [x0,s XI]T € RHD*D [63]. Also, to indicate the position of each element in
the input data sequence, a trainable matrix called positional embedding matrix W s €
RT+DxXD jg added as X = X, + W 0. Then the encoded input sequences {Xs}le
sequentially pass through the multiple Transformer blocks. In the last Transformer
block, the temporal feature vectors {f;m}f:l are obtained from the first row vector of

the output matrix.

Once the temporal feature matrix F = [fin. .. finT ¢ RSXD jg obtained, F'
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Figure 4.4: Overall structure of T-PCA.

is used as an input matrix of STN. Similar to TTN, the representative vector and the
positional embedding matrix are added to F'™ and then the output matrix passes through
multiple Transformer blocks. Then the spatio-temporal feature vector £ € RP*1 is
obtained from the first row vector of the output matrix of the last Transformer block.
The extracted spatio-temporal feature vector £ passes through the fully-connected
network to generate the output vector z, = W,f*" 4+ b, € R2P*1 (W, € R2P*D jg

the weight matrix and b, € R?P*! is the bias vector). After that, z, passes through

e e~
er4e %

the hyperbolic tangent layer fin(z) = to generate the desired THz channel
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parameters as {6, 7} = finn(2,). The overall structure of T-PCA is depicted in Fig.
4.4.

4.3.3 Computational Complexity Analysis

In this subsection, we analyze the complexity of T-PCA in terms of the number of
floating point operations (flops). Recall that the proposed T-PCA consists of input
fully-connected network, TTN, STN, and output fully-connected network (see Fig. 3).

Thus, the overall computational complexity Ct.pca of T-PCA can be expressed as
Crpca = Cin + Cin + Csm + Couh (4.11)

where Ciy, Cout, Citn, and Cyy are the computational complexities of input and output
fully-connected networks, TTN, and STN, respectively.
In the input fully-connected network, the matrix multiplication and bias addition

are performed for each subcarrier so the computational complexity Cj,, is
Cin = 4N, STD. (4.12)

In TTN, the input vector passes through the positional embedding layer and Trans-
former layer consisting of IV, Transformer so the computational complexity Cy, can be
expressed as

Cttn = Cpos + Nbctfa (4-13)

where Cpos and Cys are the computational complexities of the positional embedding
layer and Transformer layer, respectively. Also, Np is the number of transformer blocks
in TTN. In the positional embedding layer, the positional embedding matrix W is
added to the input matrix so that Cpos = S(T"+ 1) D. Also, since the Transformer block
consists of the attention module (S(T" + 1)(6D? + 4DT + 2T + 3) flops), the residual
connection (S(7'+1) D flops), layer normalization (45(7'+1) D flops), fully-connected
network (25 (T + 1) D? flops), activation layer (S(7T" + 1) D flops), and fully-connected

network (25(T + 1) D? flops), the computational complexity C of a Transformer block
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is Cy = S(T 4 1)(10D? + 4DT + 2T + 10D + 3). By plugging Cpos and Cys to (4.13),

we obtain the computational complexity Cy, of TTN:
Cun = S(T +1)(D + Ny(10D? + 4DT + 2T + 10D + 3)). (4.14)
Similarly, the computational complexity Cg, of STN is
Csn = (S +1)(D + Ny(10D? 4+ 4DS + 25 + 10D + 3)). (4.15)

In the output fully-connected network, the channel parameter estimates are extracted
by multiplying the weight matrix, adding the bias vector, and passing through the tanh

layer. Thus, the complexity of the output fully-connected network is
Cout = (4D + 10) P. (4.16)

In conclusion, by plugging (4.12)-(4.16) to (4.11), we obtain the computational com-
plexity Cr.pca of T-PCA:

Crpca =10P + (4NTST +4P + ST + 25 + 1)D
+ Ny(S(T + 1)(10D* + 4DT + 2T + 10D + 3)

+ (S +1)(10D% + 4DS + 25 + 10D + 3)). (4.17)

4.4 Simulation Result

4.4.1 Simulation Setup

In our simulation, we consider the THz UM-MISO OFDM systems where a BS equipped
with M = 256 antennas and N, = 4 RF chains serves a single-antenna UE. The UE
is located randomly around the BS within the cell radius of R = 50 m. We use the
wideband THz multi-path channel model where the number of paths is P = 1, the

carrier frequency is f. = 0.1 THz, and the channel bandwidth is B = 1 GHz!. We set

'In the THz systems, due to the severe path loss and directivity of THz band, the power of line-of-sight

(LoS) component is almost 100 times stronger than that of the non-line-of-sight (NLoS) component [64].
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Figure 4.5: NMSE vs. SNR (M = 256, N, =4,T = 32, S = 16)

the numbers of subcarriers and time slots for pilot transmission to S = 16 and 1" = 32,

respectively. Also, we use the path loss model in 3GPP Rel. 16 [17].

In the proposed T-PCA, each Transformer network consists of two Transformer
blocks with the embedding dimension D = 128. For the network parameter training,
we use the supervised learning strategy where the network parameters I' are updated

iteratively in a way to minimize the NMSE-based loss function J(T'):

|h, — hy|?
Z TN (4.18)

As a performance metric, we use the normalized mean square error (NMSE) defined
as NMSE = % Zle % Since it is very difficult to design a THz UM-MIMO
testbed to acquire the real channel dataset, we instead used synthetically generated
channels from the THz UM-MIMO simulator. Based on the property that the THz
channel can be expressed as a function of a few geometric channel parameters (i.e.,
angles, distances, and path gains), we synthetically generated the scattering environ-
ment at the THz UM-MIMO simulator based on the 3GPP standard, using which we

acquired the geometric channel parameters and THz channels. Specifically, we ran-
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15dB)

domly generated the geometric channel parameters angles @, distances r, and path gains
{as}s | from [—7,7), (0m,50m), and CA(0, p) where p is the large-scale fading
coefficient modeled by the path loss model in 3GPP TR 38.901, respectively [17].
Using the THz UM-MIMO simulator, we separately generate training and test datasets
consisting of 300, 000 and 50, 000 independent channel realizations, respectively. The
number of training epochs and the learning rate are set t0 Nepoch = 1000 and n = 1073,
respectively. For comparison, we use four benchmark channel acquisition schemes: 1)
CNN-based scheme [58], 2) compressed sensing (CS)-based scheme [55], 3) linear

minimum mean square error (LMMSE) estimator, and 4) LS estimator.

4.4.2 Simulation Result

In Fig. 4.5, we plot the NMSE as a function of transmit SNR. We observe that T-PCA
outperforms the conventional channel estimation techniques by a large margin. For

example, when SNR = 10dB, T-PCA achieves significant (more than 9dB and 11 dB)
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NMSE gains over the LMMSE and LS schemes, respectively. Even when compared with
the CS-based scheme, T-PCA achieves around 6 dB NMSE gain. This is because the
mismatch between the true channel parameters and the quantized channel parameters is
considerable in the CS-based scheme while such is not the case for T-PCA since T-PCA
estimates the channel parameters in the continuous domain.

In Fig. 4.6, we plot the NMSE as a function of the number of time slots. We observe
that T-PCA achieves more than 33% pilot overhead reduction over the conventional
schemes. For instance, to achieve the NMSE of —10dB, T-PCA requires 24 time
slots while the conventional schemes require more than 36 time slots. This is not a
surprise since the LMMSE and LS schemes estimate the full-dimensional THz channel
vector hy directly so that the required number of time slots is very large>. Whereas,

by learning the complicated mapping between the received pilot signals and the THz

’In fact, to guarantee the accurate estimation of h,, the number of measurements 7'N,. should be
larger than the number of antenna elements M. For example, when M = 256 and N, = 4, we need
to allocate more than 5 subframe (more than 50% of a frame in 5G NR) just for the pilot transmission

(14 slots/subframe x 5 subframe = 70 > M /N, = 64).
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channel parameters using Transformer, T-PCA can efficiently acquire the sparse THz
channel parameters with a small amount of pilot resources.

In Fig. 4.7, we plot the NMSE as a function of the number of BS antennas M.
We set the number of time slots 7' = L%J so that 7" increases linearly with M. We
observe that the NMSE gain of T-PCA over the conventional techniques increases with
M. For example, when M increases from 96 to 320, the NMSE gain of T-PCA over the
CS-based scheme increases from 2.3 dB to 6.1 dB, which implies that T-PCA would be
more effective in improving the channel estimation performance of the reconfigurable
intelligent surface (RIS)-aided THz systems where the number of reflecting elements is
extremely large.

In Fig. 4.8, we evaluate the NMSE loss of T-PCA as a function of the training epoch.
By one epoch, we mean the period during which all training data has been used once to
update the parameters of a DL model. We observe that as the training epoch increases,

the NMSE loss of T-PCA decreases gradually and finally converges.
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4.5 Summary

In recent years, a remarkable success of DL in various disciplines (e.g., image classifica-
tion, speech recognition, and language translation) has stimulated increasing interest in
applying this paradigm to wireless communication systems. In this chapter, we proposed
a DL-based channel acquisition technique for the THz UM-MIMO systems. Intriguing
feature of the proposed T-PCA is to promote the nonuniform and irregular correlation
structures of the received pilot signals using Transformer, a DL architecture that dif-
ferently weights each input data based on the correlations between the input data. By
exploiting the attention mechanism of Transformer, T-PCA can facilitate the extraction
of spatially and temporally-correlated features inherent in the THz UM-MIMO systems.
In doing so, fast yet accurate channel parameter estimation can be made with small pilot
overhead. From the simulation results, we demonstrated that T-PCA achieves more than
2.5dB NMSE gain and 33% pilot overhead reduction over the conventional channel
acquisition techniques. In our work, we restricted our attention to channel estimation,
but there are many interesting applications of T-PCA such as channel feedback, beam

tracking, and resource allocation.
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Chapter 5

Fast and Accurate Terahertz Beam Management via

Frequency-dependent Beamforming

In this chapter, we introduce a beam management technique for wideband THz systems.
One main difficulty of the THz communications is the severe attenuation of signal power
caused by the high diffraction and penetration losses and atmospheric absorption. To
compensate for the severe path loss, a beamforming technique realized by the massive
multiple-input multiple-output (MIMO) has been widely used. Since the beamforming
gain is maximized only when the beams are appropriately aligned with the signal
propagation paths, acquisition of accurate beam directions is of great importance. A
major issue of the conventional beam management schemes is the considerable latency
being proportional to the number of training beams. In this chapter, we propose a
THz beam management technique that simultaneously generates multiple frequency-
dependent beams using the true time delay (TTD)-based phase shifters. By closing the
gap between the frequency-dependent beamforming vectors and the desired directional
beamforming vectors using the TTD-based signal propagation network called intensifier,

we generate very sharp training beams maximizing the beamforming gain.
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5.1 Introduction

Recently, terahertz (THz) communications have received much attention to alleviate
spectrum bottleneck and support high data rates for 6G wireless communications [65,
66]. Using the abundant spectrum resource in the THz frequency band (0.1~10 THz),
THz communications can support immersive mobile services such as digital twin,
metaverse realized by XR devices, and high-fidelity mobile holographic displays [67,68].
Well-known drawback of the THz communications is the severe attenuation of the
signal power caused by the high diffraction and penetration losses and atmospheric
absorption [69]. To deal with the problem, a beamforming technique realized by the
massive multiple-input multiple-output (MIMO) has been widely used [41,56,70,71].
Since the beamforming gain is maximized only when the beams are properly aligned
with the signal propagation paths, the base station (BS) needs to acquire the accurate
channel information in a form of angle-of-arrivals (AoAs) and angle-of-departures
(AoDs). The process to acquire the AoAs/AoDs associated with the paths between
the BS and the mobile and then send the directional beams to the acquired directions
is collectively called beam management [72,73]. In general, the beam management
of 5G NR consists of two steps: 1) beam sweeping and 2) beam refinement. In the
beam sweeping step, the BS sequentially transmits the training beams carrying the
reference signal and the mobile reports the index of the beam corresponding to the
highest reference signal received power (RSRP) to the BS. After that, in the beam
refinement step, the BS narrows down the direction of the mobile by sending multiple
pilot signals (e.g., channel state information reference signal (CSI-RS)) to the direction
obtained from the beam sweeping [74].

Over the years, various beam management schemes have been proposed [75-80].
In [75] and [76], beam management schemes using the hierarchical multi-level beam
codebook have been proposed. In [77], a two-stage beam training scheme using a
multi-resolution codebook for sub-THz communications has been proposed. In [78], a

beam training scheme that exploits wide-beam codewords for the fast beam alignment
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in THz massive MIMO systems has been proposed. In [79], a fast beam tracking scheme
that leverages the temporal variation of the physical direction has been proposed for
THz massive MIMO systems. Also, in [80], a joint beam management and power
allocation algorithm for the THz non-orthogonal multiple access (NOMA) systems has
been proposed. A potential drawback of these schemes is that the BS can probe only
one physical direction in each time slot, thereby inducing a beam management latency
being proportional to the number of training beams. Recently, to speed up the beam
management process, wideband beam training schemes that simultaneously generate
multiple frequency-dependent training beams using the analog phase shifters and true
time delay (TTD)-based phase shifters have been proposed [81-84]. TTD is a unit
generating a specific time delay using multiple switched delay lines [85]. By controlling
the propagation path of the RF transmission signals, TTD induces a phase shift being
proportional to the product of the time delay and the signal frequency to the RF signal.
Using the combination of TTD-based phase shifters and analog phase shifters, the BS
can simultaneously generate multiple frequency-dependent training beams heading
toward distinct physical directions, thereby achieving a considerable reduction of beam
management latency. While this approach is promising, since micro-electromechanical
systems (MEMS) relying on costly semiconductor lithographic process is used in
switching the delay lines in the TTD, hardware complexity and implementation cost of
the TTD are considerable!. To reduce the hardware complexity and the implementation
cost, a partially-connected structure where one TTD is connected to multiple antennas
has been suggested [82]. This so-called delay-phased precoding (DPP) scheme can
save the hardware cost to some extent, but it will cause a severe degradation of the
beamforming gain due to the strong sidelobe power of the generated beams.

An aim of this paper is to put forth an efficient THz beam management tech-
nique reducing the beam management latency without the loss of beamforming gain.

The proposed scheme, henceforth referred to as frequency-dependent beamforming

'The cost of the TTD is nearly 10 times higher than that of the analog phase shifter [85].
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(FDB), simultaneously generates multiple frequency-dependent training beams us-
ing the TTD-based phase shifters and the analog phase shifters. A distinctive feature
of the FDB-based beam management over the previous efforts is that we exploit a
deliberately designed TTD-based signal propagation network called intensifier to com-
pensate for the difference between the desired directional beamforming vectors and the
frequency-dependent beamforming vectors. Since the BS can search multiple directions
simultaneously while suppressing the sidelobes of the beams, we can obtain a significant
reduction in the beam management latency and at the same time achieve the maximum

beamforming gain. The main contributions of this work are as follows:

* We propose a novel THz beamforming network that generates multiple frequency-
dependent beams using TTDs and analog phase shifters. Specifically, the pro-
posed FDB scheme consists of three signal propagation networks: 1) analog
network generating the initial beamforming vector, 2) time delay network chang-
ing the physical directions of the beams, and 3) intensifier network suppressing
the sidelobes of the subcarrier beams generated by the time delay network and
the analog network. By controlling the parameters of these networks, FDB can
generate the subcarrier beams heading toward the desired probing area while

achieving the maximum beamforming gain.

* We propose the FDB-based THz beam management strategy that simultaneously
searches multiple directions. The proposed strategy consists of two major opera-
tional steps: 1) beam spraying where the BS simultaneously transmits the FDB
beams heading toward the whole angular area. After measuring these, a mobile
feeds back the index of the FDB beam maximizing the RSRP to the BS and
2) beam purification where the BS performs the fine-tuning to the angular area
identified in the beam spraying process to find out the precise beam direction.
Since the number of FDB beams is the same as the number of subcarriers in the
wideband THz systems (e.g., 64 ~ 256), we can achieve a significant reduction

in the beam management latency.
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* We perform the beam misalignment probability analysis from which we show that
the probability of FDB to find out the optimal beam direction is much higher than
that of DPP. Also, from the numerical evaluations on the realistic THz systems,
we demonstrate that FDB significantly reduces the beam management latency.
In particular, FDB achieves more than 90% reduction on the beam management
latency over the conventional beam management scheme in 5G NR. Even when
compared with DPP, FDB achieves more than 70% beam management latency

reduction.

Notation: Lower and upper case symbols are used to denote vectors and matrices,
respectively. The superscript ()T, (-)H, and (-) denote transpose, hermitian transpose,
and pseudo-inverse, respectively. ||x|| is the Euclidean norm of a vector x and || X]|| is
the Frobenius norm of a matrix X. Re{z} and Im{z} are the real and imaginary parts
of z, respectively. ay () = [1,e/%, .- e/ (N=12)] Tis the NV x 1 array steering vector
corresponding to z. Also, X ® Y and X © Y denote the Kronecker and Hadamard

product of X and Y, respectively.

5.2 Wideband Terahertz Systems

In this section, we briefly discuss the wideband THz MISO system model and true time
delay, followed by a description of the conventional frequency-dependent beamforming

technique.

5.2.1 Terahertz MISO-OFDM System Model

We consider a downlink THz MISO-OFDM system where a BS equipped with a uniform

2

linear array (ULA) of N antennas” serves a single-antenna mobile. The number of

In our work, we use N x 1 linear antenna array systems but the proposed FDB scheme can be readily
extended to the N = N, x N, planar antenna array systems by exploiting the property that the planar
array steering vector ay (6,1, f;) € CV can be expressed as a Kronecker product of two linear array

steering vectors ax, (6, f;) € CVe and an, (¥, fi) € CNv asan (0,4, f;) = an, (0, fi) ®an, (¥, fi).
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OFDM subcarriers is S, the carrier frequency is f., and the bandwidth is B. To reduce
the hardware complexity, we consider the analog beamforming architecture where an
RF chain is connected with N phase shifters>. Under this setup, the received signal 1;

of the mobile at the i-th subcarrier is given by
Y = VPthglfiSi+nia Z:]-) aSa (51)

where P; is the transmit power at each subcarrier, h; € CN is the downlink THz channel

vector from the BS to the mobile, f; € CV is the frequency-dependent beamforming

vector, s; is the transmit symbol, and n; ~ CA(0, 02) is the Gaussian noise at the i-th
subcarrier. The corresponding data rate R of the mobile is given by

s He (2

R= ;logg <1 + Pt'i%ﬂ' > (5.2)

As for the channel model, we use the far-field frequency-selective line-of-sight

(LoS)-based THz channel model where the downlink i-th subcarrier channel vector

h; € CV from the BS to the mobile is expressed as [86]
h; = \/pae P Tan (o, fi), i=1,--,8, (5.3)

where p is the large-scale fading coefficient accounting for the path loss and the shadow
fading, a; ~ CN(0, 1) is the small-scale fading coefficient, 7 is the propagation delay,
fi = fe— % + %(z — 1) is the i-th subcarrier frequency, and ¢ = 7sin ¢ is the
physical direction, and ¢ is the AoD at the BS. Also, ay(¢, f;) € CV isthe N x 1

array steering vector of BS at the -th subcarrier given by

- fi . i 1T
an(o, fi) = [1,70, o NI (5.4)
= [1,ej%,--- ,ej(N_l)%]T, (5.5)

3The proposed scheme can be readily extended to the hybrid beamforming architecture scenario where
multiple RF chains are connected to the phase shifters. In fact, when the number of RF chains is larger
than one, one can generate the oversampled FDB beams between the FDB beams generated by the single

RF chain.
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where ~; is the ratio between the i-th subcarrier frequency f; and the central frequency

fe:
_ [
fi

Using an (¢, f;), one can define the physical direction ¢; of the beamforming vector f;

i i=1,---,8. (5.6)

at the ¢-th subcarrier as [82]
¢i = argmax|filan (0, ), i=1,-,5. (5.7)

From (5.2)-(5.5), one can easily see that the optimal beamforming vector f* maximizing
the achievable rate is £ = an (¢, f;) and the physical direction of £ is ¢; = ¢ for all

subcarriers*. Note, to find out {f} }5_,, one should acquire ¢.

5.2.2 True Time Delay-based Phase Shifter

In 5G NR mmWave systems, analog phase shifters are often used for the training beam
generation. Since the generated phase is invariant to the frequency, the subcarrier beams
fi,- -+, fg are all the same (i.e., f; = --- = fg). Also, since the subcarrier spacing is
far smaller than the carrier frequency, the array steering vectors for all pilot subcarriers

are almost identical (i.e., an (0, f1) =~ --- =~ an(0, fs)), meaning that the physical

directions ¢1, - - - , ¢g of all subcarrier beams are fairly similar (i.e., ¢1 ~ - - - = ¢g).

Due to the fact that the BS can probe only one direction at a time, the beam management
latency will be directly proportional to the number of training beams [74]. In fact, the
time to complete the beam management process of 5G can easily exceed 20 ms so it
might not be easy to support the mobility of human’s movement even in very mild

scenario (e.g., walking).

“Note that the optimal beamforming vector for each subcarrier is different. In the conventional
mmWave systems, the difference between f. and f; is relatively small, and thus one can readily assume
that v; = % ~ 1. This means that { f;" # | are almost identical. In the THz systems, however, the
difference between f. and f; is no longer negligible due to the large bandwidth. Thus, «; can be larger

or smaller than 1. This phenomenon where the optimal beamforming vector depends on the subcarrier

frequency is called the beam squint effect [56,87].
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Output
(Time-delayed RF Signal)

(Up-converted RF Signal)

A:Swiwh IZl : Impedance

Figure 5.1: Structure of a 3-bit TTD and TTD array. The time delay is A = % where L

is the length of the dotted delay line and c is the propagation speed of RF signal.

Recently, approaches to generate multiple frequency-dependent beams using the
TTD-based phase shifters have been proposed [82, 88]. Essence of these approaches
is to exploit TTD, a device consisting of multiple switches and electrical impedances,
to change the phase of the RF signal. As illustrated in Fig. 5.1, when the fifth switch
SWj5 is activated, the RF signal will propagate through the dotted delay line and the
phase shift being proportional to the product of time delay A = % and the signal
frequency f; is induced. Specifically, if a time delay A is induced to an input RF signal
(i.e., a sum of subcarrier signals) s(t) = ZZ-S:l si(t) = 22‘11 s;¢2™fit_then the output
RF signal will be s(t — A) = 37| 5;e727filt=8) = S5 5,(1)e~727/i2 50 that the
frequency-dependent phase shift —27 f; A is induced for each subcarrier signal s;(t).

Using the multiple TTD-based phase shifters, say N TTDs, one can generate
multiple frequency-dependent beams. Specifically, let z; (¢, 7) be an output of the

n-th TTD for the i-th subcarrier signal, then z; ,,(¢, 7) can be expressed as z; , (¢, 7) =

si(t — (n — 1)1) = s;(t)e 7 ("=D27/i7 By stacking x; (¢, 7) of all N TTDs, one can
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Figure 5.2: Overall structure of the conventional DPP scheme.

express the output vector x;(t) of TTDs for the i-th subcarrier signal as

Xi(t) = [xi,l(t, 7'), .’L’@Q(t, ’7'), s ,.%'i’N(t, T)]T (58)

= [1, e—jzﬂ'fiT’ .. 7e—j(N_1)27TfiT] TSZ‘(t) (5.9)

= fi(T)Si(t) (5.10)

= ay(=2mfer, fi)si(t). (5.11)

One can see that f;(7) = [1,e 277 ... ,e‘j(N_l)Qﬂf’iT]T = ay(=2nf.7, fi) is

the TTD beamforming vector at the i-th subcarrier. In contrast to the beamforming
vectors generated by the analog phase shifters, the TTD beamforming vectors at distinct
subcarrier frequencies are different. However, since the physical direction ¢; of f;(7)
are identical for all subcarriers (i.e., 1 = - - - = ¢g = —27 f.7), one cannot generate
frequency-dependent beams with distinct physical directions using only the TTD-based

phase shifters.

5.2.3 Conventional Delay-phased Precoding

To simultaneously generate the multiple training beams heading toward distinct physical
directions, DPP employs both TTDs and analog phase shifters [82, 83]. Let N and
T9PP be the numbers of analog phase shifters and TTDs, then each TTD is connected

to PP — % analog phase shifters (see Fig. 5.2). The DPP beamforming vector
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fid PP c CN at the i-th subcarrier is
£ — £y o £2(g), i=1,---,85, (5.12)
where £214(9) € CV is the beamforming vector generated by the analog phase shifters:
£22(9) = 1,70, ..., N1, (5.13)

Note that, since the phase generated by the analog phase shifter is invariant to the
frequency, the analog beamforming vectors {f*"*(9) le of all subcarriers are the same.

fid(7) € CV is the beamforming vector generated by the TTDs:

fitd(T) — [1, e*j?ﬂ'fi‘l'7 767j(TdPP—1)27TfiTj|T © 1 pam, (5.14)
Noting that f"*(0) = an (0, f.) = an(vif, f;) and £%(7) = aguw(=27fcT, fi) @
1 payp, ONE CanN re-express fid PP as

£ = £4(r) © £(0) (515

—

a

= (agaw (=27 feT, fi) @ Lpaw) © (agae (P, fi) @ apan (Vi0, fi))  (5.16)

(—E) (apop(—27ch7'a fz) © apop(P’Yi9> fz)) & (1Pdpp © apapp (%‘97 fz)) (5.17)

9D e (P20 — 27 o7, £) @ A paws (130, f2), (5.18)

=

where (a), (b), and (c) follow from ay (0, f;) = ar(P90, f;) ® ap(0, f;), (A @ B) ®
(Ce®D)=(AoC)® (BoD)andan(é1, fi) ©an(bs, fi) = an(¢1 + 02, fi),
respectively”.

By properly controlling 7 and 6, one can generate .S DPP beams {fid pp}le heading
toward the desired physical directions. In the following Lemma, we express the physical

direction of DPP beam as a function of # and 7.

Lemma 6. The physical direction ¢; of the DPP beam £P* is ¢; = ;0 — 2T 8D,

Pdpp

>For example, when N = 6, T = 2 and P = 3, then an (0, f;) can be re-expressed as ag (0, f;) =
20 1

[l,ej%i,~~~ eJT}T = [[1e LT ]T ]7[1€j76j’y "l = [lej%(j}T ® [lej%ej‘?é]
ax(30, fi) ® a3(0, fi).
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Due to the partially-connected structure where one TTD is connected to multi-
ple analog phase shifters, DPP cannot generate sharp training beams. To measure
the difference between the DPP beamforming vector ff PP and the desired directional

beamforming vector ay (¢;, f;), one can re-express ay (¢;, fi) as

an(¢i, fi) = agan (PPP¢;, i) @ apaw (¢i, fi) (5.19)

a 2 fo.r
D e (PP — 27 [, ;) © pary (0 — PTJ;,, 1), 620

where (a) is from Lemma 1. It is clear from (5.18) and (5.20) that ff PP and an (¢4, f;)

are not the same due to the difference between a papp (%0 — 2;{;;, fz) and apap (i, fi).

Since fid PP and ax (¢;, f;) are different, the transmit signal is not fully concentrated on

the mainlobe, causing a considerable degradation of beamforming gain. To quantify
¢dppH

this behavior, we evaluate the beamforming gain G, wp PP an (¢, f;)|? of the

DPP beam f; dPP at the i-th subcarrier:

1
Gy = y £ (61, )|

’ (apop P pp’Y 0 — 2 fe7, fi) @ apaw (i, fZ)>H

2w foT 2
(apop<P 0 — 2 for 1) @ apun (110 — e 1)) 522

(5.21)

27 for 2
= 2t (16, f)aupin (16— 2T 1) (5.23)
| sin(wfer) 2 (5.24)
| pdpp i TeT

Pdpp

One can see that qup is a function of PP and achieves the maximum value at
pir = L = 1. To achieve P¥P = 1, the number of TTDs 7P should be the same
with the number of analog phase shifters N. However, due to the considerable hardware
complexity and implementation cost of TTD, it might not be easy to use such a large
number of TTDs. Thus, in many practical scenarios where 7P is smaller than IV, the

degradation of DPP beamforming gain is unavoidable. Indeed, as shown in Fig. 5.3, the

mainlobe of the DPP beam fid PP is 2 dB lower than that of the desired directional beam

an (s, fi).
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Figure 5.3: Beamforming gains of DPP beam and directional beam (N = 32, f; =
10GHz, f. = 100GHz, B = 10GHz, S = 16, T%P = 8, PP = 4, ) = —0.25, and
7 = —4.2 x 10719). One can see that the sidelobe leakage of DPP beam is much larger

than that of directional beam.

5.3 Frequency-dependent Beamforming for Wideband Tera-

hertz Systems

Main purpose of the proposed FDB is to simultaneously generate multiple frequency-
dependent beams achieving the maximum beamforming gain. To this end, FDB employs
three signal propagation networks (see Fig. 5.4): 1) analog network generating the initial
beamforming vector, 2) time delay network changing the physical directions of the
beams using the TTD-based phase shifters, and 3) intensifier network suppressing the
sidelobes of the subcarrier beams generated by the time delay network and the analog
network. Among these, the key distinctive block of FDB over DPP is the intensifier
network compensating for the difference between the subcarrier beams and the desired
directional beams. Using the intensifier network to adjust the beam patterns of the
generated beams, FDB can achieve the maximum beamforming gain with much smaller

number of TTDs than those required by DPP.
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Figure 5.4: Overall structure of the proposed FDB scheme.

5.3.1 Opverall Operation of Frequency-dependent Beamforming

After passing through three networks, the FDB beamforming vector f; € CV can be
expressed as

fi=f'(n) e f4r)0f™@B), i=1,---,8, (5.25)

where £2%(0), £19(7), and £'(n) € CV are the beamforming vectors generated by the
analog network, time delay network, and intensifier network, respectively. Also, 6 is the
phase shift of the analog phase shifters and 7 and 7 are the time delays provided by the
TTDs in the time delay network and intensifier network, respectively. By deliberately
controlling the FDB parameters (6, 7,7), we can design the beamforming vectors such
that {fi}f:1 are directed to the desired probing area [¢Pmin, Pmax]-

We start by defining the notions used in the FDB beamforming. First, the angular

range of {f;}7_, is defined as

Range({f;};L,) = [¢1, ¢s], (5.26)

where ¢; = arg maxy|ffany (6, f;)|? is the physical direction of f; (see (5.7)). Note that

Range({f;}5_,) is a function of the central direction and the width given by

Center({£;}2.1) = 5 (61 + 6s) (5.27)

Width({£}7,) = o5 — ¢1. (5.28)
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Figure 5.5: FDB beam generation via analog network, time delay network, and intensi-

fier network.

To enforce Range({f;}? ;) = [#min, Pmax], we should set Center({f;}? ;) = 3(¢min +
$max) and Width({£;}71) = Pmax — Pmin.
The overall operation of FDB is as follows (see Fig. 5.5):

* Analog network: By controlling the phase shift § in the analog network, the
subcarrier beams {£2"3(0)}_, satisfying Width({f3(0)}_,) = dmax — Pmin is

generated.

* Time delay network: By controlling the time delay 7 in the time delay net-
work, the central direction of the generated beams {f\(7) ® £19(7)}7_, is set to
Center({f!*(7) ® £4(7)}7_}) = 2 (Amin + dmax) (Note that the width remains

unchanged).

* Intensifier network: By controlling the time delay 7 in the intensifier network,
we can bridge the gap between the FDB beamforming vectors {fi{(n) ® f4(7) ®

fana(9)19 | and the desired directional beamforming vectors {ax (¢;, f;)}5- .
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5.3.2 Frequency-dependent Beam Generation

In this subsection, we explain the detailed operation of the FDB beam generation. As
shown in Fig. 4, the analog network, time delay network, and intensifier network consist
of N analog phase shifters, 7' TTD-based phase shifters, and P = % TTD-based phase

shifters, respectively.

Analog Network

In the analog network, S subcarrier beams {f2"(6)}?_, are generated using N analog
phase shifters. The beamforming vector f"*(#) of the analog network at the i-th

subcarrier is
fiana(e) = [17 ej97 Ty ej(Nil)a}T = aN(ea fC) = aN(7i97 f’b) (529)

From the definition of physical direction in (5.7), the physical direction of f*"*(0) is
given by ¢; = ;6 so that Width({f#"4(9)}5_,) = (vs — 71)0. Thus, by setting 6 as
- Pmax — Pmin (5.30)
7SN
we can enforce Width({f*"*(9) 15:1) = Omax — Pmin- Note that the central direc-
tion of the generated beams {f2"(¢)}?_, is Center({f™"3(0)}7_,) = (1 +5)0 =

(7,;: 7::1 (¢max ¢min) .

Time Delay Network

In the time delay network, the central direction A“Mi ) (Pmax — Pmin) Of the beams
generated from the analog network is changed to 5 (qum + dmax) using T' TTD-based
phase shifters, each of which is connected to P = 7 N analog phase shifters in the analog
network. The beamforming vector fitd (7) of the time delay network at the i-th subcarrier

is

f907) = [1,e7 %7 ... eI TIANT @1 — ap(=2xfor, fi) @ 1p. (5.31)
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Using (5.29) and (5.31), the i-th subcarrier beam f'9(7) ® £2"3(6) generated by the

analog network and time delay network can be expressed as

fi9(r) © £7(0) = (ap(—27feT, f;) @ 1p) ® an(Vib, f;) (5.32)
= (ar(=27fe7, fi) ® 1p) © (ap (P, fi) ® ap(vi0, fi)) (5.33)
= ar(Pyf — 2nfer, fi) @ ap(vib, f). (5.34)

Using Lemma 1 and (5.30), one can see that the physical direction of £19(7) ® £2%(9) is
¢ = i0—ZTLT = T (brax— Piin) — 24T Since Center({£1(7)OF2(0)}_ )

T sm
5 (7,;:}:1) (dPmax — Pmin) — 2”};”, by setting 7 as
S P < Y1+ s (¢ _¢ ) )_¢min+¢max> :P(’Ylgbmax_’ysquin)
2mfe \2(ys — 1) T 2 2m fe(vs — M)

(5.35)
we can enforce Center({f{(7) @ £4(0)}2 | ) = 1 (¢bmin + Pmax). Note that the physical

direction ¢; of the generated beam £'4(7) © £2%3(9) is given by

2w fer T (Z)max + (vs — i ¢min
i = il — j-f _ (i=m) (Vs = %) bmin.
VS —MN

(5.36)
One can easily see that o1 = Pmin and ¢5 = Pmax.
In summary, by setting 7 and 6 as (5.30) and (5.35), respectively, we can set the

angular range of {f!4(7) ®f23(9)}5_; to Range({£!4(7) ® £ (0)}2_,) = [dmin, Pmax)-

Intensifier Network

Although the angular range of the generated beams is set to the desired probing area
[dmin, Pmax)> the generated beams suffer from a severe degradation of beamforming
gain due to the high sidelobe leakage (see (5.21)-(5.24)). Main purpose of the intensifier
network is to concentrate the signal power to the mainlobe by closing the gap between
the FDB beam f; and the desired directional beamforming vector ay (¢;, f;). Note that
¢; is the physical direction of f; (see (5.36)).

In essence, the intensifier network consists of P TTDs, each of which is fully-

connected to 7" = % TTDs in the time delay network. The intensifier beamforming
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vector fi'(n) at the i-th subcarrier is
£(n) = 1p @ [1,e 2000, IR = g @ ap(=2m fon, fi). (5.37)

Substituting (5.34) and (5.37) into (5.25), the FDB beam f; can be re-expressed as

f; = £'(n) © (£(r) © ££"(6)) (5.38)
= (Ar®ap(=27fen, fi)) © (ar(Pyib — 27 fer, fi) ® ap(yib, fi))  (5.39)
= ap(Pyf — 2n fer, fi) ® ap(yifl — 27 fen, fi) (5.40)
@ ar(Poi, f:) © ap <¢ + 7T g fz-) : (5.41)

where (a) is from (5.36). Also, using the property that ay (6, f;) = ar(P0, f;) ®
ap(0, f;) for every T and P satisfying TP = N, the desired directional beam

an(¢;, fi) can be expressed as

an (¢, fi) = ar (P, fi) ® ap(di, fi)- (5.42)

From (5.41) and (5.42), one can easily see that ) satisfying f; = an (¢, f;) is

T 71 Pmax — s ®min
_ T . (5.43)
7 P 27ch(75 - ’71)

In summary, by setting the FDB parameters (6, 7, 1) as in (5.30), (5.35), and (5.43), one

can generate S FDB beams {f; }5_, heading toward the desired probing area [@min, Pmax]-

As shown in Fig. 5.6 and 5.7, FDB beams achieve the maximum beamforming gain:

Gy = ‘NfHaN(cbl,fz) i (5.44)
= 7aN(¢”val)aN(¢27fl) (5.45)
=1 (5.46)

It is worth mentioning that for every 71" and P satisfying T'P = N, the FDB beams
achieve the maximum beamforming gain. Moreover, since T'+ P > 2/TP = 2v/'N,

the minimum number of TTDs required to achieve the maximum beamforming gain of
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Figure 5.6: FDB beam pattern Figure 5.7: DPP beam pattern

FDB scheme is 7™M = K + % where K is the integer closest to V/N such that % is an
integer. For example, when N = 256, K would be 16, meaning that 7™ = K + % =
32.

We now briefly explain the computational complexity of the intensifier network in
terms of flops. First, the number of flops required for the computation of 7 in (5.43)
is 7. Second, the number of flops required for the computation of ap(—27 f.n, f;) is
5P. Third, the number of flops required for the element-wise multiplication with the
beamforming vectors generated by the time delay network and analog network is N.S.
Summing up these, the total computational complexity of the intensifier network is

C=NS+5P+T.

5.4 Frequency-dependent Beamforming-based Terahertz Beam

Management

As mentioned, the conventional beam management schemes rely on the analog phase
shifters exclusively, so that the BS can search only one direction at a time. In the
FDB-based beam management, we search multiple directions simultaneously using the
frequency-dependent beams. The essence of the proposed scheme is to deliberately
design the FDB parameters, i.e., the phase shift of the analog network 8 (see (5.30)),

the time delay of the time delay network 7 (see (5.35)), the time delay of the intensifier
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Figure 5.8: Illustration of the proposed FDB-based beam management.

network n (see (5.43)), to direct the FDB beams to the desired probing area. Since the
BS can probe multiple directions, as many as the number of subcarriers in the THz
systems, we can achieve a significant reduction in the beam management latency. Also,
since the sidelobes of the FDB beams are controlled by the intensifier network, the
chance of finding out the optimal beam direction increases significantly.

The proposed scheme consists of two major operational steps (see Fig. 5.8). In
the first step called beam spraying, the BS simultaneously transmits the FDB beams
directed to the whole angular area and then the mobile feeds back the index of the FDB
beam maximizing the RSRP to the BS. In the second step called beam purification,
to find out the precise beam direction, the BS performs the fine-tuning to the narrow

angular area identified in the first step®.

®Note that to narrow down the beam direction, one can perform multiple beam purification processes.
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5.4.1 Beam Spraying Process

In the beam spraying process, to acquire the rough estimate of the physical direction ¢
of the channel, the BS transmits the FDB beams {fi(o) }5_, whose physical directions
are distributed in [ — T, -7+ W] This task is performed by setting the FDB

parameters to

(0,70 5Oy — ( 2r(S—-1) P  PS—-1m 1 (S—Dm >

S(’YS_’YI)jzfc+ch(75_71)’2fc chh/S_’Yl)
(547

In doing so, the generated FDB beam fi(o) at the ¢-th subcarrier is heading toward the

physical direction ¢§0) = -7+ W S [—7T, 7T] (see (5.36)). After the FDB
beam generation, the BS simultaneously transmits the frequency-selective pilot signals

(0)

using {fi(o) }le. Then the received signal ;" of the mobile at the i-th subcarrier is

yz(O) — hZHfZ-(O)s € ngo)’ 1=1,---,8, (5.48)

where s is the pilot symbol and n; is additive Gaussian noise. In the mobile, a subcarrier

index 7(9) of the FDB beam fA(O)

2(0) maximizing the RSRP is fed back to the BS:
30 = arg max }ygo) !2. (5.49)
i=1,-,8

Since the RSRP is maximized when the FDB beamforming vectors are properly aligned
with the subcarrier channel vectors, the BS can acquire the estimates of the physical

direction ¢ of the channel from the FDB beam index feedback (%),

Lemma 7. The angular area [¢$i)n, qﬁggx] of the physical direction of the channel

¢ = msin @ designated by the chosen FDB beam £ is given by

(0) 0) 0) 0)
[Nt 72<o>_1¢§<0) ’Y%<o>+1¢§<o> + % ¢§(0) i

n (1)

[Phsn D] = 7 (5.50)
min? AR Y1 T Y0 Yo + Vi 41

Proof. See Appendix A. O

Due to the large number of subcarriers S in the wideband THz systems (e.g.,

S = 128 ~ 512), the angular area covered by the FDB beam is much smaller than that
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of the synchronization signal block (SSB) beam in 5G NR. In 5G NR, up to 64 SSB

beams are transmitted so that the angular area covered by each SSB beam is around
32—20 ~ 5.6° [89]. In contrast, when S = 256, the angular area covered by each FDB

beam is around % ~ 1.4°. After the beam spraying process, the BS transmits the

(0) (0) (0) 0)
Y;(0) ¢A_(0) _ +’Y;(0) _1 ¢c(0) Y;(0) +1¢~.(0) +’Y;(O) dh.(o)
i 1 i i 7 +1

FDB beams toward the angular range [ ,
Y3(0) _1 %00 Y3(0) T3(0) 44

to narrow down the beam direction.

5.4.2 Beam Purification Process

In the beam purification process, to find out the precise beam direction, the BS transmits
the FDB beams toward the angular area determined by the beam spraying process.
The beam purification process is similar in spirit to the beam spraying process in the
sense that the FDB beams are transmitted to the probing area. The difference is that
the probing area of the beam spraying process is the whole angular area but that of
the beam purification process is the narrow angular area designated by the FDB beam

chosen at the beam spraying process.
() ()
%0950y _, T30 -1 P30
%0 _1 Y500

The FDB beams {fi(l) }#_| directing toward [(]5(1-)[1, ¢§1}2X] =

m Y

(0) (0)
'YE(O)_H ¢%(0) +'Yg(0) ¢§(O)+1

} are generated by setting the FDB parameters as

Y3(0) T3(0) 44
(0(1) 7(1) 77(1)) _ (gbr(r}a)x - ¢r(nllzq P(’Yldh(r}z?x - ’75¢r(nli)n) 71¢r(r}2x - ’Ysﬁbr(:izq)
T vs—m = 2nfl(vs—m) T 2@ fe(ys —m)

(5.51)

Note that each FDB beam fi(l) is heading toward the physical direction (;51(1) =

(vi—m )¢r(nla2(+(’Ys—"/i)¢,(nlig (1)

Po— ; ~ of the mobile at

(see (5.36)). Then the received signal y

the i-th subcarrier is
gy =nifWs 4 pM =18 (5.52)

After that, the mobile measures the RSRP and feeds back the subcarrier index i of

the FDB beam f%((ll)) maximizing the RSRP:

21 _ (1) 2
7 argi:nllz.i_?fs}yl ’ .

)
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Using the beam index () fed back from the mobile, the BS acquires the physical

channel direction estimate ¢ as

("}/ (1) — 71)¢max (’VS — 7{(1))¢r(r}i)n

Ys — M

b=\ = (5.54)

Note that to narrow down the beam direction, one needs to perform multiple beam
purification processes.

Once the physical direction of the channel is identified, the BS performs the down-
link transmission (i.e., frequency-dependent data beamforming) to the mobile. The

overall procedures of the FDB-based beam management are summarized in Table 5.1.

5.4.3 Beam Misalignment Probability Analysis

In this subsection, we provide the beam misalignment probability analysis of FDB. By
the beam misalignment probability, we mean the probability that the beam chosen in the
beam spraying process is different from the optimal beam. For simplicity, we analyze
the beam misalignment probability of the beam spraying process but the extension to
the beam purification process is straightforward since the mechanical process is exactly
the same.

Let ¢; be the physical direction of the ¢-th FDB beamforming vector f;. Then the
optimal beam direction index ¢* is defined as the subcarrier index of the FDB beam f;«

whose physical direction ¢; is closest to the channel direction ¢:
i =arg min |¢ — ¢ (5.55)
i=1,,8

where ¢ is the AoD at the BS. Also, the chosen beam direction index 7 is defined as the

subcarrier index of the FDB beam maximizing the RSRP:

; 2
_ | 5.56
I = arg max il (5.56)
_ H 2
=arg r?axs|hi £ + nl (5.57)
1=1L,,
fi 2mdsin
fe o A

2
= arg _max ‘\fozlaN< ,fc> f; +n; (5.58)
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Table 5.1 Frequency-dependent beamforming based THz beam management
Input: The numbers of BS and mobile antennas N and N,., the numbers of TTDs in

the time delay network and intensifier network 7" and P (I'P = N), the central
frequency f,, the subcarrier frequency ratios {'yi}le, the number of time slots for

BS beam purification L

Beam spraying process:

1: [ m1n7¢max] = [ —7 + (S 1)]

. oy _ (2r(S-1) P, P(S-U)m 1 (S—1)y

2 (0 %) = (sws—w o T 75ts—m) 2 T fcsms—%))
3: ¢f ) -7+ 2#(2(‘713)(':1_)71)’ i=1,---,8

4: BS simultaneously transmits the FDB beams {f; 05 }5, toward {qﬁ
5: 10 = arg max;=1,...,§ |yz ‘

6: Mobile feeds back the subcarrier index (%) to the BS

Beam purification process:

7. fori=1,---,Ldo
g [¢(l s = Vi 1)¢’(z 1) a-n_ 1¢ (- 1) Y- 1)+1¢ (- 1)+V (- 1)¢<z 1)+1
. min’ Ymaxj — Y;(—1) 1 TV;0-1) ’ Y0-1) T 0- NE]

O] ) O] ) O] 1)
. (l) (l) ) ¢max7¢min P(m d)max*'YSd)mm) 71 d)max*'ysd)mm
g (0 ) = Ys=71  2mfe(ys—m) 7 2mfe(ys—m)

. (l) _ (’Yi_’yl)(bnfax“l‘('ys_’w)(bsi)n . o
10: ¢Z o VSV ;o1=1 S
11: BS simultaneously transmits the FDB beams {fi(l) 5 | toward {gzﬁ,gl) 3,
12: %(l) = argmax;—i,... g ‘3/1@ |2
13: Mobile feeds back the subcarrier index () to the BS
14: end for
5 (5 _ (“/;(L)—71)¢511€24;(73—W;(L))¢,(£H)

YS—71

Output: Physical direction of channel (Z)
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Then the beam misalignment probability P is defined as

Phigs = Pr(i # i*) (5.59)
= Pr(lyi-* < ;%) (5.60)
(@ 1 [T
= 27r/ Pr(lyi[* < ly;I” | ) deo (5.61)

1 0
- 27r/ Pf( U {lv? < l5*} ‘90> de, (5.62)
o i

where (a) is from the fact that ¢ is uniformly distributed in [—, 7). Using the Boole’s

inequality, Ppy;ss is bounded by [90]

Paiss < 5 /_szr e

£t

<yl | @)de (5.63)

It is worth noticing that y; = /p a;all N ( Ji 2md Scmw, f c) + n; is a sum of two indepen-

dent complex Gaussian random variables \/ﬁaia N ( % 27"1)\%, fc) f; ~
CN(O p‘azlf/ (L@, fc) f;
CN(O p‘aN<fZ 27rdsm<p fc) )

is a chi-square random variable’ with degrees of freedom 2.

2
) and n; ~ CN(0,02). Thus, y; ~

‘ 2

+ 02 ), which means that lus .
‘a (fl 2mdsin o f) 3
PlAN\TFc ™ xc @

2
+J7L

lys|2

plat (4 2mdsine g )|

By denoting \; = ~ x2(2), we obtain the upper bound

2
+o5

\y 12

T e

») and Im{y;} ~ N (0,

is 2 since Re{y:} ~

2).

"The degree of freedom of

2
n

N( (f1 27rd;cm¢’fc) )

fi 2mwdsin ¢ :
aN( 14)\C 7fc T
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Figure 5.9: Beam misalignment probability vs. SNR (N = 256, T = 16, P = 16, and
S =128)
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W1 [ plafl (f12748me, £ )8 + p
B %/‘”A;é*p\azv(f mdsing ¢ )¢, +p\aN(f”@’fc) P2
(5.64)

where (a) is from the fact that the ratio s« /A; of two chi-square random variables A}
and )\; is an F-distributed random variable and Fiq4¢(z) = Pr(X < x) is the cumulative
distribution function (CDF) of F-distributed random variable X. Also, (b) is from
Fear(z) = 357 [91].

In Fig. 5.9, we plot the beam misalignment probability as a function of SNR. We

,{ . 1]|
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Figure 5.10: Average data rate vs. transmit SNR (N = 256, L =5, T = 16, P = 16,
and S = 128).

observe that the obtained analytic upper bound in (5.64) is close to the simulation result.
We also observe that the beam misalignment probability of FDB is far smaller than
that of the conventional DPP scheme. This is because FDB minimizes the sidelobe

leakage of the subcarrier using the intensifier network so that the ratio of RSRPs of the
H f{ 2ndsin ¢ 2 2
a 7 U 7fC f,z + n .
plety (fff p— ) ~7" is much smaller
plath (G- 2msine o) | 4o
than that of the conventional DPP scheme.

misaligned beam and the optimal beams

5.5 Simulation Results

5.5.1 Simulation Setup

In this section, we investigate the performance of the proposed FDB scheme. In our
simulations, we consider THz MISO-OFDM systems where the BS equipped with
N = 256 antennas serves a single-antenna mobile. The mobile is located randomly

around the BS within the cell radius of » = 100 m. We use the wideband THz LoS

130



10T

T T T
—E©— Proposed FDB-BM
—X7F— DPP-based scheme
~—f3— Hierarchical search |

5G NR-BM

20 F

NMSE (dB)

-30 F

-40(
50 F o

-60

O o
A4 A4

1 5 9 13 17 21 25 29 33
Number of time slots

Figure 5.11: NMSE vs. the number of time slots (N = 256, T' = 16, P = 16, and
S =128).

channel model where the carrier frequency is f. = 1THz, the bandwidth is B =

40 GHz, and the number of subcarriers is S = 128. The large-scale fading coefficients

9sh?sh

are modeled as p = PL x 10™%" where PL represents the path loss and 10710

represents the shadow fading (o, = 4dB and 2y, ~ CAN(0,1)). We use the path
loss model in 3GPP Rel. 16 [17]. The small-scale fading coefficients are generated

according to the complex normal distribution (i.e. o; ~ CN(0,1)). The number of

time slots used for the beam management is L = 5. We set the transmit SNR to 20 dB.

The numbers of TTDs used in the time delay network and the intensifier network are

setto T = P = v/ N. As performance metrics, we use the average data rate defined
He. |2

as R = § 307 logy (1+ 2500

defined as NMSE = 101log, (% Zis:l (%)2) In each point of the plots, we test at

and the normalized mean square error (NMSE)
least 100, 000 randomly generated wideband THz systems.

For comparison, we use four benchmark schemes: 1) ideal system with the perfect

channel information, 2) DPP-based beam management scheme [82], 3) hierarchical
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Figure 5.12: Average data rate vs. the number of time slots (N = 256,17 = 16, P = 16,
and S = 128).

beam management scheme generating the hierarchical beam codebook [76], and 4)
5G NR beam management scheme based on the beam sweeping process [74]. Note, to
make a fair comparison between the DPP and FDB, the number of TTDs used for the
DPP beam generation is set to be the same as the total number of TTDs used for the

FDB beam generation (T%P = T + P).

5.5.2 Simulation Results

In Fig. 5.10, we plot the average data rate as a function of the transmit SNR. We
observe that FDB outperforms the conventional beam management schemes by a large
margin. For example, when SNR = 10dB, FDB achieves a significant rate gain (more
than 390% data rate improvement) over the hierarchical beam management scheme.
As mentioned, a phase shift of the conventional schemes relying on the analog phase
shifters is invariant to the frequency so the beams for all subcarriers are all the same.

However, the optimal beamforming vector maximizing the data rate is different for
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Figure 5.13: Average data rate vs. the number of antennas (L = 5,7 = P = +/N, and
S =128).

each subcarrier due to the beam squint effect. This mismatch between the optimal
frequency-dependent beamforming vectors and the frequency-invariant beamforming
vectors generated by the analog phase shifters causes a significant data rate loss in the
conventional schemes. Whereas, in the proposed scheme, multiple frequency-dependent
beams are generated using the TTD-based phase shifters so that the data rate loss caused
by the beam squint effect can be effectively mitigated.

In Fig. 5.11, we set the transmit SNR to 20 dB and plot the NMSE as a function of
the number of time slots L. We observe that FDB achieves significant NMSE gains over
the conventional schemes. For example, when L. = 5, FDB achieves more than 31.1 dB
and 38.6 dB NMSE gains over the hierarchical beam management technique and the
5G NR beam management scheme. This is not quite a surprise since the conventional
schemes search one direction at a time but FDB simultaneously searches S = 128
directions. Interestingly, as shown in Fig. 5.11, FDB can identify pretty accurate beam

direction even in a single time slot. Even when compared to DPP, the NMSE gain
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Figure 5.14: Average data rate vs. the number of subcarriers (N = 256, L = 5,7 = 16,
and P = 16).

of the FDB is more than 18 dB since the high sidelobe leakage of DPP will cause a
degradation of the beam alignment performance but such is not the case for FDB due to
the effective suppression of the sidelobe leakage at the intensifier network.

In Fig. 5.12, we plot the average data rate as a function of the number of time slots
L. We observe that the proposed scheme achieves more than 70% reduction in the beam
management latency over the conventional approaches. For instance, to achieve the
average data rate of 13 bps/Hz, FDB requires only L = 5 time slots but DPP requires
around L = 17 time slots. Since FDB can generate very sharp beams achieving the
maximum beamforming gain, we also observe that when L > 5, FDB performs similar
to the ideal system with the perfect CSL

In Fig. 5.13, we plot the average data rate as a function of the number of transmit an-
tennas V. Interestingly, we observe that the data rate gain of FDB over the conventional
schemes increases with the number of antennas. For example, when N = 100, FDB

shows around 0.9 bps/Hz data rate gain over DPP but it increases up to 6 bps/Hz when
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Figure 5.15: Average data rate vs. transmit SNR in the multipath scenario (N = 256,
L=5T=16,P =16,S =128, Nyan = 3, and x = 100).

N = 400. This is because when the number of antennas increases, the number of analog
phase shifters connected to TTD also increases so that the loss of the beamforming gain
caused by the mismatch between the DPP beam and the directional beam also increases
(see (5.21)-(5.24)). In contrast, the beamwidth of FDB beams is inversely proportional
to the number of antennas so the beam direction accuracy increases with the number
of antennas. This implies that FDB would be more effective in the THz ultra-massive
MIMO systems where the number of antennas is extremely large.

In Fig. 5.14, we set the number of time slots to L = 2 and plot the average data
rate as a function of the number of subcarriers S. We observe that the performance
gain of FDB increases with the number of subcarriers. Specifically, when the number
of subcarriers increases from S = 16 to S = 240, the data rate gain of FDB over
the conventional DPP-based scheme increases from 7.1 bps/Hz to 9.5 bps/Hz. This is
because FDB hierarchically finds out the beam direction so that the beam direction

accuracy increases exponentially with the number of subcarrier beams. Whereas, DPP
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Figure 5.16: Beamforming gains of FDB and DPP vs. total number of TTDs (/N = 120).

uniformly splits the probing area and then sequentially searches the divided areas so that
the beam direction accuracy increases linearly with the number of subcarrier beams.

In Fig. 5.15, we plot the average data rate as a function of the transmit SNR in the
multipath scenario where the number of propagation paths is Npan = 3. In this figure,
we set the Rician K-factor® as x = 100. We observe the proposed FDB scheme works
well even in the multipath scenarios. For example, when SNR = 20 dB, FDB achieves
more than 40% data rate improvement over DPP.

In Fig. 15, we set N = 120 and plot the beamforming gains G; "¢* and G as
functions of the total number of TTDs T" + P for various (7, P) satisfying TP = N.
To make a fair comparison between FDB and DPP, we use the same number of TTDs at
FDB and DPP (i.e., 7->fig* = 7P — T" 4 P). We observe that FDB outperforms DPP
for every point under test. This is because FDB can achieve the maximum beamforming

gain whenever (7', P) satisfies TP = N but DPP can achieve the same performance

8The Rician K-factor denotes the ratio of the power of LoS path over the sum of powers of non-line-of-
sight (NLoS) paths. In our work, we set x = 100 so that the power of Los path is 20 dB larger than the
sum of powers of all NLoS paths [2]
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only when 79%P = N,

5.6 Summary

In this chapter, we proposed a THz beam management scheme that simultaneously
generates multiple frequency-dependent beams using the TTD-based phase shifters. By
employing the generated FDB beams as the training beams, the proposed technique
can search multiple directions simultaneously, thereby reducing the beam management
latency. Intriguing feature of the proposed FDB is to exploit a deliberately designed
TTD-based signal propagation network called intensifier to bridge the gap between
the desired beamforming vectors and the frequency-dependent beamforming vectors.
In doing so, RSRP of the beam aligned with the channel propagation path gets larger
while those of the misaligned beams get smaller, resulting in a significant improvement
of the beam direction accuracy. From the beam misalignment probability analysis and
the numerical evaluations on 6G THz environment, we demonstrated that FDB is very
effective in improving the beam direction accuracy and also reducing the beam man-
agement latency. In our work, we restricted our attention to THz communications, but
there are many interesting applications of FDB including vehicle-to-everything (V2X)

communications and reconfigurable intelligent surface (RIS)-assisted communications.

5.7 Proofs

5.7.1 Proof of Lemma 2

Using the fact that ¢; (o is closest to ¢, we obtain

fi0(9 = 850) < fi0 11 (D041 — D) (5.65)

Thus, the upper bound of ¢ is

b < J50 @50 + F300 115041 (@) Y500 41P50) + V30 Pi0) 11
_— )

(5.66)
fi0 + 011 Y0 + Vo 41
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where (a) is from y; = % Similarly, the lower bound of ¢ is

i

Y30 1950 T V30 P04

¢ >
Vi) F Vo) _q

Combining (5.66) and (5.67), we have

Yi0 1950 + V30 P30 _1 << Y30 41950 + V30 P30 41
Vi T V01 I Vi T V3011
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Chapter 6

Conclusion

In this dissertation, THz channel acquisition schemes for 6G have been extensively

studied. Specifically, we have made the following contributions.

* In Chapter 2, we proposed a novel feedback reduction technique for FDD-based
cell-free systems. The key feature of the proposed scheme is to choose a few
dominating paths among all possible propagation paths and then feed back the
PGI of the chosen paths. Key observations in our work are that 1) the spatial
domain channel is represented by a small number of multi-path components
(AoDs and path gains) and 2) the AoDs are quite similar in the uplink and
downlink channel owing to the angle reciprocity so that the BSs can acquire
AoD information directly from the uplink pilot signal. Thus, by choosing a few
dominating paths and only feed back the path gain of the chosen paths, we can
achieve a significant reduction in the feedback overhead. We observed from the
extensive simulations that the proposed scheme can achieve more than 60% of
feedback overhead reduction over the conventional schemes relying on the CSI

feedback.

* In Chapter 3, we proposed an efficient channel estimation framework to reduce

the pilot overhead of RIS-aided mmWave systems. Key idea of the proposed
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TAD-CE scheme is to decompose the RIS reflected channel into three major
components, i.e., static BS-RIS angles, quasi-static RIS-UE angles, and time-
varying BS-RIS-UE path gains, and then estimate these components in different
time scales. In doing so, the number of channel parameters to be estimated at
each stage can be reduced significantly, resulting in a reduction of pilot overhead.
Also, by optimizing the RIS phase shifts using the channel components with
relatively long coherence time, we could further improve the channel estimation
accuracy without requiring additional pilot resources. We demonstrated from the
channel estimation error and pilot overhead analyses and numerical evaluations
that the proposed TAD-CE scheme is effective in saving the pilot resources. In
our work, we assumed the ideal phase shift model where the reflection amplitude
and the phase shifts are independent, but an extension to the realistic scenarios
where the reflection is imperfect and is affected by the RIS phase shifts would be

an interesting future work worth pursuing.

In Chapter 4, we proposed a DL-based channel acquisition technique for the
THz UM-MIMO systems. In recent years, a remarkable success of DL in various
disciplines (e.g., image classification, speech recognition, and language trans-
lation) has stimulated increasing interest in applying this paradigm to wireless
communication systems. Intriguing feature of the proposed T-PCA is to promote
the nonuniform and irregular correlation structures of the received pilot signals
using Transformer, a DL architecture that differently weights each input data
based on the correlations between the input data. By exploiting the attention
mechanism of Transformer, T-PCA can facilitate the extraction of spatially and
temporally-correlated features inherent in the THz UM-MIMO systems. In doing
so, fast yet accurate channel parameter estimation can be made with small pilot
overhead. From the simulation results, we demonstrated that T-PCA achieves
more than 2.5 dB NMSE gain and 33% pilot overhead reduction over the conven-

tional channel acquisition techniques. In our work, we restricted our attention to
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channel estimation, but there are many interesting applications of T-PCA such as

channel feedback, beam tracking, and resource allocation.

In Chapter 5, we proposed a THz beam management scheme that simultane-
ously generates multiple frequency-dependent beams using the TTD-based phase
shifters. By employing the generated FDB beams as the training beams, the
proposed technique can search multiple directions simultaneously, thereby re-
ducing the beam management latency. Intriguing feature of the proposed FDB
is to exploit a deliberately designed TTD-based signal propagation network
called intensifier to bridge the gap between the desired beamforming vectors
and the frequency-dependent beamforming vectors. In doing so, RSRP of the
beam aligned with the channel propagation path gets larger while those of the
misaligned beams get smaller, resulting in a significant improvement of the
beam direction accuracy. From the beam misalignment probability analysis and
the numerical evaluations on 6G THz environment, we demonstrated that FDB
is very effective in improving the beam direction accuracy and also reducing
the beam management latency. In our work, we restricted our attention to THz
communications, but there are many interesting applications of FDB includ-
ing vehicle-to-everything (V2X) communications and reconfigurable intelligent

surface (RIS)-assisted communications.
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