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Abstract

Recently, terahertz (THz) communications have received much attention to alleviate

spectrum bottleneck and support high data rates for 6G wireless communications. Using

the abundant spectrum resource in the THz frequency band (0.1 ∼ 10THz), THz

communications can support immersive mobile services such as digital twin, metaverse

realized by XR devices, and high-fidelity mobile holographic displays. Well-known

drawback of the THz communications is the severe attenuation of the signal power

caused by the high diffraction and penetration losses and atmospheric absorption. To

deal with the problem, a beamforming technique realized by the massive multiple-

input multiple-output (MIMO) has been widely used. Since the beamforming gain is

maximized only when the beams are properly aligned with the signal propagation paths,

the base station (BS) needs to acquire the accurate channel information.

In the first part of the dissertation, we study a channel feedback technique for the

frequency-division-duplexing (FDD)-based cell-free mmWave and THz systems. Cell-

free system where a group of base stations (BSs) cooperatively serves users has received

much attention as a promising technology for the future wireless systems. In order to

maximize the cooperation gain in the cell-free systems, acquisition of downlink channel

state information (CSI) at the BSs is crucial. While this task is relatively easy for the

time division duplexing (TDD) systems due to the channel reciprocity, it is not easy

for the frequency division duplexing (FDD) systems due to the CSI feedback overhead.

This issue is even more pronounced in the cell-free systems since the user needs to feed

back the CSIs of multiple BSs. In our work, we propose a novel feedback reduction

technique for the FDD-based cell-free systems. Key feature of the proposed technique

is to choose a few dominating paths and then feed back the path gain information (PGI)

of the chosen paths. By exploiting the property that the angles of departure (AoDs) are

quite similar in the uplink and downlink channels (this property is referred to as angle
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reciprocity), the BSs obtain the AoDs directly from the uplink pilot signal.

In the second part of the dissertation, we study a channel estimation technique for

reconfigurable intelligent surface-assisted THz systems. Recently, an RIS that controls

the reflection characteristics of incident signals has received a great deal of attention.

To make the most of the RIS-aided systems, an acquisition of RIS reflected channel

information at the base station (BS) is crucial. However, this task is by no means easy

due to the pilot overhead induced by the large number of reflecting elements. In our work,

we propose an efficient channel estimation and phase shift control technique reducing

the pilot overhead of the RIS-aided mmWave systems. Key idea of the proposed scheme

is to decompose the RIS reflected channel into three major components, i.e., static

BS-RIS angles, quasi-static RIS-UE angles, and time-varying BS-RIS-UE path gains,

and then estimate them in different time scales. By estimating the BS-RIS and RIS-

UE angles occasionally and estimating only the path gains frequently, the proposed

scheme achieves a significant reduction on the pilot overhead. Further, by optimizing

the phase shifts using the channel components with relatively long coherence time, we

can improve the channel estimation accuracy.

In the third part of the dissertation, we study a channel estimation technique for

time-division-duplexing (TDD)-based THz ultra-massive (UM) multiple-input multiple-

output (MIMO) systems. THz UM-MIMO system is envisioned as a key technology

to support ever-increasing data rates in 6G communication systems. To make the most

of THz UM-MIMO systems, acquisition of accurate channel information is crucial.

However, the THz channel acquisition is not easy due to the humongous pilot overhead

that scales linearly with the number of antennas. In our work, we propose a novel deep

learning (DL)-based channel acquisition technique for the THz UM-MIMO systems.

By learning the complicated mapping function between the received pilot signal and the

sparse channel parameters (e.g., angles, distances, path gains) using Transformer, the

proposed scheme can make a fast yet accurate channel estimation with a relatively small

ii



amount of pilot resources. Moreover, using the attention mechanism of Transformer,

we can promote the correlation structure of the received pilot signals in the feature

extraction, thereby improving the channel parameter estimation quality significantly.

In the fourth part of the dissertation, we study a beam management technique for

wideband THz systems. One main difficulty of the THz communications is the severe

attenuation of signal power caused by the high diffraction and penetration losses and

atmospheric absorption. To compensate for the severe path loss, a beamforming tech-

nique realized by the massive multiple-input multiple-output (MIMO) has been widely

used. Since the beamforming gain is maximized only when the beams are appropriately

aligned with the signal propagation paths, acquisition of accurate beam directions is of

great importance. A major issue of the conventional beam management schemes is the

considerable latency being proportional to the number of training beams. In this chapter,

we propose a THz beam management technique that simultaneously generates multiple

frequency-dependent beams using the true time delay (TTD)-based phase shifters. By

closing the gap between the frequency-dependent beamforming vectors and the desired

directional beamforming vectors using the TTD-based signal propagation network

called intensifier, we generate very sharp training beams maximizing the beamforming

gain.

keywords: 6G, wireless communications, terahertz, channel estimation, channel

feedback, beam management

student number: 2016-25925
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Chapter 1

Introduction

1.1 Background

Recently, terahertz (THz) communications have received much attention to alleviate

spectrum bottleneck and support high data rates for 6G wireless communications. Using

the abundant spectrum resource in the THz frequency band (0.1 ∼ 10THz), THz

communications can support immersive mobile services such as digital twin, metaverse

realized by XR devices, and high-fidelity mobile holographic displays. Well-known

drawback of the THz communications is the severe attenuation of the signal power

caused by the high diffraction and penetration losses and atmospheric absorption. To

deal with the problem, a beamforming technique realized by the massive multiple-

input multiple-output (MIMO) has been widely used. Since the beamforming gain is

maximized only when the beams are properly aligned with the signal propagation paths,

the base station (BS) needs to acquire the accurate channel information.

1.1.1 Terahertz Channel Characteristics

In this subsection, we discuss a few useful properties of THz channel. We first explain

the LoS-dominant property that the transmit energy is mostly concentrated on the LoS

path in the THz channel and then explain the THz near-field effect that the channel is a

1



function of the communication distance.

Due to the high directivity and path loss, the scattering and refraction of signal

are negligible in the THz band so that the LoS path becomes the dominant means of

propagation. Two major factors contributing to the LoS-dominant property of THz

channel are 1) highly directional propagation of THz signal and 2) significant power

gap between the LoS and NLoS path signals. First, since the power of diffracted signal

decreases sharply with the signal frequency, diffraction is almost negligible in the high

frequency band like THz band, meaning that the signal power is concentrated on a few

dominant paths. Indeed, from the extensive measurements on the THz channel, it has

been shown that the number of dominant paths in 256-antenna UM-MIMO systems

operating at 0.3THz band is less than 4 [1]. Second, the power gap between the LoS

and NLoS path signals is significant due to the huge reflection and diffuse scattering

losses. The reflection of signal can be roughly categorized into two types: 1) specular

reflection where the signal is reflected to a definite angle at smooth surfaces and 2)

diffuse scattering where the signal is reflected to all directions at rough surfaces. In

the THz band, the wavelength (e.g., 100µm in 3THz band) is smaller than the surface

roughness1 of objects (e.g., the roughness of concrete wall is 300 ∼ 1000µm) so that

the diffuse scattering is the dominant means of reflection. Since the reflected signal is

not focused on a specific direction but scattered over an area, the power of reflected

signal in the NLoS path is much smaller than that of the LoS path signal. For example,

the Rician K-factor, a ratio of the power of the strongest path over the sum of powers of

other paths, is around 20 dB in 0.4THz band [2], which implies that the power of LoS

path signal is almost 100 times stronger than that of NLoS path signals.

Due to the short communication distance and the extremely large number of an-

tennas in the THz systems, the THz channel is categorized as the near-field channel

where the EM radiation is modeled as spherical waves. In the near-field THz channel,

the array steering vector is expressed as a joint function of the azimuth/elevation angles
1The surface roughness is defined as the standard deviation of surface heights from the mean line.
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and the distance. In general, the EM radiation field can be divided into two categories:

1) far-field region where the EM radiation can be approximated as plane waves and

2) near-field region where the EM radiation is modeled by the spherical waves. To

distinguish two regions, the Rayleigh distance Z = N2λ
2 (N is the number of antennas

and λ is the signal wavelength) is widely used. In the THz systems, due to the extremely

large number of antennas, the Rayleigh distance can be up to a hundred meters, covering

most of the small cell area [3]. For example, in the 256-antenna UM-MIMO systems

operating at 0.1THz band, the Rayleigh distance is around 100m. In the near-field

region, the signal wavefronts have spherical shapes so that the phase delay between two

adjacent antenna elements is affected not only by the azimuth angle θ, the elevation

angle φ, but also the distance r. Thus, the near-field array steering vector should be

expressed as a function of spherical coordinates (r, θ, φ).

1.1.2 Terahertz Channel Estimation

In FDD systems, where separate frequency bands are allocated for uplink and downlink

communication, the downlink channel estimation process plays a vital role in estab-

lishing reliable communication between the transmitter and receiver. One common

technique is the use of pilot signals or reference symbols. The transmitter inserts known

symbols into the downlink transmission at regular intervals. The receiver detects and

analyzes these symbols to estimate the channel response. By comparing the known

symbols with the received ones, the receiver can determine the effects of the channel

on the transmitted signal. Another approach is channel sounding, where the transmitter

actively transmits signals with specific properties to probe the channel. The receiver

measures the channel response by analyzing these transmitted signals. This technique

provides more detailed information about the channel’s characteristics. Through these

methods, the receiver estimates the downlink channel response, including its gain,

phase, and frequency response. This information is crucial for adapting the receiver’s

equalization and decoding techniques to compensate for channel impairments, such
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as fading and interference. In some cases, the receiver may provide feedback to the

transmitter in the form of channel state information (CSI). This feedback conveys the

estimated channel characteristics, enabling the transmitter to adapt its transmission

parameters accordingly. For example, based on the CSI, the transmitter can adjust the

transmit power, modulation scheme, or even perform beamforming to enhance the

quality and reliability of the downlink communication.

In TDD systems, where transmission and reception occur in the same frequency

band but at different time intervals, the downlink channel estimation process differs

slightly. Similar to FDD, synchronization is the first step, ensuring accurate timing

and frequency references. However, in TDD, channel estimation takes advantage of

the reciprocity property of wireless channels. During specific time slots allocated for

channel estimation, the receiver transmits known pilot symbols or reference signals.

The receiver then measures the channel response by analyzing the received signals

during these time slots. By comparing the known pilot symbols with the received ones,

the receiver estimates the downlink channel characteristics. Similar to FDD, TDD

systems may also involve feedback mechanisms where the receiver provides channel

state information (CSI) to the transmitter. This feedback helps the transmitter adjust its

transmission parameters based on the estimated channel characteristics.

1.2 Contribution and Organization

In this dissertation, we introduce a DL-based wireless communication systems for 6G.

In Chapter 2, we propose a novel feedback reduction technique for FDD-based

cell-free systems. The key feature of the proposed scheme is to choose a few dominating

paths among all possible propagation paths and then feed back the path gain information

(PGI) of the chosen paths. Key observations in our work are that 1) the spatial domain

channel is represented by a small number of multi-path components (AoDs and path

gains) and 2) the AoDs are quite similar in the uplink and downlink channel owing to
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the angle reciprocity so that the BSs can acquire AoD information directly from the

uplink pilot signal. Thus, by choosing a few dominating paths and only feed back the

path gain of the chosen paths, we can achieve a significant reduction in the feedback

overhead.

In Chapter 3, we propose an efficient channel estimation framework to reduce the

pilot overhead of RIS-aided mmWave systems. Key idea of the proposed scheme is to

decompose the RIS reflected channel into three major components, i.e., static BS-RIS

angles, quasi-static RIS-UE angles, and time-varying BS-RIS-UE path gains, and then

estimate these components in different time scales. In doing so, the number of channel

parameters to be estimated at each stage can be reduced significantly, resulting in a

reduction of pilot overhead. Also, by optimizing the RIS phase shifts using the channel

components with relatively long coherence time, we could further improve the channel

estimation accuracy without requiring additional pilot resources.

In Chapter 4, we propose a DL-based channel acquisition technique for the THz

UM-MIMO systems. In recent years, a remarkable success of DL in various disci-

plines (e.g., image classification, speech recognition, and language translation) has

stimulated increasing interest in applying this paradigm to wireless communication

systems. Intriguing feature of the proposed scheme is to promote the nonuniform and

irregular correlation structures of the received pilot signals using Transformer, a DL

architecture that differently weights each input data based on the correlations between

the input data. By exploiting the attention mechanism of Transformer, T-PCA can

facilitate the extraction of spatially and temporally-correlated features inherent in the

THz UM-MIMO systems. In doing so, fast yet accurate channel parameter estimation

can be made with small pilot overhead.

In Chapter 5, we propose a THz beam management scheme that simultaneously

generates multiple frequency-dependent beams using the TTD-based phase shifters. By

employing the generated FDB beams as the training beams, the proposed technique

can search multiple directions simultaneously, thereby reducing the beam management
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latency. Intriguing feature of the proposed frequency-dependent beamforming (FDB)

is to exploit a deliberately designed true time delay (TTD)-based signal propagation

network called intensifier to bridge the gap between the desired beamforming vectors

and the frequency-dependent beamforming vectors. In doing so, RSRP of the beam

aligned with the channel propagation path gets larger while those of the misaligned

beams get smaller, resulting in a significant improvement of the beam direction accuracy.

Chapter 6 summarizes the contribution of the dissertation and discuss the future

research directions based on studies of this dissertation.
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Chapter 2

Downlink Pilot Precoding and Compressed Channel

Feedback for FDD-Based Cell-Free Systems

In this chapter, we introduce a channel feedback technique for the frequency-division-

duplexing (FDD)-based cell-free mmWave and THz systems. Cell-free system where

a group of base stations (BSs) cooperatively serves users has received much attention

as a promising technology for the future wireless systems. In order to maximize the

cooperation gain in the cell-free systems, acquisition of downlink channel state infor-

mation (CSI) at the BSs is crucial. While this task is relatively easy for the time division

duplexing (TDD) systems due to the channel reciprocity, it is not easy for the frequency

division duplexing (FDD) systems due to the CSI feedback overhead. This issue is even

more pronounced in the cell-free systems since the user needs to feed back the CSIs of

multiple BSs. In our work, we propose a novel feedback reduction technique for the

FDD-based cell-free systems. Key feature of the proposed technique is to choose a few

dominating paths and then feed back the path gain information (PGI) of the chosen

paths. By exploiting the property that the angles of departure (AoDs) are quite similar

in the uplink and downlink channels (this property is referred to as angle reciprocity),

the BSs obtain the AoDs directly from the uplink pilot signal.
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2.1 Introduction

In recent years, ultra dense network (UDN) has received a great deal of attention as

a means to achieve a thousand-fold throughput improvement in 5G wireless commu-

nications [4]. Network densification can improve the capacity of cellular systems by

overlaying the existing macro cells with a large number of small (femto, pico) cells.

However, throughput improvement of dense networks might not be dramatic as ex-

pected due to the poor cell-edge performance. This is because the portion of users in

the cell-boundary (cell-edge users) increases sharply yet cell-edge users suffer from

significant inter-cell interference due to the reduced cell size. To address this problem,

an approach to entirely remove the notion of cell from the cellular systems, called

cell-free systems, has been introduced recently [5]. When compared to the conventional

cellular systems in which a single base station (BS) serves all the users in a cell, a

group of BSs cooperatively serves users in the cell-free systems (see Fig. 2.1). In the

cell-free systems, BSs are connected to the digital unit (DU) via advanced backhaul

links to share the channel state information (CSI) and the transmit data. Since the cell

association is not strictly limited by the regional cell, notions like cell and cell boundary

are unnecessary in the cell-free systems. Also, since the DU intelligently recognizes

the user’s communication environments and then organizes the associated BSs for each

user, cell-free systems can control inter-cell interference efficiently, thereby achieving

significant improvement in the spectral efficiency and coverage.

In order to maximize the gain obtained by the BS cooperation, acquisition of

accurate downlink CSI at the BS is crucial. While this task is relatively easy for

the time division duplexing (TDD) systems due to the channel reciprocity, it is not

easy for the frequency division duplexing (FDD) systems due to the CSI feedback

overhead [6, 7]. For this reason, most efforts on the cell-free systems to date are based

on the TDD systems [8,9]. In practice, however, TDD-based cell-free systems have some

potential problems. For example, due to the switching between the uplink and downlink

transmission in the TDD systems, users may not be able to obtain the instantaneous
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Figure 2.1: Comparison between (a) the conventional cellular systems and (b) the

cell-free systems.

CSI when the transmission direction is directed to the uplink [10]. Further, the channel

reciprocity in TDD systems might not be accurate due to the calibration error in the

RF chains [6]. These observations, together with the fact that the FDD systems have

many benefits over the TDD systems (e.g., continuous channel estimation and small

latency), motivate us to study FDD-based cell-free systems. One well-known drawback

of the FDD systems is that the amount of CSI feedback needs to be proportional to

the number of transmit antennas to achieve the rate comparable to the system with the

perfect CSI [11]. This issue is even more pronounced in the cell-free systems since the

user needs to estimate and feed back the downlink CSIs of multiple BSs. Therefore,

it is of a great importance to come up with an effective means to relax the feedback

overhead in the FDD-based cell-free systems.

The primary purpose of this paper is to propose an approach to reduce the CSI

feedback overhead in the FDD-based cell-free systems. Key feature of the proposed

technique is that the spatial domain channel can be represented by a small number of

multi-path components (angle of departure (AoD) and path gain) [12]. By exploiting

the property referred to as angle reciprocity [13] that the AoDs are quite similar in the
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uplink and downlink channels, we only feed back the path gain information (PGI) to the

BSs. As a result, the number of bits required for the channel vector quantization scales

linearly with the number of dominating paths, not the number of transmit antennas.

Moreover, by choosing a few dominating paths maximizing the sum rate, we can further

reduce the feedback overhead considerably. In order to support the dominating PGI

acquisition and feedback at the user, we use spatially precoded downlink pilot signal.

Through the performance analysis, we show that the proposed dominating PGI

feedback scheme exhibits a smaller quantization distortion than that generated by the

conventional CSI feedback scheme. In fact, the number of feedback bits required to

maintain a constant gap to the system with perfect PGI scales linearly with the number

of dominating paths which is much smaller than the number of transmit antennas.

From the simulations on realistic scenarios, we show that the proposed dominating PGI

feedback scheme achieves more than 60% reduction in the feedback overhead over the

conventional scheme relying on the CSI feedback. We also show that the performance

gain of the proposed dominating PGI feedback scheme increases with the number of

propagation paths while no such benefit can be obtained from the conventional CSI

feedback scheme. This implies that the proposed dominating PGI feedback scheme is

an appealing solution to reduce the feedback overhead for both the limited scattering

and rich scattering environment.

Notations: Lower and upper case symbols are used to denote vectors and matrices,

respectively. The superscripts (·)T, (·)H, and (·)+ denote transpose, Hermitian transpose,

and pseudo-inverse, respectively. ⊗ denotes the Kronecker product. ∥x∥ and ∥X∥F

are used as the Euclidean norm of a vector x and the Frobenius norm of a matrix X,

respectively. tr (X) and vec (X) denote the trace and vectorization of X, respectively.

Also, diag (X1,X2) denotes a block diagonal matrix whose diagonal elements are X1

and X2. In addition, xΛ is a subvector of x whose i-th entry is x(Λ(i)) and XΛ is a

submatrix of X whose i-th column is the Λ(i)-th column of X for i = 1, · · · , |Λ| (Λ is

the set of partial indices and |Λ| is the cardinality of Λ).
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Figure 2.2: Narrowband ray-based channel model and angle reciprocity between the

uplink and downlink channels.

2.2 Cell-Free System Model

In this section, we introduce the FDD-based cell-free systems and the multi-path channel

model. We also discuss the angle reciprocity between the uplink and downlink channels

and the conventional quantized channel feedback scheme.

2.2.1 Cell-Free System Model

We consider the FDD-based cell-free systems with M BSs and K users. Each BS is

equipped with a uniform linear array of N antennas and each user is equipped with

a single antenna. Let B = {1, · · · ,M} and U = {1, · · · ,K} be the sets of BSs and

users, respectively. In our work, we consider the narrowband ray-based channel model

consisting of P paths (see Fig. 2.2) [14]. The downlink channel vector hm,k ∈ CN

from the BS m to the user k is expressed as

hm,k =

P∑
i=1

gm,k,ia(θm,k,i), (2.1)
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where θm,k,i is the AoD and gm,k,i is the complex path gain of the i-th path, respectively.

We assume that for everym, k, and i, gm,k,i ∼ CN (0, 1) are independent and identically

distributed (i.i.d.) random variables. In addition, a(θm,k,i) ∈ CN is the array steering

vector given by

a(θm,k,i) =
[
1, e−j

2πd
λ

sin θm,k,i , · · · , e−j(N−1) 2πd
λ

sin θm,k,i

]T
, (2.2)

where d is the antenna spacing and λ is the signal wavelength. The matrix-vector form

of hm,k is

hm,k = Am,kgm,k, (2.3)

where Am,k = [a(θm,k,1), · · · ,a(θm,k,P )] ∈ CN×P is the array steering matrix and

gm,k = [gm,k,1, · · · , gm,k,P ]T ∈ CP is the PGI vector. It is worth mentioning that

the AoDs vary much slower than the path gains. In fact, since scatterers affecting the

signal transmission do not change their positions significantly, the AoDs are readily

considered as constant during the channel coherence time. Also, it has been shown

that the number of propagation paths P is quite smaller than the number of transmit

antennas N [15]. We note that P is completely determined by the scattering geometry

around the BS. Since the BSs are usually located at high places such as a rooftop of a

building, only a few scatterers affect the signal transmission. For example, P is 2∼8

for 6∼60GHz band due to the limited scattering of the millimeter-wave signal [16].

Also, for the sub-6GHz band, P is set to 10∼20 (3GPP spatial channel model [17])

while N is 32∼256 in the massive multiple-input multiple-output (MIMO) regime. In

this setting, the received signal yk ∈ C of the user k is given by

yk =
M∑
m=1

hH
m,kwm,ksk +

K∑
j ̸=k

M∑
m=1

hH
m,kwm,jsj + nk, (2.4)

where wm,k ∈ CN is the precoding vector from the BS m to the user k, sk ∈ C is the

data symbol for the user k, and nk ∼ CN (0, σ2n) is the additive Gaussian noise. The
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corresponding achievable rate Rk of the user k is

Rk = E

log2
1+

∣∣∣∑M
m=1 h

H
m,kwm,k

∣∣∣2∑K
j ̸=k

∣∣∣∑M
m=1 h

H
m,kwm,j

∣∣∣2+σ2n

 . (2.5)

Approximately, we have1

Rk ≈ log2

1+ E
[∣∣∣∑M

m=1 h
H
m,kwm,k

∣∣∣2]∑K
j ̸=k E

[ ∣∣∣∑M
m=1 h

H
m,kwm,j

∣∣∣2 ]+σ2n
 . (2.6)

2.2.2 Angle Reciprocity between Uplink and Downlink Channels

As mentioned, the AoDs in the uplink and downlink channels are fairly similar in the

FDD systems when their carrier frequencies do not differ too much (typically less than a

few GHz). The reason is because only the signal components that physically reverse the

uplink propagation path can reach the user during the downlink transmission [13] (see

Fig. 2.2). Since the changes of relative permittivity and conductivity of the scatterers are

negligible in the scale of several GHz, reflection and deflection properties determining

the propagation paths in the uplink and downlink transmissions are fairly similar [19],

which in turn implies that the propagation paths of the uplink and downlink channels

are more or less similar. This so-called angle reciprocity is very useful since the BS

can acquire the AoDs from the uplink pilot signal. In estimating the AoDs, various

algorithms such as multiple signal classification (MUSIC) [20] or estimation of signal

parameters via rotational invariance techniques (ESPRIT) [21] can be employed.

2.2.3 Conventional Quantized Channel Feedback

In the conventional quantized channel feedback, a user estimates the downlink channel

vector from the downlink pilot signal. Then, the user quantizes the channel direction
1This approximation becomes more accurate as the number of transmit antennas N increases [18,

Lemma 1].
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h̄m,k =
hm,k

∥hm,k∥ and then feeds it back to the BS. Specifically, a codeword cîm,k
is

chosen from a pre-defined B-bit codebook C = {c1, · · · , c2B} as

cîm,k
= arg max

c∈C

∣∣h̄H
m,kc

∣∣2 . (2.7)

Then, the selected index îm,k is fed back to the BS. It has been shown that the number

of feedback bits B needs to be scaled linearly with the channel dimension N and SNR

(in decibels) to properly control the quantization distortion as [11]

B ≈ (N − 1)

3
× SNR. (2.8)

In the FDD-based cell-free systems, since multiple BSs cooperatively serve users, a user

should send the downlink CSIs to multiple BSs. Thus, the feedback overhead should

also increase with the number of associated BSs M . For example, if M = 6, N = 16,

and SNR = 10 dB, then a user has to send B = 300 bits (2 ∼ 3 resource blocks in LTE

systems) just for the CSI feedback.

2.3 Dominating Path Gain Information Feedback in Cell-

Free Systems

The key idea of the proposed dominating PGI feedback scheme is to select a small

number of paths based on the AoD information and then feed back the measured path

gains of the chosen paths. As mentioned, the AoDs are acquired from the uplink pilot

signal by using the angle reciprocity. Since the number of propagation paths is smaller

than the number of transmit antennas, we can achieve a considerable reduction in

the quantized channel dimension using the dominating PGI feedback. We can further

reduce the feedback overhead from multiple BSs by choosing a few dominating paths

among all possible multi-paths.

In a nutshell, overall operations of the proposed dominating PGI feedback scheme

are as follows: 1) user transmits the uplink pilot signal and then BSs acquire AoDs
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Figure 2.3: Overall transceiver structure of the proposed dominating PGI feedback

scheme.

from the received pilot signal, 2) DU performs the dominating path selection based on

the acquired AoDs, 3) BSs transmit the precoded downlink pilot signal, 4) each user

acquires the dominating PGI from the precoded downlink pilot signal and then feeds

it back to the BSs, and 5) BSs perform the downlink data transmission based on the

dominating PGI feedback (see Fig. 2.3).

2.3.1 Uplink AoD Acquisition

Since the AoDs are quite similar in the uplink and downlink channels, the BS can

acquire the AoD information from the uplink pilot signal. Roughly speaking, there

are two types of AoD estimation technique: 1) noise subspace-based methods (e.g.,

MUSIC [20], Capon [22]) and 2) signal subspace-based methods (e.g., ESPRIT [21],

ML [23]). In this work, we used the MUSIC algorithm since it is easy to implement and

performs comparable to the subspace-based approaches2. In the MUSIC algorithm, the
2This is because the MUSIC algorithm exploits the information about the whole array geometry of the

transmit antennas while the ESPRIT algorithm exploits only the partial information related to the array

geometry.
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BS estimates the uplink channel vector hUL
m,k and then computes the channel covariance

matrix RUL
m,k = E

[
hUL
m,kh

UL,H
m,k

]
. Key idea of the MUSIC algorithm is to decompose

the eigenspace of RUL
m,k into two orthogonal subspaces: signal subspace and noise

subspace. The eigenvectors of RUL
m,k corresponding to the P largest eigenvalues form

the signal subspace matrix Es and the rest form the noise subspace matrix En. Since

En is orthogonal to the signal subspace, the AoD θ should satisfy EH
na (θ) = 0P . Thus,

the AoDs are obtained from the peak of spectrum function fMUSIC given by

fMUSIC(θ) =
1

aH (θ)EnEH
na (θ)

. (2.9)

2.3.2 Dominating Path Selection Problem Formulation

Main advantage of the dominating PGI feedback over the conventional CSI feedback is

the reduction of the channel vector dimension to be quantized. However, since the user

should feed back the PGI to multiple BSs, feedback overhead is still considerable. In the

proposed scheme, by choosing a few dominating paths among all possible multi-paths

between each user and the associated BSs, we can control the feedback overhead at the

expense of marginal degradation in the sum rate.

In order to choose the paths that contribute to the sum rate most, we first need to

express the sum rate as a function of the dominating paths. Let Λm,k ⊆ {1, · · · , P}

be the index set of the dominating paths from the BS m to the user k and gΛm,k
=

[gm,k,i, i ∈ Λm,k]
T ∈ C|Λm,k| be the dominating PGI vector. For example, if the first

and the third paths are chosen as the dominating paths, then Λm,k = {1, 3} and

gΛm,k
= [gm,k,1, gm,k,3]

T. Also, let Λk = {Λ1,k, · · · ,ΛM,k} be the combined index set

for the user k and gΛk
=
[
gT
Λ1,k

, · · · ,gT
ΛM,k

]T ∈ CL be the corresponding dominating

PGI vector. Note that L is the total number of dominating paths for each user. For

example, if M = 3, L = 4, and Λ1,k = {1}, Λ2,k = {1, 3}, and Λ3,k = {2}, then

Λk = {{1}, {1, 3}, {2}} and gΛk
=
[
g1,k,1, g2,k,1, g2,k,3, g3,k,2

]T (see Fig. 2.4). Then,

the user k estimates and feeds back gΛk
to the DU. The downlink precoding vector

wm,k ∈ CN from the BS m to the user k, constructed from the dominating PGI
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Figure 2.4: Illustration of the dominating path selection

feedback, is

wm,k = VΛm,k
ĝΛm,k

, (2.10)

where VΛm,k
∈ CN×|Λm,k| is the precoding matrix to transform |Λm,k|-dimensional

vector ĝΛm,k
into N -dimensional vector wm,k and ĝΛm,k

∈ C|Λm,k| is the dominating

PGI vector fed back from the user. In the following theorem, we express the achievable

rate of the dominating PGI feedback scheme as a function of the dominating path

indices {Λm,k} and the precoding matrices {VΛm,k
}. Using this theorem, we can find

out {Λm,k} and {VΛm,k
} maximizing the sum rate performance of the dominating PGI

feedback.

Theorem 1. The achievable rate R(ideal)
k of the user k for the ideal system with perfect

PGI is

R
(ideal)
k ≈ log2

1 +

∣∣∣∑M
m=1 tr

(
AH

Λm,k
VΛm,k

)∣∣∣2 +∑M
m=1

∥∥∥AH
m,kVΛm,k

∥∥∥2
F∑K

j ̸=k
∑M

m=1

∥∥∥AH
m,kVΛm,j

∥∥∥2
F
+ σ2n

 ,

(2.11)
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where AΛm,k
= [a(θm,k,i), i ∈ Λm,k] ∈ CN×|Λm,k| is the submatrix of Am,k.

Proof. See Appendix A.

Then, the dominating path selection problem to choose L paths maximizing the sum

rate for each user can be formulated as

P1 : max
{Λm,k,VΛm,k

}

K∑
k=1

R
(ideal)
k (2.12a)

s.t.
M∑
m=1

|Λm,k| = L, ∀k ∈ U (2.12b)

K∑
k=1

∥∥VΛm,k

∥∥2
F = P tx

m, ∀m ∈ B, (2.12c)

where P tx
m is the transmission power of BS m. Note that (2.12b) is the dominating path

number constraint and (2.12c) is the transmit power constraint.

2.3.3 Alternating Dominating Path Selection and Precoding Algorithm

Major obstacle in solving P1 is the strong correlation between the dominating path

index set Λm,k and the precoding matrix VΛm,k
. In fact, since the column dimension of

VΛm,k
is the number of dominating paths |Λm,k|, Λm,k and VΛm,k

cannot be determined

simultaneously. Since it is not possible to solve P1 directly, we propose an algorithm to

determine {Λm,k} and {VΛm,k
} in an alternating way (see Table 2.1): 1) First, we fix

{Λm,k} and then find out the optimal precoding matrices {VΛm,k
} maximizing the sum

rate. 2) We then update {Λm,k} by removing the path index giving the minimal impact

on the sum rate. We repeat these procedures until L dominating paths remain for each

user. Although this relaxation will be sub-optimal, it helps to reduce the computational

complexity required for solving P1.
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Table 2.1 Alternating dominating path selection and precoding algorithm
Input: Path AoDs {θm,k,i}, BS set B, user set U , number of propagation paths P ,

number of dominating paths L, BS maximum transmit power {P tx
m}

Initialization: Λm,k = {1, · · · , P}, ∀m ∈ B, ∀k ∈ U , {VΛm,k
} =

Precoding matrix optimization ({Λm,k})

Iteration:

while
∑M

m=1|Λm,k| > L for some k do

(Check the number of dominating paths)

for k ∈ U do

if
∑M

m=1|Λm,k| > L then

(m̂k, îk) = arg min
m∈B, i∈Λm,k

SLNRm,k,i

(Find the path index with minimum SLNR)

Λm̂k,k = Λm̂k,k \ {̂ik}

(Remove the chosen path index)

end if

end for

{VΛm,k
} = Precoding matrix optimization ({Λm,k})

end while

Output: {Λm,k}, {VΛm,k
}

Precoding Matrix Optimization

We first discuss the way to find out the optimal precoding matrices {VΛm,k
} when

{Λm,k} are fixed3. Unfortunately, the problem P2 is highly non-convex and also con-

tains multiple matrix variables. To address these issues, we first vectorize and concate-

nate the variables of multiple BSs VΛ1,k
, · · · ,VΛM,k

into xΛk
. Then, by exploiting the

3Even though L is chosen to be larger than the effective number of propagation paths, the precoding ma-

trix would be optimized such that the transmit power is focused on the best column vectors (corresponding

to the dominant paths).
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notion of leakage, we decompose the sum rate maximization problem into the distributed

leakage minimization problems for each xΛk
. After obtaining xΛk

, we de-vectorize and

de-concatenate xΛk
to obtain the desired precoding matrices VΛ1,k

, · · · ,VΛM,k
.

When {Λm,k} are fixed, the precoding optimization problem P2 is formulated as

P2 : max
{VΛm,k

}

K∑
k=1

R
(ideal)
k (2.13a)

s.t.
K∑
k=1

∥∥VΛm,k

∥∥2
F = P tx

m, ∀m ∈ B. (2.13b)

Then, using the rate expression in (2.11), we vectorize the variables (xΛm,k
= vec(VΛm,k

),

µΛm,k
= vec(AΛm,k

)) and then concatenate the variables of multiple BSs (xΛk
=

[xT
Λ1,k

, · · · , xT
ΛM,k

]T, µΛk
= [µT

Λ1,k
, · · · , µT

ΛM,k
]T) to obtain

P3 : max
{xΛk

}

K∑
k=1

log2

1 +
∣∣∣µH

Λk
xΛk

∣∣∣2 + ∥∥ΓH
k,kxΛk

∥∥2∑K
j ̸=k

∥∥ΓH
j,kxΛj

∥∥2 + σ2n

 (2.14a)

s.t.
K∑
k=1

∥∥xΛm,k

∥∥2 = P tx
m, ∀m ∈ B, (2.14b)

where Γm,j,k = I|Λm,j | ⊗ Am,k and Γj,k = diag(Γ1,j,k, · · · ,ΓM,j,k). Here, we use

the properties tr(AH
Λm,k

VΛm,k
) = vec(AΛm,k

)Hvec(VΛm,k
) and

∥∥AH
m,kVΛm,j

∥∥
F =∥∥(I|Λm,j | ⊗Am,k

)H
vec(VΛm,j )

∥∥.

The modified problem P3 looks simpler than the original problem P2, but it is

still hard to find out the optimal solution because the rate expression in (2.14a) is a

non-convex quadratic fractional function (i.e., both numerator and denominator are

quadratic functions) so that P3 is a non-convex optimization problem. Furthermore,

P3 requires joint optimization for xΛ1 , · · · ,xΛK
, and thus it is difficult to find out the

global solutions simultaneously. As a remedy, we introduce the notion of leakage, a

measure of how much signal power leaks into the other users [24]. To be specific, the
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signal-to-leakage-and-noise-ratio (SLNR) of the user k is given by

SLNRk =
E
[∣∣∣∑M

m=1 h
H
m,kwm,k

∣∣∣2]∑K
j ̸=k E

[∣∣∣∑M
m=1 h

H
m,jwm,k

∣∣∣2]+ σ2n

(2.15)

(a)
=

∣∣∣µH
Λk

xΛk

∣∣∣2 + ∥∥ΓH
k,kxΛk

∥∥2∑K
j ̸=k

∥∥ΓH
k,jxΛk

∥∥2 + σ2n
, (2.16)

where (a) comes from (2.14a)4. While (2.14a) is a function of xΛ1 , · · · ,xΛK
, SLNRk

in (2.16) is a sole function of xΛk
. Thus, for each user k, we can find out the optimal

x∗
Λk

maximizing SLNRk separately. While this solution is sub-optimal, it is simple and

easy to calculate because we can obtain the tractable closed-form solution.

The distributed SLNR maximization problem for the user k is given by

P4 : x
∗
Λk

= arg max
∥xΛk∥=

√
P tx
k

∣∣∣µH
Λk

xΛk

∣∣∣2+ ∥∥ΓH
k,kxΛk

∥∥2∑K
j ̸=k

∥∥ΓH
k,jxΛk

∥∥2 + σ2n
, (2.17)

where P tx
m,k is the transmit power allocated to the user k from the BS m and P tx

k =∑M
m=1 P

tx
m,k is the total transmit power allocated to the user k. When we try to solve

P4, we should know the information about the allocated power P tx
k . In this chapter, we

use a simple yet effective proportional power allocation strategy satisfying the per-BS

transmit power constraint. In this scheme, the transmit power is set to be proportional

to the channel magnitude as [25]

P tx
m,k =

∥∥xΛm,k

∥∥2
F =

∥Γm,k,k∥2F∑K
j=1 ∥Γm,j,j∥

2
F

P tx
m. (2.18)

Note that since the BSs have information about the AoDs and the dominating PGIs

only, we use Γm,k,k = I|Λm,k| ⊗Am,k as an effective channel matrix instead. One can

easily see that the power constraint (2.14b) is satisfied (
∑K

k=1 P
tx
m,k = P tx

m).

4When compared to the signal-to-interference-and-noise-ratio (SINR) of the user k in (2.5), one can

observe that the only difference is the exchange of user index at the denominator between hH
m,jwm,k and

hH
m,kwm,j . Hence, we can easily obtain the closed-form expression of SLNRk from (2.14a).
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Once the transmit power allocation is determined, we can convert the objective

function (i.e., SLNRk) of P4 as a Rayleigh quotient form as

SLNRk =
xH
Λk

(µΛk
µH
Λk

+ Γk,kΓ
H
k,k)xΛk

xH
Λk

(∑K
j ̸=k Γk,jΓ

H
k,j +

σ2
n

P tx
k
IN |Λk|

)
xΛk

(2.19)

=
xH
Λk

UkxΛk

xH
Λk

WkxΛk

, (2.20)

where Uk = µΛk
µH
Λk

+ Γk,kΓ
H
k,k and Wk =

∑K
j ̸=k Γk,jΓ

H
k,j +

σ2
n

P tx
k
IN |Λk|. Then, P4

is re-expressed as

P4 : x
∗
Λk

= arg max
∥xΛk∥=

√
P tx
k

xH
Λk

UkxΛk

xH
Λk

WkxΛk

. (2.21)

In the following lemma, we provide a closed-form solution of P4.

Lemma 1. The solution x∗
Λk

of P4 is given by [24]

x∗
Λk

=
√
P tx
k

uk,max

∥uk,max∥
, (2.22)

where uk,max is the eigenvector corresponding to the largest eigenvalue of W−1
k Uk.

Using Lemma 1, we can obtain the closed-form solution x∗
Λk

of P4. Then, from the

de-concatenation and de-vectorization of x∗
Λk

, we obtain the desired precoding matrices

V∗
Λ1,k

, · · · ,V∗
ΛM,k

for each BS. Finally, we normalize each V∗
Λm,k

and multiply the

allocated power P tx
m,k in (2.18) to satisfy the per-BS transmit power constraint. The

proposed precoding matrix optimization algorithm is summarized in Table 2.2.

Dominating Path Index Update

Once we obtain {VΛm,k
} from the precoding matrix optimization, we then update the

dominating path indices {Λm,k} by removing the path index giving the minimal impact

on the sum rate. While this task is conceptually simple, it is very difficult to find out

the desired path index since the sum rate is a joint function of precoding matrices and
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Table 2.2 Precoding matrix optimization
Input: Path index set {Λm,k}, BS set B, user set U , number of propagation paths P ,

number of dominating paths L, BS maximum transmit power {P tx
m}

µΛm,k
= vec(AΛm,k

), µΛk
=
[
µT
Λ1,k

, · · · ,µT
ΛM,k

]T
, ∀m ∈ B, ∀k ∈ U

Γm,j,k = I|Λm,j | ⊗Am,k, Γj,k = diag(Γ1,j,k, · · · ,ΓM,j,k),

∀m ∈ B, ∀j, k ∈ U

P tx
m,k=

∥Γm,k,k∥2

F∑K
j=1∥Γm,j,j∥2F

P tx
m, P

tx
k =

∑M
m=1P

tx
m,k, ∀m ∈ B, k ∈ U

for k ∈ U do

Uk = µΛk
µH
Λk

+ Γk,kΓ
H
k,k

Wk =
∑K

j ̸=k Γk,jΓ
H
k,j +

σ2
n

P tx
k
IN |Λk|

uk,max = max eigenvector
(
W−1

k Uk

)
x∗
Λk

=
√
P tx
k

uk,max
∥uk,max∥[

(x∗
Λ1,k

)T, · · · , (x∗
ΛM,k

)T
]T

= x∗
Λk

V∗
Λm,k

=
√
P tx
m,k

vec−1
(
x∗
Λm,k

)∥∥x∗
Λm,k

∥∥ , ∀m ∈ B

end for

return {V∗
Λm,k

}

end function

Output: {VΛm,k
}

dominating path indices. As a remedy, we remove the path index generating minimum

SLNR as

(m̂k, îk) = arg min
m∈B, i∈Λm,k

SLNRm,k,i, (2.23)
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where SLNRm,k,i the SLNR of i-th path between the BS m and the user k given by

SLNRm,k,i =
E
[∣∣hH

m,kvm,k,i
∣∣2]∑K

j ̸=k E
[∣∣hH

m,jvm,k,i
∣∣2]+ σ2n

(2.24)

(a)
=

∣∣aH(θm,k,i)vm,k,i
∣∣2 + ∥∥∥AH

m,kvm,k,i

∥∥∥2∑K
j ̸=k

∥∥∥AH
m,jvm,k,i

∥∥∥2 + σ2n

, (2.25)

where vm,k,i is the column vector of VΛm,k
corresponding to the i-th path and (a)

is obtained in a similar way with (2.16). Since SLNRm,k,i is a sole function of the

dominating path index i, we can easily find out the path index generating minimum

SLNR. In our simulation results in Section VI, we show that this approach can achieve

performance comparable to the optimal path selection strategy obtained from the

exhaustive combinatorial search. The precoding matrix optimization and the dominating

path index update are repeated iteratively until only L paths remain for each user.

Once the dominating paths maximizing the sum rate are chosen, each user acquires

the corresponding dominating PGI from the downlink pilot signal, quantizes the ac-

quired dominating PGI, and then feeds it back to the BSs. In the following section, we

will discuss this issue in detail.

2.4 Downlink Pilot Precoding for Dominating Path Gain In-

formation Acquisition

In the FDD systems, a user acquires the downlink CSI from the downlink pilot signal

and then feeds the quantized channel vector back to the BS [26]. In contrast, in the

proposed scheme, a user acquires the dominating PGI and then feeds back the quantized

dominating PGI vector to the BS. However, there are some difficulties in the dominating

PGI acquisition. First, since each user needs to selectively feed back PGIs of the

dominating paths, the BS must assign additional resources to indicate the desired path

information. Also, it is computationally inefficient for the user to estimate the gains of
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Figure 2.5: Downlink pilot precoding for dominating PGI acquisition

all possible paths. To handle this issue, we propose a new downlink training scheme

based on the spatially precoded pilot signal in the acquisition of dominating PGI.

In essence, a key idea of precoded pilot signal is to convert the downlink channel

vector into the dominating PGI vector so that the user can easily estimate the dominating

PGI using the conventional channel estimation techniques such as the linear minimum

mean square error (LMMSE) estimator [27] (see Fig. 2.5). Additionally, since the

dimension of dominating PGI (i.e., the number of dominating paths) is reduced and

thus becomes much smaller than that of the downlink CSI (i.e., the number of transmit

antennas), we can reduce the pilot resources for the downlink pilot signal.

When the pilot precoding matrix W
p
m,k ∈ C|Λm,k|×N is applied, the downlink

precoded pilot signal xp
m(t) ∈ CN of the BS m at time slot t is given by

xp
m(t) =

K∑
k=1

W
p,H
m,kψm,k(t), t = 1, · · · , τ, (2.26)

where {ψm,k(t)}τt=1 ⊆ C|Λm,k| is the downlink pilot sequence from the BS m to the

user k. Then, the received signal yp
k(t) ∈ C of the user k at time slot t is

y
p
k(t) =

M∑
m=1

(
W

p
m,khm,k

)H
ψm,k(t) +

K∑
j ̸=k

M∑
m=1

(
W

p
m,jhm,k

)H
ψm,j(t) + zk(t),

(2.27)

where zk(t) ∼ CN (0, σ2z) is the Gaussian noise. The user k collects this received

signal for each slot, i.e., yp
k =

[
y

p
k(1), · · · , y

p
k(τ)

]H ∈ Cτ and then multiplies Ψm,k =
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[
ψm,k(1), · · · ,ψm,k(τ)

]
∈ C|Λm,k|×τ to get

Ψm,ky
p
k = Ψm,k

( M∑
m=1

ΨH
m,kW

p
m,khm,k +

M∑
m=1

K∑
j ̸=k

ΨH
m,jW

p
m,jhm,k + zk

)
(2.28)

(a)
= W

p
m,khm,k + nk, (2.29)

where zk = [zk(1), · · · , zk(τ)]H ∈ Cτ and nk = Ψm,kzk ∈ C|Λm,k|. Note that (a) is

due to the orthogonality of pilot sequence.

From (2.29), we observe that if the BS uses a pilot precoding matrix W
p
m,k

satisfying W
p
m,khm,k = gΛm,k

, then the user can extract the dominating PGI vec-

tor gΛm,k
from Ψm,ky

p
k. To generate the desired precoding matrix W

p
m,k, we ba-

sically need to perform two operations: 1) application of the matrix inversion of

A+
m,k = (AH

m,kAm,k)
−1AH

m,k and 2) compression of gm,k into gΛm,k
. Note that A+

m,k

exists as long as AH
m,kAm,k is invertible, which is easily guaranteed by the fact that the

array steering vectors corresponding to different AoDs are independent and the number

of transmit antennas N is larger then the number of paths P . Thus,

A+
m,khm,k

(a)
= A+

m,kAm,kgm,k = gm,k, (2.30)

where (a) is from (2.3). Once gm,k is obtained, we then extract gΛm,k
from gm,k

using the path selection matrix Gm,k. For example, if the number of paths is 3 and

Λm,k = {1, 3}, then Gm,k =

[
1 0 0

0 0 1

]
and thus,

Gm,kgm,k =

1 0 0

0 0 1



gm,k,1

gm,k,2

gm,k,3

=
gm,k,1
gm,k,3

= gΛm,k
. (2.31)

In summary, the pilot precoding matrix W
p
m,k from the BS m to the user k is given by

W
p
m,k = Gm,kA

+
m,k. (2.32)
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Using W
p
m,k in (2.32), we can convert hm,k into gΛm,k

(i.e., Wp
m,khm,k = gΛm,k

).

Hence, (2.29) can be re-expressed as

Ψm,ky
p
k = gΛm,k

+ nk. (2.33)

Finally, the user k acquires ĝΛm,k
from Ψm,ky

p
k by using the linear MMSE estima-

tion [27] as

ĝΛm,k
=

1

1 + σ2z
Ψm,ky

p
k. (2.34)

After the estimation of the dominating PGI, each user quantizes it and then feeds it

back to the BS. To be specific, the user k concatenates gΛ1,k
, · · · ,gΛM,k

into a single

vector gΛk
=
[
gT
Λ1,k

, · · · ,gT
ΛM,k

]T ∈ CL and then quantizes gΛk
into a codeword

index îk as

îk = arg max
i

∣∣ḡH
Λk

ci
∣∣2 (2.35)

where ḡΛk
=

gΛm,k∥∥∥gΛm,k

∥∥∥ and ci is the codeword. In the codebook generation, for example,

one can use the random vector quantization (RVQ) codebook [11]. Note that the user

k also quantizes the dominating PGI magnitude ∥gΛk
∥ and then feeds it back to the

DU. After receiving îk and ∥gΛk
∥, DU reconstructs the original dominating PGI as

ĝΛk
= ∥gΛk

∥ cîk .

2.5 Performance Analysis of the Dominating Path Gain In-

formation Feedback

In this section, we provide the performance analysis of the proposed dominating PGI

feedback scheme. Specifically, we analyze the upper bound of rate gap between the

ideal system with perfect PGI and the realistic system with finite rate PGI feedback. To

this end, we first express the rate gap as a function of the normalized distortion induced
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from the quantization of dominating PGI vector gΛk
. We then find out the upper bound

of the normalized quantization distortion and also the rate gap. Finally, we obtain the

number of feedback bits required to maintain a constant rate gap with the ideal system.

2.5.1 Rate Gap Analysis of the Dominating PGI Feedback

The achievable rate Rk of the user k in the realistic system with finite rate feedback is

Rk=log2

1+ E
[∣∣∣∑M

m=1 g
H
m,kA

H
m,kVΛm,k

ĝΛm,k

∣∣∣2]∑K
j ̸=kE

[∣∣∣∑M
m=1g

H
m,kA

H
m,kVΛm,j ĝΛm,j

∣∣∣2]+σ2n
 (2.36)

=log2

(
1+

DSk + USk
ISk + σ2n

)
, (2.37)

where ĝΛm,k
is the dominating PGI feedback and

DSk = E
[∣∣∣∣ M∑

m=1

gH
Λm,k

AH
Λm,k

VΛm,k
ĝΛm,k

∣∣∣∣2] (2.38)

USk = E
[∣∣∣∣ M∑

m=1

gH
ΛC
m,k

AH
ΛC
m,k

VΛm,k
ĝΛm,k

∣∣∣∣2] (2.39)

ISk =
K∑
j ̸=k

E
[∣∣∣∣ M∑

m=1

gH
m,kA

H
m,kVΛm,j ĝΛm,j

∣∣∣∣2]. (2.40)

Note that Rk consists of the desired signal part DSk, the unselected signal part USk,

and the interference signal part ISk, respectively. Since gΛm,k
is independent of gΛC

m,k

and gm,j (j ̸= k), ĝΛm,k
is also independent of gΛC

m,k
and gm,j (j ̸= k) so that the

quantization of gΛm,k
only affects DSk. This means that USk and ISk remain unchanged

regardless of the quantization. Thus, the achievable rates for the realistic system Rk

and the ideal system R
(ideal)
k are given by

Rk = log2

(
1 +

DSk + USk
ISk + σ2n

)
(2.41)

R
(ideal)
k = log2

(
1 +

DS(ideal)
k + USk
ISk + σ2n

)
, (2.42)
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where DS(ideal)
k is the desired signal constructed from perfect PGI as DS(ideal)

k =

E
[∣∣∣∑M

m=1 g
H
Λm,k

AH
Λm,k

VΛm,k
gΛm,k

∣∣∣2]. Then the rate gap ∆Rk is

∆Rk=R
(ideal)
k −Rk (2.43)

=log2

(
1+

DS(ideal)
k + USk
ISk + σ2n

)
− log2

(
1+

DSk + USk
ISk + σ2n

)
. (2.44)

As mentioned, the only difference between Rideal
k and Rk is the desired signal part.

Based on this observation, we express ∆Rk as a function of signal-to-noise-ratio (SNR)

and the normalized quantization distortion Dk of the desired signal DSk. Dk is defined

as

Dk =
DS(ideal)

k − DSk

DS(ideal)
k

. (2.45)

Proposition 1. The upper bound of rate gap ∆Rk between the ideal system with perfect

PGI and the realistic system with finite rate feedback of the user k is expressed as a

function of SNR and Dk. That is,

∆Rk ≤ log2

(
1 +

Dk

1−Dk

SNR
1 + SNR

)
. (2.46)

Proof. From (2.44), the rate gap ∆Rk is expressed as

∆Rk=log2

(
1+

DS(ideal)
k − DSk

DSk+USk+ISk+σ2n

)
(2.47)

=log2

(
1+

DS(ideal)
k −DSk

DSk

DSk
DSk+USk+ISk+σ2n

)
(2.48)

(a)
= log2

(
1+

Dk

1−Dk

DSk
DSk+USk+ISk+σ2n

)
, (2.49)

where (a) is from the definition of Dk in (2.45). By using the fact that SNR =

DSk+USk+ISk
σ2
n

, we obtain the desired upper bound of ∆Rk as

∆Rk=log2

(
1+

Dk

1−Dk

DSk(
1+ 1

SNR

)
(DSk+USk+ISk)

)
(2.50)

≤ log2

(
1+

Dk

1−Dk

SNR
1+SNR

)
. (2.51)
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Now, we analyze the upper bound of the normalized quantization distortion Dk

to find out the closed-form upper bound of the rate gap ∆Rk. In order to simplify

the expression in (2.45), we use the notation AΛk
= diag(AΛ1,k

, · · · ,AΛM,k
) and

VΛk
= diag(VΛ1,k

, · · · ,VΛM,k
). Then, we have

Dk=
E
[∣∣∣gH

Λk
AH

Λk
VΛk

gΛk

∣∣∣2]−E
[∣∣∣gH

Λk
AH

Λk
VΛk

ĝΛk

∣∣∣2]
E
[∣∣∣gH

Λk
AH

Λk
VΛk

gΛk

∣∣∣2] (2.52)

=1−
E
[∣∣∣gH

Λk
AH

Λk
VΛk

ĝΛk

∣∣∣2]
E
[∣∣∣gH

Λk
AH

Λk
VΛk

gΛk

∣∣∣2] (2.53)

(a)
= 1−

E
[
∥gΛk

∥4
∣∣ḡH

Λk
AH

Λk
VΛk

cîk

∣∣2]
E
[
∥gΛk

∥4
∣∣ḡH

Λk
AH

Λk
VΛk

ḡΛk

∣∣2] (2.54)

=1−
E
[∣∣ḡH

Λk
AH

Λk
VΛk

cîk

∣∣2]
E
[∣∣ḡH

Λk
AH

Λk
VΛk

ḡΛk

∣∣2] , (2.55)

where (a) is due to the independence of the dominating PGI magnitude ∥gΛk
∥ and the

dominating PGI direction ḡΛk
. In the following proposition, we provide an upper bound

of Dk.

Proposition 2. The normalized quantization distortion Dk of the user k is upper

bounded as

Dk ≤
L− δk

(L− 1)(1 + δk)
2−

B
L−1 , (2.56)

where δk =
∑M

m=1∥AH
Λm,k

VΛm,k
∥2F

|
∑M

m=1 tr(AH
Λm,k

VΛm,k
)|2

. Furthermore, Dk is generally upper bounded as

Dk ≤ 2−
B

L−1 .

Proof. From the simplified expression in (2.55), what we need to do is to compute the

closed-form expression of the numerator E
[∣∣ḡH

Λk
AH

Λk
VΛk

cîk

∣∣2] and the denominator

E
[∣∣ḡH

Λk
AH

Λk
VΛk

ḡΛk

∣∣2]. When the B-bit RVQ codebook Ck = {c1, · · · , c2B} is used,

the correlation
∣∣∣ḡH

Λk
cîk

∣∣∣2 between the dominating PGI direction ḡΛk
and the chosen
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codeword cîk is the maximum of 2B independent β-distributed random variables with

parameters 1 and L− 1 [11]. Moreover, it has been proved that the expectation of this

correlation is lower bounded as

γ = E
[∣∣∣ḡH

Λk
cîk

∣∣∣2] = 1− 2Bβ

(
2B,

L

L− 1

)
≥ 1− 2−

B
L−1 , (2.57)

where β(a, b) is the beta function defined as β(a, b) = Γ(a)Γ(b)
Γ(a+b) . Unfortunately, we can-

not directly use this result since AH
Λk

VΛk
is inserted in the middle of E

[∣∣ḡH
Λk

AH
Λk

VΛk
cîk

∣∣2].
To handle this, we exploit the property that the dominating PGI direction ḡΛk

can be

written as a sum of two vectors: one in the direction of the chosen codeword cîk and

the other s isotropically distributed in the null space of cîk [11]:

ḡΛk
=

√
Zcîk +

√
1− Zs, (2.58)

where Z is β-distributed according to
∣∣∣ḡH

Λk
cîk

∣∣∣2 so that E [Z] = γ and is independent

with s. By plugging (2.58) into the nominator E
[∣∣∣ḡH

Λk
AH

Λk
VΛk

cîk

∣∣∣2], we obtain

E
[∣∣ḡH

Λk
AH

Λk
VΛk

cîk

∣∣2]= E
[
cH
îk
VH

Λk
AΛk

(
Zcîkc

H
îk
+(1−Z)ssH

)
AH

Λk
VΛk

cîk

]
(2.59)

= γE
[∣∣cH

îk
AH

Λk
VΛk

cîk

∣∣2]+ (1− γ)E
[∣∣sHAH

Λk
VΛk

cîk

∣∣2].
(2.60)

Using Lemma 3 (see Appendix A), we obtain the closed-form expression of the first

term of (2.60) as

E
[∣∣cH

îk
AH

Λk
VΛk

cîk

∣∣2] = 1

L(L+ 1)

(∣∣tr(AH
Λk

VΛk

)∣∣2 + ∥∥AH
Λk

VΛk

∥∥2
F

)
. (2.61)

Since s is in the null space of cîk and s and cîk are correlated, it is difficult to obtain

the closed-form expression of the second term of (2.60). As a remedy, we use the law
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of total expectation given by

Es,cîk

[∣∣∣sHAH
Λk

VΛk
cîk

∣∣∣2] = Ecîk

[
Es

[∣∣∣sHAH
Λk

VΛk
cîk

∣∣∣2 | cîk
]]

(2.62)

= Ecîk

[
cH
îk
VH

Λk
AΛk

Es

[
ssH | cîk

]
AH

Λk
VΛk

cîk

]
.

(2.63)

In the following lemma, we present the closed-form expression of Es

[
ssH | cîk

]
.

Lemma 2. The conditional covariance of s for a given cîk is

Es

[
ssH | cîk

]
=

1

L− 1

(
IL − cîkc

H
îk

)
. (2.64)

Proof. See Appendix B.

By plugging (2.64) into the second term of (2.60), we obtain

E
[∣∣sHAH

Λk
VΛk

cîk

∣∣2]= 1

L− 1
Ecîk

[
cH
îk
VH

Λk
AΛk

(
IL − cîkc

H
îk

)
AH

Λk
VΛk

cîk

]
(2.65)

=
1

L− 1

(
Ecîk

[∣∣AH
Λk

VΛk
cîk

∣∣2]− Ecîk

[∣∣cH
îk
AH

Λk
VΛk

cîk

∣∣2])
(2.66)

=
1

L− 1

(
1

L

∥∥AH
Λk

VΛk

∥∥2
F − 1

L(L+ 1)

(∣∣tr(AH
Λk

VΛk

)∣∣2
+
∥∥AH

Λk
VΛk

∥∥2
F

))
(2.67)

=
1

L2 − 1

(∥∥AH
Λk

VΛk

∥∥2
F − 1

L

∣∣tr (AH
Λk

VΛk

)∣∣2) . (2.68)

Finally, by plugging (2.61) and (2.68) into (2.60), we get the closed-form expression of

the nominator E
[∣∣ḡH

Λk
AH

Λk
VΛk

cîk

∣∣2] as

E
[∣∣ḡH

Λk
AH

Λk
VΛk

cîk

∣∣2]= γ

L(L+ 1)

(∣∣tr(AH
Λk

VΛk

)∣∣2 + ∥∥AH
Λk

VΛk

∥∥2
F

)
+

1− γ

L2 − 1

(∥∥AH
Λk

VΛk

∥∥2
F − 1

L

∣∣tr(AH
Λk

VΛk

)∣∣2) (2.69)

=
Lγ − 1

L(L2 − 1)

∣∣tr(AH
Λk

VΛk

)∣∣2 + L− γ

L(L2 − 1)

∥∥AH
Λk

VΛk

∥∥2
F .

(2.70)
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Next, we consider the denominator E
[∣∣ḡH

Λk
AH

Λk
VΛk

ḡΛk

∣∣2] in (2.55). Since both ḡΛk

and cîk are uniformly distributed on the surface of a L-dimensional unit sphere, the

closed-form expression of E
[∣∣ḡH

Λk
AH

Λk
VΛk

ḡΛk

∣∣2] can be obtained in the same way to

(2.61). Combining (2.61) and (2.70), the closed-form expression of the upper bound of

Dk is simplified as

Dk = 1−
Lγ−1

L(L2−1)

∣∣tr(AH
Λk

VΛk

)∣∣2 + L−γ
L(L2−1)

∥∥∥AH
Λk

VΛk

∥∥∥2
F

1
L(L+1)

(∣∣tr(AH
Λk

VΛk

)∣∣2 + ∥∥∥AH
Λk

VΛk

∥∥∥2
F

) (2.71)

=
1− γ

L− 1

L
∣∣tr(AH

Λk
VΛk

)∣∣2 − ∥∥∥AH
Λk

VΛk

∥∥∥2
F∣∣∣tr(AH

Λk
VΛk

)∣∣∣2 + ∥∥∥AH
Λk

VΛk

∥∥∥2
F

(2.72)

=
L− δk

(L− 1)(1 + δk)
(1− γ) (2.73)

(a)

≤ L− δk
(L− 1)(1 + δk)

2−
B

L−1 , (2.74)

where δk =

∑M
m=1∥AH

Λm,k
VΛm,k

∥2F
|
∑M

m=1 tr(AH
Λm,k

VΛm,k
)|2

and (a) is due to (2.57). Noting that 1
L ≤ ∥C∥2F

|tr(C)|2 ,

we obtain a simple upper bound of Dk as

Dk ≤
L− 1

L

(L− 1)(1 + 1
L)

2−
B

L−1 = 2−
B

L−1 . (2.75)

Since 1
L ≤ δk, Dk is smaller than the quantization distortion of the conventional L-

dimensional vector quantization 1− γ in (2.57). Note also that Dk is a function of the

number of dominating paths L, not the number of transmit antennas N .

In Fig. 2.6, we plot the normalized quantization distortion Dk as a function of the

number of dominating paths L. In this figure, we plot the numerical evaluation of Dk,

the upper bound in (2.74), the simplified upper bound in (2.75), and the conventional

L-dimensional vector quantization using RVQ codebook in (2.57). One can observe

that the numerical evaluation is close to the derived upper bound. One can also observe
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Figure 2.6: Normalized quantization distortion as a function of the number of dominat-

ing paths L (M = 5, K = 5, N = 8, P = 6, B = 9, SNR = 17 dB)

that the normalized quantization distortion of the proposed scheme is much smaller

than that of the conventional vector quantization.

Finally, by using Proposition 2, we obtain the closed-form expression on the upper

bound of ∆Rk.

Theorem 2. The per user rate gap ∆Rk between the ideal system using the perfect PGI

and the realistic system using the finite rate feedback of the user k is upper bounded as

∆Rk≤ log2

(
1+

SNR
1 + SNR

(L− δk)2
− B

L−1

(L− 1)(1 + δk)− (L− δk)2
− B

L−1

)
, (2.76)

where SNR is the signal-to-noise-ratio.

Proof. By plugging (2.56) into (2.46), we get

∆Rk≤ log2

(
1+

SNR
1 + SNR

L−δk
(L−1)(1+δk)

2−
B

L−1

1− L−δk
(L−1)(1+δk)

2−
B

L−1

)
(2.77)

=log2

(
1+

SNR
1 + SNR

(L− δk)2
− B

L−1

(L− 1)(1 + δk)− (L− δk)2
− B

L−1

)
. (2.78)
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Figure 2.7: Per user rate as a function of SNR (M = 5, K = 5, N = 8, P = 6, L = 8,

B = 9)

We can also obtain the number of feedback bits required to maintain a certain rate gap

with the ideal system.

Proposition 3. To maintain a rate gap between the proposed scheme with the ideal

system with perfect PGI within log2(b) bps/Hz per user, the number of feedback bits

should satisfy

B≥(L− 1) log2

(
b(SNR + 1)− 1

(SNR + 1)(b− 1)

L− δk
(L−1)(1+δk)

)
. (2.79)

Proof. To maintain ∆Rk ≤ log2 (b), the number of feedback bits B should satisfy

1 +
SNR

1 + SNR
(L− δk)2

− B
L−1

(L− 1)(1 + δk)− (L− δk)2
− B

L−1

≤ b. (2.80)

After simple manipulations, we get the desired result.

In Fig. 2.7, we plot the per user rate as a function of SNR. We observe that the

analytic upper bound obtained from the Theorem 2 is close to the upper bound obtained
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from the numerical evaluation. This means that by using a proper scaling of feedback

bits in Proposition 3, the rate gap can be controlled effectively.

2.5.2 Dominating Path Number Selection

In the subsection, we discuss how to choose the dominating path number. In a nutshell,

we compute the lower bound of the sum rate
∑K

k=1Rk (l) for each l (l = 1, · · · ,MP )

and then choose the value L maximizing the sum rate. That is

L = arg max
l=1,··· ,MP

K∑
k=1

Rk(l). (2.81)

Note that Rk(l) is obtained from the dominating path selection algorithm. In each

iteration of this algorithm (see Section III.C), we obtain the dominating path indices

{Λm,k} and the precoding matrices {VΛm,k
} and then compute the lower bound of the

rate using {Λm,k} and {VΛm,k
}5.

2.6 Simulation Results

In this section, we investigate the sum rate performance of the proposed dominating

PGI feedback scheme. For comparison, we use the conventional CSI feedback schemes

with the AoD-adaptive subspace codebook [15] and the RVQ codebook [11]. Note that

we use the same precoding scheme (centralized SLNR precoding [28]) and the power

allocation strategy [25] for the conventional schemes as well as the proposed scheme.

In our simulations, we consider the FDD-based cell-free systems where M = 5

BSs equipped with N = 8 transmit antennas cooperatively serve K = 5 users equipped

with a single antenna. We set the maximum transmit power of BS to 2W and the total

transmit power of cooperating BS group to 10W. Also, we distribute the BSs and

5To be specific, the lower bound of the rate is Rk(l) = R
(ideal)
k (l)−∆Rk(l) where R(ideal)

k (l) is the

rate of ideal system with perfect PGI (see Theorem 1) and ∆Rk(l) is the upper bound of the rate gap over

the ideal system (see Theorem 2).
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Figure 2.8: Sum rate as a function of SNR (M = 5, K = 5, N = 8, P = 6, L = 8,

B = 9)

users randomly in a square area (size of a square is 1× 1 km2). We use the downlink

narrowband multi-path channel model whose carrier frequency is fc = 2GHz and set

the number of propagation paths to P = 6. The angular spread of AoD is set to 10◦.

In the proposed dominating PGI feedback scheme, we select L = 8 dominating paths

among all possible MP = 30 paths. Further, we use BCSI = 6 and BCQI = 3 for the

channel direction and channel magnitude feedbacks so that the total number of feedback

bits is B = BCSI + BCQI = 9. In addition, we fix the transmit SNR into 17 dB. To

avoid special scenarios where the proposed technique is favorable (or unfavorable), we

used 1000 randomly generated cell-free system realizations.

In Fig. 2.8, we plot the sum rate performance as a function of SNR. We observe

that the proposed scheme outperforms the conventional schemes by a large margin in

the mid and high SNR regions. For example, at 17 bps/Hz region, the proposed scheme

achieves 8 dB gain over the conventional CSI feedback schemes. We also observe that

the sum rate loss of the proposed scheme over the perfect PGI system is within 3 dB
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Figure 2.9: Sum rate as a function of the number of feedback bits B (M = 5, K = 5,

N = 8, P = 6, L = 8, SNR = 17 dB)

whereas the conventional AoD-adaptive codebook scheme and the RVQ codebook

scheme suffer more than 5 dB and 15 dB loss. As mentioned, this is because the number

of feedback bits of the proposed scheme required to control the rate gap scales linearly

with the number of dominating paths L while such is not the case for the conventional

schemes. Further, it is worth mentioning that in the high SNR region, the performance

of the proposed scheme increases linearly while no such behavior is observed for the

conventional scheme. This is because the proposed scheme allocates power to a few

dominating paths maximizing the sum rate while the conventional schemes allocates

the power uniformly to every propagation paths.

In Fig. 2.9, we plot the sum rate as a function of the number of feedback bits B.

We observe that the proposed dominating PGI feedback scheme achieves a significant

feedback overhead reduction over the conventional schemes. For example, in achieving

23 bps/Hz, the proposed dominating PGI feedback scheme requires B = 6 bits while

the AoD-adaptive subspace codebook scheme requires more thanB = 18 bits, resulting
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Figure 2.10: Sum rate as a function of the number of dominating paths L (M = 3,

K = 3, N = 8, P = 2, B = 9, SNR = 17 dB)

in more than 60% reduction in feedback overhead. Further, the proposed scheme

requires only B = 9 bits to maintain 3 bps/Hz rate gap with the ideal system while

the conventional AoD-adaptive codebook scheme requires more than B = 24 bits to

maintain the same rate gap.

In order to show the effectiveness of the proposed SLNR-based dominating path

selection, we compare the proposed dominating path selection with the optimal path

selection and the random path selection in Fig. 2.10. In the optimal path selection

approach, we exhaustively search all possible choices of dominating paths and then

find out the one maximizing the sum rate. Also, in the random path selection, we feed

back the PGI of randomly selected paths. Note that due to the huge computational

complexity of the optimal path selection (e.g., if M = 5, K = 5, P = 6, and L = 8,

we need to search over K(MP
L ) = 55852925 possible choices), we set M = 3, K = 3,

and P = 2 so that the total number of paths is MP = 6. Overall, we observe that the

proposed SLNR-based dominating path selection performs comparable to the optimal
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Figure 2.11: Sum rate as a function of the number of propagation paths P (M = 5,

K = 5, N = 8, L =
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4MP
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path selection and also provides a considerable sum rate gain over the random path

selection.

In Fig. 2.11, we plot the sum rate as a function of the number of propagation paths

P . We set L =
⌊

4MP
−5−fig16

⌋
so that the number of dominating paths increases linearly

with the number of propagation paths. Interestingly, the performance of the proposed

dominating PGI scheme increases with the number of propagation paths while no

such effect is observed from the conventional CSI feedback schemes. The reason is

because when the number of propagation paths increases, we can choose the dominating

paths from increased number of total paths so that we can achieve the gain obtained

from the path diversity. Indeed, the performance gain of the proposed scheme over the

conventional scheme increases from 6 bps/Hz to 9 bps/Hz when P increases from 4 to

12. This clearly demonstrates that the proposed scheme performs well even in the rich

scattering environment.

In Fig. 2.12, we plot the sum rate as a function of the number of BSs. Similar to Fig.
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Figure 2.12: Sum rate as a function of the number of BSs M (K = 5, N = 8, P = 6,

L =
⌊

4MP
−5−fig16

⌋
, B = 12, SNR = 17 dB)

11, we set L =
⌊

4MP
−5−fig16

⌋
. We observe that when the number of BSs increases, the

rate loss of the proposed scheme is much smaller than that of the conventional schemes.

In particular, when M increases from 2 to 10, the rate loss of the proposed scheme

increases from 0.5 bps/Hz to 5 bps/Hz while that of the conventional scheme increases

sharply from 3 bps/Hz to 17 bps/Hz.

In Fig. 2.13, we investigate the performance of proposed dominating PGI feedback

when only one BS serves users in a cell. Although the gain obtained from the BS

cooperation would not be significant in this scenario, we can still obtain fairly accurate

dominating PGI and use this to control the inter-cell interference. As a result, the

proposed scheme achieves more than 2.5 dB gain in the high SNR region over the

AoD-adaptive subspace codebook scheme.
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2.7 Summary

In this chapter, we proposed a novel feedback reduction technique for FDD-based cell-

free systems. The key feature of the proposed scheme is to choose a few dominating

paths among all possible propagation paths and then feed back the PGI of the chosen

paths. Key observations in our work are that 1) the spatial domain channel is represented

by a small number of multi-path components (AoDs and path gains) and 2) the AoDs

are quite similar in the uplink and downlink channel owing to the angle reciprocity so

that the BSs can acquire AoD information directly from the uplink pilot signal. Thus, by

choosing a few dominating paths and only feed back the path gain of the chosen paths,

we can achieve a significant reduction in the feedback overhead. We observed from the

extensive simulations that the proposed scheme can achieve more than 60% of feedback

overhead reduction over the conventional schemes relying on the CSI feedback.
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2.8 Proofs

2.8.1 Proof of Theorem 1

We first compute the closed-form expression of numerator of Rk and then compute the

closed-form expression of denominator of Rk. Since the channel vector is decomposed

as

hm,k = Am,kgm,k (2.82)

= AΛm,k
gΛm,k

+AΛC
m,k

gΛC
m,k
, (2.83)

the numerator of Rk is given by

E
[∣∣∣∣ M∑

m=1

hH
m,kwm,k

∣∣∣∣2]= E
[∣∣∣∣ M∑
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H
m,kVΛm,k
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Λk
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k
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ΛC
k
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∣∣∣2] (2.85)
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Λk

AH
Λk

VΛk
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ΛC
k
AH

ΛC
k
VΛk
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k
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(2.87)

where (a) is due to the independence of the vector norm ∥gΛk
∥ and the vector direction

ḡΛk
. Since ḡΛk

and ḡΛC
k

are independent, the closed-form expression of the second

term in (2.87) is

E
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1
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k
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F
. (2.90)

Whereas, the closed-form expression of the first term in (2.87) is not easy to compute.

To address this issue, we use the following lemma.
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Lemma 3. Let A be a L×L matrix, g be a L× 1 complex normal vector, and ḡ = g
|g| .

Then,

E
[∣∣ḡHAḡ

∣∣2] = 1

L(L+ 1)

(
|tr(A)|2 + ∥A∥2F

)
. (2.91)

Proof. Let (i, j)-th element of A be ai,j and i-th element of ḡ be gi. Then,

E
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i gj
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where (a) is due to the fact that E
[
|gi|4

]
= 2

L(L+1) and E
[
|gi|2

]
= E
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]
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By plugging the result of Lemma 3 and (2.90) into (2.87), we get
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Next, since gm,k and gΛm,j are independent, the denominator ofRk can be obtained

similarly to (2.88)–(2.90) as

K∑
j ̸=k
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m,kVΛm,j

∥∥2
F
. (2.102)

Combining (2.100) and (2.102), we obtain the data rate expression in Theorem 1.

2.8.2 Proof of Proposition 2

Let {cîk ,u1, · · · ,uL−1} be the orthonormal basis of CL. Also, let U = [u1, · · · ,uL−1] ∈

CL×(L−1). Then, the null space of cîk can be represented as {Uα | ∥α∥ = 1} where

α is isotropically distributed on the (L− 1)-dimensional unit sphere. Hence, we have

E
[
ssH | cîk

]
= UE

[
ααH]UH (2.103)

=
1

L− 1
UUH (2.104)

(a)
=

1

L− 1

(
IL − cîkc

H
îk

)
, (2.105)

where (a) is due to the fact that

IL = [cîk ,U][cîk ,U]H (2.106)

= cîkc
H
îk
+UUH. (2.107)
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Chapter 3

Efficient Channel Probing and Phase Shift Control for

mmWave Reconfigurable Intelligent Surface-Aided Com-

munications

In this chapter, we introduce a channel estimation technique for reconfigurable in-

telligent surface-assisted THz systems. Recently, an RIS that controls the reflection

characteristics of incident signals has received a great deal of attention. To make the

most of the RIS-aided systems, an acquisition of RIS reflected channel information at

the base station (BS) is crucial. However, this task is by no means easy due to the pilot

overhead induced by the large number of reflecting elements. In our work, we propose

an efficient channel estimation and phase shift control technique reducing the pilot

overhead of the RIS-aided mmWave systems. Key idea of the proposed scheme is to

decompose the RIS reflected channel into three major components, i.e., static BS-RIS

angles, quasi-static RIS-UE angles, and time-varying BS-RIS-UE path gains, and then

estimate them in different time scales. By estimating the BS-RIS and RIS-UE angles oc-

casionally and estimating only the path gains frequently, the proposed scheme achieves

a significant reduction on the pilot overhead. Further, by optimizing the phase shifts

using the channel components with relatively long coherence time, we can improve the

channel estimation accuracy.
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3.1 Introduction

As the standardization of 5G phase 2 (Rel. 16) has been completed and the commer-

cialization is in progress, the visioning and planning of 6G communications have been

initiated recently, with an aim to accomplish a hyper-connected society in 2030. The

IMT vision forecasts that 6G will provide two orders of magnitude improvement over

5G in terms of throughput, energy efficiency, and operation cost [4]. As a means to

achieve this relentless goal, reconfigurable intelligent surface (RIS)-aided communica-

tions have received a great deal of attention recently [29]. In essence, RIS is a planar

array consisting of a large number of low-cost passive reflecting elements, each of

which can induce a phase shift to the incident signal. In contrast to the traditional com-

munication systems where the wireless channel is unchangeable, RIS-aided systems

proactively modify the wireless channel by adjusting the phase shifts of reflecting ele-

ments, thereby enhancing the throughput significantly. For instance, when the direct link

between the base station (BS) and the user equipment (UE) is blocked by obstacles, RIS

can provide a virtual line-of-sight (LoS) link via intelligent signal reflection, resulting

in an improvement of coverage.

To make the most of the RIS-aided systems, the phase shifts of RIS reflecting ele-

ments should be properly configured based on the wireless propagation environments.

To do so, an acquisition of downlink channel information at the BS is of great impor-

tance1. However, this task is by no means easy due to the huge pilot overhead induced

by the large number of RIS reflecting elements. In fact, in the RIS-aided systems, the BS

needs to acquire not only the conventional direct channel between the BS and UE but

also the channels reflected by RIS (i.e., BS to RIS and RIS to UE channels). Since the

reflecting elements have no dedicated RF chains to transmit or receive the pilot signals,
1To avoid the necessity of RIS reflected channel estimation, a beam training-based RIS phase shift

control techniques have been proposed in [30, 31]. Potential drawback of these schemes is that the RIS

phase shifts are chosen from a pre-defined codebook with finite number of codewords so that the BS

cannot obtain the optimal RIS phase shifts maximizing the throughput.
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the BS needs to indirectly estimate the RIS reflected channels from the pilot signals.

This clearly indicates that a considerable amount of pilot resources is needed for the

acquisition of RIS reflected channel information. Indeed, this issue is pronounced in

the RIS-aided mmWave systems due to the short coherence time of mmWave channel.

Recently, various approaches have been proposed to address the channel estimation

issue of RIS-aided systems [32–35]. In [32], an on/off-based technique that turns on only

a single reflecting element at a time and then estimates the channel of corresponding

reflecting element has been proposed. In [33], a minimum mean squared error (MMSE)-

based channel estimation has been proposed. In [34], a channel estimation technique

that employs the parallel factor decomposition of RIS-aided channels has been proposed.

Also, in [35], a technique that estimates the BS-RIS channel in a large time scale and

estimates the RIS-UE channel in a small time scale has been proposed. Potential problem

of these approaches is that the pilot overhead is considerable since the full-dimensional

RIS reflected channel should be estimated.

To reduce the dimension of channel to be estimated, approaches that convert the

original spatial-domain channel to the angular-domain channel have gained much

interest recently [36–39]. In [36], a compressed sensing (CS)-based channel estimation

scheme has been proposed. In [37], a channel estimation technique using the double-

structured sparsity of the RIS reflected channels for multi-user RIS-aided systems has

been proposed. Also, in [38,39], manifold optimization (MO)-based channel estimation

techniques that exploit the low-rank property of RIS reflected channel have been

proposed. In these schemes, the total number of angular bins is unduly large (e.g.,

order of hundreds or thousands) since the BS-RIS angles, the RIS-UE angles, and the

path gains are estimated simultaneously. In this case, the columns of system matrix

(a.k.a. sensing matrix) will be highly correlated, degrading the estimation accuracy

considerably.

An aim of this paper is to propose an efficient channel estimation framework

reducing the pilot overhead of RIS-aided mmWave systems. Main idea of proposed
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scheme, henceforth referred to as three-stage angular-domain channel estimation

(TAD-CE), is to decompose the angular-domain RIS reflected channel into three major

components, i.e., static BS-RIS angles, quasi-static RIS-UE angles, and time-varying

BS-RIS-UE path gains, and then estimate these components in different time scales.

Our strategy is justified by two crucial observations that 1) the coherence time of angles

is an order of magnitude longer than that of path gains [40] and 2) BS-RIS angles are

quasi-static over the RIS-UE angles [35]. Using the proposed strategy, we can reduce

the number of multi-path components to be estimated at each stage significantly over

the conventional schemes estimating all components simultaneously. This, together

with the fact that the number of multi-path components is much smaller than the number

of reflecting elements, implies that TAD-CE requires far smaller pilot resources than

the conventional scheme requires.

The main contributions of this work are as follows:

• We propose a novel three-stage channel estimation technique for the RIS-aided

mmWave systems. Specifically, since the BS-RIS angles are determined primarily

by the scattering geometry around the BS and RIS, they are not affected by the

UE, and thus we estimate the BS-RIS angles before the UE connection. After

the UE connection, since the angles vary much slower than the path gains, we

estimate the RIS-UE angles occasionally and estimate only the BS-RIS-UE path

gains frequently. In doing so, we can avoid the waste of pilot resources required

for the frequent estimation of static or quasi-static channel components.

• We propose a phase shift control scheme to assist the proposed channel estimation

framework. While the conventional studies focus on the design of phase shifts

maximizing the throughput, not much work has been done on the design of phase

shifts improving the channel estimation accuracy. Indeed, an accurate phase

shift control in the channel estimation process is difficult since the BS cannot

acquire the channel information used for the phase shift control before the channel

estimation. In the proposed TAD-CE scheme, we exploit the channel components
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with relatively long coherence time to optimize the RIS phase shifts. By adjusting

the RIS phase shifts to satisfy the desirable properties of system matrix (e.g.,

column orthogonality), we can improve the channel estimation accuracy without

requiring additional pilot resources.

• We analyze the channel estimation error induced by the mismatch between the

true angles and the discretized angular bin from which we demonstrate that

the channel estimation error of TAD-CE is much smaller than that of the CS-

based scheme. Also, from the numerical evaluations on the realistic RIS-aided

mmWave systems, we show that TAD-CE outperforms the conventional schemes

in terms of the normalized mean squared error (NMSE) and the pilot overhead

reduction. For example, TAD-CE achieves more than 7 dB NMSE gain and 80%

pilot overhead reduction over the MMSE-based scheme. Even when compared

with the CS-based scheme, TAD-CE achieves 5 dB NMSE gain and 60% pilot

overhead reduction.

Notations: Lower and upper case symbols are used to denote vectors and matri-

ces, respectively. The superscripts (·)T, (·)H, and (·)† denote the transpose, hermitian

transpose, and pseudo-inverse, respectively. ∥x∥ and ∥X∥F are used as the Euclidean

norm of a vector x and the Frobenius norm of a matrix X, respectively. tr(X) denotes

the trace of X and diag(x) denotes a diagonal matrix whose diagonal elements are

x. X ⊗ Y and X ⊙ Y denote the Kronecker and Hadamard products of X and Y,

respectively. In addition, X ∗ Y and X • Y denote the column-wise and row-wise

Khatri-Rao products of X and Y, respectively.

3.2 RIS-Aided mmWave Systems

In this section, we discuss the RIS-aided mmWave systems and the conventional channel

estimation scheme. We then present useful properties to develop our channel estimation

framework.
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3.2.1 RIS-Aided mmWave System Model

We consider the RIS-aided mmWave systems where a single-antenna UE transmits an

uplink pilot signal and the BS equipped with a linear array of M antennas estimates

the uplink channel from the pilot signal of UE. An RIS is equipped with a planar array

of N = Nx ×Ny passive reflecting elements, each of which is connected to the RIS

controller responsible for the phase shift control. By exploiting the channel reciprocity

of time-division duplexing (TDD) systems, the BS can recycle the acquired uplink

channel information for the downlink data transmission.

In the RIS-aided systems, other than the direct channel between the BS and UE,

the reflected channels (BS-RIS channel G ∈ CM×N and RIS-UE channel hr ∈ CN )

need to be considered. Since we focus on the estimation of RIS reflected channels, we

assume that the direct link is blocked so that the uplink channel h ∈ CM from the UE

to the BS is2

h = Gdiag(ϕ)hr = Gdiag(hr)ϕ = Hϕ, (3.1)

where H = Gdiag(hr) ∈ CM×N is the RIS reflected channel matrix,ϕ = [ejω1 · · · ejωN ]T ∈

CN is the phase shift vector, and ωn ∈ [0, 2π) is the phase shift of n-th reflecting ele-

ment3.

3.2.2 RIS-aided mmWave Channel Model

We assume the narrowband block-fading multi-path channel model where the channel

remains unchanged within a block of τ symbols and changes from block-to-block (see

Fig. 3.1) [6, 14].
2By switching off all the reflecting elements, the direct channel can be acquired via conventional

channel estimation technique.
3We assume the ideal phase shift model where the reflection amplitude and the phase shift are

independent and the phase shifts can take a continuous value in [0, 2π). Note that the proposed scheme

can be readily extended to the practical systems with finite level of phase shifts via the phase quantization.
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Figure 3.1: RIS-aided mmWave multi-path channel model.

The uplink channel matrix G ∈ CM×N from the RIS to the BS is expressed as

G =

Pg∑
i=1

γg,iaB(θg,i)a
H
R(ψg,i, φg,i) (3.2)

= AB(θg)diag(γg)A
H
R(ψg,φg), (3.3)

where Pg is the path number, θg,i is the angle of arrival (AoA), (ψg,i, φg,i) are the

azimuth and elevation angles of departures (AoDs), γg,i ∼ CN (0, ρg) is the gain of the

i-th path where ρg is the large-scale fading coefficient. We assume that the path gains in

adjacent blocks are uncorrelated. Also, aB(θg,i) = [1 · · · e−jπ(M−1) sin θg,i ]T ∈ CM

and aR(ψg,i, φg,i) = aR,x(ψg,i, φg,i) ⊗ aR,y(φg,i) ∈ CN are the BS and RIS ar-

ray response vectors where aR,x(ψg,i, φg,i) = [1 · · · e−jπ(Nx−1) sinψg,i cosφg,i ]T ∈

CNx and aR,y(φg,i) = [1 · · · e−jπ(Ny−1) sinφg,i ]T ∈ CNy . In addition, AB(θg) =

[aB(θg,1) · · ·aB(θg,Pg)] ∈ CM×Pg is the BS-RIS AoA matrix, AR(ψg,φg) = [aR(ψg,1, φg,1)

· · ·aR(ψg,Pg , φg,Pg)] ∈ CN×Pg is the BS-RIS AoD matrix, and γg = [γg,1 · · · γg,Pg ]
T ∈

CPg is the BS-RIS path gain vector where θg = [θg,1 · · · θg,Pg ]
T,ψg = [ψg,1 · · ·ψg,Pg ]

T,

and φg = [φg,1 · · ·φg,Pg ]
T.

Similarly, the uplink channel vector hr ∈ CN from the UE to the RIS is expressed
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as

hr =

Pr∑
i=1

γr,iaR(ψr,i, φr,i) (3.4)

= AR(ψr,φr)γr, (3.5)

where Pr is the path number, (ψr,i, φr,i) are the azimuth and elevation AoAs, and γr,i ∼

CN (0, ρr) is the gain of the i-th path where ρr is the large-scale fading coefficient.

Also, AR(ψr,φr) = [aR(ψr,1, φr,1) · · ·aR(ψr,Pr , φr,Pr)] ∈ CN×Pr is the RIS-UE

AoA matrix and γr = [γr,1 · · · γr,Pr ]
T ∈ CPr is the RIS-UE path gain vector where

ψr = [ψr,1 · · ·ψr,Pr ]
T and φr = [φr,1 · · ·φr,Pr ]

T.

The RIS reflected channel H can be expressed as a function of multi-path compo-

nents [36].

Lemma 4. The RIS reflected channel matrix H = Gdiag(hr) can be expressed as [36]

H = (1T
Pr

⊗AB(θg))diag(γ)(A∗
R(ψr,φr) •AR(ψg,φg))

H, (3.6)

where γ = γr⊗γg. Also, the vectorized RIS reflected channel vec(H) can be expressed

as

vec(H) =
(
(AR(ψr,φr) •A∗

R(ψg,φg)) ∗ (1T
Pr

⊗AB(θg))
)
γ. (3.7)

Typically, the number of paths P is much smaller than the number of reflecting

elements N (e.g., P = 2 ∼ 8 while N = 64 ∼ 1024) due to the high path loss and

directivity of mmWave signal [17]. Thus, one can greatly reduce the pilot overhead

by estimating the channel parameters, i.e., θg, (ψg,φg), (ψr,φr), γ, instead of the

full-dimensional RIS reflected channel matrix H.

3.2.3 Conventional RIS Reflected Channel Estimation

In the conventional channel estimation strategy, the BS directly estimates H from the

uplink pilot signal of UE. To be specific, the received pilot signal yt ∈ CM of BS at

the t-th symbol is

yt = Hϕtpt + nt, t = 1, · · · , τp, (3.8)
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where τp is the number of pilot symbols, pt is the uplink pilot symbol of UE, and

ϕt ∈ CN is the phase shift vector at the t-th symbol. The received signal matrix

Y = [y1 · · ·yτp ] ∈ CM×τp is

Y = H[ϕ1p1 · · ·ϕτppτp ] + [n1 · · ·nτp ] = HΠ+N, (3.9)

where Π = [ϕ1p1 · · ·ϕτppτp ] ∈ CN×τp and N = [n1 · · ·nτp ] ∈ CM×τp . After the

vectorization of Y into y = vec(Y) ∈ CMτp , we obtain a simple linear system model:

y = vec(HΠ+N) (3.10)

= (ΠT ⊗ IM )vec(H) + n (3.11)

= Σ(Φ)vec(H) + n, (3.12)

where Σ(Φ) = ΠT ⊗ IM is the system matrix and Φ = [ϕ1 · · ·ϕτp ] is the RIS phase

shift matrix. Note that Σ(Φ) is a function of Φ. Since the estimation accuracy of

vec(H) is determined by Σ(Φ), one can improve the channel estimation accuracy by

deliberately designing Φ.

To accurately estimate H from y, the number of pilot symbols τp should be larger

than the number of reflecting elements N . For example, when N = 1024, at least 13

resource blocks (RBs) (12 × 7 resources for each RB) are needed just for the pilot

transmission.

3.2.4 Angular-Domain Channel Coherence Property

In this subsection, we discuss useful properties to develop our channel estimation

framework.

Remark 1. The coherence time of angles (i.e., AoAs and AoDs) is typically an order

of magnitude (around 40) longer than that of path gains [41]. Specifically, the angle
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coherence time Tθ and the path gain coherence time Tγ are given by [40]

Tθ =
Dr

v sin θ
Eβ
[
cos−1((β2 + γ2) log ζ + 1)

]
, (3.13)

Tγ =

√
1− (1 + γ2 log ζ)2

1
4(1 + γ2 log ζ)(v sin θDr

)2 + (2πfD)2γ4
, (3.14)

where fD = v
λ is the maximum Doppler frequency, v is the speed of UE, λ is the signal

wavelength, θ is the angle, γ is the beamwidth, β is the spatial lobe width which is

modeled as a Gaussian random variable, Dr is the scattering radius, and ζ ≈ 0.5 is

the coherence coefficient.

Remark 1 is due to the fact that the angles are determined by the dominant scatterers

(e.g., buildings and trees) which do not change their positions significantly. In contrast,

the path gains depend on dynamically varying scatterers (e.g., cars and leaves) around

UE. By plugging the RIS speed vRIS = 0m/s and the UE speed vUE = 1 ∼ 5m/s to

(3.13), we obtain the following property.

Remark 2. The BS-RIS angles remain unchanged whereas the RIS-UE angles vary

over time due to the UE mobility [35, 42].

Using Remark 1 and 2, we obtain the angular-domain channel coherence property.

Remark 3 (angular-domain channel coherence property). The RIS reflected channel

matrix H can be decomposed into three major components with different coherence

time:

1. Static BS-RIS AoAs (θg) and AoDs (ψg,φg),

2. Quasi-static RIS-UE AoAs (ψr,φr),

3. Time-varying BS-RIS-UE path gains (γ = γr ⊗ γg).

This property justifies the three-stage processing of our channel estimation frame-

work.
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(BS-RIS angle estimation)
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Coherence time of BS-RIS angle

Coherence time of RIS-UE angle

Coherence time of BS-RIS-UE path gain

Figure 3.2: Overall structure of proposed three-stage angular-domain channel estima-

tion.

3.3 Three-Stage Angular-Domain Channel Estimation for

RIS-Aided mmWave Systems

A potential problem in the RIS reflected channel estimation is that the pilot overhead is

considerable due to the large number of reflecting elements. To address this issue, we

exploit the angular-domain channel coherence property that the RIS reflected channel

H can be decomposed into three channel components: 1) static BS-RIS angles θg and

(ψg,φg), 2) quasi-static RIS-UE angles (ψr,φr), and 3) time-varying BS-RIS-UE path

gains γ. Since the BS-RIS angles are determined by the scattering geometry around

the BS and RIS, they are not affected by UE so that we can estimate them before the

UE connection. Whereas, components related to UE such as the RIS-UE angles and the

BS-RIS-UE path gains are estimated after the UE is connected to the BS. Also, since

the coherence time of angle is much longer than that of path gains, we can estimate the

RIS-UE angles infrequently, achieving a substantial reduction of the pilot overhead.

Further, by optimizing the phase shifts of RIS reflecting elements using the channel

components with relatively long coherence time (e.g., BS-RIS and RIS-UE angles), we

can improve the channel estimation accuracy without using additional pilot resources.

In a nutshell, the proposed TAD-CE scheme consists of three major steps (see Fig.

3.2). First, the BS estimates the BS-RIS angles before the UE connection. Second, when
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Figure 3.3: Block diagram of BS-RIS angle estimation.

the UE is connected to BS, the BS estimates the RIS-UE angles occasionally. Third, the

BS estimates the BS-RIS-UE path gains in each channel coherence block.

3.3.1 Stage I: BS-RIS Angle Estimation

Before the UE connection, the BS estimates the BS-RIS AoAs θg and AoDs (ψg,φg)

from the uplink pilot signal of adjacent BS4 (see Fig. 3.3). Since the locations of BS

and RIS are fixed, the BS-RIS angles can be considered to be static, meaning that the

BS can collect a large number of pilot measurements. In any case, to account for the

situations where the BS-RIS angles might change, the BS periodically estimates the

BS-RIS angles when the RIS is not serving the UE. One option to estimate the BS-RIS

angles is the subspace-based methods (e.g., MUSIC, ESPRIT [20]). When compared to

the CS-based angle estimation scheme where the mismatch between the true angle and

the discretized angular bin is unavoidable, the subspace-based method can estimate the

continuous BS-RIS angle without quantization [43]. In the subspace-based method, we
4Since the BS-RIS angles remain unchanged, the BS-RIS angles can be measured at any time before

the UE connection (e.g., during the initial installation of the RIS from the network operator). When there

is no BS near the RIS, one can utilize an RF signal generator, which is typically used for wireless channel

measurements, to transmit the uplink pilot signal to the RIS. By collecting the uplink pilot measurements

reflected at the RIS, the BS can acquire the BS-RIS angle information.
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construct the sample covariance matrix5 and then decompose its eigenspace to signal

and noise subspaces. Since the signal subspace is spanned by the array response vectors

of BS-RIS angles while the noise subspace is orthogonal to the signal subspace, we can

acquire the BS-RIS angles from the null space of the noise subspace.

When we use the subspace-based technique, we need to make sure that the signal

covariance matrix is a full-rank matrix since otherwise its eigenspace (i.e., signal

subspace) would be spanned by the array response vectors of incorrect angles [20].

To guarantee the accurate estimation of BS-RIS angles, we first express the signal

covariance matrices as functions of RIS phase shifts and then find out the phase shifts

ensuring the full-rank condition.

BS-RIS Angle Estimation

In this stage, the BS collects the pilot measurements for Lg blocks and then estimates

the BS-RIS AoAs θg and AoDs (ψg,φg). Let pt ∈ C be the uplink pilot symbol of

adjacent BS andϕt ∈ CN be the phase shift vector at the t-th symbol. Then the received

signal y(l)
t ∈ CM of BS at the t-th symbol of l-th block is

y
(l)
t = H(l)ϕtpt + n

(l)
t , t = 1, · · · , τ, l = 1, · · · , Lg, (3.15)

where H(l) is the RIS reflected channel at the l-th block and n
(l)
t ∼ CN (0, σ2nIM ) is the

Gaussian noise. The combined received signal matrix Y(l) = [y
(l)
1 · · ·y(l)

τ ] ∈ CM×τ is

Y(l) =H(l)[ϕ1 · · ·ϕτ ]diag(p1, · · · , pτ ) + [n
(l)
1 · · ·n(l)

τ ] (3.16)

(a)
=(1T

Pr
⊗AB(θg))diag(γ(l))(A∗

R(ψr,φr) •AR(ψg,φg))
HΦP+N(l), l = 1, · · · , Lg,

(3.17)

where (a) is from Lemma 1, Φ = [ϕ1 · · ·ϕτ ] ∈ CN×τ is the phase shift matrix, and

P = diag(p1 · · · pτ ) is the pilot matrix.

By collecting the received signals Y(l) for Lg blocks, the BS constructs the

sample covariance matrices Rs = E[Y(l)Y(l),H] ≈ 1
Lg

∑Lg

i=1Y
(l)Y(l),H and Rt =

5Note that the sample covariance matrix is different with the channel covariance matrix in [44].
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E[Y(l),HY(l)] ≈ 1
Lg

∑Lg

i=1Y
(l),HY(l). In our experience, we could not observe any

meaningful difference in acquiring the sample covariance matrices when Lg is larger

than 100. In the following proposition, we obtain the closed-form expressions of Rs

and Rt.

Proposition 4. The sample covariance matrices Rs and Rt can be expressed as

Rs =ρgρrAB(θg)diag(∥PHΦHB1A
∗
R(ψr,φr)∥2F · · ·

∥PHΦHBPgA
∗
R(ψr,φr)∥2F)AH

B(θg) + σ2nIM (3.18)

Rt =MρgρrP
HΦH(A∗

R(ψr,φr) •AR(ψg,φg))

(A∗
R(ψr,φr) •AR(ψg,φg))

HΦP+ σ2nIτ , (3.19)

where Bi = diag(aR(ψg,i, φg,i)) ∈ CN×N for i = 1 · · ·Pg.

Proof. See Appendix A.

One can see that Rs has the form of Rs = S+σ2nI where S is the signal covariance

matrix. Since S has the same column space with the BS-RIS AoA matrix AB(θg), the

BS can acquire the BS-RIS AoA θg from Rs via the subspace-based algorithms. In

the MUSIC algorithm, for example, the BS computes the signal subspace matrix Es

and the noise subspace matrix En from the eigenspace of Rs. Since En is orthogonal

to Es, θ̂g is obtained from Pg highest peaks of AoA spectrum function fAoA(θ) =

1/∥EH
naB(θ)∥2:

θ̂g,i = argmax
θ

fAoA(θ), i = 1, · · · , Pg. (3.20)

The estimation of BS-RIS AoD (ψg,φg) from Rt is a bit difficult since the BS-

RIS AoD matrix AR(ψg,φg) is coupled with the RIS-BS AoA matrix AR(ψr,φr)

which is unknown to the BS at stage I. To deal with this issue, the BS exploits the

RIS-BS AoA of the LoS path (ψr,LoS, φr,LoS) which can be obtained directly from the

relative locations of RIS and BS. In the MUSIC algorithm, for example, (ψ̂g, φ̂g)

is obtained from the Pg highest peaks of AoD spectrum function fAoD(ψ,φ) =
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1/∥FH
nP

HΦH(a∗R(ψr,LoS, φr,LoS)⊙ aR(ψ,φ))∥2 as

(ψ̂g,i, φ̂g,i) = argmax
(ψ,φ)

fAoD(ψ,φ), i = 1, · · · , Pg, (3.21)

where Fn is the noise subspace matrix constructed from Rt.

RIS Phase Shift Control

As mentioned, for the accurate estimation of the BS-RIS angles using the subspace-

based method, the signal covariance matrix should be full-rank:

rank
(
AB(θg)diag(∥PHΦHB1A

∗
R(ψr,φr)∥F, · · · , ∥PHΦHBPgA

∗
R(ψr,φr)∥F)) = Pg,

(3.22)

rank
(
PHΦH(A∗

R(ψr,φr) •AR(ψg,φg))
)
= PrPg. (3.23)

If these conditions are not satisfied, then the eigenspace of signal covariance matrix

would be spanned by the array response vectors of incorrect angles, deteriorating the

angle estimation performance severely [20]. Since the covariance matrices are functions

of phase shift matrix Φ (see Proposition 1), we design Φ such that (3.22) and (3.23)

are satisfied.

Proposition 5. The phase shift matrix Φ = [f1 · · · fτ ] ∈ CN×τ satisfies (3.22) and

(3.23) where f1, · · · , fτ are τ randomly chosen column vectors of N -point DFT matrix.

Proof. See Appendix B.

3.3.2 Stage II: RIS-UE Angle Estimation

When the UE is connected to the BS, the BS estimates the RIS-UE AoAs (ψr,φr)

from the pilot signal of UE (see Fig. 3.4). Due to the UE mobility, the coherence time of

RIS-UE angles is shorter than that of BS-RIS angles, which means that the BS cannot

collect a large number of measurements for the RIS-UE angle estimation. In this case,

the CS-based technique can be useful since it can generate the angle estimate even
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Figure 3.4: Block diagram of RIS-UE angle estimation.

with a small amount of measurements [45]. In the CS-based technique, we formulate

the block-sparse linear system model where the RIS-UE angles and the path gains are

mapped to the positions of non-zero blocks (i.e., support) of a block-sparse vector. By

employing the block-sparse recovery algorithm, we can find out the support of the

block-sparse vector using which we can recover the RIS-UE angles.

It is worth mentioning that the block-sparse recovery performance of the CS al-

gorithm depends on the correlations between the submatrices of the sensing matrix.

Since the sensing matrix is a function of RIS phase shifts, we can improve the RIS-UE

angle estimation accuracy by adjusting the phase shifts such that the adjusted phases

minimize the column correlation of sensing matrix.

RIS-UE Angle Estimation

In this stage, the BS estimates the RIS-UE AoAs (ψr,φr) for Lr blocks. Specifically,

the CS-based angle estimation consists of three major steps:

• Angular-domain sparse mapping: We map (ψr,φr) and γr to the positions of

non-zero blocks (i.e., support Ω) of the block-sparse path gain vector.

• Block-sparse representation: We formulate the block-sparse linear system
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Y = Σ̄Γ̄ + N where Σ̄ is the angular-domain sensing matrix and Γ̄ is the

block-sparse path gain matrix.

• Block-sparse recovery and angle reconstruction: Using the block-sparse recov-

ery algorithm, we find out the support Ω of Γ̄ from which we recover (ψr,φr).

Let (ψ̄, φ̄) = {(ψ̄i, φ̄i) | i = 1, · · · ,W} be the quantized angle set whereW is the

number of angular bins and γ̄(l)
r ∈ CW be the corresponding sparse RIS-UE path gain

vector such that ∥γ̄(l)
r ∥0 = Pr and supp(γ̄(l)

r ) = Ω. Then the combined block-sparse

BS-RIS-UE path gain vector is γ̄(l) = γ̄
(l)
r ⊗ γ(l)

g ∈ CWPg . Using (ψ̄, φ̄) and γ̄(l), the

received signal matrix Y(l) ∈ CM×τ of BS at the l-th block Y(l) can be expressed as

Y(l) =H(l)ΦP+N(l) (3.24)

=(1T
W ⊗AB(θg))diag(γ̄(l))(A∗

R(ψ̄, φ̄) •AR(ψg,φg))
HΦP+N(l), l = 1, · · · , Lr,

(3.25)

where Φ = [ϕ1 · · ·ϕτ ] ∈ CN×τ is the phase shift matrix and P = diag(p1 · · · pτ ) is

the pilot matrix.

Now, to convert (3.25) to the block-sparse linear system, we vectorize Y(l) to

y(l) = vec(Y(l)):

y(l) =(PΦT ⊗ IM )vec(H(l)) + n(l) (3.26)

(a)
=
(
(PΦT(AR(ψ̄, φ̄) •A∗

R(ψg,φg))) ∗ (1T
W ⊗AB(θg))

)
γ̄(l) + n(l) (3.27)

=Σ̄γ̄(l) + n(l), l = 1, · · · , Lr, (3.28)

where (a) is from Lemma 1 and the property of Khatri-Rao product such that (A ⊗

B)(C ∗ D) = (AC) ∗ (BD). Also, Σ̄ ∈ CMτ×WPg is the angular-domain sensing

matrix defined as

Σ̄ = (PΦT(AR(ψ̄, φ̄) •A∗
R(ψg,φg))) ∗ (1T

W ⊗AB(θg)). (3.29)

In the following remark, we explain the block-sparse structure of γ̄(l).
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Remark 4. Since γ̄(l)
r is a sparse vector, γ̄(l) = γ̄

(l)
r ⊗ γ(l)

g is a block-sparse vector6.

By a block-sparse vector, we mean that non-zero elements appear in a few blocks of the

vector. Also, since the RIS-UE AoAs are constant in the RIS-UE angle estimation stage,

γ̄(1), · · · , γ̄(Lr) have a common index set of non-zero blocks Ω.

Since γ̄(1), · · · , γ̄(Lr) have the common support Ω, the problem to identify Ω from

{y(l)}Lr
l=1 can be modeled as a joint block-sparse recovery problem. Thus, by exploiting

the measurements of Lr blocks simultaneously, one can greatly enhance the block-

sparse recovery performance.

To do so, we combine {y(l)}Lr
l=1 into a measurement matrix Y = [y(1) · · ·y(Lr)] ∈

CMτ×Lr as

Y = Σ̄Γ̄+N, (3.30)

where Σ̄ ∈ CMτ×WPg is the angular-domain sensing matrix in (3.29) and Γ̄ =

[γ̄(1) · · · γ̄(Lr)] ∈ CWPg×Lr is the block-sparse path gain matrix such that the non-zero

rows appear in a few Pg×Lr size blocks7. Then the joint block-sparse recovery problem

P to find out Ω from Y is

P : min
Γ̄=[Γ̄

T
1···Γ̄

T
W ]T

∥Y − Σ̄Γ̄∥2F, (3.31a)

s.t.
W∑
i=1

I(∥Γ̄i∥F) = Pr, (3.31b)

where I(x) is the indicator function such that I(x) = 1 if x ̸= 0 and I(x) = 0

otherwise.

In solving P , one can use the block-sparse recovery algorithm such as BOMP [45].

When using the BOMP algorithm, an index of the submatrix of the sensing matrix is

chosen at a time using a greedy strategy and then the residual is updated. To be specific,
6For example, if γ̄(l)

r = [1, 0, 0, 1]T and γ(l)
g = [1, 2]T, then γ̄(l) = γ̄(l)

r ⊗ γ(l)
g =

[1, 2, 0, 0, 0, 0, 1, 2]T.
7For example, if Pg = 2, Lr = 2, γ(1)

g = [1, 2]T, γ(2)
g = [3, 4]T, and γ̄(1)

r = γ̄(2)
r = [1, 0, 0, 1]T,

then Γ̄ = [γ̄(1) ⊗ γ(1)
g , γ̄(2) ⊗ γ(2)

g ] = [ 1 2 0 0 0 0 1 2
3 4 0 0 0 0 3 4 ]

T. The indices of non-zero 2× 2 block matrices

are Ω = {1, 4}.
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in the n-th iteration, an index ω̂n corresponding to the submatrix Σ̄ω̂n ∈ CMτ×Pg

(Σ̄ = [Σ̄1 · · · Σ̄W ]) which is maximally correlated with the residual is chosen:

ω̂n = arg max
i=1,··· ,W

∥Σ̄H
i Zn−1∥2F, n = 1, · · · , Pr, (3.32)

where Zn−1 = (I − Σ̄Ω̂n−1
Σ̄

†
Ω̂n−1

)Y is the residual, Ω̂n−1 = {ω̂1, · · · , ω̂n−1}, and

Σ̄Ω̂n−1
= [Σ̄ω̂1 · · · Σ̄ω̂n−1 ]. The iteration is repeated until Pr indices are chosen8.

Once Ω̂ is recovered, the RIS-UE AoAs are obtained from the quantized angle set as

(ψ̂r, φ̂r) = (ψ̄Ω, φ̄Ω).

RIS Phase Shift Control

As mentioned, the block-sparse recovery performance depends on the correlations

between the submatrices {Σ̄i}Wi=1 (i.e., block-mutual coherence) of the sensing matrix

Σ̄ = [Σ̄1 · · · Σ̄W ]. Since Σ̄ is a function of the RIS phase shift matrix Φ (see (3.29)),

we can improve the block-sparse recovery performance by designing Φ such that the

block-mutual coherence of Σ̄ is minimized. To be specific, the block-mutual coherence

µ of Σ̄ is defined as

µ(Φ) = max
1≤i<j≤W

∥Σ̄H
i (Φ)Σ̄j(Φ)∥2

∥Σ̄i(Φ)∥2∥Σ̄j(Φ)∥2
. (3.33)

Then the block-mutual coherence minimization problem PII to find out the optimal

phase shift matrix Φ minimizing µ(Φ) is formulated as

PII : min
Φ

µ(Φ), (3.34a)

s.t.
∣∣[Φ]n,t

∣∣ = 1, n = 1, · · · , N, t = 1, · · · , τ. (3.34b)

8To estimate the block-sparsity level, one can use the cross-validation technique [46]. In this scheme,

the measurement matrix is divided into two parts: a training matrix and a validation matrix. In the first

step, using the training matrix, a sequence of supports with different block-sparsity levels is generated. In

the second step, using the acquired supports and the validation matrix, the validation error is computed.

Finally, a block-sparsity level corresponding to the minimum validation error is returned.
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By defining the auxiliary matrix Yi,j =
Σ̄

H
i (Φ)Σ̄j(Φ)

∥Σ̄i(Φ)∥2∥Σ̄j(Φ)∥2
, PII can be reformulated as

PII : min
Y,Φ

max
1≤i<j≤W

∥Yi,j∥2, (3.35a)

s.t. Yi,j =
Σ̄

H
i (Φ)Σ̄j(Φ)

∥Σ̄i(Φ)∥2∥Σ̄j(Φ)∥2
, 1 ≤ i < j ≤W, (3.35b)∣∣[Φ]n,t

∣∣ = 1, n = 1, · · · , N, t = 1, · · · , τ, (3.35c)

Due to the quadratic fractional structure of (3.35b) and the unit-modulus constraints

(3.35c), PII is a non-convex problem in which finding out the global optimal solution is

very difficult. Also, since Σ and Φ are coupled with each other in (3.35b), it is not easy

to optimize them simultaneously.

To find out a tractable solution of PII, we employ the augmented Lagrangian relax-

ation technique that converts a complicated constrained problem to an unconstrained

problem by adding a quadratic penalty term to the objective function. Specifically, the

modified objective function L, so-called the augmented Lagrangian, is given by

L(Y,Φ,Λ) = max
1≤i<j≤W

∥Yi,j∥2 + 1M(Φ)+

ρ

2

∑
1≤i<j≤W

∥∥∥∥Yi,j− Σ̄
H
i (Φ)Σ̄j(Φ)

∥Σ̄i(Φ)∥2∥Σ̄j(Φ)∥2
+
Λi,j

ρ

∥∥∥∥2
F

(3.36)

where M = {Φ ∈ CN×τ :
∣∣[Φ]n,t

∣∣ = 1, ∀n, ∀t} is the complex circle manifold, a

set of the phase shift matrices satisfying the unit-modulus constraints (3.35c), Λ is the

Lagrangian multiplier matrix, and ρ > 0 is the scaling factor. Using L(Y,Φ,Λ), the

dual problem P ′
II can be expressed as

P ′
II : max

Λ
min
Y,Φ

L(Y,Φ,Λ). (3.37)

Since P ′
II is an unconstrained problem, it would be much easier to handle than

the primary problem PII. Note, based on the weak duality, the optimal value of P ′
II

corresponds to the lower bound of the optimal value of PII. Unfortunately, it is still not

easy to solve P ′
II since the augmented Lagrangian L is a joint function of Y, Φ, and
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Λ. To address this issue, we use an approach that alternately updates the block-mutual

coherence matrix Y, the phase shift matrix Φ, and the Lagrangian multiplier matrix Λ:

Y(t+1) = argmin
Σ

L(Y,Φ(t),Λ(t)), (3.38)

Φ(t+1) = argmin
Φ

L(Y(t+1),Φ,Λ(t)), (3.39)

Λ
(t+1)
i,j = Λ

(t)
i,j+ρ

(
Y

(t+1)
i,j − Σ̄

H
i (Φ

(t+1))Σ̄j(Φ
(t+1))

∥Σ̄i(Φ(t+1))∥2∥Σ̄j(Φ(t+1))∥2

)
. (3.40)

First, the block-mutual coherence matrix optimization problem PY corresponding

to (3.38) is

PY : min
Y

max
1≤i<j≤W

∥Yi,j∥2 +
ρ

2

∑
1≤i<j≤W

∥Yi,j − Z
(t)
i,j∥

2
F, (3.41)

where Z
(t)
i,j =

Σ̄
H
i (Φ

(t))Σ̄j(Φ
(t))

∥Σ̄i(Φ(t))∥2∥Σ̄j(Φ(t))∥2
− 1

ρΛ
(t)
i,j . Note that PY is a spectral norm min-

imization problem which can be equivalently converted to the convex semidefinite

program (SDP)9 [47]. Thus, we can obtain the global optimal solution Y∗ using the

convex optimization tool (e.g., CVX).

Second, the optimization problem PΦ corresponding to (3.39) is given by

PΦ : min
Φ

∑
1≤i<j≤W

∥∥∥∥ Σ̄
H
i (Φ)Σ̄j(Φ)

∥Σ̄i(Φ)∥2∥Σ̄j(Φ)∥2
−W

(t)
i,j

∥∥∥∥2
F
, (3.42a)

s.t.
∣∣[Φ]n,t

∣∣ = 1, n = 1, · · · , N, t = 1, · · · , τ, (3.42b)

where W
(t)
i,j = Y

(t+1)
i,j +

Λ
(t)
i,j

ρ . One major obstacle in solving PΦ is the non-convex

unit-modulus constraint (3.42b). To handle this issue, one can exploit the smooth

Riemannian manifold structure of the set of unit-modulus phase shift matrices such that

PΦ is converted to an unconstrained optimization problem on the Riemannian manifold.

Since the optimization over the Riemannian manifold is conceptually analogous to that

in the Euclidean space, optimization tools of Euclidean space (e.g., conjugate gradient
9The spectral norm constraint ∥Y∥2 ≤ t can be equivalently converted to the linear matrix inequality

constraint YHY ⪯ tI.
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Figure 3.5: Block diagram of BS-RIS-UE path gain estimation.

method) can be readily employed to solve the problem on the Riemannian manifold

(e.g., Riemannian conjugate gradient (RCG) method) [29].

Lastly, once we obtain Y(t+1) and Φ(t+1), we update Λ using the dual ascent

method. The update procedures (3.38)-(3.40) are repeated until Φ converges.

We briefly discuss the computational complexity of the proposed RIS phase shift

control scheme. First, in the block-mutual coherence matrix update process, the primal-

dual interior-point method is used to solve the SDP. The computational complexity of

the block-mutual coherence matrix update process is CY = O(P 4
gW

6) [48]. Second,

in the RIS phase shift matrix update process, the RCG method is used to solve the

problem. The computational complexity of this process is CΦ = O(M2Nτ3PgW
2).

Third, the computational complexity of the Lagrangian multiplier matrix update process

is CΛ = O(M2τ2PgW
2).

3.3.3 Stage III: BS-RIS-UE Path Gain Estimation

After the RIS-UE angle estimation, the BS estimates the BS-RIS-UE path gains from

the pilot signal of UE (see Fig. 3.5). Since the coherence time of path gains is relatively

shorter than that of the path angles, the BS-RIS-UE path gains are estimated at each

channel coherence block. Recall that in the previous stage, the BS formulates a block-
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sparse linear system for the recovery of the block-sparse path gain vector (see (3.28)).

By solving the linear system using the LS estimation technique, one can obtain the

path gains after which the BS reconstructs the RIS reflected channel matrix using the

acquired channel components (see Lemma 1).

We note that the MSE of the LS estimate is determined by the sensing matrix. For

example, it has been shown that MSE is minimized when the columns of the sensing

matrix are mutually orthogonal [49]. Since the sensing matrix is a function of the RIS

phase shifts (see (3.46)), by designing the RIS phase shifts such that the columns of the

sensing matrix are mutually orthogonal, we can improve the estimation accuracy of the

path gains.

BS-RIS-UE Path Gain Estimation

In this stage, the BS estimates the BS-RIS-UE path gains from the uplink pilot signal

for τp symbols and then transmits the downlink data for τ − τp remaining symbols. To

be specific, the received matrix Y = [y1 · · ·yτp ] ∈ CM×τp of BS is given by

Y =HΦP+N (3.43)

=(1T
Pr

⊗AB(θg))diag(γ)(A∗
R(ψr,φr •AR(ψg,φg))

HΦP+N, (3.44)

where Φ = [ϕ1 · · ·ϕτp ] ∈ CN×τp is the phase shift matrix and P = diag(p1, · · · , pτp)

is the pilot matrix. By vectorizing Y to y = vec(Y), we obtain the linear system with

respect to the BS-RIS-UE path gain vector γ as (see (3.26)-(3.28))

y = Σγ + n, (3.45)

where Σ ∈ CMτp×PrPg is the sensing matrix given by

Σ = (PΦT(AR(ψr,φr) •A∗
R(ψg,φg))) ∗ (1T

Pr
⊗AB(θg)) (3.46)

Then the LS estimate of BS-RIS-UE path gains is

γ̂ = (ΣHΣ)−1ΣHy. (3.47)
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Once we obtain the BS-RIS-UE path gains γ̂, together with the BS-RIS angles θ̂g,

(ψ̂g, φ̂g) and the RIS-UE angles (ψ̂r, φ̂r), we reconstruct Ĥ as

Ĥ = (1T
Pr

⊗AB(θ̂g))diag(γ)(A∗
R(ψ̂r, φ̂r) •AR(ψ̂g, φ̂g))

H. (3.48)

RIS Phase Shift Control

Note that the MSE of the LS estimate is given by

MSE = E
[
∥γ̂ − γ∥2

]
= σ2ntr((ΣHΣ)−1), (3.49)

where σ2n is the noise variance. Since Σ is a function of RIS phase shift matrix Φ (see

(3.46)), we can improve the path gain estimation accuracy by optimizing Φ to minimize

the MSE.

Specifically, the MSE minimization problem is formulated as

PIII : min
Φ∈M

tr((ΣH(Φ)Σ(Φ))−1), (3.50a)

where M = {Φ∈CN×τ :
∣∣[Φ]n,t

∣∣ = 1, ∀n, ∀t} is the complex circle manifold, a set

of the phase shift matrices satisfying the unit-modulus constraints. By exploiting the

linear matrix inequality and the Cauchy-Schwarz inequality, we obtain the lower bound

of the optimal value of PIII:

min
Φ∈M

tr((ΣH(Φ)Σ(Φ))−1) ≥ min
Φ∈M

PrPg∑
i=1

1

[(ΣH(Φ)Σ(Φ))]i,i
(3.51)

≥ (PrPg)
2

maxΦ∈M tr(ΣH(Φ)Σ(Φ))
, (3.52)

where the first inequality is from [49, Example 4.3] and the second inequality is

from the Cauchy-Schwarz inequality. Note that the equality condition of (3.52) is

ΣH(Φ)Σ(Φ) = cI for some c. Thus, one can see that the optimal solution of PIII can

be re-expressed as

arg min
Φ∈M

tr((ΣH(Φ)Σ(Φ))−1) = arg max
ΣH(Φ)Σ(Φ)=cI

Φ∈M

tr(ΣH(Φ)Σ(Φ)). (3.53)

In the following proposition, we provide the asymptotic optimal solution of (3.53).
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Proposition 6. The feasible solution of (3.53) exists only when τp ≥ PrPg. Also, when

τp = PrPg, the asymptotic optimal solution of PIII satisfying (3.53) is given by

Φ = A∗
R(ψr,φr) •AR(ψg,φg). (3.54)

Proof. See Appendix C.

3.4 Performance Analysis of Three-Stage Angular-Domain

Channel Estimation

3.4.1 Channel Estimation Error Analysis

Since the RIS-UE angles are chosen from the quantized angle set, a mismatch between

the true angle (ψr,φr) and the quantized angle (ψ̂r, φ̂r) is unavoidable in the RIS-

UE angle estimation, which causes a distortion of the linear system at the BS-RIS-

UE path gain estimation and the degradation of the RIS reflected channel estimation

performance.

In this section, we analyze the RIS reflected channel estimation error induced by

the RIS-UE angle quantization10. To this end, we first derive the distortions ∆AR,r and

∆Φ of RIS-UE AoA matrix in (3.5) and phase shift matrix in (3.54). We then derive the

distortions ∆Σ and ∆γ of sensing matrix in (3.46) and BS-RIS-UE path gain estimate

in (3.47), from which we find out the NMSE of constructed RIS reflected channel

E[∥∆H∥2F/∥H∥2F]. For notational simplicity, we use the notations AB = AB(θg),

AR,g = AR(ψg,φg), and AR,r = AR(ψr,φr). Also, we assume the noiseless scenario

to simplify the analysis.

Let (∆ψr,∆φr) = (ψ̂r, φ̂r)− (ψr,φr) be the quantization error vectors. Using

the first-order Taylor expansion, we can obtain the distortion of RIS-UE AoA matrix
10Note that in this analysis, we do not consider the BS-RIS angle estimation error. This is because since

the BS-RIS angle can be readily approximated as static information, the BS can collect a large number of

pilot measurements for the BS-RIS angle estimation. Hence, the BS-RIS angle estimation error is almost

negligible compared to the RIS-UE angle estimation error.
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∆AR,r as

∆AR,r ≈ ∇ψr
AR,r∆ψr +∇φr

AR,r∆φr (3.55)

= R⊙AR,r. (3.56)

Here, R = [r1 · · · rPr ] ∈ CN×Pr where ri = pi∆ψr,i + qi∆φr,i and

pi = −jπ sinφr,i(cosψr,i(ny ⊗ 1Nx)− sinψr,i(1Ny ⊗ nx)), (3.57)

qi = −jπ cosφr,i(sinψr,i(ny ⊗ 1Nx) + cosψr,i(1Ny ⊗ nx)), (3.58)

where nx = [0 · · ·Nx−1]T and ny = [0 · · ·Ny−1]T. Recall that the phase shift matrix

at the BS-RIS-UE path gain estimation stage is Φ = A∗
R,r •AR,g (see (3.54)). Thus,

the distortion of the phase shift matrix ∆Φ is given by

∆Φ = ∆A∗
R,r •AR,g ≈ (R⊙AR,r)

∗ •AR,g. (3.59)

In the BS-RIS-UE path gain estimation stage, the sensing matrix is given by Σ =

(PΦT(AR,r •A∗
R,g)) ∗ (1T

Pr
⊗AB) (see (3.46)). Then the distortion of sensing matrix

∆Σ can be approximated as

∆Σ ≈
(
P∆ΦT(AR,r •A∗

R,g) +PΦT(∆AR,r •A∗
R,g)
)
∗ (1T

Pr
⊗AB). (3.60)

Due to the distortion of the sensing matrix, the performance of LS estimation of BS-

RIS-UE path gains will be degraded. In the following proposition, we provide the

distortion of γ.

Proposition 7. The distortion of BS-RIS-UE path gain estimate in (3.47) can be

approximated as

∆γ ≈− (ΣHΣ)−1ΣH((PΦT(∆AR,r •A∗
R,g)) ∗ (1T

Pr
⊗AB)

)
γ. (3.61)

Proof. See Appendix D.

Finally, using (3.56), (3.59), (3.60), and (3.61), we obtain the asymptotic closed-

form expression of the NMSE of RIS reflected channel estimation.
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Figure 3.6: NMSE vs. number of RIS-UE angle quantization bits.

Theorem 3. When the number of RIS reflecting elements N is large, the NMSE of

RIS reflected channel estimation induced by the RIS-UE angle quantization can be

approximated as

E
[
∥∆H∥2F
∥H∥2F

]
≈

(N2
x +N2

y − 2)π4

144

( 1

W 2
az

+
1

4W 2
el

)
, (3.62)

where N = Nx ×Ny is the number of RIS reflecting antennas and W =Waz ×Wel is

the number of angular bins for the RIS-UE angle quantization.

Proof. See Appendix E.

In Fig. 3.6, we plot the NMSE as a function of the number of RIS-UE angle

quantization bits. We observe that the analytic NMSE obtained from Theorem 1 is close

to the numerical result. We can infer from these results that by properly scaling the

number of RIS-UE angle quantization bits using Theorem 1, one can effectively control

the RIS reflected channel estimation error. We also observe that the NMSE of TAD-CE

is much smaller than that of the conventional CS-based channel estimation scheme [36].

Since the conventional CS-based scheme quantizes and estimates the BS-RIS and the
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RIS-UE angles simultaneously, the quantization distortion of the estimated channel is

considerable. Whereas, using the property that the BS-RIS angles remain unchanged,

TAD-CE continuously estimates the BS-RIS angles before the UE connection. Then,

when the BS is connected to the UE, the BS quantizes and estimates only the RIS-UE

angles.

3.4.2 Pilot Overhead Analysis

In this subsection, we analyze the pilot overhead of the proposed TAD-CE scheme.

As mentioned, TAD-CE consists of three major steps: 1) estimation of the BS-RIS

angles before the UE connection, 2) estimation of the RIS-UE angles occasionally (once

every Lr blocks11), and 3) estimation of the BS-RIS-UE path gains at each channel

coherence block. Note that the number of pilot symbols used for the BS-RIS angle

estimation is not considered in the pilot overhead analysis since the BS-RIS angles are

estimated before the UE connection. Recall that in the RIS-UE angle estimation, we use

the block-sparse recovery algorithm to estimate the BS-RIS angles. Thus, the number

of measurements required for the RIS-UE angle estimation is τ2 = Pr logWPg [50].

After the RIS-UE angle estimation, we estimate the BS-RIS-UE path gains using the

LS estimation. Thus, the number of pilot measurements required for the BS-RIS-UE

path gain estimation is τ3 = PrPg. In conclusion, the pilot overhead of TAD-CE is

τ =

⌈
1

Lr
τ2

⌉
+ τ3 =

⌈
Pr
Lr

logWPg

⌉
+ PrPg. (3.63)

In Table 3.1, we compare the pilot overhead of TAD-CE with two benchmark

schemes: 1) CS-based scheme [36] and 2) BALS scheme [34]. One can see that TAD-

CE achieves a significant pilot overhead reduction over the benchmark schemes. One

can also see that while the pilot overheads of conventional schemes increase sharply

with the number of reflecting elements, that of TAD-CE does not change significantly.
11Lr is the RIS-UE angle coherence time in terms of channel coherence block.
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Table 3.1: Pilot overhead comparison of different channel estimation schemes

Pilot overhead
Pilot overhead for various N

N = 256 N = 512 N = 1024

Proposed TAD-CE
⌈
Pr
Lr

logWPg
⌉
+ PrPg 11 11 12

CS-based scheme
⌈
PrPg logW

2
⌉

44 49 55

BALS scheme N 256 512 1024

3.5 Simulation Results

3.5.1 Simulation Setup

In this section, we investigate the channel estimation performance of the proposed

TAD-CE technique. We consider the RIS-aided mmWave systems where a BS equipped

with M = 8 antennas serves a single-antenna UE with the aid of an RIS equipped with

N = 16× 16 reflecting elements. The RIS and UE are located randomly around the BS

within the cell radius of R = 50m. We use the block-fading multi-path channel model

where the number of path is Pg = Pr = 3, the carrier frequency is fc = 28GHz, and

the channel bandwidth is 100MHz. The channel remains unchanged within a block of

τ = 14× 9 = 126 symbols (9 subframes = 9ms). By exploiting the angular-domain

channel coherence property, we assume that the BS-RIS angles are constant and the

RIS-UE angles are coherent for 40 blocks whereas the BS-RIS-UE path gains vary

over block [40]. The large-scale fading coefficients are modeled as ρ = PL × 10
σshzsh

10

where PL represents the path loss and 10
σshzsh

10 represents the shadow fading where

σsh = 4 dB and zsh ∼ CN (0, 1). Also, we use the path loss model in 3GPP Rel. 16 [17].

The small-scale fading coefficients are generated according to the complex normal

distribution (i.e. γ ∼ CN (0, 1)). We set the uplink transmit power of UE and the noise

power to 1W and −110 dBm/Hz, respectively.

For comparison, we use 5 benchmark schemes: 1) oracle-LS scheme where the
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Figure 3.7: NMSE vs. transmit SNR.

BS-RIS and RIS-UE angles are perfectly estimated and only the BS-RIS-UE path gains

are estimated using the LS technique, 2) MO-EST scheme that uses the optimization

technique on the Riemannian manifold of low-rank RIS reflected channel matrices [51],

3) CS-based scheme that estimates the BS-RIS angles, the RIS-UE angles, and the BS-

RIS-UE path gains simultaneously using the OMP algorithm [36], 4) BALS scheme that

uses the parallel factor decomposition of RIS reflected channel [34], and 5) LMMSE-

based scheme [33]. As a performance metric, we use the NMSE defined as E[∥Ĥ −

H∥2F/∥H∥2F]. In the proposed TAD-CE scheme, by exploiting the angular-domain

channel coherence property, the BS-RIS angles are estimated only once before the

UE connection, the RIS-UE angles are estimated once every 40 blocks, and the BS-

RIS-UE path gains are estimated at each block. Specifically, we use Lg = 50 blocks

for the BS-RIS angle estimation, Lr = 5 blocks for the RIS-UE angle estimation,

and τp = 14 × 4 = 56 uplink symbols for the BS-RIS-UE path gain estimation.

We measure the NMSE for 40 − 5 = 35 blocks after the RIS-UE angle estimation.

To make fair comparisons with the benchmark schemes, we measure the NMSEs of
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Figure 3.8: NMSE vs. number of pilot symbols.

benchmark schemes for 35 blocks but with different numbers of uplink symbols (i.e.,

τp,conv = τp+⌈Lrτ
35 ⌉) so that the total number of pilot symbols used for the RIS reflected

channel estimation would be the same with that of TAD-CE12.

3.5.2 Simulation Results

In Fig. 3.7, we plot the NMSE as a function of the transmit SNR. We observe that the

proposed TAD-CE scheme outperforms the conventional channel estimation schemes

by a large margin. For instance, when SNR = 10 dB, the proposed scheme achieves

almost 7 dB and 9 dB NMSE gains over the conventional MO-EST scheme and BALS

scheme. Even when compared to the conventional CS-based channel estimation scheme,

the NMSE gain of the proposed scheme is more than 5 dB. In fact, in the high SNR

regime, the performance of TAD-CE is similar to that of the oracle-LS scheme, meaning

that the estimated BS-RIS and RIS-UE angles of TAD-CE are close to the genie angles.
12The pilot symbols used for the estimation of BS-RIS angles is not counted since they are estimated

before the UE connection.
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Figure 3.9: NMSE vs. number of reflecting elements.

This is because TAD-CE estimates the BS-RIS and RIS-UE angles sporadically and

estimates the path gains frequently so that the number of channel parameters to be

estimated in each stage is quite small. Thus, TAD-CE can accurately estimate the

channel parameters even with a small amount of pilot measurements.

In Fig. 3.8, we set N = 64 and then plot the NMSE as a function of the number

of pilot symbols τp. To make a fair comparison, we also change the number of pilot

symbols of conventional schemes τp,conv = τp + ⌈Lrτ
35 ⌉ as well. We observe that

the proposed TAD-CE achieves more than 80% pilot overhead reduction over the

conventional schemes. For example, to achieve the NMSE of −11 dB, TAD-CE requires

only τp = 14 symbols whereas both the conventional LS and BALS schemes require

more than τp = 70 symbols. This is because the number of pilot symbols of TAD-

CE required to estimate the sparse channel parameters scales with the number of

propagation paths while those of conventional schemes required to estimate the full-

dimensional RIS reflected channel matrix scale with the number of reflecting elements.

In Fig. 3.9, we investigate the NMSEs of the proposed TAD-CE and benchmark
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Figure 3.10: NMSE vs. number of propagation paths.

schemes as a function of the number of RIS reflecting elements N . From the simulation

results, we observe that the NMSE gain of TAD-CE over the conventional schemes

increases with the number of reflecting elements. In particular, when N increases from

64 to 160, the NMSE gain of TAD-CE over the conventional BALS scheme increases

from 2.8 dB to 10 dB. This implies that TAD-CE would be more effective in improving

the channel estimation performance of the RIS-aided terahertz (THz) systems where

the number of reflecting elements is extremely large.

In Fig. 3.10, we plot the NMSE as a function of the number of propagation paths

P . We observe that TAD-CE outperforms the conventional schemes by a large margin.

For example, when P = 6, TAD-CE achieves 7 dB and 8.1 dB NMSE gains over

the conventional CS-based and BALS schemes, respectively. We also observe that

when the number of paths increases, the NMSEs of conventional schemes increase

sharply whereas that of TAD-CE does not increase much. Note that the performance

of CS technique depends heavily on the sparsity (in our case, the number of paths).

Since the conventional CS-based scheme estimates all channel components simultane-
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ously, the performance degradation is severe when the number of propagation paths is

large. In contrast, since TAD-CE separately estimates these channel components, the

performance degradation is marginal even in the rich scattering environments.

In order to examine the effectiveness of the proposed phase shift control scheme, we

compare the NMSE performance of the proposed scheme with two benchmark schemes:

1) DFT-based phase shift control scheme that uses the columns of DFT matrix as the

phase shift vectors and 2) random phase shift control scheme that randomly chooses the

phase shifts of RIS reflecting elements. In all schemes under test, we use TAD-CE for

the RIS reflected channel estimation. In Fig. 3.11, we observe that the proposed scheme

outperforms the benchmark schemes. This is because the proposed scheme optimizes

the phase shifts using the channel components with relatively long coherence time but

the conventional schemes have no such mechanism to improve the channel estimation

accuracy. Interestingly, we observe that the random phase shift control scheme performs

better than the DFT-based scheme. The reason is that due to the large number of RIS

reflecting elements, the RIS reflected beams are very narrow so that the SNR decreases
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sharply when the phase shift vectors generated from the DFT matrix are not properly

align with the propagation paths of the RIS reflected channel. This implies that the

proper phase shift control is crucial for the accurate acquisition of RIS reflected channel

information.

3.6 Summary

In this chapter, we proposed an efficient channel estimation framework to reduce the

pilot overhead of RIS-aided mmWave systems. Key idea of the proposed TAD-CE

scheme is to decompose the RIS reflected channel into three major components, i.e.,

static BS-RIS angles, quasi-static RIS-UE angles, and time-varying BS-RIS-UE path

gains, and then estimate these components in different time scales. In doing so, the

number of channel parameters to be estimated at each stage can be reduced significantly,

resulting in a reduction of pilot overhead. Also, by optimizing the RIS phase shifts

using the channel components with relatively long coherence time, we could further

improve the channel estimation accuracy without requiring additional pilot resources.

We demonstrated from the channel estimation error and pilot overhead analyses and

numerical evaluations that the proposed TAD-CE scheme is effective in saving the pilot

resources. In our work, we assumed the ideal phase shift model where the reflection

amplitude and the phase shifts are independent, but an extension to the realistic scenarios

where the reflection is imperfect and is affected by the RIS phase shifts would be an

interesting future work worth pursuing.

3.7 Proofs

For notational simplicity, we denote AB = AB(θg), AR,g = AR(ψg,φg), and AR,r =

AR(ψr,φr).
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3.7.1 Proof of Proposition 1

Let ci be the i-th column vector of PHΦH(A∗
R,r •AR,g). Then we obtain

Rs =(1T
Pr

⊗AB)E
[
[γ

(l),∗
1 c1 · · · γ(l),∗PgPr

cPgPr ]
H[γ

(l),∗
1 c1 · · · γ(l),∗PgPr

cPgPr ]
]
(1T
Pr

⊗AB)
H

(3.64)

=ρgρr(1
T
Pr

⊗AB)diag(∥c1∥2, · · · , ∥cPrPg∥2)(1T
Pr

⊗AB)
H (3.65)

=ρgρrAB

Pr∑
i=1

diag
(
∥c(i−1)Pg+1∥2, · · · , ∥ciPg∥2

)
AH

B (3.66)

=ρgρrABdiag(∥PHΦHB1A
∗
R,r∥2, · · · , ∥PHΦHBPgA

∗
R,r∥2)AH

B . (3.67)

The closed-form expression of Rt can be obtained similarly with Rs.

3.7.2 Proof of Proposition 2

We will show that N (ΦH(A∗
R,r • AR,g)) = {0} which is equivalent to N (ΦH) ∩

C(A∗
R,r•AR,g) = {0} where N (·) and C(·) are the null and column spaces, respectively.

Let FN = [f1 · · · fN ] be the N -point DFT matrix and without the loss of generality, let

Φ = [f1 · · · fτ ]. Then N (ΦH) = C(Φ)⊥ = span{fτ+1, · · · , fN}. Due to the property of

Khatri-Rao product, the column vectors of A∗
R,r •AR,g are also array response vectors

and thus, they are independent with fτ+1, · · · , fN . Thus, N (ΦH) ∩ C(A∗
R,r •AR,g) =

span{fτ+1, · · · , fN} ∩ C(A∗
R,r •AR,g) = {0}.

3.7.3 Proof of Proposition 3

From the definition of Σ in (3.46), one can easily see that we need τp ≥ PrPg to make

Σ into an orthogonal matrix. Also, since the column vectors of A∗
R,r •AR,g are also

array response vectors, Φ = A∗
R,r •AR,g ∈ M. Now, to show that Σ asymptotically

becomes an orthogonal matrix when Φ = A∗
R,r •AR,g, we use the mutual orthogonality

between the array steering vectors, i.e., aH
R(ψr,i, φr,i)aR(ψr,j , φr,j) ≈ Nδi,j . Using
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this property, Σ can be re-expressed as

Σ = (P(A∗
R,r •AR,g)

T(AR,r •A∗
R,g)) ∗ (1T

Pr
⊗AB) (3.68)

≈ NP ∗ (1T
Pr

⊗AB). (3.69)

Then one can see that Σ becomes an orthogonal matrix as

ΣHΣ ≈ N2(PHP)⊙ ((1T
Pr

⊗AB)
H(1T

Pr
⊗AB)) (3.70)

= N2PtxIPrPg ⊙ ((1Pr1
T
Pr
)⊗ (AH

BAB)) (3.71)

=MN2PtxIPrPg , (3.72)

where Ptx is the BS transmit power. Also, note that tr(ΣHΣ) can be expressed as

tr(ΣHΣ) =∥Σ∥2F (3.73)

=∥(PΦT(AR(ψr,φr) •A∗
R(ψg,φg))) ∗ (1T

Pr
⊗AB(θg))∥2F (3.74)

(a)
=M

∥∥PΦT(AR,r •A∗
R,g)
∥∥2

F, (3.75)

where (a) is from the definition of column-wise Khatri-Rao product. Due to the mutual

orthogonality of array steering vectors, A∗
R,r •AR,g is an orthogonal matrix, and thus

∥Σ∥2F is maximized when Φ = A∗
R,r • AR,g. Therefore, Φ = A∗

R,r • AR,g is the

asymptotic optimal solution of (3.53).

3.7.4 Proof of Proposition 4

The distortion of BS-RIS-UE path gain estimate is

∆γ =(Σ̂
H
Σ̂)−1Σ̂

H
y − γ (3.76)

=(Σ̂
H
Σ̂)−1Σ̂

H
(Σ+∆Σ′)γ − γ, (3.77)

where Σ̂ is the estimated sensing matrix generated from (ψ̂r, φ̂r). Note that y is equal

to (Σ + ∆Σ′)γ, not Σγ where ∆Σ′ = (P∆ΦT(AR,r •A∗
R,g)) ∗ (1T

Pr
⊗AB). This

is because the BS uses the estimated phase shift matrix Φ̂ generated from (ψ̂r, φ̂r)
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so that the effective uplink channel is a function of Φ̂. Also, (Σ̂
H
Σ̂)−1Σ̂

H
can be

approximated as

(Σ̂
H
Σ̂)−1Σ̂

H ≈(ΣHΣ+∆ΣHΣ+ΣH∆Σ)−1(Σ+∆Σ)H (3.78)

(a)
=((ΣHΣ)−1 − (ΣHΣ)−1(∆ΣHΣ+ΣH∆Σ)(ΣHΣ)−1)(Σ+∆Σ)H

(3.79)

≈(ΣHΣ)−1ΣH + (ΣHΣ)−1∆ΣH − (ΣHΣ)−1(∆ΣHΣ+ΣH∆Σ)

(ΣHΣ)−1ΣH (3.80)

where (a) is from the matrix inversion lemma. By plugging (3.80) into (3.77), we obtain

∆γ ≈((ΣHΣ)−1ΣH + (ΣHΣ)−1∆ΣH − (ΣHΣ)−1(∆ΣHΣ

+ΣH∆Σ)(ΣHΣ)−1ΣH)(Σ+∆Σ′)γ − γ (3.81)

≈(ΣHΣ)−1ΣH(∆Σ′ −∆Σ)γ (3.82)

=− (ΣHΣ)−1ΣH((PΦT(∆AR,r •A∗
R,g)) ∗ (1T

Pr
⊗AB)

)
γ. (3.83)

3.7.5 Proof of Theorem 1

As shown in Lemma 1, vec(H) can be expressed as vec(H) = Ψγ where Ψ =

(AR,r •A∗
R,g) ∗ (1T

Pr
⊗AB). Then the distortion of vectorized RIS reflected channel is

∆vec(H) ≈ ∆Ψγ +Ψ∆γ, (3.84)

where ∆Ψ = (∆AR,r •A∗
R,g) ∗ (1T

Pr
⊗AB) = ((R ⊙AR,r) •A∗

R,g) ∗ (1T
Pr

⊗AB).

In the following lemma, we provide the approximated expression of ∆γ.

Lemma 5. When the number of RIS reflecting elements is large, ∆γ can be approxi-

mated as

∆γ ≈ diag(z⊗ 1Pg)γ. (3.85)

Here, z = [z1 · · · zPr ]
T where zi = xi∆ψr,i + yi∆φr,i, xi = sinφr,i(cosψr,i(Ny −

1)− sinψr,i(Nx − 1)), and yi = cosφr,i(sinψr,i(Ny − 1) + cosψr,i(Nx − 1)).
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Proof. By plugging (3.54), (3.56), (3.69), and (3.72) into (3.61), we obtain

∆γ ≈− 1

MN2Ptx

(
NP ∗ (1T

Pr
⊗AB)

)H(
(P(A∗

R,r •AR,g)
T((R⊙AR,r) •A∗

R,g))

∗ (1T
Pr

⊗AB)
)
γ (3.86)

=− 1

MNPtx

(
(PHP(A∗

R,r •AR,g)
T((R⊙AR,r) •A∗

R,g))⊙ ((1T
Pr

⊗AB)
H(1T

Pr

⊗AB))
)
γ (3.87)

=− 1

MN

(
((A∗

R,r •AR,g)
T((R⊙AR,r) •A∗

R,g))⊙ ((1Pr1
H
Pr
)⊗ (AH

BAB))
)
γ.

(3.88)

To compute (3.88), we use the property of Khatri-Rao product that A•B = [diag(a1)B · · · diag(aM )B]

where A = [a1 · · ·aM ]. Using this property, we obtain

A∗
R,r •AR,g =[diag(a∗R(ψr,1, φr,1))AR,g · · · diag(a∗R(ψr,Pr , φr,Pr))AR,g],

(3.89)

(R⊙AR,r) •A∗
R,g =[diag(r1 ⊙ aR(ψr,1, φr,1))A

∗
R,g · · · diag(rPr ⊙ aR(ψr,Pr , φr,Pr))A

∗
R,g],

(3.90)

where ri = pi∆ψr,i+qi∆φr,i is the i-th column vector of R (see (3.56)). Thus, one can

easily check that the (i, j)-th submatrix of (A∗
R,r •AR,g)

T((R⊙AR,r) •A∗
R,g) has the

form of AT
R,gdiag(a∗R(ψr,i, φr,i)⊙ rj⊙aR(ψr,j , φr,j))A

∗
R,g. Also, the (k, l)-th element

of AT
R,gdiag(a∗R(ψr,i, φr,i)⊙rj⊙aR(ψr,j , φr,j))A

∗
R,g is aT

R(ψg,k, φg,k)diag(a∗R(ψr,i, φr,i)⊙

rj ⊙ aR(ψr,j , φr,j))a
∗
R(ψg,l, φg,l). From the mutual orthogonality of array steering vec-

tors, (3.57), and (3.58), we obtain

aH
R(ψr,i, φr,i)diag(pj)aR(ψr,j , φr,j) =− jπ sinφr,j(aR,y(ψr,i, φr,i)⊗ aR,x(ψr,i, φr,i))

H

(cosψr,j(Ny ⊗ INx)− sinψr,j(INy ⊗Nx))

(aR,y(ψr,j , φr,j)⊗ aR,x(ψr,j , φr,j)) (3.91)

=− jNπδi,j
2

sinφr,j(cosψr,j(Ny − 1)

− sinψr,j(Nx − 1)) (3.92)

=− jNπδi,j
2

xj , (3.93)
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where Nx = diag(0, · · · , Nx−1) and Ny = diag(0, · · · , Ny−1). Similarly, we obtain

aH
R(ψr,i, φr,i)diag(qj)aR(ψr,j , φr,j) =− jNπδi,j

2
cosφr,j(sinψr,j(Ny − 1)

+ cosψr,j(Nx − 1)) (3.94)

=− jNπδi,j
2

yj . (3.95)

This means that the mutual orthogonality between the array response vectors holds even

when R is multiplied in the middle. Based on this observation, we obtain

(A∗
R,r •AR,g)

T((R⊙AR,r) •A∗
R,g) = −jNπ

2
diag(z⊗ 1Pg). (3.96)

By plugging (3.96) into (3.88), we obtain the desired results.

Using (3.84) and (3.85), the NMSE of RIS reflected channel estimation can be

approximated as

E
[∥∆H∥2F
∥H∥2F

]
=E
[∥∆vec(H)∥2

∥vec(H)∥2
]

(3.97)

≈E
[(∆Ψγ +Ψ∆γ)H(∆Ψγ +Ψ∆γ)

γHΨHΨγ

]
(3.98)

(a)
≈ 1

MN

(
E
[
∥∆Ψγ̄∥2

]
− πRe

{
jE
[
γ̄Hdiag(z⊗ 1Pg)

HΨH∆Ψγ̄
]}

+
π2

4
E
[
∥Ψdiag(z⊗ 1Pg)γ̄∥2

])
, (3.99)

where γ̄ = γ/∥γ∥ and (a) is from ΨHΨ ≈ MNIPgPr . The first term of (3.99) is

computed as

E
[
∥∆Ψγ̄∥2

]
=E
[
tr(∆Ψγ̄γ̄H∆ΨH)

]
(3.100)

(a)
=

1

PgPr
E[∥∆Ψ∥2F] (3.101)

=
1

PgPr
E
[
∥((R⊙AR,r) •A∗

R,g) ∗ (1T
Pr

⊗AB)∥2F
]
, (3.102)

where (a) is from E
[
γ̃γ̃H] = 1

PrPg
IPrPg . Similar to (3.89)-(3.96), one can easily check

the mutual orthogonality between the column vectors of (R⊙AR,r) •A∗
R,g. Thus, we
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obtain

((R⊙AR,r) •A∗
R,g)

H((R⊙AR,r) •A∗
R,g)) ≈ diag(t⊗ 1Pg), (3.103)

where t is the diagonal element vector of RHR. Thus, E
[
∥∆Ψγ̄∥2

]
can be re-expressed

as

1

PgPr
E
[
∥((R⊙AR,r) •A∗

R,g) ∗ (1T
Pr

⊗AB)∥2F
]

(3.104)

=
1

PgPr
E
[
tr
(
diag(t⊗ 1Pg)⊙ ((1Pr1

H
Pr
)⊗ (AH

BAB))
)]

(3.105)

=
M

Pr

Pr∑
i=1

E
[
∥pi∥2|∆ψr,i|2 + ∥qi∥2|∆φr,i|2

]
. (3.106)

From the definition of pi in (3.57), we obtain

E
[
∥pi∥2|∆ψr,i|2

]
=π2E

[
sin2 φr,i∥cosψr,i(ny ⊗ 1Nx)− sinψr,i(1Ny ⊗ nx)∥2|∆ψr,i|2

]
.

(3.107)

Note that for arbitrary real values a and b, we obtain

E
[
sin2 φr,i|a cosψr,i − b sinψr,i|2|∆ψr,i|2

]
=
a2 + b2

4
E
[
(1 + cos (2ψ̂r,i + 2∆ψr,i + α))|∆ψr,i|2

]
(3.108)

(a)
=
a2 + b2

4
E
[
||∆ψr,i|2

]
(3.109)

=
π2(a2 + b2)

12W 2
az

, (3.110)

where tanα = a
b . Also, from ψ̂r,i ∼ U{ 2π

Waz
i|i=0,··· ,Waz−1}, ∆ψr,i ∼ U[− π

Waz
, π
Waz

),

and
∫
y

∫
x x

2 cos (x+ y)dxdy = −x2 cos (x+ y)+2x sin (x+ y)+2 cos (x+ y), we

obtain E∆ψr,i,ψ̂r,i

[
|∆ψr,i|2 cos (2∆ψr,i + 2ψ̂r,i + α)

]
= 0 from which we obtain (a).

Thus, E
[
∥pi∥2|∆ψr,i|2

]
is computed as

E
[
∥pi∥2|∆ψr,i|2

]
=

π4

12W 2
az

Nx−1∑
x=0

Ny−1∑
y=0

(x2 + y2) (3.111)

=
Nπ4

72W 2
az
((Nx − 1)(2Nx − 1) + (Ny − 1)(2Ny − 1)). (3.112)
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Similarly, since φ̂r,i ∼ U{ π
Wel

i|i=−Wel/2,··· ,Wel/2} and ∆φr,i ∼ U[− π
2Wel

, π
2Wel

), we obtain

E
[
∥qi∥2|∆φr,i|2

]
=

Nπ4

288W 2
el
((Nx − 1)(2Nx − 1) + (Ny − 1)(2Ny − 1)). (3.113)

By plugging (3.112) and (3.113) into (3.106), we obtain the first term of (3.99) as

E
[
∥∆Ψγ̄∥2

]
=
MNπ4

72
((Nx − 1)(2Nx − 1) + (Ny − 1)(2Ny − 1))

( 1

W 2
az

+
1

4W 2
el

)
.

(3.114)

The second term of (3.99) can be computed as

Re
{
jE
[
γ̄Hdiag(z⊗ 1Pg)

HΨH∆Ψγ̄
]}

=
1

PgPr
Re
{
jE
[
tr(diag(z⊗ 1Pg)

HΨH∆Ψ)
]}

(3.115)

(a)
=

MNπ

2PgPr
E
[
tr(diag(z⊗ 1Pg)

H(diag(z⊗ 1Pg)))
]

(3.116)

=
MNπ

2Pr

Pr∑
i=1

E
[
|xi∆ψr,i + yi∆φr,i|2

]
(3.117)

(b)
=
MNπ3

24
((Nx − 1)2 + (Ny − 1)2)

( 1

W 2
az

+
1

4W 2
el

)
,

(3.118)

where (a) is from the definition of Ψ and (3.96) and (b) is from (3.110).

Lastly, the third term of (3.99) can be computed as

E
[
∥Ψdiag(z⊗ 1Pg)γ̄∥2

]
=

1

PgPr
E
[
tr(diag(z⊗ 1Pg)

HΨHΨdiag(z⊗ 1Pg))
]

(3.119)

=
MNπ2

12
((Nx − 1)2 + (Ny − 1)2)

( 1

W 2
az

+
1

4W 2
el

)
.

(3.120)

Finally, by plugging (3.114), (3.118), and (3.120) into (3.99), we obtain the desired

result.
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Chapter 4

Transformer-based Channel Parameter Acquisition for

Terahertz Ultra-Massive MIMO Systems

In this chapter, we introduce a channel estimation technique for time-division-duplexing

(TDD)-based THz ultra-massive (UM) multiple-input multiple-output (MIMO) systems.

THz UM-MIMO system is envisioned as a key technology to support ever-increasing

data rates in 6G communication systems. To make the most of THz UM-MIMO

systems, acquisition of accurate channel information is crucial. However, the THz

channel acquisition is not easy due to the humongous pilot overhead that scales linearly

with the number of antennas. In our work, we propose a novel deep learning (DL)-

based channel acquisition technique for the THz UM-MIMO systems. By learning the

complicated mapping function between the received pilot signal and the sparse channel

parameters (e.g., angles, distances, path gains) using Transformer, the proposed scheme

can make a fast yet accurate channel estimation with a relatively small amount of pilot

resources. Moreover, using the attention mechanism of Transformer, we can promote

the correlation structure of the received pilot signals in the feature extraction, thereby

improving the channel parameter estimation quality significantly.
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4.1 Introduction

As a key technology to meet the demand for ever-increasing data rate in 6G, terahertz

(THz) ultra-massive multiple-input multiple-output (UM-MIMO) communication has

received a great deal of attention recently [2]. By exploiting the plentiful spectrum

resources in the THz frequency band (0.1 ∼ 10THz) along with a large number

of antennas, THz UM-MIMO communications can support way higher data rates

than the conventional sub-6GHz and millimeter-wave communications can offer. To

maximize the potential gain of THz UM-MIMO systems, the base station (BS) needs

to acquire accurate downlink THz channel information. Main challenge of the THz

UM-MIMO systems is that the channel exhibits the near-field characteristics since

the array aperture of the massive number of antenna elements is comparable to the

communication distance [52]. While the signal wavefront can be readily approximated

as a planar wave in the conventional far-field region, the electromagnetic (EM) radiation

is performed through the spherical wave in the near-field region [53, 54]. Due to the

spherical wavefront, the near-field THz channel can be expressed as a function of a few

parameters in the spherical domain including angles, distances, and path gains.

Recently, various techniques have been proposed for the acquisition of the THz

channel parameters [55–59]. In [55, 56], compressed sensing (CS)-based channel acqui-

sition approaches have been proposed. In [57–59], deep learning (DL)-based approaches

that learn the mapping function between the received pilot signals and the channel pa-

rameters using deep neural network (DNN) have been proposed. Among various DNN

architectures, a convolutional neural network (CNN) is popular due to its simplicity and

ability to extract spatial features from the received pilot signals [59]. A major drawback

of CNN, in the perspective of the THz channel parameter acquisition, is that it might

not be effective in extracting the correlation between the spaced-apart pilot signals since

the filter kernel and convolution operations are performed locally.

In the DL-based channel parameter estimator, a feature map is extracted from the

DNN using the received pilot signals. By the feature map, we mean the low-dimensional
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Figure 4.1: Correlation structure of the received pilot signal in THz UM-MIMO systems.

vector containing core information (e.g., MIMO antenna array structure, locations of

scatterers, and mobility of user equipment (UE)) of the large-dimensional input. To

facilitate the feature extraction, one should deliberately handle the correlation structure

of the received pilot signals. Notable characteristics of the received pilot signal of THz

UM-MIMO systems are twofold; First, the received pilot signals will have meaningful

power only for a few time slots. During the channel acquisition process, the BS employs

multiple sharp training beams, each of which is directed to distinct directions. Thus, the

received pilot signal will have a high power only when the training beams are aligned

with the direction of UE (see Fig. 1). Second, the THz channel is determined primarily

by the scattering geometry around the BS so the received pilot signals for each and

every subcarrier can be expressed as functions of the same geometric parameters (e.g.

angles, distances), which means that the received pilot signals, irrespective of their
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subcarrier positions, are highly correlated.

An aim of this paper is to propose a DL-based channel acquisition technique for

the THz UM-MIMO systems. The proposed technique, dubbed as Transformer-based

parametric THz channel acquisition (T-PCA), estimates the channel parameters (angles,

distances, path gains) using Transformer, a DL architecture that differentially weights

the significance of each input data (in our case, the received pilot signals) via the

attention mechanism [60]. To make the most of the correlation structures of the received

pilot signal, we employ two distinct Transformer networks, viz., temporal Transformer

network (TTN) and spatial Transformer network (STN). In TTN, using the received

pilot signals as inputs, the temporally-correlated features are extracted from the product

of the attention weight and the received pilot signal. Since only a small portion of

received pilot signals have a meaningful power, Transformer in TTN is trained such

that these dominant received pilot signals will have relatively high attention weights. In

doing so, one can facilitate the extraction of the temporally-correlated features. After

that, using the low-dimensional features generated from TTN as inputs, the spatio-

temporally correlated features are extracted in STN. As mentioned, the received pilot

signals for all subcarriers are expressed as functions of the same channel parameters

so that all received pilot signals, regardless of their positions, are correlated to each

other. Main purpose of Transformer in STN is to capture the correlated features of both

the adjacent and spaced-apart received pilot signals. Finally, the extracted features are

converted to the channel parameters via the fully-connected network.

From the simulation results, we demonstrate that T-PCA outperforms the con-

ventional channel acquisition schemes in terms of the normalized mean square error

(NMSE). For example, T-PCA achieves more than 5 dB NMSE gain over the CS-based

scheme. Even when compared with the CNN-based scheme, T-PCA achieves around

2.5 dB NMSE gain.
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4.2 Terahertz UM-MIMO System Model

We consider the THz UM-MIMO OFDM systems where a single-antenna UE transmits

an uplink pilot signal to a BS equipped with a uniform linear array (ULA) ofM antennas.

Specifically, T time slots and S subcarriers are used for the uplink pilot transmission

(see Fig. 1). By exploiting the channel reciprocity of time-division duplexing (TDD)

systems, the BS can recycle the acquired uplink channel information for the downlink

data transmission [61]. In case when the uplink and downlink channels are not exactly

the same, one can bridge the gap between the uplink and downlink channels through

the reciprocity calibration [62].

In this setup, the received pilot signal vector yt,s ∈ CNr×1 of the s-th pilot subcar-

rier at t-th time slot is given by

yt,s = WH
t hsxt,s +WH

t nt,s =
√
PtxW

H
t hs + ñt,s, (4.1)

where Nr is the number of RF chains in BS, xt,s =
√
Ptx is the uplink pilot, Ptx is

the transmit power of UE, hs ∈ CM×1 is the THz channel vector at s-th subcarrier,

Wt ∈ CM×Nr is the receive beamforming matrix at the t-th time slot, and nt,s ∼

CN (0, σ2nIM ) is the additive Gaussian noise. Note that Wt is generated from the

column vectors of M -point DFT matrix. By concatenating the received pilot signals

over T time slots, we obtain the received pilot signal matrix at the s-th subcarrier

Ys = [y1,s · · ·yT,s]T ∈ CT×Nr .

One notable characteristic of THz UM-MIMO systems is that the channel exhibits

the near-field characteristics [52]. Since the signal wavefronts are spherical in the

near-field channel, the phase difference between two antenna elements is affected by

the distance r as well as the angle θ. Therefore, the near-field array steering vector

is expressed as a function of spherical coordinates (θ, r). In fact, the near-field array

steering vector bs(θ, r) at s-th subcarrier is given by [56]

bs(θ, r)=
[
e
−j 2π

λ
(1+ fs

fc
)(r1−r) · · · e−j

2π
λ
(1+ fs

fc
)(rM−r)]T

, (4.2)
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where fc is the carrier frequency, fs is the baseband frequency of the s-th subcarrier,

and rm is the distance between the UE and the m-th BS antenna, given by

rm = r − (m− 1)d sin θ + (m− 1)2
d2 cos2 θ

2r
. (4.3)

In this work, we use the near-field multipath THz channel model where the uplink

channel vector hs from the UE to the BS at the s-th subcarrier is expressed as

hs =

P∑
p=1

αpe
−j2πfsτpbs(θp, rp), (4.4)

where P is the number of propagation paths, θp is the AoA, rp is the distance, τp

is the time delay, and αp is the path gain of the p-th path. Let θ = [θ1 · · · θP ]T

and r = [r1 · · · rP ]T be the angle and distance vectors, respectively, and αs =

[α1e
−j2πfsτ1 · · ·αP e−j2πfsτP ]T be the path gain vector for the s-th subcarrier, then

hs can be succinctly expressed as a function of channel parameters:

hs = Bs(θ, r)αs, (4.5)

where Bs(θ, r) = [bs(θ1, r1) · · ·bs(θP , rP )] ∈ CM×P is the near-field array steering

matrix. Note that hs is parameterized by a few THz channel parameters, i.e., angles θ,

distances r, and path gains αs, whose numbers are the same as the number of paths.

Since the number of paths P (e.g., P = 1 ∼ 3) is much smaller than the number

of antennas M (e.g., M = 256 ∼ 1024) in the THz UM-MIMO systems, one can

significantly reduce the required number of measurements by estimating the sparse

channel parameters instead of the full-dimensional channel vector hs [41].

4.3 Transformer-based parametric Terahertz Channel Ac-

quisition

Main goal of the proposed T-PCA is to estimate the sparse THz channel parameters

(i.e., angles, distances, and path gains) using Transformer. Major benefit of T-PCA is
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that we can extract the features of the THz UM-MIMO received pilot signals using the

attention mechanism of Transformer. In essence, the attention mechanism facilitates

the generation of the attention weights that represent the correlations between input

data. Using the product of the attention weights and the received pilot signals as input,

one can extract the spatially and temporally-correlated features inherent in the THz

UM-MIMO systems. Key ingredient of T-PCA is the combination of Transformer and

fully-connected network to learn a complicated nonlinear mapping between the received

pilot signals {Ys}Ss=1 and the THz geometric channel parameters (θ, r):

{
θ̂, r̂
}
= g
(
{Ys}Ss=1;Γ

)
, (4.6)

where g is the mapping function and Γ are the network parameters. Once θ̂ and r̂

are acquired, the path gains {α̂s}Ss=1 can be easily estimated using the conventional

approaches such as the least squares (LS) estimator:

α̂s =
(√
PWHBs(θ̂, r̂)

)†vec(YT
s ), s = 1, · · · , S, (4.7)

where W = [W1 · · ·WT ] ∈ CM×TNr . Using the obtained the channel parameters (θ̂,

r̂, {α̂s}Ss=1), we can reconstruct the THz channels {ĥs}Ss=1:

ĥs = Bs(θ̂, r̂)α̂s, s = 1, · · · , S. (4.8)

4.3.1 Basic of Transformer

In the conventional CNN-based acquisition technique, the features are extracted by

performing the convolution operation of a 2D/3D-shaped weight matrix (called kernel)

and a part of the received pilot signal [58]. While CNN is effective in extracting the

locally correlated features (e.g. correlation among antennas), it might not be efficient in

extracting the globally correlated feature due to the locality of the filter kernel. Also,

since the same kernel is multiplied to all input signals, the nonuniform and irregular

correlation structures of the received pilot signals cannot be captured properly.
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Figure 4.2: Attention map of TTN Figure 4.3: Attention map of STN

In a nutshell, Transformer extracts the features using the attention mechanism. In the

attention layer of Transformer, the correlations between the input data (a.k.a., attention

weight or attention map) are calculated and then multiplied to the input to generate

the weighted input matrix [60]. Since the correlations between each and every element

in the input sequences (a.k.a., token) are used for the attention weight generation,

Transformer can extract both the locally and globally correlated features effectively.

To be specific, using the sequence ofD×1 input vectors Y = [y1 · · ·yL]T ∈ CL×D,

the attention layer constructs three different embedding matrices, i.e., the query Q =

YWQ, the key K = YWK , and the value V = YWV where WQ,WK ,WV ∈

CD×D are the weight matrices and L is the number of input sequences. Since the query

Q and the key K contains the features of the input data, by performing the inner product

of Q and K, we obtain the attention map M ∈ CL×L:

M = fsoftmax
(
QKT/

√
D
)
, (4.9)

where fsoftmax(Y) is a row-wise softmax function defined as [fsoftmax(Y)]i,j = eYi,j/
∑

j e
Yi,j .

Finally, by multiplying the attention map M with the value V, we obtain the weighted

input matrix Z ∈ CL×D:

Z = MV = fsoftmax
(
QKT/

√
D
)
V, (4.10)
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After that Z passes through the fully-connected network, generating the output feature

of Transformer.

To demonstrate the effect of the attention map in capturing the correlation structure

of the received pilot signals, we plot the attention maps of TTN and STN in Fig. 4.2 and

4.3. From Fig. 4.2, one can observe that the attention weights of TTN are concentrated

on a small number of column vectors. Due to the extremely narrow beamwidth of

THz UM-MIMO systems, the received pilot signals will contain the noise only when

the training beams are not aligned with the signal propagation paths. This means that

only a few row vectors of the received pilot signal matrix Ys = [y1,s · · ·yT,s]T have

relatively high values (same for the key K generated from Ys). Since the attention map

is constructed from the inner product of Q and K, the attention weights are concentrated

on a few column vectors corresponding to the dominant received pilot signals.

4.3.2 Network Architecture of T-PCA

In this subsection, we explain the detailed network architecture of T-PCA (see Fig. 2).

In T-PCA, the received pilot signal yt,s is first separated into the real and imaginary

parts ȳt,s = [Re(yt,s)T Im(yt,s)
T]T ∈ R2Nr×1 and then the concatenated matrices

Ys = [ȳ1,s · · · ȳT,s]T ∈ RT×2Nr pass through the fully-connected network to generate

Xs = YsWe+be ∈ RT×D (We ∈ R2Nr×D is the weight matrix and be ∈ RD×1

is the bias vector). Then a representative vector x0,s ∈ RD×1, a trainable vector

containing the correlated feature of the input data, is appended to the input matrices as

X̄s = [x0,sX
T
s ]

T ∈ R(T+1)×D [63]. Also, to indicate the position of each element in

the input data sequence, a trainable matrix called positional embedding matrix Wpos ∈

R(T+1)×D is added as X̃s = X̄s +Wpos. Then the encoded input sequences {X̃s}Ss=1

sequentially pass through the multiple Transformer blocks. In the last Transformer

block, the temporal feature vectors {f ttn
s }Ss=1 are obtained from the first row vector of

the output matrix.

Once the temporal feature matrix Fttn = [f ttn
1 · · · f ttn

S ]T ∈ RS×D is obtained, Fttn
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Figure 4.4: Overall structure of T-PCA.

is used as an input matrix of STN. Similar to TTN, the representative vector and the

positional embedding matrix are added to Fttn and then the output matrix passes through

multiple Transformer blocks. Then the spatio-temporal feature vector f stn ∈ RD×1 is

obtained from the first row vector of the output matrix of the last Transformer block.

The extracted spatio-temporal feature vector f stn passes through the fully-connected

network to generate the output vector zp = Wpf
stn + bp ∈ R2P×1 (Wp ∈ R2P×D is

the weight matrix and bp ∈ R2P×1 is the bias vector). After that, zp passes through

the hyperbolic tangent layer ftanh(x) =
ex−e−x

ex+e−x to generate the desired THz channel
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parameters as {θ̂, r̂} = ftanh(zp). The overall structure of T-PCA is depicted in Fig.

4.4.

4.3.3 Computational Complexity Analysis

In this subsection, we analyze the complexity of T-PCA in terms of the number of

floating point operations (flops). Recall that the proposed T-PCA consists of input

fully-connected network, TTN, STN, and output fully-connected network (see Fig. 3).

Thus, the overall computational complexity CT-PCA of T-PCA can be expressed as

CT-PCA = Cin + Cttn + Cstn + Cout, (4.11)

where Cin, Cout, Cttn, and Cstn are the computational complexities of input and output

fully-connected networks, TTN, and STN, respectively.

In the input fully-connected network, the matrix multiplication and bias addition

are performed for each subcarrier so the computational complexity Cin is

Cin = 4NrSTD. (4.12)

In TTN, the input vector passes through the positional embedding layer and Trans-

former layer consisting of Nb Transformer so the computational complexity Cttn can be

expressed as

Cttn = Cpos +NbCtf, (4.13)

where Cpos and Ctf are the computational complexities of the positional embedding

layer and Transformer layer, respectively. Also, Nb is the number of transformer blocks

in TTN. In the positional embedding layer, the positional embedding matrix Wpos is

added to the input matrix so that Cpos = S(T + 1)D. Also, since the Transformer block

consists of the attention module (S(T + 1)(6D2 + 4DT + 2T + 3) flops), the residual

connection (S(T+1)D flops), layer normalization (4S(T+1)D flops), fully-connected

network (2S(T +1)D2 flops), activation layer (S(T +1)D flops), and fully-connected

network (2S(T +1)D2 flops), the computational complexity Ctf of a Transformer block
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is Ctf = S(T +1)(10D2 +4DT +2T +10D+3). By plugging Cpos and Ctf to (4.13),

we obtain the computational complexity Cttn of TTN:

Cttn = S(T + 1)(D +Nb(10D
2 + 4DT + 2T + 10D + 3)). (4.14)

Similarly, the computational complexity Cstn of STN is

Cstn = (S + 1)(D +Nb(10D
2 + 4DS + 2S + 10D + 3)). (4.15)

In the output fully-connected network, the channel parameter estimates are extracted

by multiplying the weight matrix, adding the bias vector, and passing through the tanh

layer. Thus, the complexity of the output fully-connected network is

Cout = (4D + 10)P. (4.16)

In conclusion, by plugging (4.12)-(4.16) to (4.11), we obtain the computational com-

plexity CT-PCA of T-PCA:

CT-PCA =10P + (4NrST + 4P + ST + 2S + 1)D

+Nb(S(T + 1)(10D2 + 4DT + 2T + 10D + 3)

+ (S + 1)(10D2 + 4DS + 2S + 10D + 3)). (4.17)

4.4 Simulation Result

4.4.1 Simulation Setup

In our simulation, we consider the THz UM-MISO OFDM systems where a BS equipped

with M = 256 antennas and Nr = 4 RF chains serves a single-antenna UE. The UE

is located randomly around the BS within the cell radius of R = 50m. We use the

wideband THz multi-path channel model where the number of paths is P = 1, the

carrier frequency is fc = 0.1THz, and the channel bandwidth is B = 1GHz1. We set
1In the THz systems, due to the severe path loss and directivity of THz band, the power of line-of-sight

(LoS) component is almost 100 times stronger than that of the non-line-of-sight (NLoS) component [64].
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Figure 4.5: NMSE vs. SNR (M = 256, Nr = 4, T = 32, S = 16)

the numbers of subcarriers and time slots for pilot transmission to S = 16 and T = 32,

respectively. Also, we use the path loss model in 3GPP Rel. 16 [17].

In the proposed T-PCA, each Transformer network consists of two Transformer

blocks with the embedding dimension D = 128. For the network parameter training,

we use the supervised learning strategy where the network parameters Γ are updated

iteratively in a way to minimize the NMSE-based loss function J(Γ):

J(Γ) =
1

S

S∑
s=1

∥hs − ĥs∥2

∥hs∥2
. (4.18)

As a performance metric, we use the normalized mean square error (NMSE) defined

as NMSE = 1
S

∑S
s=1

∥ĥs−hs∥2
∥hs∥2 . Since it is very difficult to design a THz UM-MIMO

testbed to acquire the real channel dataset, we instead used synthetically generated

channels from the THz UM-MIMO simulator. Based on the property that the THz

channel can be expressed as a function of a few geometric channel parameters (i.e.,

angles, distances, and path gains), we synthetically generated the scattering environ-

ment at the THz UM-MIMO simulator based on the 3GPP standard, using which we

acquired the geometric channel parameters and THz channels. Specifically, we ran-
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15 dB)

domly generated the geometric channel parameters angles θ, distances r, and path gains

{αs}Ss=1 from [−π, π), (0m, 50m), and CN (0, ρ) where ρ is the large-scale fading

coefficient modeled by the path loss model in 3GPP TR 38.901, respectively [17].

Using the THz UM-MIMO simulator, we separately generate training and test datasets

consisting of 300, 000 and 50, 000 independent channel realizations, respectively. The

number of training epochs and the learning rate are set to Nepoch = 1000 and η = 10−3,

respectively. For comparison, we use four benchmark channel acquisition schemes: 1)

CNN-based scheme [58], 2) compressed sensing (CS)-based scheme [55], 3) linear

minimum mean square error (LMMSE) estimator, and 4) LS estimator.

4.4.2 Simulation Result

In Fig. 4.5, we plot the NMSE as a function of transmit SNR. We observe that T-PCA

outperforms the conventional channel estimation techniques by a large margin. For

example, when SNR = 10 dB, T-PCA achieves significant (more than 9 dB and 11 dB)

101



64 96 128 160 192 224 256 288 320

-12

-10

-8

-6

-4

-2

0

Figure 4.7: NMSE versus number of BS antennas (Nr = 4, S = 16, SNR = 15 dB)

NMSE gains over the LMMSE and LS schemes, respectively. Even when compared with

the CS-based scheme, T-PCA achieves around 6 dB NMSE gain. This is because the

mismatch between the true channel parameters and the quantized channel parameters is

considerable in the CS-based scheme while such is not the case for T-PCA since T-PCA

estimates the channel parameters in the continuous domain.

In Fig. 4.6, we plot the NMSE as a function of the number of time slots. We observe

that T-PCA achieves more than 33% pilot overhead reduction over the conventional

schemes. For instance, to achieve the NMSE of −10 dB, T-PCA requires 24 time

slots while the conventional schemes require more than 36 time slots. This is not a

surprise since the LMMSE and LS schemes estimate the full-dimensional THz channel

vector hs directly so that the required number of time slots is very large2. Whereas,

by learning the complicated mapping between the received pilot signals and the THz
2In fact, to guarantee the accurate estimation of hs, the number of measurements TNr should be

larger than the number of antenna elements M . For example, when M = 256 and Nr = 4, we need

to allocate more than 5 subframe (more than 50% of a frame in 5G NR) just for the pilot transmission

(14 slots/subframe × 5 subframe = 70 > M/Nr = 64).
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Figure 4.8: Training loss of T-PCA versus training epoch

channel parameters using Transformer, T-PCA can efficiently acquire the sparse THz

channel parameters with a small amount of pilot resources.

In Fig. 4.7, we plot the NMSE as a function of the number of BS antennas M .

We set the number of time slots T = ⌊ M
2Nr

⌋ so that T increases linearly with M . We

observe that the NMSE gain of T-PCA over the conventional techniques increases with

M . For example, when M increases from 96 to 320, the NMSE gain of T-PCA over the

CS-based scheme increases from 2.3 dB to 6.1 dB, which implies that T-PCA would be

more effective in improving the channel estimation performance of the reconfigurable

intelligent surface (RIS)-aided THz systems where the number of reflecting elements is

extremely large.

In Fig. 4.8, we evaluate the NMSE loss of T-PCA as a function of the training epoch.

By one epoch, we mean the period during which all training data has been used once to

update the parameters of a DL model. We observe that as the training epoch increases,

the NMSE loss of T-PCA decreases gradually and finally converges.
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4.5 Summary

In recent years, a remarkable success of DL in various disciplines (e.g., image classifica-

tion, speech recognition, and language translation) has stimulated increasing interest in

applying this paradigm to wireless communication systems. In this chapter, we proposed

a DL-based channel acquisition technique for the THz UM-MIMO systems. Intriguing

feature of the proposed T-PCA is to promote the nonuniform and irregular correlation

structures of the received pilot signals using Transformer, a DL architecture that dif-

ferently weights each input data based on the correlations between the input data. By

exploiting the attention mechanism of Transformer, T-PCA can facilitate the extraction

of spatially and temporally-correlated features inherent in the THz UM-MIMO systems.

In doing so, fast yet accurate channel parameter estimation can be made with small pilot

overhead. From the simulation results, we demonstrated that T-PCA achieves more than

2.5 dB NMSE gain and 33% pilot overhead reduction over the conventional channel

acquisition techniques. In our work, we restricted our attention to channel estimation,

but there are many interesting applications of T-PCA such as channel feedback, beam

tracking, and resource allocation.
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Chapter 5

Fast and Accurate Terahertz Beam Management via

Frequency-dependent Beamforming

In this chapter, we introduce a beam management technique for wideband THz systems.

One main difficulty of the THz communications is the severe attenuation of signal power

caused by the high diffraction and penetration losses and atmospheric absorption. To

compensate for the severe path loss, a beamforming technique realized by the massive

multiple-input multiple-output (MIMO) has been widely used. Since the beamforming

gain is maximized only when the beams are appropriately aligned with the signal

propagation paths, acquisition of accurate beam directions is of great importance. A

major issue of the conventional beam management schemes is the considerable latency

being proportional to the number of training beams. In this chapter, we propose a

THz beam management technique that simultaneously generates multiple frequency-

dependent beams using the true time delay (TTD)-based phase shifters. By closing the

gap between the frequency-dependent beamforming vectors and the desired directional

beamforming vectors using the TTD-based signal propagation network called intensifier,

we generate very sharp training beams maximizing the beamforming gain.
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5.1 Introduction

Recently, terahertz (THz) communications have received much attention to alleviate

spectrum bottleneck and support high data rates for 6G wireless communications [65,

66]. Using the abundant spectrum resource in the THz frequency band (0.1∼10THz),

THz communications can support immersive mobile services such as digital twin,

metaverse realized by XR devices, and high-fidelity mobile holographic displays [67,68].

Well-known drawback of the THz communications is the severe attenuation of the

signal power caused by the high diffraction and penetration losses and atmospheric

absorption [69]. To deal with the problem, a beamforming technique realized by the

massive multiple-input multiple-output (MIMO) has been widely used [41, 56, 70, 71].

Since the beamforming gain is maximized only when the beams are properly aligned

with the signal propagation paths, the base station (BS) needs to acquire the accurate

channel information in a form of angle-of-arrivals (AoAs) and angle-of-departures

(AoDs). The process to acquire the AoAs/AoDs associated with the paths between

the BS and the mobile and then send the directional beams to the acquired directions

is collectively called beam management [72, 73]. In general, the beam management

of 5G NR consists of two steps: 1) beam sweeping and 2) beam refinement. In the

beam sweeping step, the BS sequentially transmits the training beams carrying the

reference signal and the mobile reports the index of the beam corresponding to the

highest reference signal received power (RSRP) to the BS. After that, in the beam

refinement step, the BS narrows down the direction of the mobile by sending multiple

pilot signals (e.g., channel state information reference signal (CSI-RS)) to the direction

obtained from the beam sweeping [74].

Over the years, various beam management schemes have been proposed [75–80].

In [75] and [76], beam management schemes using the hierarchical multi-level beam

codebook have been proposed. In [77], a two-stage beam training scheme using a

multi-resolution codebook for sub-THz communications has been proposed. In [78], a

beam training scheme that exploits wide-beam codewords for the fast beam alignment
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in THz massive MIMO systems has been proposed. In [79], a fast beam tracking scheme

that leverages the temporal variation of the physical direction has been proposed for

THz massive MIMO systems. Also, in [80], a joint beam management and power

allocation algorithm for the THz non-orthogonal multiple access (NOMA) systems has

been proposed. A potential drawback of these schemes is that the BS can probe only

one physical direction in each time slot, thereby inducing a beam management latency

being proportional to the number of training beams. Recently, to speed up the beam

management process, wideband beam training schemes that simultaneously generate

multiple frequency-dependent training beams using the analog phase shifters and true

time delay (TTD)-based phase shifters have been proposed [81–84]. TTD is a unit

generating a specific time delay using multiple switched delay lines [85]. By controlling

the propagation path of the RF transmission signals, TTD induces a phase shift being

proportional to the product of the time delay and the signal frequency to the RF signal.

Using the combination of TTD-based phase shifters and analog phase shifters, the BS

can simultaneously generate multiple frequency-dependent training beams heading

toward distinct physical directions, thereby achieving a considerable reduction of beam

management latency. While this approach is promising, since micro-electromechanical

systems (MEMS) relying on costly semiconductor lithographic process is used in

switching the delay lines in the TTD, hardware complexity and implementation cost of

the TTD are considerable1. To reduce the hardware complexity and the implementation

cost, a partially-connected structure where one TTD is connected to multiple antennas

has been suggested [82]. This so-called delay-phased precoding (DPP) scheme can

save the hardware cost to some extent, but it will cause a severe degradation of the

beamforming gain due to the strong sidelobe power of the generated beams.

An aim of this paper is to put forth an efficient THz beam management tech-

nique reducing the beam management latency without the loss of beamforming gain.

The proposed scheme, henceforth referred to as frequency-dependent beamforming

1The cost of the TTD is nearly 10 times higher than that of the analog phase shifter [85].
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(FDB), simultaneously generates multiple frequency-dependent training beams us-

ing the TTD-based phase shifters and the analog phase shifters. A distinctive feature

of the FDB-based beam management over the previous efforts is that we exploit a

deliberately designed TTD-based signal propagation network called intensifier to com-

pensate for the difference between the desired directional beamforming vectors and the

frequency-dependent beamforming vectors. Since the BS can search multiple directions

simultaneously while suppressing the sidelobes of the beams, we can obtain a significant

reduction in the beam management latency and at the same time achieve the maximum

beamforming gain. The main contributions of this work are as follows:

• We propose a novel THz beamforming network that generates multiple frequency-

dependent beams using TTDs and analog phase shifters. Specifically, the pro-

posed FDB scheme consists of three signal propagation networks: 1) analog

network generating the initial beamforming vector, 2) time delay network chang-

ing the physical directions of the beams, and 3) intensifier network suppressing

the sidelobes of the subcarrier beams generated by the time delay network and

the analog network. By controlling the parameters of these networks, FDB can

generate the subcarrier beams heading toward the desired probing area while

achieving the maximum beamforming gain.

• We propose the FDB-based THz beam management strategy that simultaneously

searches multiple directions. The proposed strategy consists of two major opera-

tional steps: 1) beam spraying where the BS simultaneously transmits the FDB

beams heading toward the whole angular area. After measuring these, a mobile

feeds back the index of the FDB beam maximizing the RSRP to the BS and

2) beam purification where the BS performs the fine-tuning to the angular area

identified in the beam spraying process to find out the precise beam direction.

Since the number of FDB beams is the same as the number of subcarriers in the

wideband THz systems (e.g., 64 ∼ 256), we can achieve a significant reduction

in the beam management latency.
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• We perform the beam misalignment probability analysis from which we show that

the probability of FDB to find out the optimal beam direction is much higher than

that of DPP. Also, from the numerical evaluations on the realistic THz systems,

we demonstrate that FDB significantly reduces the beam management latency.

In particular, FDB achieves more than 90% reduction on the beam management

latency over the conventional beam management scheme in 5G NR. Even when

compared with DPP, FDB achieves more than 70% beam management latency

reduction.

Notation: Lower and upper case symbols are used to denote vectors and matrices,

respectively. The superscript (·)T, (·)H, and (·)† denote transpose, hermitian transpose,

and pseudo-inverse, respectively. ∥x∥ is the Euclidean norm of a vector x and ∥X∥F is

the Frobenius norm of a matrix X. Re{x} and Im{x} are the real and imaginary parts

of x, respectively. aN (x) =
[
1, ejx, · · · , ej(N−1)x)

]T is the N × 1 array steering vector

corresponding to x. Also, X ⊗Y and X ⊙Y denote the Kronecker and Hadamard

product of X and Y, respectively.

5.2 Wideband Terahertz Systems

In this section, we briefly discuss the wideband THz MISO system model and true time

delay, followed by a description of the conventional frequency-dependent beamforming

technique.

5.2.1 Terahertz MISO-OFDM System Model

We consider a downlink THz MISO-OFDM system where a BS equipped with a uniform

linear array (ULA) of N antennas2 serves a single-antenna mobile. The number of
2In our work, we use N × 1 linear antenna array systems but the proposed FDB scheme can be readily

extended to the N = Nx ×Ny planar antenna array systems by exploiting the property that the planar

array steering vector aN (θ, ψ, fi) ∈ CN can be expressed as a Kronecker product of two linear array

steering vectors aNx(θ, fi) ∈ CNx and aNy (ψ, fi) ∈ CNy as aN (θ, ψ, fi) = aNx(θ, fi)⊗ aNy (ψ, fi).
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OFDM subcarriers is S, the carrier frequency is fc, and the bandwidth is B. To reduce

the hardware complexity, we consider the analog beamforming architecture where an

RF chain is connected with N phase shifters3. Under this setup, the received signal yi

of the mobile at the i-th subcarrier is given by

yi =
√
Pth

H
i fisi + ni, i = 1, · · · , S, (5.1)

where Pt is the transmit power at each subcarrier, hi ∈ CN is the downlink THz channel

vector from the BS to the mobile, fi ∈ CN is the frequency-dependent beamforming

vector, si is the transmit symbol, and ni ∼ CN (0, σ2n) is the Gaussian noise at the i-th

subcarrier. The corresponding data rate R of the mobile is given by

R =
S∑
i=1

log2

(
1 +

Pt|hH
i fi|2

σ2n

)
. (5.2)

As for the channel model, we use the far-field frequency-selective line-of-sight

(LoS)-based THz channel model where the downlink i-th subcarrier channel vector

hi ∈ CN from the BS to the mobile is expressed as [86]

hi =
√
ραie

−j2πfiτaN (ϕ, fi), i = 1, · · · , S, (5.3)

where ρ is the large-scale fading coefficient accounting for the path loss and the shadow

fading, αi ∼ CN (0, 1) is the small-scale fading coefficient, τ is the propagation delay,

fi = fc − B
2 + B

S−1(i − 1) is the i-th subcarrier frequency, and ϕ = π sinφ is the

physical direction, and φ is the AoD at the BS. Also, aN (ϕ, fi) ∈ CN is the N × 1

array steering vector of BS at the i-th subcarrier given by

aN (ϕ, fi) =
[
1, e

j
fi
fc
ϕ
, · · · , ej(N−1)

fi
fc
ϕ
]T

(5.4)

=
[
1, e

j ϕ
γi , · · · , ej(N−1) ϕ

γi

]T
, (5.5)

3The proposed scheme can be readily extended to the hybrid beamforming architecture scenario where

multiple RF chains are connected to the phase shifters. In fact, when the number of RF chains is larger

than one, one can generate the oversampled FDB beams between the FDB beams generated by the single

RF chain.
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where γi is the ratio between the i-th subcarrier frequency fi and the central frequency

fc:

γi =
fc
fi
, i = 1, · · · , S. (5.6)

Using aN (ϕ, fi), one can define the physical direction ϕi of the beamforming vector fi

at the i-th subcarrier as [82]

ϕi = argmax
θ

|fH
i aN (θ, fi)|2, i = 1, · · · , S. (5.7)

From (5.2)-(5.5), one can easily see that the optimal beamforming vector f∗i maximizing

the achievable rate is f∗i = aN (ϕ, fi) and the physical direction of f∗i is ϕi = ϕ for all

subcarriers4. Note, to find out {f∗i }Si=1, one should acquire ϕ.

5.2.2 True Time Delay-based Phase Shifter

In 5G NR mmWave systems, analog phase shifters are often used for the training beam

generation. Since the generated phase is invariant to the frequency, the subcarrier beams

f1, · · · , fS are all the same (i.e., f1 = · · · = fS). Also, since the subcarrier spacing is

far smaller than the carrier frequency, the array steering vectors for all pilot subcarriers

are almost identical (i.e., aN (θ, f1) ≈ · · · ≈ aN (θ, fS)), meaning that the physical

directions ϕ1, · · · , ϕS of all subcarrier beams are fairly similar (i.e., ϕ1 ≈ · · · ≈ ϕS).

Due to the fact that the BS can probe only one direction at a time, the beam management

latency will be directly proportional to the number of training beams [74]. In fact, the

time to complete the beam management process of 5G can easily exceed 20ms so it

might not be easy to support the mobility of human’s movement even in very mild

scenario (e.g., walking).
4Note that the optimal beamforming vector for each subcarrier is different. In the conventional

mmWave systems, the difference between fc and fi is relatively small, and thus one can readily assume

that γi = fc
fi

≈ 1. This means that {f∗
i }Si=1 are almost identical. In the THz systems, however, the

difference between fc and fi is no longer negligible due to the large bandwidth. Thus, γi can be larger

or smaller than 1. This phenomenon where the optimal beamforming vector depends on the subcarrier

frequency is called the beam squint effect [56, 87].

111



��� � ∆�

����

����

����

�
	
� �

	
� �
	
� �

	
� �
	
� �

	
� �
	
� �

	
�

Delay line

�� �� �� �� �� �� �� ��

��������������������	�


�	

�: Switch : Impedance

Output 
(Time-delayed RF Signal)

Input 

(Up-converted RF Signal)

����

��� � ∆�

��� � ��∆�

. . .
��� � 2∆�

��� � ∆�

����

��� � 3∆�

��� � 2∆�

��� � ��� � 1�∆�

����
�

Figure 5.1: Structure of a 3-bit TTD and TTD array. The time delay is ∆ = L
c where L

is the length of the dotted delay line and c is the propagation speed of RF signal.

Recently, approaches to generate multiple frequency-dependent beams using the

TTD-based phase shifters have been proposed [82, 88]. Essence of these approaches

is to exploit TTD, a device consisting of multiple switches and electrical impedances,

to change the phase of the RF signal. As illustrated in Fig. 5.1, when the fifth switch

SW5 is activated, the RF signal will propagate through the dotted delay line and the

phase shift being proportional to the product of time delay ∆ = L
c and the signal

frequency fi is induced. Specifically, if a time delay ∆ is induced to an input RF signal

(i.e., a sum of subcarrier signals) s(t) =
∑S

i=1 si(t) =
∑S

i=1 sie
j2πfit, then the output

RF signal will be s(t −∆) =
∑S

i=1 sie
j2πfi(t−∆) =

∑S
i=1 si(t)e

−j2πfi∆ so that the

frequency-dependent phase shift −2πfi∆ is induced for each subcarrier signal si(t).

Using the multiple TTD-based phase shifters, say N TTDs, one can generate

multiple frequency-dependent beams. Specifically, let xi,n(t, τ) be an output of the

n-th TTD for the i-th subcarrier signal, then xi,n(t, τ) can be expressed as xi,n(t, τ) =

si(t− (n− 1)τ) = si(t)e
−j(n−1)2πfiτ . By stacking xi,n(t, τ) of all N TTDs, one can
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Figure 5.2: Overall structure of the conventional DPP scheme.

express the output vector xi(t) of TTDs for the i-th subcarrier signal as

xi(t) = [xi,1(t, τ), xi,2(t, τ), · · · , xi,N (t, τ)]T (5.8)

=
[
1, e−j2πfiτ , · · · , e−j(N−1)2πfiτ

]T
si(t) (5.9)

= fi(τ)si(t) (5.10)

= aN (−2πfcτ, fi)si(t). (5.11)

One can see that fi(τ) =
[
1, e−j2πfiτ , · · · , e−j(N−1)2πfiτ

]T
= aN (−2πfcτ, fi) is

the TTD beamforming vector at the i-th subcarrier. In contrast to the beamforming

vectors generated by the analog phase shifters, the TTD beamforming vectors at distinct

subcarrier frequencies are different. However, since the physical direction ϕi of fi(τ)

are identical for all subcarriers (i.e., ϕ1 = · · · = ϕS = −2πfcτ ), one cannot generate

frequency-dependent beams with distinct physical directions using only the TTD-based

phase shifters.

5.2.3 Conventional Delay-phased Precoding

To simultaneously generate the multiple training beams heading toward distinct physical

directions, DPP employs both TTDs and analog phase shifters [82, 83]. Let N and

T dpp be the numbers of analog phase shifters and TTDs, then each TTD is connected

to P dpp = N
T dpp analog phase shifters (see Fig. 5.2). The DPP beamforming vector
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f
dpp
i ∈ CN at the i-th subcarrier is

f
dpp
i = f td

i (τ)⊙ f ana
i (θ), i = 1, · · · , S, (5.12)

where f ana
i (θ) ∈ CN is the beamforming vector generated by the analog phase shifters:

f ana
i (θ) = [1, ejθ, · · · , ej(N−1)θ]T. (5.13)

Note that, since the phase generated by the analog phase shifter is invariant to the

frequency, the analog beamforming vectors {f ana
i (θ)}Si=1 of all subcarriers are the same.

f td
i (τ) ∈ CN is the beamforming vector generated by the TTDs:

f td
i (τ) =

[
1, e−j2πfiτ , · · · , e−j(T dpp−1)2πfiτ

]T ⊗ 1P dpp , (5.14)

Noting that f ana
i (θ) = aN (θ, fc) = aN (γiθ, fi) and f td

i (τ) = aT dpp(−2πfcτ, fi) ⊗

1P dpp , one can re-express fdpp
i as

f
dpp
i = f td

i (τ)⊙ f ana
i (θ) (5.15)

(a)
= (aT dpp(−2πfcτ, fi)⊗ 1P dpp)⊙ (aT dpp(Pγiθ, fi)⊗ aP dpp(γiθ, fi)) (5.16)

(b)
= (aT dpp(−2πfcτ, fi)⊙ aT dpp(Pγiθ, fi))⊗ (1P dpp ⊙ aP dpp(γiθ, fi)) (5.17)

(c)
= aT dpp(P dppγiθ − 2πfcτ, fi)⊗ aP dpp(γiθ, fi), (5.18)

where (a), (b), and (c) follow from aN (θ, fi) = aT (Pθ, fi) ⊗ aP (θ, fi), (A ⊗B) ⊙

(C ⊗ D) = (A ⊙ C) ⊗ (B ⊙ D), and aN (ϕ1, fi) ⊙ aN (θ2, fi) = aN (ϕ1 + θ2, fi),

respectively5.

By properly controlling τ and θ, one can generate S DPP beams {fdpp
i }Si=1 heading

toward the desired physical directions. In the following Lemma, we express the physical

direction of DPP beam as a function of θ and τ .

Lemma 6. The physical direction ϕi of the DPP beam fDPP
i is ϕi = γiθ − 2πfcτ

P dpp [82].

5For example, when N = 6, T = 2, and P = 3, then aN (θ, fi) can be re-expressed as a6(θ, fi) =[
1, e

j 1
γi , · · · , ej

5θ
γi

]T
=

[
[1 e

j θ
γi e

j 2θ
γi ]T e

j 3θ
γi [1 e

j θ
γi e

j 2θ
γi ]T

]
=

[
1 e

j 3θ
γi

]T ⊗
[
1 e

j θ
γi e

j 2θ
γi

]T
=

a2(3θ, fi)⊗ a3(θ, fi).
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Due to the partially-connected structure where one TTD is connected to multi-

ple analog phase shifters, DPP cannot generate sharp training beams. To measure

the difference between the DPP beamforming vector fdpp
i and the desired directional

beamforming vector aN (ϕi, fi), one can re-express aN (ϕi, fi) as

aN (ϕi, fi) = aT dpp(P dppϕi, fi)⊗ aP dpp(ϕi, fi) (5.19)

(a)
= aT dpp(P dppγiθ − 2πfcτ, fi)⊗ aP dpp

(
γiθ −

2πfcτ

P dpp , fi

)
, (5.20)

where (a) is from Lemma 1. It is clear from (5.18) and (5.20) that fdpp
i and aN (ϕi, fi)

are not the same due to the difference between aP dpp

(
γiθ− 2πfcτ

P dpp , fi
)

and aP dpp(γiθ, fi).

Since f
dpp
i and aN (ϕi, fi) are different, the transmit signal is not fully concentrated on

the mainlobe, causing a considerable degradation of beamforming gain. To quantify

this behavior, we evaluate the beamforming gain Gdpp
i = | 1N f

dpp,H
i aN (ϕi, fi)|2 of the

DPP beam f
dpp
i at the i-th subcarrier:

G
dpp
i =

∣∣∣ 1
N

f
dpp,H
i aN (ϕi, fi)

∣∣∣2 (5.21)

=
∣∣∣ 1
N

(
aT dpp(P dppγiθ − 2πfcτ, fi)⊗ aP dpp(γiθ, fi)

)H

(
aT dpp(P dppγiθ − 2πfcτ, fi)⊗ aP dpp

(
γiθ −

2πfcτ

P dpp , fi

))∣∣∣2 (5.22)

=
∣∣∣ 1

P dppa
H
P dpp(γiθ, fi)aP dpp

(
γiθ−

2πfcτ

P dpp , fi

)∣∣∣2 (5.23)

=

∣∣∣∣ sin(πfcτ)

P dpp sin πfcτ
P dpp

∣∣∣∣2. (5.24)

One can see that Gdpp
i is a function of P dpp and achieves the maximum value at

P dpp = N
T dpp = 1. To achieve P dpp = 1, the number of TTDs T dpp should be the same

with the number of analog phase shifters N . However, due to the considerable hardware

complexity and implementation cost of TTD, it might not be easy to use such a large

number of TTDs. Thus, in many practical scenarios where T dpp is smaller than N , the

degradation of DPP beamforming gain is unavoidable. Indeed, as shown in Fig. 5.3, the

mainlobe of the DPP beam f
dpp
i is 2 dB lower than that of the desired directional beam

aN (ϕi, fi).
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Figure 5.3: Beamforming gains of DPP beam and directional beam (N = 32, fi =

10GHz, fc = 100GHz, B = 10GHz, S = 16, T dpp = 8, P dpp = 4, θ = −0.25, and

τ = −4.2× 10−10). One can see that the sidelobe leakage of DPP beam is much larger

than that of directional beam.

5.3 Frequency-dependent Beamforming for Wideband Tera-

hertz Systems

Main purpose of the proposed FDB is to simultaneously generate multiple frequency-

dependent beams achieving the maximum beamforming gain. To this end, FDB employs

three signal propagation networks (see Fig. 5.4): 1) analog network generating the initial

beamforming vector, 2) time delay network changing the physical directions of the

beams using the TTD-based phase shifters, and 3) intensifier network suppressing the

sidelobes of the subcarrier beams generated by the time delay network and the analog

network. Among these, the key distinctive block of FDB over DPP is the intensifier

network compensating for the difference between the subcarrier beams and the desired

directional beams. Using the intensifier network to adjust the beam patterns of the

generated beams, FDB can achieve the maximum beamforming gain with much smaller

number of TTDs than those required by DPP.
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Figure 5.4: Overall structure of the proposed FDB scheme.

5.3.1 Overall Operation of Frequency-dependent Beamforming

After passing through three networks, the FDB beamforming vector fi ∈ CN can be

expressed as

fi = f it
i (η)⊙ f td

i (τ)⊙ f ana
i (θ), i = 1, · · · , S, (5.25)

where f ana
i (θ), f td

i (τ), and f it
i (η) ∈ CN are the beamforming vectors generated by the

analog network, time delay network, and intensifier network, respectively. Also, θ is the

phase shift of the analog phase shifters and τ and η are the time delays provided by the

TTDs in the time delay network and intensifier network, respectively. By deliberately

controlling the FDB parameters (θ, τ, η), we can design the beamforming vectors such

that {fi}Si=1 are directed to the desired probing area [ϕmin, ϕmax].

We start by defining the notions used in the FDB beamforming. First, the angular

range of {fi}Si=1 is defined as

Range({fi}Si=1) =
[
ϕ1, ϕS

]
, (5.26)

where ϕi = argmaxθ|fH
i aN (θ, fi)|2 is the physical direction of fi (see (5.7)). Note that

Range({fi}Si=1) is a function of the central direction and the width given by

Center({fi}Si=1) =
1

2
(ϕ1 + ϕS), (5.27)

Width({fi}Si=1) = ϕS − ϕ1. (5.28)
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Figure 5.5: FDB beam generation via analog network, time delay network, and intensi-

fier network.

To enforce Range({fi}Si=1) = [ϕmin, ϕmax], we should set Center({fi}Si=1) =
1
2(ϕmin +

ϕmax) and Width({fi}Si=1) = ϕmax − ϕmin.

The overall operation of FDB is as follows (see Fig. 5.5):

• Analog network: By controlling the phase shift θ in the analog network, the

subcarrier beams {f ana
i (θ)}Si=1 satisfying Width({f ana

i (θ)}Si=1) = ϕmax − ϕmin is

generated.

• Time delay network: By controlling the time delay τ in the time delay net-

work, the central direction of the generated beams {f td
i (τ)⊙ f td

i (τ)}Si=1 is set to

Center({f td
i (τ) ⊙ f td

i (τ)}Si=1) =
1
2(ϕmin + ϕmax) (Note that the width remains

unchanged).

• Intensifier network: By controlling the time delay η in the intensifier network,

we can bridge the gap between the FDB beamforming vectors {f it
i (η)⊙ f td

i (τ)⊙

f ana
i (θ)}Si=1 and the desired directional beamforming vectors {aN (ϕi, fi)}Si=1.
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5.3.2 Frequency-dependent Beam Generation

In this subsection, we explain the detailed operation of the FDB beam generation. As

shown in Fig. 4, the analog network, time delay network, and intensifier network consist

of N analog phase shifters, T TTD-based phase shifters, and P = N
T TTD-based phase

shifters, respectively.

Analog Network

In the analog network, S subcarrier beams {f ana
i (θ)}Si=1 are generated using N analog

phase shifters. The beamforming vector f ana
i (θ) of the analog network at the i-th

subcarrier is

f ana
i (θ) = [1, ejθ, · · · , ej(N−1)θ]T = aN (θ, fc) = aN (γiθ, fi). (5.29)

From the definition of physical direction in (5.7), the physical direction of f ana
i (θ) is

given by ϕi = γiθ so that Width({f ana
i (θ)}Si=1) = (γS − γ1)θ. Thus, by setting θ as

θ =
ϕmax − ϕmin

γS − γ1
, (5.30)

we can enforce Width({f ana
i (θ)}Si=1) = ϕmax − ϕmin. Note that the central direc-

tion of the generated beams {f ana
i (θ)}Si=1 is Center({f ana

i (θ)}Si=1) =
1
2(γ1 + γS)θ =

(γ1+γS)
2(γS−γ1)(ϕmax − ϕmin).

Time Delay Network

In the time delay network, the central direction (γ1+γS)
2(γS−γ1)(ϕmax − ϕmin) of the beams

generated from the analog network is changed to 1
2(ϕmin + ϕmax) using T TTD-based

phase shifters, each of which is connected to P = N
T analog phase shifters in the analog

network. The beamforming vector f td
i (τ) of the time delay network at the i-th subcarrier

is

f td
i (τ) = [1, e−j2πfiτ , · · · , e−j(T−1)2πfiτ ]T ⊗ 1P = aT (−2πfcτ, fi)⊗ 1P . (5.31)
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Using (5.29) and (5.31), the i-th subcarrier beam f td
i (τ) ⊙ f ana

i (θ) generated by the

analog network and time delay network can be expressed as

f td
i (τ)⊙ f ana

i (θ) = (aT (−2πfcτ, fi)⊗ 1P )⊙ aN (γiθ, fi) (5.32)

= (aT (−2πfcτ, fi)⊗ 1P )⊙ (aT (Pγiθ, fi)⊗ aP (γiθ, fi)) (5.33)

= aT (Pγiθ − 2πfcτ, fi)⊗ aP (γiθ, fi). (5.34)

Using Lemma 1 and (5.30), one can see that the physical direction of f td
i (τ)⊙ f ana

i (θ) is

ϕi = γiθ− 2πfcτ
P = γi

γS−γ1 (ϕmax−ϕmin)− 2πfcτ
P . Since Center({f td

i (τ)⊙f ana
i (θ)}Si=1) =

γ1+γS
2(γS−γ1)(ϕmax − ϕmin)− 2πfcτ

P , by setting τ as

τ =
P

2πfc

(
γ1 + γS

2(γS − γ1)
(ϕmax − ϕmin)−

ϕmin + ϕmax

2

)
=
P (γ1ϕmax − γSϕmin)

2πfc(γS − γ1)
,

(5.35)

we can enforce Center({f td
i (τ)⊙f ana

i (θ)}Si=1) =
1
2(ϕmin+ϕmax). Note that the physical

direction ϕi of the generated beam f td
i (τ)⊙ f ana

i (θ) is given by

ϕi = γiθ −
2πfcτ

P
=

(γi − γ1)ϕmax + (γS − γi)ϕmin

γS − γ1
. (5.36)

One can easily see that ϕ1 = ϕmin and ϕS = ϕmax.

In summary, by setting τ and θ as (5.30) and (5.35), respectively, we can set the

angular range of {f td
i (τ)⊙f ana

i (θ)}Si=1 to Range({f td
i (τ)⊙f ana

i (θ)}Si=1) = [ϕmin, ϕmax].

Intensifier Network

Although the angular range of the generated beams is set to the desired probing area

[ϕmin, ϕmax], the generated beams suffer from a severe degradation of beamforming

gain due to the high sidelobe leakage (see (5.21)-(5.24)). Main purpose of the intensifier

network is to concentrate the signal power to the mainlobe by closing the gap between

the FDB beam fi and the desired directional beamforming vector aN (ϕi, fi). Note that

ϕi is the physical direction of fi (see (5.36)).

In essence, the intensifier network consists of P TTDs, each of which is fully-

connected to T = N
P TTDs in the time delay network. The intensifier beamforming
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vector f it
i (η) at the i-th subcarrier is

f it
i (η) = 1T ⊗ [1, e−j2πfiη, · · · , e−j(P−1)2πfiη]T = 1T ⊗ aP (−2πfcη, fi). (5.37)

Substituting (5.34) and (5.37) into (5.25), the FDB beam fi can be re-expressed as

fi = f it
i (η)⊙ (f td

i (τ)⊙ f ana
i (θ)) (5.38)

= (1T ⊗ aP (−2πfcη, fi))⊙ (aT (Pγiθ − 2πfcτ, fi)⊗ aP (γiθ, fi)) (5.39)

= aT (Pγiθ − 2πfcτ, fi)⊗ aP (γiθ − 2πfcη, fi) (5.40)

(a)
= aT (Pϕi, fi)⊗ aP

(
ϕ+

2πfcτ

P
− 2πfcη, fi

)
, (5.41)

where (a) is from (5.36). Also, using the property that aN (θ, fi) = aT (Pθ, fi) ⊗

aP (θ, fi) for every T and P satisfying TP = N , the desired directional beam

aN (ϕi, fi) can be expressed as

aN (ϕi, fi) = aT (Pϕi, fi)⊗ aP (ϕi, fi). (5.42)

From (5.41) and (5.42), one can easily see that η satisfying fi = aN (ϕi, fi) is

η =
τ

P
=
γ1ϕmax − γSϕmin

2πfc(γS − γ1)
. (5.43)

In summary, by setting the FDB parameters (θ, τ, η) as in (5.30), (5.35), and (5.43), one

can generate S FDB beams {fi}Si=1 heading toward the desired probing area [ϕmin, ϕmax].

As shown in Fig. 5.6 and 5.7, FDB beams achieve the maximum beamforming gain:

G
-5-fig4
i =

∣∣∣ 1
N

fH
i aN (ϕi, fi)

∣∣∣2 (5.44)

=
∣∣∣ 1
N

aH
N (ϕi, fi)aN (ϕi, fi)

∣∣∣2 (5.45)

= 1. (5.46)

It is worth mentioning that for every T and P satisfying TP = N , the FDB beams

achieve the maximum beamforming gain. Moreover, since T + P ≥ 2
√
TP = 2

√
N ,

the minimum number of TTDs required to achieve the maximum beamforming gain of

121



0

/6

/3

/2

2 /3

5 /6

0 0.2 0.4 0.6 0.8 1
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Figure 5.7: DPP beam pattern

FDB scheme is Tmin = K + N
K where K is the integer closest to

√
N such that NK is an

integer. For example, when N = 256, K would be 16, meaning that Tmin = K + N
K =

32.

We now briefly explain the computational complexity of the intensifier network in

terms of flops. First, the number of flops required for the computation of η in (5.43)

is 7. Second, the number of flops required for the computation of aP (−2πfcη, fi) is

5P . Third, the number of flops required for the element-wise multiplication with the

beamforming vectors generated by the time delay network and analog network is NS.

Summing up these, the total computational complexity of the intensifier network is

C = NS + 5P + 7.

5.4 Frequency-dependent Beamforming-based Terahertz Beam

Management

As mentioned, the conventional beam management schemes rely on the analog phase

shifters exclusively, so that the BS can search only one direction at a time. In the

FDB-based beam management, we search multiple directions simultaneously using the

frequency-dependent beams. The essence of the proposed scheme is to deliberately

design the FDB parameters, i.e., the phase shift of the analog network θ (see (5.30)),

the time delay of the time delay network τ (see (5.35)), the time delay of the intensifier
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Figure 5.8: Illustration of the proposed FDB-based beam management.

network η (see (5.43)), to direct the FDB beams to the desired probing area. Since the

BS can probe multiple directions, as many as the number of subcarriers in the THz

systems, we can achieve a significant reduction in the beam management latency. Also,

since the sidelobes of the FDB beams are controlled by the intensifier network, the

chance of finding out the optimal beam direction increases significantly.

The proposed scheme consists of two major operational steps (see Fig. 5.8). In

the first step called beam spraying, the BS simultaneously transmits the FDB beams

directed to the whole angular area and then the mobile feeds back the index of the FDB

beam maximizing the RSRP to the BS. In the second step called beam purification,

to find out the precise beam direction, the BS performs the fine-tuning to the narrow

angular area identified in the first step6.
6Note that to narrow down the beam direction, one can perform multiple beam purification processes.
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5.4.1 Beam Spraying Process

In the beam spraying process, to acquire the rough estimate of the physical direction ϕ

of the channel, the BS transmits the FDB beams {f (0)i }Si=1 whose physical directions

are distributed in
[
− π,−π + 2π(S−1)

S

]
. This task is performed by setting the FDB

parameters to

(θ(0), τ (0), η(0)) =

(
2π(S − 1)

S(γS − γ1)
,
P

2fc
+

P (S − 1)γ1
fcS(γS − γ1)

,
1

2fc
+

(S − 1)γ1
fcS(γS − γ1)

)
.

(5.47)

In doing so, the generated FDB beam f
(0)
i at the i-th subcarrier is heading toward the

physical direction ϕ(0)i = −π + 2π(S−1)(γi−γ1)
S(γS−γ1) ∈ [−π, π] (see (5.36)). After the FDB

beam generation, the BS simultaneously transmits the frequency-selective pilot signals

using {f (0)i }Si=1. Then the received signal y(0)i of the mobile at the i-th subcarrier is

y
(0)
i = hH

i f
(0)
i s+ n

(0)
i , i = 1, · · · , S, (5.48)

where s is the pilot symbol and ni is additive Gaussian noise. In the mobile, a subcarrier

index î(0) of the FDB beam f
(0)

î(0)
maximizing the RSRP is fed back to the BS:

î(0) = arg max
i=1,··· ,S

∣∣y(0)i

∣∣2. (5.49)

Since the RSRP is maximized when the FDB beamforming vectors are properly aligned

with the subcarrier channel vectors, the BS can acquire the estimates of the physical

direction ϕ of the channel from the FDB beam index feedback î(0).

Lemma 7. The angular area [ϕ
(1)
min, ϕ

(1)
max] of the physical direction of the channel

ϕ = π sinφ designated by the chosen FDB beam f̂i(0) is given by

[ϕ
(1)
min, ϕ

(1)
max] =

[γî(0)ϕ(0)î(0)−1
+ γî(0)−1ϕ

(0)

î(0)

γî(0)−1 + γî(0)
,
γî(0)+1ϕ

(0)

î(0)
+ γî(0)ϕ

(0)

î(0)+1

γî(0) + γî(0)+1

]
. (5.50)

Proof. See Appendix A.

Due to the large number of subcarriers S in the wideband THz systems (e.g.,

S = 128 ∼ 512), the angular area covered by the FDB beam is much smaller than that
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of the synchronization signal block (SSB) beam in 5G NR. In 5G NR, up to 64 SSB

beams are transmitted so that the angular area covered by each SSB beam is around
360◦

64 ≈ 5.6◦ [89]. In contrast, when S = 256, the angular area covered by each FDB

beam is around 360◦

256 ≈ 1.4◦. After the beam spraying process, the BS transmits the

FDB beams toward the angular range
[γ

î(0)
ϕ
(0)

î(0)−1
+γ

î(0)−1
ϕ
(0)

î(0)

γ
î(0)−1

+γ
î(0)

,
γ
î(0)+1

ϕ
(0)

î(0)
+γ

î(0)
ϕ
(0)

î(0)+1

γ
î(0)

+γ
î(0)+1

]
to narrow down the beam direction.

5.4.2 Beam Purification Process

In the beam purification process, to find out the precise beam direction, the BS transmits

the FDB beams toward the angular area determined by the beam spraying process.

The beam purification process is similar in spirit to the beam spraying process in the

sense that the FDB beams are transmitted to the probing area. The difference is that

the probing area of the beam spraying process is the whole angular area but that of

the beam purification process is the narrow angular area designated by the FDB beam

chosen at the beam spraying process.

The FDB beams {f (1)i }Si=1 directing toward [ϕ(1)min, ϕ
(1)
max] =

[γ
î(0)

ϕ
(0)

î(0)−1
+γ

î(0)−1
ϕ
(0)

î(0)

γ
î(0)−1

+γ
î(0)

,

γ
î(0)+1

ϕ
(0)

î(0)
+γ

î(0)
ϕ
(0)

î(0)+1

γ
î(0)

+γ
î(0)+1

]
are generated by setting the FDB parameters as

(θ(1), τ (1), η(1)) =

(
ϕ
(1)
max − ϕ

(1)
min

γS − γ1
,
P (γ1ϕ

(1)
max − γSϕ

(1)
min)

2πfc(γS − γ1)
,
γ1ϕ

(1)
max − γSϕ

(1)
min

2πfc(γS − γ1)

)
.

(5.51)

Note that each FDB beam f
(1)
i is heading toward the physical direction ϕ

(1)
i =

(γi−γ1)ϕ
(1)
max+(γS−γi)ϕ

(1)
min

γS−γ1 (see (5.36)). Then the received signal y(1)i of the mobile at

the i-th subcarrier is

y
(1)
i = hH

i f
(1)
i s+ n

(1)
i , i = 1, · · · , S. (5.52)

After that, the mobile measures the RSRP and feeds back the subcarrier index î(1) of

the FDB beam f
(1)

î(1)
maximizing the RSRP:

î(1) = arg max
i=1,··· ,S

∣∣y(1)i

∣∣2. (5.53)
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Using the beam index î(1) fed back from the mobile, the BS acquires the physical

channel direction estimate ϕ̂ as

ϕ̂ = ϕ
(1)

î(1)
=

(γî(1) − γ1)ϕ
(1)
max + (γS − γî(1))ϕ

(1)
min

γS − γ1
. (5.54)

Note that to narrow down the beam direction, one needs to perform multiple beam

purification processes.

Once the physical direction of the channel is identified, the BS performs the down-

link transmission (i.e., frequency-dependent data beamforming) to the mobile. The

overall procedures of the FDB-based beam management are summarized in Table 5.1.

5.4.3 Beam Misalignment Probability Analysis

In this subsection, we provide the beam misalignment probability analysis of FDB. By

the beam misalignment probability, we mean the probability that the beam chosen in the

beam spraying process is different from the optimal beam. For simplicity, we analyze

the beam misalignment probability of the beam spraying process but the extension to

the beam purification process is straightforward since the mechanical process is exactly

the same.

Let ϕi be the physical direction of the i-th FDB beamforming vector fi. Then the

optimal beam direction index i∗ is defined as the subcarrier index of the FDB beam fi∗

whose physical direction ϕi∗ is closest to the channel direction ϕ:

i∗ = arg min
i=1,··· ,S

|ϕ− ϕi| (5.55)

where φ is the AoD at the BS. Also, the chosen beam direction index î is defined as the

subcarrier index of the FDB beam maximizing the RSRP:

î = arg max
i=1,··· ,S

|yi|2 (5.56)

= arg max
i=1,··· ,S

|hH
i fi + ni|2 (5.57)

= arg max
i=1,··· ,S

∣∣∣√ραiaH
N

(
fi
fc

2πd sinφ

λc
, fc

)
fi + ni

∣∣∣2. (5.58)
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Table 5.1 Frequency-dependent beamforming based THz beam management
Input: The numbers of BS and mobile antennas N and Nr, the numbers of TTDs in

the time delay network and intensifier network T and P (TP = N ), the central

frequency fc, the subcarrier frequency ratios {γi}Si=1, the number of time slots for

BS beam purification L

Beam spraying process:

1: [ϕ
(0)
min, ϕ

(0)
max] =

[
− π,−π + 2π(S−1)

S

]
2: (θ(0), τ (0), η(0)) =

(
2π(S−1)
S(γS−γ1) ,

P
2fc

+ P (S−1)γ1
fcS(γS−γ1) ,

1
2fc

+ (S−1)γ1
fcS(γS−γ1)

)
3: ϕ

(0)
i = −π + 2π(S−1)(γi−γ1)

S(γS−γ1) , i = 1, · · · , S

4: BS simultaneously transmits the FDB beams {f (0)i }Si=1 toward {ϕ(0)i }Si=1

5: î(0) = argmaxi=1,··· ,S
∣∣y(0)i

∣∣2
6: Mobile feeds back the subcarrier index î(0) to the BS

Beam purification process:

7: for l = 1, · · · , L do

8: [ϕ
(l)
min, ϕ

(l)
max] =

[
γ
î(l−1)ϕ

(l−1)

î(l−1)−1
+γ

î(l−1)−1
ϕ
(l−1)

î(l−1)

γ
î(l−1)−1

+γ
î(l−1)

,
γ
î(l−1)+1

ϕ
(l−1)

î(l−1)
+γ

î(l−1)ϕ
(l−1)

î(l−1)+1

γ
î(l−1)+γî(l−1)+1

]
9: (θ(l), τ (l), η(l)) =

(
ϕ
(l)
max−ϕ

(l)
min

γS−γ1 ,
P (γ1ϕ

(l)
max−γSϕ

(l)
min)

2πfc(γS−γ1) ,
γ1ϕ

(l)
max−γSϕ

(l)
min

2πfc(γS−γ1)

)
10: ϕ

(l)
i =

(γi−γ1)ϕ
(l)
max+(γS−γi)ϕ

(l)
min

γS−γ1 , i = 1, · · · , S

11: BS simultaneously transmits the FDB beams {f (l)i }Si=1 toward {ϕ(l)i }Si=1

12: î(l) = argmaxi=1,··· ,S
∣∣y(l)i ∣∣2

13: Mobile feeds back the subcarrier index î(l) to the BS

14: end for

15: ϕ̂ =
(γ

î(L)−γ1)ϕ
(L)
max+(γS−γî(L) )ϕ

(L)
min

γS−γ1

Output: Physical direction of channel ϕ̂
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Then the beam misalignment probability Pmiss is defined as

Pmiss = Pr(̂i ̸= i∗) (5.59)

= Pr
(
|yi∗ |2 < |yî|

2
)

(5.60)

(a)
=

1

2π

∫ π

−π
Pr
(
|yi∗ |2 < |yî|

2 | φ
)
dφ (5.61)

=
1

2π

∫ π

−π
Pr

( ⋃
î ̸=i∗

{
|yi∗ |2 < |yî|

2
} ∣∣∣∣φ

)
dφ, (5.62)

where (a) is from the fact that φ is uniformly distributed in [−π, π). Using the Boole’s

inequality, Pmiss is bounded by [90]

Pmiss ≤
1

2π

∫ π

−π

S∑
î ̸=i∗

Pr
(
|yi∗ |2 < |yî|

2 | φ
)
dφ. (5.63)

It is worth noticing that yi =
√
ραia

H
N

(
fi
fc

2πd sinφ
λc

, fc

)
fi + ni is a sum of two indepen-

dent complex Gaussian random variables
√
ραia

H
N

(
fi
fc

2πd sinφ
λc

, fc

)
fi ∼

CN
(
0, ρ
∣∣∣aH
N

(
fi
fc

2πd sinφ
λc

, fc

)
fi

∣∣∣2) and ni ∼ CN (0, σ2n). Thus, yi ∼

CN
(
0, ρ
∣∣∣aH
N

(
fi
fc

2πd sinφ
λc

, fc

)
fi

∣∣∣2 + σ2n

)
, which means that |yi|2

ρ
∣∣aH

N

(
fi
fc

2πd sinφ
λc

,fc
)
fi

∣∣2+σ2
n

is a chi-square random variable7 with degrees of freedom 2.

By denoting λi =
|yi|2

ρ
∣∣aH

N

(
fi
fc

2πd sinφ
λc

,fc
)
fi

∣∣2+σ2
n

∼ χ2(2), we obtain the upper bound

7The degree of freedom of |yi|2

ρ

∣∣aH
N

(
fi
fc

2πd sinφ
λc

,fc

)
fi

∣∣2+σ2
n

is 2 since Re{yi} ∼

N
(
0, ρ

∣∣∣aH
N

(
fi
fc

2πd sinφ
λc

, fc
)
fi

∣∣∣2 + σ2
n

)
and Im{yi} ∼ N

(
0, ρ

∣∣∣aH
N

(
fi
fc

2πd sinφ
λc

, fc
)
fi

∣∣∣2 + σ2
n

)
.
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Figure 5.9: Beam misalignment probability vs. SNR (N = 256, T = 16, P = 16, and

S = 128)

of Pmiss as

Pmiss ≤
1

2π

∫ π

−π

S∑
î ̸=i∗

Pr(|yi∗ |2 < |yî|
2 | φ)dφ

=
1

2π

∫ π

−π

S∑
î ̸=i∗

Pr

(
λi∗

λî
<

ρ
∣∣aH
N

( fî
fc

2πd sinφ
λc

, fc
)
f̂i
∣∣2 + σ2n

ρ
∣∣aH
N

(fi∗
fc

2πd sinφ
λc

, fc
)
fi∗
∣∣2 + σ2n

∣∣∣∣φ
)
dφ

(a)
=

1

2π

∫ π

−π

S∑
î ̸=i∗

Fcdf

(
ρ
∣∣aH
N

( fî
fc

2πd sinφ
λc

, fc
)
f̂i
∣∣2 + σ2n

ρ
∣∣aH
N

(fi∗
fc

2πd sinφ
λc

, fc
)
fi∗
∣∣2 + σ2n

)
dφ

(b)
=

1

2π

∫ π

−π

S∑
î ̸=i∗

ρ
∣∣aH
N

( fî
fc

2πd sinφ
λc

, fc
)
f̂i
∣∣2 + σ2n

ρ
∣∣aH
N

( fî
fc

2πd sinφ
λc

, fc
)
f̂i
∣∣2 + ρ

∣∣aH
N

(fi∗
fc

2πd sinφ
λc

, fc
)
fi∗
∣∣2 + 2σ2n

dφ,

(5.64)

where (a) is from the fact that the ratio λi∗/λî of two chi-square random variables λ∗i

and λî is an F-distributed random variable and Fcdf(x) = Pr(X ≤ x) is the cumulative

distribution function (CDF) of F-distributed random variable X . Also, (b) is from

Fcdf(x) =
x
x+1 [91].

In Fig. 5.9, we plot the beam misalignment probability as a function of SNR. We

129



-10 -5 0 5 10 15 20

0

2

4

6

8

10

12

14

Figure 5.10: Average data rate vs. transmit SNR (N = 256, L = 5, T = 16, P = 16,

and S = 128).

observe that the obtained analytic upper bound in (5.64) is close to the simulation result.

We also observe that the beam misalignment probability of FDB is far smaller than

that of the conventional DPP scheme. This is because FDB minimizes the sidelobe

leakage of the subcarrier using the intensifier network so that the ratio of RSRPs of the

misaligned beam and the optimal beams
ρ
∣∣aH

N

( f
î

fc

2πd sinφ
λc

,fc
)
f̂i

∣∣2+σ2
n

ρ
∣∣aH

N

(
fi∗
fc

2πd sinφ
λc

,fc
)
fi∗
∣∣2+σ2

n

is much smaller

than that of the conventional DPP scheme.

5.5 Simulation Results

5.5.1 Simulation Setup

In this section, we investigate the performance of the proposed FDB scheme. In our

simulations, we consider THz MISO-OFDM systems where the BS equipped with

N = 256 antennas serves a single-antenna mobile. The mobile is located randomly

around the BS within the cell radius of r = 100m. We use the wideband THz LoS
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Figure 5.11: NMSE vs. the number of time slots (N = 256, T = 16, P = 16, and

S = 128).

channel model where the carrier frequency is fc = 1THz, the bandwidth is B =

40GHz, and the number of subcarriers is S = 128. The large-scale fading coefficients

are modeled as ρ = PL × 10
σshzsh

10 where PL represents the path loss and 10
σshzsh

10

represents the shadow fading (σsh = 4 dB and zsh ∼ CN (0, 1)). We use the path

loss model in 3GPP Rel. 16 [17]. The small-scale fading coefficients are generated

according to the complex normal distribution (i.e. αi ∼ CN (0, 1)). The number of

time slots used for the beam management is L = 5. We set the transmit SNR to 20 dB.

The numbers of TTDs used in the time delay network and the intensifier network are

set to T = P =
√
N . As performance metrics, we use the average data rate defined

as R = 1
S

∑S
i=1 log2

(
1 +

Pt|hH
i fi|2
σ2
n

)
and the normalized mean square error (NMSE)

defined as NMSE = 10 log10
(
1
S

∑S
i=1

(ϕi−ϕ̂i
ϕi

)2). In each point of the plots, we test at

least 100, 000 randomly generated wideband THz systems.

For comparison, we use four benchmark schemes: 1) ideal system with the perfect

channel information, 2) DPP-based beam management scheme [82], 3) hierarchical
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Figure 5.12: Average data rate vs. the number of time slots (N = 256, T = 16, P = 16,

and S = 128).

beam management scheme generating the hierarchical beam codebook [76], and 4)

5G NR beam management scheme based on the beam sweeping process [74]. Note, to

make a fair comparison between the DPP and FDB, the number of TTDs used for the

DPP beam generation is set to be the same as the total number of TTDs used for the

FDB beam generation (T dpp = T + P ).

5.5.2 Simulation Results

In Fig. 5.10, we plot the average data rate as a function of the transmit SNR. We

observe that FDB outperforms the conventional beam management schemes by a large

margin. For example, when SNR = 10 dB, FDB achieves a significant rate gain (more

than 390% data rate improvement) over the hierarchical beam management scheme.

As mentioned, a phase shift of the conventional schemes relying on the analog phase

shifters is invariant to the frequency so the beams for all subcarriers are all the same.

However, the optimal beamforming vector maximizing the data rate is different for
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Figure 5.13: Average data rate vs. the number of antennas (L = 5, T = P =
√
N , and

S = 128).

each subcarrier due to the beam squint effect. This mismatch between the optimal

frequency-dependent beamforming vectors and the frequency-invariant beamforming

vectors generated by the analog phase shifters causes a significant data rate loss in the

conventional schemes. Whereas, in the proposed scheme, multiple frequency-dependent

beams are generated using the TTD-based phase shifters so that the data rate loss caused

by the beam squint effect can be effectively mitigated.

In Fig. 5.11, we set the transmit SNR to 20 dB and plot the NMSE as a function of

the number of time slots L. We observe that FDB achieves significant NMSE gains over

the conventional schemes. For example, when L = 5, FDB achieves more than 31.1 dB

and 38.6 dB NMSE gains over the hierarchical beam management technique and the

5G NR beam management scheme. This is not quite a surprise since the conventional

schemes search one direction at a time but FDB simultaneously searches S = 128

directions. Interestingly, as shown in Fig. 5.11, FDB can identify pretty accurate beam

direction even in a single time slot. Even when compared to DPP, the NMSE gain
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Figure 5.14: Average data rate vs. the number of subcarriers (N = 256, L = 5, T = 16,

and P = 16).

of the FDB is more than 18 dB since the high sidelobe leakage of DPP will cause a

degradation of the beam alignment performance but such is not the case for FDB due to

the effective suppression of the sidelobe leakage at the intensifier network.

In Fig. 5.12, we plot the average data rate as a function of the number of time slots

L. We observe that the proposed scheme achieves more than 70% reduction in the beam

management latency over the conventional approaches. For instance, to achieve the

average data rate of 13 bps/Hz, FDB requires only L = 5 time slots but DPP requires

around L = 17 time slots. Since FDB can generate very sharp beams achieving the

maximum beamforming gain, we also observe that when L ≥ 5, FDB performs similar

to the ideal system with the perfect CSI.

In Fig. 5.13, we plot the average data rate as a function of the number of transmit an-

tennas N . Interestingly, we observe that the data rate gain of FDB over the conventional

schemes increases with the number of antennas. For example, when N = 100, FDB

shows around 0.9 bps/Hz data rate gain over DPP but it increases up to 6 bps/Hz when
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Figure 5.15: Average data rate vs. transmit SNR in the multipath scenario (N = 256,

L = 5, T = 16, P = 16, S = 128, Npath = 3, and κ = 100).

N = 400. This is because when the number of antennas increases, the number of analog

phase shifters connected to TTD also increases so that the loss of the beamforming gain

caused by the mismatch between the DPP beam and the directional beam also increases

(see (5.21)-(5.24)). In contrast, the beamwidth of FDB beams is inversely proportional

to the number of antennas so the beam direction accuracy increases with the number

of antennas. This implies that FDB would be more effective in the THz ultra-massive

MIMO systems where the number of antennas is extremely large.

In Fig. 5.14, we set the number of time slots to L = 2 and plot the average data

rate as a function of the number of subcarriers S. We observe that the performance

gain of FDB increases with the number of subcarriers. Specifically, when the number

of subcarriers increases from S = 16 to S = 240, the data rate gain of FDB over

the conventional DPP-based scheme increases from 7.1 bps/Hz to 9.5 bps/Hz. This is

because FDB hierarchically finds out the beam direction so that the beam direction

accuracy increases exponentially with the number of subcarrier beams. Whereas, DPP
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Figure 5.16: Beamforming gains of FDB and DPP vs. total number of TTDs (N = 120).

uniformly splits the probing area and then sequentially searches the divided areas so that

the beam direction accuracy increases linearly with the number of subcarrier beams.

In Fig. 5.15, we plot the average data rate as a function of the transmit SNR in the

multipath scenario where the number of propagation paths is Npath = 3. In this figure,

we set the Rician K-factor8 as κ = 100. We observe the proposed FDB scheme works

well even in the multipath scenarios. For example, when SNR = 20 dB, FDB achieves

more than 40% data rate improvement over DPP.

In Fig. 15, we set N = 120 and plot the beamforming gains G-5-fig4
i and Gdpp

i as

functions of the total number of TTDs T + P for various (T, P ) satisfying TP = N .

To make a fair comparison between FDB and DPP, we use the same number of TTDs at

FDB and DPP (i.e., T -5-fig4 = T dpp = T + P ). We observe that FDB outperforms DPP

for every point under test. This is because FDB can achieve the maximum beamforming

gain whenever (T, P ) satisfies TP = N but DPP can achieve the same performance

8The Rician K-factor denotes the ratio of the power of LoS path over the sum of powers of non-line-of-

sight (NLoS) paths. In our work, we set κ = 100 so that the power of Los path is 20 dB larger than the

sum of powers of all NLoS paths [2]
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only when T dpp = N .

5.6 Summary

In this chapter, we proposed a THz beam management scheme that simultaneously

generates multiple frequency-dependent beams using the TTD-based phase shifters. By

employing the generated FDB beams as the training beams, the proposed technique

can search multiple directions simultaneously, thereby reducing the beam management

latency. Intriguing feature of the proposed FDB is to exploit a deliberately designed

TTD-based signal propagation network called intensifier to bridge the gap between

the desired beamforming vectors and the frequency-dependent beamforming vectors.

In doing so, RSRP of the beam aligned with the channel propagation path gets larger

while those of the misaligned beams get smaller, resulting in a significant improvement

of the beam direction accuracy. From the beam misalignment probability analysis and

the numerical evaluations on 6G THz environment, we demonstrated that FDB is very

effective in improving the beam direction accuracy and also reducing the beam man-

agement latency. In our work, we restricted our attention to THz communications, but

there are many interesting applications of FDB including vehicle-to-everything (V2X)

communications and reconfigurable intelligent surface (RIS)-assisted communications.

5.7 Proofs

5.7.1 Proof of Lemma 2

Using the fact that ϕî(0) is closest to ϕ, we obtain

fî(0)(ϕ− ϕî(0)) ≤ fî(0)+1(ϕî(0)+1 − ϕ). (5.65)

Thus, the upper bound of ϕ is

ϕ ≤
fî(0)ϕî(0) + fî(0)+1ϕî(0)+1

fî(0) + fî(0)+1

(a)
=
γî(0)+1ϕî(0) + γî(0)ϕî(0)+1

γî(0) + γî(0)+1

, (5.66)
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where (a) is from γi =
fc
fi

. Similarly, the lower bound of ϕ is

ϕ ≥
γî(0)−1ϕî(0) + γî(0)ϕî(0)−1

γî(0) + γî(0)−1

. (5.67)

Combining (5.66) and (5.67), we have

γî(0)−1ϕî(0) + γî(0)ϕî(0)−1

γî(0) + γî(0)−1

≤ ϕ ≤
γî(0)+1ϕî(0) + γî(0)ϕî(0)+1

γî(0) + γî(0)+1

. (5.68)
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Chapter 6

Conclusion

In this dissertation, THz channel acquisition schemes for 6G have been extensively

studied. Specifically, we have made the following contributions.

• In Chapter 2, we proposed a novel feedback reduction technique for FDD-based

cell-free systems. The key feature of the proposed scheme is to choose a few

dominating paths among all possible propagation paths and then feed back the

PGI of the chosen paths. Key observations in our work are that 1) the spatial

domain channel is represented by a small number of multi-path components

(AoDs and path gains) and 2) the AoDs are quite similar in the uplink and

downlink channel owing to the angle reciprocity so that the BSs can acquire

AoD information directly from the uplink pilot signal. Thus, by choosing a few

dominating paths and only feed back the path gain of the chosen paths, we can

achieve a significant reduction in the feedback overhead. We observed from the

extensive simulations that the proposed scheme can achieve more than 60% of

feedback overhead reduction over the conventional schemes relying on the CSI

feedback.

• In Chapter 3, we proposed an efficient channel estimation framework to reduce

the pilot overhead of RIS-aided mmWave systems. Key idea of the proposed
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TAD-CE scheme is to decompose the RIS reflected channel into three major

components, i.e., static BS-RIS angles, quasi-static RIS-UE angles, and time-

varying BS-RIS-UE path gains, and then estimate these components in different

time scales. In doing so, the number of channel parameters to be estimated at

each stage can be reduced significantly, resulting in a reduction of pilot overhead.

Also, by optimizing the RIS phase shifts using the channel components with

relatively long coherence time, we could further improve the channel estimation

accuracy without requiring additional pilot resources. We demonstrated from the

channel estimation error and pilot overhead analyses and numerical evaluations

that the proposed TAD-CE scheme is effective in saving the pilot resources. In

our work, we assumed the ideal phase shift model where the reflection amplitude

and the phase shifts are independent, but an extension to the realistic scenarios

where the reflection is imperfect and is affected by the RIS phase shifts would be

an interesting future work worth pursuing.

• In Chapter 4, we proposed a DL-based channel acquisition technique for the

THz UM-MIMO systems. In recent years, a remarkable success of DL in various

disciplines (e.g., image classification, speech recognition, and language trans-

lation) has stimulated increasing interest in applying this paradigm to wireless

communication systems. Intriguing feature of the proposed T-PCA is to promote

the nonuniform and irregular correlation structures of the received pilot signals

using Transformer, a DL architecture that differently weights each input data

based on the correlations between the input data. By exploiting the attention

mechanism of Transformer, T-PCA can facilitate the extraction of spatially and

temporally-correlated features inherent in the THz UM-MIMO systems. In doing

so, fast yet accurate channel parameter estimation can be made with small pilot

overhead. From the simulation results, we demonstrated that T-PCA achieves

more than 2.5 dB NMSE gain and 33% pilot overhead reduction over the conven-

tional channel acquisition techniques. In our work, we restricted our attention to
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channel estimation, but there are many interesting applications of T-PCA such as

channel feedback, beam tracking, and resource allocation.

• In Chapter 5, we proposed a THz beam management scheme that simultane-

ously generates multiple frequency-dependent beams using the TTD-based phase

shifters. By employing the generated FDB beams as the training beams, the

proposed technique can search multiple directions simultaneously, thereby re-

ducing the beam management latency. Intriguing feature of the proposed FDB

is to exploit a deliberately designed TTD-based signal propagation network

called intensifier to bridge the gap between the desired beamforming vectors

and the frequency-dependent beamforming vectors. In doing so, RSRP of the

beam aligned with the channel propagation path gets larger while those of the

misaligned beams get smaller, resulting in a significant improvement of the

beam direction accuracy. From the beam misalignment probability analysis and

the numerical evaluations on 6G THz environment, we demonstrated that FDB

is very effective in improving the beam direction accuracy and also reducing

the beam management latency. In our work, we restricted our attention to THz

communications, but there are many interesting applications of FDB includ-

ing vehicle-to-everything (V2X) communications and reconfigurable intelligent

surface (RIS)-assisted communications.
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초록

최근 테라헤르츠 통신은 스펙트럼 병목 현상을 완화하고 6G 무선 통신을 위한

높은데이터속도를지원하기위해많은관심을받고있다.테라헤르츠주파수대역

의풍부한스펙트럼자원을이용하여 THz통신은디지털트윈, XR장치가실현하는

메타버스,고충실도모바일홀로그래픽디스플레이와같은몰입형모바일서비스를

지원할수있다.테라헤르츠통신의잘알려진단점은높은회절및침투손실과대기

흡수로인한신호전력의심각한감쇠이다.이문제를해결하기위해대규모다중입

출력시스템으로실현된빔포밍기법이널리사용되었다.빔형성이득은빔이신호

전파 경로와 적절하게 정렬되어야만 최대화되므로, 기지국은 정확한 채널 정보를

획득해야한다.

논문의 첫 번째 부분에서, 우리는 주파수 분할 이중화 기반 셀 프리 밀리미터

및테라헤르츠시스템에대한채널피드백기술을연구한다.기지국그룹이사용자

에게 협력적으로 서비스를 제공하는 셀 프리 시스템은 미래 무선 시스템의 유망한

기술로 많은 관심을 받아왔다. 셀 프리 시스템에서 협력 이득을 극대화하려면 BS

에서다운링크채널상태정보를획득하는것이중요하다.이작업은채널상호성으

로인해시간분할이중화시스템에서는비교적쉬운반면,채널피드백오버헤드로

인해주파수분할이중화시스템에서는쉽지않다.사용자가여러기지국의채널정

보를피드백해야하기때문에이문제는셀이없는시스템에서훨씬더두드러진다.

본연구에서는주파수분할이중화기반셀프리시스템에대한새로운피드백감소

기술을제안한다.제안된기술의주요특징은몇가지지배적인경로를선택한다음

선택한경로의경로이득정보를피드백하는것이다.출발각도가업링크및다운링

크채널에서상당히유사하다는특성(이특성을각도상호성이라고함)을이용하여
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BS는업링크파일럿신호로부터직접출발각도를얻는다.

논문의 두 번째 부분에서, 우리는 재구성 가능한 지능형 반사평면 기반 테라헤

르츠츠 시스템을 위한 채널 추정 기술을 연구한다. 최근, 입사 신호의 반사 특성을

제어하는지능형반사평면이큰주목을받고있다.지능형반사평면지원시스템을

최대한 활용하려면 기지국에서 채널 정보를 획득하는 것이 중요하다. 그러나 많은

반사 요소에 의해 유도되는 파일럿 오버헤드 때문에 이 작업은 결코 쉽지 않다. 본

연구에서는 지능형 반사평면 기반 밀리미터 시스템의 파일럿 오버헤드를 줄이는

효율적인 채널 추정 및 위상 편이 제어 기술을 제안한다. 제안된 체계의 핵심 아이

디어는지능형반사평먼의반사채널을정적기지국-지능형반사평면각도,준정적

지능형반사평면-단말각도및시간변동기지국-지능형반사평면-단말경로이득의

세 가지 주요 구성 요소로 분해한 다음 다른 시간 척도로 추정하는 것이다. 제안된

체계는기지국-지능형반사평면및지능형반사평면-단말각도를가끔추정하고경

로이득만자주추정함으로써파일럿오버헤드를크게감소시킨다.또한,비교적긴

일관성 시간을 가진 채널 구성 요소를 사용하여 위상 이동을 최적화함으로써 채널

추정정확도를향상시킬수있다.

논문의세번째부분에서는시분할이중화기반테라헤르츠초거대다중입출력

시스템에대한채널추정기법을연구한다.초거대다중입출력시스템은 6G통신시

스템에서계속증가하는데이터속도를지원하는핵심기술로구상된다.테라헤르츠

초거대다중입출력시스템을최대한활용하려면정확한채널정보를획득하는것이

중요하다. 그러나 안테나 수에 따라 선형으로 확장되는 막대한 파일럿 오버헤드로

인해테라헤르츠채널획득은쉽지않다.본연구에서는테라헤르츠초거대다중입

출력시스템을위한새로운딥러닝기반채널획득기술을제안한다.트랜스포머를

사용하여수신된파일럿신호와희소채널매개변수(예:각도,거리,경로이득)사이

의복잡한매핑기능을학습함으로써,제안된체계는상대적으로적은양의파일럿

리소스로 빠르지만 정확한 채널 추정을 할 수 있다. 또한 트랜스포머의 주의 메커

니즘을 사용하여 기능 추출에서 수신된 파일럿 신호의 상관 구조를 촉진하여 채널

매개변수추정품질을크게향상시킬수있다.

논문의네번째부분에서,우리는광대역테라헤르츠시스템을위한빔관리기
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술을연구한다.테라헤르츠통신의주요어려움중하나는높은회절및침투손실과

대기 흡수로 인한 신호 전력의 심각한 감쇠이다. 심각한 경로 손실을 보상하기 위

해 초거대 다중입출력 시스템에 의해 실현된 빔 포밍 기술이 널리 사용되었다. 빔

형성 이득은 빔이 신호 전파 경로와 적절하게 정렬되어야만 최대화되므로, 정확한

빔방향의획득이매우중요하다.기존빔관리체계의주요문제는훈련빔의수에

비례하는 상당한 지연 시간이다. 본 논문에서는 실시간 지연기 기반 위상 시프트

를 사용하여 여러 주파수 의존 빔을 동시에 생성하는 테라헤르츠 빔 관리 기법을

제안한다. 인텐시파이어라는 실시간 지연기 기반 신호 전파 네트워크를 사용하여

주파수 의존적 빔포밍 벡터와 원하는 방향 빔포밍 벡터 사이의 간격을 좁힘으로써

빔포밍이득을극대화하는매우날카로운훈련빔을생성한다.

주요어: 6G,무선통신,테라헤르츠,채널추정,채널피드백,빔관리

학번: 2016-25925
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