

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Client-Aided Deep Neural Network on
Fully Homomorphic Encryption without

Bootstrapping and Attack Algorithm for a
Keystore-based Key Generation

클라이언트를이용하여부트스트래핑을제거한
완전동형암호상의딥뉴럴네트워크와키스토어기반

키생성방식공격알고리즘

BY

CHAE SEUNGJAE

AUGUST 2023

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Client-Aided Deep Neural Network on
Fully Homomorphic Encryption without

Bootstrapping and Attack Algorithm for a
Keystore-based Key Generation

클라이언트를이용하여부트스트래핑을제거한
완전동형암호상의딥뉴럴네트워크와키스토어기반

키생성방식공격알고리즘

BY

CHAE SEUNGJAE

AUGUST 2023

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Client-Aided Deep Neural Network on
Fully Homomorphic Encryption without

Bootstrapping and Attack Algorithm for a
Keystore-based Key Generation

클라이언트를이용하여부트스트래핑을제거한
완전동형암호상의딥뉴럴네트워크와키스토어기반

키생성방식공격알고리즘

지도교수노종선

이논문을공학박사학위논문으로제출함

2023년 8월

서울대학교대학원

전기정보공학부

채승재

채승재의공학박사학위논문을인준함

2023년 8월

위 원 장:
부위원장:
위 원:
위 원:
위 원:

Abstract

In this dissertation, two main contributions are given as: i) Client-aided deep neural

network on fully homomorphic encryption(FHE) without bootstrapping using commu-

nication cost in the client-server model. ii) attack algorithm for a keystore-based secure

key generation and management

First, client-aided privacy-preserving machine learning on fully homomorphic en-

cryption without bootstrapping is proposed. Bootstrapping which is the heaviest com-

putation in homomorphic encryption consumes almost 70% of the total computation

in homomorphic encryption. In order to avoid this problem, multi-party computa-

tion(MPC) based privacy-preserving machine learning(PPML) was introduced. How-

ever, this method cannot use pre-trained parameters due to the hardness to use exact

Rectified Linear Unit (ReLU) in PPML. Recently, using minimax approximate poly-

nomials for sign functions for HE-PPML[2, 3, 4], MPC-PPML without bootstrapping

can be implemented with communication cost in the client-server model. Since HE-

friendly networks do not use non-arithmetic functions like ReLU or max pooling, their

inferences are light and fast. However, low classification accuracy and training the data

are very difficult, and thus using pre-trained parameters is a very significant issue in

the PPML. Thus I propose a method that improves DELPHI [7] algorithm to inference

with pre-trained parameters on homomorphic encryption. In terms of the computation

time and communication cost the proposed method has better performance compared

to DELPHI, the previous work of MPC-based inference schemes.

Second, a new attack algorithm is proposed for a secure key generation and man-

agement method introduced by Yang and Wu. It was previously claimed that the

key generation method of Yang and Wu[46] using a keystore seed was information-

theoretically secure and could solve the long-term key storage problem in cloud sys-

tems, thanks to the huge number of secure keys that the keystore seed can generate.

i

Their key generation method, however, is considered to be broken if an attacker can

recover the keystore seed. In this dissertation, I propose an attack algorithm to recon-

struct the keystore seed of the Yang–Wu key generation method from a small number

of collected keys. For example, when t = 5 and l = 27, it was previously claimed

that more than 253 secure keys could be generated, but the proposed attack algorithm

can reconstruct the keystore seed based on only 84 collected keys. Hence it turns out

that the Yang–Wu key generation method is not information-theoretically secure when

the attacker can gather multiple keys and a critical amount of information about the

keystore seed is leaked.

keywords: Fully homomorphic encryption (FHE), multi-party computation (MPC),

privacy-preserving machine learning(PPML), Cheon-Kim-Kim-Song(CKKS) scheme,

cryptography, ciphertext refresh, deep neural network, bootstrapping, information-

theoretically secure, key generation, key management, keystore seed, data privacy

student number: 2017-22828

ii

Contents

Abstract i

Contents iii

List of Tables v

List of Figures vi

1 INTRODUCTION 1

1.1 Background . 1

1.2 Overview of Dissertation . 2

2 Preliminaries 4

2.1 Privacy-Preserving Machine Learning 4

2.1.1 Fully Homomorphic Encryption 4

2.1.2 Multi-Party Computation . 10

2.1.3 Recent Research of Privacy-Preserving Machine Learning . . 13

2.2 Key Generation and Management Based on Keystore Seed 20

2.2.1 Key Generation . 20

2.2.2 Key Management . 21

2.2.3 Information-Theoretically ϵ-Secure Keystore 21

iii

3 Client-Aided Deep Neural Network on Fully Homomorphic Encryption

without Bootstrapping in the Client-Server Model 24

3.1 Introduction . 24

3.2 Cryptographic Inference on Deep Neural Networks 26

3.2.1 Inference of Deep Convolutional Neural Networks on Fully

Homomorphic Encryption 26

3.2.2 Inference on Multi-Party Computation of Deep Convolutional

Neural Networks . 28

3.3 Client-Aided Inference Using Communication Cost 32

3.3.1 Replacing Bootstrapping Using Communication Cost 32

3.3.2 Level Consumption of Proposed Method 39

3.4 Simulation Results . 44

3.4.1 Classification Runtime and Communication Cost 44

3.4.2 Accuracy . 46

3.4.3 Compare to Previous Works 46

3.4.4 Classification Using Library LATTIGO 47

3.5 Future Works . 50

4 Attack Algorithm for a Keystore-Based Secret Key Generation Method 52

4.1 Introduction . 52

4.2 Problems of Generating and Management Using Exclusive-OR Keys . 53

4.3 Linear Attack on Key Generation and Management 55

4.3.1 Linear Attack Algorithm . 55

4.3.2 Successful Linear Attack Probability 58

4.4 Information Theoretic Weakness of Modified Yang-Wu’s Schemes with

Hashed Keys . 62

5 Conclusions 65

Abstract (In Korean) 74

iv

List of Tables

2.1 Fully homomorphic encryption schemes 7

2.2 Comparison between several cases of PPML 17

2.3 Operations and complexity in CNN with HE 18

2.4 The number of generated keys . 21

3.1 Classification runtime for one image using ResNet on RNS-CKKS . . 44

3.2 Communication cost for one image inference in ResNet 45

3.3 Classification runtime for multiple images using ResNet on RNS-CKKS 45

3.4 Classification accuracy of CIFAR-10 and CIFAR-100 images using

ResNet model with RNS-CKKS . 46

3.5 Comparison to previous work for one CIFAR-100 image inference . . 47

3.6 Inference using LATTIGO library 48

3.7 Classification runtime for one image using LATTIGO library 48

3.8 Classification runtime for multiple images using LATTIGO library . . 49

4.1 Frequency used for one key in special case 55

4.2 Successful attack probability of the proposed attack algorithm 59

v

List of Figures

2.1 Fully homomorphic encryption. 6

2.2 CKKS algorithm. 8

2.3 CKKS bootstrapping. 9

2.4 Multi-party computation. 11

2.5 Privacy-preserving machine learning. 15

2.6 Application of Privacy-preserving machine learning. 16

2.7 Secretly shared keystore seed. 20

3.1 Multiplexed parallel convolution. 27

3.2 Imaginary removing bootstrapping. 28

3.3 Structure of the proposed ResNet on the RNS-CKKS scheme. 29

3.4 DELPHI simulation results. 32

3.5 Bootstrapping replacement by the client in the PPML on FHE. 36

3.6 Previous method level consumption. 42

3.7 Proposed method level consumption. 43

4.1 Matrix operation to find keystore seed. 56

4.2 Successful attack probability of the proposed attack algorithm when:

L = 212, l = 27. 60

4.3 Successful attack probability of the proposed attack algorithm when:

L = 214, l = 28. 61

vi

4.4 Key generation by subkeys. 64

vii

Chapter 1

INTRODUCTION

1.1 Background

When performing a certain operation, lots of researches have been conducted only

theoretically on technology for performing an operation while keeping a user’s input

secretly. This is because previous encryption technologies placed more importance on

corporate security than personal information protection. However, due to the recent de-

velopment of studies, users have begun to pay attention to their personal data privacy

and research related to anonymization such as homomorphic encryption and multi-

party computations are receiving a lot of attention. Machine learning has been estab-

lished as the core of recent research, and is being used widely in lots of applications.

As personal data privacy becomes more important, the need to preserving privacy in

machine learning is emphasized. Privacy-preserving machine learning(PPML), is one

of the hottest topics in security and cryptography and is being studied rapidly in recent

years.

Data storage and transmission have been frequently used in recent public cloud

systems. It is important to use secure keys in the cloud system, because users using

a password can be vulnerable to dictionary attacks [43]. It is well known that se-

cure keys reveal less user information than the password method. Thus, secure keys

1

have been used in various fields such as file encryption, access to virtual private net-

works, and user authentication [44]. However, conventional key generation methods

have many problems in terms of long-term file management, where each file should

be independently encrypted with random secure keys since it has the characteristics

of long-term file storage and frequent user access. Otherwise, cloud systems are not

secure for ciphertext-only attack or chosen-plaintext attack [45]. To make one-key-for-

one-file secure encryption for long-term data protection, a new secure key generation

method using the keystore seed was proposed in [46] claiming that their method could

make many information-theoretically ϵ-secure keys. In this dissertation, I propose a

new method to break their key generation in [46] by reconstructing the keystore seed

using a small number of collected keys.

1.2 Overview of Dissertation

This dissertation is organized as follows. In Chapter 2, the preliminaries of fully ho-

momorphic encryption(FHE), multi-party computation(MPC), privacy-preserving ma-

chine learning, and secure key generation method using keystore seed are introduced.

Section 2.1 presents basic descriptions of privacy-preserving machine learning. In Sec-

tion 2.2, key generation and management based on keystore seed are illustrated and

their information-theoretically secureness is discussed.

In Chapter 3, a new construction method for bootstrapping replacement using com-

munication cost in the client-server model is proposed. Section 3.1 introduces the basic

concepts of privacy-preserving machine learning. In Section 3.2, previous works us-

ing fully homomorphic encryption and multi-party computation of deep convolutional

neural networks are given. A new construction method of client-aided deep neural

network on fully homomorphic encryption without bootstrapping in the client-server

model using communication cost is introduced in Section 3.3. In Section 3.4, all sim-

ulation results reducing communication cost and inference time without bootstrapping

2

are given and compared to the previous schemes.

In Chapter 4, an attack algorithm for a keystore-based secret key generation method

is proposed. Section 4.1 introduces the basic concepts of key generation and manage-

ment using keystore seed. Problems of generating and management using exclusive or

keys are introduced in Section 4.2. In Section 4.3, a brief formulation of a linear attack

on key generation and management using keystore seed is given. However, modified

with hashed keys still have information-theoretic weaknesses and that is given in Sec-

tion 4.4.

3

Chapter 2

Preliminaries

2.1 Privacy-Preserving Machine Learning

2.1.1 Fully Homomorphic Encryption

Fully homomorphic encryption is an advanced encryption technology that empowers

arithmetic processing, such as search and statistical operations, to be performed on

encrypted data without requiring decryption. This remarkable capability has sparked

significant research interest, particularly as a solution to prevent information leakage

in the context of cloud computing, which has gained widespread usage in recent times.

The fundamental idea behind FHE is to enable users to encrypt their data and transmit

it to a server, where computations can be carried out on the encrypted data. The server

then sends the processing results back to the user, who subsequently decrypts the re-

turned ciphertext to retrieve the final outcome. Notably, FHE allows the execution

of various operations, such as addition and multiplication, on the ciphertext without

compromising the confidentiality of the underlying information. This property of sup-

porting a broad range of operations makes it ”fully” homomorphic encryption. A brief

description of fully homomorphic encryption can be found in Figure 2.1.

However, a notable challenge in FHE is the accumulation of errors during the

course of operations. As computations progress, the size of the error tends to increase,

4

which can impact the accuracy and reliability of the final results. In scenarios where

only one of the two operations (addition or multiplication) is feasible, or the number

of operations that can be performed is limited, the encryption scheme is referred to as

”Somewhat Homomorphic Encryption” (SHE). SHE provides a more restricted form

of homomorphic computation compared to FHE, but it still offers valuable privacy-

preserving capabilities in scenarios where fully homomorphic encryption may not be

necessary or feasible.

In 2009, Gentry developed the concept of bootstrapping and showed the possibility

of fully homomorphic encryption that can continue to perform operations.[11] Repre-

sentative fully homomorphic encryption schemes are the fast Fully Homomorphic En-

cryption over the Torus(TFHE) algorithm [15] and the Cheon-Kim-Kim-Song(CKKS)

algorithm [13].

When comparing the advantages and disadvantages of the two algorithms, CKKS

and TFHE, it becomes evident that each algorithm has its unique strengths and weak-

nesses. CKKS is particularly notable for its ability to support operations on both real

and complex data, making it highly versatile in practical applications. Additionally,

CKKS offers a high level of utility, enabling various computations to be performed on

encrypted data. On the other hand, TFHE exhibits its advantages in terms of acceler-

ating bootstrapping operations, making it well-suited for non-linear functions and bit

operations. Table 2.1 shows the comparison between fully homomorphic encryption

schemes.

5

Figure 2.1: Fully homomorphic encryption.

6

Table 2.1: Fully homomorphic encryption schemes

CKKS BGV,BFV TFHE

Data Real and complex Finite integer ring Binary

Operation Arithmetic circuit Arithmetic circuit Boolean circuit

Decryption Not exact Exact Exact

Packing Yes Yes No

Rescaling Yes No Yes

However, alongside their advantages, both algorithms also present certain limita-

tions. The CKKS algorithm introduces an error that ensures the security of the data,

treating it as an approximation error during computations. While this error is essential

for maintaining the confidentiality of the encrypted data, it can result in a drawback

when executing successive operations because the bootstrapping process is required,

which is time-consuming.

In the case of TFHE, one disadvantage lies in its limited support for SIMD prop-

erties compared to other homomorphic encryption algorithms. Furthermore, TFHE re-

quires bootstrapping for each gate, resulting in a constraint that only one-bit operation

can be performed at a time. This characteristic poses a challenge in scenarios where

multiple concurrent operations are necessary.

It is worth noting that CKKS is currently garnering significant attention among

fully homomorphic encryption schemes because it is based on a lattice-based hard

problem, CKKS is designed to withstand potential attacks from quantum computing

adversaries. In terms of security, the noise introduced in CKKS can be understood as

an approximate encryption scheme, with the decryption process aiming to recover the

original message while accounting for this noise.

Then, I explain the CKKS algorithm in detail. First, the CKKS encryption process

is given as :

7

• Let Rq = Zq[X]/(XN + 1)

• A ring-LWE sample (b, a) ∈ R2
Q is a public key such that a is uniformly sampled

and b+ a · s = e for small e

• Ciphertext ct = (b′, a′) = v · (b, a)+(m+e0, e1) ∈ R2
Q v, e1, e2 are a Gaussian

random polynomials

Next, rescaling performed after multiplications to scale a real number data is ex-

plained as follows :

• Multiplying two real numbers m1,m2, the scaling factor is required to be dev-

ided by ∆ .

• (∆ ·m1) · (∆ ·m1) = ∆2 ·m1 ·m2 => ∆ ·m1 ·m2

All of the above processes are summarized in the Figure 2.2.

Figure 2.2: CKKS algorithm.

There are four representative homomorphic operations as below.

8

• Addition : Enc(x0, x1, . . . , xn) ⊕ Enc(yo, y1, . . . , yn) = Enc(x0 + yo, x1 +

y1, . . . , xn + yn)

• Scalar multiplication : (x0, x1, . . . , xn)·Enc(yo, y1, . . . , yn) = Enc(x0 ·yo, x1 ·

y1, . . . , xn · yn)

• Multiplication : Enc(x0, x1, . . . , xn) ·Enc(yo, y1, . . . , yn) = Enc(x0 · yo, x1 ·

y1, . . . , xn · yn)

• Rotation(by k) : Enc(x0, x1, . . . , xn)− > Enc(xk, . . . , xn, x0 . . . , xk−1)

For CKKS scheme, several definitions are needed as follows :

• Ciphertext level: possible number of multiplications

• Depth: maximum number of consecutive multiplications

• Ciphertext modulus: the capacity of multiplicative depth

As operations on the ciphertext has proceeded, the ciphertext modulus becomes

small and the modulus should be raised again through the bootstrapping process [23].

For large-depth applications need this process is needed to continue the operations.

Figure 2.3 shows the CKKS bootstrapping procedure.

Figure 2.3: CKKS bootstrapping.

9

Residue number system(RNS)-CKKS is a method introduced [9] and is a method

using the residue number system for the CKKS scheme. The original CKKS scheme

needs integers with hundreds or thousands of bits and large integers can be represented

by a tuple of 64-bit integers with the chinese remainder theorem. In these cases, it

does not need any multi-precision integer library and is faster than the original CKKS

scheme. Each multiplication removes one 64-bit RNS integer with a rescaling proce-

dure.

2.1.2 Multi-Party Computation

Multi-party computation is a powerful technology that allows multiple participants

or users to collaboratively compute a common function by inputting their own secret

information. The concept of MPC was originated from the need for certain groups

to perform computation tasks based on private inputs, where a single entity access

to all participants’ inputs in order to perform the calculation. This becomes a critical

concern in scenarios where trust among entities is limited. To address this problem,

Yao’s two-party computation [1] was introduced as the initial solution to the problem.

MPC offers significant advantages, primarily in terms of privacy preservation with-

out the need for external intervention, which has led to extensive ongoing research

in this field. One of the key distinctions between fully homomorphic encryption and

multi-party computation lies in the communication aspect among users. In fully homo-

morphic encryption, most calculations are performed by a central operator, except for

initial and final communications. However, when it comes to a server performing fully

homomorphic encryption, it becomes burdened with high-complexity calculations that

involve a substantial amount of data. Figure 2.4 shows the multi-party computation be-

tween users at a glance.

On the other hand, multi-party computation involves relatively straightforward op-

erations, but a notable challenge arises due to the requirement for communication of a

large amount of data. To address the problems on FHE and MPC, researchers have ex-

10

Figure 2.4: Multi-party computation.

plored combining fully homomorphic encryption with multi-party computations. This

integration allows for the concealment of one’s own data and facilitates the execution

of desired calculations. It also enables the direct implementation of desired operations

as circuit stages. Someone considers this combination as a transitional technology that

is, MPC itself. Nonetheless, active research is being conducted in this area due to its

performance advantages of PPML on the FHE in the client-server system.

Overall, MPC offers a promising approach to collaborative computation, ensuring

privacy and enabling secure operations among multiple participants. While challenges

and constraints exist, ongoing research aims to overcome these limitations and further

enhance the efficiency and effectiveness of MPC.

Now I explain SPDZ [14], one of the famous multi-party computation algorithms

as follows :

• Assume that n parties of which n− 1 could be malicious

• There exists a global secret key α ∈ Fp

• Each party i holds αi such that α = α1 + α2 + · · ·+ αn

Under these assumptions, a secret value x ∈ Fp is shared between the parties as

follows :

11

• Each party i holds a data share xi

• Each party i holds a MAC share γi(x)

• x = x1 + · · ·+ xn and α · x = γ1(x) + · · ·+ γn(x)

Such a sharing is denoted by [x] and assumes that the player’s inputs are shared

using above shared rules. If someone wants to add two shared secret values [x] and [y],

compute the result [z] as follows :

• zi = xi + yi

• γi(z) = γi(x) + γi(y)

• z =
∑

zi = x+ y

• α · z =
∑

γi(z) = α · (x+ y)

Partially open means that shared [x] reveals xi but not reveals MAC share. These

definitions are used for secret value multiplications. To multiply two shared values [x]

and [y], the following procedure is needed as follows :

• Preprocessing to make a triple (a, b, c) which satisfy c = a · b

• Partially opens [x]− [a] and [y]− [b]

• Locally computes the linear function [z] = [c] + (x − a) · [b] + (y − b) · [a] +

(x− a) · (y − b)

• Rearranging the above expression, get [z] = [x] · [y]

It is possible to verify that the operation performed through MAC authentication

is correct. If both addition and multiplication are possible, all linear operations can be

expressed in two operations, and thus SPDZ proceeds based on this.

12

2.1.3 Recent Research of Privacy-Preserving Machine Learning

Machine learning has experienced rapid advancements in recent years, surpassing hu-

man intelligence in certain domains. As a result, ML models are being swiftly adopted

across various industries, thanks to their remarkable performance improvements. How-

ever, this progress has brought forth a critical concern – the issue of privacy. As ML

services become more prevalent, ensuring the privacy of users’ data has become a

paramount consideration for artificial intelligence.

The rise of legal disputes surrounding privacy in ML services among governments,

enterprises, and clients underscores the increasing social importance of privacy preser-

vation. To foster the growth of the AI industry, it is crucial to implement ML systems

efficiently while safeguarding user data against potential leaks. This way, clients can

use ML services with confidence, bolstering the overall AI ecosystem.

Among the practical cryptographic tools for designing privacy-preserving AI sys-

tems, homomorphic encryption and multi-party computation stand out. Both of these

techniques share the characteristic of being able to process data while preserving pri-

vacy. Homomorphic encryption allows public servers to perform arithmetic operations

on encrypted data without the need for decryption. On the other hand, multi-party

computation entails data owners collaborating to compute functions on their collective

data without sharing any individual information with each other.

Homomorphic encryption minimizes the communication between the client and

the server, resulting in a small burden on the client. However, the latency tends to be

high due to the significant computation load on the server. Conversely, in the case of

multi-party computation, each participant engages in relatively smaller computations,

but the round of communications and the amount of data exchanged are generally

larger.

To reconcile these conflicting characteristics, prior research has proposed hybrid

methods that leverage both HE and MPC, exploiting the strengths of each approach.

By implementing such privacy-preserving ML systems, it becomes possible to achieve

13

practical latency and communication levels, striking a balance between efficiency and

privacy preservation.

As the importance of privacy-preserving machine learning dealing with encrypted

data is emphasized, many researchers are conducting research related to this in various

ways. Unlike the existing data itself, when someone wants to use machine learning

for sensitive data (medical data, personal information, etc.), it has a lot of problems.

Recently, fully homomorphic encryption and MPC are used for PPML. Figure 2.5

explains the procedure of privacy-preserving machine learning.

When it comes to privacy-preserving machine learning, it is widely recognized

that multi-party computation is generally less suitable compared to fully homomorphic

encryption. This is primarily because most MPC protocols are based on secret-sharing

(SS) and are better suited for integer-based computations rather than machine learning

tasks for complex number.

Nevertheless, researchers are actively exploring privacy-preserving algorithms us-

ing multi-party computations from various perspectives. One notable framework is

SecureML [16], which is a deep learning framework designed to utilize additive secret

sharing and garbled circuits. Similar to Cryptonets [17], SecureML employs polyno-

mial approximations to simulate non-linear activation functions. Similarly, MiniONN

[18] is based on additive secret sharing and Garbled Circuit(GC) but offers lower la-

tency. ABY3 [19], on the other hand, is specifically designed for three-party compu-

tation (3PC) and incorporates polynomial approximations for activation functions in

neural networks. DeepSecure [20] is an algorithm that reduces the number of non-XOR

gates required for privacy-preserving deep learning models using Garbled Circuit. No-

tably, the neural network model used in DeepSecure has the advantage of being a

general convolutional neural network (CNN).

In addition to the multi-party computation protocols mentioned above, there are

also studies on information-hiding machine learning using SPDZ [14], which is one

of the most well-known multi-party computation protocols. SPDZ stands out as a pro-

14

Figure 2.5: Privacy-preserving machine learning.

15

Figure 2.6: Application of Privacy-preserving machine learning.

tocol that can operate seamlessly even when (n − 1) out of n users are malicious. It

differs from most multi-party computation approaches that focus on two-party or, at

most, three-party scenarios, making it distinct from previous studies. Although there

may be different interpretations of this direction, it is a field that demands attention

from many researchers due to its real-time calculation capabilities and a study suggest-

ing that machine learning performance degradation is not as significant as anticipated,

even with an increasing number of users.

Furthermore, there are hybrid schemes that combine the strengths of fully ho-

momorphic encryption and multi-party computations, known as HE + MPC hybrid

schemes. One notable method is the client-aided model introduced in nGraph-HE2

[22], which is a representative hybrid approach. It leverages the communication be-

tween the server and client to perform operations such as maxpooling and ReLU (non-

polynomial functions) on ciphertext within a two-party computation framework. In

other words, this method resolves the challenge of using existing multi-party compu-

tations in machine learning by utilizing the communication environment. While this

study offers the advantage of refreshing ciphertext, addressing one of the major draw-

16

backs of fully homomorphic encryption, it also introduces a potential risk of informa-

tion leakage about the model during the communication process.

All the privacy-preserving machine learning works mentioned above, which are re-

lated to homomorphic encryption, employ HE-friendly networks. These networks are

modified convolutional neural networks tailored to accommodate fully homomorphic

encryption schemes. However, due to the specific requirements of homomorphic en-

cryption, only shallow network architectures (approximately 3 to 11 layers) are feasi-

ble, and only low-degree approximate polynomials can be used for activation functions

such as ReLU, ELU, and GeLU. Consequently, these models may not be effective for

advanced datasets, and their accuracy tends to be inferior to existing models. Addi-

tionally, accessing the entire deep learning framework is necessary, which comes with

certain disadvantages. However, their adaptation for homomorphic encryption allows

them to be lightweight and fast. However, pre-trained networks offer a significant ad-

vantage in that they can utilize ReLU with polynomial approximations and can be ap-

plied to well-known datasets. A Comparison between several cases of PPML is shown

in Table 2.2.

Table 2.2: Comparison between several cases of PPML

HE-friendly FHE HE+MPC

Accuracy Low High High

Communication cost Low Low High

Security Satisfy Satisfy Satisfy

Model exposure No No Partially yes

Re-training Need No No

Server computation Low High Low

Fully homomorphic encryption only supports addition and multiplication and CKKS

only supports one-dimensional data and cyclic shift rotation. To deal with these limi-

tations, the computations necessary to apply the CKKS algorithm to CNN have to be

17

modified. In Table 2.3, operations and complexity in a convolutional neural network

with homomorphic encryption are explained.

Table 2.3: Operations and complexity in CNN with HE

CNN Plaintext Complexity Homomorphic encryption Complexity

Convolution Matrix multiplication High Add/Mult/Rot Low

Pooling Maxpooling Low Approximation High

Activation ReLU Low Polynomial approximation High

Softmax Softmax Low Approximation High

Convolution is a fundamental operation in convolutional neural networks, where a

3-dimensional tensor serves as both the input and output of the convolution process.

In [8], they proposed an efficient convolution method specifically designed for homo-

morphic encryption. This method involves converting 2-dimensional images and filters

into 1-dimensional representations.

More recently, the concept of multiplexed parallel convolution is introduced in [5],

which enables even more efficient convolutions to be performed. The CKKS algorithm,

commonly used in homomorphic encryption, supports average pooling as a straightfor-

ward operation. However, implementing max pooling poses greater challenges within

this context. Minimax polynomial was introduced in [2], which can accurately ap-

proximate the maximum function through a composition of functions. This technique

minimizes the number of operations required within the CKKS scheme.

Activation functions play a crucial role in allowing deep learning models to learn

nonlinear boundaries, and they pose particular challenges in privacy-preserving ma-

chine learning based on homomorphic encryption. One potential solution is to use the

sign function as an activation function. The minimax approximation technique allows

for the evaluation of the sign function using only addition and multiplication oper-

ations in fully homomorphic encryption scenarios. This approach provides a way to

incorporate activation functions while maintaining the privacy-preserving properties

18

of the machine learning model.

19

2.2 Key Generation and Management Based on Keystore Seed

2.2.1 Key Generation

In this section, basic concepts of secure key generation using keystore seed are given.

There is a keystore seed K = K(0)K(1) · · ·K(L−1), which is a randomly generated

L-bit binary sequence, where K(i) is the i-th bit of the keystore seed for 0 ≤ i ≤ L−1.

Users secretly share keystore seed as in Figure 2.6.

Figure 2.7: Secretly shared keystore seed.

Let aj be a sub-sequence of length l of the keystore seed and let mj be a keystore

seed index of the first element of aj , where 0 ≤ m1 < m2 < . . . < mt ≤ L−1. Then,

aj is represented as aj = K(mj)K(mj + 1) · · ·K(mj + l − 1). The key ki of length

l is generated as ki = a1 ⊕ a2 ⊕ · · · ⊕ at, where ⊕ denotes the bit-wise exclusive

OR. The set of all possible keys generated from the keystore seed K is denoted as

Ψ = {ki|1 ≤ i ≤ Λ}, where Λ is
(
L
t

)
. This key generation method is expressed as the

(L, l, t)-key generation scheme, where l is the length of each key and t is the number

of subkeys of keystore seed for the generation of each key. Table 2.4 shows the number

of generated keys with parameters (L, l, t)

20

Table 2.4: The number of generated keys

(t, l) = (5, 128)

L = 212 213 214 215 216

Λ ≥ 253 258 263 268 273

(t, l) = (10, 256)

L = 213 214 215 216 217

Λ ≥ 2108 2118 2128 2138 248

2.2.2 Key Management

After key generation, the generated keys can be used in the following way:

1) A file is encrypted using a key ki randomly selected from set Ψ.

2) Attach the key index information i = (m1,m2, · · · ,mt) into the encrypted file

and send it.

3) To decrypt an encrypted file, the encryption key ki is regenerated from the secure

stored keystore seed and the received file using ki is decrypted using the attached

key index information i.

The keystore seed should be protected in a secure memory that cannot be accessed

by outside users. Even though the key index information is available, any information

on the keystore seed should not be disclosed.

2.2.3 Information-Theoretically ϵ-Secure Keystore

The information-theoretically ϵ-secure for arbitrarily small ϵ is defined according to

the following specifications.

1) A keystore Ψ = {ki | 1 ≤ i ≤ Λ} of keys of length l generated from a keystore

seed K is said to be information-theoretically ϵ-secure for 0 ≤ ϵ < 1, if the

properties in the following theorems hold.

21

2) For 1 ≤ i ≤ Λ and arbitrarily small ϵ > 0, all keys ki are randomly and

uniformly distributed over {0, 1}l as

Pr{ki = kj} ≤ (1− ϵ)× 2−l + ϵ.

3) For all pairs of independent indices i, j, 1 ≤ i, j ≤ Λ,

H(kj |i, j, ki) ≥ H(kj |j)× (1− ϵ) = l(1− ϵ).

Yang and Wu [46] stated that the 3) can be extended to the following argument.

Argument 1 (nth order of 3)). For all independent i, j1, . . . , jn, where 1 ≤ i, j1, . . . , jn ≤

Λ, have

H(ki|j1, . . . , jn, i, kj1 , . . . , kjn) ≥

H(ki|i)× (1− ϵ) = l(1− ϵ). (2.1)

They insist that by utilizing the information-theoretically secure keystore Ψ gen-

erated from the shared keystore seed K, key distribution becomes both secure and

convenient. To encrypt a file, one randomly selects a key, denoted as ki, from the key-

store. This ki is then used as the encryption key to encrypt the file using a symmetric

cipher like AES. Subsequently, the key index i is inserted into the ciphertext header.

The encrypted file is composed of the key index i and the ciphertext itself. When a

legitimate recipient receives the encrypted file, they retrieve the corresponding key ki

from K using the key index i, and utilize ki to decrypt the ciphertext.

Distributing ki through i does not reveal any information about the key ki itself,

as the mutual information between ki and its index i is zero. Moreover, since ki can

be easily derived from K and i, there is no need to physically store Ψ. As a result, the

challenge of managing a large list of random keys ki is essentially reduced to managing

a single keystore seed K. Consequently, the burden of key management for long-term

data protection is significantly mitigated.

22

They have successfully tackled the challenges associated with key generation and

management to enable secure encryption with a one-key-for-one-file approach, en-

suring that each file is encrypted using a unique key. Their approach considers the

information-theoretic aspect of security and introduces the concept of information-

theoretical security to evaluate the security of a keystore generated from a random

string of L bits. They have proposed an efficient keystore generation scheme, resulting

in an information-theoretically secure keystore Ψ with a small value. The combination

of the information-theoretically secure Ψ, the large number of keys, and the ease of

generating each key ki from the keystore seed and key index address the major chal-

lenges in distributing and managing a substantial number of random keys for long-term

data protection in public cloud environments.

23

Chapter 3

Client-Aided Deep Neural Network on Fully Homomor-

phic Encryption without Bootstrapping in the Client-

Server Model

3.1 Introduction

Research has primarily focused on the theoretical exploration of technologies that en-

able operations while preserving the secrecy of a user’s input. This emphasis arises

from previous encryption methods that prioritized corporate security over safeguarding

personal information. However, recent studies have spurred users to pay more atten-

tion to their personal data, leading to increased interest in research on anonymization

techniques such as homomorphic encryption and multi-party computations. Machine

learning has emerged as a central component of contemporary research and finds ex-

tensive application across various domains. As previously discussed, the growing sig-

nificance of personal information underscores the need to emphasize privacy preserva-

tion in machine learning. Privacy-preserving machine learning, commonly referred to

as PPML, has become a highly relevant subject in the fields of security and cryptogra-

phy, undergoing rapid investigation in recent years.

Machine learning has undergone rapid development in recent years and currently

24

outperforms human intelligence in specific domains. As recent ML models demon-

strate remarkable performance improvements, they are being rapidly deployed across

many industries. In this context, the privacy issue represents a crucial challenge that ar-

tificial intelligence must address. With the rise of significant legal concerns regarding

privacy in ML services involving governments, enterprises, and clients, the societal

value of privacy has gained increasing importance. Efficient implementation of ML

systems that ensure the protection of user data privacy can enable clients to utilize

these ML services without worrying about data leakage, thereby fostering growth in

the artificial intelligence (AI) industry.

Two practical cryptographic tools used to design privacy-preserving AI systems

are homomorphic encryption and multi-party computation. Both approaches share the

characteristic of processing data while preserving privacy. HE refers to an encryption

scheme designed to allow public servers to perform arithmetic operations on encrypted

data without decryption. On the other hand, MPC involves a protocol in which data

owners communicate with each other to compute functions on the entire dataset with-

out sharing any information about their individual data. HE requires minimal commu-

nication between the client and the server, resulting in a smaller burden on the client

but higher latency due to extensive computation on the server. However, MPC involves

relatively small computation for each participant but typically requires multiple rounds

of communication with larger amounts of data exchanged. To reconcile these conflict-

ing characteristics, prior research has developed hybrid methods that leverage the ad-

vantages of both tools, resulting in the implementation of practical privacy-preserving

machine learning systems with manageable latency and communication requirements.

In this chapter, examples of privacy-preserving machine learning using simple

fully homomorphic encryption and multi-party computation and the most recent re-

search are introduced and compared. In Section 3.2, PPML frameworks using FHE,

especially the 2022 ICML paper using pre-trained parameters, are introduced and their

pros and cons are analyzed [5]. In addition, PPML algorithms using MPC and DEL-

25

PHI, the most recent result and attention-grabbing algorithm, are introduced and their

features are analyzed. Finally, in Sections 3.3 and 3.4, the main contribution of this

dissertation, the bootstrapping replacement method for PPML on FHE in the commu-

nication environment, is introduced, and what advantages it has over the previously

introduced algorithms and experimental results are introduced.

3.2 Cryptographic Inference on Deep Neural Networks

3.2.1 Inference of Deep Convolutional Neural Networks on Fully Homo-

morphic Encryption

Currently, there is a significant amount of attention being directed toward a study that

aims to perform image classification using the CKKS algorithm, which is widely rec-

ognized as the most popular algorithm in the field of homomorphic cryptography. The

study, published in the ICML 2022 [5], not only addresses the challenges associated

with CKKS in machine learning but also achieves the remarkable feat of performing

inference on CIFAR-10/100 images using ResNet models with pre-trained parameters,

marking the first instance of such an accomplishment. In this section, I will introduce

the paper that can be served as the foundation for my own study.

The utilization of pre-trained networks holds paramount importance in privacy-

preserving machine learning studies employing homomorphic encryption. As previ-

ously mentioned, PPML using homomorphic encryption has predominantly relied on

HE-friendly networks due to the inherent difficulty in implementing the ReLU acti-

vation function. However, the work in [5] pioneers the use of a pre-trained network

within the context of homomorphic encryption and introduces two key techniques.

The first technique is known as multiplexed parallel convolution, which involves

compacting the existing three-dimensional tensor into a one-dimensional vector, thereby

enabling the design of one bootstrapping operation per layer as in Figure 3.1. This in-

novative approach yields a remarkable performance improvement, surpassing previous

26

studies by a factor of 134.

Figure 3.1: Multiplexed parallel convolution.

The second technique is known as imaginary-removing bootstrapping in Figure

3.2. When performing deep neural network using fully homomorphic encryption, a

phenomenon known as catastrophic divergence can occur due to small imaginary er-

rors, particularly in the case of ReLU activation. In fact, there is a 25% probability of

encountering catastrophic divergence in a single layer. However, the introduction of

the imaginary-removed bootstrapping technique effectively mitigates these situations,

ensuring the reliability and stability of the computations.

In Figure 3.3, you can see how the RNS-CKKS scheme was implemented for each

ResNet model [5]. My research is also conducted in the same way, but only the boot-

strapping part is replaced with ciphertext refresh using communication between client

and server. It is crucial because the amount of computation for bootstrapping is very

large.

27

Figure 3.2: Imaginary removing bootstrapping.

3.2.2 Inference on Multi-Party Computation of Deep Convolutional Neu-

ral Networks

DELPHI, which was introduced in 2020, presents an exciting advancement in cryp-

tographic neural network inference through the utilization of secure multi-party com-

putation [7]. Prior to the publication of this groundbreaking work, GAZELLE [8] had

emerged as the representative approach for MPC-based privacy-preserving machine

learning. In GAZELLE, linear operations were conducted using homomorphic encryp-

tion, while non-linear operations, such as the ReLU, were performed using garbled cir-

cuits. DELPHI, however, revolutionizes the performance of GAZELLE by introducing

novel enhancements for ReLU.

One notable improvement in DELPHI involves the incorporation of preprocessing

techniques aimed at reducing the actual inference time. This addition proves instru-

mental in expediting the overall computation. Moreover, instead of relying solely on

homomorphic operations, DELPHI introduces MPC based on secret sharing for the

linear step. By doing so, it effectively departs from the sole reliance on homomorphic

operations, thus broadening the range of cryptographic techniques employed. Another

significant modification is observed in the treatment of ReLU computations. Unlike the

previous approach, which solely utilized garbled circuits, DELPHI combines garbled

circuits with beaver triples. Although the use of beaver triples enables faster opera-

28

Figure 3.3: Structure of the proposed ResNet on the RNS-CKKS scheme.

tions, it presents a challenge in terms of inference accuracy. On the other hand, by uti-

lizing garbled circuits with exact ReLU computations, DELPHI ensures a sufficiently

high level of accuracy. However, this approach comes at the cost of a significant in-

crease in the amount of data to be transmitted, leading to a corresponding increase in

running time.

DELPHI’s contributions extend beyond mere performance improvements. By uti-

lizing a combination of garbled circuits, beaver triples, and parallel processing, DEL-

PHI effectively limits the extent of homomorphic operations in the offline secret shar-

ing phase. This optimization substantially enhances performance while preserving the

privacy and security of the computation. Notably, the online phase solely consists of

29

straightforward calculations, resulting in minimal computational overhead. In terms

of communication requirements, the amount of data transmitted during preprocess-

ing(offline phase) and online processing in GAZELLE remains comparable. However,

DELPHI increases the overall data size and transmission speed for the linear portion

of the computation. Nevertheless, by strategically dividing the process into online and

offline phases, DELPHI minimizes the costs associated with client services. In con-

trast, GAZELLE does not employ preprocessing for linear operations but instead uti-

lizes it exclusively for garbled circuits. Considering these factors collectively, DELPHI

roughly doubles the computational performance of GAZELLE.

Another noteworthy contribution of DELPHI lies in its ability to expedite compu-

tations through the combined utilization of garbled circuits, beaver triples, and garbled

circuits for non-linear operations. However, to mitigate the decrease in accuracy re-

sulting from the inclusion of beaver triples, DELPHI leverages an optimized selection

of layers that employ both garbled circuits and beaver triples. This process employs

a type of neural architecture search (NAS) algorithm, which automates the search for

the optimal neural network architecture that satisfies specific conditions. NAS typically

involves training multiple neural networks, evaluating their accuracies, and ultimately

selecting the one that demonstrates superior performance.

In DELPHI’s offline phase, which employs homomorphic encryption, the client

possesses the value Miri − si, while the server holds si. Combining these values en-

ables the derivation of Miri, although both parties remain in a secret-sharing state,

unaware of the actual answer. For non-linear operations, two sets of values are shared.

One set involves sharing parameters for garbled circuits, while the other set is shared

using oblivious transfer for beaver triples. Linear operations are subsequently per-

formed using the previously shared secret values.

The computation commences with the client calculating x − r1 using the offline-

generated value r1 and its confidential input x. This result is then transmitted to the

server, which performs a single linear operation using x− r1 and concludes the linear

30

step. For each subsequent layer, the client possesses an offline-generated value ri,

while the server is aware of the output value xi of the i-th layer, subtracted by ri. The

intermediate output xi remains unknown to both the server and the client. At this stage,

the server performs the calculation Mi(xi − ri) + si using Mi and si, subsequently

sending the garbled circuit label of this value to the client. The client, utilizing the

values obtained through offline oblivious transfer, calculates and acquires a one-time

pad ciphertext xi+1 − ri+1. This value is then transmitted back to the server, which

can recover xi+1 − ri+1. As the operations progress through the final layer, the server

forwards the ultimate value xl − rl to the client, who can then retrieve the final output

xl.

31

Figure 3.4: DELPHI simulation results.

Figure 3.4 shows the simulation result of DELPHI and GAZELLE. For one CIFAR-

100 image using Resnet-32, it cost 250s and over 8GB when using exact ReLU which

is the same as GAZELLE’s result. DELPHI claims that their best case could reduce

execution time to 100s and communication cost to under 2GB.

3.3 Client-Aided Inference Using Communication Cost

3.3.1 Replacing Bootstrapping Using Communication Cost

GAZELLE and DELPHI are prominent hybrid models that combine homomorphic

encryption and multi-party computation. However, these models still exhibit a sig-

nificant amount of communication, which limits their practical use. In the case of the

DELPHI model, when performing the ResNet-32 model, both online and offline stages

require over 8GB of communication per image. This substantial communication over-

head places a burden on clients and hinders the smooth utilization of AI services. Al-

though these models have focused on minimizing online communication and latency

32

when processing selected images, the overall resource consumption remains high, as

clients need to continuously utilize substantial communication and computational re-

sources. Therefore, it is essential to reduce communication overhead while implement-

ing a privacy-preserving machine learning system based on the hybrid approach.

The primary reason for the large communication overhead is the utilization of the

garbled circuit technique for performing ReLU operations, which is a form of multi-

party computation. Previous studies have regarded homomorphic encryption as suit-

able for linear operations, while multi-party computation is considered appropriate for

non-linear operations on a bit-wise level. Consequently, in privacy-preserving convo-

lutional neural network models, convolution operations are typically processed using

homomorphic encryption, while the ReLU activation functions are implemented using

garbled circuits. However, due to the large number of ReLU functions to be com-

puted and the substantial communication required for each ReLU function, the ReLU

functions using garbled circuits account for a significant portion of the overall commu-

nication volume, playing a critical role in the extensive communication requirements.

To mitigate the communication overhead, it may be desirable to explore new hybrid

PPML models that do not rely on garbled circuits for ReLU functions. Previous work

of HE-based privacy-preserving machine learning has the disadvantage of bootstrap-

ping, which takes a very huge amount of total execution time. Bootstrapping should

be applied in order to perform an arbitrary number of operations in fully homomor-

phic encryption. In particular, in order to execute image inference in a state of FHE

that is applied to deep neural networks like ResNet, bootstrapping is needed thou-

sands of times. This one bootstrapping takes about 300 seconds, although it depends

on the system in the currently implemented library. For this reason, it takes more than

3 hours to classify a simple image such as CIFAR-10 in ResNet-20. Thus reducing the

number and time of bootstrapping is important to improve the performance of privacy-

preserving machine learning using fully homomorphic encryption.

Recent work introduced another new framework for privacy-preserving machine

33

learning models. These models have a different purpose compared to hybrid PPML

models, as they assume that the client does not actively participate in the AI opera-

tions. Instead, they solely rely on fully homomorphic encryption, which allows unlim-

ited addition and multiplication operations on encrypted data. It is important to note

that GAZELLE and DELPHI use a partially homomorphic encryption scheme, which

does not support multiplication between encrypted data. However, the implementa-

tion by [5]. relies solely on homomorphic encryption without leveraging multi-party

computation techniques, resulting in significant latency. While this implementation

minimizes the clients’ resource usage, if clients can participate in the computation,

reducing latency through MPC techniques would be desirable. To achieve this, further

optimization is needed, combining the composite approximation method with MPC

techniques.

There are several reasons for the significant latency in [5]. Firstly, the bootstrap-

ping operation, which elevates the ciphertext level from zero to enable further homo-

morphic operations, incurs substantial latency compared to other homomorphic oper-

ations. If clients’ involvement in operations is allowed to some extent, replacing the

bootstrapping operation with MPC techniques is recommended. Another factor con-

tributing to the latency is the requirement for a large depth in the implementation. For

sufficient security in fully homomorphic encryption schemes, there is an upper limit on

the total bit-length of the modulus, determined by the product of the evaluation mod-

ulus and the special modulus. A larger ratio between the evaluation modulus and the

special modulus results in increased runtime for the key-switching operation, which

is a fundamental operation in many homomorphic operations. By reducing this ratio

while maintaining the same parameters, the overall runtime of the operations can be

significantly decreased.

In this dissertation, I focus on the feasibility of an algorithm that can replace boot-

strapping without leaking each other’s information using multi-party computations in a

situation where a communication environment is available. However, the server should

34

not give information about its artificial neural network model to the client and also the

server should not gain the client’s personal data. This method is based on information

theoretically safe so that complete information protection is possible. A random num-

ber is added to the message requiring bootstrapping and then transmitted to the client.

After the client decrypts the message, re-encrypt with a large modulus ciphertext. Re-

sults are sent back to the server. This algorithm is summarized as follows :

1) Random Addition

Server execute Enco(m) + Enco(r)− > Enco(m+ r)

Send to a client to refresh

2) Ciphertext Refresh

Client execute Enco(m+ r)− > (m+ r)− > EncL(m+ r)

Send to server

3) Random Deletion

Server execute EncL(m+ r) + EncL(−r)− > EncL(m)

Get refrehsed ciphertext

More details of replacing bootstrapping using communication can be found in Fig-

ure 3.5.

35

Figure 3.5: Bootstrapping replacement by the client in the PPML on FHE.

36

To reduce communication, I eliminate the use of garbled circuits, which require

significant communication, and instead employ the composite approximation method

for computing ReLU functions. This allows all ReLU operations to be performed on

the server using homomorphic encryption. The composite approximation method, pre-

viously utilized in HE-based PPML models by [5]., has been proven to achieve the

required accuracy for computing ReLU functions in privacy-preserving AI systems.

In GAZELLE and DELPHI, which only handle the convolution operation using

homomorphic encryption, a linear HE scheme is used, supporting linear operations

but not multiplication between ciphertexts. However, in the composite approximation

method, multiplication between ciphertexts is necessary for polynomial evaluation. To

facilitate this method, I adopt the CKKS fully homomorphic encryption scheme, which

supports multiplication between ciphertexts in addition to linear operations. Addition-

ally, I propose the mod-raised one-time pad (MR-OTP) technique to replace the boot-

strapping operation in HE. The bootstrapping operation in CKKS enables additional

operations by converting a lower-level ciphertext into a higher-level ciphertext while

preserving the encrypted data. MR-OTP serves the same purpose as bootstrapping in

[5]. While the one-time pad technique has been widely used in other MPC techniques,

I require a more sensitive analysis in this new OTP setting to ensure negligible decryp-

tion failure, as my objective is to raise the ciphertext level, equivalent to enlarging the

domain of the ciphertext.

However, a simple replacement of bootstrapping operations with MR-OTP is not

sufficient, as it still results in considerable latency compared to the DELPHI model.

Therefore, I optimize the modulus chain to reduce elementary homomorphic oper-

ations. Since bootstrapping operations are not employed in my implementation, the

evaluation modulus can be halved compared to the approach of [5]. By analyzing the

runtime of key-switching operations for various ratios and optimizing the modulus

chain, I minimize overall latency. Thus, I can optimize the ratio between the bit length

of the evaluation modulus and that of the special modulus.

37

Algorithm 3.1 shows how to refresh the ciphertext with generated random val-

ues. In this process, additional considerations are needed to generate random values.

It is used for masking the message, but if an excessively large value occurs, m + r

may be distorted by mod q. To do this, fine adjustment is required for the value cor-

responding to r, and the routine for processing the corresponding value is shown be-

low. A random value that has been selected between (−q0/(2 ∗ ctxt.scale()) + 1) to

(q0/(2∗ctxt.scale())−1), has a failure probability and it has to be lower than 2−128 to

satisfy 128-bits security. In this case for parameter N = 216, the probability is 1−NP

and P = 2/2200, able to confirm that a random value is selected safely enough.

Algorithm 3.1 Ciphertext Refresh Algorithm

1: Step 1) Random generation

Set abc as q0/(2 ∗ ctxt.scale()) .

Randomly pick mb from the range of (−q0/(2 ∗ ctxt.scale()) + 1) to (q0/(2 ∗

ctxt.scale())− 1)

2: Step 2) Encrypt the random value

First encode the random as encoder.encode(m b, ctxt.scale(), plain b) and then

encrypt encryptor.encrypt(plain b, cipher b) cipher f = cipher b

3: Step 3) Added to low level ciphertext ctxt refresh it

evaluator.mod switch to inplace(cipher b, ctxt.parms id())

evaluator.add(cipher b, ctxt, cipher c) decrypt and re-encrypt it to refresh

decryptor.decrypt(cipher c, plain c)

encoder.decode(plain c, output c)

encoder.encode(output c, ctxt.scale(), plain c)

encryptor.encrypt(plain c, cipher d)

evaluator.mod switch to inplace(cipher f, cipher d.parms id())

4: Step 4) Finally, subtract the added random value to get the refreshed cipher-

text rtn

evaluator.sub(cipher d, cipher f, rtn)

38

3.3.2 Level Consumption of Proposed Method

When executing the above procedure, it is important to consider the level of consump-

tion in each process. In bootstrapping, more than 10 levels are consumed, but in the

proposed method, there is no level consumption. As a result, it becomes possible to

perform more operations than when using bootstrapping. However, optimization is

necessary in this case. Once the low-level ciphertext is processed, its size is reduced,

and operations can be performed faster compared to high-level ciphertext. If there are

many computations for a convolutional neural network at a specific level, more time

is required for the same computation if it is performed at a high level. Therefore, even

if the level for bootstrapping is saved, using it as the level of the CNN unconditionally

does not guarantee good performance.

Furthermore, in the past, the same level of consumption was used for each layer

of the CNN, but it is necessary to optimize the operation between odd and even layers

through the added level. Similarly, since the size of the ciphertext varies according to

the level, and this difference directly affects the operation speed, the algorithm should

be improved to speed up the overall operation.

I propose two types of ciphertext refresh using different levels as follows :

• Proposed 1) : Using level 18, which uses one layer for one refresh

• Proposed 2) : Using level 35, which uses two layers for one refresh

Unlike the previous work that performs bootstrapping when the level goes to 0, this

work performs ciphertext refresh when the level is one. Figures 3.6 and 3.7 show

the difference in level consumption between the two methods. In previous work, the

level consumption for ReLU is 15, the convolution is 2, and bootstrapping consumes

14. Therefore, the previous method proceeds as 31-0-17-0-17-0... meaning bootstrap-

ping modifies at level 31, and after performing slottocoeff, modular reduction, and

coefftoslot, it becomes level 17. Proposed 1) executes 18-1-18-1-18-1..., and Proposed

2) executes 35-1-35-1-35... Both proposed methods have their advantages. Algorithm

39

3.2 shows the procedure of level adjustment for two proposed methods.

Firstly, they have almost the same communication cost because Proposed 1) dou-

bles the number of communications, but half the communication amount. More specifi-

cally, the communication in my work depends only on two ciphertext sizes: high-level

ciphertext size(after refreshing at the client) and low-level ciphertext size(before re-

freshing at the server). RNS-CKKS’s ciphertext size is approximately N×Level×16,

and thus the communication cost of Proposed 1) is layer × 2 × N × 16 × (18 + 1)

and Proposed 2)’s communication cost is layer × N × 16 × (35 + 1). Proposed 2)

has a slightly smaller communication cost by 2× layer×N × 16 compared to that of

Proposed 1).

Proposed 1) has an advantage in bandwidth-limited situations. Proposed 2) has an

advantage in terms of the disadvantages of multi-party computation. MPC has a flaw in

that all users (or participants) have to be online during communication. Proposed 1) has

twice the number of communications, requiring the client to be online twice compared

to Proposed 2). Nevertheless, since Proposed 1) has a smaller high level ciphertext

compared to Proposed 2), I focus on Proposed 1), and all the experimental results to be

introduced next are carried out based on Proposed 1). After the server obtains refreshed

ciphertext, it can control the level. This has a significant impact on simulation speeds.

For example, when using level 30 to infer one CIFAR-10 image in ResNet-20, it takes

1,551 seconds. However, by reducing the level from 30 to 18, which is the minimum

level to handle one layer, the simulation time reduces to 722 seconds. Lowering the

high level from 30 to 18, I am able to achieve the fastest inference result of 526 seconds

together with further optimization.

40

Algorithm 3.2 Level Adjustment Algorithm

1: Step 1) Get refreshed ciphertext rtn

evaluator.sub(cipher d, cipher f, rtn)

2: Step 2) Change the ciphertext scale

size tcur level = rtn.coeff modulus size() doublescale change =

(pow(2.0, 46)/rtn.scale()) ∗ ((double)modulus[cur level − 1].value())

encoder.encode(1, scale change, scaler)

evaluator.mod switch to inplace(scaler, rtn.parms id())

evaluator.multiply plain inplace(rtn, scaler)

evaluator.rescale to next inplace(rtn)

rtn.scale() = pow(2.0, 46)

3: Step 3) Lower the level and repeat the below formula

evaluator.mod switch to next inplace(rtn)

41

Figure 3.6: Previous method level consumption.

42

Figure 3.7: Proposed method level consumption.

43

3.4 Simulation Results

In this section, I perform Proposed 1) for ResNets using datasets CIFAR-10 and CIFAR-

100. Both datasets have 50,000 images for training and I use 1,000 images for infer-

ence [6]. Using library SEAL [10] on AMD Ryzen threadripper PRO 3995WX with

512 GB RAM, running Ubuntu 20.04 system. Pre-trained parameters are used for stan-

dard ResNet-20/32/44/56/110. I set the polynomial degree N = 216 and the full slots

n = 215. Starting from level 18 when the level goes to 1, do ciphertext refresh. The

other parameters are used in the same as [5] and are described in detail.

3.4.1 Classification Runtime and Communication Cost

Table 3.1 below summarizes how much inference time it takes for one image for each

response model. For ResNet-32, CIFAR-100 was also added. It is confirmed that the

time reduction is about 4-5 times compared to the previous work [5]. It is confirmed

that the number of layers is larger depending on the ResNet model, and thus it has a

larger increase in time reduction.

Table 3.1: Classification runtime for one image using ResNet on RNS-CKKS

Image Model Previous Proposed

CIFAR-10

Resnet-20 2,271s 526s

Resnet-32 3,730s 850s

Resnet-44 5,224s 1,167s

Resnet-56 6,852s 1,480s

Resnet-110 13,282s 2,898s

CIFAR-100 Resnet-32 3,942s 887s

Obviously, communication cost between client and server increases as the number

of bootstrapping replacements increases. As previously mentioned, the size of RNS-

CKKS’s ciphertext is N ∗ Level ∗ 16 bytes and thus the communication cost for one

44

image inference could be calculated as the number of bootstrapping * (low level ci-

phertext size + high level ciphertext size). For example, ResNet-32 has 30 times boot-

strapping, and thus 30*65536*(1+18)*16 is 597,688,320, which means the commu-

nication cost is 597.688MB. The communication cost for different ResNet models is

summarized in Table 3.2.

Table 3.2: Communication cost for one image inference in ResNet

Model Communication cost

Resnet-20 358.613MB

Resnet-32 597.688MB

Resnet-44 836.763MB

Resnet-56 1075.838MB

Resnet-110 2151.677MB

When using multiplexed parallel convolution, it is possible to implement multiple

images in parallel using multiple threads, unlike existing research that can infer only

one image at a time. Table 3.3 is the result of measuring the amortized runtime by

inferences of 50 images at the same time.

Table 3.3: Classification runtime for multiple images using ResNet on RNS-CKKS

Image Model Runtime Armortized runtime

CIFAR-10(50 images)

Resnet-20 845s 17s

Resnet-32 1,357s 27s

Resnet-44 1,937s 39s

Resnet-56 2,511s 50s

Resnet-110 4,880s 97s

CIFAR-100(50 images) Resnet-32 1,439s 29s

45

3.4.2 Accuracy

Table 3.4 present the accuracy of image classification for CIFAR-10/100 images using

ResNet on RNS-CKKS. According to the simulation result, using communication cost

to ciphertext refresh does not affect the accuracy at all, which is very close to baseline

accuracy and previous work’s accuracy [5]. This means that the proposed method has

been improved by reducing the computation complexity while maintaining the previ-

ous accuracy.

Table 3.4: Classification accuracy of CIFAR-10 and CIFAR-100 images using ResNet

model with RNS-CKKS

Dataset Model Baseline accuracy ICML accuracy Proposed accuracy

CIFAR-10

Resnet-20 91.52% 91.31% 91.3%

Resnet-32 92.49% 92.4 % 92.7%

Resnet-44 92.76% 92.65% 92.9%

Resnet-56 93.27% 93.07% 93.0%

Resnet-110 93.5% 92.95% 93.8%

CIFAR-100 Resnet-32 69.5% 69.43% 69.6%

3.4.3 Compare to Previous Works

In this section, I compare my simulation results from two perspectives. One is to com-

pare with fully homomorphic encryption inferences introduced in Section 3.2.1, which

has the disadvantage that bootstrapping is slow. Another is to compare with multi-party

computation inferences which have the problem of communication cost being very

high. DELPHI, introduced in Section 3.2.2 is the most famous multi-party computa-

tion based privacy-preserving machine learning study and it was considered the most

prominent result. Compared to DELPHI, the proposed method requires 13-14 times

less communication cost, and compared to that in [5], 4-5 times less processing time

with maintaining accuracy.

46

Table 3.5: Comparison to previous work for one CIFAR-100 image inference

Resnet-32 DELPHI(All-ReLU) DELPHI(Best) ICML Proposed

Communication cost >> 8GB >> 2GB Very low 597MB

Running time 240s 100s 3,942s 887s

Accuracy 68% 66% 69.43% 69.6%

3.4.4 Classification Using Library LATTIGO

LATTIGO is a homomorphic encryption library based on the Go language [49]. It of-

fers significant advantages over other existing libraries, including SEAL, which was

used in the previous experiments, particularly in terms of speed and ease of parame-

ter modification. However, when considering the overall running time, along with the

advantage of lower communication cost in SEAL, it is challenging to claim a clear

advantage over DELPHI, as indicated in Table 3.5. To address this concern, experi-

ments are conducted using the LATTIGO library for Proposed 1), and this dissertation

presents the results obtained with the mentioned parameters in LATTIGO.

I explore the use of the LATTIGO encryption library, which allows for halving the

size of the existing parameters from N = 216 and n = 215 to N = 215 and n = 214.

As a result, the overall communication overhead is also reduced by half. A compar-

ison is made with the previous benchmark paper, DELPHI, which exhibits a large

communication overhead but benefits from lower online communication. Contrarily,

our proposed LATTIGO-based method achieves improved accuracy (All-ReLU) while

reducing both communication overhead and inference time compared to DELPHI. Fur-

thermore, as mentioned earlier, the conventional level usage requiring 18 levels for

ReLU is reduced to 15 by partitioning it into 5, 5, 5, resulting in reduced consumption.

Additionally, we propose a novel technique, Proposed 3, which raises the level in a

manner similar to replacing bootstrapping during ReLU. A comprehensive compari-

son of each proposed approach is presented in the table below.

47

Table 3.6: Inference using LATTIGO library

ResNet-32 Proposed 1(LATTIGO) Proposed 1(LATTIGO) Proposed 3(ReLU) Proposed 3(ReLU)

Communication cost 597MB 298MB 1GB 500MB

Running time 283s 156s 240s 140s

Parameters N = 216, n = 215 N = 215, n = 214 N = 216, n = 215 N = 215, n = 214

The inference time for a single image is approximately 156 seconds, and for 50 im-

ages, it requires 275 seconds, resulting in an amortized runtime of around 7 seconds.

Furthermore, when compared to the baseline ResNet-32 accuracy, the achieved accu-

racy for 1000 images achieves 92.8%. These results demonstrate similar performance

to previous findings while achieving approximately three times faster computation.

At the current stage, further performance improvements can be expected by adjusting

the special modulus and polynomial modulus and utilizing the communication en-

vironment to enhance the performance of comparison operations, rather than solely

focusing on bootstrapping replacement.

Table 3.7: Classification runtime for one image using LATTIGO library

Image Model SEAL LATTIGO

CIFAR-10

Resnet-20 526s 92s

Resnet-32 850s 156s

Resnet-44 1,167s 214s

Resnet-56 1,480s 280s

Resnet-110 2,898s 556s

Another noteworthy aspect lies in the amortized runtime measurement of the infer-

ence methods. In the case of SEAL, the best performance was achieved when 50 im-

ages were inferred simultaneously. However, in LATTIGO, it was observed that even

with 100 images, further performance improvements were evident. This phenomenon

is speculated to be attributed to the drastic reduction of the utilized levels, from 18 to

48

4, as observed in Proposed 3. The exact reasons behind this enhancement are currently

under investigation and remain subject to further exploration.

This dissertation sheds light on the intriguing performance differences between

SEAL and LATTIGO-based inference methods concerning amortized runtime. Specif-

ically, the reduction in utilized levels in LATTIGO seems to play a significant role in

achieving improved performance, though comprehensive insights into the underlying

mechanisms require further research.

Table 3.8: Classification runtime for multiple images using LATTIGO library

Image Model Runtime Armortized runtime

CIFAR-10(50 images)

Resnet-20 144s 2.88s

Resnet-32 275s 5.50s

Resnet-44 377s 7.54s

Resnet-56 482s 9.64s

Resnet-110 799s 15.98s

CIFAR-10(100 images)

Resnet-20 286s 2.86s

Resnet-32 482s 4.82s

Resnet-44 658s 6.58s

Resnet-56 871s 8.71s

Resnet-110 1,555s 15.55s

One notable distinction of LATTIGO is its refresh process starting from level 0,

whereas SEAL leaves one level remaining. Apart from the slightly lower communica-

tion overhead advantage in SEAL, this difference is not significant.

In summary, the Lattigo library enables the utilization of smaller parameters com-

pared to existing ones. However, achieving this requires designing a new multiplexed

parallel convolution that differs from the approach used in previous works. Currently,

efforts are underway to implement new code tailored to the current situation, aiming

to maximize performance improvements and achieve superior outcomes compared to

49

existing results.

3.5 Future Works

While the improvements and advantages have been discussed, there are still areas for

further improvement and research. Firstly, previous studies have focused on larger pa-

rameters such as N = 216 and n = 215 due to bootstrapping requirements. However,

my research can be conducted with smaller parameters. This has the potential to sig-

nificantly reduce communication costs by approximately half, as demonstrated in the

experimental results. Additionally, it is expected to reduce the overall experiment time.

However, using smaller parameters may result in a reduction in depth and the ability to

use fewer special modulus, potentially increasing the computation time for operations

like multiplication.

Furthermore, the experiments in this study are conducted solely using a CPU, with-

out utilizing GPU acceleration. By incorporating GPU acceleration, significantly faster

inference times can be achieved compared to the current setup. This has the potential

to yield superior results in all aspects compared to DELPHI.

One limitation of this study is that the replacement of the bootstrapping process

in the ciphertext refresh prevents the use of the imaginary-removing bootstrapping

method described in previous papers [5]. This poses a challenge when implementing

deep networks like ResNet-110, as it may lead to the occurrence of the divergence

phenomenon, which is an existing problem. However, this issue is planned to be ad-

dressed in future work, allowing for the implementation of imaginary removing even

without the bootstrapping part.

In summary, the Lattigo library’s advantage of facilitating easy modification of

special modulus contributes to its faster speed compared to other libraries. Adjusting

the polynomial modulus enables changes in the packing structure, resulting in benefits

not only in computation time but also in communication costs during image inference.

50

It is expected to achieve approximately four times improvement in computation time

and around two times improvement in communication costs. Furthermore, the library

provides the potential to utilize communication-based bootstrapping as an alternative

to comparison operations, offering additional opportunities for performance enhance-

ment.

51

Chapter 4

Attack Algorithm for a Keystore-Based Secret Key Gen-

eration Method

4.1 Introduction

With the increasing prevalence of data storage and transmission in public cloud sys-

tems, ensuring the security of these systems has become of paramount importance.

Traditional password-based approaches can leave users vulnerable to dictionary at-

tacks, emphasizing the need for more secure alternatives. Secure keys have gained

widespread adoption in various domains such as file encryption, virtual private net-

work access, and user authentication, as they disclose less user information compared

to password-based methods. However, conventional key generation methods face chal-

lenges when it comes to managing long-term files in cloud systems.

The requirement to individually encrypt each file with random secure keys presents

a necessity for long-term data protection, considering the characteristics of long-term

file storage and frequent user access. This approach helps maintain the security of

cloud systems against potential attacks such as ciphertext-only attacks or chosen-

plaintext attacks.

To address the goal of achieving secure encryption with a one-key-for-one-file

52

paradigm, a novel key generation method utilizing the keystore seed was proposed. The

proponents of this method claimed that it could generate a large number of information-

theoretically secure keys. However, in this dissertation, I present a groundbreaking ap-

proach to breaking their key generation scheme by reconstructing the keystore seed

using a small set of collected keys.

This chapter focuses on discussing the issues associated with the newly proposed

method for solving the key generation problem in file transfer and storage within cloud

systems. The previously proposed method could generate multiple keys using a mini-

mal amount of information through the utilization of the keystore seed. The proponents

argued that the generated keys were information-theoretically secure. However, I delve

into the problems arising from the presence of duplicated keystore seeds and highlight

the vulnerability of the method to attacks.

Subsequently, in Section 4.2, I outline the problems associated with generating and

managing secret keys using the exclusive or operation. Section 4.3 delves into the lin-

ear attack algorithm employed for the secret key generation method presented in [46]. I

explore how this attack leverages key index information and provide a numerical anal-

ysis, demonstrating the number of collected keys required to successfully compromise

the proposed method. Moreover, I present the attack probability of the linear attack

using tables and graphical figures, illustrating the potential weaknesses in the scheme.

Finally, in Section 4.4, I unveil the information-theoretic weaknesses of modified

schemes that employ hashed keys, shedding light on the limitations and vulnerabilities

of these alterations.

4.2 Problems of Generating and Management Using Exclusive-

OR Keys

In previous papers, exclusive OR key generation using keystore seed, and if the man-

agement method is used, since the attacker does not know keystore seed, they claim

53

that each user can obtain an information-theoretically secure key just by sending the

index. In order words, even if the attacker knows the key, cannot find out information

about other keys.

To explain about problems of key generation, see how it is generated when t = 5.

After selecting one encryption key ki, when the corresponding index is transmitted

along with the ciphertext, the key index m1,m2,m3,m4,m5 value can be known.

And form this index, the lengths of l are summed to become ki, and the five com-

bined results also be seen. If 4l starting from m1,m2,m3,m4 are known, the value

of l starting from m5 is automatically known because the added value is known. This

means that each key contains as much information as l bits of the keystore seed. If an

attacker finds out information about multiple keys in the same way, could find out all

of the keystore seed if the attacker exceeds a certain number of keys. This is because

the entropy of kj with respect to index j is not greater than l(1− ϵ), even if the values

and index values are known for n keys in the formula which is claimed in the previous

paper, but is determined as one value for a given index entropy will be 0.

In special cases for one key, the number of possible candidates could be reduced.

Among the index values for when t = 5, set as X = m5 − m1, satisfy 3 < X < l

at this time there are 2X possible candidates for keystore seed for all corresponding

indexes. This value is much smaller than 24l, which is a real possible candidate in

the general case, which can be seen as another problem due to overlapping use. If the

attacker checks the case of 3 < X < l, when generating one key, the frequency used

for each value is shown in Table 4.1 below.

In this case, even if there is only one key it is possible to obtain a candidate group

for the keystore seed with a small amount of operation. It has the advantage of being

able to attack at an earlier time by checking the index value in multiple keys and

checking whether it is satisfied in this special case first, and then checking other values

based on the result.

54

Table 4.1: Frequency used for one key in special case

5 times use l −m5 +m1

4 times use (m5 −m4) + (m2 −m1)

3 times use (m4 −m3) + (m3 −m2)

2 times use (m3 −m2) + (m4 −m3)

1 time use (m2 −m1) + (m5 −m4)

4.3 Linear Attack on Key Generation and Management

4.3.1 Linear Attack Algorithm

In this section, I propose an attack algorithm to reconstruct a keystore seed from a

number of collected keys. For example, assume that I have some keys with t = 5

as presented in [46]. Each key has 5 indices and consists of 5 binary exclusive OR

subkeys of length l starting at given indices. Each key can make l × L submatrix Mi

shown on the left side of Figure 4.1. Each Mi consists of l indicator vectors to generate

key ki. For example, I have one key with index i = (1, 3, 4, 6, 7). Then, the indicator

vector e01 is 0101101100 · · · 00 (All 0 except indices 1,3,4,6,7). Next, the indicator

vector e11 is a circular shift to the right of e01. Rows of Mi consist of e0i , · · · , e
l−1
i and

rank(Mi) = l because it has l independent indicator vectors. If the tl << L condition

is not satisfied, there are dependent indicator vectors due to overlap by cyclic shift. The

indicator matrix M is made by stacking up M ′
is. Consequently, I stack up submatrices

until M satisfies rank(M) = L. Finally, I find keystore seed using the system of linear

equations as Figure 4.1 because M becomes full rank and it is invertible. The attack

algorithm is summarized in Algorithm 4.1. If the indicator matrix M has rank L by

stacking up several indicator submatrices, Argument 1 is not correct for a sufficiently

large n to make M full rank. Thus, their key generation method is not secure.

55

Figure 4.1: Matrix operation to find keystore seed.

56

Algorithm 4.1 Successful attack probability with R keys
Input: Variables L, l, R, t

Output: True if the indicator matrix rank is larger than or equal to

L

for i from 1 to R do

key index set← Randomly select t integers in range of (0, L− 1)

ei
0 ← indicator vector of key index set of length l

for j from 1 to l − 1 do

ei
j ← circular cyclic shift right once of eij−1

end for

Mi ← stack{ei0, · · · , eil−1}

M = stack{M1, · · · ,Mi}

if rank(M) ≥ L then

return True

end if

end for

Let Z be a random variable defined as

Z =

1 if rank(M) = L

0 if rank(M) ̸= L.

With this random variable, the left-hand side of (2.1) can be rewritten as

57

H(ki | j1, · · · , jn, i, kj1 , · · · , kjn) =

H(ki | j1, · · · , jn, i, kj1 , · · · , kjn , Z = 1)P (Z = 1)

+H(ki | j1, · · · , jn, i, kj1 , · · · , kjn , Z = 0)P (Z = 0), (4.1)

where P (Z = 1) means that the keystore seed is reconstructed and the key’s entropy

goes to 0 because ki is automatically determined with key index i. Therefore, (4.1)

only contains the P (Z = 0) case. Since H(ki | j1, · · · , jn, i, kj1 , · · · , kjn) ≤ l, I have

H(ki |j1, · · · , jn, i, kj1 , · · · , kjn , Z = 0)P (Z = 0)

≤ lP (Z = 0).

According to numerical analysis, P (Z = 0) becomes almost 0 when the number

of collected keys increases, which means that the lower bound of entropy in the n-

th order expansion in Argument 1 is not correct for a large n. Although Argument

1 is correct for very small n, it is not useful in that they could not generate many

secure keys because the purpose of their proposed method is to deal with one-key-

for-one-file in cloud systems. In other words, when the entropy of the generated keys

becomes 0, the keystore seed cannot be used to generate secure keys anymore. Thus,

attackers can reconstruct the keystore seed with high probability, which means that

their key generation method is no longer information-theoretically ϵ-secure. In the

next subsection, I will show the number of collected keys to make rank(M) = L by

numerical analysis.

4.3.2 Successful Linear Attack Probability

The successful attack probability with R keys is given as a probability that an indicator

matrix M has a rank larger than or equal to L by using R keys as in Algorithm 4.1.

Clearly, at least L/l keys are required to make M with full rank. Figures 4.2 and 4.3

show that the successful attack probability of the key generation algorithm in [46] is

58

numerically derived for L = 212, 214, l = 27, 28, respectively when t = 5, 10, 20. Ta-

ble 4.2 lists the successful attack probability in Figures 4.2 and 4.3 for several numbers

of R.

Table 4.2: Successful attack probability of the proposed attack algorithm

L = 212, l = 27

Number of keys t = 5 t = 10 t = 20

R = 32 0.02 0.664 0.986

R = 40 0.735 1 1

R = 84 1 1 1

L = 214, l = 28

Number of keys t = 5 t = 10 t = 20

R = 64 0.02 0.540 0.820

R = 70 0.208 0.992 1

R = 100 0.801 1 1

R = 141 1 1 1

59

(a)

Figure 4.2: Successful attack probability of the proposed attack algorithm when: L =

212, l = 27.

60

(b)

Figure 4.3: Successful attack probability of the proposed attack algorithm when: L =

214, l = 28.

61

4.4 Information Theoretic Weakness of Modified Yang-Wu’s

Schemes with Hashed Keys

The forward secrecy is a property such that if a secret key is compromised, past keys

are not compromised. According to the key generation method in [46], several keys

are generated from one keystore seed through a linear combination. If the number of

generated keys is large enough, the newly generated key will have only a very small

entropy from previously generated keys. This idea can be checked via the following

observation.

For binary independent random variables X and Y , suppose that H(X) = H(Y) =

1 and H(X,Y) = 2. Then, I have

H(X,Y |X ⊕ Y) = H(X,Y,X ⊕ Y)−H(X ⊕ Y)

= H(X,Y)−H(X ⊕ Y) = 1.

This can easily be extended and applied to Yang and Wu’s algorithm intended to pro-

vide independent and uncorrelated secret keys for the one-key-for-one-file long-term

secure system. Assume that I have one key generated from tl bits of keystore seed

as in Figure 4.4. If I know the subkeys K(mj)K(mj + 1) · · ·K(mj + l − 1) for

j = 1, · · · , t− 1, I can derive the subkey K(mt)K(mt +1) · · ·K(mt + l− 1) since I

know the key k(0)k(1) · · · k(l−1). As t increases, the number of subkeys generating a

key becomes large. This becomes a weak point when giving the indicator matrix M a

full rank in Section 4.3. As the simulation results show that the successful attack prob-

ability of the proposed attack algorithm for t = 10, 20 increases abruptly compared to

t = 5 when the number of collected keys becomes large. In addition, the successful

attack probability becomes very large as t increases. Therefore, a large value of t for

the key generation scheme should be avoided.

In real applications, it is very important to provide a way of strong protection for

the keystore seed. However, in a cloud environment, there is a possibility that some

62

information can be disclosed during the processing such as key generation, file en-

cryption, or decryption, due to undiscovered weaknesses of systems or side-channel

attacks as in [47]. In this dissertation, I show that it is possible to reconstruct the entire

keystore seed even if a very small number of generated keys (i.e., 84 keys) are leaked

compared to the total size of the possible keys (i.e., 253 keys).

In order to reduce the risk of keystore seed reconstruction, the encryption using a

hashed key h(k) was proposed in [48], where k is a generated key from the keystore

seed and h(·) is a one-way hash function. It is true that encryption with a hashed

key could avoid the proposed linear attack of keystore seed reconstruction. However,

avoiding the linear attack does not guarantee information-theoretically ϵ-secure since

hashed keys are the same number of bits as original keys. If the original keystore is not

information-theoretically ϵ-secure, hashed keys are not also information-theoretically

ϵ-secure since hashing is a one-to-one mapping. Hashing only increases computational

complexity, but it does not guarantee key entropy.

The hashed key can be a countermeasure for the proposed linear attack. Moreover,

by introducing a hash chain for key generation, it is possible to increase both the com-

putational complexity of the linear analysis and the number of possible keys. Let us

set each subkey as aj = K(mj)K(mj +1) · · ·K(mj + l−1) for j = 1, · · · , 5. Then,

the key kj is generated as kj = h(h(h(h(h(a1) ⊕ a2) ⊕ a3) ⊕ a4) ⊕ a5), where ai

is a subkey and h(·) is a one-way hash function from {0, 1}∗ to {0, 1}l. Note that if

the order of applying ai is changed, the generated key is completely different when a

cryptographic hash function such as SHA-2 or SHA-3 is used. Even though this type

of countermeasure cannot guarantee information-theoretically ϵ-secure keys, but it can

be a cryptographically secure way.

63

Figure 4.4: Key generation by subkeys.

64

Chapter 5

Conclusions

In this dissertation, research on privacy-preserving machine learning using a hybrid

method of HE and MPC to reduce bootstrapping computation cost and attack algorithm

for a keystore-based key generation method were presented.

In Chapter 2, a brief introduction of privacy-preserving machine learning and se-

cret key generation method using keystore seed were briefly overviewed. Preliminar-

ies for homomorphic encryption especially CKKS, multi-party computation, privacy-

preserving machine learning, and secret key generation and management were pre-

sented.

In Chapter 3, I proposed a new method of bootstrapping replacement using com-

munication cost. A bottleneck of HE-PPML could be solved using ciphertext refresh

when the server and client could do communications. Random addition and deletion

could execute with communication between the server and clients. Using the proposed

technique, the bootstrapping replacement has good time and communication perfor-

mance compared to the previous work. Since it is possible to improve performance

using GPUs and parameter changes, it can be expected to outperform DELPHI in all

aspects of performance.

In Chapter 4, I proposed the attack algorithm for a keystore-based secret key gen-

eration and management. As the demand for long-term data over the public clouds

65

increases, a large number of secure keys are needed. To deal with this problem, Yang

and Wu proposed a new key generation method using the keystore seed [46]. In this

dissertation, I proposed an attack algorithm for their key generation method, where a

small number of collected keys can be used to reconstruct the keystore seed with high

probability. Although the encryption using a hashed key could avoid the proposed re-

construction attack, it still does not guarantee the information-theoretically ϵ-secure

in certain situations where some information is leaked. Therefore, a new secure key

generation method with keystore seed can be studied in future research.

66

Bibliography

[1] Yao, Andrew C. ”Protocols for secure computations,” 23rd Annual Symposium

on Foundations of Computer Science (sfcs 1982). IEEE, 1982

[2] Lee, E., Lee, J.-W., No, J.-S., and Kim, Y.-S. ”Minimax approximation of sign

function by composite polynomial for homomorphic comparison,” IEEE Trans-

actions on Dependable and Secure Computing, accepted for publication, 2021.

[3] Lee, J., Lee, E., Lee, J.-W., Kim, Y., Kim, Y.-S., and No, J.-S. ”Precise approx-

imation of convolutional neural networks for homomorphically encrypted data,”

arXiv preprint arXiv:2105.10879, 2021.

[4] Lee, E., Lee, J.-W., Kim, Y.-S., and No, J.-S. ”Optimization of homomorphic

comparison algorithm on RNS-CKKS scheme,” IEEE Access, 10:26163–26176,

2022.

[5] Lee, Eunsang, et al. ”Low-complexity deep convolutional neural networks on

fully homomorphic encryption using multiplexed parallel convolutions,” Interna-

tional Conference on Machine Learning. ICML, 2022.

[6] Krizhevsky, Alex, and Geoffrey Hinton. ”Learning multiple layers of features

from tiny images,” (2009): 7.

[7] Mishra, Pratyush, et al. ”Delphi: A cryptographic inference service for neural

networks,” 29th USENIX Security Symposium (USENIX Security 20). 2020.

67

[8] Juvekar, Chiraag, Vinod Vaikuntanathan, and Anantha Chandrakasan.

”GAZELLE: A low latency framework for secure neural network inference,”

27th USENIX Security Symposium (USENIX Security 18). 2018.

[9] Cheon, Jung Hee, et al. ”A full RNS variant of approximate homomorphic en-

cryption,” Selected Areas in Cryptography–SAC 2018: 25th International Con-

ference, Calgary, AB, Canada, August 15–17, 2018, Revised Selected Papers 25.

Springer International Publishing, 2019.

[10] https://github.com/Microsoft/SEAL, November 2020. Microsoft Research, Red-

mond, WA.

[11] Gentry, Craig. ”Fully homomorphic encryption using ideal lattices,” Proceedings

of the forty-first annual ACM Symposium on Theory of Computing. 2009.

[12] Gentry, Craig, Shai Halevi, and Nigel P. Smart. ”Better bootstrapping in fully

homomorphic encryption,” International Workshop on Public Key Cryptography.

Springer, Berlin, Heidelberg, 2012.

[13] Cheon, Jung Hee, et al. ”Homomorphic encryption for arithmetic of approximate

numbers,” International Conference on the Theory and Application of Cryptol-

ogy and Information Security. Springer, Cham, 2017.

[14] Damgård, Ivan, et al. ”Multiparty computation fromsomewhat homomorphic en-

cryption,” Annual Cryptology Conference(CRYPTO). Springer, Berlin, Heidel-

berg, 2012

[15] Chillotti, Ilaria, et al. ”TFHE: fast fully homomorphic encryption over the torus,”

Journal of Cryptology 33.1 (2020): 34-91.

[16] Mohassel, Payman, and Yupeng Zhang. ”Secureml: A system for scalable

privacy-preserving machine learning,” 2017 IEEE symposium on security and

privacy (SP). IEEE, 2017.

68

[17] Gilad-Bachrach, Ran, et al. ”Cryptonets: Applying neural networks to encrypted

data with high throughput and accuracy,” International Conference on Machine

Learning. ICML, 2016.

[18] J. Liu, M. Juuti, Y. Lu, and N. Asokan. “Oblivious Neural Network Predictions

via MiniONN Transformations,” In: CCS ’17

[19] Mohassel, Payman, and Peter Rindal. ”ABY3: A mixed protocol framework for

machine learning,” Proceedings of the 2018 ACM SIGSAC Conference on Com-

puter and Communications Security. 2018.

[20] Rouhani, Bita Darvish, M. Sadegh Riazi, and Farinaz Koushanfar. ”Deepsecure:

Scalable provably-secure deep learning,” Proceedings of the 55th Annual Design

Automation Conference. 2018.

[21] Boemer, Fabian, et al. ”nGraph-HE: a graph compiler for deep learning on homo-

morphically encrypted data,” Proceedings of the 16th ACM International Confer-

ence on Computing Frontiers. 2019.

[22] Boemer, Fabian, et al. ”nGraph-HE2: A high-throughput framework for neural

network inference on encrypted data,” Proceedings of the 7th ACM Workshop

on Encrypted Computing Applied Homomorphic Cryptography. 2019.

[23] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song,

”Bootstrapping for approximate homomorphic encryption,” EUROCRYPT 2018

[24] Bossuat, J.-P., Mouchet, C., Troncoso-Pastoriza, J., and Hubaux, J.-P. ”Efficient

bootstrapping for approximate homomorphic encryption with non-sparse keys,”

In EUROCRYPT 2021, pp. 587–617. Springer, 2021

[25] Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y. ”A full RNS variant of

approximate homomorphic encryption,” In Proceedings of International Confer-

ence on Selected Areas in Cryptography, pp. 347–368, 2018a

69

[26] Cheon, J. H., Han, K., Kim, A., Kim, M., and Song, Y. ”Bootstrapping for

approximate homomorphic encryption,” In EUROCRYPT 2018, pp. 360–384.

Springer, 2018b.

[27] Jung, W., Kim, S., Ahn, J. H., Cheon, J. H., and Lee, Y. ”Over 100x faster boot-

strapping in fully homomorphic encryption through memory-centric optimiza-

tion with GPU,”. IACR Transactions on Cryptographic Hardware and Embedded

Systems, 2021(1):114–148, 2021

[28] Lee, J.-W., Lee, E., Lee, Y., Kim, Y.-S., and No, J.-S. ”Highprecision boot-

strapping of RNS-CKKS homomorphic encryption using optimal minimax poly-

nomial approximation and inverse sine function,” In EUROCRYPT 2021, pp.

618–647. Springer, 2021c.

[29] Lee, J.-W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee, J.,

Yoo, D., Kim, Y.-S., et al. ”Privacypreserving machine learning with fully homo-

morphic encryption for deep neural network,” IEEE Access, 10:30039–30054,

2022b

[30] Lee, Y., Lee, J.-W., Kim, Y.-S., Kang, H., and No, J.-S. ”High-precision ap-

proximate homomorphic encryption by error variance minimization,” In EURO-

CRYPT 2022, pp.551–580. Springer, 2022c

[31] L´opez-Alt, A., Tromer, E., Vaikuntanathan, V.: ”On-the-fly multiparty compu-

tation on the cloud via multikey fully homomorphic encryption,” In: Proceedings

of the 44th Symposium on Theory of Computing Conference, STOC 2012, pp.

1219–1234. ACM (2012)

[32] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: ”(Leveled) fully homomorphic en-

cryption without bootstrapping,” In: Proceedings of ITCS, pp. 309–325. ACM

(2012)

70

[33] Brakerski, Z., Vaikuntanathan. V.: ”Efficient fully homomorphic encryption from

(standard) LWE,” In: Proceedings of the 2011 IEEE 52nd Annual Symposium

on Foundations of Computer Science, FOCS 2011, pp. 97–106. IEEE Computer

Society (2011)

[34] Brakerski, Z., Vaikuntanathan, V.: ”Fully homomorphic encryption from ring-

LWE and security for key dependent messages,” In: Rogaway, P. (ed.) CRYPTO

2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011).

[35] Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: ”Fully homomorphic en-

cryption over the integers,” In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.

6110, pp. 24–43. Springer, Heidelberg (2010).

[36] Fan, J., Vercauteren, F.: ”Somewhat practical fully homomorphic encryption,”

IACR Cryptology ePrint Archive 2012/144 (2012)

[37] Naehrig, M., Lauter, K., Vaikuntanathan, V.: ”Can homomorphic encryption be

practical?,” In: Proceedings of the 3rd ACM Workshop on Cloud Computing

Security Workshop, pp. 113–124. ACM (2011)

[38] Gentry, C., Sahai, A., Waters, B.: ”Homomorphic encryption from learning with

errors: conceptually-simpler, asymptotically-faster, attribute-based,” In: Canetti,

R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,

Heidelberg (2013).

[39] Q. Lou and L. Jiang, ‘‘SHE: A fast and accurate deep neural network for en-

crypted data,’’ in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2019, pp. 1–9

[40] J. Fan and F. Vercauteren, ‘‘Somewhat practical fully homomorphic encryption,’’

Cryptol. ePrint Arch., Bellevue, WA, USA, Tech. Rep. 2012/144, 2020. [Online].

Available: https://eprint.iacr.org/ 2012/144

71

[41] C. Shannon, “Communication theory of secrecy systems,” Bell System Technical

Journal 28 (4): 656 – 715, 1949.

[42] U. Maurer, ”Conditionally-Perfect Secrecy and a Provably-Secure Randomised

Cipher,” Journal of Cryptology, vol. 5, no.1, pp. 53-66, 1992

[43] Morris, R.; Thompson, K. Password security: A case history. Commun. ACM

1979, 22, 594–597.

[44] Monrose, F.; Reiter, M.K.; Li, Q.; Wetzel, S. ”Cryptographic key generation from

voice,” In Proceedings of the 2001 IEEE Symposium on Security and Privacy,

2001; pp. 202–213.

[45] Menezes, A.J.; van Oorschot, P.; Vanstone, S. Handbook of Applied Cryptogra-

phy. CRC Press: Boca Raton, FL, USA, 1996.

[46] Yang, E.H.; Wu, X.W. ”Information-theoretically secure key generation and man-

agement,” In Proceedings of 2017 IEEE International Symposium on Information

Theory (ISIT), Aachen, Germany, 25–30 June 2017; pp. 1529–1533.

[47] Bazm, M.-M.; Lacoste, M.; Sudholt, M.; Menaud, J.-M. ”Side Channels in the

Cloud: Isolation Challenges, Attacks, and Countermeasures,” 2017. Available on-

line: https://hal.inria.fr/hal-01591808/ (accessed on 17 February 2019)

[48] Wu, X.W.; Yang, E.H.; Wang, J.H. ”Lightweight security protocols for the In-

ternet of Things,” In Proceedings of the 2017 IEEE 28th Annual International

Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC),

Montreal, Canada, 8–13 October 2017.

[49] Mouchet, Christian Vincent, et al. ”Lattigo: A multiparty homomorphic encryp-

tion library in go,” Proceedings of the 8th Workshop on Encrypted Computing

and Applied Homomorphic Cryptography. No. CONF. 2020.

72

[50] Al Badawi, Ahmad, et al. ”OpenFHE: Open-source fully homomorphic encryp-

tion library,” Proceedings of the 10th Workshop on Encrypted Computing Ap-

plied Homomorphic Cryptography. 2022.

73

초록

이학위논문에서는다음두가지의연구가이루어졌다: i)정보보호머신러닝에

서통신환경을사용하여 bootstrapping을대체한암호문새로고침방법 ii)키스토어

시드기반비밀키생성의문제점및공격방식.

첫번째로,동형암호를이용한정보보호머신러닝의가장큰문제점인 bootstrap-

ping시간이매우크다는단점을해결하기위해통신환경을이용하였다.랜덤한값

을더해서유저에게보내준후유저가복호화및재암호화를통해암호문의레벨을

올려주어 bootstrapping효과를대체할수있고,기존연구들에비해시간및통신량

측면에서도 좋은 성능을 유지하면서 pre-trained 네트워크에서도 사용가능한 것을

확인하였다. 또한 중요한 파라미터인 정확도 측면에서도 기존 결과와 유사한 값을

유지하면서다른문제점없이성능개선을하였음을확인하였다.

두 번째로, 키 스토어 시드 기반 비밀 키 생성 방법의 문제점과 그에 대한 선형

공격을제기한다.확률적으로작은개수의키가모였을때에도공격이가능한것을

확인하여그에맞는수식적인문제도제기하였다.마지막으로그선형공격을막을

수있는방식을제공하며기존의문제점에대한해결책도제시하였다.

주요어: 완전동형암호, 다자간계산, 정보보호 머신러닝, 부트스트래핑, 암호학,

암호문새로고침,정보이론적으로안전한키,키생성,키저장방식,키스토어시드,

데이터프라이버시

학번: 2017-22828

74

	Abstract
	Contents
	List of Tables
	List of Figures
	1 INTRODUCTION
	1.1 Background
	1.2 Overview of Dissertation
	2 Preliminaries
	2.1 Privacy-Preserving Machine Learning
	2.1.1 Fully Homomorphic Encryption
	2.1.2 Multi-Party Computation
	2.1.3 Recent Research of Privacy-Preserving Machine Learning
	2.2 Key Generation and Management Based on Keystore Seed
	2.2.1 Key Generation
	2.2.2 Key Management
	2.2.3 Information-Theoretically ε-Secure Keystore
	3 Client-Aided Deep Neural Network on Fully Homomorphic
	without Bootstrapping in the Client-Server Model
	3.1 Introduction
	3.2 Cryptographic Inference on Deep Neural Networks
	3.2.1 Inference of Deep Convolutional Neural Networks on
	Homomorphic Encryption
	3.2.2 Inference on Multi-Party Computation of Deep
	Neural Networks
	3.3 Client-Aided Inference Using Communication Cost
	3.3.1 Replacing Bootstrapping Using Communication Cost
	3.3.2 Level Consumption of Proposed Method
	3.4 Simulation Results
	3.4.1 Classification Runtime and Communication Cost
	3.4.2 Accuracy
	3.4.3 Compare to Previous Works
	3.4.4 Classification Using Library LATTIGO
	3.5 Future
	4 Attack Algorithm for a Keystore-Based Secret Key Generation Method
	4.1 Introduction
	4.2 Problems of Generating and Management Using Exclusive-OR Keys
	4.3 Linear Attack on Key Generation and Management
	4.3.1 Linear Attack Algorithm
	4.3.2 Successful Linear Attack Probability
	4.4 Information Theoretic Weakness of Modified Yang-Wu’s Schemes
	Hashed Keys
	5 Conclusions
	Abstract (In Korean)

<startpage>12
Abstract i
Contents iii
List of Tables v
List of Figures vi
1 INTRODUCTION 1
1.1 Background 1
1.2 Overview of Dissertation 2
2 Preliminaries 4
2.1 Privacy-Preserving Machine Learning 4
2.1.1 Fully Homomorphic Encryption 4
2.1.2 Multi-Party Computation 10
2.1.3 Recent Research of Privacy-Preserving Machine Learning 13
2.2 Key Generation and Management Based on Keystore Seed 20
2.2.1 Key Generation 20
2.2.2 Key Management 21
2.2.3 Information-Theoretically ε-Secure Keystore 21
3 Client-Aided Deep Neural Network on Fully Homomorphic Encryption
without Bootstrapping in the Client-Server Model 24
3.1 Introduction 24
3.2 Cryptographic Inference on Deep Neural Networks 26
3.2.1 Inference of Deep Convolutional Neural Networks on Fully
Homomorphic Encryption 26
3.2.2 Inference on Multi-Party Computation of Deep Convolutional
Neural Networks 28
3.3 Client-Aided Inference Using Communication Cost 32
3.3.1 Replacing Bootstrapping Using Communication Cost 32
3.3.2 Level Consumption of Proposed Method 39
3.4 Simulation Results 44
3.4.1 Classification Runtime and Communication Cost 44
3.4.2 Accuracy 46
3.4.3 Compare to Previous Works 46
3.4.4 Classification Using Library LATTIGO 47
3.5 Future Works50
4 Attack Algorithm for a Keystore-Based Secret Key Generation Method 52
4.1 Introduction 52
4.2 Problems of Generating and Management Using Exclusive-OR Keys 53
4.3 Linear Attack on Key Generation and Management 55
4.3.1 Linear Attack Algorithm 55
4.3.2 Successful Linear Attack Probability 58
4.4 Information Theoretic Weakness of Modified Yang-Wu’s Schemes with
Hashed Keys 62
5 Conclusions 65
Abstract (In Korean) 74
</body>

