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Abstract

Continual Learning Considering
Hierarchical Labels

Okchul Jung
Electrical and Computer Engineering
The Graduate School

Seoul National University

Hierarchical Learning and Continual Learning are two
powerful paradigms in machine learning. The former leverages the
inherent structure in data through a technique known as
Hierarchical Multi—label Classification (HMC), allowing models to
capture both broad and specific patterns within the data. The latter
enables models to learn from a continuous stream of data over time,
essential in adapting to evolving real—world data distributions.
Despite their strengths, traditional continual learning approaches
often struggle with hierarchical relationships between tasks.

This paper introduces an Innovative approach that
synergizes hierarchical learning and continual learning, referred to
as Hierarchical Label Expansion (HLE). By proposing a multi—level
hierarchical class incremental task configuration with an online
learning constraint, the paper explores how networks can initially
learn coarse—grained classes and then expand to more fine—grained
classes across various hierarchy levels. To support this new setup,
a rehearsal—based method using hierarchy—aware pseudo—labeling

1s presented, alongside an effective memory management and

i



sampling strategy. These components enable the model to better
understand and adapt to the hierarchical structure of tasks,
efficiently learning from new data while retaining performance on
previous tasks. The experimental results validate the effectiveness
of this method, showing improved classification accuracy across all
hierarchy levels, irrespective of depth or class imbalance ratio.
Remarkably, it outperforms existing methods and demonstrates
superior performance in various continual learning scenarios.

The paper is structured into chapters, beginning with an
introduction to the foundational concepts of hierarchical and
continual learning. The main body of the work is dedicated to the
integration of these paradigms through 'Continual Learning
Considering Hierarchical Labels', representing a novel advancement
in modeling complex and evolving environments. The proposed
combination paves the way for more robust continual learning

frameworks capable of handling the challenges of real—world data.

Keywords : Continual Learning, Hierarchical Learning, Deep Learning,
Machine Learning

Student Number : 2021-21407
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CHAPTER |

Introduction

1.1 Aim Of the Research

The aim of this research is to address the challenges in continual learning, particularly when there
are hierarchical relationships between old and new tasks. Traditional continual learning approaches, as
discussed in prior works [2-5] do not account for such aforementioned scenario, where data hierarchy
is to be considered. There have been Continual Learning works [1, 6] that suggest novel setups aside
from the conventional ones, but there have not been any hierarchical Continual Learning setups yet.
This research proposes a novel approach that combines the strengths of hierarchical learning, a concept
explored extensively [7-9], and Continual Learning. The research introduces a multi-level hierarchical
class incremental task configuration with an online learning constraint, termed as Hierarchical Label
Expansion (HLE). This innovative configuration allows a network to learn coarse-grained classes ini-
tially, with data labels continually expanding to more fine-grained classes across various levels of the
hierarchy. The research also introduces a rehearsal-based method that employs hierarchy-aware pseudo-
labeling and a simple yet effective memory management and sampling strategy. The ultimate goal of
this research is to improve the adaptability and robustness of machine learning models, enabling them

to learn and adapt in complex, evolving environments.

1.2 Hierarchical Learning

Hierarchical learning is a powerful approach in machine learning that leverages the inherent hier-
archical structure present within data. This approach organizes data in a hierarchical manner, allowing
models to learn representations at different levels of abstraction [9, 10]. In this context, a key applica-
tion of hierarchical learning is hierarchical multi-label classification, where data instances are associated

with a set of target labels that form a hierarchy [11, 12].



1.2.1 Hierarchical Multi-label Classification Problem

Hierarchical multi-label classification (HMC) differs from conventional image classification by in-
corporating a hierarchical structure into the label assignments [7]. In image classification, a single label
is assigned from a flat list of categories, whereas HMC considers labels that form a hierarchy or tax-
onomy. For example, in animal taxonomy, "Mammal” may be a superclass of ”Cat” and "Dog,” and an
image of a cat would be associated with the path Animal, Mammal, and Cat. This hierarchical struc-
ture allows for partially correct predictions, unlike flat classification [7]. HMC is commonly used when
classes are organized hierarchically rather than disjointly. The hierarchical structure can take the form
of a tree or a Directed Acyclic Graph (DAG) depending on the task, with objects associated with all
subclasses or a subset of them [13, 14]. Furthermore, HMC becomes even more challenging when each
object can be associated with multiple paths in the class hierarchy. This scenario is encountered in tasks

such as text classification, image annotation, and protein function prediction in bioinformatics [15-19].

1.2.2 Hierarchical Multi-label Classification Approaches

While addressing the classification methods, there are two primary approaches that hierarchical
multi-label classification employs: the local approach [20-22] and the global approach [14, 23]. The
local approach trains one classifier per node in the label hierarchy, solving a binary classification prob-
lem for each node. On the other hand, the global approach considers the entire hierarchy while training
a single model, which, while more computationally demanding, allows the model to exploit the correla-
tions between different labels in the hierarchy.

Algorithms that perform HMC must optimize a loss function either locally or globally. Local learn-
ing attempts to discover the specificities dictating the class relationships in particular regions of the
class hierarchy, later combining the local predictions to generate the final classification [24]. Global ap-
proaches for HMC, however, usually consist of a single classifier capable of associating objects with
their corresponding classes in the hierarchy as a whole [16,25].

Balancing the advantages and disadvantages of these two approaches is crucial. While global ap-
proaches are generally cheaper and do not suffer from the error-propagation problem, they may not
capture local information from the hierarchy. Conversely, local approaches are more computationally
expensive since they rely on a cascade of classifiers, but they are more suitable for extracting informa-
tion from specific regions of the class hierarchy [7].

One promising direction is a paradigm shift towards a hybrid method capable of simultaneously
optimizing both local and global loss functions. This hybrid approach balances the benefits of both local
and global strategies, reinforcing the propagation of gradients for proper local information encoding
among classes of the corresponding hierarchical level, while also keeping track of the label dependency
in the hierarchy as a whole. In addition, a hierarchical violation penalty is introduced to encourage

predictions that obey the hierarchical structure, setting a new state-of-the-art for HMC problems [23].



Hierarchical learning, particularly hierarchical multi-label classification, offers a robust and flexible
framework for handling complex classification tasks. It provides opportunities to improve prediction
accuracy and interpretability by leveraging the inherent hierarchical structure present within the data.
Furthermore, advances in combining local and global learning strategies are opening new avenues for

the effective application of hierarchical learning in diverse domains.

1.3 Continual Learning

Continual Learning (CL) is a learning paradigm that allows models to learn from a continuous stream
of data over time. This approach is crucial in real-world scenarios where data is often non-stationary, and
models are required to adapt to evolving data distributions. Continual learning enables models to adapt
to new tasks and environments without forgetting the knowledge they have previously acquired [4,5,26—
28]. It addresses the issue of catastrophic forgetting, where a model tends to forget previously learned

information when trained on new data.

1.3.1 Continual Learning Scenarios

Continual learning, also known as lifelong or incremental learning, is a critical aspect of machine
learning models, especially in the realm of deep learning, as it allows models to learn from a continuous
stream of data over time. This process can be categorized into three typical learning scenarios [2, 29]:
task-incremental, domain-incremental, and class-incremental.

Task-incremental learning scenario involves learning a series of tasks sequentially, with each task
having its own distinct training data. The primary goal of this scenario is to retain knowledge acquired
from previous tasks while effectively learning new tasks without a significant loss of previously acquired
knowledge, a phenomenon known as catastrophic forgetting. Domain-incremental learning scenario fo-
cuses on learning from different domains or environments, each representing a different distribution of
data. The objective here is to adapt the model to new domains without forgetting the knowledge ac-
quired from previous domains. Class-incremental learning scenario involves learning to recognize an
increasing number of classes over time. The model needs to handle the addition of new classes without
forgetting the previously learned classes. The field of continual learning is a critical and rapidly evolving
area in deep learning, with a wide array of techniques and algorithms being developed to tackle the three
aforementioned scenarios. Each of these techniques builds upon the knowledge from prior work, refin-
ing and improving upon the existing approaches to handle the continual learning tasks more effectively

and efficiently.

1.3.2 Continual Learning Settings

Continual Learning encompasses a variety of setups that mirror different real-world learning situ-

ations. These setups can be categorized primarily along two axes: online versus offline and task-free



versus task-based. Continual Learning (CL) setups can be classified as either online [30-33] or of-
fline [3,27,34-36], depending on how often streamed samples are utilized to train the model. CL setups
can also be categorized as task-free [37-39] or task-based [28, 36,40, 41], depending on the existence
of explicit task boundaries or identifiers. These different setups represent varying degrees of complexity
and difficulty in continual learning, each with its unique challenges and corresponding methodologies
to tackle them.

Online and Offline Continual Learning setup. In an online CL setup, data is encountered as a
continuous stream, where each data instance is utilized once and only once for training the model. This
framework emulates real-world situations where data is generated continuously over time and where the
model needs to learn and adapt “on the fly.” Each incoming data instance is processed individually for
model training, after which it is discarded, leaving no opportunity for it to be revisited in the learning
process. On the other hand, an offline CL setup provides a different approach to handling data. Unlike
its online counterpart, offline Continual Learning allows data from each task to be revisited and utilized
multiple times during the training process. Data in this setup is not handled on an individual basis. In-
stead, it is managed as a batch or a set of multiple data samples. This arrangement enables repeated
exposure of the model to the same data instances within a single training batch, offering multiple oppor-
tunities for learning and refinement. The above differences in handling data make online CL setup more
realistic, but also challenging setup in Continual Learning, relative to offline CL setup.

Task-free and Task-based Continual Learning setup. In task-free setups, the learning system
encounters a continuous stream of data without explicit task boundaries or task identifiers [37]. This
represents the most common way humans and animals experience the world - as a continuous stream
of information without clear demarcations of "tasks’. On the other hand, in task-based setups, the data
stream is divided into distinct tasks, and the model might have access to task identifiers during both
training and testing [36]. Task boundaries give the model a cue to consolidate the current knowledge

before moving to a new task, reducing the chances of catastrophic forgetting.

1.3.3 Continual Learning Approaches

There exist three common strategies employed to tackle the problem of catastrophic forgetting in
Continual Learning: regularization methods, dynamic architecture or parameter isolation methods, and
memory-based methods. Each of these methods offers a unique approach to managing the trade-off
between retaining old knowledge and incorporating new information, also known as stability-plasticity
dilemma [2].

Regularization methods. Regularization-based techniques typically introduce constraints on the
update process of model parameters and hyperparameters to reinforce previously acquired knowledge
while learning new tasks. The objective is to alleviate catastrophic forgetting in continual learning. One
notable method is the Elastic Weight Consolidation (EWC) algorithm proposed by Kirkpatrick et al. [5].
EWC works by adding a regularization term to the loss function that constrains important parameters of

the model, defined through the Fisher Information Matrix, from drastically changing while learning new



tasks. This way, EWC allows the model to keep important knowledge from old tasks. However, EWC’s
assumption that this matrix is diagonal is generally inaccurate. To counter this problem, Liu et al. [42]
suggested a strategy to approximate the diagonalization of the Fisher information matrix through the
rotation of the model’s parameter space, thereby preserving the forward output. While EWC necessitates
a quadratic penalty term for each learned task, leading to a linear rise in computational cost, Schwarz
et al. [43] proposed an online version of EWC to resolve this issue by focusing only on the most recent
task. Further, Chaudhry et al. [44] introduced an efficient alternative to EWC, called EWC++, which
employs a single Fisher information matrix for all previously learned tasks, updating the matrix using
a moving average approach. Another noteworthy approach is Synaptic Intelligence (SI) proposed by
Zenke et al. [45]. SI introduces a surrogate quantity to track the importance of a parameter for the
loss and then imposes a quadratic penalty during parameter updates to preserve important parameters.
Aljundi et al. [3] introduced the Memory Aware Synapses (MAS) approach. In MAS, the importance of
the parameters is computed with respect to the effect of a parameter change on the learned examples.
This importance is then used to guide the regularization process.

Parameter isolation and Dynamic structure methods. Dynamic architectures or parameter isola-
tion approaches involve either expanding the model architecture or isolating the parameters for each task
to tackle the catastrophic forgetting problem. These approaches can involve architectural modifications
like allocating new neurons or layers to new tasks or completely isolating the parameters for different
tasks. In the field of image classification, several dynamic architecture methods for continual learning
have been proposed. One such method is the Progressive Network proposed by Rusu et al. [26] In this
method, a new neural subnetwork is trained for each task with lateral connections allowing for feature
transfer from previously learned tasks. Aljundi et al. [46] developed a network of experts, where an ex-
pert gate is used to select the most relevant previous task to aid the learning of the new task. This gate
also selects the most suitable model for a given data instance at test time. Yoon et al. [47] introduced the
Dynamically Expandable Network (DEN) that utilizes previously acquired knowledge and expands the
network structure when the prior knowledge isn’t sufficient for the new task. Hung et al. [48] proposed
the Compacting Picking Growing (CPG) method, where parameters trained for all previous tasks are
frozen to prevent forgetting. Lee et al. [49] proposed a Continual Neural Dirichlet Process Mixture (CN-
DPM) model which uses different expert subnetworks for different data instances and decides to create
a new expert subnetwork based on a Bayesian non-parametric framework. Various methods have been
proposed to facilitate continual learning in image classification, utilizing the methodology of dynamic
architecture and parameter isolation. These methods seek to balance the retention of knowledge from
previous tasks with the learning of new tasks, thus mitigating the problem of catastrophic forgetting.

Memory-based methods. Memory-based methods [4, 27, 50] typically utilize a storage buffer to
retain data and related information from earlier tasks. This information is used during the learning of
subsequent tasks, allowing the system to strengthen its retention of prior knowledge and limit the impact
of catastrophic forgetting. Various strategies exist to achieve this objective, which are outlined below.

One of the primary methods, known as iCARL, was first proposed by Rebuff et al. [27] The iCARL



methodology employs stored data from past tasks and new data for training. However, this method has
its limitations, as it necessitates all data from new tasks to be trained concurrently. To address this,
Chaudhry et al. [50] introduced Experience Replay (ER), which leverages reservoir sampling [51] to
randomly select a specified quantity of data from a stream of unknown length for storage in the memory
buffer. However, this approach has its drawbacks if tasks have uneven numbers of instances. To handle
this, a range of other sampling algorithms have been proposed. For example, Aljundi et al. [52] treated
data selection as a constraint selection problem and opted for instances that minimized the solid angle
formed by their corresponding constraints. Liu et al. [53], on the other hand, trained exemplars using
image-size parameters to capture the most representative instances from previous tasks.

Some methodologies focus on the selection of data instances for retraining. For instance, Aljundi et
al. [54] presented Maximally Interfered Retrieval (MIR), a method that selects a subset of data instances
that experience an increase in loss if the model parameters are updated based on new data. Shim et
al. [55] proposed an Adversarial Shapley (AS) scoring method, which selects previous data instances that
can mostly maintain their decision boundaries during the training of the new task. Memory buffers can
also be divided into sections, as suggested by methods like Bias Correction (BiC) [56] and separation into
episodic and semantic memory [57]. There are also methods like Gradient Episodic Memory (GEM) [4]
and Averaged GEM (A-GEM) [58], which propose to prevent the parameter update from increasing the
loss of each individual previous task during the learning process of a new task. These memory-based
methods provide diverse strategies for tackling catastrophic forgetting, utilizing stored instances from
previous tasks to help the model retain the old knowledge while learning new tasks.

All three strategies come with their unique strengths and weaknesses, and choosing the right ap-

proach depends on the specific requirements of the continual learning problem at hand.

1.4 Contribution of Thesis

Traditional continual learning approaches often encounter difficulties when there are hierarchical re-
lationships between old and new tasks, especially when there are small or non-existent overlaps between
tasks. This challenge has been the focus of several research efforts, with various strategies proposed to
mitigate the effects of catastrophic forgetting, a phenomenon where the model tends to forget previously
learned tasks when learning new ones [59,60]. In light of these challenges, the integration of hierarchi-
cal learning and continual learning presents a promising direction for research. By combining these two
approaches, it is possible to develop models that can effectively learn and adapt in complex, evolving en-
vironments, handling the challenges of real-world data. The integration of these two approaches presents
a promising direction for research, offering the potential to develop models that can effectively learn and
adapt in complex, evolving environments. This introduction provides a foundation for the concepts and

methodologies that will be explored in depth in the subsequent chapters of the thesis.



1.5 Organization of Thesis

The paper’s first chapter provides a brief introduction to hierarchical learning and continual learning,
setting the groundwork for the explored concepts and methodologies. In the second chapter, the thesis
work, titled ’Continual Learning Considering Hierarchical Labels,’ is introduced. This work presents a
novel advancement by integrating hierarchical learning and continual learning, enabling models to learn

and adapt in complex and evolving environments.
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Online Continual Learning on
Hierarchical Label Expansion

In this research, a new Continual Learning (CL) configuration named Hierarchical Label Expansion
(HLE) is introduced, which focuses on the hierarchical relationships between classes in task-free online
CL scenarios. In HLE, classes are incrementally learned, where fine-grained classes expand from previ-
ously learned coarse-grained ones. The study introduces a new CL methodology called PL-FMS, which
combines Pseudo-Labeling(PL) based memory management and Flexible Memory Sampling (FMS).
This strategy effectively leverages hierarchy information between class labels, mirroring real-world
knowledge accumulation. The performance of the models was assessed using any-time inference and
measured the classification accuracy across all hierarchy levels. The proposed HLE model caters to sin-
gle and multiple hierarchy depths and handles balanced and imbalanced class data. The experiments
conducted on CIFAR100, Stanford-Cars, iNaturalist-19, and a new dataset, ImageNet-Hier100, showed
the superior performance of the proposed model, both in HLE and other existing CL setups such as

disjoint, blurry [1], and i-Blurry [61].

2.1 Hierarchical Label Expansion

2.1.1 Hierarchical CL Configurations

The Hierarchical Label Expansion (HLE) setup we propose implements task-free online learning,
enabling the model to gradually learn classes from different hierarchies, vertically and horizontally,
regardless of task limits. This setup anticipates the model learning broader parent classes prior to en-
countering more detailed child classes that emerge from them. An overview of the HLE setup is provided

in Figure 2.1(c).
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Figure 2.1: Comparison sketch between conventional, blurry [1], and our HLE setups. (a) Conventional
task-free online CL setup gradually introduces new classes and classifies data without task identification
(b) Blurry task-free online CL setup where classes are divided into major and minor categories at each
task, with varying proportions, leads to unclear task boundaries (c) Proposed HLE CL setup features
class label expansion where child class labels are added to parent class labels throughout the learning
process.

We visualize the model encountering a stream of data points as T = ((x1, y1), (z2,¥2), - - - ), where
each (x;,y;) comes from a data distribution Dx v, 2; € X is the jth model input (image), and y; € Y

is ;’s class label. Sequential tasks, indexed as k, can segregate this data stream 7 into disjoint sub-
t(k+1)-1
j=t(k)

k-th task. We represent the subset of classes the model encounters during the kth task as Y, = {y;|j =

sequences, T1, To, - - -, where each T}, = ((,y;)) and t(k) is the initial sample index for the
t(k),--- ,t(k + 1) — 1}. Traditional CL assumes the sampling distribution changes over time and the
sampling distributions for tasks don’t intersect, i.e., Y, N'Y; = () for k # [. However, more practical
contexts often require consideration, as with the i-Blurry CL setup [61] which assumes each task has a
shared subset of classes Y® that are continually trained, and a separate subset Yg that is only trained at a
specific task. In this case, Y}, is defined as Yj, = Y* U Y¢, implying that Y;, U Y; = Y* # ().

Our HLE offers additional structures to Y by creating a label relationship between classes in Y. We
consider Y to comprise classes from IT levels, therefore Y = |JI', Y and Y" N Y* = {, with Y"
being the label subset at hierarchy level h. A smaller h value indicates more coarse-grained classes. In
the HLE setup, each task expands the labels for a class subset at level & to their more detailed classes at

level (h+1). This means labels expand one level during each task. For the (k+ 1)-th task, a subset Y7 11

Yh+l Yh+1

h . . .
of Y} is chosen to be expanded into a set of more detailed classes kmew? knew:

which results in Y, =

To include multiple hierarchy levels, we consider a model that encompasses an encoder J for fea-
ture embedding and several classifiers {G"}/1_| corresponding to each hierarchy. Particularly, 5" (F(z))
predicts the classes within the h-th level that have been encountered until the current iteration. Dur-
ing training, a single label is assigned to each input irrespective of its hierarchical position in the data
stream, and the model remains unaware of the hierarchy relationship among classes. Instead, the model

is provided with the hierarchy level as a vague indication of its position.
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Figure 2.2: The illustration depicts the two hierarchical label expansion (HLE) scenarios. (a) In the
single-depth scenario, fine-grained classes increment horizontally from the coarse-grained classes within
the same hierarchy level. (b) In the multiple-depth scenario, classes expand vertically from the coarse-
grained to the fine-grained classes across multiple hierarchy levels.
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Figure 2.3: Sketch of our proposed method, PL-FMS’s two components: PL. and FMS. (a) Pseudo-
Labeling based memory management (PL) illustrates how to discard data samples based on their con-
tribution to the decrease in loss, irrespective of whether they are associated with pseudo-labels or true
labels. (b) Flexible Memory Sampling (FMS) demonstrates how the training batch is constructed by
filtering and compensating data samples.

2.1.2 Hierarchical CL Depth Scenarios

Our HLE configuration includes two situations: single-depth and multiple-depth scenarios (com-
pared to the non-existent depth in existing setups), as shown in Figure 2.2. In the single-depth scenario,
incremental learning occurs horizontally within the same hierarchical level. Conversely, in the multiple-
depth scenario, new classes are introduced vertically, each with progressively more detailed character-
istics. In the single-depth scenario, the model is trained on all parent classes during the initial task and
then expands them partially in subsequent tasks. In the multiple-depth scenario, the model’s capacity to
learn and expand hierarchical knowledge is assessed as it navigates through a complex hierarchy. This

implies that the model learns classes at hierarchy level h during the hth task.

2.1.3 Hierarchical Label Scenarios

We further explored the single-depth scenario by conducting experiments under two label situations,
dual-label (with overlapping data across tasks) and single-label (with disjoint data across tasks), as out-
lined in Table 2.1. Disjoint data across tasks would lead to only a single-label per data sample, meaning

that the data samples are to be appeared in the learning process only once, with only one label for the
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Figure 2.4: Any-time inference results on CIFAR100 and Stanford Cars datasets for single-depth hier-

archy. H=1 is parent classes and H=2 child classes. Task index 1 receives parent class labeled data and

subsequent indexes receive child class labeled data. Each data point shows average accuracy over three
runs (£ std. deviation).

entire hierarchy. On the other hand, overlapping data across tasks would lead to dual-label per data sam-
ple, meaning that data samples are to appear twice in the learning process, but with corresponding labels

for every hierarchical label.

2.2 Pseudo-Labeling based Flexible Memory Sampling (PL-FMS)

In this part, we introduce our approach which utilizes a rehearsal-based incremental learning strat-
egy. This strategy involves training models by revisiting previously encountered data held in a stream
buffer. Our method integrates pseudo-labeling to fully capitalize on the hierarchical relationships be-
tween classes, along with a memory sampling approach that flexibly builds the training batch from both
stored data and incoming data streams. We will delve into our method, which encompasses Pseudo-
Labeling (PL) based Memory Management and Flexible Memory Sampling (FMS), in sections 2.2.1
and 2.2.2 respectively.
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2.2.1 Pseudo-Labeling based Memory Management (PL)

In this part, we introduce an innovative strategy for memory management that utilizes a model’s
predictions to generate pseudo-labels for each hierarchical level in our HLE structure. This approach,
illustrated in Figure 2.3 (a), is termed Pseudo-Labeling (PL) based memory management.

To explain further, let’s denote M as the memory that retains samples from the data stream and let
M, represent the subset of the memory where samples belong to class y. We also consider a metric,
H,,, to quantify the significance of samples within the memory. When the capacity of M reaches its
maximum, we need to make room for new samples, which involves removing an existing sample from
the memory. To do this, we identify §, which represents the class with the highest number of samples in
the memory. Contrary to previous works, instead of only considering samples from Mj, we propose to
include samples from other classes hierarchically related to y. This is achieved by using the network’s
class probability predictions.

To identify classes that are hierarchically linked to ¢, we collect the model’s predictions for samples
in My across levels, excluding the level of . We then pinpoint the classes that receive the highest count

of these predictions at each level. This process is represented mathematically by the following equation:

§"(My) =argmax > 1,(x), (IL1)
yeyh <
(z,7)eMy

Where 1, (x) serves as an indicator function, defined as follows:

)= Ly e Pl ()
y(z) =
0, otherwise.

Subsequently, using the predicted classes for the other levels, we create an index set of candidate

samples to be removed from the memory, represented by the following equation:

H
I = {il(zj) € MU () Myl (11.2)
k=0,k#h
Finally, we locate the index 7 of the sample to be removed, which corresponds to the sample with

the least measured significance. This process is described by the equation:

j =arg ;Iéljl’_l H;. (11.3)
Y

As a metric to evaluate the significance of samples, we utilize the sample-wise loss importance value,
which measures the decrease in loss for each sample during training and prioritizes removing the

data from the memory that demonstrates the least reduction in loss.
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Single-Label Scenario Dual-Label Scenario
Methods CIFAR100 ImageNet-Hier100 Stanford Cars CIFAR100 ImageNet-Hier100 Stanford Cars
H=1 H=2 H=1 H=2 H=1 H=2 H=1 H=2 H=1 H=2 H=1 H=2

ER [62] 37.842.06|31.34+0.78 73.4£1.91 55.7+1.87 28.440.73 4.01+0.06 42.0+£0.57 25.5+0.33 78.84+0.82 57.2+1.89 37.84+0.72 3.534+0.44
EWC++ [63] 34.3£0.68(27.1£0.80 73.440.99 54.0+£1.34 27.940.74 3.424+0.33 39.9£2.26 23.3+1.93 76.3+£1.20 53.043.32 38.3£0.47 3.1740.36
BiC [63] 38.840.41(33.4+1.41 72.540.09 58.7£0.78 27.1£1.08 3.054+0.29 42.1£1.06 28.0+£1.01 77.7+1.24 60.44+0.30 36.5£1.04 3.26+0.34
MIR [64] 35.04+1.47|28.64+0.18 74.54£0.90 57.3+£1.93 28.64+1.09 4.50+0.44 42.4+0.95 26.2+1.79 78.54+0.57 56.0+£2.25 43.1+1.18 5.024+0.74
RM [I]  39.3+£0.83(25.9£0.89 69.74+0.27 61.0+0.86 16.5+4.05 2.83+0.64 38.2+£0.76 25.7+1.12 71.5+0.73 63.14+0.89 18.1+2.54 3.2940.28
GDumb [35] 26.240.87|18.64+0.09 53.4+1.18 37.2£0.33 16.6+2.31 4.50£0.12 25.74+0.83 18.5£1.11 59.240.54 42.3+0.54 15.0£1.40 4.06+0.33
CLIB [61] 38.4+0.58|32.6+0.59 64.6£0.72 49.441.32 20.8+2.08 4.5240.78 44.5+0.87 37.140.20 71.3+0.76 55.4+0.35 19.14+4.30 3.83+£0.78
PL-FMS  43.740.13|36.440.62 77.8+1.32 64.6-0.97 30.7+4.39 13.2£0.29 49.04+0.19 39.5+0.64 79.51+0.54 67.2+0.41 42.0£3.59 26.8+3.27

Table 2.1: Experimental results of baseline methods and our proposed method evaluated on HLE setup
for single-depth hierarchy scenario in CIFAR100, ImageNet-Hier100, and Stanford Cars. Dual-label
means overlapping data between tasks, and single-label means disjoint data between tasks. Classification
accuracy on hierarchy level 1 and 2 at the final task (%) was measured for all datasets, and the results
were averaged over three different random seeds.

2.2.2 Flexible Memory Sampling (FMS)

Previous rehearsal-based techniques proposed including the stream buffer directly in training, which
can create bias towards the data stream distribution and negatively affect the model’s performance. Al-
though training exclusively with memory samples has been suggested, it has been found to restrict
adaptability to new classes. To address these issues, we propose a solution known as Flexible Memory
Sampling (FMS). This is a straightforward yet effective sampling strategy that adjusts the number of
stream samples included in the training batch, which is demonstrated in Figure 2.3 (b).

Experience Replay (ER) is employed to construct a training batch B; at iteration ¢, which uses all
samples in the stream buffer S; and takes an equal number of samples from the memory, resulting in a
batch size of | B;| = 2|5;|. However, FMS distinguishes itself by randomly excluding samples from S,
during the training process.

Suppose T is the iteration at which class c first appears. In this case, we selectively include stream
samples of class ¢ with an increasing probability as £ —T,. grows larger, slowly incorporating new classes
from the stream buffer. The probability to include a stream sample of class c is governed by a Bernoulli

distribution, calculated as follows:

pi(c) ~ Ber (min <%, 1)) . (I.4)

where T’ is a hyperparameter that controls how quickly the network adopts stream samples for training.
Initially, after encountering new classes, the training process looks similar to the memory-only training
approach, but as ¢ — T increases, it begins to resemble the sampling method of ER.

By combining these two strategies, we have our proposed method, known as Pseudo Labeling-based
Flexible Memory Sampling (PL-FMS). A more detailed description of the PL-FMS algorithm is avail-

able in the supplementary material.
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Figure 2.5: Any-time inference results on CIFAR100 dataset for multiple-depth hierarchy. H=1 repre-
sents the coarsest level and H=>5 represents the finest level of class hierarchy. The dotted line represents
the point at which the model is fully given the task data for the corresponding task index. The reported
data points represent the average accuracy over three runs (£ std. deviation).

2.3 Empirical Evaluation

This section introduces the datasets, baselines, evaluation metrics, and implementation details on
constructing our proposed HLE Continual Learning setup. Each detailed explanation is further explained

in the following Section 2.3.1, 2.3.2, 12.3.3, 2.3.4, and 2.3.5, respectively.

2.3.1 Datasets

Our Hierarchical Label Expansion (HLE) setup is tested using a single-depth scenario across three
datasets: CIFAR100 [65], Stanford Cars [66], and a purpose-built dataset termed ImageNet-Hier100.
The CIFAR100 and Stanford Cars datasets have 2 levels of hierarchy with (20,100) and (9,196) classes
respectively. We adhere to the hierarchical taxonomy provided in each dataset for our experiments.
Furthermore, ImageNet-Hier100, created from a subset of ImageNet [10] based on the WordNet [67]
taxonomy, also features 2 hierarchy levels with a total of (10,100) classes. Additional details on how the
ImageNet data was curated to construct the ImageNet-Hier100 dataset can be found in the supplementary
material.

In addition, we examine the HLE setup under a multiple-depth scenario using two datasets: CI-
FAR100 [65] and iNaturalist-19 [68]. For CIFAR100, the hierarchical taxonomy outlined in [69] is
used, which contains 5 levels of hierarchy with (2, 4, 8, 20, 100) classes, not including the root node.
For iNaturalist-19, we employ the taxonomy found in [70], where the dataset has 7 hierarchy levels
with (3, 4, 9, 34, 57, 72, 1010) classes, again excluding the root node. Noteworthy is that among these
two datasets, only iNaturalist-19 exhibits class imbalance. More details about the number of classes in-
troduced at each task, as well as the characteristics of the dataset, can be found in the supplementary

material.

2.3.2 Baselines

Our method is evaluated against a variety of established works to establish a baseline. The compar-
ison includes previous rehearsal-based methods designed for traditional continual learning (CL) setups,

such as ER [62], BiC [56], and MIR [64]. Our method is also juxtaposed with rehearsal-based methods
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that have been employed in more recent CL setups, including RM [1] and CLIB [61]. For methods based
on regularization, we compare our approach with EWC++ [63]. All baseline methods were tested in the
single-depth scenario. However, in the multiple-depth scenario, we did not include MIR and GDumb.
This exclusion was due to GDumb demonstrating the lowest performance and MIR’s performance being
similar to those of ER, EWC++, and BiC.

2.3.3 Scenarios

We carried out our experiments under two conditions: a scenario with a single-depth hierarchical
level and another with multiple-depth hierarchical levels, as described in Section 2.1.2 and represented
in Figure 2.2. The main focus of our Hierarchical Label Expansion (HLE) setup is on scenarios where
the data between tasks do not overlap, which are predominantly evaluated in the context of a single-label
scenario. However, for the single-depth hierarchical level, we also conducted investigations under a dual-

label scenario where the data carried labels for two hierarchical levels, as explained in Section 2.1.2.

2.3.4 Evaluation Metrics

We utilize two key performance indicators in our research: the final classification accuracy across
all hierarchical levels and the any-time inference. Final task classification accuracy is a widely accepted
metric for assessing the effectiveness of continual learning approaches, as evidenced in past research [63,
71,72]. This measure evaluates the model’s precision after all tasks have been completed, as outlined in
our experimental results tables. In addition, gauging the model’s capability during the execution of a task
is critical for accurately tracking the expansion of knowledge. Given that our framework doesn’t have
explicit task boundaries and is task-agnostic, we use the any-time inference measure suggested in [61]
to assess the model’s effectiveness at any given moment. We present the results of any-time inference in

graphical form to give a clearer picture of the model’s progression over time.

2.3.5 Implementation Details

Making use of the codebase provided by [61], we were able to implement previous works, applying
AutoAugment [73] and CutMix [74] according to the established experimental protocols. However, to
prevent adverse effects on the label distribution for each classifier, we adjusted the use of CutMix to
exclusively blend samples from the same hierarchical level. We opted to use ResNet34 as the base fea-
ture encoder across all methods. We tailored the batch sizes and update frequencies to each dataset:
CIFAR100 was handled with a batch size of 16 and 3 updates per sample, ImageNet-Hier100 and
iNaturalist-19 were processed with a batch size of 64 and 0.25 updates per sample, while Stanford
Cars was accommodated with a batch size of 64 and 0.5 updates per sample. We allocated memory
sizes of 1000, 2000, 5000, and 8000 for Stanford Cars, CIFAR100, ImageNet-Hier100, and iNaturalist-
19 respectively. We employed the Adam optimizer [75] with an initial learning rate set to 0.0003, and

implemented an exponential learning rate scheduler across all baseline methods with the exception of
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GDumb, CLIB, and PL-FMS. For CLIB and our own methodology, we adopted the same learning rate
scheduler as used in the original CLIB codebase. The optimization configurations for GDumb and CLIB

were derived directly from their respective original papers.

2.4 Result Analysis

This section presents an analysis of the conducted experiments based on the guidelines outlined
in Section 2.3. The experiments were structured and conducted considering various factors, including
single-depth and multiple-depth settings, label regime, prior Continual Learning setups, and an ablation

study on the proposed method. Each of these aspects will be discussed in the following subsections.

2.4.1 Single-Depth Scenario Analysis

In the scenario involving a single-depth hierarchy, knowledge expansion occurs horizontally within
the same hierarchical level, as portrayed in Figure 2.2(a). We assessed the proposed HLE setup using
three datasets: CIFAR100 and ImageNet-Hier100, both class-balanced, and Stanford Cars, which is a
class-imbalanced dataset. The results are outlined in Table 2.1 and Figure 2.4.

Among the baseline methods, GDumb consistently underperformed, while the effectiveness of other
methods varied based on the dataset and hierarchy level. For CIFAR100, RM and BiC were the most suc-
cessful, outperforming other baseline methods at hierarchy level 1 and 2, respectively. EWC++ and MIR
exhibited reasonable performance across both hierarchy levels, and CLIB’s performance was similar
to RM and BiC at hierarchy level 1. For the ImageNet-Hier100 dataset, MIR was superior at hierar-
chy level 1, while RM performed best at level 2. BiC demonstrated moderate performance at hierarchy
level 1, with EWC++ and ER showing comparable performance at hierarchy level 2. In the Stanford
Cars dataset, MIR was the most effective at hierarchy level 1, while CLIB performed commendably at
hierarchy level 2. ER and BiC achieved similar results at hierarchy level 1, whereas GDumb and RM
performed the worst. At hierarchy level 2, all baseline methods showed similar performance, with an
overall accuracy range between 3% and 5%.

Our proposed method, PL-FMS, excelled over all baseline methods across all single-label scenarios,
with the most notable improvement observed in the class-imbalanced dataset. It’s worth highlighting that
RM is a task-conscious learning method that has displayed strong performance under the HLE setup.
This performance boost is achieved through a two-stage training strategy, where the model initially
trains on stream data samples, then fine-tunes using memory data samples, leading to a performance
surge near task boundaries. BiC incorporates a bias correction layer that effectively mitigates dataset
bias, but doesn’t directly enhance performance near task boundaries. MIR has exhibited impressive
performance by selecting samples with high loss importance, which addresses the issue of catastrophic
forgetting. However, GDumb consistently demonstrates performance decay due to a fixed regularization

coefficient, restricting its adaptability to new tasks.
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CIFAR100 iNaturalist-19
H=1 H=2 H=3 H=4 H=5 H=1 H=2 H=3 H=4 H=5 H=6 H=7
ER  71.5£4.44(58.44+4.58 36.64+4.78 18.14+4.28 7.47+1.61 84.946.03 84.940.68 59.8+15.5 29.3+3.28 17.84+3.95 13.0£3.95(1.50%+0.77
EWC++ 70.9+2.83|56.6£4.26 35.84+5.93 15.843.94 6.43+£1.28 87.4+2.38 80.7+1.19 66.1+9.80 29.4+4.48 18.14+6.53 15.1£5.73|1.88£1.15
BiC  71.6£1.01|63.54+2.48 54.7£0.61 33.840.41 19.840.78 79.5+£14.4 76.3+12.1 54.04+27.4 22.9+10.3 14.84+9.88 11.24+7.78|1.34+1.41
RM  74.243.99|65.0£4.18 50.9£1.40 37.6£0.60 24.5+£2.54 74.0£5.57 69.7£4.21 54.4+£2.20 40.7+£1.15 37.4+£0.85 35.14£0.44(11.34+0.33
CLIB  70.6%4.05(59.5+1.22 47.645.06 32.6£1.76 22.542.08 87.242.26 81.3+£4.78 62.4+4.10 41.540.97 35.3£0.70 33.2+1.19{8.07+0.94
PL-FMS 74.54+4.63(65.6+3.34 56.0+3.66 42.7£1.79 30.8+1.54 86.143.15 88.4+3.79 70.6+3.17 49.61+-2.42 43.9+1.86 41.3+2.57(13.6+0.28

Methods

Table 2.2: Experimental results reported for baseline methods and our proposed method evaluated on the
HLE setup for the multiple-depth hierarchy scenario in CIFAR100 and iNaturalist-19. The classification
accuracy on all hierarchy levels at the final task(%) was measured for all datasets, and the results were
averaged over three different random seeds.

2.4.2 Multiple-Depth Scenario Analysis

Our proposed HLE setup was evaluated on two datasets: class-balanced CIFAR 100 and class-imbalanced
iNaturalist-19, with the results reported in Table 2.2 and Figure 2.5. The multiple-depth hierarchy sce-
nario involves vertical knowledge expansion across all hierarchy levels, as shown in Figure 2.2 (b).
All baseline methods were included except for GDumb and MIR. GDumb displayed consistently low
performance across all datasets and hierarchy levels in single-depth hierarchy. MIR exhibited similar
performance to that of ER and EWC++ in most cases, making it redundant to report separately.

Our method, PL-FMS outperforms all baseline methods in CIFAR100, with the performance gap
increasing significantly from hierarchy level 4 onwards, as reported in Table 2.2. EWC++ had the low-
est performance across all hierarchy levels, while ER performed similarly, but slightly better. RM and
BiC had competing performances until hierarchy level 5. Throughout the hierarchy levels, CLIB’s per-
formance improved, ranking second among the baselines in the last hierarchy level. Note that most
baseline methods suffer from catastrophic forgetting at all task indexes, but the most significant perfor-
mance drop occurs at task boundary between task 4 and 5, as shown in Figure 2.5. This is due to the
fact that the sampling strategy used by baseline methods for training batches fails to consider the biased
class distribution induced by sub-categorization. On the other hand, PL-FMS and CLIB exhibit only a
mild performance drop by avoiding direct adoption of the stream buffer. PL-FMS outperformed all base-
line methods in iNaturalist-19 except for level 1, with RM and CLIB showing the best performance in
deeper hierarchy levels. EWC++ performed best only at the coarsest level and rapidly deteriorated there-
after, while BiC exhibited the worst performance overall. ER, EWC++, and BiC exhibited performance
decline with increasing hierarchy levels, whereas RM and CLIB demonstrated significant performance
improvements in comparison.

In Table 2.2, we observe a similar performance transition across the two datasets. However, at the
hierarchy level 7, other baseline methods except for RM and CLIB show performance near 1%, while
RM, CLIB, and our method perform much better in the highest hierarchy level with performance above
10%. We believe that ER, EWC++, and BiC exhibit significantly worse performance than RM, CLIB,

and our method because they have not been tested under robust conditions, while RM and CLIB were
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proposed under more realistic conditions with blurry task boundaries and data streams. These methods
are better equipped to deal with hierarchical knowledge formulation, which requires capturing common
features throughout hierarchy trees. Overall, we observe that our method performs especially strongly

under class imbalance situations, which is more similar to real-world scenarios.

Methods Disjoint [30] | Blurry [1] i-Blurry [61]
ER 36.6+1.35 | 24.5+1.79  38.7+0.51
EWC++  36.7+1.04 | 2434120 38.7£1.06
MIR 3454097 | 24.0+0.34  38.1+0.69
RM 354+1.12 | 37.8+0.81 36.74+1.32
GDumb  26.3+0.43 | 25.9+0.08 32.1+0.63
CLIB 38.0+1.44 | 38.3+0.42  43.440.44
FMS 39.2+0.34 | 41.3+1.98 45.3+1.02

Table 2.3: Experimental results of baseline and FMS evaluated on three CL setups: conventional (dis-
joint), blurry, and i-Blurry. Test accuracy at the final task (%) was measured for each setup and averaged
over three runs with standard deviation reported.

2.4.3 Label Regime Analysis

Table 2.1 presents the results of our experiment on a single-depth hierarchy, which we conducted
under two scenarios: dual-label and single-label. Our dual-label scenario showed similar trends to the
single-label scenario, with GDumb being the worst-performing method. Baseline methods that per-
formed well in the single-label scenario had moderate performance in the dual-label scenario. Notably,
incorporating the dual-label scenario resulted in an overall higher performance for the baseline methods
in hierarchy level 1, although this was not consistent for hierarchy level 2 and varied among meth-
ods. Our proposed method, PL-FMS, consistently showed higher performance in the dual-label scenario
across all datasets and hierarchy levels, suggesting that it is more adept at capturing hierarchy informa-

tion in such scenarios, while still performing well in the single-label scenario against baseline methods.

2.4.4 Prior CL Setups Analysis

Table 2.3 reports the results of our proposed HLE setup and baseline methods evaluated on various
CL setups. Figure 2.1 depicts the difference between HLE and conventional CL setups. We evaluated the
methods on disjoint, blurry [1], and i-Blurry [61] setups to check for code reproducibility and to observe
whether our method could perform well on different setups. As reported in [61], CLIB exhibited supe-
rior or competitive performance to the other baseline methods across all previous setups, especially with
large margin for the i-Blurry setup, since it has design for the i-Blurry setup. Note that our FMS out-
performed CLIB for all the prior setups, which indicates that our method is not limited to the suggested

HLE setup.

2.4.5 Ablation Study

We conducted an ablation study (Table 2.4) to determine the contribution of each component in our

proposed method, PL-FMS. The two components, PL and FMS, were evaluated separately to observe
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CIFAR100(Depth=5)
H=1 H=2 H=3 H=4 H=5
Proposed 73.8+£4.63|65.6+3.34 56.01+3.66 42.7+1.79 30.8+1.54
w/o PL 73.5£2.84(61.7£2.19 48.243.40 34.6+1.89 23.3£2.11
w/o FMS 71.4:£1.83|60.5£5.10 45.942.80 30.7+£0.87 21.540.80

Methods

Table 2.4: PL-FMS was evaluated in an ablation study by comparing its performance with and without
each component (PL and FMS) as well as with the combination of both. It indicates the average accuracy
across three runs (4 std. deviation).

the performance gain achieved by each component. Results indicate that PL contributes more to the
overall performance gain compared to FMS. However, when used together, the two components benefit

each other and show higher performance gain in hierarchy levels 2-5.
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cHAPTER 1

Conclusion

In this thesis, we put forth novel approach to the continual learning (CL) paradigm by introducing
Hierarchical Label Expansion (HLE). This novel framework presents hierarchical class incremental task
configurations that incorporate an online learning constraint. HLE, as outlined in Section 2.1.1, serves
as an extension to conventional CL setups, inspired by the intuitive process of human knowledge expan-
sion. We further propose a Pseudo-Labeling (PL) based memory management scheme and a Flexible
Memory Sampling (FMS) methodology to adapt and address the unique challenges posed by our newly
devised CL setups. The PL approach, as elaborated in Section 2.2.1, allows for a more effective mem-
ory management, leveraging unlabeled data for better retention and transfer of knowledge across tasks.
FMS, discussed in depth in Section 2.2.2, enhances the way samples are drawn from memory, ensur-
ing a balanced and diverse representation of prior tasks, thereby alleviating catastrophic forgetting and
promoting forward transfer of knowledge.

By implementing these methodologies within our HLE framework, our proposed method demon-
strates superior performance compared to the prior works in the field. Our experiments, detailed in
Section 2.3, validate our method’s effectiveness across all levels of hierarchies, indifferent to the depth
and class imbalances inherent in the data. Moreover, the efficacy of our method is not limited to the novel
HLE setup. Remarkably, it also outperforms previous approaches on traditional CL setups, such as dis-
joint, blurry, and i-Blurry setups, further establishing the versatility and robustness of our approach. This
suggests that our method, with its innovative memory management and sampling strategies, not only ex-
cels in a hierarchical learning scenario but also extends its utility to various CL setups. In conclusion,
this work provides a significant contribution to the continual learning domain by not only introducing a
new, hierarchical perspective to task configuration but also providing a practical and effective solution

for tackling the unique challenges that this perspective presents. This establishes a new paradigm in
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continual learning that closely mimics natural learning processes, and opens up new avenues for future

research in the field.
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