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Abstract

The purpose of image restoration (IR) is to reconstruct a high-quality (HQ) image

corresponding to a given low-quality (LQ) image. Typical image restoration tasks in-

clude image denoising and image super-resolution. IR has many applications, mainly

as a pre-processing step of image enhancement, computer vision, or image analysis

tasks, such as medical, surveillance, and satellite image analysis. However, it is chal-

lenging since IR is an ill-posed problem in that infinitely many HQ images correspond

to a single LQ image. Recently, the performance of IR has been greatly improved

by adopting deep neural networks trained with large-scale external datasets. Pixel-

wise distortion-oriented losses (L1 and L2) were widely used in early research, which

helped to obtain a high signal-to-noise ratio (PSNR). However, these losses lead the

model to generate an average of possible HQ solutions, which are usually blurry and

thus visually not pleasing. Subsequently, perception-oriented losses, such as percep-

tual loss and generative adversarial loss, were introduced to overcome this problem and

produce realistic images with fine details. Although these perception-oriented losses

are used for various IR methods, they also bring undesirable side effects, such as unnat-

ural details and structural distortions. It has been shown that using a single perceptual

loss is insufficient for accurately restoring locally varying diverse shapes in images.

For this reason, combinations of various losses, such as perceptual, adversarial, and

distortion losses, have been attempted, yet it remains challenging to find optimal com-

binations. To address these problems, this dissertation presents a new method that ap-

plies desired or optimal objectives for each region to generate plausible results in over-

all areas of high-quality outputs. This dissertation first proposes an efficient learning

method that enables a single super-resolution (SR) model to produce reconstruction

results in a locally flexible style. A typical approach to obtaining alternative SR results

is to train multiple SR models with different loss weightings and exploit the combi-
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nation of these models. Instead of using multiple models, I propose a method to opti-

mize an SR model with a conditional objective during training, where the objective is a

weighted sum of multiple perceptual losses at different feature levels. The weights vary

according to given conditions, and the set of weights is defined as a style controller.

Also, I present an architecture appropriate for this training scheme: the Residual-in-

Residual Dense Block equipped with spatial feature transformation layers. The trained

model can generate locally different outputs conditioned on the style control map at

the inference phase. Extensive experiments show that the proposed SR model produces

various desirable reconstructions without artifacts and yields comparable quantitative

performance to state-of-the-art SR methods. Second, this dissertation also presents a

new SR framework for perception-oriented restoration by estimating locally optimal

objectives for each region to generate plausible results in overall areas of high-quality

outputs. Specifically, the framework consists of two models: a predictive model that

infers an optimal objective map for a given low-resolution (LR) input and a genera-

tive model that applies a target objective map to produce the corresponding SR output.

The generative model is trained over the proposed objective trajectory representing a

set of essential objectives, which enables the single network to learn various SR results

corresponding to combined losses on the trajectory. The predictive model is trained us-

ing pairs of LR images and corresponding optimal objective maps searched from the

objective trajectory. Experimental results on five benchmarks show that the proposed

method outperforms state-of-the-art perception-driven SR methods in LPIPS, DISTS,

PSNR, and SSIM metrics. The visual results also demonstrate the superiority of the

proposed method in perception-oriented reconstruction.

keywords: image restoration, image super-resolution, perception-oriented image

restoration, perception-oriented image super-resolution, conditional objective, optimal

objective estimation

student number: 2015-31015
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Chapter 1

Introduction

The widespread adoption of smartphones with cameras has made it easier for peo-

ple to capture images and record videos. Smartphones have become a primary tool

for content creation and consumption. The popularity of social media and content-

sharing platforms has led to a surge in image and video consumption. These platforms

attract billions of views every day. However, in many real-world scenarios, images

are captured in low-light conditions or with noisy sensors, resulting in poor image

quality. Image restoration (IR) aims to reconstruct a high-quality (HQ) image corre-

sponding to a given degraded low-quality (LQ) image. Noise in an image refers to

random variations in pixel values that may arise during the image acquisition or trans-

mission process, and denoising helps in removing the noise, leading to clearer and

more visually appealing images. Similarly, super-resolution enhances the resolution of

low-resolution images, making them more detailed and informative. By enhancing the

details and sharpness of an image, it becomes more visually appealing and easier to

interpret. Therefore, they are essential preprocessing steps in various applications like

photography, video streaming, medical imaging, satellite imagery, and more. In ad-

dition, as many computer vision tasks, such as object detection, image segmentation,

and recognition, heavily rely on the quality of input images, the performance of these

downstream tasks can significantly improve with these image restoration techniques.
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In the image restoration framework, an LQ image y is usually modeled as one of

the outputs of the following degradation processes:

y = T ((x ⊗ k) ↓s) (1.1)

y = (x ⊗ k) ↓s + n (1.2)

where x ⊗ k represents the convolution between a blur kernel k and a HR image x, ↓s
is a subsequent downsampling operation with scale factor s, T and n are compression

operation and additive white Gaussian noise (AWGN), respectively.

Recently, the performance of image restoration has been greatly improved by

adopting deep neural networks trained with a large amount of image data. However,

distortion-oriented losses such as L1 or L2 lead the model to produce an average of

possible HQ solutions, resulting in a blurry, visually not pleasing image. Subsequently,

perception-oriented losses were introduced to overcome this problem and to gener-

ate high-contrast results. Fig. ?? compares the resolution restoration results between

distortion-driven and perception-driven SR. It can be seen that the perception-driven

result is more perceptually similar to the ground truth than the distortion-oriented re-

sult, and it is also more visually pleasing.

Although these perception-oriented losses are used for various IR methods [?,?,?],

they also bring undesirable side effects such as unnatural details and structural dis-

tortions. Fig. ?? shows some examples of the sharp but side-effected results of the

perception-oriented SR compared to the blurry results of the distortion-oriented SR.

Blau [?] argued that it is difficult to simultaneously achieve perceptual quality en-

hancement and distortion reduction because they involve a trade-off relationship as

shown in Fig. ??. However, observing Fig. ??, it can be seen that when the perception

and distortion-oriented SR results are appropriately applied differently for each region

according to the context, high contrast and realistic SR results with much-reduced ar-

tifacts can be achieved. One of the main claims of this dissertation is that the proposed

method can further reduce distortion and increase perceptual quality simultaneously,

2



(a) (b)

(c) (d)

Figure 1.1: (a) A high-resolution image, (b) the degraded image with downscale fac-

tor 4, (c) the realistic restoration result of perception-oriented SR 4×, (d) the blurry

restoration result of distortion-oriented SR 4×.

as the blue solid line in Fig. ?? is shifted to the red dotted line. The results of the pro-

posed method adaptively applying distortion-oriented and perceptual-oriented results

to each region are shown in the last column of Fig. ??. In this dissertation, it is also

verified that the proposed perception-oriented flexible SR works well for compressed

JPEG images and compressed streaming videos.
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(a) (b) (c) (d) (e)

Figure 1.2: 4× SR performance comparison. (a) whole image, (b) high resolution

image, (c) the restoration results of the conventional distortion-oriented SR, (d) the

restoration results of the conventional perception-oriented SR, (e) the restoration re-

sults of the proposed SR

1.1 Contribution

Our contributions are summarized as follows. (1) This dissertation presents an efficient

method to train a single locally-adjustable model for perception-oriented restoration by

using a conditional objective. (2) This dissertation also proposes a new framework for

perception-oriented restoration that estimates and applies an optimal combination of

objectives for each input region and thus produces perceptually accurate restoration

results. (3) The proposed methods are validated for low-resolution compressed images

and videos. (4) The proposed methods achieve state-of-the-art performance.
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Figure 1.3: The perception-distortion tradeoff. Image restoration algorithms can be

characterized by their average distortion and by the perceptual quality of the images

they produce.

1.2 Contents

The rest of this dissertation is organized as follows. In Chapter 2, flexible style single

image super-resolution using conditional objective is proposed. Chapter 3 introduces

perception-oriented single image super-resolution using optimal objective estimation.

Finally, this dissertation is concluded in chapter 4.
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Chapter 2

Flexible Style Image Super-Resolution using Conditional

Objective

2.1 Motivation and Overview

Finding a high-resolution (HR) counterpart from a given low-resolution (LR) image is

referred to as single image super-resolution (SISR). The SISR is an ill-posed problem

in that infinitely many HR images correspond to a single LR image. Despite such ill-

posedness, recent convolutional neural networks (CNNs) are shown to map an LR to a

plausible HR [?].

SRCNN [?,?] first showed the effectiveness of a CNN for SISR, and various CNN

architectures have been proposed for better performance afterward [?, ?, ?, ?, ?, ?, ?, ?,

?,?,?,?,?]. Earlier works used mean square error (MSE) as a loss function to train the

network. However, since it tends to produce blurry HR outputs, researchers are finding

new loss functions to generate more realistic outputs [?, ?]. Specifically, perceptual

losses [?] are introduced to optimize the super-resolution (SR) model in the feature

space instead of pixel space. Ledig et al. [?] proposed to use adversarial loss [?] in

combination with the perceptual loss to encourage the network to favor perceptually

superior solutions residing in the manifold of natural images.
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More recently, Wang et al. [?] investigated class-conditional SR. It employed

Spatial Feature Transform (SFT) capable of altering an SR network’s behavior condi-

tioned on semantic segmentation probability maps. However, since most of the existing

methods calculate perceptual losses on an entire image in the same feature space, the

results tend to be monotonous and unnatural. For this reason, Rad et al. [?] optimized

SR models with a targeted objective function that penalizes images at different seman-

tics using the corresponding terms. But, since the segmentation label needs to be fed to

the SR network to calculate the targeted perceptual loss, the users cannot easily adjust

the objective function. In summary, most early SR networks provide a designated HR

output among many possible ones, not allowing us to explore more plausible outputs

at the test phase. To alleviate this problem, Lugmayr et al. [?] proposed the SRFlow

using a normalizing flow method capable of learning the conditional distribution of

the output given the low-resolution input. As a result, it can learn to predict diverse

photo-realistic high-resolution images.

Though great strides have been made, the natural and flexible reconstruction of

local regions is still challenging. As stated previously, there can be diverse HR solu-

tions for a given LR, meaning that one LR input can be restored to different HR results

depending on the context and situation. Particularly because of various shapes and tex-

tures in the real world, the one-to-many problem becomes even more serious if the SR

network’s capacity is not large enough.

To solve this problem, first, the SR model should be able to generate more diverse

styles of HR reconstruction while keeping consistency with the given LR image. Sec-

ond, the recovery style needs to be locally controlled. Third, training and storing too

many redundant SR models with different parameters should be avoided. Achieving

these requirements would enable us to explore various HR solutions for each region

effectively. In this respect, some recent methods made it possible to continuously gen-

erate and adjust intermediate results between two objective functions, i.e., perception

and distortion functions [?, ?, ?]. However, there can be some improvements in these

7



Figure 2.1: The effect of choosing different layers when estimating perceptual losses

on different regions, e.g., on edge and texture regions, where the losses correspond to

MSE, ReLU 2-2 (VGG22), and ReLU 4-4 (VGG44) of the VGG-19 network.

approaches, as they defined just two objective functions and controlled the entire im-

age, not the local regions needing adjustment.

In this paper, we attempt locally adjustable HR generation by exploring the SR

model optimization, focusing on the development of conditional objectives that can

generate various reconstruction styles. The proposed objective consists of the weighted

sum of several perceptual losses from different feature levels. The weights vary accord-

ing to the condition, which is the recovery style information in our work. Experiments

show that training an SR model with our multi-level perceptual losses generates var-

ious recovery styles effectively, which also enables us to finely control the styles of

local regions.

2.2 Related Work

2.2.1 Loss Functions for SISR

The choice of the objective function affects the recovery style and reconstruction per-

formance. For instance, adversarial loss [?] encourages an SR network to generate

8



perception-oriented solutions [?, ?, ?, ?]. Perceptual losses [?, ?] are proposed to op-

timize SR models by minimizing the error in the feature space instead of pixel space.

Dovovitskiy et al. [?] and Ledig et al. [?] proposed to use adversarial loss in combina-

tion with the perceptual loss to encourage the network to favor solutions that look more

like natural images. With these loss functions, the overall visual quality of reconstruc-

tion is significantly improved [?,?,?]. Recently, some studies [?,?,?] proposed to use

GAN with losses based on perceptual quality assessment metric. Another perceptual

loss is proposed in [?], using different levels of features according to semantic seg-

mentation labels such as objects, boundaries, and backgrounds. In these approaches,

once an SR model is trained, a fixed HR is produced for the LR input.

2.2.2 Network Conditioning

The feature normalization techniques generally change networks’ behavior based on

the input properties. The representative normalization methods may be batch normal-

ization (BN) [?] and instance normalization (IN) [?]. The IN normalizes a single

image while the BN does a whole batch of images. Conditional Instance Normaliza-

tion (CIN) has also been introduced in [?], which uses the learned representations

to model multiple styles simultaneously. Huang et al. [?] proposed adaptive instance

normalization (AdaIN) to adjust features to arbitrary new styles. Perez et al. [?] pro-

posed Feature-wise Linear Modulation, called FiLM, as a general-purpose condition-

ing method for neural networks. FiLM layers influence neural network computation

via a simple, feature-wise affine transformation based on conditioning information. In-

spired by these works, Wang et al. [?] proposed a spatial feature transformation (SFT)

layer to modulate the features of some intermediate layers in a single network condi-

tioned on semantic segmentation probability maps. Our approach is partially inspired

by the above feature normalization methods, which can alter the behavior of deep

CNNs to influence the output. In terms of network architecture, we use the Residual-

in-Residual Dense Block (RRDB) [?] equipped with SFT layers.

9



2.2.3 Continuous Imagery Effect Transition

Since the restored image’s perceived quality is relatively subjective, and the perception-

oriented methods sometimes generate artifacts, users may wish to control the recon-

struction result according to the preferences or image characteristics. In recent years,

there have been some tunable models that produce intermediate images between the

goals of two different objective functions. Specifically, these methods start by train-

ing several separate models and then propose different ways of interpolating between

them, specifically by directly interpolating the output pixels or network weights [?,?],

or by using specialized adaptor blocks in the networks [?]. They considered trade-

off relationships between two objectives, such as perception-distortion balance in SR,

noise reduction vs. detail preservation in denoising and style transfer [?, ?, ?, ?]. How-

ever, these methods have some limitations: the number of objective functions is two,

and they cannot adjust local regions, i.e., the algorithm is equally applied to the entire

region of an image. It is also inefficient that they have to train and store multiple sepa-

rate models. On the other hand, Bahat et al. [?] proposed an explorable SR framework

that enables local restoration control. However, users have to manually edit the texture

in a few steps through a user interface. For easier and more effective quality control,

we propose a controllable SR model that can produce various recovery styles for each

region with a simple adjustment method. Besides, we can generate intermediate results

between two or more different styles at fine control levels.

2.2.4 Multi-task Learning

Learning one task at a time is a typical methodology in machine learning because it is

hard to simultaneously optimize multiple objectives due to model capacity limitation

or conflicting losses. For this reason, such multi-objective problems are commonly

scalarized by a linear combination of the losses, with weights defining the trade-off

between the loss term [?]. On the other hand, Multi-task Learning (MTL) is an in-

ductive transfer mechanism whose goal is to improve generalization performance by

10



Figure 2.2: The architecture of our proposed flexible SR network. We use the RRDB

equipped with SFT as a basic block (Figure ??(c)). The condition branch takes a style

map for reconstruction style as input. This map is used to control the recovery styles

of edges and textures for each region through SFT layers.

leveraging useful domain-specific information contained in multiple related tasks [?].

Specifically, since the MTL networks use shared layers trained in parallel on all the

tasks, what is learned for each task can help others to learn better when tasks are

closely related [?,?]. Recently, Dosovitskiy et al. [?] proposed loss-conditional train-

ing of deep networks for MTL that can improve model efficiency by exploiting the

redundancy of multiple related models. They demonstrate style-transfer trained in this

way and utilize feature-wise linear modulation [?] that affects the whole image style.

2.3 Proposed Method

2.3.1 Targeted Perceptual Loss

In general, the choice of feature space significantly influences perceptual reconstruc-

tion performance and the styles. For example, Figure ?? shows the effect of choosing

different feature spaces in computing the perceptual loss. In this paper, four different

layers, ReLU 2-2, ReLU 3-4, ReLU 4-4, and ReLU 5-4 of the VGG-19 network [?]

are considered, denoted as VGG22, VGG34, VGG44, and VGG54, respectively. As

shown in Figure ??, while the low-level feature space VGG22 seems more suitable

for reconstructing simple edges with less distortion and over-sharpening, the mid- and

11



high-level feature spaces of VGG44 are more appropriate for recovering complex tex-

tures. Therefore, it is difficult to determine a single feature space that works best for

the entire image.

In our work, we use more than two feature spaces at the same time to train a flex-

ible SR (FxSR) model capable of generating various reconstruction styles. We define

two kinds of FxSR models, namely FxSR-PD (perception-distortion) and FxSR-DS

(diversity). The FxSR-PD is the main model in our work, which controls the output

style between the distortion-oriented and perception-oriented by combining the re-

construction loss (for distortion) and VGG22 feature loss (for perception), along with

the adversarial loss. The FxSR-DS uses the same architecture as the FxSR-PD but is

trained with different losses, including all the VGG features stated above. Hence, the

aim of FxSR-DS is to produce diverse styles of outputs related to different VGG fea-

tures rather than to control between distortion and perception. Unlike previous works

where there is no control data, we adjust the network by applying different objective

functions for each local region through a style control map1. As a result, we can ex-

plore various HR solutions that are generated using multiple objective functions and

thus reconstruct an image with the desired style or an image closer to the original HR.

2.3.2 Proposed SR with Flexible Style

Given a single LR image ILR, SISR is to estimate an HR image ÎHR, which is as

similar as possible to its corresponding HR counterpart IHR. Most of the current CNN-

based methods use feed-forward networks to directly learn a mapping function Gθ

parameterized by θ as

ÎHR = Gθ
(
ILR

)
. (2.1)

To optimize Gθ on the training samples, we design a specific objective function O as

θ∗ = argmin
θ

EZ∼PZ

[
O
(
ÎHR, IHR

)]
(2.2)

1In the rest of the paper, we will refer the style control map as just style map or a map T.
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(a) RB with SFT [?] (b) Residual-in-Residual Dense Block (RRDB) [?]

(c) The proposed Basic Block (RRDB equipped with SFT layer)

Figure 2.3: RRDB with SFT for basic blocks

where Z =
(
ILR, IHR

)
is sampled from given a training distribution of pairs PZ .

Many recent studies [?, ?] use perceptual loss and adversarial loss for designing O to

recover realistic textures. Although these losses greatly improve the perceptual quality,

the generated textures tend to be monotonous and unnatural [?,?]. To further improve

the restoration performance, Wang et al. [?] used semantic segmentation probability

maps as the categorical prior Ψ and reformulated (??) as

ÎHRΨ = Gθ
(
ILR

∣∣Ψ). (2.3)

However, the perceptual loss was applied to the entire region of images, like in

previous works. Specifically, the same level of features was used both on simple edges

and complex textures, which has a limitation in restoring images composed of vari-

ous types of objects. In addition, once model training is completed, there is no way to

adjust the SR results without retraining. Hence, instead, we propose a novel method

to apply different objectives to each region for reconstructing desired images or im-

ages closer to the original. Specifically, the proposed flexible SR model is optimized

with a conditional objective, which is a weighted sum of several perceptual losses cor-

responding to different feature levels, where each weight changes depending on the

style map.
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Formally, our objective is described as:

ÎHRT = Gθ
(
ILR

∣∣T), (2.4)

θ∗ = argmin
θ

Et∼PtEZ∼PZ

[
O
(
ÎHRT , IHR|T

)]
(2.5)

where T is a map delivering spatially varying style control. That is, the map T is

an LR-sized matrix, which is fed to the condition network to change the SR styles.

Since the purpose of training is to let the network learn various styles corresponding

to given control parameters, we feed various T randomly to the network during the

training. Specifically, we feed a flat map T = t× 1 during the training, where 1 is the

matrix with all the elements 1, and t is a variable related to the feature combinations,

which will be detailed in the following subsection. For training with various feature

combinations, we change t randomly at each epoch. At the inference, if we feed a flat

map as defined above, the network will deliver an SR style globally corresponding to

the t. If we wish to control the styles locally, we feed a spatially varying map, which

will be demonstrated in the experiment.

2.3.3 Proposed Network Architecture

An overview of the architecture is shown in Figure ??. The generator networkGθ con-

sists of two streams, an SR branch and a condition branch. The SR branch is built with

basic blocks consisting of RRDB equipped with the SFT layers [?], which take the

shared conditions as input and modulate feature maps by applying the affine transfor-

mation. This structure is shown in Figure ??(c), where the residual block with SFT [?]

and RRDB [?] are also shown in Figures ??(a) and (b) for comparison. The SFT layer

learns a mapping function that outputs a modulation parameter based on a style condi-

tion T. This modulation layer allows the SR branch to optimize the changing objective

during the training and also to generate SR results with spatially different styles ac-

cording to the style map. The condition branch is used to produce shared intermediate

14



Figure 2.4: The left column shows the weight functions for FxSR-PD. t = 0 corre-

sponds to distortion-oriented SR (only MSE loss) and t = 1 perception-oriented (with

adversarial and perceptual loss from VGG22). The right column shows the weight

functions for FxSR-DS, where more perceptual losses are used to expand the HR

styles.

style conditions that can be broadcasted to all the SFT layers for efficiency. As in the

study of [?], all the convolution layers in the condition branch are restricted to use

1× 1 kernels to avoid the interference of different regions. For discriminator network,

we use VGG network [?] that contains ten convolution layers gradually decreasing the

spatial dimensions.

2.3.4 Proposed Loss Function

We combine multiple losses to train our SR model. The conditional objective consists

of three terms, namely pixel-wise reconstruction loss, adversarial loss, and proposed

conditional perceptual loss:
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OT = λrec(T) · Lrec + λadv(T) · Ladv + λper · Lper(T) (2.6)

where

λrec(T) = λrec o + (η · wrec(T)), (2.7)

λadv(T) = λadv o · wadv(T). (2.8)

The notations will be explained one by one below. First, the reconstruction loss is

calculated as:

Lrec = E
[
∥ÎHR − IHR∥1

]
. (2.9)

We use the adversarial loss using Relativistic average Discriminator RaD [?] that per-

forms better for learning sharper edges and more detailed textures compared to stan-

dard GAN [?]. While the standard version estimates the probability that one input

image I is real and natural, the RaD predicts the probability that a real image IHR is

relatively more realistic than a fake one ÎHR. In addition, for adversarial training, RaD

benefits from the gradients from both ÎHR and IHR, while only ÎHR takes effect in

the standard version. Specifically, the adversarial and the discriminator losses are:

Ladv = −EÎHR

[
log

(
D̃

(
ÎHR

))]
− EIHR

[
log

(
1− D̃

(
IHR

))]
(2.10)

Ldis = −EIHR

[
log

(
D̃

(
IHR

))]
− EÎHR

[
log

(
1− D̃

(
ÎHR

))]
(2.11)

where

D̃
(
IHR

)
= sigmoid

(
C
(
IHR

)
− EÎHR

[
C
(
ÎHR

)])
(2.12)

D̃
(
ÎHR

)
= sigmoid

(
C
(
ÎHR

)
− EIHR

[
C
(
IHR

)])
(2.13)

where C (·) represents the output logit of discriminator.

The conditional perceptual loss is a weighted sum of multiple perceptual losses in

different levels of feature spaces:

Lper(T) =
∑
l

wl(T) · Ll, (2.14)
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where Ll denotes the distance in each feature space, l ∈ {V GG12,V GG22, · · · , V GG54},

and the weights wl changes according to T. Precisely, the distance Ll is defined as

Ll = E
[
∥ϕl(ÎHR)− ϕl(I

HR))∥2
]

(2.15)

where ϕl denotes feature maps in the feature space l. The weights wrec, wadv, and

wl are functions of t as described in Figure ??, where t is a random variable having

uniform distribution in [0, 1] during the training.

2.3.5 Implementation details

This subsection explains how we design the combination of feature losses depend-

ing on the change of t. The left column of Figure ?? shows the weight function for

FxSR-PD (using only VGG22 for perceptual loss), and the right for FxSR-DS (using

more feature spaces for diversity). When t=0, the figure shows that FxSR-PD corre-

sponds to distortion-oriented SR (perceptual and adversarial losses are zero). When

the value of t approaches 1, then it becomes perception-oriented (weight for the re-

construction loss becomes zero, while adversarial and perceptual losses grow to 1). In

the case of the right column, various feature distances are involved in the perceptual

loss, and hence FxSR-DS can deliver diverse styles. Specifically, note that t = 1 corre-

sponds to a perception-oriented SR with VGG54 as the feature space. Also, even when

t approaches 0, the FxSR-DS still produces perception-oriented SR results of differ-

ent styles corresponding to VGG22, unlike the FxSR-PD that is distortion-oriented at

t = 0.

Regarding the style control, as stated previously, we use a uniform map T = t×1

at the training phase. That is, a flat map is fed to the condition branch, with its intensity

t randomly changing during the training. Since the SR network is a fully convolutional

neural network, it inherits the local connectivity property that the local image and the

map region determine the output pixel. Hence, SR models trained with uniform maps

can handle spatially varying cases.
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Whole image HR 4× FxSR-PD

t = 0.0 t = 0.3 t = 0.6 t = 1.0

Figure 2.5: Changes in the result of FxSR-PD 4× SR according to t on DIV2K vali-

dation set [?] .

2.4 Experiments

In the experiment, we compare our FxSR-PD and FxSR-DS with several state-of-the-

art SR methods on benchmark datasets. We start the section with a description of the
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(a) (b) (c)

Figure 2.6: 4× SR performance comparison of state-of-the-art and proposed methods

evaluated by the metric (a) PSNR, (b) SSIM [?], and (c) MS-SSIM [?] for DIV2K

according to condition parameters.

datasets and evaluation methods. Next, we present the comparison results. We also pro-

vide examples of local style control and validate the effectiveness of our approach for

compressed images. Finally, we report complexity analysis for the proposed methods.

2.4.1 Materials and Methods

Datasets

For the experiments, we train the FxSR with DIV2K [?] dataset, which contains 800

training images, 100 validation images, and 100 test images. We use BSDS100, Gen-

eral100, and DIV2K 100 validation images as our test datasets. We also use JPEG-

compressed images for training and testing FxSR models to show that our proposed

method is still effective on the real-world compressed LR images. The scaling factors

of 4× and 8× are tried for experiments.

Evaluation Method

To evaluate the perceptual distance to the Ground Truth, we report LPIPS [?] as default

[?], and additionally use DISTS [?] as structure and texture similarity in some cases.

PSNR and SSIM [?] are reported as fidelity-oriented metrics. Furthermore, we report

the no-reference metric NIQE [?]. Since the consistency with the LR image is also
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(a) (b) (c)

Figure 2.7: 4× SR performance comparison of state-of-the-art and proposed methods

evaluated by the metric (a) LPIPS [?], (b) DISTS [?], and (c) VIF [?] for DIV2K

according to condition parameters.

(a) (b)

Figure 2.8: 4× SR performance comparison of state-of-the-art and proposed meth-

ods evaluated by the (a) NIQE [?] and (b) BRISQUE [?] for DIV2K according to

condition parameters.

an important factor, we report the LR-PSNR, computed as the PSNR between the

downsampled SR image and the original LR. To measure the meaningful diversity of

SR methods that can actively sample from the space of plausible super-resolutions,

we also report the SR-Diversity score, which is used for the evaluation protocol on the

Super-Resolution Space Challenge learning track in the NTIRE Challenge 2021 [?,?].

Specifically, we sample 11 images and densely calculate LPIPS [?] metric between

the samples and the ground truth. To obtain the local best score, we pixel-wisely select

the best score out of the 11 samples and take the full image’s average. The global best

score is calculated by averaging the whole image’s score and selecting the best. Then,

20
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Figure 2.9: Performance comparison of the state-of-the-arts and proposed method

(FxSR-PD: Perception-Distortion Flexible SR) for DIV2K 4× SR.

(a) (b) (c)

Figure 2.10: 4× SR P-D performance comparison of state-of-the-art and proposed

methods evaluated by the metric (a) NIQE [?] Vs. PSNR, (b) SSIM [?] Vs. LPIPS

[?], and (c) SSIM [?] Vs. DISTS [?] for DIV2K according to condition parameters.

the diversity score is calculated as follows:

score = (globalbest− localbest)/(globalbest)× 100. (2.16)

Training Method

For the scaling factor 4×, sub-images are cropped with the sizes of 320 × 320 with a

stride of 160 and 80 × 80 with 40, for the HR and LR training images, respectively.
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8× SR comparison

Whole image HR RRDB [?] ESRGAN [?] SRFlow t=0.9 FxSR t=0.8

Figure 2.12: Visual comparison for 8× SR results on DIV2K validation set [?].

For the scaling factor 8×, the LR sub-images are cropped to the size of 40 × 40 with

a 20 strides. Then, the batch image pairs for each iteration of training are randomly

cropped from these sub-images. The HR batch size is 128 × 128 and the LR batch

sizes are 32× 32 and 16× 16 for scaling factors of 4× and 8×, respectively.

For the optimization, we use initial learning rate of 10−4. The learning rate is

halved after 5K, 10K, 20K, and 30K iterations. Adam [?] with β1 = 0.9 and β2 = 0.99

is used for both generator and discriminator training. We use pre-trained RRDB [?]

and ESRGAN [?] models to optimize the proposed FxSR models. While fine-tuning

FxSR-PD and FxSR-DS, λrec o, λadv o and λper are set to be 1× 10−2, 5× 10−3 and

1.0 respectively, but η is set differently to 1× 10 and 1.0.

2.4.2 Evaluation of Flexible SR for Perception-Distortion (FxSR-PD)

By adjusting a single parameter t, the FxSR-PD model can generate various SR results

for the trade-offs between distortion and perception objective at the inference phase,

as shown in Figure ??. It shows that t = 0 generates blurry outputs as the FxSR ob-

jective is distortion-oriented, and t = 1 generates sharp textures as the FxSR becomes

perception-oriented. Also, the t between 0 and 1 generates different trade-offs, with

less or more distortions, and more or less blurriness.

24



Whole image HR 4× FxSR-DS

t = 0.0 t = 0.3 t = 0.6 t = 1.0

Figure 2.13: Changes in the result of FxSR-DS 4× SR according to t on DIV2K vali-

dation set [?] .

Quantitative Comparison

We compare our method quantitatively with distortion-oriented methods such as RRDB

[?], and perception-oriented methods such as SRGAN [?], ESRGAN [?], SFTGAN
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[?], NatSR [?], SPSR [?] and SRFlow [?]. For the 4× SR, we use pre-trained models

provided by the authors, while for the non-provided 8× SR, we used the author’s code

to train the RRDB [?] and ESRGAN [?] models. The results are presented in Figures

from ?? to ?? and Table ??. Figures from ?? to ?? show the performance com-

parison of 4× SR results according to t, evaluated by the distortion-oriented (PSNR,

SSIM [?], MS-SSIM [?]), perception-oriented (LPIPS [?], DISTS [?], VIF [?]), and

non-reference perception-oriented metrics (NIQE [?], BRISQUE [?]), respectively.

In Figure ??, we can see that the scores of the distortion-oriented metrics improve as

t approaches 0, whereas in Figures ?? and ??, the scores of the perception-oriented

metrics improve as t approaches 1.

Since there is a trade-off between the distortion-oriented metrics and the perception-

oriented metrics, it is necessary to evaluate the performance of the SR models in a

perception-distortion 2D plane [?], as shown in Figure ??. The vertical axis denotes

perceptual loss LPIPS [?], and the horizontal axis the PSNR (distortion-oriented mea-

sure). Hence, the lower left part is the desired place where both MSE and perceptual

loss are low [?], and we can see that our method is comparable to others in this

respect. Note that the RRDB [?] and ESRGAN [?] are the results of using distortion-

oriented and perception-oriented loss, respectively. Others drawn in solid lines are

adjustable methods. Pixel interpolation (Pix-Interp) and network weight interpolation

(Net-Interp) methods utilize two differently trained models, i.e., the RRDB and ES-

RGAN stated above. The number of parameters for each method is also provided for

complexity comparison. More details about complexity analysis will be provided in

Section IV.F.

Since various metrics examined in Figures ??- ?? have different characteristics

and performance, we present additional performance comparisons for the perception-

distortion plane with these metrics in Figure ??. These comparisons show trends sim-

ilar to those in Figure ??. Table ?? shows the evaluation of FxSR-PD and other

SR methods for the specific t values. The proposed FxSR-PD obtains the best PSNR
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and SSIM at t = 0 among perception-oriented methods and the best LPIPS values at

t = 0.8 for all datasets.

Table 2.2: Comparison with state-of-the-art SR methods on DIV2K in terms of low

resolution consistency, photo-realism and meaningful diversity. The numbers in the

parentheses are the relative performances, i.e., the best value is set to 1, and the others

are divided by the best value.

SR LR- Mean G-best L-best Div.

Model PSNR↑ LPIPS↓ LPIPS↓ LPIPS↓ score↑

4×

SRFlow [?]
50.55 0.1765 0.1153 0.0905 23.12

(0.99) (1.54) (1.14) (1.03) (1.00)

DNI [?]
44.37 0.1968 0.1114 0.1003 10.01

(0.87) (1.72) (1.10) (1.14) (0.43)

FxSR-PD
51.16 0.1253 0.1010 0.0926 8.98

(1.00) (1.10) (1.00) (1.05) (0.39)

FxSR-DS
44.49 0.1144 0.1018 0.0880 13.66

(0.87) (1.00) (1.01) (1.00) (0.59)

8×

SRFlow [?]
50.78 0.3261 0.2613 0.2066 21.88

(1.00) (1.32) (1.19) (1.08) (1.00)

FxSR-PD
44.76 0.2477 0.2192 0.1996 9.11

(0.88) (1.00) (1.00) (1.04) (0.42)

FxSR-DS
37.77 0.2477 0.2206 0.1912 13.39

(0.74) (1.00) (1.01) (1.00) (0.61)

Qualitative Comparison

Visual comparison between our proposed FxSR-PD and other state-of-the-art methods

for 4× and 8× are shown in Figures ?? and ??, respectively. We can see that our

FxSR-PD provides stronger edges and fine details than the distortion-oriented method

RRDB [?], and other perception-oriented ones. Also, there are fewer artifacts in our

method compared to others.
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2.4.3 Flexible SR for Diverse Styles (FxSR-DS)

Diverse Style HR Generation

Unlike the FxSR-PD that attempts flexible trade-offs between perception and distor-

tion, the FxSR-DS aims to generate various styles of HR textures with perceptually

high scores for all t values. As shown in Figures from ?? to ??, the FxSR-DS scores

better overall with a relatively narrow dynamic range regarding the perception-oriented

metrics other than VIF [?]. On the other hand, it scores relatively lower for distortion-

oriented metrics as in Figure ??. The loss terms and their weights for the conditional

objective of the FxSR-DS model are described in Figure ??. Different from FxSR-PD

with one perceptual loss term, four perceptual loss terms at different feature levels are

used. In Figure ??, we can see that the SR results for different t values have different

types of styles that are clearly distinct from each other. While Figure ?? shows the

trade-off results between perception and distortion, Figure ?? visualizes our method’s

scalability to generate various styles of textures by employing more feature spaces into

the loss.

Quantitative Comparison

Table ?? compares with DNI [?] and SRFlow [?] in terms of LRPSNR (low-

resolution PSNR), LPIPS and Diversity metrics which are evaluation protocol on the

Ntire 2021 Challenge [?, ?] stated previously. Table ?? is the evaluation of SR re-

sults for a specific t value, while Table ?? is the average of all of the SR results for

11 different t values, from 0 to 1, with the step size of 0.1. Specifically, in Table ??,

the FxSR-DS generally scores the best mean LPIPS and Local best (L-best) LPIPS,

while the FxSR-PD achieves the best Global best (G-best) LPIPS score. This proves

that the perceptually distinct diverse SR results generated by FxSR-DS in Figure ??

are of high quality in terms of perception-oriented metrics. Since Local Best LPIPS is

the maximum performance of the SR model in terms of perceptual measurement, the
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proposed FxSR-DS shows an improvement of about 2.7% compared to the SRFlow.

Figure ?? also demonstrates that while the FxDR-PD scores better G-best LPIPS com-

pared to FxDR-DS, the FxDR-DS scores rather superior L-best LPIPS than FxSR-PD.

Meanwhile, the SRFlow [?] produces the highest diversity, which learns the sample

distribution during training while the proposed models are trained to optimize objec-

tives in the training distribution of objective. However, it is also important to note that

the diversity scores are normalized by the G-best as Eqn. ??. This means that the

higher the G-best LPIPS, that is, the lower the absolute perceptual quality level, the

higher the diversity score.

2.4.4 Per-pixel Style Control

In this section, we demonstrate some examples of applying local style control. First,

Figure ?? is an example where the LR image has both text and texture areas. In the

conventional methods for the SR of Figure ??(a), multiple SR models are trained with

one objective each. Then a model is selected, and the entire image is optimized with the

model’s objective. If the SR model 0 is selected, which is RRDB [?] representing the

distortion-oriented model, the textures of the clothes are blurred while the text edges

are restored without artifacts. Conversely, suppose we select the SR model N − 1,

which is ESRGAN [?] representing the perception-oriented model. In that case, some

characters in the text area are broken while the textures of the clothes are naturally

restored. On the other hand, the proposed FxSR-PD in Figure ??(b) can restore both

the textures of clothes and characters at the same time by applying different objectives

to each area through the locally-manipulated style map.

As the second example, let us consider the structural edges of the building and tex-

tures of the tree area in Figure ??. In a typical approach of using multiple SR models

in Figure ??(a), when the SR model 0 (RRDB) is selected, the structural edges of the

building are restored without artifacts, but the tree textures are blurred. Conversely, if

the SR model N-1 (ESRGAN) is chosen, the overshoot side-effect occurs around the
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edges. As shown in Figure ??(b), similar to the previous example, when a properly ad-

justed local style map is fed along with the input image, the proposed model FxSR-DS

can restore both the tree textures and building edges naturally.

The next is an example of enhancing the perspective feeling when depth informa-

tion is available, as shown in Figure ??. Precisely, input image and depth map pairs

used in this example are from the Make3D data set [?, ?]. When the distance map

is used as T in our FxSR, the foreground region is super-resolved in a perception-

oriented way (with emphasized texture), and the background region in distortion-

oriented (somewhat blurry). Depth information obtained by some equipment such as

Kinect [?] and Time-of-Flight (ToF) camera [?,?], or depth estimation algorithms [?]

can be used. It is also possible for users to directly generate a depth map from an input

image using image editing S/W, as shown in Figure ??. This makes the foreground

clearer with sharp details and avoids the unnaturalness of the background becoming

as sharp as the foreground. In addition, the camera noise in the background can be re-

duced. As seen in the examples so far, the proposed method can be used for most cases

in various fields that require different processing for each area for a specific purpose.

2.4.5 Compressed LR Image Restoration

Since real-world SR is challenging due to unknown degradation and various noise [?,

?,?,?,?,?,?,?], we also validate the effectiveness of our method for compressed inputs

in Figure ??. Unlike previous experiments, FxSR and SRGAN [?] are re-trained using

LR images compressed with JPEG quality factor 90, called FxSR-CA (compression

artifacts) and SRGAN-CA. We can see that while compression artifacts are amplified

in the results of SRResNet [?] and SRGAN [?] trained with clean images, the pro-

posed FxSR-CA, generates different style and details according to the change of t. To

test the effectiveness of the proposed method for the case of real-world compressed
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images, two videos 2 which are filmed, edited and copyrighted by Milosh Kitchovitch

are used by courtesy of him. Details of the video are provided in the Table ??.

Table 2.3: The details of video we used for SR performance comparison.

Title Resolution Bitrate/Codec

Amazing Place 2018 640×360 319kbps/VP9

Amazing Place 2019 640×360 301kbps/VP9

Table 2.4: Comparisons of the running time, the computational costs and the size of

SR models for super-resolution 4×, when the size of LR input images is 128× 128.

Run Time Mult-Add Param Size Forward

(msec) # (G) (MB) Pass (MB)

SRGAN [?] 0.014 1.51 41.63 585.11

ESRGAN [?] 0.138 16.69 293.97 2061.50

FxSR 0.501 18.30 320.20 8432.78

2.4.6 Complexity Analysis

We compare the running time, computation costs, and storage size of our methods with

other SR methods in Table ??. We measure the complexity for the SR 4× processing

of one 128 × 128 LR input image on the environment of NVIDIA RTX3090 GPU.

According to Table ??, ESRGAN with high-complexity RRDB architecture in Figure

??(b) requires about 10 times the number of Mult-Add and Run-time than SRGAN.

Compared to ESRGAN, FxSR with the proposed RRDBs with SFT in Figure ??(c) has
2URLs of Amazing Place 2018 and Amazing Place 2019: https://www.youtube.com/

watch?v=37IqCYVUhcs, https://www.youtube.com/watch?v=g5hA2qo2EFc
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almost the same number of Mult-Adds and parameter size, but the Forward Pass Size

is about 4 times, and the run-time is also increased by 4 times due to the additional

memory usage related to the SFT layers. However, it needs to be noted that we use

a single network for diverse output generation, whereas the existing methods need

at least two networks for producing varying outputs. This is specifically observed in

Figure 9, where it is observed that the FxSR requires less or comparable parameters

than the network/image interpolation methods that use multiple ESRGAN models.

2.4.7 Ablation Study

The goal of classic multi-objective optimization is to find a set of solutions as close as

possible to Pareto optimal front and as diverse as possible [?,?]. To investigate the per-

formance depending on network architecture and complexity, we observe the change

in the perception and distortion (PD) curve while training two versions of FxSR-PD

using 16 RBs with SFT in Figure ??(a), and 23 RRDBs with SFT in Figure ??(b),

respectively. As the number of training iterations increases, the PD curve of FxSR-

PD converges to the desired place (lower left), and at the same time, the possible SR

range on the curves is also expanded as shown in Figures ??(a) and (b). However,

after a certain amount of iterations, the performance does not improve further. Fig-

ure ??(c) shows the performance comparison between the two FxSR-PD versions at

the 250,000th iteration.

2.4.8 Discussion

Benefits of FxSR

A single FxSR model can produce different styles corresponding to employed feature

losses and is also able to generate intermediate results between the different styles.

Moreover, we can control the local regions differently by feeding a control map to the

network. Hence, we can have more natural SR outputs by focusing on the foreground
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or salient regions more than the backgrounds, using user-edited or automatically gen-

erated segmentation/depth/saliency maps. Also, we can remedy unnaturally generated

regions by controlling the parameters as the post-processing step.

Limitations of FxSR

As shown in Table 2, our method can generate comparable or superior results to the

existing methods in terms of perceptual quality. But it shows a lower diversity score

than the SRFlow because flat control maps are tried in this experiment. Hence, we

need more studies on effective control map generation along with other feature spaces

and their combinations to increase diversity.

Future works

We have used a one-dimensional control parameter t for adjusting SR styles in this

work. By defining more than one-dimensional SR style space with various style objec-

tives, we can explore the n-dimensional SR spaces, possibly producing more diverse

styles. Also, we may consider expanding the work to the image denoising and deblur-

ring to control the degree of restoration locally. Furthermore, leveraging meta-learning

would make it possible to improve adaptation to new samples and target objectives.

2.5 Conclusion

We have presented a novel training method and a network structure for the SISR,

enabling us to explore various region-wise HR outputs. From this, we can flexibly

reconstruct the images between perception-oriented and distortion-oriented ones. This

is achieved by defining a conditional objective function with the weights related to

the perceptual losses in various feature space levels. Also, our network is designed

to modulate the network’s intermediate features to change the operation according to

these control inputs. As a result, we can generate an image with a desired restoration
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style for each area. Experiments show that the proposed FxSR yields state-of-the-art

perceptual quality and higher PSNR than other perception-oriented methods. Also, we

can find many solutions by controlling a single parameter at the inference phase. We

will release our code for further research and comparisons.

34



(a
)T

he
Fx

SR
-P

D
w

ith
G

-B
es

tL
PI

PS
(b

)T
he

G
-B

es
tL

PI
PS

m
ap

(0
.1

35
5)

(c
)T

he
L

-B
es

tL
PI

PS
m

ap
(0

.1
28

9)

(d
)T

he
Fx

SR
-D

S
w

ith
G

-B
es

tL
PI

PS
(e

)T
he

G
-B

es
tL

PI
PS

m
ap

(0
.1

40
4)

(f
)T

he
L

-B
es

tL
PI

PS
m

ap
(0

.1
16

8)

Fi
gu

re
2.

14
:O

n
th

e
le

ft
ar

e
th

e
SR

re
su

lts
of

Fx
SR

-P
D

(t
op

)a
nd

Fx
SR

-D
S

(b
ot

to
m

)f
or

D
IV

2K
08

58
,c

or
re

sp
on

di
ng

to
tv

al
ue

s
w

ith

G
lo

ba
lB

es
t(

G
-B

es
t)

L
PI

PI
S

am
on

g
11

sa
m

pl
es

,r
es

pe
ct

iv
el

y.
In

th
e

m
id

dl
e

ar
e

th
e

L
PI

PS
m

ap
s

of
th

e
SR

re
su

lts
on

th
e

le
ft

.O
n

th
e

ri
gh

ta
re

th
e

L
oc

al
B

es
t(

L
-B

es
t)

L
PI

PS
m

ap
s

ge
ne

ra
te

d
by

se
le

ct
in

g
th

e
hi

gh
es

ts
co

re
pe

r
pi

xe
lf

ro
m

11
sa

m
pl

es
.T

he
br

ig
ht

er

th
e

pi
xe

l,
th

e
hi

gh
er

th
e

L
PI

PS
va

lu
e

an
d

th
e

gr
ea

te
rt

he
pe

rc
ep

tu
al

di
ff

er
en

ce
fr

om
th

e
gr

ou
nd

tr
ut

h.
E

ac
h

nu
m

be
ri

n
pa

re
nt

he
se

s
is

th
e

av
er

ag
e

L
PI

PS
va

lu
e

fo
rt

he
en

tir
e

im
ag

e.

35



(a) The conventional method of using multiple SR models trained

separately for a different objective each.

(b) The proposed method of using single FxSR-PD model trained

on the training distribution of objectives.

Figure 2.15: Comparison of the SR results of the conventional method (a), which ap-

plies one objective to the entire image, and the FxSR-PD method, which applies differ-

ent objectives for each area (clothes and letters) through a local map. We can see that

the proposed FxSR-PD in (b) can more accurately produce the locally intended and

suitable SR results without side effects such as blurry textures and broken characters.
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(a) The conventional method of using multiple SR models trained

separately for a different objective each.

(b) The proposed method of using single FxSR-DS model trained

on the training distribution of objectives.

Figure 2.16: Comparison of the SR results of the conventional method (a), which ap-

plies one objective to the entire image, and the FxSR-DS method, which applies dif-

ferent objectives for each area (buildings and trees) through a local map. We can see

that the proposed FxSR-DS in (b) can more accurately produce the locally intended

and suitable SR results without side effects such as blurry tree textures and overshoot

around the edges.
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Figure 2.17: Depth-adaptive FxSR. T-maps is the modified version of the depth map

of an image from the Make3D dataset [?]

.

Figure 2.18: An example of applying a user-created depth map to enhance the perspec-

tive feeling with the sharper and richer textured foreground and the background with

more reduced camera noise than the ground truth.
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Chapter 3

Perception-Oriented Single Image Super-Resolution us-

ing Optimal Objective Estimation

3.1 Motivation and Overview

The purpose of single image super-resolution (SISR) is to estimate a high-resolution

(HR) image corresponding to a given low-resolution (LR) input. SISR has many ap-

plications, mainly as a pre-processing step of computer vision or image analysis tasks,

such as medical [?,?,?], surveillance [?,?], and satellite image analysis [?,?]. However,

SISR is an ill-posed problem in that infinitely many HR images correspond to a single

LR image. Recently, the performance of SISR has been greatly improved by adopting

deep neural networks [?,?,?,?,?,?,?,?,?,?]. Pixel-wise distortion-oriented losses (L1

and L2) were widely used in early research, which helped to obtain a high signal-to-

noise ratio (PSNR). However, these losses lead the model to generate an average of

possible HR solutions, which are usually blurry and thus visually not pleasing.

Subsequently, perception-oriented losses, such as perceptual loss [?] and genera-

tive adversarial loss [?], were introduced to overcome this problem and produce realis-

tic images with fine details [?]. Although these perception-oriented losses are used for

various SR methods [?,?,?], they also bring undesirable side effects such as unnatural
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img 012 HR SRGAN [?] ESRGAN [?]

(Urban100) (PSNR↑ / LPIPS↓) (21.06 / 0.1521) (20.80 / 0.1182)

OOE Map SROOE (Ours) RankSRGAN [?] SPSR [?]

(21.71 / 0.1030) (21.05 / 0.1462) (21.27 / 0.1241)

Figure 3.1: Visual and quantitative comparison. The proposed SROOE shows a higher

PSNR, LR-PSNR [?] and lower LPIPS [?] than other state-of-the-art methods, i.e., ,

lower distortion and higher perceptual quality.
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details and structural distortions. To alleviate these side effects and improve perceptual

quality, various methods, such as the ones employing specially designed losses [?, ?]

and conditional methods utilizing prior information and additional network branches

[?, ?], have been introduced. Meanwhile, different from the conventional SR meth-

ods, which optimize a single objective, some studies tried to apply multiple objec-

tives to generate more accurate HR outputs. However, some of them [?, ?, ?] applied

image-specific objectives without consideration for the regional characteristics, and

the other [?] used region-specific objectives for the regions obtained using semantic

image segmentation with a limited number of pre-defined classes.

In this paper, we propose a new SR framework that finds a locally optimal com-

bination of a set of objectives in the continuous sample space, resulting in regionally

optimized HR reconstruction. The upper part of Fig. ?? shows a visual comparison

of our results with those of state-of-the-art perception-oriented methods. We can see

that our SR method using optimal objective estimation (OOE), called SROOE, gen-

erates more accurate structures. The lower part of Fig. ?? shows that the SROOE is

located on the far right and bottom, corresponding to the position where both PSNR

and LPIPS [?] are desirable.

For this purpose, our SR framework consists of two models: a predictive model

that infers the most appropriate objectives for a given input, and a generative model

that applies locally varying objectives to generate the corresponding SR result. The

main challenge is to train a single generator to learn continuously varying objectives

over the different locations. For this, the objective is defined as the weighted sum of

several losses, and we train the generator with various sets of weights. Meanwhile, the

predictor is to estimate appropriate weights for a given image input.

For efficient training, we do not learn over the entire objective space spanned by

the weight vector, but find a set of several objectives that have high impacts on opti-

mization at each vision level and are close to each other in the objective space. This

is because proximity between objectives improves the efficiency of learning and in-
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creases the similarity of their results, which helps reduce side effects. In addition, we

train the generative model on a set of objectives on our defined trajectory, which is

formed by connecting the selected objectives such that the trajectory starts with an

objective suitable for a low-vision level and progresses through objectives suitable for

higher levels. This enables us to replace high-dimensional weight vector manipula-

tion with simple one-dimensional trajectory tracking, thereby simplifying the training

process. The predictive model is trained using a dataset with pairs of LR images and

corresponding optimal objective maps. We obtain these optimal training maps by using

a grid search on the generator’s objective trajectory.

Regarding the network structure, we employ spatial feature transform (SFT) lay-

ers [?] in the generator to flexibly change the network’s behavior according to the

objective. Our flexible model trained in this way has three advantages. First, the gener-

alization capability to diversely structured images is improved since the network learns

various cases. Second, the SR results are consistent with respect to the trajectory and

given input. Third, the high-dimensional weight vector for loss terms can be replaced

with a vector function with a one-dimensional input, and thus the optimal loss combi-

nations can be easily found and controlled.

Our contributions are summarized as follows. (1) We propose an SISR framework

that estimates and applies an optimal combination of objectives for each input region

and thus produces perceptually accurate SR results. (2) While this approach requires

training with various weighted combinations of losses, which needs the search on a

high-dimensional weight vector space, we introduce an efficient method for explor-

ing and selecting objectives by defining the objective trajectory controlled by a one-

dimensional variable. (3) We propose a method for obtaining optimal objective maps

over the trajectory, which are then used to train the objective estimator. (4) Exper-

iments show that our method provides both high PSNR and low LPIPS, which has

been considered a trade-off relation.
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3.2 Related Work

Distortion-oriented SR. Dong et al. [?] first proposed a convolutional neural network

(CNN)-based SR method that uses a three-layer CNN to learn the mapping from LR to

HR. Since then, many deeper CNN-based SISR frameworks have been proposed [?,?].

Ledig et al. [?] proposed SRResNet, which uses residual blocks and skip-connections

to further enhance SR results. Since Huang et al. [?] proposed DenseNet, the dense

connections have become prevalent in SR networks [?, ?, ?, ?, ?]. Zhang et al. [?]

introduced RCAN, which employs channel attention and improves the representation

ability of the model and SR performance. More recently, SwinIR [?] and Uformer [?]

reported excellent SISR performance by using the Swin Transformer architecture [?]

and locally-enhanced window (LeWin) Transformer block, respectively. While there

are many architectures for the SR as listed above, we employ plain CNN architectures

as our predictor and generator. The structure is not an issue in this paper, and various

CNNs and Transformers can be tried instead of our architecture.

Perception-oriented SR. Because the pixel losses, such as L1 and L2, do not

consider perceptual quality, the results of using such losses often lack high-frequency

details [?, ?]. Meanwhile, Johnson et al. [?] proposed a perceptual loss to improve

the visual quality of the output. Ledig [?] introduced SRGAN utilizing adversarial

loss [?], which can generate photo-realistic HR images. Wang et al. [?] enhanced this

framework by introducing ESRGAN with Residual-in-Residual Dense Block (RRDB).

However, these perception-oriented SR models entail undesirable artifacts, such as

unexpected textures on a flat surface. To alleviate such artifacts and/or further improve

the perceptual quality, various methods have been proposed. Soh et al. [?] introduced

NatSR, where they designed a loss to suppress aliasing. Wang et al. [?] proposed the

use of semantic priors for generating semantic-specific details by using SFT layers.

Zhang et al. [?] proposed a Ranker that learns the behavior of perceptual metrics.

Ma et al. [?] proposed a structure-preserving super-resolution (SPSR) to alleviate

geometric distortions. Liang et al. [?] proposed locally discriminative learning be-
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Figure 3.2: Architecture of the proposed method. The predictive model generates the

optimal objective map T̂B , which is fed to the generative model. The input LR image

is super-resolved through our Basic Blocks and other elements of the generator, which

are controlled by the map from the Condition Branch.

tween GAN-generated artifacts and realistic details. However, Blau [?] argued that it

is difficult to simultaneously achieve perceptual quality enhancement and distortion

reduction because they involve a trade-off relationship. In this regard, there was an

SR challenge [?] focused on the trade-off between generation accuracy and perceptual

quality. One of the main claims of this paper is that we can further reduce distortion

and increase perceptual quality simultaneously, as shown in Fig. ??.

3.3 Methods

3.3.1 Proposed SISR Framework

An overview of our SISR framework is presented in Fig. ??. Our framework consists

of a predictive model Cψ and generative model Gθ, parameterized by ψ and θ, respec-

tively. Model Cψ infers an LR-sized optimal objective map T̂B for a given LR input

x, and Gθ applies it to produce the corresponding SR output, which is as similar as
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possible to its corresponding HR counterpart y, as follows:

ŷT̂B
= Gθ

(
x|T̂B

)
, (3.1)

T̂B = Cψ (x) . (3.2)

3.3.2 Proposed Generative Model

Since using a single fixed objective cannot generate optimized HR results for every

image region, it is beneficial to apply regionally different losses regarding the input

characteristics. However, training multiple SR models, each of which is trained with a

different objective, is impractical because it requires large memory and long training

and inference times [?]. Hence, in this paper, we propose a method to train a single SR

model that can consider locally different objectives.

Effective Objective Set. We first investigate which objectives need to be learned

for accurate SR. For perception-oriented SR [?, ?], the objective is usually a weighted

sum of pixel-wise reconstruction loss Lrec, adversarial loss Ladv, and perceptual loss

Lper, as follows:

L = λrec · Lrec + λadv · Ladv +
∑
perl

λperl · Lperl , (3.3)

Lperl = E [∥ϕperl(ŷ)− ϕperl(y))∥1] , (3.4)

perl ∈ {V12, V22, V34, V44, V54}, (3.5)

where λrec, λadv, and λperl are weighting parameters for the corresponding losses,

and ϕperl(·) represents feature maps of the input extracted at layer perl of the 19-layer

VGG network, where five layers denoted in Eqn. ?? are considered as in [?,?,?]. Since

the receptive field becomes larger as we progress deeper into the VGG network [?],

features of shallow layers such as V12 and V22 and deeper layers such as V34, V44,

and V54 correspond to relatively low-level and higher-level vision, respectively [?].

To find an effective set of objectives, we define an SR objective space. Since the ob-

jective for SR is a weighted sum of seven loss terms, as in Eqn. ??, an objective space
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Figure 3.3: Set A (left) and set B (right) in the objective space. The objectives in set

B are closer each other than those in set A.

is spanned by these basis loss terms, and any objective can be expressed by a seven-

dimensional vector of weighting parameters, λi ∈ R7 as λi = [λrec, λadv,λper],

where λper ∈ R5 is a weight vector for perceptual loss.

Table ?? compares two objective sets, A and B, defined as shown in Fig. ??. Be-

cause ESRGAN [?] is the base model for this comparison, for all objectives in the ta-

ble, except for λ0, λrec and λadv are set to 1× 10−2 and 5× 10−3, respectively. These

are the same as those for ESRGAN, except that λper changes, where ∥λper∥1 = 1.

In particular, in terms of λper, whereas each objective λi in set A has weights for

only one of the five VGG feature spaces, each objective in set B has equal weights for

each loss in the feature space lower than the target vision level. Therefore, an objective

corresponding to a high vision level also includes the losses for the lower-level feature

spaces. Meanwhile, because λ0 corresponds to a distortion-oriented RRDB model [?],

its λrec and λadv are set to 1 × 10−2 and 0, respectively. Note that λ0 is included in

both sets A and B.

In Table ??, the normalized versions (min-max feature scaling) of the averaged

Lperl from Eqn. ?? for five datasets (BSD100 [?], General100 [?], Urban100 [?],

Manga109 [?], and DIV2K [?]) are reported. For all feature spaces, including the tar-

geted V12 and V22 feature spaces, λ1-2 in set B has smaller L1 errors than those of

λ1 and λ2 in set A. Moreover, λ1-4 exhibits smaller errors than those of λ4 and λ5.
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img 073 OOSA OOSB intensity of each λi

HR ESRGAN-OOSA / OOSA ESRGAN-OOSB / OOSB

Figure 3.4: The OOSA and OOSB results using Sets A and B (top), their SR results,

ESRGAN-OOSA and ESRGAN-OOSB (bottom).

Although λ1-3 has slightly more errors in the V34 feature space than that of λ3, it

has less errors in the V12 and V22 feature spaces therefore, λ1-3 has relatively less

distortion than λ3 overfitted to the V34 feature space. That is supported by the fact

that most of the objectives in set B, including λ1-3, have better PSNR and LPIPS on

Urban100 [?] than those in setA. λ1-5 showing relatively poor performance compared

to λ1-4 is not used.

To examine the SR result with locally appropriate objectives applied using set A,

we mix the six SR results of ESRGAN-λa, where λa ∈ A, by selecting the SR result

with the lowest LPIPS for each pixel position, as follows:

y∗A(i, j) = ŷT∗
A(i,j)(i, j), (3.6)

T∗
A(i, j) = arg min

λa∈A
LPIPSλa(i, j), (3.7)

LPIPSλa = LPIPS (y, ŷλa) , (3.8)

where ŷλa is the SR result of ESRGAN-λa. The LPIPS function computes the per-

ceptual distance between two image patches for each pixel position, producing an

LPIPS map, LPIPS, of the input image size [?, ?]. The LPIPS metric in Table ??

is the average of this map. Since T∗
A is the optimal objective selection (OOS), T∗

A and
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its SR model for mixing are denoted as OOSA and ESRGAN-OOSA, respectively. The

upper part of Fig. ?? shows an example of OOSA and OOSB based on set A and B.

PSNR and LPIPS [?] of ESRGAN-OOSA and ESRGAN-OOSB are reported in Table

??, where ESRGAN-OOSB is superior to any single objective model, demonstrating

the potential for performance improvement of the locally suitable objective applica-

tion. The lower part of Fig. ?? shows the side effects caused by mixing the SR results

for set A with lower proximities between objectives than those in set B, as shown

in Fig. ??. Since ESRGAN-OOSB in Fig. ?? has less artifact and better PSNR than

those of ESRGAN-OOSA, the proposed set B is more suitable for applying locally

appropriate objectives.

(a) (b)

(c) (d)

Figure 3.5: The proposed vector functions for loss weights, (a) λ(t) in Eqn. ?? when

α=1 and β=0, (b) its λper(t) and (c) the weighting functions for λper(t). (d) λper(t)

used for FxSR [?].

Learning Objective Trajectory. We train our generative model on a set of ob-
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jectives over the trajectory rather than a single objective, λi. The objective trajec-

tory is formed by connecting the selected objectives, i.e. the five objectives of set B,

starting with an objective for a low-vision level and progressing through objectives

for higher levels, i.e. from λ0 to λ1-4. It is parameterized by a single variable t ,

λ(t) = ⟨λrec(t), λadv(t),λper(t)⟩, as follow:

λ(t) = α·fλ(t) + β, (3.9)

fλ(t) =
〈
fλrec(t), fλadv(t),fλper(t)

〉
, (3.10)

where fλper(t) ∈ R5, fλrec(t), fλadv(t) are weighting functions, α and β are the

scaling and offset vectors. As fλ : R → R7, this vector function enables the replace-

ment of high-dimensional weight-vector manipulation with one-dimensional tracking,

simplifying the training process.

Specifically, the trajectory design is based on the observation in Table ?? that the

distortion-oriented RRDB model using λ0 has smaller L1 errors than those of all ES-

RGAN models for low-level feature spaces, such as V12 and V22, whereas ESRGAN

models have smaller L1 errors for higher-level feature spaces, such as V34, V44, and

V54. Thus, we design the weight functions fλrec , fλadv and fλper such that when

t approaches 0, fλrec increases and {fλadv ,
∑

perl
fλperl} decrease to go to λ0, and

conversely to go to λ1-4 when t increases to 1, as shown in Fig. ??(a).

In relation to the change in
∑

perl
fλperl (t), we design each of five component

functions, fλperl (t) of fλper(t), as shown in Fig. ??(c), to obtain the objective tra-

jectory from λ0 to λ1-4 of set B as shown in Fig. ??(b), illustrating only three out

of five components because of the limitations of 3-dimensional visualization. Thus,

as we progress through the trajectory by increasing t from 0 to 1, the weighting pa-

rameters for the objective start with the distortion-oriented objective, λ0, and then

the losses of higher-vision-level feature spaces and adversarial loss are progressively

added, making slight transitions on the objective toward λ1-4. Fig. ??(d) shows the ob-

jective trajectory used for FxSR [?], which uses only the V22 feature space, limiting
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the performance of the perceptually accurate restoration.

The proposed objective trajectory can efficiently improve the accuracy and consis-

tency of the SR results. First, we can use any objective on the continuous trajectory

from low to high-level vision, which allows the application of more accurate objectives

to each region. Second, with regard to consistency, high-level objectives on our pro-

posed trajectory include both low-level and high-level losses, thus also accounting for

the low-level objectives. This weighting method allows the sharing of the structural

components reconstructed mainly by low-vision-level objectives between all SR re-

sults on the trajectory. Finally, we need to train a single SR model only once, reducing

the number of models required to produce diverse HR outputs [?, ?].

Urban100 DIV2K

Figure 3.6: Changes in detail in the SROT results according to t-value (top) and

changes in PSNR and LPIPS for test DBs (bottom).

Fig. ?? shows the changes in the result of the generative SR model trained on the

objective trajectory in Fig. ??(b), called SROT, as t changes from 0 to 1. The graphs

52



in the bottom of Fig. ?? shows the trade-off curves in the perception-distortion plane

according to the change of t, where t increases by 0.05 from 0.0 to 1.0 and has 21

sample points. Each SR result on the curve is obtained by inputting T with the same

t throughout the image, as Tt = 1 × t, into the condition branch of the generative

model, as follows:

ŷTt = Gθ (x|Tt) . (3.11)

The horizontal and vertical dotted lines of the graphs in Fig. ?? indicate the lowest

LPIPS values of the model and the corresponding PSNR values, respectively. The t

values at that time are written next to the vertical lines. However, applying a specific

t to the entire image still limits SR performance, and optimal t depending on images

is unknown at inference time. We take this one step further and present later how to

estimate and apply locally optimal objectives.

Network Architecture and Training. The outline of the generator network is

adopted from [?], i.e., , Gθ consists of two streams, an SR branch with 23 basic blocks

and a condition branch as shown in Fig. ??. The condition branch takes an LR-sized

target objective map T and produces shared intermediate conditions that can be trans-

ferred to all the SFT layers in the SR branch. Since the SFT layers [?] modulate feature

maps by applying affine transformation, they learn a mapping function that outputs a

modulation parameter based on T. Specifically, Tt, with t randomly changing in the

pre-defined range, is fed into the condition branch during training, and this modula-

tion layer allows the SR branch to optimize the changing objective by t. As a result,

Gθ learns all the objectives on the trajectory and generates SR results with spatially

different objectives according to the map at inference time. Gθ is optimized on the

training samples Z = (x, y) with the distribution PZ , as follows:

θ∗ = argmin
θ

EZ∼PZ [L (ŷTt , y|t)] , (3.12)

L (t) = λrec (t) · Lrec + λadv (t) · Ladv +
∑
perl

λperl (t) · Lperl . (3.13)
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image (0824) OOS T∗
S OOE T̂B

Figure 3.7: The input image, the optimal objective selection T∗
S obtained by parameter

sweeping, and T̂B estimated by Cψ.

3.3.3 Optimal Objective Estimation (OOE)

To estimate an optimal combination of objectives for each region, we train a predictive

model, Cψ. This model produces an optimal objective map T̂B estimated for a given

LR image, which is then delivered to the generative model in Eqn. ??. Since it is hard

to find the ground truth map for Cψ training, we obtain its approximation T∗
S via a

simple exhaustive searching to narrow down the range of the best possible values.

Specifically, we generate a set of 21 SR results by changing t from 0 to 1 with a step of

0.05, and the optimal objective maps are generated by selecting the t with the lowest

LPIPS among them for each pixel, as

T∗
S(i, j) = argmin

t∈S
LPIPSt(i, j), (3.14)

LPIPSt = LPIPS (y, ŷTt) , (3.15)

where Tt = 1 × t, t ∈ S = {0.0, 0.05, 0.10, ..., 1.0}. Fig. ?? shows an example of

the optimal objective selection (OOS) T∗
S . The SR result using T∗

S , SROOS, can be

an upper-bound approximation for the performance of Gθ as

ŷT∗
S
= Gθ (x|T∗

S) . (3.16)

Although T∗
S is useful for training Cψ, this pixel-wise objective selection without

considering the interference caused by the convolutions of Gθ is not accurate ground

truth. Therefore, Cψ is optimized with three loss terms: pixel-wise objective map loss,
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0841 (DIV2K) HR RRDB SROOE (T = 0) SRGAN ESRGAN

(PSNR↑ / SSIM↑ /

LPIPS↓)

(28.73 / 0.8851 /

0.1929)

(28.60 / 0.8813 /

0.1927)

(25.89 / 0.8128 /

0.1141)

(25.98 / 0.8182 /

0.1048)

OOE Map (T̂B) SFTGAN RankSRGAN SRFlow SPSR SROOE

(25.76 / 0.8004 /

0.1370)

(25.83 / 0.8046 /

0.1098)

(26.45 / 0.7963 /

0.1093)

(26.32 / 0.8182 /

0.1076)

(26.58 / 0.8283 /

0.0897)

Figure 3.8: Visual comparison with state-of-the-art SR methods. Among the seven

perception-oriented SR methods, the best performances are highlighted in bold.

pixel-wise reconstruction loss and perceptual loss, which measures the difference be-

tween the reconstructed and HR images, as follows:

ψ∗ = argmin
ψ

EZT∼PZT
L, (3.17)

L = λT · LT + λOOErec · Lrec + λR · LR, (3.18)

LR = E
[
LPIPS

(
y, ŷT̂B

)]
, (3.19)

where LT and Lrec is the L1 losses between T∗
S and T̂B and between y and ŷT̂B

, re-

spectively. Meanwhile, ZT = (x, y,T∗
S) is the training dataset, and λT, λOOErec and λR

are the weights for each of the loss terms, respectively. During the Cψ model training,

Cψ is combined with the already trained generative model, and the generator param-

eters are fixed. Therefore, losses for Cψ training, including LPIPS, are involved only

in estimating locally-appropriate objective maps without changing the generator’s pa-

rameters.

The architecture of Cψ consists of two separate sub-network: one is a feature ex-

tractor (F.E.) utilizing the VGG-19 [?] and the other is a predictor with the UNet ar-
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chitecture [?], as shown in Fig ??. For better performance, the feature extractor aims

to get low to high-level features and delivers them to Unet, which makes the predic-

tion. Since the structure of UNet has a wider receptive field, it is advantageous for

predicting objectives in context.

3.4 Experiments

3.4.1 Experiment Setup

Materials, Evaluation Metrics and Training Details. We use either the DIV2K [?]

(800 images) or the DF2K [?] (3450 images) dataset to train our models. Our test

datasets include BSD100 [?], General100 [?], Urban100 [?], Manga109 [?], and DIV2K

validation set [?]. To evaluate the perceptual quality, we report LPIPS [?] and DISTS [?],

which are full-reference metrics. DISTS is a perceptual metric that focuses on detail

similarity. PSNR and SSIM [?] are also reported as fidelity-oriented metrics. The LR-

PSNR metric is the PSNR between the LR input and downscaled SR images. The

higher the LR-PSNR, the better the consistency between the SR results and LR im-

ages, where 45 dB or more is recommended for good LR consistency as addressed in

NTIRE challenge [?]. Because consistency with the LR input images is important, we

also report the LR-PSNR. All training parameters are set to be equal to those of ESR-

GAN [?], except for the loss weights. For the generator training, t is a random variable

with uniform distribution in [0, 1]. α=[1× 10−2, 1,1] and β=[1× 10−2, 0,0].

3.4.2 Evaluation

Quantitative Comparison. Table ?? shows the quantitative performance compari-

son for the 4× SR. We compared it with a distortion-oriented method, RRDB [?],

and perception-oriented methods, such as SRGAN [?], ESRGAN [?], SFTGAN [?],

RankSRGAN [?], SRFlow [?], SPSR [?], and FxSR [?]. The table shows that our

method yields the best results among the perception-oriented methods on all datasets,

56



Ground truth FxSR [?] SROOE OOE

(PSNR↑ / LPIPS↓) (29.86 / 0.0525) (30.14 / 0.0410) (4x magnified)

Figure 3.9: Visual comparison of the results of FxSR and SROOE.

not only in terms of LPIPS [?] and DISTS [?], but also in terms of distortion-oriented

metrics such as PSNR and SSIM. It also exceeds 45 dB in LR-PSNR, indicating that

LR consistency is well-maintained , as addressed in NTIRE [?]. In addition, SROOE

using a local objective map outperforms SROT with the globally optimal t value for

the Urban100 and DIV2K benchmarks in terms of both LPIPS and PSNR in Fig. ??.

SROOS with T∗
S has the best PSNR, SSIM, LPIPS, and DISTS scores, which shows

the approximated upper bounds of the proposed SROOE. On the other hand, when the

objective map T is set to be 0, SROOE operates as a distortion-oriented SR model.

Although it is slightly inferior to RRDB [?] in terms of PSNR, its performance is not

far behind while showing better LPIPS. This implies that SROOE performs close to

RRDB [?] for the regions needing distortion-oriented restoration, and thus the overall

distortion is reduced while achieving high perceptual quality.

Qualitative Comparison. Fig. ?? shows a visual comparison, where we can ob-

serve that SROOE generates more accurate structures and details. In particular, it ap-

pears that there is little change in the structural component between the SROOE results

using T = 0 and T̂B , and sharp edges and generated details are added to the structural

components. Additional visual and quantitative comparisons for the 4× and 8× SR are

provided in the supplementary.
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3.5 Ablation Study

Table ?? reports average values in terms of each metric on all five benchmarks in Ta-

ble ??, which vary according to the change in each element. The two different objective

trajectories shown in Fig. ??(b) and (d) are referred to as P1234 and P2, respectively.

The table shows that the SR performance improves step by step, when going from P2,

fixed t, and DIV2K to P1234, OOE, and DF2K, respectively. Specifically, our pro-

posed model, SROOE-P1234 trained with DF2K is improved by 0.25 dB in PSNR,

0.0069 in SSIM, 0.0051 in LPIPS, and 0.23 dB in LR-PSNR compared to SROT-P2

corresponding to FxSR with t=0.8 [?] as the example shwon in Fig. ??. A comparison

of the running times and parameter sizes is presented in Table ??, where the time is for

the 4× SR of a 128× 128 image on an NVIDIA RTX3090 GPU.

Limitations. Although applying locally appropriate objectives can significantly

improve the LR to HR mapping accuracy, even if the generator uses an optimal ob-

jective map T∗
S , it is still limited in achieving full reconstruction. This means that the

proposed generator is still unable to generate all HRs with the objective set used for

training in this study, and thus, more sophisticated perceptual loss terms than the VGG

feature space are still required to overcome this. And still, there remains a limit to

solving the ill-posed problem caused by high-frequency loss.

3.6 Conclusion

We proposed a novel SISR framework for perceptually accurate HR restoration, where

an objective estimator provides an optimal combination of objectives for a given image

patch, and a generator produces SR results that reflect the target objectives. For this

purpose, we employed objective trajectory learning to efficiently train a single gener-

ative model that can apply varying objective sets. Experiments show that the proposed

method reduces visual artifacts, such as structural distortion and unnatural details, and

achieves improved results compared to those of state-of-the-art perception-oriented
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methods in terms of both perceptual and distortion metrics. The proposed method can

be applied to off-the-shelf and other SISR network architectures.
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Table 3.3: Comparison of performance according to different selections. The bold

checkmark indicates the change from the left selection. The 1st and the 2nd best per-

formances except for SROOS are highlighted in bold and underline, respectively.

Methods SROT SROOE SROOS

Objective P2 ✓ ✓

Trajectory P1234 ✓ ✓ ✓

T

Tt=0.8 ✓

T̂B (OOE) ✓ ✓ ✓

T∗
S (OOS) ✓

training DIV2K ✓ ✓ ✓

DB DF2K ✓ ✓

Metric

PSNR↑ 26.49 26.53 26.65 26.74 27.07

SSIM↑ 0.7803 0.7816 0.7853 0.7872 0.7982

LPIPS↓ 0.1011 0.1000 0.0978 0.0960 0.0875

LR-PSNR↑ 49.21 49.21 49.32 49.44 49.76

Table 3.4: Comparison of the running time and the SR model size.

SRGAN [?]
ESRGAN

[?]
FxSR [?] SROOE

Run Time

(msec)
0.014 0.138 0.501 0.968

Param Size

(MB)
1.51 16.69 18.30 70.20
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Chapter 4

Conclusions

This dissertation presents a perception-oriented image restoration method using con-

ditional objective learning. It is shown that the results of the proposed method over-

come the trade-off in image restoration performance by adaptively applying distortion-

oriented and perceptual-oriented results to each region. Specifically, two key methods

are proposed: an efficient method to train a single locally-adjustable model using con-

ditional objective, and a novel IR framework that estimates and applies an optimal

combination of objectives for each input region and thus produces perceptually accu-

rate restoration results.

First, We have presented a novel training method and a network structure for the

SISR, enabling us to explore various region-wise HR outputs. From this, we can flex-

ibly reconstruct the images between perception-oriented and distortion-oriented ones.

This is achieved by defining a conditional objective function with the weights related

to the perceptual losses in various feature space levels. Also, our network is designed

to modulate the network’s intermediate features to change the operation according to

these control inputs. As a result, we can generate an image with a desired restoration

style for each area. Experiments show that the proposed FxSR yields state-of-the-art

perceptual quality and higher PSNR than other perception-oriented methods. Also, we

can find many solutions by controlling a single parameter at the inference phase. We
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will release our code for further research and comparisons.

Second, this dissertation has proposed a novel image restoration framework for

perceptually accurate HR restoration, where an objective estimator provides an opti-

mal combination of objectives for a given image patch, and a generator produces SR

results that reflect the target objectives. For this purpose, we employed objective tra-

jectory learning to efficiently train a single generative model that can apply varying

objective sets. Experiments show that the proposed method reduces visual artifacts,

such as structural distortion and unnatural details, and achieves improved results com-

pared to those of state-of-the-art perception-oriented methods in terms of both percep-

tual and distortion metrics. The proposed method can be applied to off-the-shelf and

other SISR network architectures.
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초록

영상복원의목적은주어진저품질영상을고품질영상으로복원하는것이다.전

형적인영상복원분야에는영상잡음제거(image denoising)와영상초해상화(image

super-resolution)가포함된다.영상복원은일상의영상품질향상뿐아니라의료,감

시및위성이미지의컴퓨터비젼작업전처리단계로도많이활용되고있다.그러나

이러한 영상 복원은 하나의 저품질 이미지에 무한히 많은 고품질 이미지들이 대응

한다는 점에서 불량조건문제이기 때문에 어려운 작업이다. 최근에는 대규모 외부

데이터 세트로 훈련된 심층 신경망을 도입하여 영상 복원의 성능이 크게 향상되었

다.특히픽셀단위의왜곡감소지향손실(L1및 L2)은높은신호대잡음비(PSNR)

를 얻는데 도움이 되며 초기 연구부터 널리 사용되었다. 그러나 이러한 왜곡 기반

손실로 학습된 모델은 주어진 저품질 이미지에 대응될 수 있는 고품질 솔루션들의

평균을 복원 결과로 생성하게 되며, 이는 일반적으로 흐릿하고 시각적으로 만족스

럽지않다.이후이러한문제를극복하고세밀한디테일이있는실제같은이미지를

생성하기위해인지손실(perceptual loss)및생성적대적손실(generative adversarial

loss)과같은인지지향손실들이도입되었다.이러한인지지향손실은다양한영상

복원 방법들에 사용되었지만, 부자연스러운 디테일 및 구조적 왜곡의 발생과 같은

바람직하지않은부작용도가져온다.특히단일인지손실을영상전체에동일하게

사용하는것은국부적으로다양한형태를가지는이미지를정확하게복원하는데충

분하지않은것으로나타났다.이러한이유로인지손실,적대적손실,왜곡손실등

다양한 손실들의 가중 조합이 시도되었지만 최적의 조합을 찾는 것은 여전히 어려

운일이다.이러한문제를해결하기위해본학위논문에서는지역별로최적목적을

예측및적용하여복원결과영상의전체영역에서실제같고자연스러운결과를생
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성하는새로운방법을제시한다.

첫 번째 연구는 제어 맵에 따라 국부적으로 다양한 형태의 고해상도 복원 결과

를생성할수있는유연한모델의학습법과네트워크구조이다.일반적으로,다양한

초해상화결과를얻기위한접근방식은손실가중치가다른여러목적들로각각의

모델을 훈련하고 이러한 모델들의 조합을 활용하는 것이지만, 본 연구에서는 여러

모델을사용하는대신,훈련중에조건목적으로단일의초해상화모델을최적화하

는 방법을 제안한다. 여기서 목적은 각각 다른 비전 레벨의 특징에 해당되는 인지

손실항들의가중합을포함한다.이가중치집합은스타일제어입력에따라다르게

정의된다. 또한, 이 훈련 방식에 적합한 네트워크 구조로 공간 특징 변환 레이어가

장착된 Residual-in-Residual Dense Block을 제시한다. 이렇게 훈련된 모델은, 추론

단계에서, 국부적으로 변화하는 목적 맵에 대응되는 고해상도 복원 결과를 생성할

수있다.광범위한실험은제안된초해상화모델이부작용없이목적제어맵에따라

다양한스타일의초해상화복원결과를생성하고최첨단초해상화방법들에필적하

는정량적성능도달성한다는것을보여준다.

두 번째 연구에서는, 인지 관점에서 최적인 목적을 지역마다 추정하고 이를 적

용함으로써복원영상전체영역에서고품질을달성할수있는,인지지향의새로운

영상복원프레임워크를제시한다.구체적으로프레임워크는주어진저해상도입력

에대한최적의목적맵을유추하는예측모델과해당목적맵에상응하는초해상화

복원결과를생성하는생성모델의두가지모델로구성된다.생성모델은제안하는

필수 목적들을 포함하는 목적 궤적에 대해 훈련되며, 이를 통해 단일 생성 모델은

연속된 궤적 상의 다양하게 결합된 손실들에 해당하는 다양한 초해상화 결과들을

학습할수있다.예측모델은저해상도이미지과그에상응하는목적궤적에서검색

된 최적의 목적 맵의 쌍을 사용하여 훈련된다. 5개의 벤치마크에 대한 실험 결과는

제안하는 방법이 LPIPS, DISTS, PSNR 및 SSIM 측정에서 최신 인지 기반 초해상

화방법들보다성능이우수함을보여준다.또한시각적비교결과에서도인지지향

복원관점에서제안방법의우수성을보여준다.
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