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Abstract 

 

Designing An Active Distribution 

Network Operation Strategy for 

Practical Power Systems Based on 

Safe Deep Reinforcement Learning 
 

Seok Hwa Oh 

School of Electrical and Computer Engineering 

The Graduate School 

Seoul National University 

 

The primary objective of this research is to propose a 

methodology for Distribution System Operators (DSOs) to 

maintain real-time security in a distribution system infused with 

renewable energy sources, along with the provision of a safe 

reinforcement learning (RL) approach to resolve this as an 

optimal operation problem. 

To this end, the research initially assesses the need, 

authority, and role of the DSO in a distribution system 
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environment transformed by the penetration of renewable energy 

sources and defines the objective of active system operation for 

maintaining system stability by the DSO. Furthermore, this study 

endeavors to integrate the actual physical system and the system 

in a simulation environment into a single Cyber-Physical System 

(CPS), defining the distribution power system environment 

where real-time network management of DSO takes place. 

The assets or devices that the DSO can control vary 

according to each system environment; however, this study 

focuses intensively on two controlling options: distribution 

system reconfiguration through switches within the system and 

alternation of system current flow using energy storage devices, 

formalizing each of these as optimization problems. 

Moreover, this research considers these optimization 

problems as control decision problems over continuous time and 

reformulates them as Markov Decision Processes (MDPs), 

designing a reinforcement learning algorithm to resolve them. 

Depending on the objectives and the characteristics of the target 

data in the field of reinforcement learning (RL), a variety of 

algorithm forms can be designed. In this study, a Dueling Deep 

Q-learning algorithm suitable for the proposed system operation 
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methodologies is designed. 

While numerous studies have sought to resolve power 

system operation issues using reinforcement learning algorithms, 

this study scrutinizes problems that can occur when applying 

these beyond the simulation environment to practical power 

systems. Among these, the study extends the original MDP to a 

Constrained Markov Decision Process (CDMP) to handle safety 

constraints of control decisions required in actual systems within 

the reinforcement learning algorithm, designing a safety module 

to handle equality constraints and an adaptive cost function for 

inequality constraints. 

Consequently, by simulating the designed safe 

reinforcement learning model in the IEEE 123-bus test system, 

it is proven to display more effective performance when 

considering multiple operation strategies simultaneously and 

taking into account the safety of reinforcement learning. 

By adopting the reinforcement learning framework 

proposed in this paper for real-time distribution system 

operation, DSOs can design reinforcement learning algorithms to 

resolve the requirements derived from physical power systems. 

Furthermore, by ensuring that the algorithm's decision minimizes 



 

 iv 

the violation of physical system stability constraints, it can be 

utilized as one of the system operation strategies to counteract 

the increasing complexity of the distribution system. 

 

 

Keyword : Safe Reinforcement Learning, Active Distribution 

System Operator, Cyber-Physical System, Distribution Network 

Reconfiguration, multi-ESS Operation. 
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Chapter 1. Introduction 
 

 

1.1. Background and Motivation 

In this section, the necessity of an active distribution system 

operator (DSO) in future distribution power system 

environments that include numerous distributed renewable 

energy sources (DRESs) is articulated. Further, the necessity 

for short-term operation of distribution networks within such 

environments and its specific contents will be discussed. It is 

demonstrated that to implement this, the physical power system 

in the real world coupled with the simulation environment can be 

defined as a single Cyber-Physical System (CPS). 

 

1.1.1. Need For Active Distribution System Operator 

 



 

 ２ 

 

Figure 1.1 IEEE 33-bus distribution network with a high 

penetration of distributed renewable energy sources [1] 

 

There are several ongoing significant transformations of 

contemporary power system, a transformation that is poised to 

intensify in the future. The key trends catalyzing this 

transformations can be encapsulated as follows [2]: 

 

- Changes in the sources and characteristics of electricity 

generation 

Transitioning from large-scale power plants towards smaller, 

distribution renewable energy sources (DRESs) across all 

system levels is significantly affecting the traditional electricity 

generation landscape. This shift, paired with the 

decommissioning of large thermal power plants, introduces 
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uncertainties in power generation and reduces system inertia due 

to the common use of power electronic converters in DRES 

generators, thereby complicating frequency regulation and 

control. 

 

- New types of electricity loads and transformations in load 

profiles 

Emerging load types, such as electric vehicles, along with 

changing load profiles influenced by the ability to generate 

electricity locally, the application of electronics and controls in 

residential, commercial, and industrial settings, and the 

increasing involvement of loads in electricity markets and power 

system control are reshaping the demand side of the electricity 

equation. 

 

- The advent and implementation of smart grid technologies 

 Progress in communication infrastructure, innovative 

instrumentation and measurement technologies, and the surge in 

accessible data due to devices such as phasor measurement units 

(PMU) and smart meters is transforming the way power systems 

are monitored and managed. 
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- The rise of microgrids and energy communities 

Emerging as unique entities within power systems, these 

groups, consisting of interconnected loads and DRES-based 

power generation within a specific area, function as a single 

controllable unit with respect to the grid. Their ability to operate 

both in grid-connected mode and as autonomous entities 

provides an additional layer of flexibility in power system control, 

particularly in restoration operations. 

 

- The proliferation of electricity storage technologies  

From large-scale storage connected to the transmission 

system to smaller devices linked to the distribution system, 

microgrids, energy communities, and individual load sites, 

storage technologies have emerged as key enablers for future 

power system operation. They offer the potential to mitigate 

generation-load imbalances under uncertain conditions, while 

also serving as crucial control devices throughout various power 

system operational states. 
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- Need for Active Network Management and Distribution System 

Operator 

Traditionally, distribution networks have been passive 

systems receiving power from transmission networks and 

delivering it to loads. However, risk of new problems threatening 

distribution-system reliability and stability is increasing as 

DRESs have become increasingly introduced. To prevent such 

situations, DRES grid-connection rules conventionally have been 

designed according to the “fit-and-forget” principle, which is 

a planning approach to managing distribution networks to ensure 

high network reliability in worst-case operating scenarios 

without requiring any active control actions. However, because 

this approach may lead to distribution-network overinvestment, 

it is not economically feasible to adopt rapidly expanding DRESs 

[3]. 

In recent years, technological and institutional advances have 

led to a new phase in distribution system operation called 

“Active Network Management”(ANM), thereby ensuring the 

reliability of distribution networks while efficiently increasing 

hosting capacity. Active management in a distribution system is 

defined as short-term control and management of the system 
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elements including DRESs and energy storage systems (ESSs), 

using advanced information and communications technology (ICT) 

infrastructure for on-line network status measurements and 

bidirectional communication between all the network elements 

and a central operating system [4], ANM is a comprehensive 

concept including active fault management, active voltage control, 

and active power flow management, and various techniques have 

been studied to implement ANM, which has enabled distribution 

system operators (DSOs) to solve various network-constraint 

problems with operation-level solutions not included in 

planning-level principles. Furthermore, [4] claimed that network 

management at the operation stage was less expensive and, 

therefore, more economical. 

 

 

1.1.2. Cyber-Physical System Framework for Power System 

Operation 

 

- General CPS Concept [7] 

A Cyber-Physical System (CPS) represents a paradigmatic 
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product emerging from the Industry 4.0, assuming a critical 

function due to its capacity to intertwine the physical and virtual 

realms through the provision of real-time data processing 

services [8]. A CPS, more explicitly, facilitates the equipping of 

a physical system with a virtual system, serving as a monitoring 

mechanism. It allows for the analysis of data procured from the 

physical environment within the virtual domain, thereby 

informing decisions that influence the trajectory of the physical 

world. Consequently, a CPS enables the consolidation, 

dissemination, and collaboration of information, along with real-

time monitoring and global optimization of systems [9]. Modern 

industry boasts an array of applications based on CPSs, 

encompassing areas such as smart grids, healthcare, aviation, 

digital manufacturing, and robotics. Evidence in the literature 

suggests that CPS incorporates a variety of facets including, but 

not limited to, Networked Control Systems (NCSs), wireless 

sensor networks, and smart grids. 

The constitution of a CPS involves a physical system and a 

cyber system, derived from the integration of physical 

processing, sensing, computation, communication, and control 

[10]. The typical architecture of a CPS is depicted in Figure 1.2. 
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The physical system comprises physical processes, sensors, and 

actuators, while the cyber system entails communication 

networks, computing, and control centers. Physical processes 

are customarily perceived as a plant under the control of a cyber 

system. Concerning the other components, their functionalities 

are as follows: 

 

1) Sensors: These are employed for the acquisition of real-

time data. 

2) Actuators: The execution of control commands by 

corresponding actuators facilitates the realization of 

desired physical actions. 

3) Computing and control center: This component is tasked 

with receiving data measured by sensors. Through the 

analysis of the received data, the control center formulates 

relevant control decisions, ensuring the correct execution 

of physical processes. 

4) Communication network: This component furnishes a 

communication platform for the control center and physical 

system. Specifically, measurements obtained by sensors 

are transmitted over the communication network to the 
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control center. Control signals or decisions are 

subsequently relayed from the control center to actuators 

via the communication network. 

 

 

Figure 1.2 General CPS architecture [7] 

 

- Cyber-Physical Power System 

The application of CPS concept to power systems also has 

been a long-standing research topic. Around the turn of the 

millennium, there was a demand for future energy systems 

capable of the modular integration of DRES into power systems, 

as well as the implementation of customer choices by energy 
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users. In particular, [11] articulated the necessity of 

systemically embedding cyber technologies that can monitor, 

communicate, and control the physical system to adaptively meet 

objectives such as flexibility, efficiency, sustainability, reliability, 

and security, in response to the time-variant system states of 

these future energy systems. Moreover, they modularized power 

plants and loads into a generalized form, defined an interaction 

control protocol between each module by the system operator, 

facilitating system-wide controllability and stabilization, and 

proposed a cooperative sensing and communication scheme 

ensuring system-wide observability. 

Such a module-based cyber-physical energy system was 

depicted as shown in Figure 1.3 by [12]. 
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Figure 1.3 A module-based architecture for cyber-physical 

energy systems [12] 

To construct a Cyber-Physical Power System as described 

above, it is necessary to formalize a dynamic model based on the 

physical characteristics of each component, with a limited 

number of sensible states and well-defined action inputs. This 

task is extensively carried out in the aforementioned prior 

studies. However, discussing it in detail falls outside the scope 

of this dissertation. It is assumed here that a DSO, based on such 

a Cyber-Physical Power System, can collect the necessary 

information of the network at intervals ranging from several 

minutes to an hour, as well as the DSO can take control decisions 
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and/or actions to maintain network stability. 

 

1.1.3. Role and Structure of the Proposed Distribution 

System Operator  

 

- Power system states and control action of DSOs  

 

 

Figure 1.4 Power system operating states [2] 

 

Electric power systems encounter diverse control challenges 
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across various operational states and time frames. The 

categorization of these operating states most commonly adopted is 

proposed in [5]. which defines states based on the system's 

adherence to equality (E) and inequality (I) constraints. As 

depicted in Figure 1.4, each state of the power system is delineated 

based on whether these constraints are satisfied, signified by the 

symbol ‘~’ if not. Equality constraints represent the balance 

between generation and load demand, while inequality constraints 

convey the physical limits of the power system components. These 

limitations are typically outlined in terms of current and voltage 

magnitudes, as well as active, reactive, and apparent powers that a 

system component can bear without damage [6]. Figure 1.2 further 

exhibits the control mechanisms employed within electric power 

systems. Beyond preventive, emergency, and restorative controls, 

control in the normal operating state is also crucial due to the 

continuous minor variations in generations and loads observed in 

this state [2]. 

In this research, the role defined for the DSO is to maintain the 

power system in Normal state. It is posited that the target 

distribution power system could transition into an Alert or even 

Emergency state due to unpredictable DRES generation or load 
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patterns. Consequently, the DSO holds the authority and 

responsibility to execute Preventive and Emergency controls in 

such situations. It should be noted that failure and restorative 

states, which occur when equality constraints are violated, along 

with associated emergency and restorative controls, undoubtedly 

fall within the purview of the DSO's responsibilities. However, as 

they extend beyond the scope of this research, they will not be 

covered in this research. 

 

 

- An integrated CPS Framework for power system operation  

There are distinct advantages, and indeed necessity in this 

research, to applying the previously defined concept of CPS to 

power system operation. The concept of power system operation 

includes not only the actual manipulation of physical components 

but also setting and changing control objectives that have a 

significant impact on system reliability, both of which fall under 

the role of an active DSO. In other words, the active DSO is 

defined across the physical and cyber layers from the 

perspective of a CPS and is responsible for communication and 

interpretation between these two layers. However, many 
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previous studies tend to use concepts and operating actions 

belonging to each layer interchangeably. 

Particularly when, as targeted in this research, a DSO intends 

to include such as artificial intelligence models in the operating 

system, which are not physical components or their 

corresponding simulated ones, this is not feasible from the 

perspective of simple power system simulation. In this research, 

following [13], we propose to redefine the power system by 

distinguishing it into the physical layer, information-based cyber 

layer, and the mediating interaction layer, for which we propose 

the following structure. 
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Figure 1.5 Proposed CPS structure for a distribution power 

system 

 

The Cyber-Physical Power system in this dissertation is 

defined by three layers: the physical layer composed of physical 

components, the cyber layer based on the simulated model of the 

physical components, and the interaction layer that facilitates 

communication and interpretation of information and signals 

between the two. 
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Specifically, the physical layer includes traditional power 

system components like generators, loads, lines, and DRES such 

as PVs, WTs, ESSs. Moreover, considering the focus on the 

distribution power system, the interconnection point with the 

transmission power system is also included. The cyber layer 

consists of a simulated system, taking into account the 

controllability and visibility of the DSO, which is grounded on the 

physical power system of the physical layer. In the context of 

the CPS, the simulated system focuses more on controlling the 

physical system rather than constructing a 'mirroring model' that 

faithfully reproduces the physical system. This naturally leads to 

the role of the interaction layer in the proposed CPS. The 

interaction layer defines the computing and communication 

functionalities of the given CPS while facilitating mapping, real-

time interaction, and, consequently, effective coordination 

between the physical layer and the cyber layer, which do not 

necessarily correspond one-to-one. 

Figure 1.5 provides a graphical summary of the above-

mentioned content. The elements composing the Figure 1.5 are 

as follows [13]. 
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𝐶 : Cyber layer, or computing properties of a CPS 

𝑃 : Physical layer, or physical properties of a CPS 

𝐼 : Interaction layer, or Interaction parameters of a CPS 

𝐺:𝐶 × 𝑡 → 𝐼 : mapping between the sets 𝐶 and 𝐼 

𝐻:𝑃 × 𝑡 → 𝐼 : mapping from the 𝑃 to 𝐼 

𝐾:  Cyber-Physical interaction; inverse mapping from a 

subset of 𝐼 to a subset of 𝑃 or 𝐶.  

 

In the context of CPS operation, [13] argues that it necessitates 

the assurance of three key properties, collectively referred to as 

S3: safety, security, and sustainability. Among these, this 

dissertation will primarily focus on the aspect of safety (avoidance 

of hazards). Issues related to security (assurance of integrity, 

authenticity, and confidentiality of information) and sustainability 

(maintenance of long-term operation of CPSs using green energy 

sources) such as the much-discussed cyber-attack, i.e., false data 

injection in recent ICT-based power system operations, exceed 

the scope of this paper.  

The emphasis here is that when the DSO manages and handles 

the physical power system, it always transpires within a cyber-

physical power system through the interaction layer. Although an 
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informational gap exists between the cyber layer and the physical 

layer in CPS, the CPS discussed in this dissertation is assumed to 

be a closed one, precluding the intrusion of external signals into 

the gap. Thus, the data collected from the physical layer and 

arrived at the cyber layer can always be trusted, and contrarily, 

control or operation signals transmitted from the cyber layer can 

always be received by the corresponding parts of the physical layer. 

 

1.2.  Main Contribution 

 

As explained in the previous section, today's distribution 

networks are necessitating a shift from traditional passive to 

proactive, active network operation strategies due to their evolving 

environment. This shift occurs not only in components requiring 

control within the network but also where these controls' 

timescales vary, indicating the need for a DSO capable of 

supervising and aligning these controls. Consequently, this 

dissertation explores a novel active distribution network operation 

strategy from the DSO's perspective, and the primary contributions 

are as follows: 
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- This dissertation has formalized problems of active network 

management methods using assets owned by DSO, specifically 

distribution network reconfiguration and multi-BESS operation, 

as optimization problems. 

- This dissertation has demonstrated that the defined problems 

can be reformulated as corresponding Markov Decision Problems, 

allowing the introduction of reinforcement learning for solving 

them. 

- This dissertation has designed reinforcement learning 

algorithms and neural network structures suitable for each 

problem's characteristics. 

- This dissertation has examined potential issues when applying 

RL algorithms to safety-critical power systems and introduced 

a safe reinforcement learning framework. We designed safety 

algorithms to correspond appropriately to each system constraint 

and formalized them for each control method. 

 

1.3.  Dissertation Outline 

 

This section provides the dissertation outline. Chapter 1 
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elucidates the necessity for Active Network Management in 

response to the dynamic changes in the distribution system 

environment and discusses the active DSO, the entity responsible 

for its execution. It further redefines the power distribution system 

as a Cyber-Physical System, conceptualized as a framework for 

the DSO to operate within. In Chapter 2, we describe the ANM 

methodologies that the DSO can deploy utilizing its own assets. We 

articulate the modeling and formulation of optimization problems 

with respect to Network reconfiguration, enabled by sectionalizing 

switch, and the preservation of system stability through the 

utilization of multi-ESS. Further, we scrutinize strategies for joint 

operation when more than one methodology can be employed. 

Chapter 3 introduces reinforcement learning as a method from the 

DSO's perspective for solving problems defined in Chapter 2, and 

redefines each ANM method within the RL framework. Chapter 4 

evaluates the potential issues that may arise when seeking to apply 

artificial intelligence algorithms, including reinforcement learning, 

to physical power systems, and examines safe RL as a methodology 

to address these challenges. It also designs safety algorithms that 

can be applied to the RL model proposed in Chapter 3. Chapter 5 

designs and conducts a case study to evaluate the methodologies 
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proposed previously and analyses the results. Chapter 6 offers 

concluding remarks along with suggestions for future research 

extensions. The Appendix presents detailed data for simulation and 

mathematical techniques.  
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2. Chapter 2. Short-term Network 

Operation of DSO 
 

In this chapter, we examine short-term network control 

methods that a DSO can execute using its own assets with the 

objective of maintaining network stability. Specifically, we will 

investigate two methods: Distribution Network Reconfiguration 

(DNR) using sectionalizing switches and the operation of multiple 

Energy Storage Systems (ESS). 

2.1.  Distribution Network Reconfiguration 

 

2.1.1. Concept of Distribution Network Reconfiguration 

 

In self-sufficient distribution systems wherein most of the 

demand can be supplied internally by DRESs, system status can 

change considerably in a short time window owing to the variation 

of DRES generation outputs, which usually depends on the 

unpredictable weather conditions. To promptly cope with the 

distribution network constraint violation problem occurring in 
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normal operation situations, the presence of a DSO is necessary. 

The DSO can change the power flow by constructing another 

topology while maintaining the radiality of the distribution system 

by changing the switch status online. In principle, it takes a way to 

alleviate the line overflow or bus voltage problem by connecting 

more loads to the branch where the output of DRESs exceeds the 

tolerable power generation. From a practical viewpoint, the online 

network reconfiguration requires a distribution power system with 

several normally opened switches that can be remotely controlled 

(i.e., remotely controlled switches (RCSs)), which DSOs have the 

authority to operate, and a surveillance system such as SCADA to 

collect the network status data. In this case, the DSO can use the 

online collected data as the input of the algorithm proposed in this 

paper and can manipulate the RCSs of the distribution network with 

the outputted optimal topology of the network. It is expected that 

this will be done by automated ANM systems.  
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Figure 2.1 Simple power distribution network with DRESs  

 

Assume that DRESs such as wind turbines (WTs) and 

photovoltaics (PVs) have been installed in a 3-feeder simple 

power distribution network [15], as shown in Figure 1, and the 

network is in the normal operation as in Topology 1. If the WT 

generation is temporarily increased, a reverse flow which may 

violate the thermal constraint occurs at Line 1-4 under Feeder 

1. Existing DSOs can overcome this problem by 1) investing a 

large budget to increase line capacity by reinforcing Line 1-4, 

or 2) curtailing the generation of WTs and compensating DRES 

owners for generation opportunity costs. If online network 

reconfiguration is possible, this threat can be solved by changing 

the network switching status and reconfiguring the system 

topology as Topology 2. In another case, if the power distribution 

system is operating in Topology 2 and the PV generation is very 
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high while the WT generation is low, it can threaten the thermal 

constraint on Line 3-13. Similarly, this problem can be solved 

by changing system topology to Topology. 

Because finding the optimal topology through network 

reconfiguration is basically a nonlinear combinatorial optimization 

problem, it is very difficult using existing optimization solvers to 

compute network topologies fast enough to apply them to online 

network reconfigurations. Therefore, the brute-force search 

method that solves the power flow for all possible switch 

statuses at every timestep is unsuitable because computation 

time exponentially increases according to number of switches. 

Previous studies have used various heuristic algorithms such as 

greedy algorithms, genetic algorithms (GAs), evolution 

programming (EP), artificial neural networks (ANNs), and 

branch exchange algorithms, or approximated the problem to 

break it down. However, only a few studies have attempted to 

access distribution network reconfiguration online. Reference 

[16] has proposed the online approach, their study merely 

extended previous research while using the existing heuristic 

method proposed by [17] to minimize the objective function 

which is composed of energy loss, Expected System Average 
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Interruption Frequency Index (ESAIFI), Expected Energy Not 

Supplied (EENS). 

 

2.1.2. Modeling and Formulation of Network Reconfiguration 

 

- Objective Function 

 min
𝛼𝑡

∑𝐶𝑡
𝐺𝐶

𝑡

+ 𝐶𝑡
𝑆𝑊 (2.1) 

 

𝐶𝑡
𝐺𝐶 : Generation curtailment cost 

𝐶𝑡
𝑆𝑊 : switch operation cost   

 

- Radiality constraints:  

Most distribution systems must operate in radial topologies to 

facilitate the coordination of the protection system. To formally 

define the radiality of a power network, it is necessary to 

characterize it as an undirected graph 𝒢 = 〈𝒩, ℰ〉 , where 𝒩 

represents the set of buses, and 𝒩 signifies the set of lines, 

including lines with a sectionalizing switch. 

The spanning tree constraints [18] are adopted here to ensure 

network radiality, that is, maintain the graph 𝒢  as a forest 
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structure, in each time period: 

 𝛽𝑖𝑗,𝑡 + 𝛽𝑗𝑖,𝑡 = 𝛼𝑖𝑗,𝑡 ,       ∀(𝑖, 𝑗) ∈ ℰ, 𝑡 ∈ 𝑇 (2.2) 

 ∑ 𝛽𝑖𝑗,𝑡 = 1

𝑗:(𝑖,𝑗)∈ℰ

, ∀𝑖 ∈ 𝒩  ℛ, 𝑡 ∈ 𝑇 (2.3) 

 
𝛽𝑖𝑗,𝑡 = 0, ∀𝑖 ∈ ℛ, (𝑖, 𝑗) ∈ ℰ, 𝑡 ∈ 𝑇 (2.4) 

   

where 𝛼𝑖𝑗,𝑡 ∈ {0,1} , 1 if line (𝑖, 𝑗)  is connected in time t , 0 

otherwise, and 𝛽𝑖𝑗,𝑡 ∈ {0,1}, 1 if node 𝑗 is the parent node of node 

𝑖  in time t , 0 otherwise. ℛ  is set of substation nodes which 

connected with external grid such as transmission network. Note 

that, since variables 𝛽𝑖𝑗,𝑡  are set as binary, Eq. (2.2)-(2.4) allow 

us to treat 𝛼𝑖𝑗,𝑡 as continuous variables by adding: 

 

 0 ≤ 𝛼𝑖𝑗,𝑡 ≤ 1, ∀(𝑖, 𝑗) ∈ ℰ, 𝑡 ∈ 𝑇 (2.5) 

 

We will define a set ℰ𝑟𝑎𝑑  which is composed with radial 

topologies of the network 𝒢 , that is, if 𝜶 = {𝛼𝑖𝑗|𝛼𝑖𝑗, ∀(𝑖, 𝑗) ∈ ℰ} 

satisfies Eq. (2.2)-(2.5), 𝜶 ∈  ℰrad. 

 

- DRES constraints 

The DRESs addressed in this paper consist of PVs  and WTs, 
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both of which are treated as static generators. The original 

generation values 𝑃̂𝑡,𝑖
𝐷𝑅𝐸𝑆  and 𝑄̂𝑡,𝑖

𝐷𝑅𝐸𝑆 , which are dependent on 

weather conditions, cannot be determined by the DSO. However, 

in this research, we assume that the DSO can curtail a portion or 

all of these generation if needed for network stability. In this case, 

the DSO must pay a curtailment cost 𝐶𝑡
𝐺𝐶 , proportional to the 

curtailment amount, to each DRES owner. Consequently, the final 

generation after curtailment process of each DRESs are 

represented as 𝑃𝑡,𝑖
𝐷𝑅𝐸𝑆 and 𝑄𝑡,𝑖

𝐷𝑅𝐸𝑆.  

 

 
0 ≤ 𝑃𝑡,𝑖

𝐷𝑅𝐸𝑆 ≤ 𝑃̂𝑡,𝑖
𝐷𝑅𝐸𝑆 ≤ 𝑃̅𝑖

𝐷𝑅𝐸𝑆 (2.6) 

 
0 ≤ 𝑄𝑡,𝑖

𝐷𝑅𝐸𝑆 ≤ 𝑄̂𝑡,𝑖
𝐷𝑅𝐸𝑆 ≤ 𝑄̅𝑡,𝑖

𝐷𝑅𝐸𝑆 (2.7) 

 
(𝑃̂𝑡,𝑖

𝐷𝑅𝐸𝑆)
2
+ (𝑄̂𝑡,𝑖

𝐷𝑅𝐸𝑆)
2
≤ (𝑆𝑖̅

𝐷𝑅𝐸𝑆)
2
 (2.8) 

 

 

- Power flow constraints 

The active DSO can obtain state information, such as the 

voltage and angle at each bus. Hence, the power flow related 

constraints can be included in the optimization as follows: 
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 𝑃𝑡,𝑖
𝑇 + 𝑃𝑡,𝑖

𝐷𝑅𝐸𝑆 + 𝑃𝑡,𝑖
𝐸𝑆𝑆 − 𝑃𝑡,𝑖

𝐿 − 𝑃𝑡,𝑖
𝐹 = 0, ∀𝑖 ∈ ℛ (2.9) 

 𝑄𝑡,𝑖
𝑇 + 𝑄𝑡,𝑖

𝐷𝑅𝐸𝑆 + 𝑄𝑡,𝑖
𝐸𝑆𝑆 −𝑄𝑡,𝑖

𝐿 − 𝑄𝑡,𝑖
𝐹 = 0, ∀𝑖 ∈ ℛ (2.10) 

 𝑃𝑡,𝑖
𝐷𝑅𝐸𝑆 + 𝑃𝑡,𝑖

𝐸𝑆𝑆 − 𝑃𝑡,𝑖
𝐿 − 𝑃𝑡,𝑖

𝐹 = 0, ∀𝑖 ∈ 𝒩 \ ℛ (2.11) 

 𝑄𝑡,𝑖
𝐷𝑅𝐸𝑆 +𝑄𝑡,𝑖

𝐸𝑆𝑆 − 𝑄𝑡,𝑖
𝐿 −𝑄𝑡,𝑖

𝐹 = 0, ∀𝑖 ∈ 𝒩 \ ℛ (2.12) 

 

where 

 𝑃𝑙,𝑡
𝐹 = |𝑉𝑡,𝑖|∑|𝑉𝑡,𝑖|[𝐺𝑖𝑗,𝑡 cos(𝛿𝑡,𝑖 − 𝛿𝑡,𝑗) + 𝐵𝑖𝑗,𝑡 sin(𝛿𝑡,𝑖 − 𝛿𝑡,𝑗)]

𝑗

 (2.13) 

 𝑄𝑙,𝑡
𝐹 = |𝑉𝑡,𝑖|∑|𝑉𝑡,𝑖|[𝐺𝑖𝑗,𝑡 sin(𝛿𝑡,𝑖 − 𝛿𝑡,𝑗) − 𝐵𝑖𝑗,𝑡 cos(𝛿𝑡,𝑖 − 𝛿𝑡,𝑗)]

𝑗

 
(2.14) 

 

Unlike other buses in the distribution system, buses belonging to 

the root node can receive active and reactive power from an 

external power grid such as the transmission system, represented 

by 𝑃𝑡,𝑖
𝑇  and 𝑄𝑡,𝑖

𝑇  respectively. Power balancing equations must be 

satisfied at all bus 𝑖 in the system. 

Moreover, the power flows in the distribution lines should not 

exceed their respective line capacities. These constraints can be 

represented as follows: 

 

 
(𝑃𝑙,𝑡

𝐹 )
2
+ (𝑄𝑙,𝑡

𝐹 )
2
≤ (𝑆𝑙̅)

2 (2.15) 
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where 𝑆𝑙̅ is capacities of each distribution line 𝑙.  

Finally, the voltages of all buses in the distribution system should 

be within the regulation range as follows: 

 

 𝑉𝐿𝐿 ≤ |𝑉𝑡,𝑖| ≤ 𝑉
𝑈𝐿 (2.16) 

 

where 𝑉𝐿𝐿 and 𝑉𝑈𝐿 are the lower limit and the upper limit of the 

voltage regulation range, respectively. 

 

- Switch Operating Action Modeling 

The switching action 𝑆𝑊 consists of an array with 0s (to open 

switches) and 1s (to close them). If the DSO wants to extract 

the action from the DQN prediction, output-layer values first 

must be arranged into an array form and then replaced with 1s 

as many switches as the DSO wants to close in the order of 

highest values, and the remaining elements are replaced with 0s. 

The determined action is then input to the test system to 

implement and activate or deactivate each switch and to update 

𝑆𝑊𝑡𝑟 by comparing the switch status to that of the previous action 

stored in the log. The log-update formula is as follows: 
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𝑐ℎ𝑖

𝑡 = 1− XOR(𝑠𝑤𝑖
𝑡 , 𝑠𝑤𝑖

𝑡−1) (2.17) 

 
𝑆𝑊𝑡𝑟

𝑡 = {𝑠𝑤𝑡𝑟,𝑖
𝑡 = min (𝑇𝑠𝑤 , 𝑐ℎ𝑖

𝑡 ⋅ (𝑠𝑤𝑡𝑟,𝑖
𝑡−1 + 1))|∀𝑖 ∈ 𝑁𝑆𝑊} (2.18) 

 

where  𝑐ℎ𝑖
𝑡  indicates whether the operation state 𝑠𝑤𝑖

𝑡  at time 𝑡 

differs from 𝑠𝑤𝑖
𝑡−1 at time 𝑡 − 1. If both values are the same, 𝑐ℎ𝑖

𝑡 has 

a value of 1 and increments 𝑠𝑤𝑡𝑟,𝑖
𝑡  by 1 as long as it is smaller than 

𝑇𝑠𝑤. One the contrary, if 𝑐ℎ𝑖
𝑡 has a value of 0, it resets 𝑠𝑤𝑡𝑟,𝑖

𝑡   to 0. 

2.2. DSO-owned Multi-ESS Operation 

2.2.1. Concept of DSO-owned ESS 

 

The function of ESS is to store electrical energy and 

subsequently supply it to power grids when necessary [19]. There 

is a wide array of methods by which ESS can be utilized within the 

distribution power system, which can be broadly categorized into 

two groups, namely, technical-support oriented and profit-making 

oriented. This research is described from the perspective of the 

DSO, a system operator that does not pursue profits; therefore, we 

concentrate on the former. In this case, ESS are considered as 

assets of power grids, with sizing and placement decisions aimed 
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at enhancing system performance, such as reducing frequency 

deviation, peak shaving, voltage support, and integration of DRESs, 

among others. These applications vary with ESS discharge duration 

and power capacity, as illustrated in Figure. 2.2 [20]. Despite their 

diverse applications, ESS are often considered from the 

perspective of planning costs, rather than operation, due to the high 

initial costs and the stability issues at the device level. However, 

in this study, we will assume that the DSO holds the authority and 

responsibility for controlling the ESS located at a given location 

within the distribution network, meaning we will not consider costs 

from a planning perspective, including degradation costs. 

 

2.2.2.  Modeling and Formulation of multi-ESS Operation 

 

- Objective function 

 min
𝑃𝑒,𝑡

∑𝐶𝑡
𝐺𝐶

𝑡

+ 𝐶𝑡
𝐸𝑆𝑆   (2.19) 

 

𝐶𝑡
𝐺𝐶 : Generation curtailment cost 

 𝐶𝑡
𝐸𝑆𝑆 : ESS operation cost 
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- BESS Constraints 

A BESS consists of a battery cell, which charges/discharges a 

direct current, and a power conditioning system (PCS), which 

converts a direct current into an alternating current.  

 

 0 ≤ 𝑃𝑒,𝑡
𝑐ℎ ≤ 𝑃̅𝑒

𝑐ℎ𝑢𝑒
𝑐ℎ , 𝑒 ∈ 𝐸 (2.20) 

 0 ≤ 𝑃𝑒,𝑡
𝑑𝑐ℎ ≤ 𝑃̅𝑒

𝑑𝑐ℎ𝑢𝑒
𝑑𝑐ℎ , 𝑒 ∈ 𝐸 (2.21) 

 𝑃𝑒,𝑡 = 𝑃𝑒,𝑡
𝑐ℎ𝑢𝑒

𝑐ℎ − 𝑃𝑒,𝑡
𝑑𝑐ℎ𝑢𝑒

𝑑𝑐ℎ , 𝑒 ∈ 𝐸 (2.22) 

 𝑢𝑒
𝑐ℎ + 𝑢𝑒

𝑑𝑐ℎ = 1, 𝑢𝑒
𝑐ℎ , 𝑢𝑒

𝑑𝑐ℎ ∈ {0,1} (2.23) 

 

The state-of-charge (SOC) of the BESS should remain within 

the ranges of the following equation to avoid damage to the battery 

due to deep discharging and overcharging. 

 

 𝑆𝑂𝐶𝑒
𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑒,𝑡 ≤ 𝑆𝑂𝐶𝑒

𝑚𝑎𝑥 (2.24) 

 

Also, SOC over time can be calculated as follows: 
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 𝑆𝑂𝐶𝑒,𝑡 = 𝑆𝑂𝐶𝑒,𝑡−1 +
𝜂𝑒
𝑐ℎ𝑃𝑒,𝑡

𝑐ℎ𝑢𝑒
𝑐ℎ

𝐵𝑎𝑡𝑡𝑒
−
𝑃𝑒,𝑡
𝑑𝑐ℎ𝑢𝑒

𝑑𝑐ℎ

𝜂𝑒
𝑑𝑐ℎ𝐵𝑎𝑡𝑡𝑒

 (2.25) 

 𝑆𝑂𝐶𝑒,0 = 𝑆𝑂𝐶𝑒
𝑖𝑛𝑖𝑡  (2.26) 

 

where 𝜂𝑒
𝑐ℎ ∈ (0,1)  and 𝜂𝑒

𝑑𝑐ℎ ∈ (0,1)  are charging efficiency and 

discharging efficiency of BESS, respectively.  
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3. Chapter 3. Reinforcement Learning 

for Distribution Network Operation 
 

 

3.1.  Concept of Reinforcement Learning 

 

- Preliminary 

Reinforcement Learning is a method of learning through trial-

and-error, which entails 1) direct interaction with the environment, 

2) self-education over time, and 3) ultimate attainment of a 

predefined goal. Specifically, Reinforcement Learning designates 

any decision-maker (learner) as an "agent" and all elements 

external to the agent as the "environment." The dynamics of 

interaction between the agent and the environment are 

characterized through three essential elements: 1) state 𝑠 , 2) 

action 𝑎, and 3) reward 𝑟 [21]. 
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Figure 3.1 Reinforcement learning architecture [21] 

 

At any given timestep 𝑡 , the state of the environment is 

denoted as 𝑠𝑡 . Thus, the agent examines 𝑠𝑡  and takes a 

corresponding action 𝑎𝑡. In response, the environment modifies 

its state from 𝑠𝑡 to 𝑠𝑡+1 and furnishes the agent with a feedback 

reward 𝑟𝑡 . The decision-making process of the agent is 

formalized through the definition of a "policy." 

A policy 𝜋 is a mapping function that links any observed state 

𝑠  to the action 𝑎  taken from that state. A policy is termed 

deterministic if, for all states 𝑠, the probability of selecting an 

action 𝑎 is equal to 1, i.e., 𝑝(𝑎|𝑠) = 1. Conversely, the policy is 

deemed stochastic if there exists one or more state 𝑠 such that 

𝑝(𝑎|𝑠) < 1. Regardless of the case, we can represent the policy 𝜋 

as a probability distribution of potential actions selected from a 
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specific state. 

 
𝜋(𝑠) = {𝑝(𝑎𝑖|𝑠) | ∀𝑎𝑖 ∈ 𝒜 ∧ ∑ 𝑝(𝑎𝑖|𝑠) = 1𝑖 } (3.1) 

 

In the equation, 𝒜 represents the action space, or all potential 

actions, of the policy 𝜋. For ease of understanding, we assume that 

the action space is discrete, given that the case for continuous 

action spaces can be directly inferred using integral notation. 

Moreover, it is presumed that the next state 𝑠𝑡+1  and feedback 

reward 𝑟𝑡 are entirely determined by the current state-action pair 

(𝑠𝑡 , 𝑎𝑡), irrespective of prior history. Any Reinforcement Learning 

problem that satisfies this "memoryless" condition is known as a 

Markov Decision Process (MDP). Thus, the dynamics, or the model, 

of a Reinforcement Learning problem are fully defined by 

specifying all transition probabilities 𝑝(𝑎𝑖|𝑠).  

 

- The definition of Markov Decision Process  

In the framework of Reinforcement Learning (RL), we consider 

a prototypical MDP encapsulated by the tuple 〈𝒮,𝒜,𝒫,ℛ, 𝛾〉, where 

the elements stand for the state set 𝒮 , action set 𝒜 , transition 

probability function 𝒫: 𝒮 ×𝒜 × 𝒮 , reward function ℛ ∶ 𝒮 ×𝒜 × 𝒮  , 

discount factor 𝛾  in the interval [0, 1], respectively. An agent 
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navigates through the MDP, adhering to its policy  𝜋 ∶ 𝒮 → 𝒜, which 

maps states to actions. 

The overarching aim of an RL agent entails optimizing its policy 

to ensure the maximization of the expected cumulative discounted 

reward, formally denoted as 𝐽(𝜋) = 𝔼𝜋[∑ 𝛾𝑡𝑟𝑡𝑡 ], where 𝑡 ranges from 

0 to the horizon 𝑇. Here, 𝑠0  follows the initial state distribution 

𝜌0(𝑠0), 𝑎𝑡 is derived from the policy 𝜋(𝑠𝑡), the subsequent state 𝑠𝑡+1 

conforms to the transition probability 𝑝𝑡 = 𝒫(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) , and 𝑟𝑡 

signifies the reward at time 𝑡, given by 𝑟𝑡 = ℛ(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) 

In this framework, we define the state-action value function 

for a policy 𝜋, denoted as 𝑄𝜋(𝑠, 𝑎). It essentially represents the 

expected cumulative discounted reward when starting in state 𝑠0, 

performing action 𝑎0 , and following policy 𝜋  thereafter. Thus, 

𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[∑ 𝛾𝑡𝑟𝑡𝑡 |𝑠0 = 𝑠, 𝑎0 = 𝑎]. 

 

- The solution of Markov Decision Process 

The immediate reward 𝑟𝑡+1 does not represent the long-term 

profit, we instead leverage a generalized return value 𝐺𝑡 at time 

step 𝑡: 
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𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 +⋯+ 𝛾

𝑇−𝑡−1𝑟𝑇  = ∑ 𝛾𝑖𝑟𝑡+1+𝑖

𝑇−𝑡−1

𝑖=0

  (3.2) 

 

where 𝛾 ∈ [0,1]  is a discounted factor. The agent becomes 

farsighted when 𝛾  approaches to 1 and vice versa the agent 

becomes shortsighted when 𝛾 is close to 0. 

We can define a state value function 𝑉 and state-action value 

function 𝑄 as  

 𝑉(𝑠) = 𝔼[𝐺𝑡|𝑠𝑡 = 𝑠] (3.3) 

 𝑄(𝑠, 𝑎) = 𝔼[𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (3.4) 

 

Here, policy 𝜋 represents the probability of taking each action 

𝑎  in a given state 𝑠 , therefore the following relationship is 

established between the state value function 𝑉(𝑠) and the state-

action value function 𝑄(𝑠, 𝑎). 

 

 ∑𝜋(𝑎|𝑠)

𝑎

= 1 (3.5) 

 ∑𝜋(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎)

𝑎

= 𝑉𝜋(𝑠) (3.6) 
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The defined state value function and state-action value 

function, decomposed by immediate reward 𝑟𝑡+1  and discounted 

future reward ∑ 𝛾𝑖𝑟𝑡+1+𝑖
𝑇−𝑡−1
𝑖=1 , is called the Bellman equation. 

Assuming that 𝑉(𝑠) and 𝑄(𝑠, 𝑎) follow the policy 𝜋 , Eq. (3.3) by 

substituting Eq. (3.2), we can derive the following expression. 

 
𝑉𝜋(𝑠) = 𝔼𝜋[𝑟𝑡+1 + 𝛾𝑉𝜋(𝑠𝑡+1)|𝑠𝑡 = 𝑠] (3.7) 

 

Solving an MDP problem is equivalent to finding the optimal 

value function 𝑉∗  and/or optimal state-value function 𝑄∗  below, 

where the policy 𝜋 is written as the optimal policy 𝜋∗. 

 

 𝑉∗(𝑠) = max
𝜋
𝑉𝜋(𝑠) (3.8) 

 𝑄∗(𝑠, 𝑎) = max
𝜋
𝑄𝜋(𝑠, 𝑎) (3.9) 

 

Then, the following relationship holds between Q* and V*. 

 𝑄∗(𝑠) = 𝔼[𝑟𝑡+1 + 𝛾𝑉
∗(𝑠𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] (3.10) 

 

 

The MDP, when considered as a general stochastic control 

problem, can be resolved in principle through Dynamic 
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Programming (DP). The optimal policy in DP represents the 

solution to an optimization problem with an objective function 

designed to minimize the current cost and future expected value of 

the cost-to-go. If the expected value function can be computed 

exactly and is tractable, conventional optimization methodologies 

can be employed to obtain the optimal solution. However, if this is 

not the case, issues arise regarding the guarantee of the solution's 

optimality. 

On the other hand, Approximate Dynamic Programming (ADP) 

[22] refers to a heuristic solution method for solving problems by 

approximating the value function in dynamic programming or by 

searching for policies within a parametric family. If the value 

function is approximated using a deep neural network, this is 

equivalent to deep reinforcement learning methodologies [23]. 

 

- Deep Q Network  

Deep reinforcement learning (deep RL) is a subfield of machine 

learning that combines RL and deep learning. When the Value 

functions for the proposed MDP problem are high dimensional 

objects, we can use a deep Q-network 𝑄(𝑠, 𝑎; 𝜃) with parameters 𝜃 

to approximate them. To estimate this network, we optimize the 
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following sequence of loss functions at iteration 𝑖. 

 

 
𝐿𝑖(𝜃𝑖) = 𝔼𝑠,𝑎,𝑟,𝑠′ [(𝑟 + 𝛾max

𝑎′
𝑄(𝑠′, 𝑎′; 𝜃−) − 𝑄(𝑠, 𝑎; 𝜃𝑖))

2

] (3.11) 

 

where 𝜃−  represents the parameters of a fixed and separate 

target network, which periodically copies parameters of online 

network [24]. The update of the online network parameters is 

done by gradient descent, and the specific gradient value can be 

obtained as follows: 

 

 
∇𝜃𝑖𝐿𝑖(𝜃𝑖) = 𝔼𝑠,𝑎,𝑟,𝑠′ [𝑟 + 𝛾max𝑎′

𝑄(𝑠′, 𝑎′; 𝜃−)

− 𝑄(𝑠, 𝑎; 𝜃𝑖)∇𝜃𝑖𝑄(𝑠, 𝑎; 𝜃𝑖)] 
(3.12) 

 

This approach is model free in the sense that the states and 

rewards are produced by the environment. It is also off-policy 

because these states and rewards are obtained with a behavior 

policy (epsilon greedy in DQN) different from the online policy that 

is being learned. 

 

- Dueling Deep Q Network  

Within the reinforcement learning, a multitude of Q-network-
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based algorithms exist. Nonetheless, in this study, we will adopt 

the Dueling Deep Q Network (Dueling DQN) presented by [25]. 

The dueling architecture adopted in this algorithm is noted for its 

ability to identify the correct action more swiftly during policy 

evaluation in environments where redundant or similar actions are 

introduced to the learning problem. 

 

 

Figure 3.2 Single stream Q-Network (top) and the dueling Q-

Network structure (bottom) [25] 

 

The Dueling DQN shares its propensity to approximate the 

Q-value through a neural network with conventional Q-learning. 
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However, it builds on the observation that there is no need to 

estimate the value for each action choice. Consequently, the 

lower layers of the dueling network remain identical to the 

original DQN [24], yet from the mid-layer onwards, instead of a 

single sequence, the network utilizes two sequences (or streams) 

of fully connected layers. Each of these stream results in the 

estimation of the state value 𝑉  and advantage function 𝐴 , 

respectively. The advantage function 𝐴 is defined as follows: 

 
𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉𝜋(𝑠) (3.13) 

 

Subsequently, the Q-value in the Dueling DQN is obtained as 

 

 

𝑄(𝑠, 𝑎; 𝜃, 𝜙, 𝜓) = 𝑉(𝑠; 𝜃, 𝜓)

+ (𝐴(𝑠, 𝑎; 𝜃, 𝜙) −
1

|𝒜|
∑𝐴(𝑠, 𝑎′;

𝑎′

𝜃, 𝜙)) 
(3.14) 

 

The subtraction of the average of Advantage values is 

intended for the identification of 𝑉  and 𝐴 , which are not 

determined in Eq. (3.13). While the network structure of the 

Dueling DQN may seem slightly altered from the original DQN, it 

is noteworthy that Eq. (3.14) can be inserted as part of the Deep 

Q-learning algorithm in the existing work by [24] without the 
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need for any separate algorithmic step. 

 

3.2.  Reinforcement Learning for Power System 

Operation 

In this research, we assume that all activities in the DSO are 

performed on the CPS defined in section 1.1, so we can redraw the 

original RL architecture depicted in Figure 3.1 as follows. 

 

 

Figure 3.3 RL architecutre in cyber-physical power system 

The vanilla RL model intended for DSO in the Figure 3.3 

consists of four components, with the 'environment' contained 
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within the Figure 3.1 corresponding to the simulated power system, 

and the 'agent' representing the DSO operating this CPS including 

distribution power system. Furthermore, Figure 3.3 incorporates 

two additional components termed as the 'Abstractor' and the 

'Realizer.' These components not only undertake domain-specific 

roles but also accentuate the context of the CPS environment. 

The Abstractor is responsible for data collection and 

conversion to model input, along with the preprocessing steps, such 

as data integrity checking and normalization for learning stability. 

Conversely, the Realizer is tasked with transforming the RL model 

output into a physically meaningful and valid action, including 

performing network constraint checks, which will be addressed in 

Chapter 4. Like conventional RL, the proposed RL model also aims 

to iteratively learn an optimal policy based on the data obtained 

through the interaction between the DSO, acting as an agent, and 

the simulated power system, serving as the environment. This 

process can be described following the procedures within the CPS 

framework [26]. 
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Figure 3.4 Lifecycle of a reinforcement learning algorithm for distribution system operation 
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The procedure from the DSO applying the RL algorithm to 

control the physical system is divided into five stages, and each 

process can be repeated several times until a complete model is 

achieved. 

 

1) Requirements Definition: DSO receives events or 

requirements occurring in the power network's physical 

layer and defines the requirements for the RL algorithm 

model. Along with the necessary operational data, this 

information is transmitted to the engineer responsible for 

developing the RL model. 

2) Data Management: Engineers, who receive requirements 

and operational data from the DSO, organize and preprocess 

this data to maintain its integrity and suitability for training 

the RL model. If the application of reinforcement learning, 

a form of artificial intelligence discussed in this paper, is 

desired, this stage includes the formulation of the MDP. 

3) Model Development: Considering the given requirements 

and the nature of the data, an appropriate model is selected 

and specifically designed. Considering the computing 

budget, one or more sets of hyperparameters are 
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determined, followed by model training on a simulated 

system in the cyber layer. 

4) Model Testing/Verification: The trained model is tested to 

ascertain its functionality in the test environment, using 

validation data and ensuring the satisfaction of formal 

requirements, such as safety constraints. The final 

verification is performed using test data. The verified RL 

model is then returned to the DSO by the engineer. 

5) Model Deployment: The DSO utilizes the verified model to 

attempt control of the physical system, continuously 

monitoring the network's status and collecting monitoring 

data. If necessary, the DSO requests an update of the RL 

model from the engineer. 

. 

3.3. Reinforcement Learning for Network 

Reconfiguration 

 

In this section, the DNR problem, defined in the form of an 

optimization problem in Section 2.1, is redefined as a MDP to solve 

with a RL model. Additionally, this section involves defining the 
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proposed RL model as well as the neural network structure for 

learning. 

 

- MDP definition 

 〈𝒮,𝒜,𝒫,ℛ, 𝛾〉𝐷𝑁𝑅  

𝒮 ∶   {𝑃𝑖
𝐷𝑅𝐸𝑆, 𝑃𝑗

𝐿 , 𝑉𝑏 , 𝑃𝑙
𝐹 , 𝑆𝑊𝑡𝑟, 𝑆𝑊| ∀𝑖 ∈ 𝑁𝐷𝑅𝐸𝑆, ∀𝑗 ∈ 𝑁𝐿𝑜𝑎𝑑 , ∀𝑏 ∈

𝐵, ∀𝑙 ∈ 𝐿}  

𝒜 ∶ {𝑠𝑤𝑠|𝑠𝑤𝑠 ∈ {0,1}, ∀𝑠 ∈ 𝑁𝑆𝑊}  

ℛ : ℛ𝐷𝑁𝑅(∙) 

𝛾 : 𝛾𝐷𝑁𝑅  

 

The state space 𝒮  of the DNR problem should include 

information that the DSO requires for optimal decision-making. 

Herein, it incorporates the generation of DRES, including PV and 

WT, which influence system stability in the next timestep, along 

with load demand. Further, it comprises current system status 

indicators, such as bus voltages 𝑉𝑏 and line loadings 𝑃𝑙
𝐹, and factors 

particularly influencing the DNR problem, like the switching log 

𝑆𝑊𝑡𝑟  and switch status 𝑆𝑊  containing current network topology 

information. The action space 𝒜  comprises decisions for each 

timestep in the DNR problem, specifically the on/off states of each 
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switch 𝑠𝑤𝑠. The reward function ℛ𝐷𝑁𝑅 is explained subsequently, 

and the discount factor is defined as a real value 𝛾𝐷𝑁𝑅 ∈ [0,1]. 

At this juncture, it is worth noting that formalizing the 

transition probability 𝒫 in this problem is not required. In an MDP, 

the transition probability for each timestep is defined as 𝑝𝑡 =

𝒫(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡). However, the state 𝑠 of the DNR problem depends on 

DRES generation or load demand values, which are challenging to 

accurately predict as they are based on weather conditions or 

human behavior and vary almost independently of the action 𝑎 in 

this problem, i.e., the switch status change. In a sense, this could 

be due to a lack of necessary information to fully comprehend the 

transition model (for instance, weather prediction data), which 

could make the MDP seem partially observable. However, an 

advantage of the RL approach over the Dynamic Programming (DP) 

approach is precisely that it does not require an accurate transition 

probability function. Moreover, it can derive an approximated value 

function and/or optimal policy from sampled data, even without 

using this function. This same principle is applicable in subsequent 

Section 3.4 as well. 
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-  Neural network structure 

 

Figure 3.5 Neural network structure for DNR 
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- Search space configuration with given network topology  

In this study, every sectionalizing switch on the network can 

have two statuses: on or off. If a distribution power network has 

𝑁𝑆𝑊 switches, the number of actions the DSO can take in each 

state will be 2𝑁𝑆𝑊. This number increases exponentially as the 

size of the network or more precisely, the number of available 

switches increases, making it difficult to find valid switch 

statuses when the search space becomes very large. However, 

since the distribution network is assumed to radially operate, 

search space reduction can be performed using the graph theory. 

The radiality of the power system means that the network has a 

tree structure.  

According to the graph theory, it is known that for the graph 

𝒢 = 〈𝒩, ℰ〉 which has root components ℛ, must satisfy |𝒩| = |ℰ| +

|ℛ| to be a forest graph. Therefore, when number of feeders of 

the system is 𝐹, number of buses is 𝐵, and number of lines is 𝐿 

then number of switches to be opened to satisfy the radiality of 

the system is determined as 𝑁𝑆𝑊,𝑜 = 𝐿 − 𝐵 + 𝐹. That is, search 

space size is reduced from 2𝑁𝑆𝑊  to 𝑁𝑆𝑊𝐶𝑁𝑆𝑊,𝑜
. Figure 3.6 

compares the original and smaller search spaces, where size was 

reduced according to 𝑁𝑆𝑊, in case of 𝑁𝑆𝑊,𝑜 = 3. 
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Figure 3.6 Search space size comparison 

 

- Neural network structure configuration 

The representation of actions in a MDP by a neural network, 

serving as a function approximator, differs depending on the 

reinforcement learning algorithm employed. For instance, in the 

widely recognized value-based algorithm, Deep Q-Network 

(DQN)[24], [27], the neural network is utilized as a Q-function 

approximator, training each logit in the network's output layer to 

correspond to each action's Q-value, i.e., 𝑄(𝑠, 𝑎) . This 

architectural design has been validated across various test cases. 

However, associating each node in the output layer to each 

action, while intuitive, presents issues concerning scalability. 

Specifically, as the action space enlarges, the number of 

parameters that must be trained increases, thereby impacting the 
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convergence of the reinforcement learning model. In the context 

of the DNR problem discussed in this section, should each output 

node represent the entire network's switch status, the size of the 

output layer would escalate exponentially. 

To counter this issue, this dissertation proposes a specialized 

RL model for DNR problem, based on the conventional DQN 

model. This model defines each output layer node of the neural 

network as the action of an individual switch rather than the 

action of the entire network. Consequently, the size of the output 

layer corresponds with 𝑁𝑆𝑊, and each output node value, 𝑜𝑆𝑊, can 

be defined as a Q-value relating solely to the respective switch's 

action. In situations like the one presented in this research, 

where the DSO possesses comprehensive knowledge of the 

network's graph structure, the number of switches to be opened, 

𝑁𝑆𝑊,𝑜, can be predetermined. Switches are then opened to meet 

the required number, n, by sorting the output layer node values 

corresponding to each switch in descending order. This method 

extends the standard DQN's greedy policy, which selects the 

action with the highest Q-value, to select n actions, which can 

be termed as n-greedy. 

Ultimately, the action returned to the network, serving as the 
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reinforcement learning model's environment, is manifested as a 

binary array of size 𝑁𝑆𝑊, aligning with the previous definition in 

the MDP. 

 

- Reward algorithm 

Reward is a criterion for evaluating the action in given states 

and is one of the factors causing Q-values of DQN to be 

converged. Therefore, providing an appropriate reward algorithm 

is very important for DQN convergence and learning speed. In 

some environments of reinforcement learning such as the frozen 

lake problem, the reward is given only when the agent reaches a 

certain state as a goal. However, in the proposed environment, 

like in the cart-pole problem, the environment should be 

maintained within a certain range; a reward should be paid at each 

timestep if this condition is satisfied. Specifically, as defined in 

Section 2.1, the primary purpose of the agent in the proposed 

problem is to maintain the network radiality. Furthermore, the 

reconfigured network must meet general power network 

constraints such as maintaining line loading or bus voltage within 

a certain range for given power generations and loads. From this 

principle, we developed the reward algorithm for the proposed 
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DQL model. Given state 𝑠𝑡 and action 𝑎𝑡, the total reward 𝑟𝑡
𝐷𝑁𝑅 in 

each timestep 𝑡 can be represented as follows: 

 

 

𝑟𝑡
𝐷𝑁𝑅

=

{
 

 
[𝑟𝑖𝑛𝑖𝑡
𝐷𝑁𝑅 + (∑𝑝𝑙

𝑙𝑖𝑛𝑒

𝐿

𝑙

+∑𝑝𝑏
𝑏𝑢𝑠

𝐵

𝑏

+∑𝑝𝑠
𝑠𝑤

𝑆𝑊

𝑠

)]

+

, 𝑖𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑖𝑠 𝑟𝑎𝑑𝑖𝑎𝑙

𝑝𝑓𝑎𝑖𝑙 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 }
 

 
 

 

(3.15) 

 

𝑝𝑙
𝑙𝑖𝑛𝑒 = −

𝑤𝑙
|𝐿|
([
(𝑃𝑙

𝐹)2 + (𝑄𝑙
𝐹)2

(𝑆̅𝑙)
2

− 1]

+

)

1/2

, ∀𝑙 ∈ 𝐿 (3.16) 

 
𝑝𝑏
𝑏𝑢𝑠 = −

𝑤𝑣
|𝐵|

([𝑉𝐿𝐿 − 𝑉𝑏]
+ + [𝑉𝑏 − 𝑉

𝑈𝐿]+), ∀𝑏 ∈ 𝐵 (3.17) 

 
𝑝𝑠
𝑠𝑤 = −

𝑤𝑠𝑤
|𝑁𝑆𝑊|

[1 −
𝑠𝑤𝑡𝑟,𝑠
𝑇𝑠𝑤

]
+

, ∀𝑠 ∈ 𝑁𝑆𝑊 (3.18) 

 

where 

𝐼𝑖= loading of line 𝑖 (in percent)   

𝑉𝑗 = nodal voltage of bus 𝑗 (in p.u.) 

𝑤𝑙 = line loading penalty weight 

𝑤𝑣= bus voltage penalty weight 

𝑤𝑠𝑤 = switch degradation penalty weight 

 

If the reconfigured network is radial, the agent is given a certain 

reward 𝑟𝑖𝑛𝑖𝑡
𝐷𝑁𝑅 for each timestep; otherwise, it is given a negative 

reward (i.e., penalty) 𝑝𝑓𝑎𝑖𝑙 and the episode of the simulation will be 
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terminated immediately. Even if the reconfigured network is radial, 

when the line capacity and/or bus voltage constraint of the network 

is violated, the agent will be penalized 𝑝𝑙
𝑙𝑖𝑛𝑒 and 𝑝𝑏

𝑏𝑢𝑠 according to 

the degree of violation and corresponding weight factors of each 

violation. 𝑝𝑙
𝑙𝑖𝑛𝑒  is calculated by assuming the capacity of the 

distribution network line is 100 in percentage and multiplying 

weight factor 𝑤𝑙  by the violation of each line 𝑙. Similarly, 𝑝𝑏
𝑏𝑢𝑠  is 

calculated assuming the stable bus voltage is in the range 𝑉𝐿𝐿 ≤

𝑉𝑏 ≤ 𝑉
𝑈𝐿 and multiplying weight factor 𝑤𝑣 by the violation of each 

bus 𝑏. Furthermore, penalty term 𝑝𝑠
𝑠𝑤 impedes frequent operation 

of sectionalizing switches. We use switching log data 𝑆𝑊𝑡𝑟 =

{𝑠𝑤𝑡𝑟,𝑠
𝑡 |∀𝑠 ∈ 𝑁𝑆𝑊}  to recognize how much time has elapsed since 

previous operation of each switch 𝑠𝑤 . If 𝑠𝑤𝑡𝑟,𝑠 < 𝑇𝑠𝑤 , 𝑝𝑠
𝑠𝑤  is 

calculated by multiplying weighting factor 𝑤𝑠𝑤  by the difference 

between 𝑠𝑤𝑡𝑟,𝑠 and 𝑇𝑠𝑤. The penalty weight factors can be adjusted 

in a practically by whoever uses this model, depending on the 

distribution network environment to be applied.  
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3.4. Reinforcement Learning for multi-ESS 

Operation 

 

In this section, the multi-ESS operation problem, defined in 

the form of an optimization problem in Section 2.2, is redefined 

as a MDP to solve with a RL model. Additionally, this section 

involves defining the proposed RL model as well as the neural 

network structure for learning. 

 

- MDP definition 

〈𝒮,𝒜,𝒫,ℛ, 𝛾〉𝐸𝑆𝑆  

𝒮 ∶   {𝑃𝑖
𝐷𝑅𝐸𝑆, 𝑃𝑗

𝐿 , 𝑉𝑏 , 𝑃𝑙
𝐹 , 𝑆𝑂𝐶𝑒| ∀𝑖 ∈ 𝑁𝐷𝑅𝐸𝑆, ∀𝑗 ∈ 𝑁𝐿𝑜𝑎𝑑 , ∀𝑏 ∈ 𝐵, ∀𝑙 ∈

𝐿, ∀𝑒 ∈ 𝑁𝐸𝑆𝑆}  

𝒜 ∶ {𝑃𝑒
𝐸𝑆𝑆|𝑃𝑒

𝐸𝑆𝑆 ∈ [−𝑃̅𝑒
𝑑𝑐ℎ , 𝑃̅𝑒

𝑐ℎ], ∀𝑒 ∈ 𝑁𝐸𝑆𝑆}  

ℛ : ℛ𝐸𝑆𝑆(∙) 

𝛾 :  𝛾𝐸𝑆𝑆  

 

The MDP for Multi-ESS operation problem does not 

significantly diverge from that delineated in the previous section 

for the DNR problem. However, given the characteristics of the 

problem at hand, factors associated with switches have been 
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removed from the state space 𝒮, while the SOC value of each ESS 

𝑆𝑂𝐶𝑒 have been added. The action space 𝒜 is constituted by the 

decisions on the charging/discharging power 𝑃𝑒
𝐸𝑆𝑆 of each ESS, 

depending on its PCS capacity 𝑃̅𝑒
𝑑𝑐ℎ and 𝑃̅𝑒

𝑐ℎ. The reward function 

ℛ𝐸𝑆𝑆 is explained subsequently, and the discount factor is defined 

as a real value 𝛾𝐸𝑆𝑆 ∈ [0,1].
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- Neural network structure 

 

Figure 3.7 Neural network structure for ESS operation 
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- Neural network structure configuration 

When building a neural network to determine the 

charging/discharging power of multiple BESSs, issues of 

scalability, as mentioned in the previous section, may arise. This 

may not be a problem if the number of ESSs in the system is 

small, but in this study, a device-decoupled structure [28] was 

adopted to avoid scalability issues in more general environments. 

In this device-decoupled neural network structure, the number 

of parameters in our proposed method increases linearly with the 

number of ESSs, contrasting with the vanilla Q-learning-based 

approach, where the number of parameters grows exponentially. 

Additionally, we discretize the ESS control action into 𝐾 

discrete actions. As a result, the original continuous action is 

limited to discrete quantized actions. However, when there are 

enough quantized actions (e.g., 𝐾 ≥ 11), [29] presented these 

discretized actions can represent significantly more flexible 

distributions than Gaussian in practice. Intuitively, a discrete 

policy can represent multi-modal action distribution, while 

Gaussian is, by design, unimodal.  

Without loss of generality, we can set the action 𝑎𝑒
𝐸𝑆𝑆  as a 

normalized form of 𝑃𝑒
𝐸𝑆𝑆 ∈ [−𝑃̅𝑒

𝑑𝑐ℎ , 𝑃̅𝑒
𝑐ℎ],  that is, 𝑎𝑒

𝐸𝑆𝑆 ∈ [−1, 1]. Each 
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dimension of the action space is discretized into 𝐾 equally spaced 

quantized actions. The set of quantized actions for any BESS 𝑒 is 

𝑎𝑒
𝐸𝑆𝑆 = {

2𝑘

𝐾−1
− 1}

𝑘=0

𝐾−1
. Moreover, we adopt an ordinal representation 

for all the discrete actions of each BESS to encode the natural 

ordering between the discrete actions. Specifically, each subset 

of the output layer nodes corresponding to BESS 𝑒 is first pre-

processed as follows: 

 
𝑜𝑒𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑙𝑒𝑘) (3.19) 

 
𝑙𝑒𝑘
′ = ∑ ln 𝑜𝑒𝑚

𝑚≤𝑘

+ ∑ ln(1 − 𝑜𝑒𝑚)

𝑚>𝑘

, ∀𝑒 ∈ 𝑁𝐸𝑆𝑆 (3.20) 

 

where 𝑙𝑒𝑘
′  is the transformed output value after the ordinal 

encoding. Then the probability of ESS 𝑒 taking action 𝑘(out of 𝐾) 

can be calculated as 𝑝𝑒𝑘
′ = exp(𝑙𝑒𝑘

′ ) /∑ exp(𝑙𝑒𝑘
′ )𝐾

𝑘 . 

 

- Reward algorithm 

The reward function 𝑟𝑡
𝐸𝑆𝑆 = ℛ𝐸𝑆𝑆(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) of the multi-ESS 

operation problem is defined as follows. 

 
𝑟𝑡
𝐸𝑆𝑆 = 𝑟𝑖𝑛𝑖𝑡

𝐸𝑆𝑆 +(∑𝑝𝑙
𝑙𝑖𝑛𝑒

𝐿

𝑙

+∑𝑝𝑏
𝑏𝑢𝑠

𝐵

𝑏

+ ∑ 𝑝𝑒
𝐸𝑆𝑆

𝑁𝐸𝑆𝑆

𝑒

) (3.21) 
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𝑝𝑙
𝑙𝑖𝑛𝑒 = −

𝑤𝑙
|𝐿|
([
(𝑃𝑙

𝐹)2 + (𝑄𝑙
𝐹)2

(𝑆̅𝑙)
2

− 1]

+

)

1/2

, ∀𝑙 ∈ 𝐿 (3.22) 

 
𝑝𝑏
𝑏𝑢𝑠 = −

𝑤𝑣
|𝐵|

([𝑉𝐿𝐿 −𝑉𝑏]
+ + [𝑉𝑏 − 𝑉

𝑈𝐿]+), ∀𝑏 ∈ 𝐵 (3.23) 

 𝑝𝑒
𝐸𝑆𝑆 = −

𝑤𝑒
|𝑁𝐸𝑆𝑆|

([𝑆𝑂𝐶𝑒
𝑚𝑖𝑛 − 𝑆𝑂𝐶𝑒]

+ + [𝑆𝑂𝐶𝑒 − 𝑆𝑂𝐶𝑒
𝑚𝑎𝑥]+),

∀𝑒 ∈ 𝑁𝐸𝑆𝑆 
(3.24) 

 

where: 

𝐼𝑖= loading of line 𝑖 (in percent)   

𝑉𝑗 = nodal voltage of bus 𝑗 (in p.u.) 

𝑤𝑙 = line loading penalty weight 

𝑤𝑣= bus voltage penalty weight 

𝑤𝑒 = BESS SOC violation penalty weight 

 

The reward function in this case does not significantly deviate 

from the 𝑟𝑡
𝐷𝑁𝑅 defined in the previous section. However, there is no 

equality constraint regarding the maintenance of network radiality 

in this case. Moreover, a penalty 𝑝𝑒
𝐸𝑆𝑆 associated with a constraint 

related to the BESS SOC Eq. (2.24) is imposed, resulting in the 

assignment of a corresponding penalty coefficient 𝑤𝑒.  
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Chapter 4. Application of 

Reinforcement Learning in Practical 

Systems 
 

 

4.1. Challenges of Reinforcement Learning for 

Physical Systems 

While RL has demonstrated significant effectiveness across 

numerous artificial domains, it is only recently beginning to 

manifest success within practical scenarios. Despite the strides 

in RL research, particularly within the realm of power systems, 

the application of these advancements to physical systems often 

encounters hurdles due to the prevalence of certain assumptions 

that seldom hold in practical settings. 

Certain studies have tried to comprehensively understand 

these inherent challenges. For instance, [30] argue that the 

primary obstacle lies in the disconnect between the casting of 

contemporary experimental RL setups and the generally 

undefined complexities of physical systems. They further 

propose that these difficulties can be encapsulated by a set of 
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challenges that currently impede the widespread application of 

RL in practical scenarios. Broadly, these challenges include: 

 

1. Being able to learn on live systems from limited samples.  

2. Dealing with unknown and potentially large delays in the 

system actuators, sensors, or rewards. 

3. Learning and acting in high-dimensional state and action 

spaces.  

4. Reasoning about system constraints that should never or 

rarely be violated.  

5. Interacting with systems that are partially observable, 

which can alternatively be viewed as systems that are non-

stationary or stochastic. 

6. Learning from multi-objective or poorly specified reward 

functions. 

7.  Being able to provide actions quickly, especially for 

systems requiring low latencies.  

8. Training off-line from the fixed logs of an external 

behavior policy.  

9. Providing system operators with explainable policies. 
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These difficulties (or challenges) may arise, at least to some 

extent, in all types of practical physical systems. Each of these 

points is re-described in the context of power distribution 

networks, the subject of this dissertation: 

 

1. As a social and national infrastructure, the power system 

has conservative and restricted data dissemination from 

the physical system. 

2. Delayed actuator and sensor data and/or task rewards can 

compromise the stability of the RL model or induce 

control actions that do not align with the system state. 

3. The number of devices that a power system operator can 

or must control is substantial. Without adequate 

decomposition of the problem, the system would require 

a large state and action space for optimal operation. 

4. As a physical system where reliability is paramount, 

maintaining safety by satisfying system constraints that 

could lead to system failure is critical in a power system. 

5. While contemporary power systems are gradually 

improving, a significant amount of power data is still not 

collected or standardized in a format that can be 
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immediately utilized. 

6. The cost and/or reliability index traditionally used in 

power systems may be difficult to employ directly as 

rewards for effective reinforcement learning. The reward 

function should consider its physical meaning. Still, it is 

challenging to design a reward that satisfies both its 

effect and significance, particularly for multi-objective 

tasks. 

7. As the proportion of uncontrollable resources like DRESs 

within the system increases, fast actions by system 

operators are required. However, many parts of the 

power system subject to control are not yet digitized and 

must be manually operated. 

8. The most valuable elements for training a reliable RL 

algorithm for a power system, such as fault data of the 

system, are difficult to collect online if they are not from 

a simulated environment, necessitating the inevitable use 

of past log data. 

9. As power system operators have the authority and 

responsibility for network operation, they may be 

hesitant to use RL algorithms if the associated policy is 
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not explainable, to understand and hedge potential risks 

associated with the use of the RL algorithm. 

 

Many of these difficulties, especially challenges 2, 3, 7, and 

8, are difficult to generalize from a singular physical system such 

as a distribution power network. Therefore, when a DSO wishes 

to apply artificial intelligence to the system they manage, they 

must fully consider the characteristics of the given system and 

address these challenges accordingly. 

Several challenges, particularly challenges 1, 2, 5, 7, and 9, 

may clearly a problem for individual DSOs but are difficult to 

resolve immediately. To solve this problem, entities with a larger 

agenda and decision-making power over the power system, such 

as TSOs or governments, need to be involved, and it needs to be 

overcome gradually through long-term capital investment to 

make the information needed by DSOs more transparently.   

Addressing the aforementioned challenges requires an 

approach to power system operation that considers entities at a 

higher level or physical devices at a lower level (e.g., generators, 

sensors, metering devices). However, this goes beyond the 

scope of this dissertation. 
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In this dissertation, Challenge 1 is addressed in Chapter 1 by 

defining CPS which based on the power system modeling and 

assuming their reliability. Chapter 2 indirectly tackles Challenges 

3 and 6 by adequately defining DSO's control schemes. This 

chapter focuses on the challenges, especially Challenge 4 which 

about satisfying environmental constraints, that can be handled 

from the individual DSO's perspective. It aims to clarify these and 

explore ways to improve the RL algorithm discussed in previous 

chapters. 

 

4.2. Concept of Safe Reinforcement Learning 

- General Concept of Safe RL 

The challenge of handling constraints in modeling the optimal 

operation of the distribution network remains a significant one. 

[31] asserts that in most model-free methods, constraints are 

modeled as negative rewards within the framework of MDP, using 

penalty methods. However, the determination of an optimal 

penalty coefficient to strike a balance between constraint 

violation and the reward is a challenging task. Furthermore, even 

when using a large penalty coefficient, penalty methods typically 
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cannot ensure strict adherence to constraints. 

This poses a risk not only within the domain of distribution 

power systems, but also when applying RL algorithms to safety-

critical fields like robotic control that are intimately tied to 

physical systems. Before Safe RL was established as a distinct 

field of research, RL researchers have been exploring 

mathematical methodologies to address such safety issues. This 

led to the emergence of the concept of 'Safe Reinforcement 

Learning', as named by [32], [33]. 

Though there isn't a full academic consensus on the precise 

definition of Safe RL yet, according to [32], Safe RL strives to 

"learn policies that maximize the expectation of return in 

problems where it is imperative to ensure reasonable system 

performance and/or adhere to safety constraints during the 

learning and/or deployment process." 

 

- Safety level definition  

To encode the safety constraints in RL framework, we define 

a constraint cost function 𝒞: 𝒮 ×𝒜 × 𝒮 → ℝ . Starting with the 

weakest guarantee, we introduce three levels of safety as [34]: 

soft constraints, probabilistic constraints, and hard constraints, 
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as depicted in Figure 4.1. We note that these safety levels are 

often mixed in practice.  

 

 

Figure 4.1 Illustration of the different safety levels [34] 

 

Safety Level I: Soft Constraints 

The system encourages adherence to constraints; however, no 

guarantee is provided. This is typically achieved by incorporating 

a penalty term into the objective (or value) function, which 

discourages contravention of constraints by imposing a 

significant cost. Formally, this can be represented as:   

 𝒞(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) ≤ 𝜖𝑐 (4.1) 

 

where 𝜖𝑐  is a non-negative cost threshold according to the 

constraint c. Alternatively, although 𝒞(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) is a step-wise 
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quantity, some approaches only aim to provide guarantees on its 

expected value 𝔼[⋅] on a trajectory level: 

 

 𝐽𝑐 = 𝔼[∑𝒞(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)

𝑇

𝑡=0

] ≤ 𝑑𝑐 (4.2) 

 

where 𝐽𝑐  represents the expected total constraint cost, and 𝑑𝑐 

represents the threshold for cumulative constraint cost. 

 

Safety Level II: Probabilistic Constraints (Chance Constraints) 

The system adheres to probabilistic constraints, where the 

maximum probability dictating the operator's compliance with the 

constraints is established. This can be mathematically expressed 

as: 

 Pr(𝒞(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) ≤ 0) ≥ 𝑝
𝑐 (4.3) 

 

where Pr(⋅) denotes the probability, and 𝑝𝑐 ∈ (0,1) signifies the 

likelihood of satisfying the constraint. When 𝑝𝑐  equals 1, the 

chance constraint in the above equation aligns with the hard 

constraint in Safety Level III. 
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Safety Level III: Hard Constraints 

The system complies with hard constraints, which the operator 

must consistently respect. This can be formulated as: 

 𝒞(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) ≤ 0 (4.4) 

 

 

- Proposed Safe RL framework  

Before discussing the level and specific formulation of 

constraints associated with proposed ANM methods in the 

distribution power system, we would like to mention how 

constraints can be handled under the RL architecture discussed 

in Section 3.2. To deal with constraints in RL architecture, Figure 

3.3 must be modified as follows. 
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Figure 4.2 RL architecture with constraints 

In Figure 4.2, the addition of the Buffer component is evident. 

Within our Safe RL framework, the Realizer examines the safety 

output of the RL Agent, verifying the presence and extent of any 

constraint violations, with the results then transferred to the 

Buffer component. Furthermore, the Realizer can, if needed, not 

merely confirm violations but also utilize this information to 

modify the Agent action into a safe action before passing it on to 

the environment. 

The Buffer is situated between the Environment and the 

Agent. It stores experiences in the form of tuples, thereby 

enabling the Agent to learn from cumulative offline experiences. 
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In the event of receiving violation information from the Realizer, 

the Buffer transforms this into a cost format and stores it. From 

the Agent's perspective, this system changes the evaluation of 

its intended actions from a single value (reward) to two separate 

values (action and cost). This bifurcation can be utilized to meet 

safety requirements. 

The determination of the safety level that each constraint 

must satisfy can vary based on system characteristics. In this 

study, equality constraints are treated as hard constraints under 

safety level III, while inequality constraints are treated as soft 

constraints under safety level I. However, this distinction doesn't 

imply that inequality constraints are physically less important 

than equality constraints. This separation is proposed with the 

intention to facilitate more efficient learning during the RL 

process by distinguishing between fundamentally different 

constraints, the satisfaction of which are defined in terms of 

binary (discrete) and continuous terms respectively. 
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4.3. Formulation of Safe Reinforcement Learning 

 

4.3.1. Safety Module for Equality Constraint 

Among the constraints covered in this dissertation, the 

equality constraint that must be respected is the network 

radiality constraint in the DNR problem. To this end, this section 

proposes a safety module as in Figure 4.3. This concept, referred 

to as a shield in some studies, such as [35], is designed to 

internally validate and, if necessary, appropriately adjust the 

initial action derived from the agent's policy. This ensures a 

stringent satisfaction of the network radiality constraint. Prior 

research on DNR, such as [36], has addressed this issue in 

studies on network reconfiguration, aimed at determining new 

topology via heuristic methods. 
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Figure 4.3 Flowchart of safety module 

 

The output layer values of the neural network are used to 

determine the priority of each switch to open. This means, the 

violation of the network radiality constraint can be interpreted as 

an inconsistency between the device-level requirement of 

switch priority and the network/system-level requirement of 

network radiality, due to any given reason. Hence, a safety 

module, which strictly satisfies the network radiality constraint, 

must be designed to leverage the existing output layer values. 

Prior to the application of the resulting topology in the 

distribution network, the radiality of this topology should be 

verified. If necessary, through minimal modifications, it should be 
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transformed into a safe action, thus ensuring radiality. 

Drawing inspiration from [36], this paper presents a method 

to derive a safe action from the input output values, in the 

following sequence. This is also referred to as a safe policy, 

denoted as 𝜋𝑠𝑎𝑓𝑒. 

 

 

Figure 4.4 An example of applying safe policy for DNR 

 

1) Identify the fundamental loops in the network (the minimal 

loops that occur in the network when all switches are closed) 
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and compile a list of switches included in each loop. 

2) Start opening switches from the one with the highest value, 

and remove from the list, the fundamental loop that includes 

this switch. 

3) If the selected switch in step 2) is shared by two fundamental 

loops, open this switch, remove the line that includes this 

switch, and merge the two fundamental loops into a new one. 

4) Repeat the above steps until all fundamental loops have been 

eliminated. 

 

Through this methodology, we can determine a switching 

action that always satisfies the network radiality, while still 

relying on the priority value of each switch. 

 

 

- SafeFallback method  

Additionally, we aim to maximize sample efficiency and 

learning effectiveness by employing the SafeFallback method [37] 

during the learning of the aforementioned equality constraint and 

the results obtained from the safety module. The core principles 

of the SafeFallback method are as follows: 1) If the initially 
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obtained action is safe, the experience with this action is stored 

in the buffer. 2) If the initially obtained action is not safe and 

other safe action is subsequently obtained from the safety 

module, both the experiences with the initial action and the safe 

action are stored. In this case, a radiality violation penalty is 

assigned to the original unsafe action, as in Section 3.3, instead 

of the reward. The pseudocode is provided in Algorithm 1. 

 

Algorithm 1: SafeFallback for Network Radiality Constraint 

Require:  

distribution network as a graph 𝒢 = 〈𝒩, ℰ〉 

1: Input: initialize policy 𝜋, initialize radial topology set ℰrad, initialize safe 

fallback policy 𝜋𝑠𝑎𝑓𝑒 , initialize replay buffer 𝐷 

2: for each sample step do 

3:       Observe state 𝑠 and select action 𝑎 according to 𝜋 

4:       find network topology 𝜶 with selected action 𝑎 

5:       if 𝜶 ∈ ℰrad then 

6:             keep selected action 𝑎 as safe action 𝑎𝑠𝑎𝑓𝑒 

7:       else 

8:             get safe action 𝑎𝑠𝑎𝑓𝑒 from the safe fallback policy 𝜋𝑠𝑎𝑓𝑒 

9:       end 

10:     Execute 𝜶𝑠𝑎𝑓𝑒 according to 𝑎𝑠𝑎𝑓𝑒 in the environment  

11:     Observe next state 𝑠′, reward 𝑟 and done signal 𝑑 

12:     𝐷 ← 𝐷 ∪ (𝑠, 𝑎𝑠𝑎𝑓𝑒 , 𝑟, 𝑠′, 𝑑) 

13:     if 𝑎𝑠𝑎𝑓𝑒 ≠ 𝑎 then  

14:             𝐷 ← 𝐷 ∪ (𝑠, 𝑎, 𝑝𝑟𝑎𝑑 , 𝑠′, 𝑑) with radiality violation penalty 𝑝𝑟𝑎𝑑 

15:     If 𝑠′ is terminal, reset environment state 

16: End for  
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4.3.2. Adaptive Penalty for Inequality Constraints 

 

The safety module proposed earlier has the advantage of 

satisfying the system's equality constraint at safety level III as a 

hard constraint. However, this perspective is primarily from the 

utilization, application, and deployment of RL. Conversely, an 

agent in the learning process can become decoupled from the 

originally defined RL formulation, the MDP problem, due to the 

safety module. Consequently, it may face an unstationary 

problem that it considers the environment is not fixed while 

interacting with or may possibly take reckless actions relying 

solely on the safety module. In such a case, the reinforcement 

learning model can experience a phenomenon where its 

robustness declines with respect to the environment's 

stochasticity, which could not be observed in the data used for 

learning. 

To address these problems, some Safe RL research has 

utilized a method that simultaneously designs a manual safety 

module and imposes a corresponding (constant) penalty when 

this module is activated [38]. Through this approach, we can 

provide the agent with a signal about the constraint. However, 
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this approach still faces two problems: 1) it can provide 

information about a specific action's constraint violation, but 

lacks information about which actions should be taken to avoid 

violating the constraint, and 2) it is difficult to determine an 

appropriate penalty coefficient to balance the relative importance 

of obtaining a reward and satisfying a constraint. 

In this study, inspired by [28], we aim to redefine the given 

problem as a Constrained Markov Decision Process (CMDP) 

problem with added constraints to the original MDP. We plan to 

establish a Lagrange function for this and treat the Lagrange 

multiplier 𝜆  as a penalty coefficient, which will be iteratively 

updated alongside the neural network parameters. 

 

- Constrained Markov Decision Process 

A CMDP is defined as a tuple 〈𝒮,𝒜,𝒫,ℛ, 𝛾, 𝒞〉. This represents 

an MDP as defined in Section 3.1, with the addition of a constraint 

function C, which can be defined as 𝒞: 𝒮 ×𝒜 × 𝒮 → ℝ ∪ {+∞} , 

where the +∞ value could be used to assign a constraint that 

must not be violated, if needed. Given that the cost function 𝒞 

shares the same structure as the reward function ℛ, a cost value 

function 𝑉𝑐 can be equivalently defined with respect to the cost, 
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just as the value function 𝑉 is defined from the reward. 

 

 𝐺𝑡
𝑐 = 𝑐𝑡+1 + 𝛾𝑐𝑡+2 +⋯+ 𝛾

𝑇−𝑡−1𝑐𝑇  = ∑ 𝛾𝑖𝑐𝑡+1+𝑖

𝑇−𝑡−1

𝑖=0

 (4.5) 

 
𝑉𝑐(𝑠) = 𝔼[𝐺𝑡

𝑐|𝑠𝑡 = 𝑠] (4.6) 

 
𝑉𝜋
𝑐(𝑠) = 𝔼𝜋[𝑐𝑡+1 + 𝛾𝑉𝜋

𝑐(𝑠𝑡+1)|𝑠𝑡 = 𝑠] (4.7) 

 

From this, the optimal policy of CMDP can be obtained by 

solving the following optimization problem. 

 

 max
𝜋
𝑉𝜋(𝑠) , 𝑠. 𝑡.  𝑉𝜋

𝑐(𝑠) ≤ 𝑉𝑐̅̅̅̅  (4.8) 

 

where 𝑉𝑐̅̅̅̅  is a threshold value of constraint cost 𝑐. we note 

that this value can be determined in considering of required 

safety level for constraints. 

 

- Adaptive penalty for Deep Q-learning  

To solve the above CMDP problem, the experience collected 

by the agent during the reinforcement learning process changes 
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from (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡) to (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 , 𝑐𝑡). 

Also, we will rewrite Eq.(4.8) as a sample based expectation 

form to solve within the RL framework. 

 

 max
𝜋
𝔼𝑠~𝐷[𝑉𝜋(𝑠)] , 𝑠. 𝑡.  𝔼𝑠~𝐷[𝑉𝜋

𝑐(𝑠)] ≤ 𝑉𝑐̅̅̅̅  (4.9) 

 

As in [28], the Lagrange function of the constrianed 

optimization problem can be written as: 

 

 

ℒ(𝜋, 𝝀) = 𝔼𝑠~𝐷[𝑉𝜋(𝑠)] + 𝜆(𝑉𝑐̅̅̅̅ − 𝔼𝑠~𝐷[𝑉𝜋
𝑐(𝑠)]) 

= 𝔼𝜏~𝜋 [∑𝛾𝑡(ℛ(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) − 𝜆𝒞(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1))

𝑇

𝑡=0

 ] + 𝜆𝑉𝑐̅̅̅̅  
(4.10) 

 

A separate network other than 𝑄 needs to be introduced to 

estimate the 𝑉𝑐 in the above equation. It is not necessary for this 

network to follow the same dueling Q-network structure that we 

introduced in Chapter 3. However, for reasons of programming 

convenience, this study has introduced a dueling Q-network of 

the same structure 𝑄𝑐(𝑠, 𝑎; 𝜃𝑐 , 𝜙𝑐 , 𝜓𝑐)  for the constraint cost 𝑐 , 

which can be estimated and updated in the same way as Eq. 

(3.11)-(3.12).  
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The method of multipliers can be used to solve the constrained 

optimization problem. At 𝑘-th iteration, given a multiplier 𝜆𝑘 ≥ 0, 

we can maximize ℒ(∙, 𝜆𝑘), over policy domain thereby obtaining a 

policy 𝜋𝑘. We can iteratively update 𝜆𝑘 as follows: 

 

 𝜆𝑘+1 = [𝜆𝑘 − 𝛿𝜆∇𝜆ℒ]
+ = [𝜆𝑘 + 𝛿𝜆(𝔼𝑠~𝐷[𝑉𝜋𝑘

𝑐 (𝑠)] − 𝑉𝑐̅̅̅̅ )]
+
  (4.11) 

 

where 𝛿𝜆 is the step size for the 𝜆 update process. Along with the 

SafeFallback algorithm in previous section, the pseudocode of 

constrained deep Q-learning is provided in Algorithm 2. 

 

Algorithm 2: Constrained Deep Q Learning 

1: Input: Initialize network parameters and Lagrange multiplier 𝜆𝑗 

2: repeat 

3:       for each sample step do 

4:             𝐷 ← Algorithm 1: SafeFallback  

5:       end for 

6:       for each gradient step with sample batch B do 

7:              Update dueling Q-network parameters 𝜃, 𝜙, 𝜓 

8:              Update constrained dueling Q-network parameters 𝜃𝑐 , 𝜙𝑐 , 𝜓𝑐 

9:              𝜆 ← [𝜆 + 𝛿𝜆 ∑ (𝑉𝜙𝑐 − 𝑉𝑐̅̅̅̅ )𝐵 /|𝐵|] 

10:       end for 

11: until coverage  
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We summarize the discussion until now as follows. In Chapter 

2, we proposed DNR and multi-ESS operation as two short-term 

control schemes that can be utilized by DSOs, and in Chapter 3, 

we redefined each scheme under the RL framework. In Chapter 

4, we designed a safety module and an adaptive penalty term that 

can explicitly consider safety constraints in the framework. The 

final revised RL architecture from Figure 4.2 is illustrated in 

Figure 4.5. The DSO (Agent) has one or more network control 

options, and each option is paired with corresponding devices in 

the distribution network (Environment). Between the two 

entities, the Abstractor preprocesses the environment's sensor 

or measured data into the agent's observation or input, and the 

Realizer performs verification through the safety module on the 

agent's policy output, converts it into a safe action, and delivers 

it to the environment. The experiences generated in this process 

are stored in the Buffer and used to learn the agent's policy. 
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Figure 4.5 Proposed Safe RL framework 

 

In the next chapter, we will implement the above architecture 

on the IEEE test feeder network and verify its effectiveness. 
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Chapter 5. Case Study 
 

 

5.1. Simulation Settings 

5.1.1. Test Network Configuration 

A modified version of IEEE 123-bus test system [39] is used 

to verify the scalability of the proposed algorithm and shown in 

Figure 5.1. The original IEEE network has only one feeder and 6 

sectionalizing switches, however, we added one more feeder in 

front of bus 27 and 11 more switches for maximizing the 

effectiveness of network reconfiguration. Also, 9 WTs and 7 PVs 

were added with generation capacities of 400kW respectively, as 

well as 8 ESSs with 300kW PCS capacity and 900kWh battery 

capacity. Base voltages were set to 4.16 kV. The number and 

capacity of DRESs in both test networks are determined 

considering whether they can demonstrate both effectiveness of 

network reconfiguration and self-sufficiency of power 

distribution system. 
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The locations of PVs, WTs, and switches are from [40] and the 

locations of ESS are from [41]. More detailed distribution system 

data are summarized in Appendix A.  

We note that there are 10 fundamental loops in this test 

network, as shown in Figure 5.2. From this, we can see that this 

network needs to open 10 switches out of a total of 17 to be a 

radial network, and as mentioned in Section 3.3, the action space 

size if using the vanilla RL algorithm is 17C10 = 19448. 
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Figure 5.1 Modified IEEE 123-bus test system network 

 

 

Figure 5.2 Fundamental loops of the modified IEEE 123-bus 

test system network 
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5.1.2. Input Data Configuration 

Power generation data, presented in Figure 5.5, were imported 

from 2015 generation data recorded hourly at Hangyeong Wind 

Farm Part #1 by Korea Southern Power Co., Ltd. [42] and Jindo 

Solar Power Plant by Korea Rural Community Corporation [43]. 

Load data, presented in Figure 5.6, were imported from the 

dataset named “Commercial and Residential Hourly Load 

Profiles for all TMY3 Locations in the United States” recorded 

by the Office of Energy Efficiency & Renewable Energy (EERE) 

[44]. All data were normalized and were added to appropriate 

randomized noise in the range of ±10% when applied to each 

DRES and/or load for to enhance model robustness. The time 

window length of all data is 1 hour.  
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Figure 5.3 DRES power generation (%) over 400 timesteps [42], [43] 

 

Figure 5.4 Load demand (%) over 400 timesteps [44] 
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5.1.3. Reinforcement Learning Configuration 

In machine learning, choosing optimal hyperparameters for a 

learning algorithm is the most crucial aspect of training. Because 

such parameters cannot be optimized with internal training, they 

must be tuned by whoever designs them according to the 

proposed model and data features. Hyperparameters are 

composed of several variables that determine network structure 

and training. Hyperparameters used to implement the Deep-Q 

Learning algorithm designed in Chapter 3 are listed in Table 5.1. 

 

Table 5.1 Hyperparemeters for RL 

Hyper Parameter Value Description 

𝑟init
𝐷𝑁𝑅 , 𝑟init

𝐸𝑆𝑆 1 

Initial reward value for each timestep.  

Agent obtains this reward finally if there is 

no violation in reconfigured network. 

𝑤𝑙 0.8 Weight of line loading violation penalty. 

𝑤𝑣 0.8 Weight of bus voltage violation penalty. 

𝑤𝑠 0.2 
Weight of frequent switch operation 

penalty. 

𝑤𝑒 0.2 Weight of SOC violation penalty. 

𝑝𝑓𝑎𝑖𝑙  -1 
Final reward for the agent if the 

reconfigured network is not radial. 

no. of hidden layers 4 

Number of hidden layers of DQN. The Q 

network in lower layers has 2 hidden 

layers, and V and A network has 2 hidden 

layers respectively.  
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Hidden layer size 32 Number of nodes of each hidden layer. 

Learning rate 5E-5 Learning rate used by optimizer. 

M 1E5 
Total number of randomly sampled 

episodes required to train DQN. 

T 24 Maximum length of each episode. 

Batch Size (𝑁𝐵𝑎𝑡𝑐ℎ) 64 
Number of training cases over which each 

update of parameters is computed. 

Optimizer Adam 

Parameter optimization model. Adam is 

one of the most popular and strongest 

optimizers for training deep neural 

networks. Its basic idea is to combine the 

advantages of RMSProp and SGD with 

momentum. 

 

 

Also, we must determine the hyperparameters for Safe RL 

that designed in Chapter 4.  

 

Table 5.2 Additional hyperparameters for safety algorithm 

Hyper Parameter Value Description 

𝑉𝑐̅̅̅̅  1 Maximum cost value function threshold. 

𝜆0 1 
Weight of initial Lagrange coefficient for 

adaptive penalty term. 

Learning rate 𝛿𝜆 1E-6 Learning rate used to update 𝜆 

no. of hidden layers 4 Number of hidden layers of DQN for cost. 
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5.1.4. Simulation Case Design 

 

- Case 1: Results depending on DSO's assets 

◼ 1-A. Base 

This case is designed to demonstrate the situation 

where the DSO has no controllable assets for operation. 

 

◼ 1-B. Only DNR 

This case is designed to demonstrate the situation 

where DSO can control the sectionalizing switches in 

the network to change the topology of the network. 

 

◼ 1-C. Only ESS  

This case is designed to demonstrate the situation 

where DSO can fully control the BESSs in the network.  

 

◼ 1-D. DNR+ESS  

This case is designed to demonstrate the situation 

where DSO can control the sectionalizing switches as 

well as BESSs in the network. 
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- Case 2: Results depending on applying safety algorithm 

◼ 2-A. Base 

This case is same with Case 1-A. 

 

◼ 2-B. DNR  

This case is same with Case 1-B. 

 

◼ 2-C. Safe DNR  

This case is designed to demonstrate the effect of Safe 

algorithms which proposed in Chapter 4, to compare 

with case 2-B. 

 

◼ 2-D. DNR+ESS  

This case is same with Case 1-D. 

 

◼ 2-E. Safe DNR+ESS 

This case is designed to demonstrate the effect of Safe 

algorithms which proposed in Chapter 4, to compare 

with case 2-D. 
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All program codes are written and compiled in the Python 3.9 

environment while using PyTorch 1.13.1 to build RL algorithms. 

Furthermore, pandapower 2.11.1 elements and functions were 

used to implement the changing switching status in test 

distribution system and solve the power flow of the system. All 

simulations were conducted using a personal computer (PC) 

equipped with 3.59-GHz AMD Ryzen 5 3600 6-Core central 

processing unit (CPU), 32 GB of random-access memory (RAM), 

and a 64-bit Windows® 11 operating system.  

 

5.2. Simulation Results and Analysis 

This section provides the simulation results of the given 400 

timestep operation, and analysis for that. 

 

5.2.1. Results depending on DSO’s assets 
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Figure 5.5 Maximum test distribution network line lodings for test dataset (Case 1) 

 
Figure 5.6 Maximum and minimum test distribution network bus voltages for test dataset (Case 1) 
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Figure 5.7 Part of Figure 5.5 

 

Figure 5.8 Part of Figure 5.6 

 

The results of Simulation Case 1 is illustrated in Figures 

5.5 through 5.8. As depicted in the graphs, in Case 1-A where 

the DSO takes no operating action, violations occur in maximum 
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line loading and both maximum and minimum bus voltage. If 

network operation attempts are made by deploying DNR or ESS, 

as in Case 1-B and 1-C, these violations are partly alleviated, 

albeit not completely. Moreover, when both DNR and ESS are 

utilized as in Case 1-D, it is evident that the system is maintained 

in a substantially more stable state compared to when each is 

used separately. 

The aforementioned graphs only present the time-varying 

system states for each case; therefore, examining the overall 

system state at a particular snapshot for each case could prove 

beneficial. Utilizing a python library, named plotly, we were able 

to observe each node voltage and line loading that comprise the 

entire system. 

 

Table 5.3 Network index for each subcase in Case 1 snapshot 

Case 
1-A 

     (Base) 

1-B 

(DNR) 

1-C 

(ESS) 

1-D 

(DNR+ESS) 

Maximum Line 

Loading (%) 
153.68 125.07 97.58 73.24 

Maximum Bus 
Voltage (p.u.) 

1.067 1.053 1.045 1.037 
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Figure 5.9 Network snapshot from Case 1-A. 

 

Figure 5.10 Network snapshot from Case 1-B. 
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Figure 5.11 Network snapshot from Case 1-C. 

 

Figure 5.12 Network snapshot from Case 1-D. 
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Figure 5.13 Entire network line loadings of Fig. 5.9-5.12 

 
Figure 5.14 Entire network bus voltages of Fig. 5.9-5.12
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Among the results, Figures 5.10 and 5.11 warrant special 

attention as they allow us to discern the differences between two 

methodologies for mitigating the system constraint violation 

problem depicted in Figure 5.9. When compared to Figure 5.9, 

the DNR method in Figure 5.10 could resolve some overvoltage 

and overflow issues. However, it was unable to fundamentally 

address the overflow in lines near the feeder where reversal 

power flows converge. In contrast, the ESS method in Figure 

5.11 appears to handle such problems more effectively than the 

DNR method. Nevertheless, since the topology of the system 

remains unchanged in this case, although the overall level of 

overflow and overvoltage decreases, the pattern itself does not 

undergo a substantial transformation. 

 

5.2.2. Results of Using Safety Constraints 
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Figure 5.15 Maximum test distribution network line lodings for test dataset (Case 2)

Figure 5.16 Maximum and minimum test distribution network bus voltages for test dataset (Case 2) 
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Figure 5.17 Part of Figure 5.15 

 

Figure 5.18 Part of Figure 5.16 

 

In Simulation Case 2, we sought to examine the changes 

resulting from the application of the safety algorithm, especially 

in the DNR problem. While we verified in the previous chapter 
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that the safety module can strictly satisfy the equality constraint, 

in this simulation, we additionally found that the algorithm trained 

with the application of the safety module shows better 

performance. This difference is more noticeable when comparing 

Case 2-B and Case 2-C, where DNR is used alone, as opposed 

to the difference between Case 2-D and Case 2-E, where 

sufficient resources are available. This can be attributed to the 

safety module providing the agent with more useful samples, 

potentially playing a guiding role in the training process. We note 

that in Case 2-E, where all proposed assets and algorithms from 

this dissertation were ultimately applied, not a single network 

constraint violation occurred in the test dataset. 
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Chapter 6. Conclusions and Future 

Extensions 
 

 

6.1. Conclusions 

This dissertation's primary aim was to develop a method for 

Distribution System Operators (DSOs) to ensure short-term 

stability in a distribution network permeated with renewable 

energy sources. This was achieved by introducing a safe 

reinforcement learning (RL) strategy that treats this issue as an 

optimal operation problem. 

The study first embarked on evaluating the necessity, 

jurisdiction, and function of the DSO in an environment of the 

distribution system which is redefined by the ingress of 

renewable energy sources. The primary objective of the DSO, in 

maintaining system stability through active system management, 

was established in this context. Moreover, the research 

successfully merged the real physical system and the system 

within a simulated environment into a unified Cyber-Physical 

System (CPS). This CPS served as the backdrop for the 
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implementation of such system management. 

Though the controllable factors for DSOs differ depending 

on the specific system environment, this research intensively 

focused on two approaches: the reconfiguration of the 

distribution system via sectionalizing switches and the 

modification of the system's current flow using energy storage 

systems (ESSs). Each method was formally defined as an 

optimization problem. 

In addition, this study reframed these optimization problems 

as decision-making processes over multiple time, subsequently 

reformulating them as MDP problems. An RL algorithm was 

developed to address these, and the unique Dueling Deep Q-

learning algorithm was specifically designed to align with the 

proposed system operation methodologies. 

Finally, the designed safety reinforcement learning model 

is simulated on the modified IEEE 123 node test system. It is 

demonstrated that the proposed model performs more effectively 

when more than one operational strategy is adopted 

simultaneously and when the safety of reinforcement learning is 

considered. 
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6.2. Future Works 

This research commences with the framework for DSOs to 

perform active network management at the near real-time scale, 

demonstrating the feasibility of secure operation through 

reinforcement learning methodologies. However, the research 

assumed that each control method transpires actions or decisions 

at the same time scale, specifically every hour. In practice, 

methods available to the DSO likely occur at different time scales. 

Consequently, future research necessitates the exploration of 

DSO strategies under such circumstances. 

Relevant to this problem is the concept of Multi-agent 

Reinforcement Learning (MARL) in the field of reinforcement 

learning. MARL is an actively researched area in academia 

nowadays, which addresses competition and cooperation 

strategies of multiple agents which are homogeneous or 

heterogeneous, and dealing with asymmetry in observable 

information during training and deployment. Thus, it can be 

posited that MARL possesses a high potential for application in 

future power systems. 
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Appendix A. Network data 

All elements are based on IEEE123 Node Test Feeder [39]. 

However, this dissertation assumes a balanced three-phase 

system and analyzes the given system as a single-phase, and 

some figures are changed accordingly. All power system 

components in the simulation are implemented based on the 

pandapower 2.11.1 library in Python 3.9 language, as far as 

supported. 

 

Load data 

Node Load Type kW kVAr 

1 PQ 40 20 

2 PQ 20 10 

4 PQ 40 20 

5 I 20 10 

6 Z 40 20 

7 PQ 20 10 

9 PQ 40 20 

10 I 20 10 

11 Z 40 20 

12 PQ 20 10 

16 PQ 40 20 

17 PQ 20 10 

19 PQ 40 20 

20 I 40 20 

22 Z 40 20 

24 PQ 40 20 

28 I 40 20 
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29 Z 40 20 

30 PQ 40 20 

31 PQ 20 10 

32 PQ 20 10 

33 I 40 20 

34 Z 40 20 

35 PQ 40 20 

37 Z 40 20 

38 I 20 10 

39 PQ 20 10 

41 PQ 20 10 

42 PQ 20 10 

43 Z 40 20 

45 I 20 10 

46 PQ 20 10 

47 I 105 75 

48 Z 210 150 

49 PQ 105 75 

50 PQ 40 20 

51 PQ 20 10 

52 PQ 40 20 

53 PQ 40 20 

55 Z 20 10 

56 PQ 20 10 

58 I 20 10 

59 PQ 20 10 

60 PQ 20 10 

62 Z 40 20 

63 PQ 40 20 

64 I 75 35 

65 Z 105 75 

66 PQ 75 35 

68 PQ 20 10 

69 PQ 40 20 

70 PQ 20 10 

71 PQ 40 20 

73 PQ 40 20 

74 Z 40 20 

75 PQ 40 20 

76 I 245 180 
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77 PQ 40 20 

79 Z 40 20 

80 PQ 40 20 

82 PQ 40 20 

83 PQ 20 10 

84 PQ 20 10 

85 PQ 40 20 

86 PQ 20 10 

87 PQ 40 20 

88 PQ 40 20 

90 I 40 20 

92 PQ 40 20 

94 PQ 40 20 

95 PQ 20 10 

96 PQ 20 10 

98 PQ 40 20 

99 PQ 40 20 

100 Z 40 20 

102 PQ 20 10 

103 PQ 40 20 

104 PQ 40 20 

106 PQ 40 20 

107 PQ 40 20 

109 PQ 40 20 

111 PQ 20 10 

112 I 20 10 

113 Z 40 20 

114 PQ 20 10 

 

Line data 

Number Bus1 Bus2 Length(ft) 

1 1 2 175 

2 1 3 250 

3 1 7 300 

4 3 4 200 

5 3 5 325 
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6 5 6 250 

7 7 8 200 

8 8 12 225 

9 8 9 225 

10 8 13 300 

11 9 14 425 

12 13 34 150 

13 13 18 825 

14 14 11 250 

15 14 10 250 

16 15 16 375 

17 15 17 350 

18 18 19 250 

19 18 21 300 

20 19 20 325 

21 21 22 525 

22 21 23 250 

23 23 24 550 

24 23 25 275 

25 25 26 350 

26 25 28 200 

27 26 27 275 

28 26 31 225 

29 27 33 500 

30 28 29 300 

31 29 30 350 

32 31 32 300 

33 34 15 100 

34 35 36 650 

35 35 40 250 

36 36 37 300 

37 36 38 250 

38 38 39 325 

39 40 41 325 

40 40 42 250 

41 42 43 500 

42 42 44 200 

43 44 45 200 

44 44 47 250 

45 45 46 300 
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46 47 48 150 

47 47 49 250 

48 49 50 250 

49 50 51 250 

50 51 108 1500 

51 52 53 200 

52 53 54 125 

53 54 55 275 

54 54 57 350 

55 55 56 275 

56 57 58 250 

57 57 60 750 

58 58 59 250 

59 60 61 550 

60 60 62 250 

61 62 63 175 

62 63 64 350 

63 64 65 425 

64 65 66 325 

65 67 68 200 

66 67 72 275 

67 67 97 250 

68 68 69 275 

69 69 70 325 

70 70 71 275 

71 72 73 275 

72 72 76 200 

73 73 74 350 

74 74 75 400 

75 76 77 400 

76 76 86 700 

77 77 78 100 

78 78 79 225 

79 78 80 475 

80 80 81 475 

81 81 82 250 

82 81 84 675 

83 82 83 250 

84 84 85 475 

85 86 87 450 
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86 87 88 175 

87 87 89 275 

88 89 90 225 

89 89 91 225 

90 91 92 300 

91 91 93 225 

92 93 94 275 

93 93 95 300 

94 95 96 200 

95 97 98 275 

96 98 99 550 

97 99 100 300 

98 101 102 225 

99 101 105 275 

100 102 103 325 

101 103 104 700 

102 105 106 225 

103 105 108 325 

104 106 107 575 

105 108 109 450 

106 109 110 300 

107 110 111 575 

108 110 112 125 

109 112 113 525 

110 113 114 325 

111 18 35 375 

112 115 1 400 

113 13 52 400 

114 60 67 350 

115 97 101 250 

116 54 94 400 

117 37 59 400 

118 56 88 400 

119 71 114 800 

120 46 65 400 

121 17 96 400 

122 30 48 400 

123 39 66 400 
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Line Configuration 

Parameter Value Description 

c_nf_per_km 10.75 
line capacitance (line-to-earth) in nano 

Farad per km 

r_ohm_per_km 0.306 line resistance in ohm per km 

x_ohm_per_km 0.33 line reactance in ohm per km 

max_i_ka 0.35 
maximum thermal current in kilo 

Ampere 
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초      록 

 

실 계통 적용을 고려한 안전 강화학습 

기반의 능동 배전망 운영전략에 대한 

연구 
 

오 석 화 

전기∙정보공학부 

공과대학원 

서울대학교 

 

본 연구의 목적은 신재생에너지원이 유입된 배전계통의 안정성을 

실시간으로 관리하기 위한 배전계통운영자(DSO) 방법론과 이를 풀 수 

있는 안전 강화학습 기법을 제안하는 것이다.  

이를 위해 본 연구에서는 우선 신재생에너지원의 유입으로 인해 

변화하는 배전계통 환경에서의 배전계통운영자의 필요성, 그리고 권한

과 역할에 대해 검토하며, 배전계통운영자가 계통 안정성을 유지하기 위

한 능동적 계통 운영의 목적을 정의한다. 나아가 이러한 관리가 이루어

지는 배전계통 환경을 하나의 가상 물리 시스템(CPS)으로 정의하여 실

제의 물리적 계통과 시뮬레이션 환경 상의 계통을 하나로 종합하고자 
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하였다. 

배전계통운영자가 제어할 수 있는 대상은 각 계통 환경에 따라서 

달라지나, 본 연구에서는 계통 내 스위치를 통한 배전계통 재구성, 에너

지저장장치를 활용한 계통 내 조류량 변경의 두 가지 방법론을 집중적

으로 다루고자 하였으며, 이들 각각을 최적화 문제로 정식화하였다.  

아울러, 본 연구에서는 이러한 최적화 문제를 연속된 시간에서의 

제어 결정 문제로 보고 마르코프 결정 프로세스(MDP)로 재정식화하였

으며, 이를 해결하기 위한 강화학습 알고리즘을 설계하였다. 강화학습 

분야에는 목적 및 대상이 되는 데이터의 특성에 따라 다양한 형태의 알

고리즘을 설계할 수 있으며, 본 연구에서는 제안된 각 계통 운영 방법론

에 맞는 Dueling Deep Q-learning 알고리즘을 설계하였다.  

한편, 현재까지 강화학습 알고리즘을 활용해 전력 시스템의 운영 

문제를 해결하고자 한 연구가 다수 있어왔으나, 이를 시뮬레이션 환경

이 아닌 실제의 물리적 시스템에 적용하고자 할 때에 발생할 수 있는 문

제점에 대해 검토하였다. 이중 본 연구에서는 실제 계통에서 요구되는 

제어 결정의 안정성 문제를 강화학습 알고리즘에 반영하기 위해 기존의 

마르코프 결정 프로세스를 제약된 마르코프 결정 프로세스

(Constrained Markov Decision Process)로 확장하여, 등호 제약조

건을 다루기 위한 안정성 모듈 및 부등호 제약조건을 다루기 위한 적응 

비용 함수를 설계하였다.  

결과적으로 설계된 안전 강화학습 모델을 IEEE 123 모선 시험 
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계통에서 시뮬레이션 함으로써, 하나 이상의 운영전략을 동시에 취할 경

우, 또 강화학습의 안전성을 고려할 경우 보다 효과적인 성능을 보임을 

입증하였다.  

배전계통운영자는 본 논문에서 제안하는 실시간 배전계통 운영을 

위한 강화학습 프레임워크의 도입을 통해, 실제 물리적 계통으로부터 도

출되는 요구사항을 해결하기 위한 강화학습 알고리즘을 설계할 수 있으

며, 또 해당 알고리즘의 결정이 물리적 계통의 안정성 제약 위배를 최소

화하도록 함으로써, 증가하는 배전계통의 복잡성에 대응하기 위한 하나

의 계통 운영 전략으로서 취할 수 있을 것이다.  

 

주요어 : 능동적 배전계통운영자(Active DSO), 가상 물리 시스템

(Cyber-Physical System), 배전계통 재구성, 다중 에너지저장장치 

운용, 안전 강화학습 
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