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Abstract

Quantum information processing is a rapidly growing field with the
potential to revolutionize computing, communication, and cryptography.
However, to achieve the full potential of quantum computing, fast and
accurate measurements of quantum states are essential. Especially, measuring
the individual state of multiple qubits with high fidelity is challenging as the
number of qubits is increasing.

Ion traps are one of the promising platforms for realizing quantum
computers due to their long coherence time and self-calibration, which arise
from the identical characteristics of ions throughout the universe. The state
measurement of trapped ions is carried out by collecting state-dependently
scattered photons from ions. To individually measure the state of each ion,
the detector not only can detect photons with high sensitivity but also provide
spatial information for the detected photons.

One promising device for multi-qubit state measurement of trapped ions is
the electron-multiplying charge-coupled device (EMCCD). This device has a
unique ability to amplify single-photon-level small signals with electron-
multiplying (EM) gain and to provide spatial measurement with a grid-like
Sensors array.

Several strategies have been investigated from an experimental setup

i



perspective to enhance the state detection fidelity of trapped ions. These
include utilizing the time information of scattered photons, improving the
quantum efficiency of the detector, and expanding the coverage angle of the
photon-collecting system. From an algorithmic perspective, two methods
have been developed to determine the state of the ion. One is the threshold
method, which determines the state of the ion based on a criterion. The second
is the maximume-likelihood method, which determines the ion's state by
considering the probability of the measured data belonging to each state and
selecting the most probable one.

Recently, with the rapid growth of machine learning technology, there have
been several attempts to apply machine learning to the field of state detection.
Since machine learning models have the capability to automatically learn the
noise patterns of the detector and capture unique local patterns of signals that
may not be considered in the analysis, these attempts have shown superior
performance compared to conventional algorithmic methods.

Convolutional neural networks (CNNs) are powerful deep-learning
algorithms that are widely used in many fields, including image and speech
recognition. CNNs are particularly renowned for their exceptional
performance in handling image data, which is typically represented as 2D
grid-like data. This is due to the unique architecture and operations of CNNs

that allow them to effectively capture spatial dependencies and hierarchical
iii



features within images. By employing convolutional layers, pooling layers,
and non-linear activation functions, CNNs can automatically learn and extract
relevant features from images, enabling accurate image recognition, object
detection, and other visual tasks.

In this dissertation, to acquire all 16 quantum states of a 4-ion chain with
high fidelity, '"°Yb*, an isotope of the qubit ion (!’'Yb"), which barely
interacts with the detection beam is used to represent |0) states in the ion
chain. In contrast, the !”'Yb" ions are prepared in the |1) state with high
fidelity and serve as representatives of the |1) states. This technique enables
the acquisition of EMCCD images of the deterministic state of multi-qubits
with high fidelity, without individual multi-qubit control.

A CNN model is then applied to the acquired data to determine the quantum
states of the ions, and these results are compared to those of conventional
methods, namely the threshold method and the maximum-likelithood method.
It 1s observed that the CNN models not only outperform the conventional
methods but are also more robust to the long-term positional drift of the
trapped 1ons, promising high reliability over an extended period during the
experiment.

The results of this study, showing sustained performance even with an
increasing number of qubits, are expected to help develop practical quantum

computers and their application in quantum error correction for the future.
v
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Chapter 1. Introduction

1.1. Quantum Information Processing and Qubits

Quantum information processing (QIP) is a field of study that processes
information by exploiting principles of quantum mechanics [1]. Compared to
classical information processing, which encodes the data as either 1 or 0, QIP
can take advantage of the superposition principle to encode the data as both 1
and 0 simultaneously. This enables efficient and rapid calculations that cannot
be achieved by classical computers and even is believed classical computers
cannot calculate [2], [3].

A quantum bit, or shortly a qubit, is an elemental unit of quantum
information. The classical information unit, a bit, can have either one of two
values: 0 or 1. However, a qubit can have values of both simultaneously based
on the superposition principle in quantum mechanics. The state of the qubit
can be represented as a combination of computational bases, |0) and |1), as

written below.

1) = al0) + BI1) 0
where the numbers a and B are complex numbers. If a measurement is
made, the quantum state [1)) collapses one of two states. the probability that

we get |0) is |a|?. Similarly, the probability that we get |1) is |B]2. Since



the total probability should be 1, this satisfies |a|? + |8|* = 1.
Now we can imagine a sphere that has a radius of 1, and the pure states |0)
and |1) on each pole. Using the global phase y and the relative phases 6, ¢,

we can rewrite Equation (1.1) as

) = e (cosg 0) + e'® sing I1)>. (1.2)

where y, 6, and ¢ are real numbers. The global phase e? is usually
ignored for convenience. Figure 1-1 represents the Bloch sphere, which

geometrically visualizes the state of Equation (1.2 on an imaginary sphere.

|0) +i|1)
> V2

|0} + |1)
V2 X

1)

Figure 1-1. A single qubit visualized on the Bloch sphere.

Pauli gates are good tools to represent basic quantum gates that operate on



single qubits. Pauli gates are named after the physicist Wolfgang Pauli. The
Pauli gates consist of Pauli x-gate, Pauli y-gate, and Pauli z-gate. The

names of gates denote the rotation axis of the operation on the Bloch sphere.

The basic Pauli gates can be represented in 2 x 2 matrices as

X = (2 é) (13)
v= ((l) _ol) (1.4)
Z= (é —01) (1.5)

Although the Block sphere is a convenient method to represent the qubit state,
it is limited to a single qubit. For quantum computing processors, many

algorithms necessitate multiple qubits.



1.2. Multi-Qubit System

Quantum computing can be realized with multiple qubits since quantum
algorithms for practical levels require a large number of qubits. In quantum
computing, qubits are categorized into several types, including computing
qubits, memory qubits, and ancilla qubits [3], [4]. Unlike classical
computation, quantum computation is probabilistic and susceptible to
environmental interference, which can cause errors through a process called
decoherence. As the operation time gets longer, the effects of decoherence
become more pronounced, making it necessary to use ancilla qubits to correct
errors and extend the memory time.

Ancilla qubits play a unique role in quantum computing by allowing the
manipulation and control of the state of other qubits in the circuit. This is
because the state of a quantum gate depends not only on the input qubits but
also on the state of the gate's environment, which can be affected by
decoherence and other quantum effects. Ancilla qubits are used to perform
specific operations, such as quantum error correction, by interacting with the

other qubits in the circuit.



1.3. Qubit Control with Microwave

Microwave is a commonly used technique for controlling qubits of trapped
ions [5]-[7]. Microwave-based control makes it easier to achieve spin-flips of
trapped ions compared to a laser-based method, which requires two beams to
be overlapped on the trapped ions. Microwave control requires a finely tuned
frequency for high-fidelity control, and it is less sensitive to alignment issues
due to its long wavelength.

Due to the long wavelength that reaches about a few centimeters, another
advantage of microwave-based control is that it can simultaneously control
the quantum states of multiple ions in phase. At the same time, this long
wavelength also makes it challenging to control individual qubit control of
multiple ions. To achieve individual qubit control, a strong magnetic field
gradient necessitates shifting the quantum levels of individual ions by the
Zeeman effect [8].

In this dissertation, however, a novel method using an isotope is developed
to obtain multi-qubit state detection data with high fidelity. Thus, individual
qubit controls were not necessary, a simultaneous qubit control sufficed.

The total Hamiltonian of the system can be written as

(1.6)

where H, is the unperturbed Hamiltonian and H; is the Hamiltonian with a

5



small perturbation. If we write the eigenstates of the unperturbed system, then

[p(6)) = ; C(B)e~Emt/R ) o

The unperturbed Hamiltonian can be written with defined energy levels as

H,|m) = Ep|m) (1.8)

On the other hand, the perturbative Hamiltonian where the electron is

interacting with the microwave that oscillates the magnetic field along the z-
axis is

H; = —ji,B,cos(wt + ;) (1.9)

where [i, is the magnetic moment of the atom along the z-axis, w is the

angular frequency of the microwave, B, is the amplitude of the magnetic

field, and &, isthe phase of the microwave. The time-dependent Schrodinger

equation can be solved by

L d ~
lhEWJ(t)) = H|y(1)) (1.10)
Combining Eq. (1.7) and Eq. (1.10), and applying the inner product with (n|

yield differential equations for the time-dependent coefficients.

ih¢, e Ent/h = Z cme " Emt/h (n| H;|m)

m

(1.11)

The magnetic dipole can be written approximately,



(n|H,|m) = —B, cos(wt + ,) (n|f,|m) (1.12)
note that (n|f,|m) is zero if n = m. For simplicity, we define the dipole
moment strength (n|f,|m) as §,., = (n|fi,|m); note that ©,,, = Pmn.

The transition we have an interest in is only between the two levels |0)

and |1). We then can simplify Eq. (1.11) as a system of two equations:

ihcy = —ci4910B, e~ 10t cos(wt + 8,)

ih¢; = —cog0}oB,e' 10t cos(wt + 6,) (1.13)
where w,o = (E; — Ep)/h is defined as the angular frequency difference
between the two levels. If we replace the cosine terms with exponential terms,
we get

ih¢y = —c1010B,(eH(@@10)tei% 4 g-ilwtwio)ty=ido)

ih¢; = —cofoioB, (i@ T@10)teido 4 gilw=w10)ty=ido) (119
Applying the rotating wave approximation (RWA) allows Eq. (1.14) to
contain only slowly varying terms. Now we can finally define the Rabi
frequency (1 = §,0B,/h, and the detuning from the resonance of the two

levels as A = w — wq4. The system equations then are simply,

i o
o = 7ClelAte,LSo

10* (1.15)

¢ = > Coe—lAte—uSo



Taking the second-order derivative and combining the equations, we get

QZ

¢, =0 (1.16)
This implies that c; and cy oscillate by time but in different phases. The

solution of this kind of equation has the form:

— art Brt
c,(t) = ae** + be (1.17)

where o= —z(A+VOZ+47) and B, = —-(A—VOZ+AZ) . A
generalized Rabi frequency can be defined as Qp = VQ? + A%. Now Eq.

(1.17) becomes,

iAt , .
c1(t) = e 2 (aeTHIRY/Z 4 be'rt/2) (1.18)
From the initial condition where the electron is initialized to the |0) state,
c1(0) = 0, we get b = —a. Taking the derivative of Eq. (1.18) and replacing

the derivative of ¢, in Eq. (1.15), we finally get

. o1
c; () =Q—Re“At/Ze“50 sin (EQRt) (1.19)
The probability that the electron can be found in the |1) state is
@®) = |c;(®O? = & sin? 1\/QZ + A%t
p1 - 1 T 024+ A2 2 (1.20)

This is the familiar form of Rabi oscillation [9]. Note that if the microwave is

detuned from the resonance, the probability of the |1) state cannot reach



100%. Therefore, to achieve high-fidelity state preparation, the microwave
should be driven on resonance. This can be visualized on the Bloch sphere as
shown in Figure 1-2. Detuning causes the rotation axis to tilt by an angle of
0 = arctan(4/12). The resulting tilted axis makes it impossible to detect the
|1) state with 100%.

Theoretically calculated Rabi oscillations with three different detunings

(A=0,A=0Q,and A =2Q) are illustrated in Figure 1-3.

1)
s Z

Figure 1-2. Visualized Rabi oscillation on the Bloch sphere with detuning.
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Figure 1-3. Theoretical Rabi oscillations with different detunings.

1.4. Ton Trap
Ion traps are devices that trap charged particles using an electrical or
electromagnetic field. It is widely used in diverse areas of physics ranging
from high to low energies, and from fundamental physics through quantum
engineering to simulate space plasmas or solid-state systems [10].
Since charged particles cannot be trapped in a static field due to Earnshaw’s
theorem [11], that can be written below
V-F=V-(-VU)= -V?U=0 (1.21)
There are two primary types of ion traps: Penning traps and Paul traps.

10



Penning traps, named after the physicist Frans Michel Penning, use a
combination of electric and magnetic fields to confine charged particles. On
the other hand, Paul traps, named after the physicist Wolfgang Paul, confine
ions with a combination of a static electric field and a ponderomotive electric
field.

The electric field in a Penning trap is typically created by applying a
voltage to a ring electrode, while a magnetic field is applied perpendicular to
the plane of the ring. The motion of charged particles in a Penning trap can
be described using the equations of motion for a charged particle in a
magnetic field and an electric field. The magnetic field exerts a Lorentz force
on the charged particles, which creates a circular motion of them. Penning
traps are typically used for precision spectroscopy experiments by observing
the angular frequency of the motion of the trapped particles.

Contrary to the Penning traps, Paul traps use ponderomotive electric fields
to trap charged particles. In a Paul trap, two or more cylindrical electrodes are
arranged in a linear or circular configuration, and a radio-frequency (RF)
voltage is applied to them. The resulting electric field creates a potential well
that can trap charged particles in a localized manner. Due to this localization,
it is easier to produce lasers to cool and control the quantum state of trapped

ions, making Paul traps suitable for quantum information processing.

11



The motion of trapped ions within the ponderomotive electric field can be
described as fast Brownian motion, where their dynamics are characterized
by time-averaged behavior. The fast oscillation of the potential can be
represented by the time-averaged pseudopotential, which describes the
dynamics of charged particles confined by the quadrupole potential [12],

which is given by

VO xZ _ yZ
d)pseudo = ?COS(QTt) 1+ R2 ) (1.22)

where (r is the frequency of the ponderomotive potential, V, is the
amplitude of the input voltage, and R is the distance from the nearest
electrode.

Figure 1-4 shows the simulation result of this pseudopotential, the potential
f quadratic potential well, the ion is trapped and escaped continuously in the
saddle point of this potential well as the RF voltage oscillates.

The electric field produced by this potential is now can be derived by

E(X, y,t) = _Vd)pseudo

Vo . (1.23)
= — 2z (xX = y) cos(QQrt)

The force acting on a particle with mass m and charge e in the x-direction

can be described as follows.

172



. eVO
FE, =mi = eE, = —XFCOS(QT@: (1.24)

The equation of the motion is the form of a Mathieu equation, if this is re-

written in a general form of the Mathieu equation, then

d?u

-7+ (@ + 2q, cos(2D)u = 0, (1.25)

where u represents the position of the particle, a, represents the static
motion of the particle, and g, is the oscillating motion of the particle
induced by the ponderomotive potential. Note that the term of a, can be
suppressed by matching the null point of the RF potential and the DC potential
in the experimental setup. This extra motion of the particle increases the ion
heating during the quantum operation, which significantly degrades the
fidelity of the quantum gate [12].

When the term a,, can be ignored, the equation of the motion is simply

the motion of the oscillating particle, which has the form

x(t) = AC, cos(wyt) [1 + %COS(QT@] (1.26)

where A is the elemental amplitude of the motion, C, the coefficient of the
0-th order of the solution of the Mathieu equation, which is related to the

temperature of the trapped ion, w, 1is secular frequency, which is the

. o . . : 2eV;
frequency of the motion when it is projected on a single axis, and g, = T’ElReZ.(?l)z
T
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is the ponderomotive term oscillating with the frequency of the input RF
frequency, which is small and averaged out when the motion of the ion is
observed within the trap frequency.

Note that from equation (1.26), when the ion is sufficiently cooled by the
Doppler cooling, the amplitude term AC is small enough (~107° m), and
the fast-oscillating g, term can be negligible. Under these conditions, the
trapped ion can be regarded as a static particle, and the amplitude of its motion
can be disregarded. This is one additional advantage of trapped ions for

physics experiments.
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Figure 1-4. Simulation result of the pseudopotential.

1.5. MEMS-Based Surface-Electrode Ion Trap

To realize a large-scale quantum information processor with ion traps, a large
number of trapped ions are required. However, due to the large size of the

primitive ion traps that can reach several meters, it is challenging to make
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them industry-friendly and practical for a quantum processor. This has led to
the development of scalable, small-sized ion traps [12], [13].

There are two representative small-sized linear ion traps for quantum
information processing illustrated in Figure 1-5: the blade trap, also called a
macro-trap, and the micro-electromechanical systems (MEMS)-based
surface-electrode ion trap. Both the blade trap and the surface-electrode ion
trap are based on a 4-rod trap. Thus, they have a pair of RF electrodes that
provide transverse potential, and DC electrodes for longitudinal potential,

preventing the ions from escaping.

Figure 1-5. Two small-sized four-rod ion traps.

The green electrodes shown in Figure 1-5 indicate RF electrodes that trap
the ions transversely, as represented by the dotted red line. The yellow

electrodes represent DC electrodes that provide a longitudinal potential to
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prevent the trapped ions from escaping. Additionally, some of the DC
electrodes are segmented to move the DC potential and enable ion shuttling
within the trap by applying different values of the voltages to the electrodes
[14].

Since the macro-trap has a larger scale than the surface ion trap, it has some
advantages in terms of heating rate. The trapped ions have a greater distance
from the closest RF electrode, which results in less anomalous heating [15],
[16]. Therefore, blade traps are often used to realize two-qubit gates and
fundamental physics experiments that exploit the motional states of trapped
ions.

On the other hand, surface ion traps tend to be used for realizing quantum
computers. Due to their scalability based on MEMS technology, performing
quantum algorithms with high fidelity on surface-electrode ion traps may
imply that a quantum computer can be realized. Furthermore, due to the
advancement of semiconductor industries such as silicon-based
complementary metal oxide semiconductor (CMOS) processes, the
fabrication of ion traps based on MEMS is industry-friendly. In this
dissertation, MEME-based ion traps fabricated by this research group are

used for experiments [17], [18].
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Chapter 2. Ytterbium

Ytterbium is one of the promising Rydberg atoms that can be implemented as
a qubit ion [19]. Since its ion can be easily cooled and controlled its quantum
states with an industrially manufactured laser. Furthermore, it has a long
coherence time compared to other ions [20].

Among the isotopes that have hyperfine levels, '7'Yb" is commonly used
as a qubit ion. Since the level structures are well-known and it is easier to
manipulate compared to !’Yb*, which requires another laser beam to
depopulate hyperfine levels [19].

Figure 2-1 illustrates the energy levels of Ytterbium ions. The strong
transition between 2S;,, and 2Py, is utilized for cooling the ion with
Doppler cooling [21] and for state detection. A 935-nm laser repumps the

electron that occasionally decays to 2D /2 manifolds. Even though there is
no decay channel from 3[3/2],/, to ?F,/,, the electron decayed to the
D3/, manifolds sometimes decay to the 2F;, manifolds during

experiments. It is believed that this transition is driven by the collision with a

buffer gas in the UHV chamber [22].
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Figure 2-1. Energy levels of Yb" ion.
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2.1. 399-nm Spectroscopy of Neutral Ytterbium

By applying a 399-nm laser that is resonant to a specific isotope, one can
selectively trap desired isotope ytterbium ions. To achieve this, a 399-nm
spectroscopy of neutral ytterbiums in which the ions are expected to be
trapped is required. The results of the 399-nm spectroscopic analysis can vary
depending on the vacuum chambers used, due to the different Doppler shifts
resulting from variations in chamber geometry and installation angles of the
ytterbium oven [23].

The spectroscopy was performed as follows: a detector that can detect 399
nm light is placed where the imaging lens focuses. In this dissertation, a CCD
camera (Thorlabs, 1501M-USB) is used.

Figure 2-2 shows the snapshot of the CCD with a scattered 399-nm laser.
Initially, the 399-nm laser beam is aligned to scatter from the backside of the
trap chip. This backside scattering results in photons being scattered in all
directions, which allows us to observe all the geometry of the trap chip. Figure
2-2 (a) shows the snapshot of the CCD with backside scattering. Watching the
CCD, a 399-nm laser is aligned and focused at the location where the ions are
expected to be trapped as shown in Figure 2-2 (b). Then, the ytterbium oven
is turned on, letting the ytterbiums be vaporized. Finally, if the oven is heated

up enough, the CCD values of the trap position should be recorded while

20



changing the frequency of the 399-nm laser.

Note that the scattering from the chip surface caused by the strong 399-nm
laser obscured the signals from the ions. To address this issue, the laser was
slightly positioned higher than the trap position, and the ROI on the CCD was
carefully selected. The selected ROI was along the slot of the trap chip, but
regions near the electrodes were excluded to reduce the scattering signals.
The signals were then averaged for every frequency bin.

The spectroscopy result is shown in Figure 2-3. The peaks of the CCD
signals indicate that the frequency of the 399-nm laser is resonant with the
evaporated ytterbium atoms, scattering lots of photons. The species of
isotopes are confirmed by the measured frequencies and separations of peaks

between isotopes.
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Figure 2-2. CCD snapshots of the ion trap chip and laser scattering.
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Figure 2-3. Spectroscopy result of the ytterbium oven.

2.2. Isotope-Selective Yb Ion Trapping
With the result of spectroscopy, it is now possible to ionize the vaporized
neutral ytterbium atoms isotope-selectively and excite the electron from
28, 2 level to 2p, /2 level. To transit the excited electron to the continuum
and make it fully ionized by a two-photon transition [19], a 369-nm laser is
counter-propagated to the 399-nm laser.

The fully ionized atom should be cooled immediately in order not t
o escape from the trap potential by the huge Brownian motion. To mi
tigate this issue, it is necessary to emit a cooling beam while trapping

the ions. Fortunately, the 369-nm cooling beam can send the electron
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excited by the 399-nm laser during the first ionization to the continuu
m energy level. Therefore, only a 399-nm laser and a 369-nm laser ar
€ necessary.

Figure 2-4 shows a CCD image of the trapped single '7*Yb* ion via
isotope-selective trapping. To trap the '7*Yb' ion selectively, the freque
ncy of the 399-nm laser is set to 751.526 450 THz, and the 369-nm laser is
set to 811.291 400 THz, which is more than 100 MHz red-detuned from the
resonant frequency of '7*Yb" ion between 2S; /2 and Zp, /2- Note that the
frequency of the 369-nm laser is set to cool the trapped ion, and its frequency
does not affect the ionization. Since the 399-nm laser is strongly radiated in
the trapping region, even when the 399-nm laser is detuned from the
resonance more than 200 MHz, the ion is easily trapped due to the power

broadening of the transition.
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Figure 2-4. CCD image of a trapped single '’*Yb" ion.
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Chapter 3. Quantum State Detection

3.1. Quantum State Detection of Trapped Ions

Quantum state detection with high fidelity is a key step in quantum
information processing [1]. It is a prerequisite for realizing quantum error
correction (QEC) which is essential for building quantum computers [4], [24].
The QEC detects and corrects errors in quantum bits to preserve the
information in quantum states and make the quantum algorithms realizable.

The quantum state of trapped ions can be detected by observing scattered
photons from state-dependent cycling transitions [25]. Two internal energy
levels of a trapped ion are selected and encoded as |0) and |1), respectively.
If a laser that is resonant with a certain energy level of the ion is radiated, and
the ion scatters photons, then the state is determined as |1). Otherwise, it is
determined as |0).

However, due to the noise from high-sensitivity detectors and off-resonant
transitions during state detection, achieving 100% state detection fidelity is
not feasible. The thermally or electrically induced false signals from the
detector cannot be distinguished from the actual signals, resulting in a false
determination of |0) as |1). Moreover, if the quantum state of an ion in |1)
is changed to |0) before any photons are detected in the detector during the

state detection process, one cannot correctly determine the state as |1).
2 6



Similarly, if the quantum state of an ion in |0) is changed to |1) and scatters
lots of photons, it is also impossible to accurately determine the quantum state
as |0).

To reduce these detection errors, optimizing the detection time to mitigate
the errors induced by off-resonant transitions and false signals [26],
integrating a micro-fabricated mirror into the trap chip [27], and enhancing
quantum efficiency [28] for better photon collection efficiency have been
studied for the experimental setup. Moreover, providing more information
when determining the quantum state [29], [30] and machine-learning methods

also have been explored to improve state detection fidelity [31], [32].

3.2. Scattering rate of ''Yb* Ion.

Unlike other isotopes with fine structures that can be approximated as a
simple two-level system, the hyperfine structure of !"'Yb" gives several
factors to optimize the scattering rate of the ion. With this optimized photon
scattering rate, one can reduce the detection time, resulting in a minimized
error rate resulting from long exposure of the sensitive detector, as well as a
reduced processing time for quantum algorithms.

Figure 3-1 shows relevant energy levels of !"'Yb" for cooling the ion and

manipulating the quantum state. The two levels of '7'Yb", 25, 2 |[F=1)
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and 2S; /2 |F = 0), are selected and encoded as |1) and |0), respectively. It
should be noted that since the |1) state has the total angular momentum
quantum number F = 1, which results in three different magnetic quantum
values. These three levels, split into different magnetic quantum number
values, form a polarization-dependent transition between 2S; 2 |[F=1) and
Zp, 2 |F = 0), which is used for cooling the ion and detecting the quantum
state.

The resulting polarization dependence in the cycling transition inevitably
renders at least one state a coherent dark state [33]. Simply put, when the
detection beam has T-polarization, the two states of 25, 52 |[F =1) that
have magnetic quantum number +1 remain coherent dark states, on the hand,
when the detection beam has o*-polarization, the state of 2S; 2 |[F=1)

with 0 magnetic quantum number is a coherent dark state.
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Figure 3-1. Simplified energy levels of '7'Yb".

In addition to polarization optimization, the magnetic field strength should
also be optimized for maximum photon scattering [33]. When the strength of
a magnetic field is not strong enough, the hyperfine splitting is small and
makes them degenerate. This degeneracy of hyperfine levels makes the
coherent dark state stable and less responsive to the detection beam. On the
other hand, when the magnetic field is too strong, causing the hyperfine
splitting to become large, the frequency difference from the detection beam
also increases, which makes the level less interactive with the beam.

Since the natural linewidth of the excited electron to 2P, 2 |[F=1)is
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narrow (T = 8 ns), the photon scattering rate can be approximated as the
population rate of the excited state. The population of the excited state of the

ion interacting with the detection beam can be expressed as [33]

- 302 cos? G sin? O 1
T 74 1+3cos?0z; (I'/2)2 + A% (3.1)

where

" 2 2 2
r r 1—3cos=6
(—) = (—) + Q2 cos? Oz BE

2 2 1+ 3 cos? O
3.2
+ 0s” O & + 1652 Y
1+ 3 cos? Oz \ 1655 B

where 6g = (/4 is the magnetic-field strength and Opg = arccos(l /\/§)
is the laser-polarization angle. Both parameters maximize the photon
scattering by destabilizing the coherent dark states of hyperfine levels.

The scattering rate with optimized experimental parameters is when setting

the saturation parameter s, = 2Q02/T'? [26],

So

1425, 4 (2 (3.3)

r
Roane =77 = (5)

where R, ,,; represents the optimized scattering rate. This optimized
scattering rate implies that it is now a function of beam power. Note that at

high beam powers the scattering rate drops due to the destabilized coherent

dark states [26], [33].
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This non-intuitive behavior can be understood as coherent population
trapping (CPT) [34]. The CPT is a phenomenon in a 3-level system with two
strong laser beams. When the transitions induced by two laser beams share an
excited state and have two ground states, the excited state becomes a
metastable state by stimulated decay, resulting in no photon emission during
the transition.

In CPT, the state of the electron can be written as

.Qp|2)—.(25|3)

o[ + 10, (3.4)

where (), is the Rabi frequency of the pump beam and g is the Rabi

) =

frequency of the scope beam. Note that the transition occurs between the two

ground states without photon emission.
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Figure 3-2. Coherent population trapping (CPT) compared to transitions of

7'yb* with a high-intensity detection beam.

The measured photon counts of !"'Yb" are plotted in Figure 3-3. The blue
dots represent the measured photon counts by a PMT, and the red line is
plotted based on the theoretical fit. The red line is fitted to €R, o, Wwhere &
represents the photon collection efficiency of the system, which includes the
solid angle of the imaging lens, losses from optical components, and the
quantum efficiency of the PMT. Given that the natural linewidth I' and the
detuning of the laser beam A are known, the saturation beam power and the

total photon collection efficiency &€ = 0.023(3) can be acquired from the fit.
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Figure 3-3. Measured photon count result of '’'Yb" with respect to the beam

power.

3.3. State Preparation
Before detecting the quantum states of the trapped ions, the states of ions
should be prepared as desired. To verify the efficacy of the state measurement,
the fidelity of the preparation should be high enough, such that the error rate
stemming from the state preparation is negligible. The state preparation

fidelity is defined as
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_ 1

Forep = Ez p(prepared s|desired s) (3.5)
N

where s is the state that we want to prepare, which for a single qubit is either
|0) or |1).
The |0) state can be prepared using optical pumping with the beam

resonant to the energy between 2S,,, |F =1) and ?P,, |F =1) [35].

Since the initialized |0) state requires large detuning to off-resonantly
transferred back to the |1) state, the preparation error rate of the |0) is
usually very low (< 10™%) [28].

On the other hand, the |1) state is prepared from the |0) state by flipping
the spin with a microwave pulse. To achieve a high-fidelity preparation, one
should find the resonance frequency of the two states (A — 0) and drive the
microwave for a m-pulse time. This makes Eq. (1.20) simply p; (g) =
sin?(0.5m) = 1. However, due to the uncertainty of the frequency standard

and the timing margins of the control signals, State preparation fidelity of the

|1) state with 100% cannot be achieved experimentally.

3.4. Theoretical State Detection Fidelity

Provided the scattering rate, off-resonant transition rate, and false signal rate

of the detector are known, one can calculate the theoretical state detection
34



fidelity, thus its optimal detection time [26], [28]. When the polarization of
the detection beam and the Zeeman splitting of hyperfine levels of 2S; 2 are
optimized, the probability of pumping the initial state into a different state is

simply [26]

o = B () (D) (22 (3) 56

where Rp,qncn 18 the branching ratio of the spontaneous decay, which is 1/3
for dark state pumping, and 1 for bright state pumping, respectively. I’ =
2m X 19.6 MHz is the natural linewidth of the ytterbium ion, Q is the Rabi
frequency, and 4 is the detuning from the measurement beam for oft-
resonant transition.

With these pumping rates, one can now calculate the probability that zero
photons are detected for a given time of each state respectively [36]. The
probability that any photons are not detected from the |0) state is:

Ry

j2 =0)=—_
ta(n ) R, — R,

e—RdCt [e—Rbt

3.7)
_ e—Rot] + e—Rbte—RdCt

where n is the detected photon number, R,;. is the dark current of the

detector, and ¢ is the total photon detection efficiency in the system,

including the solid angle of the imaging lens, quantum efficiency of the
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detector and small loss from optical components. Similarly, the probability

that no photons are detected when the state is prepared in |1) state is:

R,

P =0 = r 4R,
o

e Ract|1

— e—(sRo+Ra)t] (3.8)
+ e—Rdte—(€R0+Rdc)t
If we set the threshold to 0.5 photons for the threshold method, we can define

the state detention fidelity as:

Frresnota = %[Pt,d + (1= Pyp)] (3.9)
where the 1 — P ), term represents the probability that more than one photon
is detected. Theoretically calculated state detection error (1 — Fypreshora) 1S
shown in Figure 3-4. Note that there is a trade-off between the optimal
detection time and the state detection fidelity. A strong detection beam
guarantees a short optimal detection time. However, it also increases the

pumping rate, resulting in a higher error rate from the off-resonant transition.
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Figure 3-4. Theoretically calculated detection error rate regarding the

detection beam intensity.

If we fix the beam intensity to half of the saturation intensity (I = 0.5/,;),
the bright state pumping rate, the probability that the |0) state is pumped into

the |1) state by the off-resonant transition, is:

2
Ry = @) (g) (%) (2(2n x 12.7 GHz)) =912 0z (340

Similarly, the dark state pumping rate also can be calculated as
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= OO e

= 149.0 Hz

(3.11)

With these pumping rates, the fidelity of state detection can be calculated.
However, since taking into account the state changes due to the off-resonant
transition is not an easy task, it is worth trying the Markov chain Monte Carlo
(MCMC) simulation, which is a statistical methodology used to simulate
probability distributions for situations where the model is too complex to
anticipate the final results.

To obtain precise results, 5,000,000 data for the |0) and |1) states are
sampled. Starting from the initial state, changes in the state and the number
of emitted photons are simulated every 5 ps until 200 ps according to the
pumping rates and photon emission rate described above. The time bin is set
to 5 us since any changes in the state that occur twice within this time bin can
be considered negligible (2.8 x 1071%). If the initial state is changed to a
different state, then this final state becomes the initial state for the next time
bin to calculate the emitted photons and state changes.

Figure 3-5 shows some histograms of the simulated photons numbers.
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The histograms indicate that if the threshold value is set to 0.5 photons,
then the fidelity of the |1) state saturates as the histogram of 0 photon counts
becomes saturated. However, as time passes, the histograms of the |0) state
above 0 photons become larger, resulting in an increased detection error rate
of the |0) state. Therefore, it can be concluded that if the quantum state is
determined using the threshold method, the detection fidelity is maximized

when the histograms of the 0 photons of the |1) state are saturated.
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Chapter 4. EMCCD

4.1. Concept

An electron-multiplying charge-coupled device (EMCCD) is a highly
sensitive device that can detect weak signals like a single photon. Its high
sensitivity is achieved by an electron-multiplying (EM) gain mechanism. This
mechanism involves the physical multiplication of electrons by impact
ionization [37], [38].

Another important property of the EMCCD is that it has a 100% fill factor,
which means that there are no gaps between the pixels of the sensor. This
enables the sensor to capture the full extent of the incoming light and provides
detailed spatial information without losing any photons.

An EMCCD is a suitable device that can be used for state detection of
multi-qubits due to its high amplification of EM gain registers and pixels
arranged in a grid that can provide spatial information of detected photons.
Therefore, unlike PMTs, the EMCCD doesn't require fine alignment to
recognize the source ion of the detected photons if a proper analysis method
is provided.

Figure 4-1 shows the picture of the EMCCD (Andor, DU-897 BB+) used
in the experiments, which is from the official website of Oxford Instruments

[39]. The model has the enhanced sensitivity of the sensor about the UV lights
41



up to 20%, which offers better quantum efficiency and leads to improved state
measurement fidelity.

Compared to the multi-channel PMTs that are commonly used for multi-
qubit state discrimination, the EMCCD has a longer processing time due to
the internal register processing time. However, the processing time can be
reduced to a few milliseconds when the parameters are optimized and the
region of interest (ROI) is minimized. Moreover, the state detection is usually
carried out at the end of the algorithm, which suggests that the processing

time of EMCCD is less critical compared to the gate operation time.

Figure 4-1. EMCCD device that is used for experiments.
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4.2. Electron-Multiplying Gain

The amplification process of the signals in an EMCCD device occurs
through the impact ionization of electrons resulting from the photoelectric
effect. The electrons become trapped in potentials created within the Si
substrate of the registers and are subsequently transferred to the next register
on each clock cycle. As the electrons move, they collide with the Si substrate,
producing additional electrons.

Although this process occurs with low probability (p = 0.01 ~ 0.02), if

many registers are employed, the net gain of the device can be significant [30]:

G=0+p), @.1)
where p is the probability that the impact ionization occurs and 7 is the
number of registers. With r = 512, the total gain can reach ¢ = 1000.
Figure 4-2 illustrates the diagram of the EMCCD. The image section
accepts incoming photons, and electrons are generated via the photoelectric
effect when the image section is activated. The generated electrons are
immediately transferred to the store section, where the sensors are deactivated,
and no more photoelectric effect occurs. The stored electrons are then moved
along the readout registers on each clock. Finally, the electrons reach the EM

registers and are multiplied by impact ionization. In this region, the electrons

can be multiplied up to 1000 times, and the analog-to-digital converter (ADC)
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reads out the electrons as a digital value.
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Figure 4-2. Configuration diagram of EMCCD: The image section detects

photons through the photoelectric effect from the sensor.
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4.3. Noises of EMCCD

4.3.1 Signal-to-Noise Ratio (SNR)
To achieve high-fidelity state detection, one should secure a high signal-to-
noise ratio (SNR). There are several types of noises in EMCCD that should
be considered when one uses it as a quantum state detector.

The signal can be considered as the number of generated electrons. If we

let the number of photons that are falling onto the detector Np,, then the
generated electrons N, can be written with a given quantum efficiency
NEmcep 3S,

Ne = Ngmcep Np- 4.2)
With this defined signal, the SNR can be written as

SNR = Je
EMCCD = T——,
,’Ziarzloise,i (43)

where Oppise; denotes the deviation of the noise source i and the

summation includes all the noise sources.

4.3.2 Shot Noise
Shot noise is a fundamental limit to the precision of photon detection and
arises due to the probabilistic nature of photons [40]. Since quantum state

measurements are performed under the sub milliseconds exposure, the
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contribution of the uncertain number of photons to the noise factor is
significant. Therefore, every quantum state measurement suffers from the
shot noise.

In the shot-noise limit, the randomly emitted photons can be modeled as

the Poissonian distribution, which has the form:

e
N(m; 1) = Y (4.4)

where n is the emitted photon number in a given exposure and A is the
expectation value of the emitted photon numbers.

One notable characteristic of the Poissonian distribution is that its variance
is equal to the expectation value. Thus, the contribution of the shot noise to

the noise factor is as much as A. The deviation of the shot noise then can be

represented simply: Ospor = +/Ne = \/NEMcep Np-

4.3.3 Dark Current
Dark current is a false signal that is generated within the device due to its high
sensitivity. Thermally induced free electrons from the silicon substrate can be
captured as signals by the sensors, and these false signals cannot be
distinguished from actual signals that originate from photon signals. However,

this thermal noise can be significantly mitigated by cooling the device to
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below -80°C. To minimize this noise, the device is cooled to -90°C and the

low temperature is maintained during experiments using a connected chiller
for the device.

Figure 4-3 shows the averaged measured EMCCD data in a dark room
where the EMCCD device was sealed in a black box to prevent photons from
entering. The total 1,000 measurement data, each measured for 350 ps, were
averaged. This means that the noise in Figure 4-3 is solely generated from the
device itself. The gradation in the data is caused by the thermal noise resulting

from the unevenly distributed temperature.
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Figure 4-3. Measured dark current in EMCCD device.

4.3.4 Clock-Induced Charge Noise

To achieve fast state measurement, the transfer time of generated electrons

along the registers should be minimized by shortening the register shifting

time. However, this short shifting time can make it more difficult for the

generated electrons to transfer to the potential of the next register. To ensure

that the generated electrons are transferred without loss, the clock voltage that

generates a potential to trap the signal electrons should be increased. However,
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this high clock voltage can be amplified in the gain registers and detected as

a strong signal.

4.3.5 Readout Noise
The readout noise can occur when the amplified electrons are converted into
digital signals through an analog-to-digital converter (ADC) at the end of the
gain register. This electrically induced noise can be modeled as white noise,
which contributes to the EMCCD histograms as a convolutional Gaussian
filter, leading to further broadening of the histograms.

This circuit noise can be suppressed by setting the readout speed to the
lowest value. Although this readout speed increases the data transfer time and
hence leads to a longer measurement time, the reduced noise is more
favorable. Moreover, by setting the region of interest (ROI) of the EMCCD
to the smallest possible region, the number of processed registers can be

minimized, resulting in decreased readout time.

4.3.6 Summary

As discussed in the previous chapters, the total SNR of the EMCCD can be

written as:
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where ogy is the deviation of the shot noise, which is N,, op. is the
deviation of the dark current noise, g is the deviation of the CIC noise,
and op, is the readout noise.

However, when the device is sufficiently cooled, the dark current noise can
become negligible. In addition, if the signals are strong enough, then the
readout noise can also be negligible. This leads to the SNR for the EMCCD
given by:

__Ne
,Ne"'ag]c (4.6)

If one can minimize the CIC noise with optimized EMCCD parameters,

SNRgymcep =

Ne

=

fundamental limit of the detection of photons. With the high EM gain, the

then the SNR becomes SNRgyccp = N, . This represents a

SNR can be significantly improved, enabling the detection of small numbers

of photons.
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Chapter 5. Machine Learning

5.1. Overview

Machine learning is a fast-developing field of a branch of artificial
intelligence (Al) that aims to develop algorithms by machines that can learn
from data [41]. In recent years, deep learning technologies have experienced
significant advancements, driven by the growth in the computing power of
graphical processing units (GPUs). Deep learning, a subfield of machine
learning, involves training artificial neural networks with multiple layers to
extract high-level representations from raw data. This approach has
revolutionized the field by enabling machines to automatically learn and
understand complex patterns and relationships in data.

With the rapid development of deep learning, many groups have tried to
apply this technology to various fields to achieve improved performance and
to run the task automatically [42]. In this dissertation, it is aimed to enhance
the fidelity of quantum state measurements of multiple ions by utilizing deep

learning techniques on data measured with EMCCD.
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5.2. Popular Algorithms in Deep Learning

5.2.1 Feedforward Neural Networks (FNN5s)

Feedforward Neural Networks, also known as multilayer perceptrons (MLPs),
are a type of artificial neural network where information flows in a single
direction, from the input layer through one or more hidden layers, to the
output layer.

Figure 5-1 shows the unit of a perceptron. A perceptron is one of the
simplest forms of artificial neural networks initially inspired by the
functioning of biological neurons in the human brain [43]. It accepts multiple
inputs and each input feature is multiplied by a corresponding weight and then
summed. This sum, along with a bias term, is passed through an activation

function. The activation function determines the output based on the

aggregated result.
X w;
W,
X, )3 y
W3
X3

Figure 5-1. A unit of a perceptron.
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However, FNNs require a large number of parameters, which results in
increased memory and computing power requirements. Consequently, they
are prone to overfitting [44] and redundant calculations due to the abundance

of parameters. These factors make FNNs less popular in recent years.

5.2.2 Recurrent Neural Networks (RNN5s)

Recurrent Neural Networks (RNNs) [45] are a type of neural network
architecture commonly used for sequential data processing tasks such as
natural language processing (NLP), speech recognition, and time series
analysis.

Unlike feedforward neural networks, which process inputs independently,
RNNSs have a recurrent connection that allows information to be passed from
previous steps to the current step. This recurrent connection enables RNNs to
capture temporal dependencies and learn from sequential patterns.

The basic building block of an RNN is the recurrent unit, typically
represented by a simple form called the Long Short-Term Memory (LSTM)
cell or the Gated Recurrent Unit (GRU). These units have internal memory
that allows them to remember information from past time steps and

selectively update or forget that information based on the current input.
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During training, an RNN receives input data step by step and updates its
hidden state at each time step. The hidden state serves as a summary or
representation of the input sequence up to that point. The output at each time
step can be used for prediction, or the RNN can be designed to produce an
output only at the final time step.

One key advantage of RNNs is their ability to handle variable-length input
sequences. This makes them well-suited for tasks such as sentiment analysis,
machine translation, and speech recognition, where input lengths may vary.
RNNs can process inputs of different lengths by unrolling the network over
time, treating each time step as a separate input.

However, RNNs also face challenges such as vanishing or exploding
gradients, which can hinder their ability to learn long-term dependencies. To
address this issue, variants like LSTM and GRU units were introduced, which
incorporate gating mechanisms to control the flow of information and
alleviate the vanishing gradient problem.

In recent years, more advanced sequence models like Transformer-based
architectures have gained popularity, surpassing traditional RNNs in tasks
such as machine translation. Nevertheless, RNNs still find applications in
scenarios where sequential dependencies are crucial, or when dealing with

streaming data where real-time processing is required.
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RNNs are neural network architectures designed to process sequential data
by utilizing recurrent connections. They excel at tasks involving sequential
patterns and have been widely used in various fields of natural language

processing and time series analysis.

5.2.3 Convolutional Neural Networks (CNNs)

Similarly, CNNs (Convolutional Neural Networks) [46] have gained
popularity in various fields, especially in computer vision tasks. CNNs are
specifically designed to process grid-like data such as images. They are
composed of multiple layers, including convolutional layers, pooling layers,
and fully connected layers.

Convolutional layers play a crucial role in CNNs. They apply a set of
learnable filters to input data, enabling the network to automatically extract
relevant features. These filters perform convolution operations, which involve
sliding windows over the input data and computing dot products between the
filter weights and the corresponding input values. This process helps capture
spatial patterns and local dependencies in the data.

Pooling layers are often inserted after convolutional layers to downsample
the feature maps. They reduce the spatial dimensions while preserving the

important features. Common pooling operations include max pooling and
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average pooling, which extract the maximum or average value from each
pooling region, respectively.

The output of the convolutional and pooling layers is then flattened and fed
into fully connected layers. These layers have connections between every
neuron, allowing the network to learn complex patterns and make predictions
based on the extracted features. The final fully connected layer typically uses
a softmax activation function to produce the probability distribution over the
possible output classes.

CNNs have several advantages. Firstly, they automatically learn hierarchical
representations, starting from low-level features (e.g., edges and textures) to
high-level features (e.g., objects and scenes). This hierarchical feature
learning makes CNNs effective in recognizing complex patterns. Additionally,
CNNs have fewer parameters compared to fully connected networks, which
helps reduce memory and computational requirements.

Overall, the unique architecture of CNNS, tailored for processing grid-like
data, along with their ability to automatically learn relevant features, has
made them highly successful in various applications, including image

classification, object detection, and image segmentation.
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5.2.4 Vision Transformer (ViT)

Vision transformer (ViT) [47] is a deep learning model that applies
transformer architecture [48] to 1image processing. Traditionally,
convolutional neural networks (CNNs) have been dominant for image-related
tasks. However, ViT introduces a novel approach by leveraging the power of
transformers.

The ViT model begins by dividing an input image into a grid of patches,
treating each patch as a token. These patches are then linearly embedded to
generate a sequence of tokens. Next, the transformer's self-attention
mechanism is applied to capture the relationships between different patches
in the image. This enables the model to learn global dependencies and
interactions across the entire image, facilitating a more holistic understanding
of the visual context.

By leveraging self-attention, ViT models have shown that they can
effectively capture long-range dependencies and explicitly model the
relationships between image patches, allowing for better context
understanding. This helps in tasks such as image classification, object
detection, and semantic segmentation. Recently, ViT models have
demonstrated state-of-the-art (SOTA) performance that is comparable to

CNN models.
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5.3. Popular Base Models of CNNs

There is a plethora of models that are frequently used as base models for
CNNs. Choosing the base model depends on various factors, such as the
purpose of the model, the limited computing power of the processor, the
required accuracy, or the desired response time. In this chapter, popular CNN
models are introduced that are focused on high accuracy but light-weighted
models. These Lightweight, high-accuracy models are suitable for quantum
information processing, as the controllers often suffer from limited computing
resources and require fast processing times for high-speed quantum

computing.

5.3.1 ResNet
ResNet [49], short for "Residual Network," is a neural network architecture
that was introduced to address the challenges of training deep neural networks.
Deep networks often suffer from the problem of vanishing gradients [44], [53],
where the gradients become extremely small as they propagate backward
through the network layers. This phenomenon hampers the learning process
and makes it difficult to train deep networks effectively.

The key aspect of ResNet is the skip connections, also known as shortcut
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connections or identity mappings. These skip connections allow the network
to learn residual mappings, which are the differences between the desired
output and the input. By introducing these shortcuts, ResNet enables the
network to learn residual functions instead of trying to directly learn the
underlying mapping from the input to the output.

The skip connections in ResNet operate by adding the input of a certain
layer directly to the output of one or more subsequent layers. This creates a
shortcut path that bypasses the intermediate layers. As a result, the network
can effectively propagate gradients through the shortcut path, mitigating the
vanishing gradients problem. The skip connections also facilitate the flow of
information, allowing the network to retain important features from earlier
layers and incorporate them into deeper layers. Figure 5-2 shows the basic
residual block of ResNet. The input of the ResNet unit bypasses the
convolutional layers and is directly added to the output. By including the skip
connection, the gradient from the subsequent layers can flow directly to the
input of the ResNet unit, allowing the network to learn residual mappings

effectively and mitigate the vanishing gradients problem.
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Figure 5-2. Shortcut connection in ResNet

ResNet architectures typically consist of multiple residual blocks, each
containing several convolutional layers, batch normalization layers, and
nonlinear activation functions. These blocks can have different depths and
complexities, depending on the specific application and network

requirements.

5.3.2 MobileNet
MobileNet [50] is a lightweight neural network architecture designed
specifically for mobile and embedded devices with limited computational
resources. It aims to provide efficient and accurate models for various

computer vision tasks while minimizing the number of parameters and
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computational complexity.

The key idea behind MobileNet is the use of depth-wise separable
convolutions, which decompose the standard convolution operation into two
separate operations: depth-wise convolution and point-wise convolution.
Depth-wise convolution applies a single filter per input channel,
independently across all input channels. Point-wise convolution then applies
a Ix1 convolution to combine the output of the depth-wise convolution,
allowing the network to learn complex representations with fewer parameters.

By utilizing depth-wise separable convolutions, MobileNet significantly
reduces the computational cost and model size compared to traditional
convolutional neural networks. This makes it suitable for real-time

applications on resource-constrained devices without compromising accuracy.

5.3.3 SqueezeNet
SqueezeNet [51] is a compact and lightweight neural network architecture
designed to achieve high accuracy while minimizing the model size and
computational complexity. It aims to strike a balance between model
efficiency and performance by reducing the number of parameters without
sacrificing accuracy.

The key idea behind SqueezeNet is the concept of fire modules. Fire
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modules consist of two types of layers: squeeze layers and expand layers.
Squeeze layers primarily focus on reducing the number of input channels,
while expand layers aim to capture more complex features by increasing the
number of output channels.

Squeeze layers utilize 1x1 convolutions, which have the computational
advantage of reducing the number of parameters and the amount of
computation. These layers effectively squeeze the input channels to a lower
dimension, allowing the network to capture essential information in a more
efficient manner.

Expand layers consist of a combination of 1x1 and 3x3 convolutions. The
1x1 convolutions are responsible for expanding the squeezed channels, while
the subsequent 3x3 convolutions capture more spatial information and learn
richer representations. By using these expanded layers, SqueezeNet can
increase the model capacity while still maintaining a compact architecture.

By leveraging these design principles, SqueezeNet achieves a highly
efficient architecture with a small memory footprint. It has demonstrated
comparable or even superior performance to larger and more computationally
intensive models, making it well-suited for scenarios with limited

computational resources, such as mobile and embedded devices.
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5.3.4 ShuffleNet
ShuffleNet [52] is also a lightweight CNN architecture that was introduced to
address the need for efficient models with reduced computational complexity.
The key idea behind ShuffleNet is to utilize pointwise group convolutions and
channel shuffling to achieve computational efficiency while maintaining

good accuracy.

5.4. Classification

Classification in deep learning refers to the task of assigning given input data
to predefined classes or categories. It is a part of supervised learning, where
the goal is to learn the relationship between input data and their corresponding
classes, to make predictions on new inputs.

Deep learning models, primarily artificial neural networks, are commonly
used for classification tasks. Neural networks consist of input layers, hidden
layers, and output layers. By adjusting the weights and biases based on the
training data, the neural network learns the relationship between the inputs
and outputs.

This dissertation utilizes deep learning, specifically classification
techniques, applied to EMCCD images to facilitate the measurement of

quantum states in multi-qubit trapped ions. The EMCCD images are used as
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input data and applied to a deep learning model for classifying quantum states

in multi-qubit trapped ions.

5.5. Object Detection

Object Detection is one of the important applications of deep learning in
the field of computer vision. It involves identifying objects and accurately
localizing their positions in images or videos. Object detection has various
real-world applications, such as autonomous driving, surveillance, face
recognition, robotics, airport security, and medical image analysis.

Deep learning-based object detection has made significant advancements
compared to traditional methods. Previous approaches relied on predefined
feature extractors and classifiers to identify objects in images. However, deep
learning addresses the object detection problem with an end-to-end approach,
where feature extraction and object classification are performed
simultaneously.

One of the prominent methods in deep learning object detection is the
Single Shot Detector (SSD) [53]. SSD is a real-time object detection
algorithm capable of detecting objects of various sizes in an image
simultaneously. It utilizes convolutional feature maps of different scales to

predict the presence, location, and class of objects.
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Other important object detection algorithms include Faster Regional
Convolutional Neural Network (R-CNN) [54] and you only look once
(YOLO) [55]. Faster R-CNN performs accurate object detection by
employing separate networks for region proposal and object classification (a
two-stage object detection). YOLO, on the other hand, provides fast real-time
object detection by predicting bounding boxes and classes directly using a
single neural network.

These deep learning object detection algorithms are typically based on
convolutional neural networks (CNNs) and utilize weights learned from
large-scale datasets for object detection. The trained models can be applied to
new images to predict the presence and location of objects.

However, the object detection algorithms do not perform well for the
quantum state detection of trapped ions. This is because the |0) state does not
scatter any photons when exposed to the detection beam, making it impossible
to distinguish ions in the |0) state from the background, and determine the

number of ions in the |0) state.
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Chapter 6. Setup

6.1. Experimental setup

The experimental setup used in this dissertation is illustrated in Figure 6-1.
The surface-electrode ion trap, which is fabricated in this research group [18],
is implemented in an ultra-high vacuum (UHV) chamber. The pressure in the
UHV chamber reaches the order of 107!! Torr. In this high vacuum, the
expected mean free path of H, in the background is about a few thousand
km, which implies any random collisions with stray molecules in the chamber
can be ignored.

Three different colors of lasers are injected into the vacuum chamber
through a viewport and focused on the positions where ions are trapped. A
369-nm laser is used to cool the trapped ions by Doppler cooling and to detect
the quantum states of the trapped ions. A 399-nm laser is used for selectively
ionizing the isotopes of the neutral ytterbium atoms. Finally, a 935-nm laser
is used to repump the electrons that occasionally decay to the 2Dj /2
manifolds by optical pumping.

A microwave antenna horn (Pasternack PE9855/SF-10) is installed to
control the qubit states of the trapped ions with global radiation. It is carefully
aligned to maximally deliver the power of the microwave to the ions.

Additionally, a custom-designed diffraction-limited imaging lens (Photon

6 6



Gear 15470-S) with a 0.6 numerical aperture (NA) is used to collect photons
emitted from the trapped ions. The collected photons are then focused either
onto the sensor of EMCCD (Andor DU-897) or onto the PMT (Hamamatsu

H10682-210) depending on the position of the flip mirror.

UHV chamber (QJ PMT
EMCCD

Flip Mirror

MECTOWave -
orn antenna

g

Figure 6-1. The simplified diagram of the experimental setup.

High NA lens

In order to simultaneously trap two different isotopes of ytterbium ions,
two independent 369-nm lasers are combined using a polarized-beam splitter
(PBS) before they enter the vacuum chamber. Figure 6.2 shows the combining
setup. 369A is the original 369-nm laser that was initially installed, and 369B
is an additional laser used to trap a different isotope. To overlap the two paths

of the lasers, the PBS is installed and its two ports are used as inputs for the
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two beams, respectively. The PBS transmits the p-polarized beam and reflects
the s-polarized beam [40]. Therefore, if the polarizations of the two input
beams are adjusted correctly, the two beams can be overlapped and combined.
To minimize the leakages from the PBS due to the polarization mismatch, a
half-wave plate (HWP) is installed before the PBS. This HWP allows the
polarization of the beam from the fiber to be controlled.

To provide the degree of freedom of the beam path for the additional 369-
nm laser, two mirrors are installed before the PBS. With these two mirrors,
the beam path of 369B can be aligned to overlap the beam path of 369A.
Similar to the 369A setup, a half-wave plate (HWP) is installed before the
PBS to control the polarization of the 369B. Finally, the two beams are
combined using a PBS and then directed toward the vacuum chamber. Once
inside the chamber, they are both focused on the same location where the ions
are trapped.

To maximize the scattering rate of '’'Yb" ions, another HWP is installed
after the PBS to control the polarization of the combined beams with respect
to the quantization axis of the trapped ions. A spherical lens is used to focus
the beams on the trapped ions for maximum beam intensity to be delivered

and to minimize the unwanted scatterings from the chip surface [23].

68



3698

HWP
369A
Mirror
Mirror HWP
To the vacuum _
chamber ) Mirror
WP PBS

H
Spherical lens

Figure 6-2. Setup for combining two laser beams.

6.2. Experimental Controller

Since communication with experimental devices via LAN/USB usually
takes a few milliseconds, it is unrealistic to control the devices with a PC,
which requires sub-microsecond controls considering the short gate times and
switching times of the electro-optical or microwave devices [23].

As a controller for experiments, a field programmable gate array (FPGA,
Xillinx Arty S7-50) is used and the picture of it is shown in Figure 6-3. The
FPGA operates on a 100 MHz clock cycle, thus enabling it to control the
experiment with a time resolution of 10 ns. The experimental sequences are

programmed to the FPGA from a PC, and the FPGA runs the experiment as
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scheduled. FPGA runs the programmed experiments by either reading or
generating the transistor-transistor logic (TTL) signals at 3.3V logic levels via
its pmod ports. The input signals are generated from detectors or other
controllers for triggering and synchronizing the operation time. The output
signals are mostly used to turn on and off the switches of high-frequency
signals for acousto-optical modulators (AOMs) or electro-optical modulators

(EOMs), or other controllers/detectors.

Figure 6-3. ARTY S7-50 FPGA as an experimental controller.

6.3. Timing Optimization
6.3.1 Rising time and falling time of an acousto-optic modulator

To minimize measurement error during experiments, it is important to
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optimize the timings of control signals. Optimized control signals can
minimize the heating time of trapped ions during operations, which results in
improved qubit control fidelity [57], [58] and state detection fidelity.

For fast switching of the 369-nm laser, an AOM (IntraAction Corp. ASM-
2002B8) is installed. The AOM is modulated by a 200 MHz radio frequency
signal generated by a direct digital synthesizer (DDS, ANALOG DEVICES,
AD9912), which is then amplified by an amplifier (MiniCircuits, ZHL-03-
SWF+)up to 36 dBm to saturate the beam intensity of the 1st order laser beam.

The rising time of the AOM triggered by a user-control signal is mostly
limited by the velocity of the soundwave within the crystal. Although most
datasheets of AOM state that their rising times are in the ns range and define
rising time as the transverse time of the soundwave of the input beam, in this
dissertation, the terms "rising time" and "falling time" of the AOM
specifically refer to the duration required for the 1st order modulated beam of
the AOM to switch on and off, respectively, in response to a user-controlled
signal.

These rising and falling times usually cannot be achieved within an ns
timeline due to the relatively slow soundwave and the size of the crystal. The
transducer that produces a soundwave followed by the input RF signal is

usually located a few millimeters away from the laser beam, and the velocity
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of the soundwave that travels within the crystal in the AOM is 5.95 mm/us
[59]. Therefore, the rising time of the AOM is calculated to be a few
microseconds when measured.

To measure the rising time of the AOM induced by a user-control signal, a
369-nm laser was aligned to be scattered from the chip surface. The laser
alignment was optimized to maximize the amount of scattering light that
could be measured within a short time-bin, such as sub-ps. The rising and
falling times of the AOM are measured with a PMT by recording the time
delay between the user-control signal and the PMT signals. The measured
result is shown in Figure 6-4. Both the rising and falling times of the AOM
were measured to be 2.48(3) us. These measurement results were used to
schedule experimental sequences that minimize the time wasted for turning

on and off the 369-nm laser.
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Figure 6-4. Measurement results of rising time and falling time of the AOM
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6.3.2 Synchronization of the FPGA with EMCCD
Unlike PMTs, which emit outputs for every generated signal with a response
time of a few nanoseconds, EMCCD takes more time to process the measured
data due to its large number of registers. In addition, EMCCD has its own
processor unit, which means it has an independent clock cycle for processing
data and registers. Therefore, integrating the EMCCD into the experimental
system is more challenging than integrating a PMT.

The EMCCD used in this dissertation provides two acquisition modes: the
external triggering mode, whose acquisition time is determined by the
external signal, and the internal triggering mode, where the device itself
determines when to capture.

The process of the external triggering mode is very intuitive and easier to
implement. However, the external triggering mode coerces the device into
capturing the image even though the cleaning register process is not over [60].
These residual charges in the registers result in the external triggering mode
generating noisier data compared to the internal triggering mode, which has
a cleaning process.

Therefore, the internal triggering mode is preferred over the external
triggering mode when high SNR is needed with weak signals or with short

exposure time.
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To use the internal triggering mode, it is required that the experimental
controller is synchronized with the EMCCD. Figure 6-5 shows the D-type
connector interface of the EMCCD used in the dissertation. The red dot
indicates the control input for external triggering mode, the yellow dot
represents the “Fire Output” that produces a high TTL signal when the device
is capturing, the black dots are the ground connections, and the blue dots are

not used in this experiment.

CNONON NONON NON

Figure 6-5. D-type connector interface of EMCCD.

The “Fire Output” is connected to one of the inputs of the FPGA to detect
the signal of the fire output. the EMCCD is set to start capturing images via
internal triggering mode. Since the EMCCD captures periodically, if one
measures when the EMCCD captures, then it can be calculated when the next
exposure occurs. Note that this capturing cycle differs by various parameters

of EMCCD, such as horizontal or vertical register shifting time, the number
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of pixels in the ROI, and the readout speed. To confirm whether the FPGA
can correctly operate on time, the timing of the next exposure is measured
using the FPGA within a 2 ms window.

Figure 6-6 shows the timing diagram of the “Fire Out” that is generated by
the EMCCD device, and the stopwatch signals in the FPGA, which starts
recording the time when the input signal is detected. Since the time of the first
exposure is arbitrary, to reduce the ambiguity of the timing, we used the
second “Fire Out” input as a time standard. The timing of the 3rd “Fire Out”
then is precisely measured within 100 ns. Figure 6-7 illustrates the measured
result. The expected timing of the input signal is detected as less than 100 ns
(10 clocks), which is a reasonably short time compared to the AOM switching
time (2.5 ps) and the detection time (250 ps). Thus, any errors stemming from

this time margin can be negligible.
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Figure 6-6. Timing diagram of the “Fire Out” and the stopwatch signals in
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Figure 6-7. Measured result of the next “Fire Out” timing within 100 ns.
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6.4. Parameter Optimization

6.4.1 High Preparation Fidelity
To achieve high-fidelity state measurements, it is a prerequisite to have a state
preparation with high fidelity. Specifically, the state preparation fidelity
should be at least one order of magnitude higher than the state measurement
fidelity to ignore errors stemming from the state preparation. The state
preparation of |0) is carried out by optical pumping using a modulated 369-
nm laser at a frequency of 2.1 GHz and easily achieved with an error rate less
than 1 x 10™* [19], [61].

The |1) state is prepared by flipping the spin from the prepared |0) states.
To ensure that the |1) state can be prepared with high-fidelity, the probability
of the |1) state is experimentally measured by repeatedly flipping the spin
from the prepared |0) state. The spin-flip fidelity is calculated from curve
fitting using the following equation:

FZTl—l

Pi1y(n) = Fyet spin_flip (6.1)

where pj1y(n) is the measured probability that the ion is in the [1) state

after the spin has been flipped 2n — 1 times (n=1, 2, 3, ..., n), F4,; is the
detection fidelity of the |1) state in the system (a constant) including the

state preparation fidelity of the |0) state, and Fszpni,_l_lf”p is the spin-flip
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fidelity. The measured result is plotted in Figure 6-8 and the spin-flip fidelity
is calculated to be 99.98(3)% from the curve fitting. This high spin flip fidelity
ensures that the error rate from state preparation is on the order of 107,

making it negligible when considering the measurement fidelity.

6.4.2 Detection time optimization
To achieve high-fidelity state measurement fidelity, the detection time should
be optimized to suppress the error rate stemming from the off-resonant
transition of the |0) states. To calculate the optimal detection time, the bright
state pumping rate, and the dark state pumping rate are measured with respect
to the beam intensity as described in ref. [26]. The measured results are
illustrated in Figure 6-9.

With these pumping rates, one can theoretically calculate the optimized
detection time for quantum state detection of a single ion using Eq. (3.8) and
Eq. (3.9). The calculated optimal detection time for a single ion, when the
threshold is set to 0.5 photons, is 89.69 ps.

Figure 6-10 (a) shows the calculated error rates of both the |0) and |1)
states. As the detection time gets longer, the error rate of the |1) state is
getting lower, and it saturates. On the contrary, the error rate of the |0) state

keeps larger as the detection time gets longer. Note that the optimal detection
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time for quantum state detection occurs when the error rate of the |1) state
is saturated. Figure 6-10 (b) displays the experimental result of the single-
shot quantum state detection of a trapped ion using the optimal detection time.
The state detection fidelity is calculated to be 99.57(12)%, which is close to

the theoretical state detection fidelity obtained from the measured pumping

rate of 99.64%.
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Figure 6-8. Measured spin flip fidelity by a global microwave.
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6.5. Machine Learning Model Design

To enhance the accuracy of multi-qubit ion state measurement, a ResNet-
based CNN model was developed. Unlike existing pre-trained models that
typically require larger input sizes of around 256x256 and utilize RGB
channel values, the EMCCD data used in this experiment has a smaller size
of about 36x36 and consists of 16-bit single-channel images. This difference
in data characteristics poses a challenge, as the conventional models may not
perform optimally when applied to this experimental data. Therefore, the
model was specifically designed to address these issues, aiming to optimize
performance while efficiently utilizing computational resources.

When designing the model, the following factors were taken into
consideration:

1. To address the crosstalk issue, it was crucial to preserve the
information about the presence of neighboring ions until the final
output layer. To achieve this, ResNet and DenseNet were chosen as
the base models, as they allow for the effective propagation of input
image information throughout the network. However, DenseNet,
which only performs concatenation without processing the input
information, resulted in the propagation of false signals along with

the desired information, leading to suboptimal performance.
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An average pooling layer was used instead of a maximum pooling
layer. This choice was made to avoid sampling bright false signals
against the background. With average pooling, the surrounding dark
background helps in averaging out these false signals, thereby
improving the accuracy of the measurement.

The total number of layers was determined based on finding the point
of saturation in performance while increasing the layer count
(ranging from 30 to 102 layers). By minimizing the number of layers,
computational resources could be conserved. The total number of
layers is determined to be 51 layers.

The output size was configured to match the number of ions being
measured. To prevent the exponential increase (2™) in the output size
as the number of ions to be measured increases, the output was not
represented as a one-hot vector. Instead, each output was designed to
generate the quantum state of the measured ion, allowing flexibility
for future measurements of varying numbers of ions.

Due to the correspondence between each output and the quantum st
ate of an ion, ambiguity arose in determining the quantum states. To

overcome this, each output was designed to produce quantized val



ues of 0 or 1. This was achieved by replacing the activation function
of the final layer with a custom sigmoid function, ensuring that onl

y 0 or 1 values are yielded as the training progresses.

The custom sigmoid used in the model is defined below:

Custom sigmoid(x, Nepoch)

1 (6.2)

- 1+ eaNepoch(x"'b)’

where a and b are hyperparameters and Ny, represents the number of
the training epochs. As the value of Nep,cp increases, the gradient of the cu

stom sigmoid function also increases. Consequently, the function eventually

transforms into a step function.
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Chapter 7. Experiment

7.1. Multi-Qubit State Preparation

Currently, individual state control of multiple ions cannot be performed with
high fidelity in our experimental setup. Therefore, to obtain data on the states
of multiple ions with high fidelity, we replaced ions in the |1) state of
multiple ions with qubit ion !”'Yb" in the |1) state, and ions in the |0) state
with the isotope '"Yb* of the qubit ion that rarely interacts with the
measurement beam.

The '"°Yb" ion is the perfect candidate to mimic the |0) state of the !7'Yb*
ion since, among other isotopes, it has the farthest resonant frequency from
the detection beam, which is 5.5 GHz, and the mass difference from the qubit
ion is only one neutron. Thus, any unexpected behavior due to mass
mismatching in the ion chains can be excluded [62].

Figure 7-1 represents simplified energy levels of both (a) '’'Yb" ion and (b)
7%Yb* ion. The orange solid line indicates the frequency of the detection

beam, and the black solid lines denote the hyperfine level splittings for 2S; /2
and 2P, /2> Which are 2.1 GHz and 12.6 GHz, respectively. The dashed solid
line shows the resonant frequency between 2S;/, and 2P/, of '’Yb* and

the required detuning frequency for off-resonant transition is represented by
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the dotted blue line, which is 5.5 GHz for '"°Yb".
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Figure 7-1. Comparison of energy levels of '"'Yb" and '7°Yb".

To verify that the !7°Yb* can be used as a substitute for the |0) state, the
detection error rate by the off-resonant transition is calculated from the

transition equation. when the detuning is large:

Ror = (3) (i) (%)2 7.1)
where I' = 2m X 19.6 MHz is the natural linewidth of ytterbium ion, and
Isq¢ 1s the saturation intensity, / is the beam intensity of the detection beam,
which is adjusted to 0.5[,;, and A is the detuning from the detection beam,

which is 5.5 GHz. The error rate that an emitted photon by off-resonant

transition is detected by the detector, which has a total photon collection
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efficiency of the system € = 0.023(2) is then,

Rerr =1 —exp(—&RyffTaer), (72)
where T4, = 250 ps is the capturing time of the EMCCD.

Table 1 shows the detuning from the detection beam of each ytterbium
isotope and their calculated error rates. The error rate of the '7°Yb" is the
smallest due to the largest detuning, and it is less than 0.1%, which is smaller
than the detection error rate of the detector. Therefore, it is valid to mimic the
"Yb* ion as the |0) state of the qubit ion. Furthermore, if we set the
threshold of the |1) state as 1.5 photons, the error rate resulting from off-
resonant transitions is further reduced, since the occurrence of multiple off-
resonant transitions becomes less likely.

Figure 7-2 is the EMCCD image of simultaneously trapped two different
isotopes of ytterbium ions. The recorded highest values of the ROI for each
ion are almost equal. However, the yellow color is painted after the
acquisition of 17°Yb" to provide better distinguishability between the two ions.
This heterogeneous trapping is used to acquire multi-qubit state detection data

by mimicking the |0) states of 'Yb" using its isotope.
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Figure 7-2. EMCCD image of simultaneously trapped '"°Yb* and !"'Yb*

ions.

For the multi-qubit state detection experiment, four ytterbium ions are
trapped with a combination of '"'Yb* ions and '"°Yb" ions to represent the

desired multi-qubit state. For instance, if the desired state is a 4-qubit state
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|0101), the four ytterbium ions should be trapped in the following order:
10y b*, 171yh*, 179 b*, and 17'Yb*,

While it would be convenient to swap or reorder specific ions within the
ion chain by controlling the DC potential [53], [63], this technique has not yet
been developed in our setup. Therefore, in this dissertation, the desired order
is achieved in a brute-force manner. Four ions are initially trapped, and then
the DC potential is intentionally perturbed by applying a high voltage to an
electrode for a short duration, repeatedly. This causes the ions to briefly
escape from the electrical potential, and subsequently, the cooling lasers bring
them back to the center of the potential well. This process provides an
opportunity for the ions to be reordered, eventually leading to the desired ion

order.

Table 1. Isotopes of ytterbium ions and their transition frequency

|(_3n3 of Yb 171yp*  10yp*t  172yp+ 174yp+  176yp*

isotopes

Detection 811.288 990 (THz)

Frequency
Detuning from

VAV i 5.5 3.9 2.4 1.3
) ) GHz GHz GHz GHz
S12 & “P12[19]

Error rate - 0.06% 0.10% 0.30% 1.00%
(250 ps exp.)
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7.2. EMCCD-based Multi-Qubit State Detection

Due to the stochastic nature of the photons, the activated pixels that reached
photons in the ROI are arbitrary. This makes it challenging to determine the
optimal ROI for state detection. To decide the optimal ROI for each ion, the

photon detection rate for each ion is measured.

7.2.1 Characteristics of Pixels of EMCCD

According to ref. [64], the determination of optimal ROIs for each ion in
EMCCD data is based on the pixel characteristics. Since every pixel in the
sensor has slightly different characteristics, different criteria should be
applied when determining the quantum state of the ions.

To obtain the characteristics of each pixel, their dark current rates and CIC
noise rates were measured in the dark room. The EMCCD was sealed in the
black box and placed in the dark room where the lights were off. Then the
EMCCD captured more than 500,000 images for 250 ps exposure. Using
these data, the histograms of each pixel are curve-fitted to the model in the
ref. [64] to calculate the false count generation, and minimum value of the
ADC, and the variance of the readout noise. The averaged mean false signal
generation rate was measured as 0.003. These fitted parameters are then

utilized to generate simulated data to compensate for the insufficient number
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of data points, enabling the application of the maximum likelihood method.
Further details regarding this process will be explained in chapter 7.2.3.

The measured multi-quit EMCCD images are illustrated in Figure 7-4. To
find out the optimal ROI of each ion for the threshold method and MLE
method, the entire data are averaged as shown in Figure 7-4 (a). In the
averaged image, any spurious charges that stochastically appear are averaged
out. Therefore, the averaged image is beyond the shot-noise limit, which can
be analyzed in a classical approach, such as Gaussian distribution. This image
is used to set an initial ROI of each ion. Figure 7-4 (b) represents acquired
exemplary data of all the possible 16 states. Note that since the measurements
are performed in the shot noise limit, the stochastic emission of photons
makes the activated pixels in ion images unpredictable. This shot noise

obscures determining the optimal ROIs of ions.

7.2.2 Experimental Sequence
The experimental sequence of this experiment is as follows: Firstly, the four
ytterbium ions are trapped in a desired order using a combination of '7'Yb*
ions and '"°Yb" ions to represent a given multi-qubit state. Then, the !"'Yb*
ions are initialized using optical pumping with a 2.1 GHz modulated 369-nm

detection beam. Subsequently, the 369-nm laser is deactivated to enable qubit
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control with microwaves. The microwave switch is turned on for a duration
of a m-pulse to flip the spin of the initialized ions, thereby placing the qubit
ions in the |1) state. Finally, the detection beam is activated, and the emitted
photons from '7'Yb" ions are recorded by the EMCCD. These preceding steps
are repeated over 65,000 times for each possible 16 quantum states of the 4-
qubit ions to obtain enough images for multi-qubit state detection.

Figure 7-3 depicts the timing diagram of the experiment. The FPGA serves
as the controller for the experimental schedule, which relies on the processing
of internal registers within the EMCCD. To emit the detection beam to the
ions promptly upon the EMCCD initiating image capture, the control output
from the FPGA is synchronized with the signals of the EMCCD. The diagram
displays the schedules after the microwave switch is turned off once the
quantum state controls are completed. To minimize ion heating during the
period when the cooling beam is switched off, the majority of the idle time
between EMCCD image captures is allocated for ion cooling, and qubit

control is executed only in the final moments.
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Figure 7-3. Timing diagram of the experimental schedule.
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7.2.3 Determination of ROIs for Each Ion

The measured multi-quit EMCCD images are illustrated in Figure 7-4. To
find out the optimal ROI of each ion for the threshold method and MLE
method, the entire data are averaged as shown in Figure 7-4 (a). In the
averaged image, any spurious charges that stochastically appear are averaged
out. Therefore, the averaged image is beyond the shot-noise limit, which can
be analyzed in a classical approach, such as Gaussian distribution. This image
is used to set an initial ROI of each ion. Figure 7-4 (b) represents acquired
exemplary data of all the possible 16 states. Note that since the measurements
are performed in the shot noise limit, the stochastic emission of photons
makes the activated pixels in ion images unpredictable. This shot noise

obscures determining the optimal ROIs of ions.

7.2.4 Simultaneous Rabi Oscillation

Due to the simulation of multiple quantum states using isotopes, there was
no guarantee that the proposed measurement method accurately measures the
quantum states. To eliminate this ambiguity, measurements were conducted
using actual qubits instead of quantum states emulated by isotopes. Therefore,
four 1"'Yb" qubit ions were trapped without isotopes, and the Rabi oscillation

was measured by irradiating them with a global microwave. With the
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wavelength of the global microwave spanning several centimeters, the phase
differences among ions were negligible, resulting in coherent Rabi
oscillations. In this dissertation, this experimental setup is referred to as
simultaneous Rabi oscillation measurement. By measuring this simultaneous
Rabi oscillation and observing the coherence of each ion, it is demonstrated
that the measurement method proposed in this dissertation, utilizing isotopes,

accurately measures the quantum states.
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Figure 7-4. Measured 4-qubit EMCCD data: the averaged image of all data and symbolic data for each state

98



Chapter 8. Results

8.1. Single qubit state detection

To verify the performance of the qubit state detection for the EMCCD,
single qubit state detection is performed beforehand. A single !"'Yb" ion is
trapped and prepared in either the |0) state or |1) state. Then more than
80,000 data for each state are acquired. Since state preparation is possible
with a fidelity of over 99.9%, the state preparation error can be ignored, and
only the measurement error is obtained. This measurement result is
considered as the base performance for multi-qubit state detection in the next
section.

The fidelity in this dissertation is defined as the probability that the
expected state is measured given the prepared state. The mean measurement

fidelity for the single ion is then defined,

n

_ 1
Faangie =3 ) P(Smeaslpren) @8.1)

N

where s represents the state of the ion, Speqs and s,,e, are the measured
state and prepared state, respectively, and n is the number of all possible

states of the ion. For a single ion, the n = 2.
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8.1.1 Threshold Method

Figure 8-1 shows the result of the threshold method of single qubit state
detection. To calculate the fidelity of the threshold method and the optimal
ROI, the pixels within the ROI are sorted from the highest mean value to the
lowest mean value. Then the error rates are calculated by incrementing the
number of pixels. For a given number of pixels, the threshold value is found
to minimize the mean error rate of the state detection, which, in principle,
minimizes the overlaps of histograms of each state.

Figure 8-1 (a) shows the error rate of the state detection with respect to the
number of pixels included in the analysis. The optimal number of pixels is 8
and the error rate is 0.92%. One notable thing about applying threshold
method is that, as shown in Figure 8-1 (a), the error rate is decreased initially
as the number of analyzed pixels increases. However, after reaching a certain
number of pixels, the error rate starts to increase. By identifying the number
of pixels where the error rate begins to increase, one can determine the
optimal number of pixels. Figure 8-1 (b) shows the histograms of each state

when the ROI contains 8 pixels. The threshold value is set to 4,380.

8.1.2 Maximum likelihood method

Figure 8-2 shows the result of the maximum likelithood method on a single
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ion. Based on the histograms of each state, the probabilities that a certain
value occurs from the |0) state and the |1) state for each pixel are obtained.

Similar to the threshold method, the pixels are indexed from the highest
mean value to the lowest mean value as shown in Figure 8-2 (b), and the error
rate of the state detection when applied MLE is calculated by increasing the
number of pixels within the ROI. The error rate with respect to the number of

pixels is shown in Figure 8-2 (a).
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The optimal number of pixels of ROI is found to be 30. In contrast to the
threshold method, the error rate saturates as the number of pixels reaches the
optimal value. Increasing the number of pixels beyond the optimal value leads
to increased redundant calculations. Therefore, the optimal number of pixels
is determined as the performance saturates, and the mean measurement

fidelity of the MLE is calculated to be 99.72%

8.1.3 Machine learning
To evaluate the performance of machine learning in single qubit state
detection, a CNN-based model is applied to the measured data. A simple CNN
model based on VGGNet [65] is utilized, and the mean measurement fidelity
is calculated to be 99.75(5)%. Trying different models to improve this result
doesn’t make any further improvements. This is because the model already
utilizes the full information and it meets the physical limitation that cannot be

improved by an analytical approach.
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The machine-learning model outperforms the threshold method and the
maximum likelthood method. This is believed to be due to the deep neural
network model can take into account the local information that is not
considered in those conventional two methods. Furthermore, the deep neural
network model can learn complex patterns and relationships within the data,
allowing it to capture subtle features that contribute to improved state
detection. This advantage over traditional methods, which rely on pre-defined
thresholds or statistical models, enables the machine learning model to adapt

and generalize well to varying conditions and noise levels.

8.2. Multi-qubit state detection

Conventional methods such as the threshold method and MLE for multi-qubit
state detection using EMCCD are not simple due to the overlaps of the ROIs
among adjacent ions [64]. This detection crosstalk is a main obstacle to
achieving high-fidelity state detection.

Here, two different fidelities are defined for a fair comparison: one is the
fidelity of correctly measuring the multi-qubit state as a whole, and the other
is the fidelity of correctly measuring each individual ion in the multi-qubit
state. The former is defined as mean measurement fidelity (MMF), which can

be written as
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_ 1
F = —Z p(measured s|prepared s),
2n L (8.2)

where n is the number of ions and the summation index s goes over all the
possible combinations of n-qubit states. The latter is defined as mean

individual measurement fidelity (MIMF), which is represented as

F indiv

1 1 (8.3)
= ;Z z—nz p(meausred s;|prepared s;) |,
1 N

2

where s; means the quantum state of the i-th ion in the s-th combination.

8.2.1 Threshold method
To evaluate the fidelity of the threshold method described in Ref. [17], the
threshold method is applied to our EMCCD data as follows: To determine the
initial ROIs of each ion, the average of all the acquisition data is obtained as
shown in Figure 6 (a), and all the pixels within the initial ROI of each ion
were sorted in decreasing order of signal intensity. Starting with the pixel with
the highest signal value, the threshold value was scanned to find the highest
fidelity. Subsequently, the pixel with the second-highest signal value was
added to the ROI and the threshold method was applied to the sum of the ROL.

The procedure continues by incrementally adding pixels to the ROI and
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performing the threshold method until the highest fidelity is reached. Finally,
the same procedure should be repeated for each ion and the optimal ROIs of
all the ions can be obtained.

The MMF is calculated as 91.38(34)%, while 97.54(54)% is obtained for
MIMF. This measurement method is vulnerable to crosstalk because we found
that some pixels had to be added to more than one ROI to obtain optimal

fidelity.

8.2.2 Maximum likelihood method

The MLE determines the state of the ion by the probability of the event. If the
ion image of the obtained data has a higher likelihood of being generated by
an ion in |1) than in |0), then the state is determined as |1), and vice versa. By
analyzing histograms of pixels, the probability of each pixel value being
produced by |0) or |1) can be calculated. The histograms of the pixel
values can be obtained from the experimental data or the simulation as well
[64]. Our histograms were obtained mainly from the experiment. When the
number of data is not sufficient, the histograms were interpolated by the
theoretical model explained in Ref. [64].

To address crosstalk problems, the iterative method as described in Ref. [64]

was applied. The result shows that this method is robust to crosstalk, and the
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measurement result is consistent with the statistical calculations. The MMF
of the MLE method is calculated as 96.86(9)% and the MIMF is calculated

as 99.13(8)%.

8.2.3 ResNet-based CNN model
Although the experiment is usually performed with a fixed imaging system,
small drifts of the ion image might occur over time. These small drifts can
lead to a measurement fidelity drop. The conventional methods of state
measurement using EMCCD are vulnerable to this kind of drift since these
methods rely on pixel-specific characteristic methods [5]. The CNN
architecture can cope with this kind of problem due to its inductive bias.
Although the problem to solve is a translation-variant, small translation can
occur due to the electrical potential drift or long-term mechanical drift of the
optical components. Therefore, when the model was trained, simulated
random translation data were added to the training dataset.

The total number of experimental data was 1,078,000. Half of the
experimental data were used for training the model and 20% of the data were
used to prevent overfitting. The rest of the data was used to calculate the
fidelity. The number of generated data for simulated random translation is

20,000 for each state and these simulation data were added to the training
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dataset.

The MMF is calculated as 98.32(10)% and MIMF is 99.53(14)%. We
believe that the reason for the highest performance of CNN compared to other
methods is that the model considers both the total counts and the image of

ions simultaneously.

h

Convolutional layer
F(x) ! Relu X

Convolutional layer

F(x)+x e«
Relu

Figure 8-3. Unit structure of ResNet.

8.2.4 Simultaneous Rabi oscillation of 4 qubits
To verify that the state detection of each ion is accurately made, simultaneous
Rabi oscillations of four '"'Yb" ions by global microwave were measured
with EMCCD. The oscillation result of each ion is plotted in Figure 8, which
clearly shows that the 4 ions oscillate in phase. The offset of the fitted sine

wave represents the detection error of the |0), which is on the order of 10,
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Hence, the amplitude is almost equivalent to the measurement fidelity of the
|1). The amplitudes agree with the MIMF. Therefore, it can be concluded that
the CNN model correctly measures the qubit state of each ion and it

outperforms the two conventional methods.
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8.2.5 Other Models

For comparison, other popular models that are commonly used as base
models were also tested on the EMCCD images. The Vision Transformer
showed similar performance to the ResNet-based CNN, indicating its
effectiveness in handling the data. On the other hand, SqueezeNet, which
compresses the spatial information, exhibited the lowest performance,
confirming that models relying solely on spatial information tend to suffer
from decreased performance.

Additionally, it was observed that models utilizing inter-channel
information yielded lower performance, as expected. Conversely, models that
focused on utilizing spatial information demonstrated higher performance.

Based on these results, it is evident that the performance of quantum state
measurement through machine learning can be enhanced by optimizing and

utilizing more suitable models.
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Table 2. Performance comparison with different models.

Model MAP (fidelity)
ResNet-based CNN 99.45%
K-Nearest Neighbors (KNN) 74.37%
Support Vector Machine (SVM) 97.10%
VGGNetl6 99.27%
VGGNet19 99.37%
MobileNet V2 98.12%
MobileNet V3 98.58%
ShuffleNet V2 97.95%
SqueezeNet 97.34%
Vision transformer 99.41%

8.2.6 Robustness Against Optical System Drift
In addition, to test the inductive bias of the trained model and its robustness
to the long-term ion image drift, the imaging lens was slightly moved to
capture the ion images using the different areas of the sensor. The acquisition
procedure was repeated as described above and the same types of data were
acquired but in different areas of pixels.

Table 2 shows the MIMF of the 3 different methods when applied to the

data that are acquired by shifting the imaging system to test robustness against
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ion image drift. It should be noted that when the threshold method and MLE
method were applied to the new data, they could not be directly applied since
the new data had different ion spacing simulating the drift of control
parameters. Therefore, the positions of ROIs were adjusted by aligning the
center of each ROI in the old data with the center of each ion in the new data.
On the other hand, when the new data was provided to CNN, no adjustment
was made. Even though the CNN model is trained in a translation-invariant
manner, it is assumed that the model is robust to small translations. This is
because the model not only focuses on determining the qubit state within
limited regions of interest (ROIs). Despite a slight drop in performance, the
fidelity remained reasonably high, indicating that the CNN is robust to the
different spacing of ions and pixel characteristics. This robustness is a
significant advantage of the CNN method over the conventional methods,

ensuring that measurements remain reliable over time.
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Table 3. Comparison of MIMF when applied to the data with a shifted

imaging system.

Methods Threshold” MLE" CNN
_Fofthe 97.54%  99.13%  99.53%
original pixels
F of new 96.93% 98.22% 99.12%
pixels

*ROls are adjusted when applied to the shifted data
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Chapter 9. Discussion and Conclusions

The multi-qubit quantum states of four trapped ions are prepared with high
fidelity using a bright state by the qubit ion '"'Yb* in |1) and a dark state
represented by an isotope !"°Yb". The multi-qubit states were then measured
with an EMCCD and analyzed using a CNN model which is one of the
popular machine-learning techniques. The CNN model is built based on
ResNet architecture since the shortcut connection well preserves the original
information including the presence of adjacent ions.

The measurement results with conventional methods are compared with
that of this machine-learning-assisted method. The machine-learning-assisted
method outperforms the conventional methods achieving a reduced error rate
of 46%.

To show the inductive bias of the CNN model and its robustness to long-
term drift, the same experiments were performed with the shifted imaging
system. The result shows that the CNN model is robust to the long-term drift
of the optical image compared to other methods, achieving 99.15(8)% MIMF
without any pre-processing.

Moreover, simultaneous Rabi oscillations of four !”'Yb" ions are measured
to prove that the model accurately determines the quantum state of each ion.

The results are consistent with the individual measurement fidelity of each
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ion.

In addition, the performance of the designed ResNet-based CNN model is
compared to other popular image classification models to ensure a fair
comparison. The results demonstrate that some conventional models achieved
similar performance to the specifically designed model. However, in most
cases, these conventional models have lower accuracy. The conventional
models that demonstrate good performance typically have deeper layers and
more parameters compared to the designed model. This suggests that models
can effectively utilize computational resources when specifically designed for
their intended purpose and the underlying physical model.

By utilizing machine learning for EMCCD-based multi-qubit state
measurement, it is possible to perform state measurements without being
constrained by predefined ROIs. This flexibility allows for more robust
performance, even if there are slight variations in the positions of ions over
time. This advantage ensures consistent performance over extended periods,
offering greater resilience to changes in ion positions.

The machine-learning-assist method described in this paper can be further
improved by providing more information to the model, such as time-binning

sequential images of the data to improve the accuracy of the model.
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Appendix A. Fidelity with Different Ions

The error rate of quantum state measurements needs to be below 10™* for
the practical realization of a quantum computer. However, the mean fidelity
of quantum state measurements for each ion is approximately 99.5%, which
is two orders of magnitude lower than the required criterion.

The main challenges in achieving high-fidelity quantum state
measurements are the low quantum efficiency of sensors for ultraviolet (UV)
light and the relatively frequent occurrence of off-resonant transitions
inherent to hyperfine qubits. In this section, it is demonstrated that by
changing the species of trapped ions, the proposed methods can achieve the
desired error rate criteria, indicating that the method itself is not the limiting
factor for practical usage.

If optical qubits are used, with each state encoded in independent transition
lines, the errors resulting from off-resonant transitions can be significantly
reduced. This is because the optical qubits are encoded in shelving states,
where two off-resonant transitions are required to change the state.
Furthermore, the two transition lines have different frequencies, which
enables the filtering out of transitions from different states based on their
frequencies.

Representative ions that can be utilized as optical qubits include Ca* [70],
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Sr" [71], and Ba" [72]. Additionally, recent research has explored the use of
Yb' [73] as an optical qubit, showing the feasibility of performing quantum
error correction algorithms.

The quantum efficiency of the detector can also be improved by utilizing
transition lines that involve visible light, as most industrial image sensors tend
to exhibit higher quantum efficiency in the visible light frequency range [74].
The EMCCD used in this dissertation has a quantum efficiency of more than
95% for visible light, which is almost three times higher than that for UV light
(32%). Consequently, nearly every photon that falls onto the EMCCD can be
collected and detected.

To calculate the state detection fidelity using different ions, equations (3.7)
and (3.11) are used with changed parameters. The quantum efficiency is
adjusted to 0.95%, resulting in € = 0.095, and the off-resonant transition rates
from both the |0) state and the |1) state are set to 0. The calculated results for
a threshold of 0.5 photons are presented in Figure A-1. The result clearly
shows that the detection error rate for a single qubit can be below 107%,
which satisfies the requirements for quantum error correction algorithms.
Furthermore, due to the negligible off-resonant transitions and high SNR from
high quantum efficiency, the higher threshold value can be advantageous,

Figure A-2 depicts the further reduced error rate when the threshold is
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changed to 1.5 photons.5 photons.

In conclusion, the calculated results demonstrate that when using different
ions, the quantum state measurement error is significantly lower than the
threshold required for quantum error correction algorithms. With such a low
error rate, the primary remaining source of error when measuring multiple
ions is the crosstalk from adjacent ions. The measured crosstalk error rate in
this dissertation is below 10 Therefore, the proposed methodology
presented in this dissertation can be utilized to build a practical quantum

computer with multiple qubits.
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