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Abstract 

Quantum information processing is a rapidly growing field with the 

potential to revolutionize computing, communication, and cryptography. 

However, to achieve the full potential of quantum computing, fast and 

accurate measurements of quantum states are essential. Especially, measuring 

the individual state of multiple qubits with high fidelity is challenging as the 

number of qubits is increasing. 

Ion traps are one of the promising platforms for realizing quantum 

computers due to their long coherence time and self-calibration, which arise 

from the identical characteristics of ions throughout the universe. The state 

measurement of trapped ions is carried out by collecting state-dependently 

scattered photons from ions. To individually measure the state of each ion, 

the detector not only can detect photons with high sensitivity but also provide 

spatial information for the detected photons. 

One promising device for multi-qubit state measurement of trapped ions is 

the electron-multiplying charge-coupled device (EMCCD). This device has a 

unique ability to amplify single-photon-level small signals with electron-

multiplying (EM) gain and to provide spatial measurement with a grid-like 

sensors array. 

Several strategies have been investigated from an experimental setup 
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perspective to enhance the state detection fidelity of trapped ions. These 

include utilizing the time information of scattered photons, improving the 

quantum efficiency of the detector, and expanding the coverage angle of the 

photon-collecting system. From an algorithmic perspective, two methods 

have been developed to determine the state of the ion. One is the threshold 

method, which determines the state of the ion based on a criterion. The second 

is the maximum-likelihood method, which determines the ion's state by 

considering the probability of the measured data belonging to each state and 

selecting the most probable one. 

Recently, with the rapid growth of machine learning technology, there have 

been several attempts to apply machine learning to the field of state detection. 

Since machine learning models have the capability to automatically learn the 

noise patterns of the detector and capture unique local patterns of signals that 

may not be considered in the analysis, these attempts have shown superior 

performance compared to conventional algorithmic methods. 

Convolutional neural networks (CNNs) are powerful deep-learning 

algorithms that are widely used in many fields, including image and speech 

recognition. CNNs are particularly renowned for their exceptional 

performance in handling image data, which is typically represented as 2D 

grid-like data. This is due to the unique architecture and operations of CNNs 

that allow them to effectively capture spatial dependencies and hierarchical 
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features within images. By employing convolutional layers, pooling layers, 

and non-linear activation functions, CNNs can automatically learn and extract 

relevant features from images, enabling accurate image recognition, object 

detection, and other visual tasks. 

In this dissertation, to acquire all 16 quantum states of a 4-ion chain with 

high fidelity, 170Yb+, an isotope of the qubit ion (171Yb+), which barely 

interacts with the detection beam is used to represent |0⟩ states in the ion 

chain. In contrast, the 171Yb+ ions are prepared in the |1⟩  state with high 

fidelity and serve as representatives of the |1⟩ states. This technique enables 

the acquisition of EMCCD images of the deterministic state of multi-qubits 

with high fidelity, without individual multi-qubit control. 

A CNN model is then applied to the acquired data to determine the quantum 

states of the ions, and these results are compared to those of conventional 

methods, namely the threshold method and the maximum-likelihood method. 

It is observed that the CNN models not only outperform the conventional 

methods but are also more robust to the long-term positional drift of the 

trapped ions, promising high reliability over an extended period during the 

experiment. 

The results of this study, showing sustained performance even with an 

increasing number of qubits, are expected to help develop practical quantum 

computers and their application in quantum error correction for the future. 
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Chapter 1. Introduction 

1.1. Quantum Information Processing and Qubits 

Quantum information processing (QIP) is a field of study that processes 

information by exploiting principles of quantum mechanics [1]. Compared to 

classical information processing, which encodes the data as either 1 or 0, QIP 

can take advantage of the superposition principle to encode the data as both 1 

and 0 simultaneously. This enables efficient and rapid calculations that cannot 

be achieved by classical computers and even is believed classical computers 

cannot calculate [2], [3]. 

A quantum bit, or shortly a qubit, is an elemental unit of quantum 

information. The classical information unit, a bit, can have either one of two 

values: 0 or 1. However, a qubit can have values of both simultaneously based 

on the superposition principle in quantum mechanics. The state of the qubit 

can be represented as a combination of computational bases, |0⟩ and |1⟩, as 

written below. 

where the numbers α  and β  are complex numbers. If a measurement is 

made, the quantum state |𝜓⟩ collapses one of two states. the probability that 

we get |0⟩ is |𝛼|2. Similarly, the probability that we get |1⟩ is |𝛽|2. Since 

 |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ 
(1.1) 



 

２ 

 

the total probability should be 1, this satisfies |𝛼|2 + |𝛽|2 = 1. 

Now we can imagine a sphere that has a radius of 1, and the pure states |0⟩ 

and |1⟩ on each pole. Using the global phase γ and the relative phases 𝜃, 𝜙, 

we can rewrite Equation (1.1) as 

where γ , 𝜃 , and 𝜙  are real numbers. The global phase e𝑖𝛾  is usually 

ignored for convenience. Figure 1-1 represents the Bloch sphere, which 

geometrically visualizes the state of Equation (1.2 on an imaginary sphere. 

 

Figure 1-1. A single qubit visualized on the Bloch sphere. 

 

Pauli gates are good tools to represent basic quantum gates that operate on 

 |𝜓⟩ = e𝑖𝛾 (cos
𝜃

2
|0⟩ + 𝑒𝑖𝜙 sin

𝜃

2
|1⟩), 

(1.2) 
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single qubits. Pauli gates are named after the physicist Wolfgang Pauli. The 

Pauli gates consist of Pauli 𝑥  gate, Pauli 𝑦  gate, and Pauli 𝑧  gate. The 

names of gates denote the rotation axis of the operation on the Bloch sphere. 

The basic Pauli gates can be represented in 2 × 2 matrices as 

 

Although the Block sphere is a convenient method to represent the qubit state, 

it is limited to a single qubit. For quantum computing processors, many 

algorithms necessitate multiple qubits.  

 

  

 𝑋 =  (
0 1
1 0

) 
(1.3) 

 𝑌 =  (
0 −𝑖
𝑖 0

) 
(1.4) 

 𝑍 =  (
1 0
0 −1

) 
(1.5) 
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1.2. Multi-Qubit System 

  Quantum computing can be realized with multiple qubits since quantum 

algorithms for practical levels require a large number of qubits. In quantum 

computing, qubits are categorized into several types, including computing 

qubits, memory qubits, and ancilla qubits [3], [4]. Unlike classical 

computation, quantum computation is probabilistic and susceptible to 

environmental interference, which can cause errors through a process called 

decoherence. As the operation time gets longer, the effects of decoherence 

become more pronounced, making it necessary to use ancilla qubits to correct 

errors and extend the memory time. 

Ancilla qubits play a unique role in quantum computing by allowing the 

manipulation and control of the state of other qubits in the circuit. This is 

because the state of a quantum gate depends not only on the input qubits but 

also on the state of the gate's environment, which can be affected by 

decoherence and other quantum effects. Ancilla qubits are used to perform 

specific operations, such as quantum error correction, by interacting with the 

other qubits in the circuit. 
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1.3. Qubit Control with Microwave 

Microwave is a commonly used technique for controlling qubits of trapped 

ions [5]-[7]. Microwave-based control makes it easier to achieve spin-flips of 

trapped ions compared to a laser-based method, which requires two beams to 

be overlapped on the trapped ions. Microwave control requires a finely tuned 

frequency for high-fidelity control, and it is less sensitive to alignment issues 

due to its long wavelength. 

Due to the long wavelength that reaches about a few centimeters, another 

advantage of microwave-based control is that it can simultaneously control 

the quantum states of multiple ions in phase. At the same time, this long 

wavelength also makes it challenging to control individual qubit control of 

multiple ions. To achieve individual qubit control, a strong magnetic field 

gradient necessitates shifting the quantum levels of individual ions by the 

Zeeman effect [8]. 

In this dissertation, however, a novel method using an isotope is developed 

to obtain multi-qubit state detection data with high fidelity. Thus, individual 

qubit controls were not necessary, a simultaneous qubit control sufficed. 

The total Hamiltonian of the system can be written as 

where 𝐻𝑜 is the unperturbed Hamiltonian and 𝐻𝐼 is the Hamiltonian with a 

 𝐻̂ = 𝐻̂o + 𝐻̂𝐼 (1.6) 
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small perturbation. If we write the eigenstates of the unperturbed system, then 

The unperturbed Hamiltonian can be written with defined energy levels as 

On the other hand, the perturbative Hamiltonian where the electron is 

interacting with the microwave that oscillates the magnetic field along the z-

axis is 

where  𝜇̂𝑧 is the magnetic moment of the atom along the z-axis, 𝜔 is the 

angular frequency of the microwave, 𝐵0 is the amplitude of the magnetic 

field, and 𝛿0 is the phase of the microwave. The time-dependent Schrodinger 

equation can be solved by 

Combining Eq. (1.7) and Eq. (1.10), and applying the inner product with ⟨n| 

yield differential equations for the time-dependent coefficients. 

The magnetic dipole can be written approximately, 

 |𝜓(𝑡)⟩ = ∑ 𝑐𝑚(𝑡)𝑒−𝑖𝐸𝑚𝑡/ℏ

𝑚

|𝑚⟩ 
(1.7) 

 𝐻̂o|𝑚⟩ = 𝐸𝑚|𝑚⟩ 
(1.8) 

 𝐻̂𝐼 = −𝜇̂𝑧𝐵0𝑐𝑜𝑠(𝜔𝑡 + 𝛿0) 
(1.9) 

 𝑖ℏ
𝑑

𝑑𝑡
|𝜓(𝑡)⟩ = 𝐻̂|𝜓(𝑡)⟩ (1.10) 

 𝑖ℏ̇𝑐̇𝑛𝑒−𝑖𝐸𝑛𝑡/ℏ = ∑ 𝑐𝑚𝑒−𝑖𝐸𝑚𝑡/ℏ

𝑚

⟨𝑛|𝐻̂𝐼|𝑚⟩ 
(1.11) 
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note that ⟨𝑛|𝜇̂𝑧|𝑚⟩ is zero if 𝑛 = 𝑚. For simplicity, we define the dipole 

moment strength ⟨𝑛|𝜇̂𝑧|𝑚⟩ as ℘𝑛𝑚 = ⟨𝑛|𝜇̂𝑧|𝑚⟩; note that ℘𝑛𝑚 = ℘𝑚𝑛
∗ . 

  The transition we have an interest in is only between the two levels |0⟩ 

and |1⟩. We then can simplify Eq. (1.11) as a system of two equations: 

where ω10 = (𝐸1 − 𝐸0)/ℏ  is defined as the angular frequency difference 

between the two levels. If we replace the cosine terms with exponential terms, 

we get 

Applying the rotating wave approximation (RWA) allows Eq. (1.14) to 

contain only slowly varying terms. Now we can finally define the Rabi 

frequency Ω = ℘10𝐵𝑜/ℏ, and the detuning from the resonance of the two 

levels as Δ = ω − ω10. The system equations then are simply, 

 ⟨𝑛|𝐻̂𝐼|𝑚⟩ = −𝐵𝑜 𝑐𝑜𝑠(𝜔𝑡 + 𝛿𝑜) ⟨𝑛|𝜇̂𝑧|𝑚⟩ 
(1.12) 

 

iℏ𝑐̇0 = −c1℘10𝐵𝑜e−𝑖𝜔10𝑡 cos(𝜔𝑡 + 𝛿𝑜) 

iℏ𝑐̇1 = −c0℘10
∗ 𝐵𝑜e𝑖𝜔10𝑡 cos(𝜔𝑡 + 𝛿𝑜) 

(1.13) 

 

iℏ𝑐̇0 = −c1℘10𝐵𝑜(e𝑖(𝜔−𝜔10)𝑡𝑒𝑖𝛿𝑜 + 𝑒−𝑖(𝜔+𝜔10)𝑡𝑒−𝑖𝛿𝑜) 

iℏ𝑐̇1 = −c0℘10
∗ 𝐵𝑜(e𝑖(𝜔+𝜔10)𝑡𝑒𝑖𝛿𝑜 + 𝑒−𝑖(𝜔−𝜔10)𝑡𝑒−𝑖𝛿𝑜) 

(1.14) 

 

𝑐̇0 =
𝑖𝛺

2
𝑐1𝑒𝑖Δ𝑡𝑒𝑖𝛿𝑜 

𝑐̇1 =
𝑖𝛺∗

2
𝑐0𝑒−𝑖Δ𝑡𝑒−𝑖𝛿𝑜  

(1.15) 
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Taking the second-order derivative and combining the equations, we get 

This implies that c1 and c0 oscillate by time but in different phases. The 

solution of this kind of equation has the form: 

where αr =  −
𝑖

2
(Δ + √Ω2 + Δ2)  and βr =  −

𝑖

2
(Δ − √Ω2 + Δ2) . A 

generalized Rabi frequency can be defined as  ΩR = √Ω2 + Δ2. Now Eq. 

(1.17) becomes, 

From the initial condition where the electron is initialized to the |0⟩ state, 

c1(0) = 0, we get b = −a. Taking the derivative of Eq. (1.18) and replacing 

the derivative of c1 in Eq. (1.15), we finally get 

The probability that the electron can be found in the |1⟩ state is 

This is the familiar form of Rabi oscillation [9]. Note that if the microwave is 

detuned from the resonance, the probability of the |1⟩  state cannot reach 

 𝑐̈1 + iΔ𝑐̇1 + |
Ω

2
|

2

𝑐1 = 0 (1.16) 

 c1(𝑡) = 𝑎𝑒𝛼𝑟𝑡 + 𝑏𝑒𝛽𝑟𝑡 
(1.17) 

 c1(𝑡) = 𝑒−
𝑖Δt
2 (𝑎𝑒−𝑖Ω𝑅𝑡/2 + 𝑏𝑒𝑖Ω𝑅𝑡/2)  (1.18) 

 c1(𝑡) =
𝑖Ω∗

Ω𝑅
𝑒−𝑖Δ𝑡/2𝑒−𝑖𝛿𝑜 sin (

1

2
Ω𝑅𝑡) 

(1.19) 

𝑝1(𝑡) =  |c1(𝑡)|2 =
Ω2

Ω2 + Δ2
sin2 (

1

2
√Ω2 + Δ2𝑡) (1.20) 
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100%. Therefore, to achieve high-fidelity state preparation, the microwave 

should be driven on resonance. This can be visualized on the Bloch sphere as 

shown in Figure 1-2. Detuning causes the rotation axis to tilt by an angle of 

𝜃 = arctan(𝛥/𝛺). The resulting tilted axis makes it impossible to detect the 

|1⟩ state with 100%.  

Theoretically calculated Rabi oscillations with three different detunings 

(Δ = 0, Δ = Ω, and Δ = 2Ω) are illustrated in Figure 1-3. 

 

Figure 1-2. Visualized Rabi oscillation on the Bloch sphere with detuning. 
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Figure 1-3. Theoretical Rabi oscillations with different detunings. 

 

1.4. Ion Trap 

Ion traps are devices that trap charged particles using an electrical or 

electromagnetic field. It is widely used in diverse areas of physics ranging 

from high to low energies, and from fundamental physics through quantum 

engineering to simulate space plasmas or solid-state systems [10].  

Since charged particles cannot be trapped in a static field due to Earnshaw’s 

theorem [11], that can be written below 

 There are two primary types of ion traps: Penning traps and Paul traps. 

 𝛻 ⋅ 𝐹 = 𝛻 ⋅ (−𝛻𝑈) =  −𝛻2𝑈 = 0 
(1.21) 
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Penning traps, named after the physicist Frans Michel Penning, use a 

combination of electric and magnetic fields to confine charged particles. On 

the other hand, Paul traps, named after the physicist Wolfgang Paul, confine 

ions with a combination of a static electric field and a ponderomotive electric 

field. 

The electric field in a Penning trap is typically created by applying a 

voltage to a ring electrode, while a magnetic field is applied perpendicular to 

the plane of the ring. The motion of charged particles in a Penning trap can 

be described using the equations of motion for a charged particle in a 

magnetic field and an electric field. The magnetic field exerts a Lorentz force 

on the charged particles, which creates a circular motion of them. Penning 

traps are typically used for precision spectroscopy experiments by observing 

the angular frequency of the motion of the trapped particles. 

Contrary to the Penning traps, Paul traps use ponderomotive electric fields 

to trap charged particles. In a Paul trap, two or more cylindrical electrodes are 

arranged in a linear or circular configuration, and a radio-frequency (RF) 

voltage is applied to them. The resulting electric field creates a potential well 

that can trap charged particles in a localized manner. Due to this localization, 

it is easier to produce lasers to cool and control the quantum state of trapped 

ions, making Paul traps suitable for quantum information processing. 
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The motion of trapped ions within the ponderomotive electric field can be 

described as fast Brownian motion, where their dynamics are characterized 

by time-averaged behavior. The fast oscillation of the potential can be 

represented by the time-averaged pseudopotential, which describes the 

dynamics of charged particles confined by the quadrupole potential [12], 

which is given by  

where ΩT  is the frequency of the ponderomotive potential, V0  is the 

amplitude of the input voltage, and 𝑅  is the distance from the nearest 

electrode. 

Figure 1-4 shows the simulation result of this pseudopotential, the potential 

f quadratic potential well, the ion is trapped and escaped continuously in the 

saddle point of this potential well as the RF voltage oscillates. 

The electric field produced by this potential is now can be derived by 

The force acting on a particle with mass m and charge e in the 𝑥-direction 

can be described as follows. 

 𝜙pseudo =
𝑉0

2
cos(Ω𝑇𝑡) (1 +

𝑥2 − 𝑦2

𝑅2
), 

(1.22) 

 

𝐸̂(𝑥, 𝑦, 𝑡) = −∇𝜙pseudo 

              = −
𝑉0

𝑅2
(𝑥𝑥̂ − 𝑦𝑦̂) cos(Ω𝑇𝑡) 

(1.23) 
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  The equation of the motion is the form of a Mathieu equation, if this is re-

written in a general form of the Mathieu equation, then 

where 𝑢  represents the position of the particle, 𝑎𝑢  represents the static 

motion of the particle, and 𝑞𝑢  is the oscillating motion of the particle 

induced by the ponderomotive potential. Note that the term of 𝑎𝑢  can be 

suppressed by matching the null point of the RF potential and the DC potential 

in the experimental setup. This extra motion of the particle increases the ion 

heating during the quantum operation, which significantly degrades the 

fidelity of the quantum gate [12]. 

When the term 𝑎𝑢 can be ignored, the equation of the motion is simply 

the motion of the oscillating particle, which has the form 

where 𝐴 is the elemental amplitude of the motion, 𝐶0 the coefficient of the 

0-th order of the solution of the Mathieu equation, which is related to the 

temperature of the trapped ion, 𝜔𝑥  is secular frequency, which is the 

frequency of the motion when it is projected on a single axis, and 𝑞𝑥 =
(2𝑒𝑉0)

𝑚𝑅2Ω𝑇
2 

 𝐹𝑥 = 𝑚𝑥̈ = 𝑒𝐸𝑥 = −𝑥
𝑒𝑉0

𝑅2
cos(Ω𝑇𝑡), 

(1.24) 

 
d2𝑢

𝑑𝜏2
+ (𝑎𝑢 + 2𝑞𝑢 cos(2𝜏))𝑢 = 0, (1.25) 

 𝑥(𝑡) ≈ 𝐴𝐶0 cos(𝜔𝑥𝑡) [1 +
𝑞𝑥

2
cos(Ω𝑇𝑡)] 

(1.26) 
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is the ponderomotive term oscillating with the frequency of the input RF 

frequency, which is small and averaged out when the motion of the ion is 

observed within the trap frequency. 

  Note that from equation (1.26), when the ion is sufficiently cooled by the 

Doppler cooling, the amplitude term 𝐴𝐶 is small enough (~10−9 m), and 

the fast-oscillating 𝑞𝑥 term can be negligible. Under these conditions, the 

trapped ion can be regarded as a static particle, and the amplitude of its motion 

can be disregarded. This is one additional advantage of trapped ions for 

physics experiments. 
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Figure 1-4. Simulation result of the pseudopotential. 

 

1.5. MEMS-Based Surface-Electrode Ion Trap 

To realize a large-scale quantum information processor with ion traps, a large 

number of trapped ions are required. However, due to the large size of the 

primitive ion traps that can reach several meters, it is challenging to make 
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them industry-friendly and practical for a quantum processor. This has led to 

the development of scalable, small-sized ion traps [12], [13]. 

There are two representative small-sized linear ion traps for quantum 

information processing illustrated in Figure 1-5: the blade trap, also called a 

macro-trap, and the micro-electromechanical systems (MEMS)-based 

surface-electrode ion trap. Both the blade trap and the surface-electrode ion 

trap are based on a 4-rod trap. Thus, they have a pair of RF electrodes that 

provide transverse potential, and DC electrodes for longitudinal potential, 

preventing the ions from escaping.  

 

 

Figure 1-5. Two small-sized four-rod ion traps. 

 

The green electrodes shown in Figure 1-5 indicate RF electrodes that trap 

the ions transversely, as represented by the dotted red line. The yellow 

electrodes represent DC electrodes that provide a longitudinal potential to 
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prevent the trapped ions from escaping. Additionally, some of the DC 

electrodes are segmented to move the DC potential and enable ion shuttling 

within the trap by applying different values of the voltages to the electrodes 

[14]. 

Since the macro-trap has a larger scale than the surface ion trap, it has some 

advantages in terms of heating rate. The trapped ions have a greater distance 

from the closest RF electrode, which results in less anomalous heating [15], 

[16]. Therefore, blade traps are often used to realize two-qubit gates and 

fundamental physics experiments that exploit the motional states of trapped 

ions. 

On the other hand, surface ion traps tend to be used for realizing quantum 

computers. Due to their scalability based on MEMS technology, performing 

quantum algorithms with high fidelity on surface-electrode ion traps may 

imply that a quantum computer can be realized. Furthermore, due to the 

advancement of semiconductor industries such as silicon-based 

complementary metal oxide semiconductor (CMOS) processes, the 

fabrication of ion traps based on MEMS is industry-friendly. In this 

dissertation, MEME-based ion traps fabricated by this research group are 

used for experiments [17], [18]. 
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Chapter 2. Ytterbium 

Ytterbium is one of the promising Rydberg atoms that can be implemented as 

a qubit ion [19]. Since its ion can be easily cooled and controlled its quantum 

states with an industrially manufactured laser. Furthermore, it has a long 

coherence time compared to other ions [20]. 

Among the isotopes that have hyperfine levels, 171Yb+ is commonly used 

as a qubit ion. Since the level structures are well-known and it is easier to 

manipulate compared to 173Yb+, which requires another laser beam to 

depopulate hyperfine levels [19]. 

Figure 2-1 illustrates the energy levels of Ytterbium ions. The strong 

transition between 2𝑆1/2  and 2𝑃1/2  is utilized for cooling the ion with 

Doppler cooling [21] and for state detection. A 935-nm laser repumps the 

electron that occasionally decays to 2𝐷3/2 manifolds. Even though there is 

no decay channel from 3[3/2]1/2  to 2𝐹7/2 , the electron decayed to the 

2𝐷3/2  manifolds sometimes decay to the 2𝐹7/2  manifolds during 

experiments. It is believed that this transition is driven by the collision with a 

buffer gas in the UHV chamber [22]. 
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Figure 2-1. Energy levels of Yb+ ion. 
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2.1. 399-nm Spectroscopy of Neutral Ytterbium 

By applying a 399-nm laser that is resonant to a specific isotope, one can 

selectively trap desired isotope ytterbium ions. To achieve this, a 399-nm 

spectroscopy of neutral ytterbiums in which the ions are expected to be 

trapped is required. The results of the 399-nm spectroscopic analysis can vary 

depending on the vacuum chambers used, due to the different Doppler shifts 

resulting from variations in chamber geometry and installation angles of the 

ytterbium oven [23]. 

The spectroscopy was performed as follows: a detector that can detect 399 

nm light is placed where the imaging lens focuses. In this dissertation, a CCD 

camera (Thorlabs, 1501M-USB) is used. 

Figure 2-2 shows the snapshot of the CCD with a scattered 399-nm laser. 

Initially, the 399-nm laser beam is aligned to scatter from the backside of the 

trap chip. This backside scattering results in photons being scattered in all 

directions, which allows us to observe all the geometry of the trap chip. Figure 

2-2 (a) shows the snapshot of the CCD with backside scattering. Watching the 

CCD, a 399-nm laser is aligned and focused at the location where the ions are 

expected to be trapped as shown in Figure 2-2 (b). Then, the ytterbium oven 

is turned on, letting the ytterbiums be vaporized. Finally, if the oven is heated 

up enough, the CCD values of the trap position should be recorded while 
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changing the frequency of the 399-nm laser. 

Note that the scattering from the chip surface caused by the strong 399-nm 

laser obscured the signals from the ions. To address this issue, the laser was 

slightly positioned higher than the trap position, and the ROI on the CCD was 

carefully selected. The selected ROI was along the slot of the trap chip, but 

regions near the electrodes were excluded to reduce the scattering signals. 

The signals were then averaged for every frequency bin. 

The spectroscopy result is shown in Figure 2-3. The peaks of the CCD 

signals indicate that the frequency of the 399-nm laser is resonant with the 

evaporated ytterbium atoms, scattering lots of photons. The species of 

isotopes are confirmed by the measured frequencies and separations of peaks 

between isotopes. 
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Figure 2-3. Spectroscopy result of the ytterbium oven. 

 

2.2. Isotope-Selective Yb Ion Trapping 

With the result of spectroscopy, it is now possible to ionize the vaporized 

neutral ytterbium atoms isotope-selectively and excite the electron from 

2𝑆1/2 level to 2𝑃1/2 level. To transit the excited electron to the continuum 

and make it fully ionized by a two-photon transition [19], a 369-nm laser is 

counter-propagated to the 399-nm laser.  

The fully ionized atom should be cooled immediately in order not t

o escape from the trap potential by the huge Brownian motion. To mi

tigate this issue, it is necessary to emit a cooling beam while trapping

 the ions. Fortunately, the 369-nm cooling beam can send the electron 
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excited by the 399-nm laser during the first ionization to the continuu

m energy level. Therefore, only a 399-nm laser and a 369-nm laser ar

e necessary. 

Figure 2-4 shows a CCD image of the trapped single 174Yb+ ion via 

isotope-selective trapping. To trap the 174Yb+ ion selectively, the freque

ncy of the 399-nm laser is set to 751.526 450 THz, and the 369-nm laser is 

set to 811.291 400 THz, which is more than 100 MHz red-detuned from the 

resonant frequency of 174Yb+ ion between 2𝑆1/2  and 2𝑃1/2 . Note that the 

frequency of the 369-nm laser is set to cool the trapped ion, and its frequency 

does not affect the ionization. Since the 399-nm laser is strongly radiated in 

the trapping region, even when the 399-nm laser is detuned from the 

resonance more than 200 MHz, the ion is easily trapped due to the power 

broadening of the transition. 
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Figure 2-4. CCD image of a trapped single 174Yb+ ion. 
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Chapter 3. Quantum State Detection 

3.1. Quantum State Detection of Trapped Ions 

Quantum state detection with high fidelity is a key step in quantum 

information processing [1]. It is a prerequisite for realizing quantum error 

correction (QEC) which is essential for building quantum computers [4], [24]. 

The QEC detects and corrects errors in quantum bits to preserve the 

information in quantum states and make the quantum algorithms realizable. 

The quantum state of trapped ions can be detected by observing scattered 

photons from state-dependent cycling transitions [25]. Two internal energy 

levels of a trapped ion are selected and encoded as |0⟩ and |1⟩, respectively. 

If a laser that is resonant with a certain energy level of the ion is radiated, and 

the ion scatters photons, then the state is determined as |1⟩. Otherwise, it is 

determined as |0⟩. 

However, due to the noise from high-sensitivity detectors and off-resonant 

transitions during state detection, achieving 100% state detection fidelity is 

not feasible. The thermally or electrically induced false signals from the 

detector cannot be distinguished from the actual signals, resulting in a false 

determination of |0⟩ as |1⟩. Moreover, if the quantum state of an ion in |1⟩ 

is changed to |0⟩ before any photons are detected in the detector during the 

state detection process, one cannot correctly determine the state as |1⟩ . 
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Similarly, if the quantum state of an ion in |0⟩ is changed to |1⟩ and scatters 

lots of photons, it is also impossible to accurately determine the quantum state 

as |0⟩. 

To reduce these detection errors, optimizing the detection time to mitigate 

the errors induced by off-resonant transitions and false signals [26], 

integrating a micro-fabricated mirror into the trap chip [27], and enhancing 

quantum efficiency [28] for better photon collection efficiency have been 

studied for the experimental setup. Moreover, providing more information 

when determining the quantum state [29], [30] and machine-learning methods 

also have been explored to improve state detection fidelity [31], [32]. 

 

3.2. Scattering rate of 171Yb+ Ion. 

Unlike other isotopes with fine structures that can be approximated as a 

simple two-level system, the hyperfine structure of 171Yb+ gives several 

factors to optimize the scattering rate of the ion. With this optimized photon 

scattering rate, one can reduce the detection time, resulting in a minimized 

error rate resulting from long exposure of the sensitive detector, as well as a 

reduced processing time for quantum algorithms. 

Figure 3-1 shows relevant energy levels of 171Yb+ for cooling the ion and 

manipulating the quantum state. The two levels of 171Yb+, 2𝑆1/2 |𝐹 = 1⟩ 
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and 2𝑆1/2 |𝐹 = 0⟩, are selected and encoded as |1⟩ and |0⟩, respectively. It 

should be noted that since the |1⟩  state has the total angular momentum 

quantum number 𝐹 = 1, which results in three different magnetic quantum 

values. These three levels, split into different magnetic quantum number 

values, form a polarization-dependent transition between 2𝑆1/2 |𝐹 = 1⟩ and 

2𝑃1/2 |𝐹 = 0⟩, which is used for cooling the ion and detecting the quantum 

state. 

The resulting polarization dependence in the cycling transition inevitably 

renders at least one state a coherent dark state [33]. Simply put, when the 

detection beam has π -polarization, the two states of 2𝑆1/2 |𝐹 = 1⟩  that 

have magnetic quantum number ±1 remain coherent dark states, on the hand, 

when the detection beam has σ± -polarization, the state of 2𝑆1/2 |𝐹 = 1⟩ 

with 0 magnetic quantum number is a coherent dark state. 
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Figure 3-1. Simplified energy levels of 171Yb+. 

 

In addition to polarization optimization, the magnetic field strength should 

also be optimized for maximum photon scattering [33]. When the strength of 

a magnetic field is not strong enough, the hyperfine splitting is small and 

makes them degenerate. This degeneracy of hyperfine levels makes the 

coherent dark state stable and less responsive to the detection beam. On the 

other hand, when the magnetic field is too strong, causing the hyperfine 

splitting to become large, the frequency difference from the detection beam 

also increases, which makes the level less interactive with the beam. 

Since the natural linewidth of the excited electron to 2𝑃1/2 |𝐹 = 1⟩  is 
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narrow (τ ≈ 8  ns), the photon scattering rate can be approximated as the 

population rate of the excited state. The population of the excited state of the 

ion interacting with the detection beam can be expressed as [33] 

where 

where 𝛿B = Ω/4  is the magnetic-field strength and 𝜃𝐵𝐸 = arccos(1/√3) 

is the laser-polarization angle. Both parameters maximize the photon 

scattering by destabilizing the coherent dark states of hyperfine levels. 

The scattering rate with optimized experimental parameters is when setting 

the saturation parameter 𝑠𝑜 = 2Ω2/Γ2 [26], 

where 𝑅𝑜,𝑜𝑝𝑡  represents the optimized scattering rate. This optimized 

scattering rate implies that it is now a function of beam power. Note that at 

high beam powers the scattering rate drops due to the destabilized coherent 

dark states [26], [33].      

 𝑃𝑓 =
3

4

Ω2 cos2 𝜃𝐵𝐸 sin2 𝜃𝐵𝐸

1 + 3 cos2 𝜃𝐵𝐸

1

(Γ′/2)2 + Δ2
, 

(3.1) 

 

(
Γ′

2
)

2

= (
Γ

2
)

2

+ Ω2 cos2 𝜃𝐵𝐸

1 − 3 cos2 𝜃𝐵𝐸

1 + 3 cos2 𝜃𝐵𝐸
  

       +
cos2 𝜃𝐵𝐸

1 + 3 cos2 𝜃𝐵𝐸
(

Ω4

16𝛿𝐵
4 + 16𝛿𝐵

2) 

(3.2) 

 
𝑅𝑜,𝑜𝑝𝑡 = Γ𝑃𝑓 = (

Γ

6
)

𝑠𝑜

1 +
2
3

𝑠𝑜 + (
2Δ
Γ

)
2 , 

(3.3) 
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This non-intuitive behavior can be understood as coherent population 

trapping (CPT) [34]. The CPT is a phenomenon in a 3-level system with two 

strong laser beams. When the transitions induced by two laser beams share an 

excited state and have two ground states, the excited state becomes a 

metastable state by stimulated decay, resulting in no photon emission during 

the transition. 

In CPT, the state of the electron can be written as 

where Ω𝑝  is the Rabi frequency of the pump beam and Ωs  is the Rabi 

frequency of the scope beam. Note that the transition occurs between the two 

ground states without photon emission. 

 

 
|𝜓⟩ =

𝛺𝑝|2⟩ − 𝛺𝑠|3⟩

√|Ω𝑝|
2

+ |Ω𝑠|2

, 
(3.4) 
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Figure 3-2. Coherent population trapping (CPT) compared to transitions of 

171Yb+ with a high-intensity detection beam. 

 

The measured photon counts of 171Yb+ are plotted in Figure 3-3. The blue 

dots represent the measured photon counts by a PMT, and the red line is 

plotted based on the theoretical fit. The red line is fitted to 𝜀𝑅𝑜,𝑜𝑝𝑡, where 𝜀 

represents the photon collection efficiency of the system, which includes the 

solid angle of the imaging lens, losses from optical components, and the 

quantum efficiency of the PMT. Given that the natural linewidth 𝛤 and the 

detuning of the laser beam 𝛥 are known, the saturation beam power and the 

total photon collection efficiency 𝜀 = 0.023(3) can be acquired from the fit. 
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Figure 3-3. Measured photon count result of 171Yb+ with respect to the beam 

power. 

 

3.3. State Preparation 

Before detecting the quantum states of the trapped ions, the states of ions 

should be prepared as desired. To verify the efficacy of the state measurement, 

the fidelity of the preparation should be high enough, such that the error rate 

stemming from the state preparation is negligible. The state preparation 

fidelity is defined as 
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where 𝑠 is the state that we want to prepare, which for a single qubit is either 

|0⟩ or |1⟩. 

The |0⟩  state can be prepared using optical pumping with the beam 

resonant to the energy between 𝑆1/2
 

 
2  |𝐹 = 1⟩  and 𝑃1/2

 
 
2  |𝐹 = 1⟩  [35]. 

Since the initialized |0⟩  state requires large detuning to off-resonantly 

transferred back to the |1⟩  state, the preparation error rate of the |0⟩  is 

usually very low (< 10-4) [28].  

On the other hand, the |1⟩ state is prepared from the |0⟩ state by flipping 

the spin with a microwave pulse. To achieve a high-fidelity preparation, one 

should find the resonance frequency of the two states (Δ → 0) and drive the 

microwave for a 𝜋 -pulse time. This makes Eq. (1.20) simply 𝑝1 (
𝜋

Ω
) =

sin2(0.5𝜋) = 1. However, due to the uncertainty of the frequency standard 

and the timing margins of the control signals, State preparation fidelity of the 

|1⟩ state with 100% cannot be achieved experimentally. 

 

3.4. Theoretical State Detection Fidelity 

Provided the scattering rate, off-resonant transition rate, and false signal rate 

of the detector are known, one can calculate the theoretical state detection 

 𝐹̅𝑝𝑟𝑒𝑝 =
1

2
∑ 𝑝(𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑑 𝑠|𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠)

𝑠

 
(3.5) 
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fidelity, thus its optimal detection time [26], [28]. When the polarization of 

the detection beam and the Zeeman splitting of hyperfine levels of 2𝑆1/2 are 

optimized, the probability of pumping the initial state into a different state is 

simply [26] 

where 𝑅𝑏𝑟𝑎𝑛𝑐ℎ is the branching ratio of the spontaneous decay, which is 1/3 

for dark state pumping, and 1 for bright state pumping, respectively. 𝛤 =

2π × 19.6 MHz is the natural linewidth of the ytterbium ion, Ω is the Rabi 

frequency, and 𝛥  is the detuning from the measurement beam for off-

resonant transition. 

With these pumping rates, one can now calculate the probability that zero 

photons are detected for a given time of each state respectively [36]. The 

probability that any photons are not detected from the |0⟩ state is: 

where 𝑛  is the detected photon number, 𝑅𝑑𝑐  is the dark current of the 

detector, and 𝜀  is the total photon detection efficiency in the system, 

including the solid angle of the imaging lens, quantum efficiency of the 

 𝑅𝑝𝑢𝑚𝑝 = 𝑅𝑏𝑟𝑎𝑛𝑐ℎ (
2

3
) (

Γ

2
) (

2Ω2

Γ
) (

Γ

2Δ
)

2

 
(3.6) 

 

𝑃𝑡,𝑑(𝑛 = 0) =
𝑅𝑏

𝜀𝑅𝑜 − 𝑅𝑏
𝑒−𝑅𝑑𝑐𝑡[𝑒−𝑅𝑏𝑡

− 𝑒−𝑅𝑜𝑡] + 𝑒−𝑅𝑏𝑡𝑒−𝑅𝑑𝑐𝑡 

(3.7) 
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detector and small loss from optical components. Similarly, the probability 

that no photons are detected when the state is prepared in |1⟩ state is: 

If we set the threshold to 0.5 photons for the threshold method, we can define 

the state detention fidelity as: 

where the 1 − 𝑃𝑡,𝑏 term represents the probability that more than one photon 

is detected. Theoretically calculated state detection error (1 − 𝐹̅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) is 

shown in Figure 3-4. Note that there is a trade-off between the optimal 

detection time and the state detection fidelity. A strong detection beam 

guarantees a short optimal detection time. However, it also increases the 

pumping rate, resulting in a higher error rate from the off-resonant transition.  

 

𝑃𝑡,𝑏(𝑛 = 0) =
𝑅𝑑

𝜀𝑅𝑜 + 𝑅𝑏
𝑒−𝑅𝑑𝑐𝑡[1

− 𝑒−(𝜀𝑅𝑜+𝑅𝑑)𝑡]

+ 𝑒−𝑅𝑑𝑡𝑒−(𝜀𝑅𝑜+𝑅𝑑𝑐)𝑡 

(3.8) 

 𝐹̅𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
1

2
[𝑃𝑡,𝑑 + (1 − 𝑃𝑡,𝑏)] 

(3.9) 
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Figure 3-4. Theoretically calculated detection error rate regarding the 

detection beam intensity. 

 

If we fix the beam intensity to half of the saturation intensity (𝐼 = 0.5𝐼𝑠𝑎𝑡), 

the bright state pumping rate, the probability that the |0⟩ state is pumped into 

the |1⟩ state by the off-resonant transition, is: 

Similarly, the dark state pumping rate also can be calculated as 

 𝑅𝑏 = (
2

3
) (

Γ

2
) (

1

2
) (

Γ

2(2π × 14.7 GHz)
)

2

= 9.12 Hz 
(3.10) 
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With these pumping rates, the fidelity of state detection can be calculated. 

However, since taking into account the state changes due to the off-resonant 

transition is not an easy task, it is worth trying the Markov chain Monte Carlo 

(MCMC) simulation, which is a statistical methodology used to simulate 

probability distributions for situations where the model is too complex to 

anticipate the final results. 

To obtain precise results, 5,000,000 data for the |0⟩ and |1⟩ states are 

sampled. Starting from the initial state, changes in the state and the number 

of emitted photons are simulated every 5 μs until 200 μs according to the 

pumping rates and photon emission rate described above. The time bin is set 

to 5 μs since any changes in the state that occur twice within this time bin can 

be considered negligible (2.8 × 10−14 ). If the initial state is changed to a 

different state, then this final state becomes the initial state for the next time 

bin to calculate the emitted photons and state changes. 

Figure 3-5 shows some histograms of the simulated photons numbers. 

 
𝑅𝑑 = (

1

3
) (

2

3
) (

Γ

2
) (

1

2
) (

Γ

2(2π × 2.1 GHz)
)

2

= 149.0 Hz 

(3.11) 
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Figure 3-5. Histograms of detected photon numbers for 25 μs, 50 μs, and 

150 μs, respectively. 
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The histograms indicate that if the threshold value is set to 0.5 photons, 

then the fidelity of the |1⟩ state saturates as the histogram of 0 photon counts 

becomes saturated. However, as time passes, the histograms of the |0⟩ state 

above 0 photons become larger, resulting in an increased detection error rate 

of the |0⟩ state. Therefore, it can be concluded that if the quantum state is 

determined using the threshold method, the detection fidelity is maximized 

when the histograms of the 0 photons of the |1⟩ state are saturated.   
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Chapter 4. EMCCD 

4.1. Concept 

An electron-multiplying charge-coupled device (EMCCD) is a highly 

sensitive device that can detect weak signals like a single photon. Its high 

sensitivity is achieved by an electron-multiplying (EM) gain mechanism. This 

mechanism involves the physical multiplication of electrons by impact 

ionization [37], [38]. 

  Another important property of the EMCCD is that it has a 100% fill factor, 

which means that there are no gaps between the pixels of the sensor. This 

enables the sensor to capture the full extent of the incoming light and provides 

detailed spatial information without losing any photons. 

An EMCCD is a suitable device that can be used for state detection of 

multi-qubits due to its high amplification of EM gain registers and pixels 

arranged in a grid that can provide spatial information of detected photons. 

Therefore, unlike PMTs, the EMCCD doesn't require fine alignment to 

recognize the source ion of the detected photons if a proper analysis method 

is provided. 

Figure 4-1 shows the picture of the EMCCD (Andor, DU-897 BB+) used 

in the experiments, which is from the official website of Oxford Instruments 

[39]. The model has the enhanced sensitivity of the sensor about the UV lights 
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up to 20%, which offers better quantum efficiency and leads to improved state 

measurement fidelity. 

Compared to the multi-channel PMTs that are commonly used for multi-

qubit state discrimination, the EMCCD has a longer processing time due to 

the internal register processing time. However, the processing time can be 

reduced to a few milliseconds when the parameters are optimized and the 

region of interest (ROI) is minimized. Moreover, the state detection is usually 

carried out at the end of the algorithm, which suggests that the processing 

time of EMCCD is less critical compared to the gate operation time. 

 

 

Figure 4-1. EMCCD device that is used for experiments. 
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4.2. Electron-Multiplying Gain 

The amplification process of the signals in an EMCCD device occurs 

through the impact ionization of electrons resulting from the photoelectric 

effect. The electrons become trapped in potentials created within the Si 

substrate of the registers and are subsequently transferred to the next register 

on each clock cycle. As the electrons move, they collide with the Si substrate, 

producing additional electrons. 

Although this process occurs with low probability (𝑝 ≈ 0.01 ~ 0.02), if 

many registers are employed, the net gain of the device can be significant [30]: 

where 𝑝  is the probability that the impact ionization occurs and 𝑟  is the 

number of registers. With 𝑟 = 512, the total gain can reach 𝐺 ≈  1000. 

Figure 4-2 illustrates the diagram of the EMCCD. The image section 

accepts incoming photons, and electrons are generated via the photoelectric 

effect when the image section is activated. The generated electrons are 

immediately transferred to the store section, where the sensors are deactivated, 

and no more photoelectric effect occurs. The stored electrons are then moved 

along the readout registers on each clock. Finally, the electrons reach the EM 

registers and are multiplied by impact ionization. In this region, the electrons 

can be multiplied up to 1000 times, and the analog-to-digital converter (ADC) 

 𝐺 = (1 + 𝑝)𝑟, 
(4.1) 
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reads out the electrons as a digital value. 

 

Figure 4-2. Configuration diagram of EMCCD: The image section detects 

photons through the photoelectric effect from the sensor. 
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4.3. Noises of EMCCD 

4.3.1 Signal-to-Noise Ratio (SNR) 

To achieve high-fidelity state detection, one should secure a high signal-to-

noise ratio (SNR). There are several types of noises in EMCCD that should 

be considered when one uses it as a quantum state detector.  

The signal can be considered as the number of generated electrons. If we 

let the number of photons that are falling onto the detector Np , then the 

generated electrons Ne  can be written with a given quantum efficiency 

η𝐸𝑀𝐶𝐶𝐷 as, 

With this defined signal, the SNR can be written as 

where σnoise,𝑖  denotes the deviation of the noise source 𝑖  and the 

summation includes all the noise sources. 

 

4.3.2 Shot Noise 

Shot noise is a fundamental limit to the precision of photon detection and 

arises due to the probabilistic nature of photons [40]. Since quantum state 

measurements are performed under the sub milliseconds exposure, the 

 N𝑒 = 𝜂𝐸𝑀𝐶𝐶𝐷Np. 
(4.2) 

 
SNR𝐸𝑀𝐶𝐶𝐷 =

𝑁𝑒

√∑ 𝜎noise,𝑖
2

𝑖

, 
(4.3) 
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contribution of the uncertain number of photons to the noise factor is 

significant. Therefore, every quantum state measurement suffers from the 

shot noise. 

In the shot-noise limit, the randomly emitted photons can be modeled as 

the Poissonian distribution, which has the form: 

where 𝑛  is the emitted photon number in a given exposure and 𝜆  is the 

expectation value of the emitted photon numbers. 

 One notable characteristic of the Poissonian distribution is that its variance 

is equal to the expectation value. Thus, the contribution of the shot noise to 

the noise factor is as much as λ. The deviation of the shot noise then can be 

represented simply: σ𝑠ℎ𝑜𝑡 = √𝑁𝑒 = √𝜂𝐸𝑀𝐶𝐶𝐷𝑁𝑝. 

 

4.3.3 Dark Current 

Dark current is a false signal that is generated within the device due to its high 

sensitivity. Thermally induced free electrons from the silicon substrate can be 

captured as signals by the sensors, and these false signals cannot be 

distinguished from actual signals that originate from photon signals. However, 

this thermal noise can be significantly mitigated by cooling the device to 

 𝑁(𝑛; 𝜆) =
𝜆𝑛𝑒−𝜆

𝑛!
, (4.4) 
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below -80℃. To minimize this noise, the device is cooled to -90℃ and the 

low temperature is maintained during experiments using a connected chiller 

for the device. 

  Figure 4-3 shows the averaged measured EMCCD data in a dark room 

where the EMCCD device was sealed in a black box to prevent photons from 

entering. The total 1,000 measurement data, each measured for 350 μs, were 

averaged. This means that the noise in Figure 4-3 is solely generated from the 

device itself. The gradation in the data is caused by the thermal noise resulting 

from the unevenly distributed temperature. 
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Figure 4-3. Measured dark current in EMCCD device. 

 

4.3.4 Clock-Induced Charge Noise 

To achieve fast state measurement, the transfer time of generated electrons 

along the registers should be minimized by shortening the register shifting 

time. However, this short shifting time can make it more difficult for the 

generated electrons to transfer to the potential of the next register. To ensure 

that the generated electrons are transferred without loss, the clock voltage that 

generates a potential to trap the signal electrons should be increased. However, 
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this high clock voltage can be amplified in the gain registers and detected as 

a strong signal. 

  

4.3.5 Readout Noise 

The readout noise can occur when the amplified electrons are converted into 

digital signals through an analog-to-digital converter (ADC) at the end of the 

gain register. This electrically induced noise can be modeled as white noise, 

which contributes to the EMCCD histograms as a convolutional Gaussian 

filter, leading to further broadening of the histograms. 

  This circuit noise can be suppressed by setting the readout speed to the 

lowest value. Although this readout speed increases the data transfer time and 

hence leads to a longer measurement time, the reduced noise is more 

favorable. Moreover, by setting the region of interest (ROI) of the EMCCD 

to the smallest possible region, the number of processed registers can be 

minimized, resulting in decreased readout time. 

 

4.3.6 Summary 

As discussed in the previous chapters, the total SNR of the EMCCD can be 

written as: 
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where 𝜎𝑆𝑁  is the deviation of the shot noise, which is 𝑁𝑒 , 𝜎𝐷𝐶  is the 

deviation of the dark current noise, 𝜎𝐶𝐼𝐶 is the deviation of the CIC noise, 

and 𝜎𝑅𝑂 is the readout noise. 

However, when the device is sufficiently cooled, the dark current noise can 

become negligible. In addition, if the signals are strong enough, then the 

readout noise can also be negligible. This leads to the SNR for the EMCCD 

given by: 

  If one can minimize the CIC noise with optimized EMCCD parameters, 

then the SNR becomes 𝑆𝑁𝑅𝐸𝑀𝐶𝐶𝐷 =
𝑁𝑒

√𝑁𝑒
= √𝑁𝑒 . This represents a 

fundamental limit of the detection of photons. With the high EM gain, the 

SNR can be significantly improved, enabling the detection of small numbers 

of photons. 

 

  

 
SNR𝐸𝑀𝐶𝐶𝐷 =

𝑁𝑒

√∑ 𝜎noise,𝑖
2

𝑖

=
𝑁𝑒

√𝜎𝑆𝑁
2 +𝜎𝐷𝐶

2 +𝜎𝐶𝐼𝐶
2 +𝜎𝑅𝑂

2
, 

(4.5) 

 
SNR𝐸𝑀𝐶𝐶𝐷 =

𝑁𝑒

√𝑁𝑒+𝜎𝐶𝐼𝐶
2

. 
(4.6) 
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Chapter 5. Machine Learning 

5.1. Overview 

Machine learning is a fast-developing field of a branch of artificial 

intelligence (AI) that aims to develop algorithms by machines that can learn 

from data [41]. In recent years, deep learning technologies have experienced 

significant advancements, driven by the growth in the computing power of 

graphical processing units (GPUs). Deep learning, a subfield of machine 

learning, involves training artificial neural networks with multiple layers to 

extract high-level representations from raw data. This approach has 

revolutionized the field by enabling machines to automatically learn and 

understand complex patterns and relationships in data. 

  With the rapid development of deep learning, many groups have tried to 

apply this technology to various fields to achieve improved performance and 

to run the task automatically [42]. In this dissertation, it is aimed to enhance 

the fidelity of quantum state measurements of multiple ions by utilizing deep 

learning techniques on data measured with EMCCD. 
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5.2. Popular Algorithms in Deep Learning 

5.2.1 Feedforward Neural Networks (FNNs) 

Feedforward Neural Networks, also known as multilayer perceptrons (MLPs), 

are a type of artificial neural network where information flows in a single 

direction, from the input layer through one or more hidden layers, to the 

output layer. 

Figure 5-1 shows the unit of a perceptron. A perceptron is one of the 

simplest forms of artificial neural networks initially inspired by the 

functioning of biological neurons in the human brain [43]. It accepts multiple 

inputs and each input feature is multiplied by a corresponding weight and then 

summed. This sum, along with a bias term, is passed through an activation 

function. The activation function determines the output based on the 

aggregated result. 

 

Figure 5-1. A unit of a perceptron. 
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However, FNNs require a large number of parameters, which results in 

increased memory and computing power requirements. Consequently, they 

are prone to overfitting [44] and redundant calculations due to the abundance 

of parameters. These factors make FNNs less popular in recent years. 

 

5.2.2 Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) [45] are a type of neural network 

architecture commonly used for sequential data processing tasks such as 

natural language processing (NLP), speech recognition, and time series 

analysis. 

Unlike feedforward neural networks, which process inputs independently, 

RNNs have a recurrent connection that allows information to be passed from 

previous steps to the current step. This recurrent connection enables RNNs to 

capture temporal dependencies and learn from sequential patterns. 

The basic building block of an RNN is the recurrent unit, typically 

represented by a simple form called the Long Short-Term Memory (LSTM) 

cell or the Gated Recurrent Unit (GRU). These units have internal memory 

that allows them to remember information from past time steps and 

selectively update or forget that information based on the current input. 
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During training, an RNN receives input data step by step and updates its 

hidden state at each time step. The hidden state serves as a summary or 

representation of the input sequence up to that point. The output at each time 

step can be used for prediction, or the RNN can be designed to produce an 

output only at the final time step. 

One key advantage of RNNs is their ability to handle variable-length input 

sequences. This makes them well-suited for tasks such as sentiment analysis, 

machine translation, and speech recognition, where input lengths may vary. 

RNNs can process inputs of different lengths by unrolling the network over 

time, treating each time step as a separate input. 

However, RNNs also face challenges such as vanishing or exploding 

gradients, which can hinder their ability to learn long-term dependencies. To 

address this issue, variants like LSTM and GRU units were introduced, which 

incorporate gating mechanisms to control the flow of information and 

alleviate the vanishing gradient problem. 

In recent years, more advanced sequence models like Transformer-based 

architectures have gained popularity, surpassing traditional RNNs in tasks 

such as machine translation. Nevertheless, RNNs still find applications in 

scenarios where sequential dependencies are crucial, or when dealing with 

streaming data where real-time processing is required. 
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RNNs are neural network architectures designed to process sequential data 

by utilizing recurrent connections. They excel at tasks involving sequential 

patterns and have been widely used in various fields of natural language 

processing and time series analysis. 

 

5.2.3 Convolutional Neural Networks (CNNs) 

Similarly, CNNs (Convolutional Neural Networks) [46] have gained 

popularity in various fields, especially in computer vision tasks. CNNs are 

specifically designed to process grid-like data such as images. They are 

composed of multiple layers, including convolutional layers, pooling layers, 

and fully connected layers. 

Convolutional layers play a crucial role in CNNs. They apply a set of 

learnable filters to input data, enabling the network to automatically extract 

relevant features. These filters perform convolution operations, which involve 

sliding windows over the input data and computing dot products between the 

filter weights and the corresponding input values. This process helps capture 

spatial patterns and local dependencies in the data. 

Pooling layers are often inserted after convolutional layers to downsample 

the feature maps. They reduce the spatial dimensions while preserving the 

important features. Common pooling operations include max pooling and 
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average pooling, which extract the maximum or average value from each 

pooling region, respectively. 

The output of the convolutional and pooling layers is then flattened and fed 

into fully connected layers. These layers have connections between every 

neuron, allowing the network to learn complex patterns and make predictions 

based on the extracted features. The final fully connected layer typically uses 

a softmax activation function to produce the probability distribution over the 

possible output classes. 

CNNs have several advantages. Firstly, they automatically learn hierarchical 

representations, starting from low-level features (e.g., edges and textures) to 

high-level features (e.g., objects and scenes). This hierarchical feature 

learning makes CNNs effective in recognizing complex patterns. Additionally, 

CNNs have fewer parameters compared to fully connected networks, which 

helps reduce memory and computational requirements. 

Overall, the unique architecture of CNNs, tailored for processing grid-like 

data, along with their ability to automatically learn relevant features, has 

made them highly successful in various applications, including image 

classification, object detection, and image segmentation. 
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5.2.4 Vision Transformer (ViT) 

Vision transformer (ViT) [47] is a deep learning model that applies 

transformer architecture [48] to image processing. Traditionally, 

convolutional neural networks (CNNs) have been dominant for image-related 

tasks. However, ViT introduces a novel approach by leveraging the power of 

transformers. 

The ViT model begins by dividing an input image into a grid of patches, 

treating each patch as a token. These patches are then linearly embedded to 

generate a sequence of tokens. Next, the transformer's self-attention 

mechanism is applied to capture the relationships between different patches 

in the image. This enables the model to learn global dependencies and 

interactions across the entire image, facilitating a more holistic understanding 

of the visual context. 

By leveraging self-attention, ViT models have shown that they can 

effectively capture long-range dependencies and explicitly model the 

relationships between image patches, allowing for better context 

understanding. This helps in tasks such as image classification, object 

detection, and semantic segmentation. Recently, ViT models have 

demonstrated state-of-the-art (SOTA) performance that is comparable to 

CNN models. 
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5.3. Popular Base Models of CNNs 

There is a plethora of models that are frequently used as base models for 

CNNs. Choosing the base model depends on various factors, such as the 

purpose of the model, the limited computing power of the processor, the 

required accuracy, or the desired response time. In this chapter, popular CNN 

models are introduced that are focused on high accuracy but light-weighted 

models. These Lightweight, high-accuracy models are suitable for quantum 

information processing, as the controllers often suffer from limited computing 

resources and require fast processing times for high-speed quantum 

computing. 

 

5.3.1 ResNet 

ResNet [49], short for "Residual Network," is a neural network architecture 

that was introduced to address the challenges of training deep neural networks. 

Deep networks often suffer from the problem of vanishing gradients [44], [53], 

where the gradients become extremely small as they propagate backward 

through the network layers. This phenomenon hampers the learning process 

and makes it difficult to train deep networks effectively. 

The key aspect of ResNet is the skip connections, also known as shortcut 
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connections or identity mappings. These skip connections allow the network 

to learn residual mappings, which are the differences between the desired 

output and the input. By introducing these shortcuts, ResNet enables the 

network to learn residual functions instead of trying to directly learn the 

underlying mapping from the input to the output. 

The skip connections in ResNet operate by adding the input of a certain 

layer directly to the output of one or more subsequent layers. This creates a 

shortcut path that bypasses the intermediate layers. As a result, the network 

can effectively propagate gradients through the shortcut path, mitigating the 

vanishing gradients problem. The skip connections also facilitate the flow of 

information, allowing the network to retain important features from earlier 

layers and incorporate them into deeper layers. Figure 5-2 shows the basic 

residual block of ResNet. The input of the ResNet unit bypasses the 

convolutional layers and is directly added to the output. By including the skip 

connection, the gradient from the subsequent layers can flow directly to the 

input of the ResNet unit, allowing the network to learn residual mappings 

effectively and mitigate the vanishing gradients problem. 
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Figure 5-2. Shortcut connection in ResNet 

 

ResNet architectures typically consist of multiple residual blocks, each 

containing several convolutional layers, batch normalization layers, and 

nonlinear activation functions. These blocks can have different depths and 

complexities, depending on the specific application and network 

requirements. 

 

5.3.2 MobileNet 

MobileNet [50] is a lightweight neural network architecture designed 

specifically for mobile and embedded devices with limited computational 

resources. It aims to provide efficient and accurate models for various 

computer vision tasks while minimizing the number of parameters and 
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computational complexity. 

The key idea behind MobileNet is the use of depth-wise separable 

convolutions, which decompose the standard convolution operation into two 

separate operations: depth-wise convolution and point-wise convolution. 

Depth-wise convolution applies a single filter per input channel, 

independently across all input channels. Point-wise convolution then applies 

a 1x1 convolution to combine the output of the depth-wise convolution, 

allowing the network to learn complex representations with fewer parameters. 

By utilizing depth-wise separable convolutions, MobileNet significantly 

reduces the computational cost and model size compared to traditional 

convolutional neural networks. This makes it suitable for real-time 

applications on resource-constrained devices without compromising accuracy. 

 

5.3.3 SqueezeNet 

SqueezeNet [51] is a compact and lightweight neural network architecture 

designed to achieve high accuracy while minimizing the model size and 

computational complexity. It aims to strike a balance between model 

efficiency and performance by reducing the number of parameters without 

sacrificing accuracy. 

The key idea behind SqueezeNet is the concept of fire modules. Fire 
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modules consist of two types of layers: squeeze layers and expand layers. 

Squeeze layers primarily focus on reducing the number of input channels, 

while expand layers aim to capture more complex features by increasing the 

number of output channels. 

Squeeze layers utilize 1x1 convolutions, which have the computational 

advantage of reducing the number of parameters and the amount of 

computation. These layers effectively squeeze the input channels to a lower 

dimension, allowing the network to capture essential information in a more 

efficient manner. 

Expand layers consist of a combination of 1x1 and 3x3 convolutions. The 

1x1 convolutions are responsible for expanding the squeezed channels, while 

the subsequent 3x3 convolutions capture more spatial information and learn 

richer representations. By using these expanded layers, SqueezeNet can 

increase the model capacity while still maintaining a compact architecture. 

By leveraging these design principles, SqueezeNet achieves a highly 

efficient architecture with a small memory footprint. It has demonstrated 

comparable or even superior performance to larger and more computationally 

intensive models, making it well-suited for scenarios with limited 

computational resources, such as mobile and embedded devices. 
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5.3.4 ShuffleNet 

ShuffleNet [52] is also a lightweight CNN architecture that was introduced to 

address the need for efficient models with reduced computational complexity. 

The key idea behind ShuffleNet is to utilize pointwise group convolutions and 

channel shuffling to achieve computational efficiency while maintaining 

good accuracy. 

 

5.4. Classification 

Classification in deep learning refers to the task of assigning given input data 

to predefined classes or categories. It is a part of supervised learning, where 

the goal is to learn the relationship between input data and their corresponding 

classes, to make predictions on new inputs. 

Deep learning models, primarily artificial neural networks, are commonly 

used for classification tasks. Neural networks consist of input layers, hidden 

layers, and output layers. By adjusting the weights and biases based on the 

training data, the neural network learns the relationship between the inputs 

and outputs. 

This dissertation utilizes deep learning, specifically classification 

techniques, applied to EMCCD images to facilitate the measurement of 

quantum states in multi-qubit trapped ions. The EMCCD images are used as 
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input data and applied to a deep learning model for classifying quantum states 

in multi-qubit trapped ions. 

 

5.5. Object Detection 

Object Detection is one of the important applications of deep learning in 

the field of computer vision. It involves identifying objects and accurately 

localizing their positions in images or videos. Object detection has various 

real-world applications, such as autonomous driving, surveillance, face 

recognition, robotics, airport security, and medical image analysis. 

Deep learning-based object detection has made significant advancements 

compared to traditional methods. Previous approaches relied on predefined 

feature extractors and classifiers to identify objects in images. However, deep 

learning addresses the object detection problem with an end-to-end approach, 

where feature extraction and object classification are performed 

simultaneously. 

One of the prominent methods in deep learning object detection is the 

Single Shot Detector (SSD) [53]. SSD is a real-time object detection 

algorithm capable of detecting objects of various sizes in an image 

simultaneously. It utilizes convolutional feature maps of different scales to 

predict the presence, location, and class of objects. 
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Other important object detection algorithms include Faster Regional 

Convolutional Neural Network (R-CNN) [54] and you only look once 

(YOLO) [55]. Faster R-CNN performs accurate object detection by 

employing separate networks for region proposal and object classification (a 

two-stage object detection). YOLO, on the other hand, provides fast real-time 

object detection by predicting bounding boxes and classes directly using a 

single neural network. 

These deep learning object detection algorithms are typically based on 

convolutional neural networks (CNNs) and utilize weights learned from 

large-scale datasets for object detection. The trained models can be applied to 

new images to predict the presence and location of objects. 

However, the object detection algorithms do not perform well for the 

quantum state detection of trapped ions. This is because the |0⟩ state does not 

scatter any photons when exposed to the detection beam, making it impossible 

to distinguish ions in the |0⟩ state from the background, and determine the 

number of ions in the |0⟩ state. 
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Chapter 6. Setup 

6.1. Experimental setup 

The experimental setup used in this dissertation is illustrated in Figure 6-1. 

The surface-electrode ion trap, which is fabricated in this research group [18], 

is implemented in an ultra-high vacuum (UHV) chamber. The pressure in the 

UHV chamber reaches the order of 10-11 Torr. In this high vacuum, the 

expected mean free path of H2 in the background is about a few thousand 

km, which implies any random collisions with stray molecules in the chamber 

can be ignored. 

Three different colors of lasers are injected into the vacuum chamber 

through a viewport and focused on the positions where ions are trapped. A 

369-nm laser is used to cool the trapped ions by Doppler cooling and to detect 

the quantum states of the trapped ions. A 399-nm laser is used for selectively 

ionizing the isotopes of the neutral ytterbium atoms. Finally, a 935-nm laser 

is used to repump the electrons that occasionally decay to the D 
2

3/2 

manifolds by optical pumping. 

A microwave antenna horn (Pasternack PE9855/SF-10) is installed to 

control the qubit states of the trapped ions with global radiation. It is carefully 

aligned to maximally deliver the power of the microwave to the ions. 

Additionally, a custom-designed diffraction-limited imaging lens (Photon 
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Gear 15470-S) with a 0.6 numerical aperture (NA) is used to collect photons 

emitted from the trapped ions. The collected photons are then focused either 

onto the sensor of EMCCD (Andor DU-897) or onto the PMT (Hamamatsu 

H10682-210) depending on the position of the flip mirror. 

 

 

Figure 6-1. The simplified diagram of the experimental setup. 

   

In order to simultaneously trap two different isotopes of ytterbium ions, 

two independent 369-nm lasers are combined using a polarized-beam splitter 

(PBS) before they enter the vacuum chamber. Figure 6.2 shows the combining 

setup. 369A is the original 369-nm laser that was initially installed, and 369B 

is an additional laser used to trap a different isotope. To overlap the two paths 

of the lasers, the PBS is installed and its two ports are used as inputs for the 
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two beams, respectively. The PBS transmits the p-polarized beam and reflects 

the s-polarized beam [40]. Therefore, if the polarizations of the two input 

beams are adjusted correctly, the two beams can be overlapped and combined. 

To minimize the leakages from the PBS due to the polarization mismatch, a 

half-wave plate (HWP) is installed before the PBS. This HWP allows the 

polarization of the beam from the fiber to be controlled. 

To provide the degree of freedom of the beam path for the additional 369-

nm laser, two mirrors are installed before the PBS. With these two mirrors, 

the beam path of 369B can be aligned to overlap the beam path of 369A. 

Similar to the 369A setup, a half-wave plate (HWP) is installed before the 

PBS to control the polarization of the 369B. Finally, the two beams are 

combined using a PBS and then directed toward the vacuum chamber. Once 

inside the chamber, they are both focused on the same location where the ions 

are trapped. 

To maximize the scattering rate of 171Yb+ ions, another HWP is installed 

after the PBS to control the polarization of the combined beams with respect 

to the quantization axis of the trapped ions. A spherical lens is used to focus 

the beams on the trapped ions for maximum beam intensity to be delivered 

and to minimize the unwanted scatterings from the chip surface [23]. 
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Figure 6-2. Setup for combining two laser beams. 

   

6.2. Experimental Controller 

Since communication with experimental devices via LAN/USB usually 

takes a few milliseconds, it is unrealistic to control the devices with a PC, 

which requires sub-microsecond controls considering the short gate times and 

switching times of the electro-optical or microwave devices [23]. 

As a controller for experiments, a field programmable gate array (FPGA, 

Xillinx Arty S7-50) is used and the picture of it is shown in Figure 6-3. The 

FPGA operates on a 100 MHz clock cycle, thus enabling it to control the 

experiment with a time resolution of 10 ns. The experimental sequences are 

programmed to the FPGA from a PC, and the FPGA runs the experiment as 
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scheduled. FPGA runs the programmed experiments by either reading or 

generating the transistor-transistor logic (TTL) signals at 3.3V logic levels via 

its pmod ports. The input signals are generated from detectors or other 

controllers for triggering and synchronizing the operation time. The output 

signals are mostly used to turn on and off the switches of high-frequency 

signals for acousto-optical modulators (AOMs) or electro-optical modulators 

(EOMs), or other controllers/detectors. 

 

Figure 6-3. ARTY S7-50 FPGA as an experimental controller. 

 

6.3. Timing Optimization 

6.3.1 Rising time and falling time of an acousto-optic modulator 

To minimize measurement error during experiments, it is important to 
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optimize the timings of control signals. Optimized control signals can 

minimize the heating time of trapped ions during operations, which results in 

improved qubit control fidelity [57], [58] and state detection fidelity. 

For fast switching of the 369-nm laser, an AOM (IntraAction Corp. ASM-

2002B8) is installed. The AOM is modulated by a 200 MHz radio frequency 

signal generated by a direct digital synthesizer (DDS, ANALOG DEVICES, 

AD9912), which is then amplified by an amplifier (MiniCircuits, ZHL-03-

5WF+) up to 36 dBm to saturate the beam intensity of the 1st order laser beam. 

The rising time of the AOM triggered by a user-control signal is mostly 

limited by the velocity of the soundwave within the crystal. Although most 

datasheets of AOM state that their rising times are in the ns range and define 

rising time as the transverse time of the soundwave of the input beam, in this 

dissertation, the terms "rising time" and "falling time" of the AOM 

specifically refer to the duration required for the 1st order modulated beam of 

the AOM to switch on and off, respectively, in response to a user-controlled 

signal. 

These rising and falling times usually cannot be achieved within an ns 

timeline due to the relatively slow soundwave and the size of the crystal. The 

transducer that produces a soundwave followed by the input RF signal is 

usually located a few millimeters away from the laser beam, and the velocity 
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of the soundwave that travels within the crystal in the AOM is 5.95 mm/μs 

[59]. Therefore, the rising time of the AOM is calculated to be a few 

microseconds when measured. 

To measure the rising time of the AOM induced by a user-control signal, a 

369-nm laser was aligned to be scattered from the chip surface. The laser 

alignment was optimized to maximize the amount of scattering light that 

could be measured within a short time-bin, such as sub-μs. The rising and 

falling times of the AOM are measured with a PMT by recording the time 

delay between the user-control signal and the PMT signals. The measured 

result is shown in Figure 6-4. Both the rising and falling times of the AOM 

were measured to be 2.48(3) μs. These measurement results were used to 

schedule experimental sequences that minimize the time wasted for turning 

on and off the 369-nm laser. 
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Figure 6-4. Measurement results of rising time and falling time of the AOM 
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6.3.2 Synchronization of the FPGA with EMCCD 

Unlike PMTs, which emit outputs for every generated signal with a response 

time of a few nanoseconds, EMCCD takes more time to process the measured 

data due to its large number of registers. In addition, EMCCD has its own 

processor unit, which means it has an independent clock cycle for processing 

data and registers. Therefore, integrating the EMCCD into the experimental 

system is more challenging than integrating a PMT. 

The EMCCD used in this dissertation provides two acquisition modes: the 

external triggering mode, whose acquisition time is determined by the 

external signal, and the internal triggering mode, where the device itself 

determines when to capture. 

The process of the external triggering mode is very intuitive and easier to 

implement. However, the external triggering mode coerces the device into 

capturing the image even though the cleaning register process is not over [60]. 

These residual charges in the registers result in the external triggering mode 

generating noisier data compared to the internal triggering mode, which has 

a cleaning process. 

Therefore, the internal triggering mode is preferred over the external 

triggering mode when high SNR is needed with weak signals or with short 

exposure time. 
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To use the internal triggering mode, it is required that the experimental 

controller is synchronized with the EMCCD. Figure 6-5 shows the D-type 

connector interface of the EMCCD used in the dissertation. The red dot 

indicates the control input for external triggering mode, the yellow dot 

represents the “Fire Output” that produces a high TTL signal when the device 

is capturing, the black dots are the ground connections, and the blue dots are 

not used in this experiment. 

 

 

Figure 6-5. D-type connector interface of EMCCD. 

 

The “Fire Output” is connected to one of the inputs of the FPGA to detect 

the signal of the fire output. the EMCCD is set to start capturing images via 

internal triggering mode. Since the EMCCD captures periodically, if one 

measures when the EMCCD captures, then it can be calculated when the next 

exposure occurs. Note that this capturing cycle differs by various parameters 

of EMCCD, such as horizontal or vertical register shifting time, the number 
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of pixels in the ROI, and the readout speed. To confirm whether the FPGA 

can correctly operate on time, the timing of the next exposure is measured 

using the FPGA within a 2 ms window. 

Figure 6-6 shows the timing diagram of the “Fire Out” that is generated by 

the EMCCD device, and the stopwatch signals in the FPGA, which starts 

recording the time when the input signal is detected. Since the time of the first 

exposure is arbitrary, to reduce the ambiguity of the timing, we used the 

second “Fire Out” input as a time standard. The timing of the 3rd “Fire Out” 

then is precisely measured within 100 ns. Figure 6-7 illustrates the measured 

result. The expected timing of the input signal is detected as less than 100 ns 

(10 clocks), which is a reasonably short time compared to the AOM switching 

time (2.5 μs) and the detection time (250 μs). Thus, any errors stemming from 

this time margin can be negligible. 
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Figure 6-6. Timing diagram of the “Fire Out” and the stopwatch signals in 

the FPGA. 

 

Figure 6-7. Measured result of the next “Fire Out” timing within 100 ns. 
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6.4. Parameter Optimization 

6.4.1 High Preparation Fidelity 

To achieve high-fidelity state measurements, it is a prerequisite to have a state 

preparation with high fidelity. Specifically, the state preparation fidelity 

should be at least one order of magnitude higher than the state measurement 

fidelity to ignore errors stemming from the state preparation. The state 

preparation of |0⟩ is carried out by optical pumping using a modulated 369-

nm laser at a frequency of 2.1 GHz and easily achieved with an error rate less 

than 1 × 10−4 [19], [61]. 

  The |1⟩ state is prepared by flipping the spin from the prepared |0⟩ states. 

To ensure that the |1⟩ state can be prepared with high-fidelity, the probability 

of the |1⟩ state is experimentally measured by repeatedly flipping the spin 

from the prepared |0⟩ state. The spin-flip fidelity is calculated from curve 

fitting using the following equation: 

where 𝑝|1⟩(𝑛)  is the measured probability that the ion is in the |1⟩  state 

after the spin has been flipped 2n − 1 times (n=1, 2, 3, …, n), 𝐹𝑑𝑒𝑡 is the 

detection fidelity of the |1⟩  state in the system (a constant) including the 

state preparation fidelity of the |0⟩  state, and 𝐹𝑠𝑝𝑖𝑛_𝑓𝑙𝑖𝑝
2𝑛−1   is the spin-flip 

 𝑝|1⟩(𝑛) = 𝐹𝑑𝑒𝑡𝐹𝑠𝑝𝑖𝑛_𝑓𝑙𝑖𝑝
2𝑛−1  

(6.1) 



 

７９ 

 

fidelity. The measured result is plotted in Figure 6-8 and the spin-flip fidelity 

is calculated to be 99.98(3)% from the curve fitting. This high spin flip fidelity 

ensures that the error rate from state preparation is on the order of 10-4, 

making it negligible when considering the measurement fidelity. 

 

6.4.2 Detection time optimization 

To achieve high-fidelity state measurement fidelity, the detection time should 

be optimized to suppress the error rate stemming from the off-resonant 

transition of the |0⟩ states. To calculate the optimal detection time, the bright 

state pumping rate, and the dark state pumping rate are measured with respect 

to the beam intensity as described in ref. [26]. The measured results are 

illustrated in Figure 6-9. 

With these pumping rates, one can theoretically calculate the optimized 

detection time for quantum state detection of a single ion using Eq. (3.8) and 

Eq. (3.9). The calculated optimal detection time for a single ion, when the 

threshold is set to 0.5 photons, is 89.69 μs.  

Figure 6-10 (a) shows the calculated error rates of both the |0⟩ and |1⟩ 

states. As the detection time gets longer, the error rate of the |1⟩  state is 

getting lower, and it saturates. On the contrary, the error rate of the |0⟩ state 

keeps larger as the detection time gets longer. Note that the optimal detection 
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time for quantum state detection occurs when the error rate of the |1⟩ state 

is saturated. Figure 6-10 (b) displays the experimental result of the single-

shot quantum state detection of a trapped ion using the optimal detection time. 

The state detection fidelity is calculated to be 99.57(12)%, which is close to 

the theoretical state detection fidelity obtained from the measured pumping 

rate of 99.64%. 

 

Figure 6-8. Measured spin flip fidelity by a global microwave. 
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Figure 6-9. Measurements results of the dark state pumping rate and the 

bright state pumping rate 
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Figure 6-10. Measured single photon state detection fidelity for single-

shot detection. 
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6.5. Machine Learning Model Design 

To enhance the accuracy of multi-qubit ion state measurement, a ResNet-

based CNN model was developed. Unlike existing pre-trained models that 

typically require larger input sizes of around 256x256 and utilize RGB 

channel values, the EMCCD data used in this experiment has a smaller size 

of about 36x36 and consists of 16-bit single-channel images. This difference 

in data characteristics poses a challenge, as the conventional models may not 

perform optimally when applied to this experimental data. Therefore, the 

model was specifically designed to address these issues, aiming to optimize 

performance while efficiently utilizing computational resources. 

When designing the model, the following factors were taken into 

consideration: 

1. To address the crosstalk issue, it was crucial to preserve the 

information about the presence of neighboring ions until the final 

output layer. To achieve this, ResNet and DenseNet were chosen as 

the base models, as they allow for the effective propagation of input 

image information throughout the network. However, DenseNet, 

which only performs concatenation without processing the input 

information, resulted in the propagation of false signals along with 

the desired information, leading to suboptimal performance. 
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2. An average pooling layer was used instead of a maximum pooling 

layer. This choice was made to avoid sampling bright false signals 

against the background. With average pooling, the surrounding dark 

background helps in averaging out these false signals, thereby 

improving the accuracy of the measurement. 

3. The total number of layers was determined based on finding the point 

of saturation in performance while increasing the layer count 

(ranging from 30 to 102 layers). By minimizing the number of layers, 

computational resources could be conserved. The total number of 

layers is determined to be 51 layers. 

4. The output size was configured to match the number of ions being 

measured. To prevent the exponential increase (2𝑛) in the output size 

as the number of ions to be measured increases, the output was not 

represented as a one-hot vector. Instead, each output was designed to 

generate the quantum state of the measured ion, allowing flexibility 

for future measurements of varying numbers of ions. 

5. Due to the correspondence between each output and the quantum st

ate of an ion, ambiguity arose in determining the quantum states. To

 overcome this, each output was designed to produce quantized val
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ues of 0 or 1. This was achieved by replacing the activation function

 of the final layer with a custom sigmoid function, ensuring that onl

y 0 or 1 values are yielded as the training progresses.  

 

The custom sigmoid used in the model is defined below: 

where 𝑎 and 𝑏 are hyperparameters and 𝑁𝑒𝑝𝑜𝑐ℎ represents the number of 

the training epochs. As the value of 𝑁𝑒𝑝𝑜𝑐ℎ increases, the gradient of the cu

stom sigmoid function also increases. Consequently, the function eventually 

transforms into a step function. 

 

𝐶𝑢𝑠𝑡𝑜𝑚 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥, 𝑁𝑒𝑝𝑜𝑐ℎ)

=
1

1 + 𝑒𝑎𝑁𝑒𝑝𝑜𝑐ℎ(𝑥+𝑏)
, 

(6.2) 
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Figure 6-11. Layers of the designed Reset-Based CNN model. 
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Chapter 7. Experiment 

7.1. Multi-Qubit State Preparation 

Currently, individual state control of multiple ions cannot be performed with 

high fidelity in our experimental setup. Therefore, to obtain data on the states 

of multiple ions with high fidelity, we replaced ions in the |1⟩  state of 

multiple ions with qubit ion 171Yb+ in the |1⟩ state, and ions in the |0⟩ state 

with the isotope 170Yb+ of the qubit ion that rarely interacts with the 

measurement beam. 

The 170Yb+ ion is the perfect candidate to mimic the |0⟩ state of the 171Yb+ 

ion since, among other isotopes, it has the farthest resonant frequency from 

the detection beam, which is 5.5 GHz, and the mass difference from the qubit 

ion is only one neutron. Thus, any unexpected behavior due to mass 

mismatching in the ion chains can be excluded [62]. 

Figure 7-1 represents simplified energy levels of both (a) 171Yb+ ion and (b) 

170Yb+ ion. The orange solid line indicates the frequency of the detection 

beam, and the black solid lines denote the hyperfine level splittings for 2𝑆1/2 

and 2𝑃1/2, which are 2.1 GHz and 12.6 GHz, respectively. The dashed solid 

line shows the resonant frequency between 2𝑆1/2 and 2𝑃1/2 of 170Yb+ and 

the required detuning frequency for off-resonant transition is represented by 



 

８８ 

 

the dotted blue line, which is 5.5 GHz for 170Yb+. 

 

Figure 7-1. Comparison of energy levels of 171Yb+ and 170Yb+. 

 

To verify that the 170Yb+ can be used as a substitute for the |0⟩ state, the 

detection error rate by the off-resonant transition is calculated from the 

transition equation. when the detuning is large: 

where 𝛤 = 2π × 19.6 MHz is the natural linewidth of ytterbium ion, and 

𝐼𝑠𝑎𝑡 is the saturation intensity, 𝐼 is the beam intensity of the detection beam, 

which is adjusted to 0.5𝐼𝑠𝑎𝑡, and Δ is the detuning from the detection beam, 

which is 5.5 GHz. The error rate that an emitted photon by off-resonant 

transition is detected by the detector, which has a total photon collection 

 𝑅𝑜𝑓𝑓 = (
Γ

2
) (

𝐼

𝐼𝑠𝑎𝑡
) (

Γ

2Δ
)

2

, 
(7.1) 
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efficiency of the system ε = 0.023(2) is then, 

where τ𝑑𝑒𝑡 = 250 μs is the capturing time of the EMCCD. 

  Table 1 shows the detuning from the detection beam of each ytterbium 

isotope and their calculated error rates. The error rate of the 170Yb+ is the 

smallest due to the largest detuning, and it is less than 0.1%, which is smaller 

than the detection error rate of the detector. Therefore, it is valid to mimic the 

170Yb+ ion as the |0⟩  state of the qubit ion. Furthermore, if we set the 

threshold of the |1⟩ state as 1.5 photons, the error rate resulting from off-

resonant transitions is further reduced, since the occurrence of multiple off-

resonant transitions becomes less likely. 

Figure 7-2 is the EMCCD image of simultaneously trapped two different 

isotopes of ytterbium ions. The recorded highest values of the ROI for each 

ion are almost equal. However, the yellow color is painted after the 

acquisition of 170Yb+ to provide better distinguishability between the two ions. 

This heterogeneous trapping is used to acquire multi-qubit state detection data 

by mimicking the |0⟩ states of 171Yb+ using its isotope. 

 R𝑒𝑟𝑟 = 1 − exp(−𝜀𝑅𝑜𝑓𝑓𝜏𝑑𝑒𝑡), 
(7.2) 
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Figure 7-2. EMCCD image of simultaneously trapped 170Yb+ and 171Yb+ 

ions. 

 

For the multi-qubit state detection experiment, four ytterbium ions are 

trapped with a combination of 171Yb+ ions and 170Yb+ ions to represent the 

desired multi-qubit state. For instance, if the desired state is a 4-qubit state 
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|0101⟩ , the four ytterbium ions should be trapped in the following order: 

170Yb+, 171Yb+, 170Yb+, and 171Yb+. 

While it would be convenient to swap or reorder specific ions within the 

ion chain by controlling the DC potential [53], [63], this technique has not yet 

been developed in our setup. Therefore, in this dissertation, the desired order 

is achieved in a brute-force manner. Four ions are initially trapped, and then 

the DC potential is intentionally perturbed by applying a high voltage to an 

electrode for a short duration, repeatedly. This causes the ions to briefly 

escape from the electrical potential, and subsequently, the cooling lasers bring 

them back to the center of the potential well. This process provides an 

opportunity for the ions to be reordered, eventually leading to the desired ion 

order. 

 

Table 1. Isotopes of ytterbium ions and their transition frequency 

Ions of Yb 

isotopes 
171Yb+ 170Yb+ 172Yb+ 174Yb+ 176Yb+ 

Detection 

Frequency 
811.288 990 (THz) 

Detuning from 
171Yb+ 

2S1/2 ↔ 2P1/2 [19] 

- 
5.5 

GHz 

3.9 

GHz 

2.4 

GHz 

1.3 

GHz 

Error rate 

(250 μs exp.) 
- 0.06% 0.10% 0.30% 1.00% 
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7.2. EMCCD-based Multi-Qubit State Detection 

Due to the stochastic nature of the photons, the activated pixels that reached 

photons in the ROI are arbitrary. This makes it challenging to determine the 

optimal ROI for state detection. To decide the optimal ROI for each ion, the 

photon detection rate for each ion is measured. 

 

7.2.1 Characteristics of Pixels of EMCCD 

  According to ref. [64], the determination of optimal ROIs for each ion in 

EMCCD data is based on the pixel characteristics. Since every pixel in the 

sensor has slightly different characteristics, different criteria should be 

applied when determining the quantum state of the ions. 

To obtain the characteristics of each pixel, their dark current rates and CIC 

noise rates were measured in the dark room. The EMCCD was sealed in the 

black box and placed in the dark room where the lights were off. Then the 

EMCCD captured more than 500,000 images for 250 μs exposure. Using 

these data, the histograms of each pixel are curve-fitted to the model in the 

ref. [64] to calculate the false count generation, and minimum value of the 

ADC, and the variance of the readout noise. The averaged mean false signal 

generation rate was measured as 0.003. These fitted parameters are then 

utilized to generate simulated data to compensate for the insufficient number 
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of data points, enabling the application of the maximum likelihood method. 

Further details regarding this process will be explained in chapter 7.2.3. 

The measured multi-quit EMCCD images are illustrated in Figure 7-4. To 

find out the optimal ROI of each ion for the threshold method and MLE 

method, the entire data are averaged as shown in Figure 7-4 (a). In the 

averaged image, any spurious charges that stochastically appear are averaged 

out. Therefore, the averaged image is beyond the shot-noise limit, which can 

be analyzed in a classical approach, such as Gaussian distribution. This image 

is used to set an initial ROI of each ion. Figure 7-4 (b) represents acquired 

exemplary data of all the possible 16 states. Note that since the measurements 

are performed in the shot noise limit, the stochastic emission of photons 

makes the activated pixels in ion images unpredictable. This shot noise 

obscures determining the optimal ROIs of ions.  

 

7.2.2 Experimental Sequence 

The experimental sequence of this experiment is as follows: Firstly, the four 

ytterbium ions are trapped in a desired order using a combination of 171Yb+ 

ions and 170Yb+ ions to represent a given multi-qubit state. Then, the 171Yb+ 

ions are initialized using optical pumping with a 2.1 GHz modulated 369-nm 

detection beam. Subsequently, the 369-nm laser is deactivated to enable qubit 
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control with microwaves. The microwave switch is turned on for a duration 

of a π-pulse to flip the spin of the initialized ions, thereby placing the qubit 

ions in the |1⟩ state. Finally, the detection beam is activated, and the emitted 

photons from 171Yb+ ions are recorded by the EMCCD. These preceding steps 

are repeated over 65,000 times for each possible 16 quantum states of the 4-

qubit ions to obtain enough images for multi-qubit state detection. 

Figure 7-3 depicts the timing diagram of the experiment. The FPGA serves 

as the controller for the experimental schedule, which relies on the processing 

of internal registers within the EMCCD. To emit the detection beam to the 

ions promptly upon the EMCCD initiating image capture, the control output 

from the FPGA is synchronized with the signals of the EMCCD. The diagram 

displays the schedules after the microwave switch is turned off once the 

quantum state controls are completed. To minimize ion heating during the 

period when the cooling beam is switched off, the majority of the idle time 

between EMCCD image captures is allocated for ion cooling, and qubit 

control is executed only in the final moments. 
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7.2.3 Determination of ROIs for Each Ion 

The measured multi-quit EMCCD images are illustrated in Figure 7-4. To 

find out the optimal ROI of each ion for the threshold method and MLE 

method, the entire data are averaged as shown in Figure 7-4 (a). In the 

averaged image, any spurious charges that stochastically appear are averaged 

out. Therefore, the averaged image is beyond the shot-noise limit, which can 

be analyzed in a classical approach, such as Gaussian distribution. This image 

is used to set an initial ROI of each ion. Figure 7-4 (b) represents acquired 

exemplary data of all the possible 16 states. Note that since the measurements 

are performed in the shot noise limit, the stochastic emission of photons 

makes the activated pixels in ion images unpredictable. This shot noise 

obscures determining the optimal ROIs of ions.  

 

7.2.4 Simultaneous Rabi Oscillation 

  Due to the simulation of multiple quantum states using isotopes, there was 

no guarantee that the proposed measurement method accurately measures the 

quantum states. To eliminate this ambiguity, measurements were conducted 

using actual qubits instead of quantum states emulated by isotopes. Therefore, 

four 171Yb+ qubit ions were trapped without isotopes, and the Rabi oscillation 

was measured by irradiating them with a global microwave. With the 
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wavelength of the global microwave spanning several centimeters, the phase 

differences among ions were negligible, resulting in coherent Rabi 

oscillations. In this dissertation, this experimental setup is referred to as 

simultaneous Rabi oscillation measurement. By measuring this simultaneous 

Rabi oscillation and observing the coherence of each ion, it is demonstrated 

that the measurement method proposed in this dissertation, utilizing isotopes, 

accurately measures the quantum states. 
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Chapter 8. Results 

8.1. Single qubit state detection 

To verify the performance of the qubit state detection for the EMCCD, 

single qubit state detection is performed beforehand. A single 171Yb+ ion is 

trapped and prepared in either the |0⟩  state or |1⟩  state. Then more than 

80,000 data for each state are acquired. Since state preparation is possible 

with a fidelity of over 99.9%, the state preparation error can be ignored, and 

only the measurement error is obtained. This measurement result is 

considered as the base performance for multi-qubit state detection in the next 

section. 

The fidelity in this dissertation is defined as the probability that the 

expected state is measured given the prepared state. The mean measurement 

fidelity for the single ion is then defined, 

where 𝑠 represents the state of the ion, s𝑚𝑒𝑎𝑠 and s𝑝𝑟𝑒𝑝 are the measured 

state and prepared state, respectively, and 𝑛  is the number of all possible 

states of the ion. For a single ion, the 𝑛 = 2.  

 

 𝐹̅𝑠𝑖𝑛𝑔𝑙𝑒 =
1

𝑛
∑ 𝑝(𝑠𝑚𝑒𝑎𝑠|𝑠𝑝𝑟𝑒𝑝)

𝑛

𝑠

, 
(8.1) 
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8.1.1 Threshold Method 

Figure 8-1 shows the result of the threshold method of single qubit state 

detection. To calculate the fidelity of the threshold method and the optimal 

ROI, the pixels within the ROI are sorted from the highest mean value to the 

lowest mean value. Then the error rates are calculated by incrementing the 

number of pixels. For a given number of pixels, the threshold value is found 

to minimize the mean error rate of the state detection, which, in principle, 

minimizes the overlaps of histograms of each state. 

 Figure 8-1 (a) shows the error rate of the state detection with respect to the 

number of pixels included in the analysis. The optimal number of pixels is 8 

and the error rate is 0.92%. One notable thing about applying threshold 

method is that, as shown in Figure 8-1 (a), the error rate is decreased initially 

as the number of analyzed pixels increases. However, after reaching a certain 

number of pixels, the error rate starts to increase. By identifying the number 

of pixels where the error rate begins to increase, one can determine the 

optimal number of pixels. Figure 8-1 (b) shows the histograms of each state 

when the ROI contains 8 pixels. The threshold value is set to 4,380. 

 

8.1.2 Maximum likelihood method 

Figure 8-2 shows the result of the maximum likelihood method on a single 
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ion. Based on the histograms of each state, the probabilities that a certain 

value occurs from the |0⟩ state and the |1⟩ state for each pixel are obtained.    

Similar to the threshold method, the pixels are indexed from the highest 

mean value to the lowest mean value as shown in Figure 8-2 (b), and the error 

rate of the state detection when applied MLE is calculated by increasing the 

number of pixels within the ROI. The error rate with respect to the number of 

pixels is shown in Figure 8-2 (a). 
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The optimal number of pixels of ROI is found to be 30. In contrast to the 

threshold method, the error rate saturates as the number of pixels reaches the 

optimal value. Increasing the number of pixels beyond the optimal value leads 

to increased redundant calculations. Therefore, the optimal number of pixels 

is determined as the performance saturates, and the mean measurement 

fidelity of the MLE is calculated to be 99.72% 

 

8.1.3 Machine learning 

To evaluate the performance of machine learning in single qubit state 

detection, a CNN-based model is applied to the measured data. A simple CNN 

model based on VGGNet [65] is utilized, and the mean measurement fidelity 

is calculated to be 99.75(5)%. Trying different models to improve this result 

doesn’t make any further improvements. This is because the model already 

utilizes the full information and it meets the physical limitation that cannot be 

improved by an analytical approach. 
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The machine-learning model outperforms the threshold method and the 

maximum likelihood method. This is believed to be due to the deep neural 

network model can take into account the local information that is not 

considered in those conventional two methods. Furthermore, the deep neural 

network model can learn complex patterns and relationships within the data, 

allowing it to capture subtle features that contribute to improved state 

detection. This advantage over traditional methods, which rely on pre-defined 

thresholds or statistical models, enables the machine learning model to adapt 

and generalize well to varying conditions and noise levels. 

 

8.2. Multi-qubit state detection 

Conventional methods such as the threshold method and MLE for multi-qubit 

state detection using EMCCD are not simple due to the overlaps of the ROIs 

among adjacent ions [64]. This detection crosstalk is a main obstacle to 

achieving high-fidelity state detection.  

Here, two different fidelities are defined for a fair comparison: one is the 

fidelity of correctly measuring the multi-qubit state as a whole, and the other 

is the fidelity of correctly measuring each individual ion in the multi-qubit 

state. The former is defined as mean measurement fidelity (MMF), which can 

be written as 
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where 𝑛 is the number of ions and the summation index 𝑠 goes over all the 

possible combinations of 𝑛 -qubit states. The latter is defined as mean 

individual measurement fidelity (MIMF), which is represented as 

where 𝑠𝑖 means the quantum state of the 𝑖-th ion in the 𝑠-th combination. 

 

8.2.1 Threshold method 

To evaluate the fidelity of the threshold method described in Ref. [17], the 

threshold method is applied to our EMCCD data as follows: To determine the 

initial ROIs of each ion, the average of all the acquisition data is obtained as 

shown in Figure 6 (a), and all the pixels within the initial ROI of each ion 

were sorted in decreasing order of signal intensity. Starting with the pixel with 

the highest signal value, the threshold value was scanned to find the highest 

fidelity. Subsequently, the pixel with the second-highest signal value was 

added to the ROI and the threshold method was applied to the sum of the ROI. 

The procedure continues by incrementally adding pixels to the ROI and 

 𝐹̅ =
1

2𝑛
∑ 𝑝(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑠|𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑑 𝑠),

𝑠

 
(8.2) 

 

 𝐹̅𝑖𝑛𝑑𝑖𝑣 

=
1

𝑛
∑ (

1

2𝑛
∑ 𝑝(𝑚𝑒𝑎𝑢𝑠𝑟𝑒𝑑 𝑠𝑖|𝑝𝑟𝑒𝑝𝑎𝑟𝑒𝑑 𝑠𝑖)

𝑠

)

𝑖

,  
(8.3) 
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performing the threshold method until the highest fidelity is reached. Finally, 

the same procedure should be repeated for each ion and the optimal ROIs of 

all the ions can be obtained. 

The MMF is calculated as 91.38(34)%, while 97.54(54)% is obtained for 

MIMF. This measurement method is vulnerable to crosstalk because we found 

that some pixels had to be added to more than one ROI to obtain optimal 

fidelity.  

 

8.2.2 Maximum likelihood method 

The MLE determines the state of the ion by the probability of the event. If the 

ion image of the obtained data has a higher likelihood of being generated by 

an ion in |1⟩ than in |0⟩, then the state is determined as |1⟩, and vice versa. By 

analyzing histograms of pixels, the probability of each pixel value being 

produced by |0⟩  or |1⟩  can be calculated. The histograms of the pixel 

values can be obtained from the experimental data or the simulation as well 

[64]. Our histograms were obtained mainly from the experiment. When the 

number of data is not sufficient, the histograms were interpolated by the 

theoretical model explained in Ref. [64]. 

To address crosstalk problems, the iterative method as described in Ref. [64] 

was applied. The result shows that this method is robust to crosstalk, and the 
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measurement result is consistent with the statistical calculations. The MMF 

of the MLE method is calculated as 96.86(9)% and the MIMF is calculated 

as 99.13(8)%. 

 

8.2.3 ResNet-based CNN model 

Although the experiment is usually performed with a fixed imaging system, 

small drifts of the ion image might occur over time. These small drifts can 

lead to a measurement fidelity drop. The conventional methods of state 

measurement using EMCCD are vulnerable to this kind of drift since these 

methods rely on pixel-specific characteristic methods [5]. The CNN 

architecture can cope with this kind of problem due to its inductive bias. 

Although the problem to solve is a translation-variant, small translation can 

occur due to the electrical potential drift or long-term mechanical drift of the 

optical components. Therefore, when the model was trained, simulated 

random translation data were added to the training dataset. 

 The total number of experimental data was 1,078,000. Half of the 

experimental data were used for training the model and 20% of the data were 

used to prevent overfitting. The rest of the data was used to calculate the 

fidelity. The number of generated data for simulated random translation is 

20,000 for each state and these simulation data were added to the training 
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dataset. 

The MMF is calculated as 98.32(10)% and MIMF is 99.53(14)%. We 

believe that the reason for the highest performance of CNN compared to other 

methods is that the model considers both the total counts and the image of 

ions simultaneously. 

 

Figure 8-3. Unit structure of ResNet. 

 

8.2.4 Simultaneous Rabi oscillation of 4 qubits 

To verify that the state detection of each ion is accurately made, simultaneous 

Rabi oscillations of four 171Yb+ ions by global microwave were measured 

with EMCCD. The oscillation result of each ion is plotted in Figure 8, which 

clearly shows that the 4 ions oscillate in phase. The offset of the fitted sine 

wave represents the detection error of the |0⟩, which is on the order of 10-4. 
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Hence, the amplitude is almost equivalent to the measurement fidelity of the 

|1⟩. The amplitudes agree with the MIMF. Therefore, it can be concluded that 

the CNN model correctly measures the qubit state of each ion and it 

outperforms the two conventional methods. 
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8.2.5 Other Models 

 For comparison, other popular models that are commonly used as base 

models were also tested on the EMCCD images. The Vision Transformer 

showed similar performance to the ResNet-based CNN, indicating its 

effectiveness in handling the data. On the other hand, SqueezeNet, which 

compresses the spatial information, exhibited the lowest performance, 

confirming that models relying solely on spatial information tend to suffer 

from decreased performance. 

Additionally, it was observed that models utilizing inter-channel 

information yielded lower performance, as expected. Conversely, models that 

focused on utilizing spatial information demonstrated higher performance. 

  Based on these results, it is evident that the performance of quantum state 

measurement through machine learning can be enhanced by optimizing and 

utilizing more suitable models. 
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Table 2. Performance comparison with different models. 

Model mAP (fidelity) 

ResNet-based CNN 99.45% 

K-Nearest Neighbors (KNN) 74.37% 

Support Vector Machine (SVM) 97.10% 

VGGNet16 99.27% 

VGGNet19 99.37% 

MobileNet V2 98.12% 

MobileNet V3 98.58% 

ShuffleNet V2 97.95% 

SqueezeNet 97.34% 

Vision transformer 99.41% 

 

8.2.6 Robustness Against Optical System Drift 

In addition, to test the inductive bias of the trained model and its robustness 

to the long-term ion image drift, the imaging lens was slightly moved to 

capture the ion images using the different areas of the sensor. The acquisition 

procedure was repeated as described above and the same types of data were 

acquired but in different areas of pixels. 

Table 2 shows the MIMF of the 3 different methods when applied to the 

data that are acquired by shifting the imaging system to test robustness against 
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ion image drift. It should be noted that when the threshold method and MLE 

method were applied to the new data, they could not be directly applied since 

the new data had different ion spacing simulating the drift of control 

parameters. Therefore, the positions of ROIs were adjusted by aligning the 

center of each ROI in the old data with the center of each ion in the new data. 

On the other hand, when the new data was provided to CNN, no adjustment 

was made. Even though the CNN model is trained in a translation-invariant 

manner, it is assumed that the model is robust to small translations. This is 

because the model not only focuses on determining the qubit state within 

limited regions of interest (ROIs). Despite a slight drop in performance, the 

fidelity remained reasonably high, indicating that the CNN is robust to the 

different spacing of ions and pixel characteristics. This robustness is a 

significant advantage of the CNN method over the conventional methods, 

ensuring that measurements remain reliable over time. 
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Table 3. Comparison of MIMF when applied to the data with a shifted 

imaging system. 

Methods Threshold* MLE* CNN 

F of the 

original pixels 
97.54% 99.13% 99.53% 

F of new 

pixels 
96.93% 98.22% 99.12% 

*ROIs are adjusted when applied to the shifted data 
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Chapter 9. Discussion and Conclusions 

The multi-qubit quantum states of four trapped ions are prepared with high 

fidelity using a bright state by the qubit ion 171Yb+ in |1⟩ and a dark state 

represented by an isotope 170Yb+. The multi-qubit states were then measured 

with an EMCCD and analyzed using a CNN model which is one of the 

popular machine-learning techniques. The CNN model is built based on 

ResNet architecture since the shortcut connection well preserves the original 

information including the presence of adjacent ions.  

The measurement results with conventional methods are compared with 

that of this machine-learning-assisted method. The machine-learning-assisted 

method outperforms the conventional methods achieving a reduced error rate 

of 46%. 

To show the inductive bias of the CNN model and its robustness to long-

term drift, the same experiments were performed with the shifted imaging 

system. The result shows that the CNN model is robust to the long-term drift 

of the optical image compared to other methods, achieving 99.15(8)% MIMF 

without any pre-processing. 

Moreover, simultaneous Rabi oscillations of four 171Yb+ ions are measured 

to prove that the model accurately determines the quantum state of each ion. 

The results are consistent with the individual measurement fidelity of each 
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ion. 

In addition, the performance of the designed ResNet-based CNN model is 

compared to other popular image classification models to ensure a fair 

comparison. The results demonstrate that some conventional models achieved 

similar performance to the specifically designed model. However, in most 

cases, these conventional models have lower accuracy. The conventional 

models that demonstrate good performance typically have deeper layers and 

more parameters compared to the designed model. This suggests that models 

can effectively utilize computational resources when specifically designed for 

their intended purpose and the underlying physical model. 

By utilizing machine learning for EMCCD-based multi-qubit state 

measurement, it is possible to perform state measurements without being 

constrained by predefined ROIs. This flexibility allows for more robust 

performance, even if there are slight variations in the positions of ions over 

time. This advantage ensures consistent performance over extended periods, 

offering greater resilience to changes in ion positions.  

The machine-learning-assist method described in this paper can be further 

improved by providing more information to the model, such as time-binning 

sequential images of the data to improve the accuracy of the model. 
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Appendix A. Fidelity with Different Ions 

The error rate of quantum state measurements needs to be below 10−4 for 

the practical realization of a quantum computer. However, the mean fidelity 

of quantum state measurements for each ion is approximately 99.5%, which 

is two orders of magnitude lower than the required criterion. 

The main challenges in achieving high-fidelity quantum state 

measurements are the low quantum efficiency of sensors for ultraviolet (UV) 

light and the relatively frequent occurrence of off-resonant transitions 

inherent to hyperfine qubits. In this section, it is demonstrated that by 

changing the species of trapped ions, the proposed methods can achieve the 

desired error rate criteria, indicating that the method itself is not the limiting 

factor for practical usage. 

If optical qubits are used, with each state encoded in independent transition 

lines, the errors resulting from off-resonant transitions can be significantly 

reduced. This is because the optical qubits are encoded in shelving states, 

where two off-resonant transitions are required to change the state. 

Furthermore, the two transition lines have different frequencies, which 

enables the filtering out of transitions from different states based on their 

frequencies. 

Representative ions that can be utilized as optical qubits include Ca+ [70], 
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Sr+ [71], and Ba+ [72]. Additionally, recent research has explored the use of 

Yb+ [73] as an optical qubit, showing the feasibility of performing quantum 

error correction algorithms. 

The quantum efficiency of the detector can also be improved by utilizing 

transition lines that involve visible light, as most industrial image sensors tend 

to exhibit higher quantum efficiency in the visible light frequency range [74]. 

The EMCCD used in this dissertation has a quantum efficiency of more than 

95% for visible light, which is almost three times higher than that for UV light 

(32%). Consequently, nearly every photon that falls onto the EMCCD can be 

collected and detected. 

To calculate the state detection fidelity using different ions, equations (3.7) 

and (3.11) are used with changed parameters. The quantum efficiency is 

adjusted to 0.95%, resulting in ε = 0.095, and the off-resonant transition rates 

from both the |0⟩ state and the |1⟩ state are set to 0. The calculated results for 

a threshold of 0.5 photons are presented in Figure A-1. The result clearly 

shows that the detection error rate for a single qubit can be below 10−4 , 

which satisfies the requirements for quantum error correction algorithms. 

Furthermore, due to the negligible off-resonant transitions and high SNR from 

high quantum efficiency, the higher threshold value can be advantageous, 

Figure A-2 depicts the further reduced error rate when the threshold is 
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changed to 1.5 photons.5 photons. 

In conclusion, the calculated results demonstrate that when using different 

ions, the quantum state measurement error is significantly lower than the 

threshold required for quantum error correction algorithms. With such a low 

error rate, the primary remaining source of error when measuring multiple 

ions is the crosstalk from adjacent ions. The measured crosstalk error rate in 

this dissertation is below 10-4. Therefore, the proposed methodology 

presented in this dissertation can be utilized to build a practical quantum 

computer with multiple qubits. 
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Figure A-1. Expected detection error when the ion species is changed. 

 

Figure A-2. Expected detection error rate when the threshold is 1.5 photons.  
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초록 

양자 정보 처리는 컴퓨팅, 통신 및 암호학을 혁신적으로 변화시킬 

수 있는 잠재력을 지는 분야로, 최근 빠르게 성장 중이다. 대규모 

양자 정보 처리 장치를 구현하기 위해서는 높은 신뢰도를 가진 양

자 상태 측정이 필수적인데, 특히나 기술이 발전할수록 다루는 큐

비트의 숫자가 늘어남에 따라 다중 큐비트의 개별 상태를 높은 신

뢰도로 측정하는 것이 점점 어려워진다. 

이온 트랩은 이온의 긴 결맞음 시간과 우주 어느 곳에서도 똑같

은 특성을 갖는 자가 교정이 가능하여 양자 컴퓨터를 실현하기 위

한 유망한 플랫폼 중 하나이다. 이온 트랩에서의 양자 상태 측정

은 이온으로부터 상태 의존적으로 방출된 광자를 수집함으로써 이

루어진다. 각 이온의 개별 상태를 측정하기 위해서는 검출기의 높

은 민감도뿐만 아니라 감지한 광자의 공간 정보를 제공할 수 있는 

검출기가 요구된다. 

포획된 다중 이온의 양자 상태 측정을 위한 유망한 장치 중 하

나는 전자증배 다중 전하 결합 소자 (electron-multiplying 

charge coupled device, EMCCD)이다. 이 장치는 물리적으로 전자
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의 수를 증가시킬 수 있는 전자증배 이득을 통해 단일 광자 수준

의 작은 신호를 증폭하여 검출할 수 있는 독특한 기능을 갖추고 

있으며, 카메라와 같은 동작을 통해 검출한 광자의 공간 정보도 

제공할 수 있다. 

이온 트랩 분야에서 양자 상태 측정 신뢰도를 향상시키기 위해 

여러 연구들이 선행되었다. 우선 실험적인 구성과 관련하여서는 

방출된 광자들의 시간 정보를 활용하거나, 검출기의 양자 효율성

을 향상시키거나, 광자 수집 시스템의 수집 각도 확대 등이 연구

되었다. 알고리즘적인 측면에서는 이온의 양자 상태를 결정하기 

위해 두 가지 방법이 연구되었는데, 첫 번째로는 측정한 데이터에

서 특정 기준 값에 따라 측정한 이온의 양자 상태를 결정하는 문

턱값 방법이 있고, 두 번째로는 측정 데이터가 각 양자 상태에 속

할 확률을 고려하여 가장 확률이 높은 양자 상태를 선택하는 최대

우도법 방법이 있다. 

최근에는 빠르게 성장하는 기계 학습 기술을 양자 상태 측정 

분야에 적용하는 시도들이 있었다. 기계 학습 모델은 검출기의 잡

음 패턴을 자동으로 학습하고 기존 분석에서 고려되지 않는 신호

의 독특한 지엽적 패턴을 포착할 수 있는 능력을 갖고 있기 때문
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에 이러한 시도들은 기존의 알고리즘 방법보다 우수한 성능을 보

여주었다. 

합성곱 신경망(convolutional neural network, CNN)은 이미지 및 

음성 인식을 포함한 다양한 분야에서 널리 사용되는 강력한 딥러

닝 알고리즘 중 하나이다. 특히나 합성곱 신경망은 주로 2차원 배

열 형태의 이미지 데이터를 다루는 데 탁월한 성능을 보인다. 이

는 합성곱 신경망의 독특한 아키텍처와 연산 방식으로 인해 이미

지 내의 공간적 종속성과 계층적인 특징을 효과적으로 포착할 수 

있기 때문이다. 합성곱층, 풀링층 및 비선형 활성화 함수를 사용

하여 합성곱 신경망은 이미지로부터 관련된 특징을 자동으로 학습

하고 추출하여 정확한 이미지 인식, 물체 감지 및 기타 시각적 작

업을 수행할 수 있다. 

본 논문에서는 4개의 이온으로 구성된 16개의 양자 상태를 높은 

신뢰도로 획득하기 위해, 측정 레이저와 거의 상호 작용하지 않는 

큐비트 이온(171Yb+)의 동위 원소인 170Yb+를 이용하여 다중 이온의 

|0⟩ 상태를 표현하였다. 반대로 171Yb+ 이온은 높은 신뢰도로 |1⟩ 

상태로 준비되어, 다중 이온의 |1⟩ 상태를 표현하였다. 이 방법을 

통해 이온들의 개별적인 양자 상태 제어 없이 높은 신뢰도로 다중 
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양자 상태를 획득할 수 있었다. 

위와 같이 획득한 데이터에 합성곱 신경망 모델을 사용하여 다

중 양자 상태를 결정하고, 이 결과를 기존에 연구된 문턱값 방법

과 최대우도법과 비교하였다. 그 결과, 기계학습을 이용한 방법의 

성능이 기존 방법들을 상회하였으며, 또한 실험 장치들의 장기간 

표류로 인한 이온 이미지 위치 이동에 대해서도 강건한 결과를 보

여 장시간 실험 중에서도 높은 신뢰도를 제공할 수 있다. 

본 논문에서 연구한 내용은 큐비트의 개수의 증가에도 성능 감

소 없이 사용될 수 있으므로 향후 실제 양자 컴퓨터 개발과 양자 

오류 정정 알고리즘을 실험적으로 보이는 데에 활용될 것으로 기

대된다. 

 

주요어: 이온 트랩, 기계학습, 양자 정보, EMCCD, 양자 상태 측정 

학 번: 2017-28386 
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