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Abstract

Thompson sampling (TS) is a widely used approach for addressing the exploration-
exploitation trade-off in online learning problems, including reinforcement learning
for linear quadratic regulators (LQR). However, in TS for learning LQR, its theoret-
ical analysis is often limited to the case of Gaussian noises. The sampling can be
performed directly when we further assume that the unknown system parameters lie
in a prespecified compact set as in [1], which is seemingly restrictive. We propose a
new TS algorithm for LQR, exploiting Langevin dynamics to handle a larger class of
problems including those with non-Gaussian noises. The notion of the preconditioner
is introduced to generate samples from non-conjugate posterior distributions. Our al-
gorithm is capable of sampling parameters from approximate posteriors quickly. It
attains O(\/T ) expected regret bound slightly improving the result of [1] under the
minimal assumption on the prior distribution and admissible set requiring neither a
particular initialization technique nor information on the true system parameter. Our
regret analysis leverages a nontrivial concentration inequality for the preconditioned
Langevin algorithm together with self-normalization techniques. The performance of

our algorithm has been demonstrated through numerical experiments as well.

keywords: Linear quadratic regulator, Thompson sampling, Langevin dynamics,

preconditioning technique

student number: 2020-26137
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Chapter 1

Introduction

Balancing the exploration-exploitation trade-off is a fundamental dilemma in rein-
forcement learning (RL) because it is mostly unclear to choose between acting to
learn about an unknown environment (’exploration’) or making a reward-maximizing
decision given the information gathered so far (exploitation’). This issue has been
systemically addressed in two main approaches, namely optimism in the face of un-
certainty (OFU) and Thompson sampling (TS). The methods using OFU first construct
confidence sets for the environment or model parameters given the samples observed
so far. After finding the reward-maximizing or optimistic parameters within the confi-
dence set, an optimal policy with respect to the parameters is constructed and executed
[3]. Various algorithms using OFU are shown to have strong theoretical guarantees in
bandits [4].

On the other hand, TS is a Bayesian method in which environment or model param-
eters are sampled from the posterior that is updated along the process using samples
and a prior, and an optimal policy with respect to the sampled parameter is constructed
and executed [5]. In terms of computational tractability, TS has an advantage over OFU
that requires an optimal solution to a nontrivial optimization problem over a confidence
set in each episode. Furthermore, TS has been successfully used in online learning for

various sequential decision-making problems such as multi-armed bandit problems



[6, 7, 8], Markov Decision Process (MDP) [9, 10, 11] and LQR [1, 10, 12, 13, 14],
among others.

A fundamental step in TS-based learning is to sample from a distribution. Unfor-
tunately, posterior sampling is generally challenging as well-known sampling tech-
niques do not scale to high dimensional spaces. To overcome the limitation Markov
Chain Monte Carlo (MCMC) based sampling methods are proposed [15]. In partic-
ular, Langevin MCMC is one of the most widely used sampling techniques in the
field [16, 17, 18]. The convergence is also studied extensively as found in literature
[16, 17, 19, 20]. Thanks to its advantages over existing sampling methods it has been
applied to various learning problems such as Bayesian learning [18] and inverse rein-
forcement learning [21]. Yet tractable even in high dimensional spaces, sampling via
Langevin MCMC still suffers from the curse of dimensionality requiring a tremen-
dous amount of computation. To alleviate the issues various acceleration methods are
studied (see [18, 22, 23, 24, 25] and references therein). In particular, [18, 26, 27] in-

troduced a preconditioner from which our new algorithm and analysis are motivated.

1.1 Contributions

We propose a new computationally tractable TS-based algorithm achieving the state-
of-art regret O(\/T ) for learning LQR as well as the exact rate of convergence of
the sampled system parameter. Our algorithm features that a wide class of system
noises can be used and no a priori information on the admissible is needed. Central to
enhancing computational efficiency is introducing preconditioned Langevin dynamics
for sampling, which enables us to achieve O(\/T) Bayesian regret bound for learning

LQR problems.

* Preconditioned ULA: We introduce the preconditioned Langevin MCMC for the
acceleration of sampling process. The improved convergence rate between the

exact and approximate posterior is obtained, which results in achieving O(\/T)



Bayesian regret bound.

* Rate of convergence around true system parameter: The sampled system pa-
rameter obtained via our new algorithm concentrates around the true system
parameter with the rate O(t‘i). The action is perturbed only one time at the
end of each episode for efficient exploration. Thanks to this, we can improve
the polynomial-in-time state bound to constant and achieve the better regret as

above.

* Above all, we simply assume that the admissible set is bounded to achieve the
aforementioned results. It is the first work for achieving O(+/T') Bayesian regret

bound with non-Gaussian noise under such a mild assumption.

1.2 Related work

There is a rich body of literature regarding the estimation of system parameters and
synthesis of a control gain matrix for LQR problems, which can be categorized as
followings.

Optimism in the Face of Uncertainty (OFU): [28, 29] propose an OFU-based learn-
ing algorithm that iteratively selects the best-performing control actions while con-
structing the confidence sets. It is shown that the O(\/T ) is regret bound yet com-
putationally unfavorable due to the complex constraint. To circumvent there is an at-
tempt to translate the original nonconvex optimization problem arising in the OFU ap-
proach into semidefinite programming [30, 31], which obtains the same regret O(\/T )
with high probability. On the other hand, in[14, 32], randomized actions are employed
to avoid constructing confidence sets and address asymptotic regret bound O(\/T)
Recently, [33] proposes an algorithm that quickly stabilizes the system and obtains
O(\/T) regret bound without using stabilizing control gain matrix.

Thompson sampling (TS): It is shown that the upper bound for the frequentist re-
gret can be as worse as O(T%/3) [13] and it is improved to O(v/T) [34] based on



TS. However, both of them assume that the noise follows the Gaussian distribution
and deals with one-dimensional only. Later on, [35] extends the previous work to the
multi-dimensional case under the Gaussian noise. For Bayesian regret, previous results
[1, 2] open up the possibility of applying TS based algorithm with provable O(ﬁ)
Bayesian regret bound yet the result suffers from some limitations. In their works
both noise and the prior distribution of system parameters are assumed to follow the
Gaussian, which allows updated posteriors to have the same structural properties and
log-concave potential thanks to its conjugacy. In their work, it is crucial to assume that
system parameters lie in a compact set that is defined via the true parameter itself.
The following work [2] relaxes the technical assumption but the admissible set is not
identified explicitly as well. Additionally, the columns of the system parameter matrix

are assumed to be independent.



Chapter 2

Preliminaries

2.1 Linear-Quadratic Regulators
Consider a linear stochastic system of the form
xt+1:Axt+But+wt, t:1,2,..., (21)

where z; € R" is the system input, and u; € R™* is the control input. The disturbance
wy € R™ is an independent and identically distributed (i.i.d.) zero-mean random vector
with covariance matrix W. Throughout the paper, I,, represents n by n identity matrix
and, we define the norm as |v|p := Vv Pv for a positive semidefinite matrix P and

a vector v.

Assumption 1. For everyt = 1,2,..., the random vector wy satisfies the following

properties:

1. The probability density function (pdf) of noise p,,(-) is known, smooth and twice

differentiable. Additionally, the following inequalities hold:
ml, < =V, logpy(w;) 2 ml,

for some m,m > 0,



2. Elwy] = 0 and E[wyw,'] = W, where W is positive definite.

Let d := n + n, and © € R¥™ be the system parameter matrix defined by
0= [@(1) . @(n)] = [A B} T, where O(i) € R? denotes the ith column of
©. Here, the columns are not assumed to be Gaussian or independent as in [2, 1].

We also let 6 := vec(©) := (0(1),0(2),...,0(n)) € R™ denote the vectorized
version of ©. We often refer to 6 as the parameter vector.

Let hy := (z1,u1,...,2—1,us—1,x;) be the history of observations made up to
time ¢, and let H; denote the collection of such histories at stage ¢. A (deterministic)
policy 7y maps history h; to action wy, i.e., m(h¢) = u;. The set of admissible policies

is defined as
Il:={mr = (m,m,...) | m : H — R™ is measurable Vt}.

The stage-wise cost is chosen to be quadratic and is given by c(x, u;) = 2] Q¢+
u) Ru; where Q € R™™ is symmetric positive semidefinite and R € R™*™ is
symmetric positive definite. The cost matrices @ and R are assumed to be known.! We
consider the infinite-horizon average cost LQ setting with the following cost function:

T+ (6) = lim sup %Eﬂ [XT: oz, ut)] .

T—00 —1

Given # € R™, ,(x;0) denotes an optimal policy if it exists, and the corresponding
optimal cost is given by
J(0) = inf J.(0).
s
It is well known that the optimal policy and cost can be obtained using the Riccati

equation under the standard stabilizability and observability assumptions [38].

Theorem 1. Suppose that (A, B) is stabilizable, and (A, Q'/?) is observable. Then,

the following algebraic Riccati equation (ARE) has a unique positive definite solution

"This assumption is common in the literature [28, 14, 31, 36, 35, 37]



P(6):
PO)=Q+ ATP(O)A— ATP(@O)B(R+ B P(0)B)"'B' P(h)A. (2.2
Furthermore, the optimal cost function is given by
J(0) = tr(WP(0)),

which is continuously differentiable with respect to 0, and the optimal policy is uniquely

obtained as

m.(x30) = K(O)z,
where the control gain matrix K () is given by K (0) :== —(R+BT P(0)B)~'BT P(0) A.

The optimal policy called the linear-quadratic regulator (LQR) is an asymptotically
stabilizing controller: it drives the closed-loop system state to the origin, that is, the

spectrum of A + BK (#) is contained in the interior of a unit circle.

2.2 Online learning of LQR

The theory of LQR is useful when the true system parameters 0, := vec(©,) :=
vec( [ A, B*} T) are fully known and stabilizable, which is not common. When the
true parameter vector 6, is unknown, online learning is a popular approach as pio-
neered in [28]. At each stage ¢, given the history h; of observations, the learner ex-
ecutes a control action u; and observes the resulting cost ¢(z¢, uy). Then, the system
evolves according to the true linear dynamics z;1 = A,z + Byug +wg. Through such
interactions between the learner and the system, the parameter vector and the policy
are updated online. The performance of a learning algorithm is measured by regret.
In particular, we consider the Bayesian setting, where the prior distribution g (with
density p1) of 6, is assumed to be given, and use the following expected regret over T’

stages:

RIT) = B| Y- (ean ) — 1(6.)] 23)

10



Here, 6, is considered as a random variable of true parameter, and the expectation is

taken with respect to the prior of 6., the probability distribution of noise (wy, wa, . .., wr)

and the randomness of the learning algorithm. It is desirable for a learning algo-
rithm to have a sublinear regret bound so that R(7T)/T — 0 as T — oo. When
p(As + B.K(0)) > 1 where p(X) denotes the spectral radius of the matrix X, it is
pessimistic to obtain the sublinear regret bound. To cope with this problem, [1, 2] as-
sume that a compact stabilizing set whose element 6 satisfies p(A. + B.K(0)) < 1is
given, and the system parameter can be sampled from the set. However, this assump-
tion is unrealistic since one cannot tell if p(A. + B, K (0)) < 1 without knowing true

system parameters A, and B,.

2.3 Thompson sampling

Thompson sampling (TS) or posterior sampling has been used in a large class of online
learning problems [39]. The description of the naive TS algorithm for learning LQR
is as follows. It starts with sampling a system parameter from the posterior p, at the
beginning of episode k. Regarding this sample parameter as true, the control gain
matrix K (6y) is computed by solving the ARE (2.2). During the episode, the control
gain matrix is used to produce control action u; = K (0y)x;, where x; is the system
state observed at time ¢. Along the way, the data D is collected and the posterior is
updated.

The posterior update is performed using Bayes’ rule and it preserves the log-
concavity of distributions. To see this we let z; := (24, u¢) € R? and write p(z¢41|2¢, 6)
pu(Tiy1 — O 7 2;) which is log-concave in § under Assumption 1. Hence, the posterior

at stage ¢ is given as
p(Olhes1) o< p(i1] 2, 0)p(6]he) = pu(@ir1 — O z)p(6]he) (2.4

and it is log-concave as long as p(6|h;) is log-concave.

11



Bayesian learning always involves sampling from posterior distributions. How-
ever, sampling is computationally intractable particularly when the distributions at
hand do not have conjugacy. Without conjugacy, posterior distribution does not have a
closed-form expression, hence, a novel numerical method has to be developed. To sam-
ple from general distributions, a Markov chain Monte Carlo (MCMC) type algorithm

needs to be introduced, which is of interest in the following subsection.

2.4 The Unadjusted Langevin algorithm (ULA)

To relax the decomposable Gaussian assumption in [1, 2] and handle a larger class of
distributions, it is necessary to introduce an approximate posterior sampling method.
To this end, we propose exploiting the unadjusted Langevin Algorithm (ULA), an
MCMC method which generates samples approximately from a target distribution.
We briefly go over the notion of Langevin algorithms together with the rate of conver-
gence.

Consider the problem of sampling from a probability distribution with density
U(z)

p(z) o< e””¥) where the potential U : R"* — R is continuously differentiable.

The Langevin dynamics takes the form of
dX¢ = —VU(X¢)d¢ +V2d B,

where B¢ denotes the standard Brownian motion in R"=. It is well-known that given
an arbitrary X, the pdf of X¢ converges to the target pdf p(z) as { — oo [23, 40].
To solve for X, numerically, we apply the Euler-Maruyama discretization to the

Langevin diffusion and obtain the following unadjusted Langevin algorithm (ULA):
Xjr1 = Xj =9 VU(Xy) + 2 W,

where (W;);>1 is an i.i.d. sequence of standard n,-dimensional Gaussian random
vectors, and (7;);>1 is a sequence of step sizes. Due to the discretization error, the

Metropolis—Hasting algorithm that corrects the error is used together in general [16,

12



41, 42]. However, when the stepsize is small enough, such an adjustment can be omit-
ted.

The condition number of the Hessian of the potential is an important factor in
determining the rate of convergence. More precisely, we can show the following con-
centration property of ULA, which is a modification of Theorem 5 in [43]. For the

sake of completeness, we present the proof in Appendix A.

Theorem 2. Suppose that pdf p(x) o< e~U®) is strongly log-concave and U (x:) is Lip-

schitz smooth with respect to x, i.e., Amin = V2U(x) = Amax for some Amax, Amin >

0. Let the stepsize is given by v; = v = O /’\\g‘i“ and the number of iterations N

satisfy N > O ((%)2) Given Xo = argminU(z), let py denote the pdf of X .

1
<0 .
o ( Amin >

Then, the following inequality holds:

N

Egpi~py U:c - 53‘2]

13



Chapter 3

Learning algorithm

The naive TS for learning LQR has two weaknesses. One of them arises in choosing
a destabilizing controller which makes the state grow exponentially and causes the re-
gret to blow up. To handle this problem, [1, 2] introduce an admissible set that allows
us to select only a stabilizing controller. However, verification of such a set is impossi-
ble in general without knowing the true system parameter. We show that no additional
assumption beyond compactness is needed to achieve O(\/T ) Bayesian regret bound.
This means that the state grows exponentially with low probability and can be quan-
tified. The other comes from inefficiency in the sampling process when system noises
and the prior are not conjugate distributions. In such cases, ULA is an alternative but it
is often extremely slow. To speed up, we introduce a preconditioning technique, which

is indeed a simple change variable but results in faster convergence.

3.1 Preconditioned ULA for approximate posterior sampling

One key component of our approach is approximate posterior sampling via precondi-
tioned Langevin dynamics. The potential in ULA is chosen as U;(0) := — log p(6|h:)
where p(6|h;) denotes the posterior distribution of the true system parameter given

the history up to ¢. Unfortunately, a direct implementation of ULA to TS for LQR is

14



inefficient as it requires a large number of step iterations. To accelerate, we propose
a preconditioning technique that has been used for Langevin algorithms in different
contexts, e.g., see [44, 45, 46].

To describe the preconditioned Langevin dynamics, we first choose a positive
definite matrix P, preconditioner. The change of variable §' = P20 yields df, =
—P~IVU(0)dE + \/2P7—1dB§. Applying the Euler-Maruyama discretization with a

constant stepsize -y, we obtain the preconditioned ULA:

0j+1="0; —yPIVU(0;) + /2y P~1W}, 3.1

where (W} );>1 is ani.i.d. sequence of standard n,-dimensional Gaussian random vec-
tors. With the data z; = (x, u;) collected, the preconditioner in our problem is defined
as

t—1
P, = My, + Z blkdiag{zsz, }7_1, (3.2)

s=1
where blkdiag{A;}?_, € R*4" denotes the block diagonal matrix consisting of
A;’s, and A > 0 is determined by the prior. Our preconditioner is designed in a way
to reduce the number of step iterations, thereby guaranteeing a faster convergence for
general noise and prior distributions. We now propose the following lemma which
implies that the curvature of the Hessian of the potential is bounded when scaled along

the spectrum of the preconditioner.

Lemma 1. Under Assumption 1, for all 0 and t,

o=

_1 _
m < P, 2°V2U,()P, > = M,

where m = min{m, 1}, M = max{m, 1}, P, = My, + S.'_ blkdiag({zsz] }?_,)
and the potential of the posterior U(6) = — log p(0|hi) where Uy satisfies VU (-) =

A gy, for some A > 0.

The proof is given in Appendix B. It follows from this lemma that we can rescale

the number of iterations needed for the convergence of ULA while ensuring a better

15



level of accuracy for the concentration of the sampled system parameter. Throughout
the paper, we use U}, := Uy, to explicitly show their dependency on the current episode

k.

3.2 Main Algorithm

Before illustrating the main algorithm, let us first specify the admissible set for prior
avoiding the unrealistic prespecified compact set of stabilizing parameters as in [1, 2].
In [1], their algorithms assume that {6 : |A. + B.K(0) < § < 1} is available, which
is not verifiable when the true parameters (A,, B,) are unknown. In the following
work [2], authors assume existence of the confidence set €2 as follows: for any 6, ¢ €
Qand 0 < § < 1, p(Ag + ByK(¢)) < 6. However, the construction of such a set is
still mysterious. To alleviate this issue, they bypass the explicit construction of such a
set leveraging the result [47].

We emphasize that even with the stabilization a technique that exploits random
control gain matrices to identify the stabilizable set, one can only obtain a probabilistic
guarantee. Furthermore, such an implementation is performed before the algorithm
begins. We instead introduce a simple bounded set whose element 6 is assumed to
be stabilizable and to induce finite infinite-horizon cost J. The verification of this
condition is indeed straightforward as no information on the true system parameter
is needed, which is the major difference from the existing approach in the Bayesian
setup.

Let us introduce an admissible set used for the algorithm as suggested in [34].

Definition 1. S := {§ € R : |9| < S,|A+ BK(0)| < p < 1,J(0) < My} for
T
some S,p, Mj > 0and 0 = Vec([A B} )

For § € S, there exists Mp > 0 such that |P(0)| < Mp as found in [13]. There-
fore, |[I K(0)"]| < My for some My > 1 and a direct implication of this result

is that |A, + B, K (0)| < M, for some M, > 0. Here, K () denotes the control gain

16



matrix associated with 6.

Definition 2. |P(0)] < Mp, [[I K(0)T]| < Mg, and |A. + B.K(0)| < M, for

some Mp, My, M, > 0 when 0 € S. We further assume that M, > 1.

Assumption 2. For A\ > 1, let the prior p; satisfy that V3U,(-) = Mgy, for potential
Ui(0) = —logpi(-) and supp(p1(-)) C S.

Remark 1. For instance, the projection of multivariate normal distribution with co-

variance %Idn on S yields the prior satisfying the Assumption 2.

Furthermore, once constants .S, p, and M ; are specified, one easily rejects sampled
system parameters if it is not contained in S, which is one of the major differences from
[1] as no miracle stabilizing set is needed.

We next state our main algorithm. Let ¢; and T}, denote the start time and the length
of episode k respectively. By the definition, ¢ty = 1 and tx11 = tx + T}. The length of
episode k is chosen as Ty, = k + 1.

To update the posterior, or equivalently, its potential at episode k, we use the tran-
sition dataset D := {(z¢, x¢+1) }+,,_,<t<t,—1 collected during the previous episode. It

follows from (2.4) that the potential can be updated using the observations as

Uk(0) = U—1(0) — Z log pu (w141 — O 21),

(zt,x¢4+1)€ED
where Uj is set to be U7, the potential of the prior.
Having the posterior updated, approximate posterior sampling is performed us-
ing the preconditioned ULA. To begin, we choose the preconditioner, stepsize, and

number of iterations as P, = F;,, v = 7, and Ny = Ny, for P, = g, +

t—1 - Tin R m)\min,t P 4 10g2 (max{)\min,tyt}/)\min,t)
> o1 blkdiag{zsz Yy vt = 1 S W— and NV; := T
where 0pnin ¢ is a minimizer of the potential Uz, and Apin ¢, Amax,t are minimum, max-

imum eigenvalues of P;.

17
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Figure 3.1: Infusing noise for better exploration

With v, and Nj, defined above, the update rule (3.1) for the preconditioned ULA
is expressed as

0j+1 ~ N(@j — ’ykPk_IVUk(ﬁj), 2’ykPk_1). (3.3)

Given S > 0,0 < p < 1 and M; > 0, we check whether 0y, achieved from
performing the update above N}, times is contained in S. If so, set 0, =0 N, Finally,
the controller K = K (ék) for kth episode is computed using Theorem 1 with the
sampled system parameter 0. As soon as observing the current state x;, the control
action u; is executed to the system at time ¢. Accordingly, the dataset D is constructed
collecting (z¢, x441) for all ¢ € [tg,tr+1 — 1]. One notable feature of our algorithm
is that the action wu; is perturbed by random vector (v,)s>1 right before the end of
each episode. Precisely, the action u; = Ky, is applied when ¢ = [ty, tx11 — 2] and
ur = Kpxy+1yis executed when t = ¢4 —1 for additional random noise v4 satisfying
the assumption below. This perturbation enhances the exploration. The external noise
signal contributes to the effect of persistence excitation Proposition 3 which states that
the minimum eigenvalue of the preconditioner grows in time. The schemetic diagram

is provided in Figure 3.2.

Assumption 3. The sequence of L,-sub-Gaussian' random variable v, € R™ satis-
fiesvs = 0if s € [tj,tj41 — 2] forall j > 2. For s ¢ [tj,tj;1 — 2|, let Elvg] = 0

and W' := Elv,v/ ] is a positive definite matrix whose maximum and minimum eigen-

'A distribution is L, -sub-Gaussian if Pr(|v| > y) < Cexp(—5>y°) for any y > 0 and some
C > 0.

18



values are identical to those of W, the covariance of system noise. Without loss of

generality we may assume v; = vg = 0.

Remark 2. The assumption on the minimum eigenvalue of W' is needed just for sim-

plicity in the proof of Proposition 3 which is about the growth of Ayin (F).

We end this section by discussing in detail why the proposed preconditioner P
is useful. Recalling Lemma 1, we see that mAyin g Lan = VU, = M Amax,kLdn- It
follows from Theorem 2 that N}, = O((%)Z) iterations is required for bW
error bound.

On the other if we can show that |z;| < C for some C, the trace inequality would
yield that Apax r = O(t1) since Apax i < tr(P;) < Ct for different constant C. If we
further have Ayin k. = O(V/Tx), then N, = O(y/%,) by our choice of vy, and Nj,. We

will show in the following section that this particular choice allows us to achieve \/%

\ )\min,k ’

rate of convergence rather than
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Algorithm 1 Thompson sampling with Langevin dynamics for LQR

1: Given pq;

2: Imitialization: ¢ < 1, ty < 0,21 < 0, D < (),
Uy < Uy, By + argmin Uy (6), Omino < 0o

3: for Episode k = 1,2, ... do

4: T+ k+1;

5: tp < t;
6:  Uk(t) :=Up—1(") = 2oz 0001)ep 08 P(Te41 21, )
7: D« 0;

8: Omin k. € argmin Uy(0);

9: Compute the preconditioner Py, the step size v, and the number of iterations
Ng;

10: while True do

11: 0o < Omin ks

12: for Stepj =0,1,..., N, — 1do

13: Sample ¢; 1 according to (3.3);

14: end for

15: if O, € S then

16: O « On,

17: Break;

18: end if

19: end while

20: Compute the gain matrix K, := K (0;);
21: while ¢t <t +T1, — 1do

22: Apply control u; = Kpxy + v for 1, satisfying Assumption 3;

23: Observe new state T;41;

24: Update D < D U {(z¢, x¢+1)};

25: t+—t+1;

26: end while

27: end for 2 21l
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Chapter 4

Concentration properties

In this section, the concentration properties as well as the growth of the state trajectory
are discussed.

Let us define the exact and approximate posterior distributions concerned with the
potential U;. We call the probability measure u; ~ exp(—Uy) exact posterior. For the

approximate posterior, let us recall the preconditioned ULA,
Oj1 ~ N (0; — %P 'VU(6)), 2% P ),

for 0g = Omin,: and P, v, Ny defined in Section 3.2. Here, Oyin ¢ 1S @ minimizer of Uy.
We call the distribution of 6y, approximate posterior and denote it by fi;. Throughout
the section, we denote the random variable following u; and ji; by 6; and 0, respec-
tively. Unless stated otherwise, we continue to use the following previously introduced
notations to state results; A satisfying Assumption 2, p, Mg, M,, S from Definition 2

and 1, L, and W from Assumption 3, L = \/ﬁ with m defined in Lemma 1.

4.1 Comparing exact and approximate posteriors

We begin by introducing a concentration result for the distribution of approximate

system parameters and exact posterior. It is one of the essential parts for obtaining a
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probabilistic bound 1 -
i decay of ~— Bellman’s principle
for concentration between min,t
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Theorem 3: Theorem 4: Theorem 5:
| iakini wation of 7 the bound of Theorem 6: regret
olynomial-in-time concentration of e bound o
poly; He ) . R(T) < O(VT)
bound for the state |z | around 6, |z |“ and |z¢|

Figure 4.1: Outline of the proofs

non-asymptotic guarantee of the improved regret O(\/T ) dropping log T as it will be
noted in Section 5.

The following proposition gives us the concentration between p; and ji;. The result
quantifies the concentration depending on the moment p. The higher moment bound
for p > 2 is used to characterize a set of system parameters where the state does not
grow exponentially as illustrated in the following subsection while the bound for p = 2

is necessary for the regret analysis.

Proposition 1. Suppose Assumption 1 and 2 hold. For any t > 0 and trajectory
(2s)s>1, the exact posterior p; and the approximate posterior fi; obtained by pre-

conditioned ULA satisfy

EetN#t,étNﬁt Uet o 9t|€)t | ht] < Dp’

P

2
where D,, = (%) <22p+1 + 5p> for p > 2. When p = 2, we further have

D
max{ Amin,t, ¢}’

D=

|0y — ét’2 | ht] <

Eet ~pie By~ [

where D = 114% and Amin ¢ denotes the minimum eigenvalue of P;.
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Proof. See Appendix C. O

Without the preconditioner, Theorem 2 would yield that we are only able to get

O( \/)\rlnT) rate of convergence, which is an LQR version of Theorem 5 in [43].
To impro;/e the concentration, we infuse the timestep ¢ into the stepsize required for
ULA so that the right-hand side decreases as the episode proceeds. The relationship
max{Amin ¢, t} > Amin,¢ contributes to achieving the better concentration.

Another important result we need is the probabilistic bound for the distance be-

tween the exact posterior and the true system parameter 6, which is essential in char-

acterizing a confidence set relevant for T'S-based learning.

Proposition 2. Let Assumption 1 and 2 be enforced. Given a trajectory (zs)s>1, define

P = Mg, + 3128 blkdiag{zsz;r}?zl. Then for any § > 0 and p > 2,

d
1 SnM?2 N Amaxt \ 2
Bop 100 = 0.1, | 1] < W e (F(5) ) 0w

holds with probability at least 1 — ¢ for some constant C = C(d, \,m,n) > 0. Here,

Amax,t denotes the maximum eigenvalue of P;.

4.2 Bounding expected state norms by a polynomial of time

A nontrivial result we can derive from Proposition 1 and 2 is that the system state
has a polynomial-time growth in expectation. To justify this property we modify the
confidence set and self-normalization technique developed for OFU approach [28, 48].
Our idea is to construct a set containing sampled system parameters obtained by ULA
with high probability. The higher moment bound from Proposition 1 and 2 is crucial
for the analysis as Markov type inequalities can be exploited for any power p. We then
split the probability space of the stochastic process into two sets, good and bad as in

standard OFU approaches.
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Theorem 3. Suppose that Assumption 1,2 and 3 hold. For T > 0, p > 2 and any

trajectory (x5)1_, generated by Algorithm I, we have
E[max |z;[P] < Ct2P(@+D)
J<t
for some constant C(d, \,m,p, p, L,, M,,S) >0

Remark 3. In the next section, we will further improve the bound to constant, which

is one of the main contributions of this work.

4.2.1 Concentration of 1, and /i; around 6,

Leveraging the previous results on the concentration and the expected state norms, we
can deduce that the minimum eigenvalue of the preconditioner actually grows in time
which is given in Proposition 3. With this property as well as Theorem 3 on hand, the
concentration property of exact posterior follows. Finally, the triangle inequality yields
the result desired, the concentration of approximate posterior around the true system
parameter.

Let us begin with the observation that i, (P;) grows at least V/t with high proba-
bility, which is motivated by [36]. The high-level description is as follows. To analyze

the minimum eigenvalue of ", 25z, , we recall the decomposition

Zzsz;r
=3 (Late) (Latps) T = O ws(Latrs) )T O wswd +10) O ws(Lsths) T

random matrix part

self-normalization

Here, for j < k and s denoting the timestep, and

Asxs_1 + Bius_1
Ys =
Kj(A*.’L’S_l + B*Us—l)

where K; denotes the control gain matrix computed at the beginning of jth episode.

We also let
I 0 Wy
L, := " , and s = s
Kj Inu Vg
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The random matrix part is indeed a sum of random matrices and it is shown that they
accumulate the minimum eigenvalue high probability.

The self-normalization term must be minimized to guarantee the growth of min-
imum eigenvalue. Thanks to Theorem 3, it is bounded by O(logT") with high prob-
ability. Since the random matrix part has Q(\/T) growth rate, we obtain our desired

result.

Proposition 3. Suppose that Assumption 1,2 and 3 hold. Given p > 3 and k >
ko(d, \,m,p, p, L,, M, M,, S, W), we have
1 _
E[] < Ck7P
AP
min,k+1
for some constant C(d, \,m,p, p, L,, Mk, M,, S, W) > 0. Here, Apin k11 denotes
the smallest eigenvalue of N4+ Zi’:ffl 2524 where (2)s>1 is obtained via our main

algorithm.
Remark 4. In fact, Ayin 1 is same as that of our preconditioner P

A direct consequence of the proposition above is that £ [/\ﬁ] < Ct 5 as Amin, ¢

min,t

increases as ¢ grows.

Recalling the probabilistic bound for |0; — 6,|p, from Proposition 2, one can see
1

pw— and self-normalization term. Thanks to

that |0; — 6] is controlled in terms of

Theorem 3, the latter is dominated by the former that has polynomial-time growth as
seen in Proposition 3. Consequently, we claim the concentration result on the exact

posterior fi;.

Proposition 4. Suppose that Assumption 1,2 and 3 hold. Given p > 3 and t >
to(d, \,m,p, p, L, Mk, M,, S, W), the exact posterior i, obtained by Algorithm 1

and the true system parameter 0, satisfy

p
E[Eg, <y, [16: — 0.[Ph]] < C(tix/log t)

for some constant C(d,\,m,n,p, p, L,, Mk, M,, S, W) > 0.
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Combining the result above with Proposition 1 through triangle inequality, we ob-

tain the following concentration property of the approximate posterior.

Theorem 4. Suppose that Assumption 1,2 and 3 hold. Given p > 3,
t > to(d, \,m,p,p, L,, Mk, M,, S, W), the true parameter 0, and the approximate

posterior [i; satisfy

~ p
E|Bj, .z 10 - 9*\1)’}%]] < C(ti\/@)

for some constant C(d, X\, m,n,p, p, L,,, Mg, M,,S,W) > 0. Here, [i; denotes the

approximate posterior corresponding to the posterior | obtained by our algorithm.

Proof. By Jensen’s inequality,
[ [EétNﬂt Uét B 9*|p‘ht]:|

=E |:E9tN#t,étNﬂt “ét - 9*‘p‘ht]:|

< 2p1E[E [16: — ét\p!ht]} + 2P1E[JE 10: = 0[7|e]

Oy ~pue Bt~ Op~pue,Be it [

D ! p
< 2p—1E[”} + 2p_1C<t_4\/logt>
o (\/ Amin,t)p

P
< C’(t‘h/logt) :
where the second inequality comes from Proposition 1 and 4. O

This result is surprising in the sense that the learner disregards the possibility of
choosing a destabilizing @ for ¢ large even if we use a general admissible set S instead
of miracle sets [1, 2]. Furthermore, the result provides a hint on the sample complexity

for the quantification of the posterior around the true system parameter.
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Chapter 5

Main result

We finally present that the Algorithm 1 indeed achieves O(+/T) regret bound which
is a slight improvement from O(+/T log T') while handling a broader class of system
noises under the minimal assumption on the admissible set. One of key components
for obtaining this result is a uniform bound of the moment of state improving the

polynomial-in-time bound.

5.1 Improved state bound for E[|z;|?] and E[|z;|*]

As noted, we further improve the result 3 to constant bound. To do so we decompose
the state moment into two parts: |6; — 6| < eo and |#; — 6.| > € for some ¢y > 0.
When ¢ is small enough, |A, + B.K(6;)] < 1, hence, the state bound is obtained
easily. To deal with the second part, we invoke Markov inequality to balance out the
growth of the state and the tail probability by choosing an appropriate p. Such an

analysis is available thanks to Theorem 3 and Theorem 4.

Theorem 5. Suppose that Assumption 1,2 and 3 hold. For any T' > 0 and trajectory

(zs)I_, generated by Algorithm 1, we have

E[’$t|q] < Ca q= 2747
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for some constant C(eg, d, \,m,n, p, L,,, My, M,,S, W) > 0. Furthermore, € is a

number such that |0 — 0. < €q implies that |A, + B, K(0)| < 1.

5.2 Regret bound

Finally, we present our main result which states that O(+/T) regret bound is achieved.
Since we consider the Bayesian regime, we write the regret in the form of

ny T

R(T)=E {Z > (elmr,ue) — J(0.)],

k=1 t=1
where 6, denotes the random variable for the true system parameter. Here, Thanks to
the astonishing result by Bellman [49], we have the recursive relation for the cumula-

tive cost
= ij(L‘t + ﬁtTRth -+ E[(Akwt + Bkﬁt + wt)TPk(Akxt + Bkﬂt + wt) | ht]

= :ctTth —+ INLtTRﬂt + (flkxt + Bkﬂt)TPk(Akmt + Bkﬂt) + E[w;f’kwt | ht],

where ¢ € [tx, tk+1), 0, sampled at the beginning of the kth episode, @ = K (ék)
and P, = P(ék) One should note that there is a small gap between controllers 4; and
the u; that we use for the algorithm since we infuse noise 14 once in each episode.
However, the contribution of this perturbation to the regret is as low as v/7 since it is
executed at most /7 times.

For the rest, we follow the argument provided in [1]. The difference is that we
use the Proposition 1 to control the part containing |9~t — 0| whereas [1] deals with
such terms using the explicit structure of distributions, hence, our concentration result
provides a novel way of reducing the regret even when ULA is exploited for sampling.
Furthermore, the use of Theorem 5 contributes to dropping the term log 7. In regret
analysis based on Bellan’s principle, we estimate the second and fourth power of the

state by invoking Cauchy-Schwartz inequality to handle terms such as |z||0 — 6].
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When the higher moment is available, we can effectively estimate quantities involving

such terms.

Theorem 6. Let our prior py satisfy Assumption 2. Then, under Assumption 1 and 3,

the expected cumulative regret (2.3) of Algorithm 1 satisfies
R(T) < O(VT).

To our best knowledge, all Bayesian regret bounds obtained in the aforementioned
literature contain polylogarithmic terms in time horizon 7" while ours only includes
constants. The presence decreasing gap between the exact and approximate posterior
as shown in Proposition 1 contributes to obtaining the improved regret while the con-
centration property is not taken into account in [1]. We are able to achieve such a
concentration property thanks to the unique characteristic of our preconditioned ULA,

which results in an effective exploration of the true system parameter while learning.
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Chapter 6

Experiment

To test our algorithm, we plot the expected cumulative regret in various dimensions

considering Gaussian mixture and asymmetric noises which are non-Gaussian. In addi-

tion to that, we take the comparison experiment with [1] using Gaussian distrurbance.

Finally, we experimentally show that our preconditioner method is computationally

efficient.

6.1 Experimental setup

For the true system parameter O, we use

0.3 0.1 02
Ays= 101 04 0|,

0 0.7 06

and )

0.3 0.6
0 0.1
Ay=10.1 0.5

04 0
03 0.3
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0.5 0.4 0.5
B.=106 03 0|,
03 0 0.2
0.2 0.3 0.1]
04 0 0.6
03 0 0.2
03 03 0
0.1 0.4 0.4]




(0.5 04 02 05 04
0.6 0 03 0.1 0.3
B.=105 0 0 0.1 02
0.1 05 0 02 04
02 01 06 0 0

and Q = 2I,,, R = I,.forn =n, = 3 and 5 repsectively.

6.1.1 Gaussian mixture noise

In this section, we consider a Gaussian mixture noise which is given by

1 —(wy—a)? —(wg+a)?
pw<wt)zw(€ T 4e 2z ),
where a = [%, %, %}T and [i, i, %, i, %]T for n = 3 and 5. Taking gradients,
—Vlogpw(wi) = wy —a+ 1+2;w:a
and
2w/ a

2 _ _ T
—V*log pw(we) = I,, — 4aa 7(1 e

> 1, — aa’
> (1~ |a|*)In.
Therefore, the first condition in Assumption 1 is satisfied for n = 3 and 5.:

1
113 < —V?log pu(wy) < I,

11
15l < —Vlogpu(wi) < Is.

Executing Algorithm 1 under the Gaussian noise, Figure 6.1 shows that the trajectory

oscillates around the origin.
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Figure 6.1: First component of state (1) and control (1)

6.1.2 Asymmetric noise

We also consider asymmetric noise. To proceed we begin by constructing a noise as
follows. Let all components of w; be independent and its components w; (1), w¢(2), . . .,
we(n — 1) follow the standard Gaussian distribution where w; (i) denotes ith compo-
nent of w;. We set the Hessian of log wy(n) to be piecewise linear, namely,
_ & log p(wy)
Owy(n)?
m  ifw(n) < a,

= § Moty (n) 4+ m— L < wy(n) < B,

M if B < wy(n)

for o« < 8 which are chosen carefully to satisfy Assumption 1. We choose m = 1 and
M = 10 for the experiment. The comparison with the standard Gaussian distribution
using various values for M and m = 1 is demonstrated in Figure 6.2. We first generate
a sequence of noises following the prescribed distribution offline through ULA. With

the sample, the covariance is estimated.

s A g8t
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Figure 6.2: Comparison between w;(n) and standard Gaussian noise

6.2 Performance of our algorithm

We test our algorithm with a Gaussian mixture and asymmetric noises. We also con-
sider the Gaussian disturbance to make a comparison with [1] as their method is only

applicable to this particular noise.

-+ —e : ixt +J ——Gaussian mixture

E 1000 _Asa;/.l:’\srﬁ:tgllx ure q,_) 1000 —— Asymmetric

(o)} (o))

7} @ 800

o 800 o

[} (]

< 600 < 600

= =}

£ 400 o400

> / >

€ 200/ € 200

> >

© 0 o 0 ]

0 500 1000 1500 2000 0 500 1000 1500 2000

T T

Figure 6.3: Expected cumulative regret R(7") over a time horizon 7" using Gaussian

mixture noise and asymmetric noise for n = n, = 3 (left), for n = n,, = 5 (right).

We verify the effectiveness of our algorithm for various dimensions, n = n,, = 3
and 5. The simulation result is preseneted in Figure 6.3. For the experiment, we set true
system parameters (A, By) to satisfy p(A, + B.K) = 0.3365 for n = n,, = 3 and
0.3187 for n = n,, = 5 where K is the control gain matrix associated with (A, B.).
The explicit numbers are demonstrated in Section 6.1. For the admissible set S, we

choose S = 20, M; = 20000 and p = 0.99 for both cases regardless of the type

.__:rx_-‘! k '-.;.'2
¥ i
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noises. We also sample action perturbation v, from A/ (0, Wloolnu) at the end of each
episode. For all experiments, a prior is set to be Gaussian distribution where A = 5 and
the mean of each is 0.5. The details for pathological noises we use for the experiment
is illustrated in Section 6.1 as well.

As shown in Figure 6.3, our algorithm effectively achieves v/T expected regret

bound in all dimensions 3 and 5 with different type of noises.

4000 300
ol —PSRL-LQ ——PSRL-LQ
=4 —TsLD-LQ —TsLD-LQ
@ 3000+
4 & 200
1Y <
.= 2000 ~
T &
= 100
£ 1000 &
=
(@)

0 0
0 1 2 3 4 5 1 2 3 4 5
T x10% log T

Figure 6.4: The comparison of expected cumulative regret R(7") (left) and ratio over a

time horizon 7" in comparison with PSRL-LQ [1] for n = n,, = 3 (right).

We also provide experimental evidence to emphasize the benefit of our algorithm.
For this sake, the regret achieved by our algorithm is compared with obtained in [1],
which is referred as PSRL-LQ. A critical assumption needed for this experiment is
that the system noise follows from the Gaussian distribution as by no means the latter
algorithm can be applied yet ours can handle general noises. For PSRL-LQ, the distri-
bution of © (i) is assumed to be independent where © = |©(1) - - - @(n)] and |©] < S
for some S > 0 so that each column is updated independently as PSRL-LQ algo-
rithm proceeds. However, such a restriction is not required for our algorithm as long
as V2U1(0) = Mg, for A > 1. Itis also worth noting that PSRL-LQ requires that sam-
pled system parameter 6 be rejected based on the condition |[A, + B, K(0)| < p <1
for the true system parameters A, and B, whereas ours only imposes the condition
6 € S. For a fair comparison, we replace the rejection step in PSRL-LQ by the condi-

tion 6 € S. The figures in Figure 6.4 shows the superiority of our method compared to
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PSRL-LQ as it always achieves lower regret. Furthermore, the ratio % is maintained

to be a constant as 7" increases.

6.3 Effect of preconditioner on number iterations

The computational advantage of our new method is corroborated empirically as seen
in Figure 6.5. For naive ULA, one chooses the stepsize and number of iterations from
Theorem 2 while preconditioned ULA chooses those based on Algorithm 1. We utilize
the system parameter chosen at the beginning of this section and use the standard
Gaussian distribution.

We observe a significant reduction in the number of iterations needed for the sam-

pling process when preconditioned ULA is implemented compared to the naive ULA.

x10°

—Naive ULA
——Preconditioned ULA

-
o

Number of iterations

0 500 1000 1500 2000
T

Figure 6.5: Comparison for the number of iterations over time horizon 7" between
TSLD-LQ with naive ULA and preconditioned ULA. For naive ULA, we use the step-

size and the number of iterations in Theorem 2.

As shown in the figure, the number of iterations of naive ULA increases almost
linearly and is remarkably greater than that of preconditioned ULA. Altogether, it is
verified empirically that our algorithm achieves improved regret while using fewer

computational resources.
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Chapter 7

Conclusion

We propose a state-of-art computationally tractable Thompson sampling-based algo-
rithm for learning LQR problems with the various classes of disturbance achieving
O(\/T ) Bayesian regret bound. A salient feature of our method is that we not only
drop the stabilizing compact set assumption but also the independence of columns of
O by introducing preconditioned ULA and executing a perturbed control action only
at the end of each episode. Several directions for future research can be proposed. Ex-
tending our algorithm to noises with non-convex potential is an important subject of
study. As the log-concavity of the potential of posteriors is preserved even for noises
we consider, acceleration of the sampling process was available. To handle more gen-
eral noises, some different aspects of ULA should be explored. Additionally, we also
address an open question on characterizing control gain matrices which induce more

efficient learning of LQR problem:s.
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Appendix A

Proof of Theorem 2

Lemma 2. Suppose Assumptions 1 holds. Let X € R™ be a random variable with
probability density function p(x) o e~V®) where ApinI,, < V2U =< AmaxIn, for
Amaxs Amin > 0. Set {Y}}, Y; € R"* be generated by the ULA as

Yjir1 =Y; —yVU(Y)) + / 29W},

. . . . . . Amin
where Yy is a random variable with an arbitrary density function, v < TorL Then,

we have
’\min J n )\2
E[)Y; - X[ <27 U E(Ye - X P+ 28 5meny,
min
where

Proof. Let {Z¢}¢>( be a continuous interpolation of {Y}}, defined by

dZe = —VU(Y;)d¢ + V2dBe  for € € [jv, (j +1)7)
Ze =Y for £ = j7.

(A.1)

Note that lim¢ »;, Ze = Y; = limg\ j, Z¢ for each j, and thus {Z¢} is a continuous
process. We introduce another stochastic process { X}, defined by

dX¢ = —VU(X¢)d€ + v2dBe,

where X is a random variable with pdf p(z) o e~U(*). By Lemma 3, X¢ has the

same pdf p(z) for all £. We use the same Brownian motion B¢ to define both {Z,} and
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{X¢}. Fix an arbitrary j. Differentiating | Z¢ — X¢|? with respect to & € [57, (j +1)7),

we have

d|Ze — Xe|? dZe  dXe
IR CIRON (dﬁ_d£>

=2(Z¢ — Xe) ' (=VU(Y)) + VU(Z¢)) + 2(Z — Xe) (=VU(Ze) + VU (X)).
Therefore,
2(Ze — Xe) (=VU(Y)) + VU(Ze)) + 2(Ze — Xe) ' (=VU(Ze) + VU (X¢))
< 2(Ze = Xe) ' (=VU(Y)) + VU(Z¢)) = 2min(Ze — Xe) " (Ze — Xe)
= 2|Z¢ — X¢|VU(Z¢)) = VU(Y))] = 2Amin| Z¢ — Xel*.
where the second inequality follows from the strong log-concavity.

Using Young’s inequality, we have

)\min‘ZE - XEGD + |VU(Z§)) - VU(}/})‘Q
2 2)\min .

|Ze = Xe|[VU(Z¢)) = VU(Yj)] <
It follows from the equality and the inequalities above that

d|Z¢ — X¢|? 2,
———— < —Apin|Ze — X
& 1 Ze = Xel 3

L VU(Ze) - VU P,

which implies

d f €>\min£ 2
(€| Ze — Xef?) < IVU(Ze)) = VU(Y;)I

d§

Integrating both sides from j~y to (j + 1) and multiplying e Amin(GH1)7 | we have

| Z(1yy — X l® < €772, — X2

1 (G+1)y .
N / e~ Mmin(UH)7=9) |91 (Z,)) — VU (Y;)2ds.
J

)\min jy

Since X; and X have the same pdf by Lemma 3, we have

E(|Z(j41), — X[*] (A2
(J+1)y
< R Z, — X[ / E[|IVU(Z,)) = VU(Y;)]?)ds
Vel
(J+1)~y
< e R[] Z, — X)) mﬂx/ |(Zs — Y;)|]ds, (A3)
Val
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where the first inequality follows from e~ *min((G+1)7=5) < 1 and the second inequality
follows from the Lipschitz smoothness.
To bound (A.3), we handle the first and second terms separately. Regarding the

second term, we first integrate the SDE (A.1) from jv to s € [j, (j + 1)7) to obtain
Zs—Yj; = —(s — j7)VU(Y;) + V2(Bs — Bj,). (A4)
The second term of (A.3) can then be bounded by

(J+1)y ) (J+1)y . )
/ E[|Z, — Y;?]ds = / E[| - (s — j7)VU(Y;) + V2B, — Bjy)|?)ds
J

jy Vil
(+1)vy ) (G+1)y
<o [T Bl - Vo opPis 2 [ BB - By Plas)
o Jv
(A.5)
For s € [, (j + 1)7), we note that |s — jy| < ~, and thus
(G+1)y . ) ) (G+1)y )
| Bl - mvumPs <o® [ BV
3 3
= 73E[|VU(Y})|2] (A.6)
= 73E[|VU(Y]-) - VU(ﬂcmin)m
< 73>‘12naxEHY} - xminP],
where z i, 1s @ minimizer of potential U.
Then,
1 1
E[|Yj — zminl’] < (B[Y; — X|))7 +E[|X — 2min|*]2)?
3 (A7)
< 2(E[)Y) — XP] 4+ E[IX — Zuil).
Applying Lemma 10 in [43],
E[)Y; — @inl’) < 2E[)Y; - X[] 4+ 1027 (A8)
On the other hand, Lemma 8 in [43] yields
G+ 4
/ E[|Bs — Bjy[?]ds < 242, (A.9)
3y €
] -1]
= ]
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Combining (A.5)-(A.9), we obtain that

G+ n 16n,
[ BZ - YiPlds < 22 Y, - X+ 2100 4 1
77 min
S 22)‘3nax73E[|Y} - X|2] + 25’”%72’
(A.10)

where the second inequality follows from v < lé\;\lgn .

max

Applying the result above to (A.3), we have

Mo A2
El|Z 41y, — XI?] < e B[\ Zj — X|?] + 22 TR E[]Y) — X7 + 200, T2

>\min )\min

)\ . 2
< (1-22) ElY; - P2

2)‘;11133( 3 2 5 )‘?nax 2
+ 22 EEACRNY; — X |7 + 2°n, A2,
)\min >\min

(A.11)

where the second inequality follows from the fact that e < 1 — Z for z € [0, 1]. To

further simplify the upper-bound, the following inequalities are needed:

22 )\fnax,yS _ )\min % 273 < )\min’y
)\min 64 - 64

)\min

)\min 2 Amin )\min 2
1-— <l1l1—-— .
< 4 7) T S g !

Consequently, E[|Z(;1), — X|?] is bounded as

and

)‘min 2 AQ
E[|Z(41)y — XI*] < (1 -3 7) E[|Y; — X2 + 2%n, Smax,2

)\min
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Invoking the bound repeatedly, we obtain

E[|Z(j11)y — X[

P 2(5+1) J 2i . 22 )
min mln max
<<1— 3 v) E[|Yo — X|?) +Z;< > Png
Ao 2(5+1) 1 AQ
< (122 E[|Y, — X|?] + 20, Lmax 2
S v) Yo = X[+ — 0= 250)” " A (A.12)
Amin 2(3+1) ) < 22
=(1- ol E[|Yo — X|] + 2%n, 5=~
8 )\mln
Amin (3-+1) ) s 22
< (1-2mm) 7 Bl - X+ 2P, S

Amin

Since (1 — )‘%8“‘7) < (37, Z(j+1)y = Yj+1, we conclude that

AminY(i+1)
1\ 4+ a2
E[|Yi1 — XP] = E[lZg41), — X)) < <2> E[|Yy — X|?] + 2873;2‘“&"7_
min
Replacing j + 1 with 7, the result follows. O

Proof of Theorem 2. We now prove Theorem 2. It follows from Lemma 10 in [43]

that

21

=

<3

E.Z’Np [|.CC - xmin‘Q] s (A.13)

>\min
where T, is a minimizer of U. Using Lemma 2 in with n, = dn and the initial

distribution X ~ §(zpin) to obtain that

YN n )\2
~ J— mln 2
Eonpinpy |2 = 2| } <2 Esnp[|2 — Zmin]*] + 28%
min
Taking the stepsize and the number of steps as v = lé\j\r‘gn and N = 6§>2\max respec-

min

tively, the first and second terms in the inequality above is bounded as

min 1
2 By |7 — minl?] = 5Eans [l = Zinl’]
<95t
min
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and

2
8Ny )‘max 4 Nz
98 lelmax ) < 9f T2
)‘min >\min

respectively. Therefore, we have

_i97d Ty 1
Eonpanpy llo = 377 < | [4157 = 0( /1.

S EEiRT!
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Appendix B

Proof of Lemma 1

Proof. By direct calculation, the following holds:

T

s

Vg log pu ($s+1 - @TZS) = V%Us logpw(xs+1 - @Tzs) @ 252

where ® denotes Kronecker product. Then, Vg Uy is given by

t—1
VzUt = Mgn — ZV?% 1ngw($s+1 - @Tzs) & ZSZ;—'

s=1

By Assumption 1, for any state action pair z5 = (s, us),
mblkdiag({zsz] }7_,) < V2, 1og pu(Tsi1 —0"2,)®2z] < mblkdiag({zsz] }1,).

Then, we have

t—1
min{m, 1} <)\Idn +>° blkdiag({zsz§}$1)> < V32U,

s=1
and
t—1
V23U, < max{m, 1} (/\Idn + Zblkdiag({zsz;r};?_l)).
s=1

Finally, letting the preconditioner P, = A\l g, + Zi;ll blkdiag({zsz, }"_,), we obtain

_1
m = P, >V2Uy(§)P,

[N

= M.
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Appendix C

Details for Section 4.1

C.1 Proof of Proposition 1

To prove Proposition 1, we first introduce the following two lemmas regarding the
stationarity of the preconditioned Langevin diffusion and the non-asymptotic behavior

of the preconditioned ULA.

Lemma 3. Suppose that Assumptions 1 holds. Let X¢ € R"* denote the solution of

the preconditioned Langevin equation
dX¢ = —P7'VU(X¢)d¢ + V2P 2dB,

where X is distributed according to p(z) < e~U®), and P € R™*" is an arbitrary

positive definite matrix. Then, X¢ has the same probability density p(x) for all € > 0.

Proof. Consider the following Fokker-Planck equation associated with the precondi-

tioned Langevin equation:

8qx§ Ny Nz 8 _
Z 8902 P~V log p(x)]iq(z, £)) +;]Zl 835,830 Yia(z,)).
(C.1H

Then, it is well known that g(x, ) is the probability density function of X¢. We can

check that p(x) is a solution of the Fokker-Planck equation by plugging ¢(x, &) = p(x)
A 2l
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into (C.1). Specifically,

Ny Nx MNg 2
= e (P lorp@ (@) + -3 5 (P una)
i=1 " i=1j=1 "
— Ox; J@xj P o0x;0x J
_ o 9px)
—0= 3%

Since the Fokker-Planck equation has a unique smooth solution [40], we conclude that

q(x,t) = p(x) for all ¢, and the result follows. O

Lemma 4. Suppose Assumptions 1 holds. Let X € R™ be a random variable with
probability density function p(z) o< eV @), and {Y;}, Y; € R™ be generated by the
preconditioned ULA as

Yip1 = Y; —4PTIVU(Y)) + V2 PIW;,
m>\min

16 M2 max{Amin,t}’
1 1
and P € R" isa positive definite matrix such that mI,, =< P 3V2UP 2 < MI,,

where Yy is a random variable with an arbitrary density function, v <

and Aminlpn, 2 P = AmaxIn,- Then, we have

ng M?

E[Y; — X|}] <27 T E[Yy - X[}] + 2825

m

Proof. Let {Z¢}¢>( be a continuous interpolation of {Y}}, defined by

dZe = —P7'VU(Y;)dé + V2P~ 1dBe for € € [jv,(j + 1))
Ze =Y for &€ = jv.

(C.3)

Note that lim¢ »j, Z¢ = Y; = limg\ 4 Z¢ for each j, and thus {Z¢} is a continuous

process. We introduce another stochastic process { X¢ }, defined by
dX¢ = —P7'VU(X¢)d¢ + V2P 2dB,

where X is a random variable with pdf p(z) o e~U(*). By Lemma 3, X¢ has the

same pdf p(z) for all £. We use the same Brownian motion B¢ to define both {Z,} and

- - . =
¥ [, -11 =|
,.-,\_—! —1.- 1__.| [
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{X¢}. Fix an arbitrary j. Differentiating | Z; — X¢ |} = |P% (Z¢ — X¢)|P with respect
to & € [j7, (j + 1)7), we have

d|Ze = Xelp

1 dz dX,
o8 =alPh(Ze - Xz - X0 TP (Gt - )

d¢ d¢
= p|P2(Ze — Xe) P2 (Ze — Xo) T (-VU(Y)) + VU (Z))

1 _
+p|P2(Zg = Xe) [P (Ze — Xe) T (=VU(Zg) + VU(X¢)).-
Noting that mI,, < P~2V2UP~2 = MI,,, it follows that

PP (Ze — X) P2 (Ze — Xo)T (-VU(Y;) + VU(Z))
+ P2 (Zg = Xe)""2(Ze — Xe) | (~VU(Z) + VU (Xe))

< p|P2(Zg — Xe)lP2(Ze — Xe) T P2P T2 (=VU(Y;) + VU (Z))

1 _
— pm|P2(Z¢ — X¢) [P~ 2(Ze — X¢) " P(Z¢ — Xe)

1 _ _1
= p|P2(Zg — X¢)|P 2<!Z§—X£\P\P 2VU(Z)) — P~2VU(Y, )!—mlzg—Xé\p)

where the first inequality follows from the mean value theorem.
Recall the generalized Young’s inequality stating ab < %—F# fora,b, o, 8 >
Oand s > 0and  + % = 1. Choosing s = (%)(p_lm’, a= L and § = pwe

further derive that

|Ze — X5 |PEVU(Z)) — PEVU(Y))]
p—1 pm

T Ze — X+
p 2(p-— )’5 elp+

1 1
— — _|P72VU(Z)) — P 2VU(Y;)P.
p( (Z;,l))p_1| ( 5)) ( J)‘

Hence,

d|Ze — Xt pm r—l _1
—a < —7125 — Xelp + W’P 2VU(Ze)) — P~ 2VU(Y))PP,

pm > m
as 2(p = . As aresult,

d pm pm . 2P
—(e2 %2 — Xelp) <e2 5m

I LIPYU(Z) ~ PEVUP.
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Integrating both sides from j~ to (j + 1)~ and multiplying both sides by ez Uy,

we have

|ZG+1yy = X+ lp

_pbm
<e 2 7Zjy — Xjlp

p—1  r(i+1)y _—
L2 [ e pobvua) - v pas
Jv

Since X¢ and X have the same pdf by Lemma 3, we have

E(|Z(j11), — XIp]

- gp—1 (G+1)y 1 1

< e BR|Zy - Xp)+ / E|P72VU(Z,)) - PT2VU(Y))")ds
Vol

p

— e BE]|Z;, — X)) (C4)

op—1  r(+1)y L,
b [ EIPT ([ VRO 0 - 20)0(2, - YPlds
o 0

< e BR[| Zj, — X[B) (C.5)

op—1 @+ Lot ) )
T mp—1 / EHP_Q(/ V2U(Y; + t(Y; — Zs))dt) P2 |P|P2 (Zs — Y;)|F]ds
Vil 0

2r—1 P

_pm
< R 25, - X+ 5

(G+1)y N
/ E[|P*(Z, — Y;)[)ds, (C6)
7Y

where the first inequality follows from e~™((/+1)7=%) < 1 and the second inequality
follows from the mean value theorem and the last inequality follows from the assump-
tion in the lemma. To bound (C.6), we handle the first and second terms separately.

For the second term, we integrate (C.3) from jv to s € [j, (j + 1)7) to obtain

Zs—Y; = —(s — jy)P7'VU(Y;) + V2P~1(Bs — Bj,). (C.7)
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Ignoring the constant coefficient, the second term of (C.6) is then bounded by

(+1)y L
[ ez - vpps
Vel

(+1)y 1
= [ Bl = (- P VU + VR, - By)Plds

(+1)y ) GH+1)y
<ot | [T Bl - mpivo P+ 2 |
Vil Vel

(C.8)
For s € [jv, (j + 1)7), we note that |s — j| < -, and thus

(G+1)y N (J+1)y L
[ Bl - ivumypas <ot [T Elp bu)p)
Jv '

7Y
— P HE[PAVUY)P]
_ fyp'HEHP_%VU(Yj) — P_%VU(l’min)‘p]

< APTIMPE[Y) — @inlp),

(C.9)
where i, is @ minimizer of potential U.
Let X = P2 X and denote the distribution of X by p(&), i.e., X ~ p(&),
E[)Y; — Zmin[p] < 27 E[Y; — X[B] + E[X — Zminl?))- (C.10)
Note first that () = det(P~2)p(P~2%).
Hence, —VZlogp(Z) = —Pfévg logp(Pféi)Pfé which is m-strongly convex
with respect to x, one can apply Lemma 10 in [43]. As a consequence,
P p—1 py ., 107 pna,\p/2
E[lY) — zmin[p] < 277 E[]Y; _X|p]+7( )7 (C.11)
On the other hand, Lemma 8 in [43] yields that
(+1)y
/ E[|By — Bjy|P]ds < 2(P22 )P/ 2p/2+1, (C.12)
7 €
I 1 O 1 &
'H._! I B |i i |
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Combining (C.8)—(C.12), we obtain that

(+1)y
[ Bz - vilas
J

Y

< 222 )PP HIR[)Y; — X [B)] 4 20 2(10M)PAP (PPl
m
+ 23p/2(&)p/27p/2+1 (C.13)
€

< 2P MPPHIE[Y) — X[ + 2% (png )P 2P/,

1 1 M Amin
where the second inequality follows from v < om0 fp— < 1z

Consequently, applying the result above to (C.6), we have

E(|Z(j11)y — X[p]
_pm g M
<e 2 VIEHZM - XV;] + 2% SW'YPH]EHYJ' - X|1139]

4p—1 p/2 MP p/2+1
+2 (pnx) p_17 .
m

To further simplify the bound, we modify the coefficient as

0393 M?P 17p+1 _m (16M2 max{)\min,t}>p< Amin )p,prrl < ﬁ%
2pr+3 MAmin max{ Amin, t} 32
and
el pyse ™oy s —57+3ﬁ27
<1l- %%
where the second inequality follows from the fact that e™® < 1 — Z for z € [0,1].

Consequently, E[|Z(; 1), — X |[}5] is bounded as

m MP
EllZ(j11)y - X[p] < (1 - 47>E[|Yj - X[p] + 27~ (pn )p/2 mP— 1’Yp/2+1-
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Invoking the bound repeatedly, we obtain that
Bl Z(j41)y = X[B]

(G+1) J i

m m _ MP

< (1 - 7) E[[Yo — X[p]+ ) (1 - ’Y) 277 (png )PP — P2
=0

(G+1)
m 1 MP
1 = ElVe— XIP14 — —  odp—1 p/2 7 p/2+1
<(1-5) B - X gy e
(j+1) MP
—(1-59) B - XEE 2 22
Since (1 — ) < (%)%7, Z(j+1)y = Yj+1, we conclude that
E[lYj+1 = X[p]
= E[|Z(j41), — X5l
1y =gy
- Yo — X |21 4 94+l pi2 M p/2.
<(3)  EI%- X2l
Replacing j + 1 with 7, the result follows. O

Proof of Proposition 1. We now prove Proposition 1. For simplicity, we use the fol-

lowing notation throughout the proof. For a positive definite matrix P,

ED (1t 1) = Bl — TR,

and define A\pax ¢, Amin,s be the maximum, minimum eigenvalues of P;.

Once again it follows from Lemma 10 in [43] that

p
dn \ 2
B, (112, 0(Oumin ) [he) < 57 (pm> (C.14)

for all ¢ since p;’s are m-strongly log-concave. Here 6,y ; is @ minimizer of U.
Then, we use Lemma 4 with n,, = dn and the initial distribution 6y ~ ¢(Opin,¢) in

Algorithm 1 to obtain that

pﬂ% p/2

. 4p+1
(Nta 5(9m1n,t)|ht) + 2 (pnz) mp

EY, (it e he)
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In Algorithm 1, the stepsize and number of iterations are chosen to be

_ m)\min,t _ 4 10%2(max{>\min,t 7t}/>\min,t)
V= 607 max Do} and V; = p . Thus, the first and second

term in the inequality above are bounded as

ayem

N.
2_ 4 t E%t (Mt? 5(9min,t) ‘h’t) e 2_ 10g2 (maX{Amin,t7t}/>\min,t)Egk (/"’t? 5(‘9min,t) |ht)
/2 .
< 5P @ b >\m1n,t ’
m max{ Amin,¢, £}

p

MP (pdn)P/? Amin, ¢ 2

oipt1 P[220 P2 92+l 7 :
(png) ot S 2 max{ Amin ¢, £}

and

Therefore, we have
p

) b
~ pdn 2 )\mint 2p41 )\mint 2
EP ) < [ — gp___ rmmt | o2p+l( Tt )
By (e, fi} ) < m ) < max{ Amin ¢, £} + max{ Amin ¢, £}

Finally,

EQN/H,@'Nﬂz HQ - é’%t ‘ ht]

D
< pdn '\ 2 5P Amin,t 4 92t Amin,¢
—\m max{ Amin ¢, £} max{ Amin ¢, £}

P
< @ : 92ptl | 5P ).
TAm

For a special case when p = 2, a simpler bound is achieved. Noting that

P
2

Amin,t [y 16 — 0,1 | he] < E%:t(ﬂt,ﬂt | he),

¢~ pi B

one can deduce that

- 1 D
EGwm,étNﬁtHet B et’2 [l < m’

_ d
where D = 114%. O

C.2 Proof of Proposition 2

Proof of Proposition 2. Let 0¢ € R denote the solution of the following stochastic

differential equation:

_1
d: = — P71V U, (6¢)dE + V2P, 2dBg,
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where P, = Ay, + S.'_} blkdiag({zsz] }7,) and Uy = Uy + U} for
Ul = Y  log pu(@sp1 — O 2z, 6). Define V(6;) as

1
V(0e) = 5e 10 — 07,
for v > 0 fixed. Applying Ito’s lemma to V'(6¢), we have
V(0¢) = F1 + F> + F3,

where

To bound F', we expand as following.

1 (¢ a (¢
F = 2/ eV oUp(6y) T (8. — 6y))dn + 2/ |6,y — 0B, dn
0 0

1

¢ 0 [€
:_2/0 ea"(ngt(en)—ngt(e*))T(an—e*)dH2/0 16, — 0,]% dn

1 /¢ 1 /¢
+ 2/ eIV U1 (6,) T (65 — 6,)dn + 2/ MU/ (0.) T (64 — 6,))dn
0 0

¢ 3
< 7% e (0, — 9*)TPt(9n —0)dn + % / ™0y — 9*|?Dd77
0 0

1 [€ 1 /¢
- 2/ eV Uy (0) " (0. — 0,))dn + 2/ e oU/(0.) T (0 — 0,)dn
0 0

_ 3 1 (¢
<2 . m/ 6, — O[3 dn + 2/ MUy (0,) 7 (0, — 0,)dn
0 0

1 €
+ 2/ eV U (0.) T (0 — 0,))dn,
0

To bound the second and third terms on the right-hand side, we invoke Young’s in-
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equality, which yields that

3
/ VU1 (0) " (0 — 0,))dn
0

3 1 1
S/GWHQWM@NWWVWMM
0

1 3 _1 2 m £ 2
< — [ e"P, 2VaUi(0:)]dn + 4/ ™10, — O, dn.
0

m Jo

and

3
/ eV oU;(0:) T (04 — 0,))dn
0

[NIE

3 1
S/e“&2WW@WEWVWMM
0

1t an|p~3 / 2 m (¢ @ 2
< — | e P, VU, (0s)|7dn + 7 /e N0 — Oy p,dn.
mJjo 0

Putting altogether,

F1§204

_m/éeane —0,%d +1/£eaﬁ\P5v Uy (6.)]%d

4 0 n *| Py 7] 2m 0 t oY1 \Ux 7]
1 ¢ an _% ! 2

—|——2m ; e P, 2V oU;(0,)|“dn.

Choosing a = 3, we obtain

1 § 1 1 3 _1
B<— [ ep 2 0.)2dn + =— [ €| P, 2VoU/(6.)|*d
V< g | eI 0 P+ o [ e U0, P

1 /¢ _1
< cea5+2m/0 e\ P, 2V U (6,)*dn.

On the other hand, F5 is bounded as

3
F, = dn edn = —dn(eo“5 -1)< —dnea§ = dneo‘f.
2 0 2a

— 2« m

The last term F3 is bounded as follows. By Burkholder-Davis-Gundy inequality
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[50], for = > 0 fixed,

2
£l sup 7] <2ve| ([ 2“”\977—94%@7) ]
0<¢<E
—_ 1
E 2
< 2V2RE ( sup e*¢|0g — 0, |P/ ea"d§> ]
0<E¢<E 0
aE_l %
= 2V2E < sup e*|0¢ — 0. |P< )) ]
0<g<~ a

SE[<8€ =
@

1
) (sup o — 6, w]

0<¢<E

where the expectation is taken with respect to 6¢. By Young’s inequality,

)

o 1 ReOE 1 a
(sup e ﬁwg—e*\%m] SE[ +1(sup e feg—e*ﬁpt)]

«

0<¢<E 0<¢<E
= 1
= 16me®= + IE[ sup V(Gg)].
0<£<E
Finally,
IE'[ sup V(9£)}
0<¢<E

=E| sup (F1+ Fo+ Fg):|

L 0<¢<E
<E| sup Fl] —i—E[ sup F2:| +IE[ sup F3:|

L 0<¢<E 0<t<E 0<t<E

[ ]. —1 / 2 dn a’:‘ 1
<E|({C+ —5I|P, VU (0)]" + — +16m | |e*=+ SE| sup V(¢)].

I m m 0<t<=

(C.15)

Here, we use different C' whenever it appears but it only depends on m, d, n and the

prior U;. Rearranging with respect to E [ SUPp<¢<= V(Gg)} ,

E{ sup V(Hg)] < 2<C'+
0<£<E

1, -1 dn
7P b} /9* 2 i 1 aZ
BT ETULP + 6m>e
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Then,
E[|f= — 0.|p, |he] = E[V2e™2°%V (6=)7]

<V2e 2 :< [ sup V(QE)]>§

0<¢<E

d
\/<c+ —|P VLU0, + E” + 16m>.

Taking the limit = — oo and using Fatou’s Lemma, we have

d
Eo, o [0 — 04| P, [he] < 2\/<C+ —|P 2V U/ (0 *)\2+£ —|—16m>.

For arandom vector X following log-concave distribution, Theorem 5.22 in [51] yields

that
1
E[|X|P]» < 2pE[|X]]

1
for any p > 0. Observe that y := P,* (6; — 6.) is a random vector from a log-concave

e . . . 1 . .
distribution since its potential Uy (P, 2y + 6,) is convex. Therefore, it follows that

By opue |06 = Ox[, 11e] < (2)" By, [10 — Os| P, ]

p
4 1 4d 2
g<2p>p(0+m2|Pt 2V (0 >|2+”+64m) |

(C.16)
-
To proceed let us define Z := [21 . Zt:| . Noting that
8(5&] = Zt 1 me%gf "(”()w t) where the j-th component of noise wy is denoted

by wy(7). Therefore, P; can be written as P, = Mg, + blkdiag{Z"Z}" | = I, ®
(ZTZ + A1), and it is straightforward to verify that P,' = I, ® (Z7Z + M)~}
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Denoting by 6, := ©;; for { = (j — 1)d + i, we deduce that

29U (6.)

1 /
P, VUi (0.1 = D 00

00, (Pe) o o0y,

Ok=1
L N U0 oUy(6.)
- 90.,., ~ ([@'-Dd+,(j-1)d+i 9@..
il i=1j/,j=1 vJ ]
n t—1
810gpw(ws’) T —15T 810gpw(w8)
< ———(Z(Z"' Z + A\ 7 Vgg———"2,
jzlsgl dua() D2 0,)

M
Jm

Recall first that v ' V,, log py (wy) is a -sub-Gaussian random variable (Proposition

2.18 in [52]).

We are now ready to leverage the self-normalization technique, Lemma 6. For each
. t—1 t—1 01 w (Ws
j fixed, we take Xy = zgand V; = Mg+ ) . zs2d, Sy = Doe1 %gﬂ)zs and
the probability bound § to be % in the statement of the lemma. Consequently, we derive

that
t—1
alogpw(ws’) T —15T 8logpw(w8)
TOBPYS) (7T 7 4+ M) 12T )y, S8 Pw\Ws)
2 Tou) A )2 g,
S M, (1 VAR
= 28\ 5 det(Man)

holds with probability at least l—% for each j fixed.

Plugging all into (C.16) and taking the union bound, with probability 1 — §

EGtN,LLt Hat — 0. |Z;i |ht]
P

< (2p)p<<§n: 87%2 log <" (mf)) | Adn +64m—|—0>2

m

= 0\ det(Ay)
d P
nM? N Amaxt \ 2 2
< (2p)P 1 = :
< e (o (5 (7)) )
which finishes the proof. O
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Appendix D

Details for Theorem 3

To get a uniform bound for the state, we start by showing that E[|x|F] has a polynomial-
in-time bound for any p where the expectation is taken over all noises and the random-
ized algorithm. A key idea is to decompose an event into a good set and a bad set
as proposed in [28]. Let us first define €2 to be the probability space representing all
randomness incurred from noises and preconditioned ULA. Then we define the event

Et’ and Ft’ as

Ep={weQ:Vt<t, |6 —0.p < B8}
with the constant C' > 0 from Proposition 2, and
Fp={weQ:Vt <t |z <oy},

where

p(9)
= e(t(t + 1))~/ 1o8?

d
dn 1 1 8M?2n nt(t+1) [ Amaxst \ 2
X <1O Elog (5> + 2log <5>\/ 3 log< 5 < \ > > +C>,
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and

o = —| —
I-p\ p
_d_ 1 = = 2t2(t+1)
x ( Glmax| ;)T 5,(8)7 0 + d(L + SLy )y [2log ( =5 ) ),
J=

where L = \/%—m denotes the subgaussianity of our system noise obtained from Herbst

argument in [53] and GG is a positive constant defined in Lemma 5. Let us briefly
describe how the proof proceeds. First, we examine the distance between the exact
posterior and true system parameter 6., which is given in Proposition 2 below. This
quantification in turn allows us to estimate |9~t — 0| with high probability with respect
to E; and F;. Finally, one achieves the polynomial bound for the state combining all
together with Proposition 1 as given in Theorem 3. Our result is an extension of [28]
to the TS framework.

The next proposition asserts that the event F} defined at the beginning of the section
happens with high probability. Thanks to this result, we can integrate the OFU-based
approach with the Bayesian approach where Thompson sampling is exploited. We
provide some details of the proof for the sake of completeness focusing on the part

which is different from [28].

Proposition 5. Suppose Assumption 1, 2 and 3 hold. Then for any § > 0 such that
log(3) > 2 andt' € [1,T], we have

Pr(Ey N Ey) >1—46.

Before proving the proposition, let us introduce some auxiliary results on the be-
havior of M; := ét — O.,. One of the fundamental ideas is to identify critical columns
of M, representing the column space of M; where ©, is a matrix whose vectorization
is 6, € R, We follow the argument presented in Appendix D of [28].

For B ¢ R v € R? and M € R¥™, let us define 7(v, B) be projection of

the vector v onto the space B. Similarly, we define 7(M, B) to be a column-wise
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projection of M onto B. We then define a sequence of subspaces B; fort = T,...;1
with By, = () in the following way. Let ¢ > 0 be given and set B; = Byiq. If
|m(My, BY)|F > de where | - | denotes the Frobenius norm, we pick a column v from

M, satisfying (v, B+) > € and update B; < B; @ {v}. Therefore, we have
‘W(Mtvlgtj_)’ < ‘W(MhBtl)‘F < de,
after this process ends.

Definition 3. Let Tr be the set of timesteps at which subspace B, expand. Clearly,
= |Tr| < d since My has d columns. Let us denote the timesteps by t1 > to >

.. >ty and define i(t) := max{i < m:t; > t}.

A key insight of this procedure is to discover a sequence of subspaces I3; support-
ing M;’s. That way we derive the following estimate for the projection of any vector x

onto 3;:
it)
U < |z, B <Y |M,] =,
=1

where U = %. Here, Uy = and H is chosen to be a positive num-

1
169-2 max{1,52(d=2)}’

<nL dlog <1+TY/*>+WS>
45 M2 }and M = Supy > e

ber strictly larger than max{16,
where S > 0 is from Definition 1, )\ satisfies Assumption 2, and T' denotes the time
horizon.

Using this relation, we have the following result. For the proof, we only highlight

the part which is different from [28].

Lemma 5. Foranyt € [1,T], on the event E,

_d_ 1
max | M, z,| < GZ7 B,(8) @D,
s<t,s¢ Tz

5.1
where G = 2(25dd+0'0) 1 and Z; = maxs<t |%s|.

VU
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Proof. For M; = @t — O,, we note that the following holds on the event F;:
Bi(8) > 10 — 0.,

d n
= > (0= 0)ag-1)+iPag-1)+iair— i O — 0)agr -1y

i,i'=17,5'=1
d n ~ t—1 ~
= Z Z (G @*)ij(fn)jj/(z Zs2zy + Mg)iir (O — ©.)irji
i,i/=14,j'=1 s=1
d n t—1
= Z ZZSZ ‘l')‘Id)zz (@t O. ) '3
i,7'=1 ]:1 s=1
t—1
= tr(M," (O 202 + Ma) M)
s=1

> M, 2, ?
e, M =P

Therefore, max;<s<; | M, zs|> < B¢() so that we can follow the same lines in Lemma

18 [28]. O

We are now ready to prove Proposition 5. Roughly, we combine Proposition 1
and 2 to show the event E; happens with high probability, which gives us an estimate
for \ét — 0,]. Once established, one can control the event on which the state norm is

d
bounded above by the state norm with lower power, i.e., |z¢| < C|xy|@+T for all ¢.

Proof of Proposition 5. By Proposition 2, we first see that

d
1 SM?n nt(t+1) Amaxst \ 2
Egirepe [|9t 0. ’Pt | ht] = p\/ m3 log < : o ) < A ’t> > +C

holds with probability 1 —

t(%il)' Recalling Proposition 1 and using Minkowski in-

equality, it holds that

1
9t~,ut Uat 0+ ’Zfz"t ‘ ht] P

<E

RS
3=

etN,U«t,étN/lt |:|ét - et I})Dt | ht] + Eet'\’ﬂt [|0 - 9*|1;)t ’ ht]

d
/ M? 1) (Amaxt |2
<10 pdn Lo 8M?2n log nt(t 4+ 1) [ Amax,t \ 2 Le
m m3 J A
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with probability 1 — for p > 2. By Markov inequality, for any € > 0,

(t+1)

Pr(|0; — 0s|p, > €| hy)
B, (10— Oulp, | 1]

d
1 M?2n 1 )\max b
§€<10 /pdn+2p\/8 nt(t5+ )< : t) >+0)

We choose p = log <(1;> and

d

2
€ =e(t(t+1))\/P (10 % + Qp\/gj\nf;" log ("t(?“l) (Ami"*t> ) + C).
Then,

PT<|§t _0*‘Pt > 57&(6) ‘ ht) S t(tj—l)’

which reads that Pr(|0; — 0.]; < 5:(6)|h) > 1 Noticing that

(t—‘rl)

Pr(|0; — 04]s < B(0)) = E[E[L)9,—g,|,<5,(5)|Pt]]
=E[Pr(|0; — .|t < Be(9)|hyt)]

4]
> (1 - m)27

we derive that Pr(|0; — 0.]; < 5:(0)) > 1 —

6 — 6| < Bi(9)}, then Pr(Sf) < 527y

(t+1) forany t > 1. Set S; = {w € Q :

tl
Pr(ni_,8) = 1— Pr(Uj_Sf) >1— Y Pr(Sf) >1- 24,
t=1

Therefore,

PT’(Et/) 2 1-29

forany ¢’ < T.

Let ¢t < T be given. We rewrite the system equation as

Ts+1 = Psxg + s,
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where

O/K(,) s¢T,

I, =
@IK(GS) seTy,
and
(és - @*)Tzs + Buvs+ws s ¢ 723
Ty =
B.vg + w; seT;.
Here, IN((H)T = [[n K(Q)T}.Then,
ry =T 131 + 1
=T 1 (Teomi—o +1re—2) + 11
= Doxio+Tiqri—g + 11
=Ty Ly ol 3wy g+ Tl ori 3+ Tiari—o + 11
=0 lg. . . Tory 4+ -+ Ty Dporp—s + Ty1rp—o + 11
—2
5 ( - )7«] Fres
7j=1 s=j+1
We know that
6/ K(0) < p <1,
and

0. K (6:)] < M),

as the prior has compact support (Assumption 2). Since |7;| < d,

t—1
H ’Fs‘ < Mgpt_d_j_l-
s=j+1

Hence, we obtain that

j=1
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By the definition of 7,
max |rj| < max_|(©; — 0.)" z;| + S max |v;| + max |wj|,
J<t i<t,j¢T: J<t J<t

and from Lemma 5, on E;, we have

d 1
max_[(6; — 0,)"zj| < G(max |z;]) T+ () 2@
jgt’jézﬂ‘( J %) J‘ = (jgt ‘ j‘) Be(6)

with probability 1 — 24 since Pr(E;) > Pr(Er) > 1 — 20.

.« . . . T . T _ 1
Noticing our system noise is L-sub-Gaussian random vector where L = Wor by
Herbst argument in [53], we have
- 2t2(t + 1
max [w;| < dL\/2 log <( + )> (D.1)
j<t 0
with probability 1 — e +1) Similarly, since v; is L, -sub-Gaussian random vector, we
also have
- 2t2(t+1
max |v;| < dL,,\/Q log <(+)> (D.2)
J<t 0

with probability 1 — Let us denote the events satisfying (D.1) and (D.2) by

(t+1)
Ew,t, Eyt respectively. Then, on the event Ew 40N EV +, we obtain that

|2+

< 1<Mp)d(a<max|zj|>d+lﬁt< DEGR +d(L+SLl,)\/2 log <2t<té+1>>>

i<t

For Hy := ﬂle (Ew,t N Ev,t>’ we can see that
Ht’ N Et/ C Ft/.
By the union bound argument,

Pr(Hy N Ey) > 1— Pr(U_ (B, UES,)) — Pr(E;) > 1—46

since PT(EA‘fU7t) < t(til), PT(E;t) < t(t+1) and Pr(Ef) < 26.
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Consequently, we deduce that

PT'(Et/ ﬂFt/) 2 P’I”(Ht/ N Et’ N Ft/) = PT(Ht/ N Et’) 2 1— 45

O
Proof of Theorem 3. One can decompose E[max;<; |2¢|P] as
E[rglgg ||P] = E[r]ngg |2e|P1R,] + E[Dj@gg |z [P L pe]. (D.3)

Using Cauchy-Schwartz inequality and the fact that Pr(Ff) < 40, the second term is

estimated as

Bl L) < /BlL ] ElasrlodPr) < VA5, Bl
i<
Letting D, = @TK(Gt) and r; = B,y + wy,

xt = Dyqxi—1 +ri—1 = Di_1(Dp—ai—o + re—2) + 11
=Dy 1Dy oDy 314 3+ Dy 1Dy _ory_3+ Dy 1149+ 141

=Dy 1Dy o...Dor1+ -+ Dy 1Dy_ory_3+ Dy_11rp—9 + 141

t—2 t—1
:Z( H Ds>7°j+rt—1-
j=1

s=j+1
Since |Dy| < M
t—2 t—1
2] = E[] ( I Ds)mrt_lr?”]

=1 “Ns=j+1
t—2 t—1

VB TT D)l b
j=1 Ns=j+1
t—1

< (¢ — 1) IE[Y M2 2]

j=1

M2p(t—1) 1
< -1t M)
P

< (t = D TE[|r 1M,
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where the second inequality holds from Jensen’s inequality.

Using Lemma 7 with § = v L < %, the first term of (D.3) is estimated as

2pt
P M,

1 2 t p(d+1)
p _ —
Elmax | ["1r] < E [C<log <5> log (5>> let]
1\ 2 £\ Pd+1)
< - - .
<o (5) = 5)
Finally,

E p
[max |

<ot () -

2 oot p(d+1)
< C(log (tQngpt> log <t2p+1Mpp )) + /E|r|?7]

< Ct3PEHD) 1R [r 2]

By Jensen’s inequality and the subgaussianity of 4 and wy,

Ellrf] < 207 (SRl ] + ElJur/)
< PPSTULLY + ().

Hence, the result follows.
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Appendix E

Details for Section 4.2.1

Proof of Proposition 3. Given j € [1, k], let A, B, be the true system parameters and

s € (tj,tjq1) := I;. We first define the following quantities for s € Z; :

A*xs—l + B*us—l
Ys 1= )
Kj(A*stfl + B*usfl)

where K; denotes the control gain matrix computed at the beginning of jth episode.

Writing

KJ’ Inu Vg
we can decompose zs as zs = ys + Lst)s by the construction of the algorithm.
For a trajectory (z5)s>1, let us introduce a sequence of random variables up to time

s, which is denoted by

hs = (':Ela Wla Viy..oy Ts, WS, Vs)a

where W denotes randomness incurred by the ULA when triggered, hence, Wy = 0

if s # t; for some j. Defining the index set

T ={s€Zj:je[lk]},
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b Foe o Fia Fooo Flaan Il P

\ Ytj+1 \ Ys

Ltj—‘rl LS

Figure E.1: Filtration and the measurability of (y,) and (Ly).

we consider the modified filtration

o O'(Ujgshj) for se€ J, — {tQ —1,ts—1,.., tp — 1},
-

O'(UjSS_HiLj) for s e {tQ —1,ts—1,... tp — 1}.
This way we can incorporate the information observed at s = ¢; with that made up to
s =t; — 1 as seen in Figure E.1.
Yet simple but important observation is that for J, = {n; : n1 < ng2 < ... <

nkk+1) } both stochastic processes (Ly, ), (yn,) are F;, _ -measurable and (¢, ) is
2

F},.-measurable.

To proceed we first notice that

tpe1—1
)\min()\Id + Z Zsz;—) = )\min()\Id + Z Zszg—)
s=1 €Tk

Invoking Lemma 8 with € = A=1and &s = L), it follows that

k
PPN

j=1 s€Z;
>_ Z Z SQ;Z)S Sws
Jj=1s€Z;
k k k
- (Z Z yS(stS)T)T([d + Z Z ysy;r)il(z Z ys<LS¢S)T) -
Jj=1s€Z; Jj=1s€Z; Jj=1s€Z;

()
(E.1)

Our goal is to find a lower bound of (E.1).
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Wg—
To begin with, define 91 s = s and Yo s =

7 for s > 1 setting wg = 0
0 Vg

for simplicity. Noting that Lstps = Lsip1 s + 12,5, we apply Lemma 8 with € = %
A = 1 to obtain
Z > (Letb)(Lstos) T
Jj=1s€Z;

k
= Z Z (stl,s swl s Z Z o st s

j=1 s€Z; _] 1 s€Z;
k
1
Z > Yas(Lathns) Id+§j S o) Zszs L)) =5 1a
Jj=1s€Z; J=1 s€T; j=1 s€I;
(%)
(E.2)
The first term of (E.2) is written as
T T
Ws—1W,_ Ws—1(Ky(5)Ws—1)
Z (stl,s)(stl,s)T - Z ° ® 1T ° v(s) # -
€Tk e | EoWs—1)we_y  (Ky(s)ws—1)(Ky(s)ws—1)
XX X'y
Y'X Y'Y

where v(s) is indicates the episode number such that s € Ty(s)- By Lemma 9, we
conclude that

XTx X7y XTx
S (L) (Lsthrs) " = _ e

- B (E.3)
se i Y'X YTy 0 —Ay,,

forany A > 0 where X ' X = > se ws_wl ;and Y Y = (Kv(s)ws,l)(Kv(s)ws,l)T.

Next, we invoke Lemma 11 with € = %)\min(W) for 1s = ws_1, Vs = v respec-

tively to characterize good noise sets. Choosing p = log% in Lemma 11, there exists

C > 0 such that for any § > 0 and k > C'y/2log(%) + 5d, the following events hold
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with probability at least 1 — §:

k
Eip={weQ: Amm(W) Z Z ws_w] | < Awk(k —1)I,},
Jj=1s€Z;

k
1
EQk = {V €y )\mln I, Z Z VSV = )\Wk-[nu}’
Jj=1s€;

where Aw = Apax(W) + %)\min (W), Q, C 2 denotes the probability spaces asso-
ciated with the noise sequence (vs)s>1 and €2 is the probability space representing all
randomness in the algorithm as defined in the previous subsection.

Furthermore, from the observation,

tr( Y (Kyyws—1)(FKyws—1) 1) < Y tr((Kygyws—1) (Ky(syws—1) ')

s€Jk €Tk

< MI2( Z |w3_1\2

SE€ETk

= Mitr( ) werw]_y),
s€Jk

we also have the following event is a subevent of £y x:

2
nMj;

E3k = {w eN: Z 5)Ws— 1)(Kv(5)ws_1)T = Awk‘(k‘ )Inu}

s€Ty

To proceed we choose A = %)\min(W)k in (E.3) and recall that |Y |2 = Apax (Y TY).

On the event Ey ;N 5 ;N E3 i, first two terms on the right-hand side of (E.2) is lower
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bounded as

k
Z Z (stLs 51/J1 s Z Z 1/}2 s¢2 s

j=1 s€Z; ] 1 s€Z;
i T
S K 5 ol W 1 O0%)
0 —Aly, s€Tr | Vs
M L2 (W)k2(k—1)
32 'min
- %nM2 Awk(k— 1)+§>\min(W)In 0 —+ 0 0
L 0 _%)‘min<w)kjnu 0 %)‘min(w)klnu
A2 i (W)k(k—1) I 0
_ J. | EMEAWR(=D)+40min (W) "
0 é)\mln(w)-[nu
= Ckly

for some C' > 0.

We next deal with (x) in (E.1) and the (xx) in (E.2) together as they have the same
structure. Let us begin by defining

Sk (2, Lip1)
ZszS swls Id+zzw2sw25 ZszS 51/115 )
Jj=1s€Z; Jj=1s€Z; Jj=1s€Z;
Similarly,

k k k
y, LU) Z Z sws (Id + Z Z ysy;—)_l(z Z ys(Ls¢s)T)
J=1 s€Z;

Jj=1s€T; Jj=1s€Z;

Applying Lemma 12 with p = 10g(%) to the stochastic processes (1s)sez;,v; and

)

(ys)sez; v;» the following holds with probability at least 1 — 4:

Eyp={we QuveQ,: Sk, L) < TL2 M2—|—2log<
d
9

7)

Esp={weQveQ,: Sy, Ly)| < 7L M2—|—210g<
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where U = det (I + Zle > ser, P25ty ;) and Y = det(Iy + Zle > set, Ysya ).
Due to maxs<; |Ls| < y/ M2 + 2, this result holds. To verify it, we recall that |L| =

v/ Amax(Ls L/ ). For

.
I K,

L,L] =
Kj KjK] +1In,

andany v = [z ',y "] with [v| = 1 where z € R” and y € R™, we have
I K
ol | " J v < |m|2+2xTKjTy+M[2(|y]2+ |y|?

K; KiK] +1In,
< (M + 1)@ +y%) + |y

< ME 42

* Bound of S (12, Ly1) on Eg j, N Ey

On EQJC,
i1
det (Id Y wz,sw;,s) < —(d+ )Y Ysts)
s€Jk s€Tk
1
= @+ Y )
s€Ty
Ty,
< —Awk +1
s gw +
< Ck

for some C' > 0 where the second inequality follows by

Z |V5‘2 = tI‘(Z VSVST) < nuAmax(Z I/SVST)

seJ SE€ETk sE€ETk

< nyAwk.
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Altogether, on the event Fy j, N Ey

Sk(wba, Lipy)
= (> tos(Lsthre) ) Ta+ > w26y ) bas(Latbrs) )]
s€Tx s€ETx s€Tx

di.d
< 7E,2A/M12( + 2log <Ce5k >

* Bound of Si.(y, LY)) on Fy, | N Ey ;N Esy:

On El,k’

det <Id + > ysysT>

SE€ETk

< {0+ X lnep)

€Tk

(d+ S (foa— et P+ Koy — wa) >)

s€Ty
L2zsPH2ws-1? <2M2 |zs[242M2 w1 |?

1
< 2(a+ T @+ 2uple + @+ 208w )
sE€ETk

=

Q.M—‘

&M—‘

Qu

\ /\

2
(M + 1 ( Z |xs|2 —|—7’L max( ) + %)\mm(W))k‘(k‘ — 1)) + 1,

s€Ty
—— by taking trace in Eq
(a)

where the last inequality follows from

Z |w3,1|2 = tr( Z wsflw;——l) < P Amax( Z wsflw;r—l)

seJ s€Jxk s€Tk

< "D (W) + %)\mm(W))k(k 1),

|3

To bound (a) above, let us observe that t;1 = W < kP forany p > 3

and consider the event Fy, . N Ey ;. Applying Lemma 7 with § = k77 < t,;il,
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we deduce that

Z ‘st‘Q = Z ]x3]2 < tg4+1 max ]x5]2
s<tk+1

sET seTr

2(d+1)

< tgat <C(log k)3+/log k)
2(d+1)

< Ck? (k:\/log I<:>

< Ck3d+5

for some C' > 0 depending on p > 3 and the constant from Lemma 7.

Therefore, on the event Fy, | N E1 g N Es5, we have

1

d
det <Id + Z ysyz>

SE€ETk

2
< (ME +1) (jk?’d% + Awk(k — 1)> +1

< Ok3d+5

for some constant C' > 0. As a result,

Sy, L) = 1> ys(Lav) )T La+ > w7 ws(Lsos) D))

s€Ty s€Ty s€Tk
B d.d(3d+5)
< 7L*/M} +2log (065>

Combining altogether and plugging them into (E.1), on the event Fy, N Ey N Ey N

E3 N Ey N Es g, one can show that

k
Amin(Ma+ Y ) z2]) = A+ Cik — Cylogk + Cslog(8) — Cy
jil SEI]'

> Ck
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for some C;, C' > 0 with 0 = kP and k large enough. Moreover, for such a k,

Pr (Amm M, + Z ze2] ) > Ck)

s=1

>1- Pr(Ft‘;+1 UET,UES, UES UE], UES,)

>1-9.

Finally, defining the event Fy,_ | := Foo . NEyp N Eyp N E3r N Eyg N Esg,

1 1 1
IE[ ]:E[n- ]+E[ 1, ]
)\fnln Jk+1 )\fnin,k+1 Flet )\fmn Jk+1 Fk+1
< CE [kpnﬁw} +E [nﬁfﬂ]
<Ck™P+95<Ck™P (E.4)

where second inequality holds from Ay ¢ > A > 1. O

Proof of Proposition 4. From (C.16) in Proposition 2 in Appendix D, we know that

p

4 _1 4dn
Bl = 0.1 1] < 20 (1P R0 + 0 4 6am + )

where U}(8) = Y20} log pu (w1~ O 2,). Since A2, Ellf;—0.17] < E[6,—0.[3],

min,t

it follows that

E[Egry, (10 = 0:[7|he]

/ 4dn b
1 4p 1 4d P
< @y, /E Ap \/ -1 mE [rPt QVeUt’(@*)PP} N (m” + 64m + c) )
min,t

(E.5)

_1
where the second inequality holds by Jensen’s inequality. To bound E [|Pt VU, (6) |2p] ,

-
let us first define Z := |z, ... Zt—l] and denote the jth component of noise w;
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by w¢ (7). A naive bound is achieved as

n t—1

_1 01og py (wyr) T —1,my Ologpy(ws)
P, 2VUl(6,))? = — 2T S Z(ZTZ 4+ N 2T ) g
n t—1
alogpw<ws’) ToN—1rT alogpw(ws)
< ——=— 2 (Z(Z ' Z) 7 )gs——— "
Zti (alogpw(ws>>
S\ w()
t—1
- Z ’vw Ingw(ws)’2a (E6)
s=1

where the second inequality follows from the fact that Z(Z " Z)~1ZT is a projection
matrix.
_1
We now claim that [E [\ P, 2VoU/(6,)|?" | has a better bound compared to the naive

one with high probability. For s > 0, let us consider the natural filtration

Fs=0((21, s 2s+1))

where z; = (x4, us). Clearly, for s > 1, z, is Fs_1-measurable and the random vector

V. log py (ws) is Fs-measurable. Then for each j € [1,n], we set ns = %“(’](.)ws),
- — 1 w s . .
Xy = 25,9 = Z';:ll NsXs = 22211 %&”)zs. Here, 7, is a %—sub-Gausman

random variable since v | V,, log py (wy) is %—sub—Gaussian random variable for any
v € R" given when wy is sub-Gaussian (Proposition 2.18 in [52]). We then invoke
Lemma 6 yielding that

t—1

Mg+ XX =My+ 272

s=1
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Consequently,

t—1

t—1
(2775 s >\Id+ZXXT 2775
s=1

X 9o (wgr)
= N SRR 22T 2+ M) 2T )

8,8'=1 Owy <‘])
M? Y/ det (P,
< oM og n ( 3/dei(P ,
m &\ det(\y)
holds with probability at least 1 — 2. Here, we use the fact that det(\; + ZTZ) =

$ ety + Y18 blkdiag{ze=] Y y) = {/det(B).

By the union bound argument,

0 log pu (ws)
dws (] )

8logpw ws T 1T 810gpw(ws)
P > YAVAN/ASDV ) 7 )go—m—— L
e ZZ Towe(g) 2T )
nM2 n ( {/det(F) 3
< - —F= .
s 2= loe <5< det(My) > > E7

with probability at least 1 — & for any & > 0. Let us denote this event as E so that
Pr(E)>1-4.

Combining the naive bound (E.6) and improved bound (E.7),
_1
|17 bvatice.
_1 _1
— B[ 1417 V0107 + B[ 15,17 F00;(0.)7]

o (12 o ()] s

by (E.7)

ol (505 )] 8 e mermnier)]

by (E.6)

(E.8)

We handle two terms on the right hand side separately. Recall that g :  — (log z)?

is concave on z > 1 whenever p > 0. By the Jensen’s inequality, the first term is
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bounded as

A
2 P
m 53 A
M2 p p
S (dn > log ( ng EP‘max,t])
m Add
2\ P P
< (d”M ) 1og< "QE[tr(P»])
m Aoa M
an2>P ( n = >P
< lo Eld\ + Zs
(") e (ggmars St
dnM?\* n 9 21\ \”
< .
< ( - ) log <)\53 (dA+MKtE[J%1%|x]| ]>>

M2 P p
< (dn > 10g< n (d)\+ OMI%t”*g)) :
m Aod

where the last inequality holds from the Theorem 3.

On the other hand, the second term of (E.8) can be handled similarly. Recalling the

Jensen’s inequality, 9
(&)219 < Llaip

n n

for a; € R and p > 1, we have that

t—1 t—1

Vo E[(Z\leogpw(ws)P)Qp]S\/g tQP‘lE[Z\leogpw(ws)\“p]

s=1 s=1

< \/Stp\/E[IVw logpw(wt)!“p]

< mp\/<4%2>2p<2p>!

M 2P
PPV/StP,
mpP

<8

where the third inequality comes from well-known fact that any L-sub-Gaussian ran-

dom vector X satisfies E[X29] < ¢!(4L?)? for any ¢ > 0.
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Choosing § = t?% and combining two bounds,

_1
E[!Pt 2veU;<9*>rﬂ

2\ P p M2p
< <d”M ) log( ”2 (d)\+CM,2(t7d+8>> + 87— pP\/6tP
Ao mP

m
2\ P CM2 p M?p

< <d"M ) log (nt? <d + Kt”“‘)) I i)
m A mP

Finally, plugging (E.8) and the result of Proposition 3 to (E.5),

E[Eg,~pu, [[00 — Ox]”|1t]

1 4p -1 4d b
< oo e ]2 (e o] + (4 oim )

min,t

< O(t_% V1ogt)P.
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Appendix F

Miscellaneous Lemmas

Lemma 6 (Theorem 1 [48], Self-Normalized Bound for Vector-Valued Martingale).
Let (F5)2, be a filtration. Let (15)32, be a real-valued stochastic process such that
ns is Fs-measurable and ns is conditionally R-sub-Gaussian for some R > 0. Let
(X5)32, be an R-valued stochastic process such that X is Fs_1-measurable. For

any t > 1, define
t t
Vi=Ag+ Y XX/, Si=) nX,
s=1 s=1

where A > 0 is given constant. Then, for any § > 0, with probability 1 — 6, for all

1 [ det(V;)
2 <2R?log | oy| AT )
[Sely,-1 < 2R log <5 det()\Id)>

Lemma 7 (Lemma 5 in [28]). Lett > 1 be given. For some C(d,m, p, M,,, L,,S)>0

1\ 2 A\ 4
IF, max 25| < C<10g <6) log <5>> .

Proof. On the event F}, define X; := maxj<; |z;| < a;. Here, we may assume that

t > 1, one has

and any § < 1,

X > 1 as the result above holds with some C' > 0 large enough when X; < 1. We
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observe that

||

L () 75 8,(5)7@ D 4+ d(L + ST 262(t + 1
= 1—p<p> (G(I%"Zj‘)d+1/3t(5)2<d+1> +d(L + SLV>\/2 log ((5+)>>

= O,
and oy is monotone increasing in F;. From
Xi = max|z;| < oy,
J<t

in F}, we derive that

d
Xi < G1B(0) X" + G2y [log (

) FED

by choosing constants G;’s appropriately. Let us recall 3;(0) which is given as

| o+

Be(0)
= e(t(t+ 1))~/ 1os?

d
dn 1 1 8M2n nt(t+1) (Amaxt \ 2
x (10 mlog<5>+210g<5)\/ 3 10g< 5 < \ +C )

For§ < 1,

(t(t+ 1))—1/10g6 < (t(t + 1))1/10gt

< (2t2)1/ log t

_ 9l/logt;2/logt
< e3.
As aresult,
Bi(9)
d
<et (10 %”Mg (;) + 2log <(1S> \/8]\;?2 log <nt(t5+ D) <)‘mjx’t) 2) + C>>
=: Bi(9)-
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In turn, (F.1) implies that

d
X <GB (0) X + G log<§)-

We now claim that one further has

A\ 4
X < <G15£(5) + G2y [ log <5>> ; (F.2)

when G16;(5) + G2y [log (g) > 1. To see this, let us set
f(@) =2 —aai - 8
with a = G15;(9) and 5 = G4 /log <f5> Here, we may assume that o + 8 > 1 by

T
adjusting the constants. Clearly, f(z) is increasing when x > <ﬁrdl> . Noting that

fla+ B)Y) = Bla+B) - B >0,

since & + B > 1, it follows that z < (a + B)9*! whenever f(x) < 0. Therfore, the
claim follows.
To proceed let us handle the term 5;(5). We first see that the preconditioner P,

satisfies that

t—1
1
Amaxt < —tr(P) = dA+ ) |z]® < dh+ MptX7, (F.3)
n
s=1

where M is from Definition 2. Using this relation, one derives that

1 1
log <5> + Galog (5) \/G310gXt + G4 log ( ) +C

B (9)
yen

STIRS

/ 1 1 1 t 1
< G14/log <5) + Golog <5> v/log X; + Gslog (5> log (5) + Gy log (5>
(F4)

-':lx_-i 'a.l.- ] |I
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for appropriately chosen GG; > 0. Here, G;’s represent different constants whenever it
appears for brevity.

1
Define a; := X' > 1. Combining (F.2) and (F.4), for § > 0 small enough,

1 1
at < Gy log <5> Vloga; + Galog <5> log <§>

To finish the proof, we claim the following.

Claim] Given ¢, co > 1, when x > 1 satisfies that

z < c1v/logx + co,

then, x < Cc%cz where C' is independent of ¢; and cs.

Proof of the claim. Let
f(x) =2 —c1\/logx — ca.

From

f(x)zx_cl\/%_Q—(\/f_wij%)(\/g_cl_\/m)

2 b
f(z) < 0 implies that z < C'¢jcy from some C' > 0 which is independent of ¢; and
Co. O

Finally, setting

1 1 t
c1 = G log (5> and ¢y = log (5> log <5>,
1\* t
ar < G log (5) log (5)

Lemma 8 (Lemma 10 in [36]). Let (25)32, (ys)22, and (15)32, be three sequences

we deduce that

O]

of vectors in RY, satisfying the linear relation zs = ys + 15 for all s > 0. Then, for all
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A>0,allt>1andalle € (0, 1], we have

t t t
DowE =y sl (1)) yys
s=1 s=1 s=1
t t t
- 1(; yswg—)T(S‘Id + Z ysy;r)_l(z ysw;—) — ES\Id.

s=1 s=1

Lemma 9 (Lemma 12 in [36]). For two matrices X andY and any A > 0, we have

T T T
XX XY\ | ppaXTX 0

YTX Y'Yy| 0 Y

Lemma 10 ([54]). Let W € R?*? be a random matrix and € € (0, ) and N be e-net

in ST with minimal cardinality. Then, for any p > 0,
2
Pr(|W|>p) <(-+ l)dm%PrﬂxTWx\ > (1—2¢)p).
€ z€

Lemma 11 (Modification of Proposition 8 in [36]). Let (¢5)32, be a sequence of
independent, zero mean, L-sub-Gaussian and Fs-measurable random vector € R<,

Then, forallp > 0,0 <e<landt > min{m:#, @}(2p + 5d),

Pr<( min (E W’t@bt ) —e)tly = Zd}sd} max(E[wt¢J]) -|-6)ﬂd> >1—2e"".

Proof. Recalling the proof of Proposition 8 in [36] with My = I; and £5 = v, it is

straightforward to obtain

Pr( p) gzexp<—;min{(4p;)4t,ug)z}>.

Now we apply Lemma 10 with ¢ = % and W = Y!_ (Wsp] — E[hsab] ]), we get

< |>0) <2-0%ex (g min (4;4t san?)

Reparameterizing, we further obtain

( ZJEws

t t

Z($T¢S)2 - ZE[(wT¢S)Z] >

s=1 s=1

by — ZE sty ]

> 32L%t max{

2,0—tk5d’ 2p—li€—5d}> <90,
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For t > min{32L7%, 32L%}(2) 4 5d),

t
Pr(
s=1

Since 1,10, is a symmetric matrix, the inequality ‘ 22:1 V)] — 22:1 E[ps] ]| <
et implies that

t
b =) Elpa]]
s=1

> et> < 2e” P,

t
A Zws =Y Efpap]]) < 42
s=1
and

t
m1n Zws% ZE[wsw:]) < 62t2.

s=1
As a result,

(Amin (E [wt@/’t ]) —e)tly = ZE ws —etly

= Zwsz
= Z E 7,[)3 + EtId
=(A maX( Wﬂﬁt ]) + f)ﬂd-

O

Lemma 12 (Proposition 9 in [36]). Let F; be a filtration and (15)22, be a sequence of
independent, zero mean, L-sub-Gaussian and F, measurable random vectors in R<,
Let (Ls)2, be a sequence of random matrices in R4 sych that Fy_1 measurable
and |Lg| < oo. Let (ys)32 be a sequence of Fs_1 measurable random variables in
R Then for all positive definite matrix V = 0, the following self-normalized matrix

process defined by

t t
Si(y, Ly) = (Z ys(L S¢s V + Zysys 1 Zys(sts)T)
s=1 s=1
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satisfies

t
Pr|I8:(y, Ls)| > I (max L)) ((21og <det <Id VY gl )) Fapt m)]

s=1

<e P

forall p,t > 1.

A & Tl 8} 3
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Appendix G

Details for Section 5

G.0.1 Proof of Theorem 5
At kth episode, for timestep ¢ € [tg, tx+1), o is written as
Tip1 = (A + BoK(0,) 2 + 1. (G.1)

where r; = B4 + wy. Squaring and taking expectations on both sides of the equation

above with respect to noises, the prior and randomized actions,
Ellze1]?] < E[1Def*|ai*] + Ellref], (G2)

where D; = A, + B*K(ét).
Since 0, is stabilizable, it is clear to see that there exists ¢y > 0 small for which
|0 — 04| < € implies that |A, + B,K(0)] < A < 1 for some A > 0. Splitting

E[| D¢|?|x¢|?] around the true system parameter 0.,

E[|Def?|2e*] = E[|Del?|2e* 115, g, <o) + EID:Plzel*Lig, g, 15 -

(%) (i1)
One can see that (i) is bounded by A2[E[|z;|?] by the construction. For (ii), we note
that |Dy| < M, by Assumption 2. Using Cauchy-Schwartz inequality, (ii) is bounded

as

E[|Di il g,y o0, < M2/ Pr(|6, — 6. > eo)v/Eli]1. (G3)
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By Markov’s inequality,
E[|6: — 6.]7]

p
€

p
< C(tzlu/logt) ,

where the last inequality holds for ¢ > ¢y thanks to Theorem 4, and C is a positive

Pr(|f; — 0.] > e) <

constant depending only on p and €. Taking p large enough to satisfy p > 28(d + 1),
Theorem 3 yields that

- P
Mg\/Pr(wt — 0. > e0)VE[|ze]4] < MgC’(t}l\/logt> 7+ < ¢

for some C' > 0.

Therefore, E[|x;11|?] is estimated as
Ellze1]?] < A%E[la’] + C + E[|re]?).
As 7y is sub-Gaussian, we also have E[|r;|?] is bounded, and hence,
Ellae’] < C

forall ¢t € [1,7] and C' > 0 by the recursive relation.
To handle the fourth moment, we take the fourth power on both sides and expecta-

tion to (G.1) to get

Bl 1|

< E[|Dyxi|*] + AE[| Doy |*(Dyy) T we] +6E[| Dy |?|re|*] + AE[| Doy [ [*] + E[|re|*]
-0

< 1Dl L, g, ces) + END el Lg, g, 5e,]

+ 6MJE(|re[*JE[|zo[*] + 4AMpE[re*JE[Ja|] + Ellr] ]

<C

< AYE[Jy Y + M2 Pr(f, — 0. > eo) VE[milF] + C,
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since E[|¢|?] < C. We recall Theorem 3 once again with p satisfying p > 56(d + 1)

to deduces that

~ p
Mg\/Pr(wt —0.] > o) VE[|z4]8] < M§C<t—i\/1ogt> D) < o

for some C' > 0.

Hence,
Ellze1|'] < A'E[|z|*] + C,
and, one can conclude that
E[|$t’4] < C

for some C' > 0.

G.0.2 Proof of Theorem 6

It follows from [13] that J is Lipschitz continuous on €2 with a Lipschitz constant

Ly > 0. We then estimate one of the key components of regret.

Lemma 13. Suppose that Assumption 1,2 and 3 hold. Recall that ©, € R¥™™ de-
note the matrix of the true parameter random variables, O € R¥™" is the matrix of
the parameters sampled in episode k, and z; := (xy,us) € R?. Then, the following

inequality holds:

np tep1—1
Ry = E[ZT: ki 2 [0.P,0] — 6,P.0] %
k=1 t=tg
< VD(2VCSMpM3 + tr(W))np,
where Py, = P(ék) is the symmetric positive definite solution of the ARE (2.2) with
0 := 0.

Proof of Lemma 13. We first observe that for any 6 which satisfies |6] < S,

I
2e| = (e, u)| = | (20, K(0)zs + 1) = K:@) T+ vy < Mic|ag| + |,
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and

~1/2 1/2
1P207 2| < MY?S|z),
where Mp is from Definition 2. We then consider
~1/2 = 51/2 ~
’Pk/ @TZtP - ’Pk/ 9;%’2

(P20 2| + |B*Of 2 (|1P20] = — |B*O] 1))

- o - (G.4)
< (1B0.] 2] + 1526 z) | * (6. — 64) 24|
< 2MpS|z||(©s — O1) T 2.
Note that
- T
O z = [@(1) @(d)] 2z € R™.
Thus, with < z,y > denoting the inner product of two vectors z,y € RY,
(0, —0;) T2|? = Zy< 0, —01)(i), z > |?
B CRCIOIRE
Z (G.5)

< |af? Z (0. = 1) (i)
i=1
= |z|?10. — 0k ).
Combining (G.4) and (G.5) yields that
nr tey1—1 :|

Ry < 2MPS]E[Z D Jzl?10s — 4]

k=1 t=t}

ny tkt1—1 - 3 np tkt1—1 - B
< 2MpS<M}2(E{Z > \xt|2|e*—9k|] —HE{Z R —ek\D.

k=1 t=ty k=1 t=ty
(G.6)

Invoking the Cauchy-Schwarz inequality, we have

Ellze[*0. — Ol) < \/E[Il‘t!“]EHé* — Ox[?].
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It follows from the tower rule together with Proposition 1 that

— = = - D D
VEN8. — 0kl = \JEE5 g, [0 — Oul?l1e,]] < \/max{)\min 7V

where D = 66%‘. Similarly, second term of (G.6) is bounded as

[ ny tk41—1 ny tpr1—1

IEX:EIMﬂ&—@@sumﬂZjijmm—%H

k=1 t=ty k=1 t=ty

ny tge1—1

W) D VES — 6P

k=1 t=ty

nr tey1—1

<tr(W DZ Z

k=1 t=tg

Now putting these together with Lemma 5, we obtain

nr

Ty

R < VD(2CMpSM? W —.

1 < VD2OMpSME + tr( ))Z@
k=1

Finally, to bound Zk 1 \/», werecall that T, = k + 1 and ¢, = tp_1 + Tr_1. Thus,

tk‘ — Tk(%‘i’l)

(G.7)

. Then, the sum )7, \/% is bounded as follows:

s V2T,
Z Zm<2\f V207 (G.8)

Therefore, the result follows. O]

Combining Proposition 5 and Lemma 13, we finally prove Theorem 6, which
yields the O(\/T ) regret bound. Recall that the system parameter sampled in Algo-
rithm 1 is denoted by 6, which is used in obtaining the control gain matrix Kj =
K(ék) fort € [tg,tx+1). Let P, = P(ék) for brevity and @; = Kjx; be an opti-
mal action for ék. Fix an arbitrary ¢ € [tg,tg41). Then, the Bellman equation for ¢ in
episode k is given by

TG + 27 Peay

=z} Q¢ + @) Ry + E[(Apzs + Byiis + wy) ' Pp(Agzs + Byt +wy) | hy

= 2 Qv + @, Rily + (Apay + Bytiy) " Pyo(Agy + Bytiy) + E[w, Pywy | by,

(G.9)
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where the expectation is taken with respect to w;, and the second inequality holds
because the mean of w; is zero. On the other hand, the observed next state is expressed
as

AT
T = O, 2¢ + wy,

where O, € R¥*" is the matrix of the true parameter random variables. We then notice
that
E[w;ﬁkwt | ht]
~ B o (G.10)
=E[z]y Pezir | he] — (0] 2) T Pe(©] ).
Plugging (G.10) into (G.9) and rearranging it,
x;rQ:):t + ’l];rRﬁt = J(ék) + .%';l—pkxt — E[x;_lpkxt-&-l ’ ht]
+ ((:)Izt)T]sk((:)Izt) — (Akaﬁt + Bk’LNLt)TPk(AkI‘t =+ Bkﬁt)
(G.11D

Since u; = u; — vy, we derive that
@, Ry = u) Ru; — v, Riiy — @) Ry, — v, Ry, (G.12)

and
(Agy + Byiiy) " Pr(Axy + Byiiy)
= (@;Zt)Tpk(él;th) - (BkVt)Tpk(Akl"t) - (/leiﬂt)Tﬁk(BkVt) (G.13)

— (Biwt) " Pr(Bgii) — (Byiie) Po(Byvy) — v By PyByur.
Combining (G.11), (G.12) and (G.13), we conclude that
Ele(ze, ue)]
= J(0) + z] Porvy — o) Porigr | )

+ (0, 2) " Pi(©,) 2) — (04 ) " Py(©) 2) + E[v) By Py Byvy] + Elv Riy),

where the expectation is taken with respect to w; and v4.
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Using this expression and observing ¢, <1 < {¢,,4+1 — 1, the expected regret of

Algorithm 1 is decomposed as

nr tp+1—1 tnp+1—1
R(T) = E{Z > (elweu) — J(G*))] —IE[ > (elanw) - J(Q*))]

k=1 t=ty t=T+1

=R1+ Ro+ R3+ Ry + Rs,

where

R1 =K Z Z Z;r[é*Pk(:)I — ékﬁ’kég]zt

- nr tke1—1
J
“k=1 t=ty

R2 =K Z Z (xtT]skxt — E[x;_lpkm't—&-l‘ht])
“k=1 t=ty

Ry =E| S Ti(I(0) - Jw*))} ,

k=1

- nr tke1—1
Ri=E|Y Y <ng,jpk§kyt+yjzzyt)],
Lp=1 t=ty

r nr tke1—1 :|
Y

tnpp1—1

Rs=E| > (J(é*)—c(xt,ut))}

- t=T+1

To obtain the exact regret bound, we include Rs which is not considered in [1]. By

Lemma 13, R; is bounded as
R1 < VD(2CSMpM?% + tr(W))nr.

Since T}, = k + 1, we have

npr—1 9
nT(nT + 1) ny
T>1 T, = > =
2 T 2 =2
k=1
which implies that

Therefore, we conclude that

Ry < V2D(2CSMpM?% + tr(W))VT.
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Regarding R, we use the tower rule E[E[X;|h;]] = E[X}] to obtain

RQ =K Z Z (x;r]skxt — xtTHkatH)
“k=1 t=ty

- nT

_ TP

=FE E (:ctkkatk xtkHPkajtkH)]
L k=1

- nT
T =
<E E a:tkkatk]
L k=1

r nr
<E ZMpyxtkP]
- k=1

< MpCnr (. Theorem 5)

- np the1—1 :|

< MpCV2T,

where the last inequality follows from (G.14).

We also need to deal with R3 carefully. What is different from the analysis pre-
sented in [1], the term simply vanishes using the intrinsic property of probability
matching of Thompson sampling as exact posterior distributions are used. However,
in our analysis, approximate posterior is considered instead so a different approach is
required. To cope with this problem, we adopt the notion of Lipschitz continuity of .J

for estimation. Specifically,

R3 <E ZTku (0r) — J (6. )|]

p
[ZTkLJWk — 0. |]

ZTkLJE (161 — 0.]|he,]]

k=1
nr B . 1
< TkLJE[EHek — 04| |htk]2]
k=1
nr
J\/>Tk‘

NS

where L is a Lipschitz constant of .J and the last inequality follows from Proposition 1
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with D = 6642
Using the bound (G.8) of 3", \ﬁ in the proof of Lemma 13, we have

R3 < V2L,V Dny
< 2L;VDVT.
By the definition of 14, R4 is bounded as
nrtr tk+1_1 B o
Ry = E[Z > (v B{ BBy + V;Ryt)}
k=1 t=ty

ny tpr1—1

[Z > S2Mp+\R|)|yt|2]
k=1 t=tj

nr

<> (S’Mp + |R]|)tx(W)

k=1

< (8*Mp + |R|)tr(W)np
< (S®Mp + |R|)tr(W)V2T,

where Mp is from Definition 2. Lastly, R5 is bounded as

tnT+1—1 :l

Ry =E| 30 (76~ larun)
t=T+1
tnp1—1 :|

E[ > I

t=T+1
< (tnp+1 =T —1)M,
< (Thy =DMy (otny <T <tpp41—1)
< Mynr
< M;V2T,
where M j is from Definition 2. Putting all the bounds together, we conclude that

R(T) < CVT,

and thus the result follows. One novelty in our analysis is that the concentration of
approximate posterior is naturally embedded into the analysis, which eventually drops

the log 7" term in the resulting regret.
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