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Abstract

Thompson sampling (TS) is a widely used approach for addressing the exploration-

exploitation trade-off in online learning problems, including reinforcement learning

for linear quadratic regulators (LQR). However, in TS for learning LQR, its theoret-

ical analysis is often limited to the case of Gaussian noises. The sampling can be

performed directly when we further assume that the unknown system parameters lie

in a prespecified compact set as in [1], which is seemingly restrictive. We propose a

new TS algorithm for LQR, exploiting Langevin dynamics to handle a larger class of

problems including those with non-Gaussian noises. The notion of the preconditioner

is introduced to generate samples from non-conjugate posterior distributions. Our al-

gorithm is capable of sampling parameters from approximate posteriors quickly. It

attains O(
√
T ) expected regret bound slightly improving the result of [1] under the

minimal assumption on the prior distribution and admissible set requiring neither a

particular initialization technique nor information on the true system parameter. Our

regret analysis leverages a nontrivial concentration inequality for the preconditioned

Langevin algorithm together with self-normalization techniques. The performance of

our algorithm has been demonstrated through numerical experiments as well.

keywords: Linear quadratic regulator, Thompson sampling, Langevin dynamics,

preconditioning technique

student number: 2020-26137
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Chapter 1

Introduction

Balancing the exploration-exploitation trade-off is a fundamental dilemma in rein-

forcement learning (RL) because it is mostly unclear to choose between acting to

learn about an unknown environment (’exploration’) or making a reward-maximizing

decision given the information gathered so far (’exploitation’). This issue has been

systemically addressed in two main approaches, namely optimism in the face of un-

certainty (OFU) and Thompson sampling (TS). The methods using OFU first construct

confidence sets for the environment or model parameters given the samples observed

so far. After finding the reward-maximizing or optimistic parameters within the confi-

dence set, an optimal policy with respect to the parameters is constructed and executed

[3]. Various algorithms using OFU are shown to have strong theoretical guarantees in

bandits [4].

On the other hand, TS is a Bayesian method in which environment or model param-

eters are sampled from the posterior that is updated along the process using samples

and a prior, and an optimal policy with respect to the sampled parameter is constructed

and executed [5]. In terms of computational tractability, TS has an advantage over OFU

that requires an optimal solution to a nontrivial optimization problem over a confidence

set in each episode. Furthermore, TS has been successfully used in online learning for

various sequential decision-making problems such as multi-armed bandit problems

4



[6, 7, 8], Markov Decision Process (MDP) [9, 10, 11] and LQR [1, 10, 12, 13, 14],

among others.

A fundamental step in TS-based learning is to sample from a distribution. Unfor-

tunately, posterior sampling is generally challenging as well-known sampling tech-

niques do not scale to high dimensional spaces. To overcome the limitation Markov

Chain Monte Carlo (MCMC) based sampling methods are proposed [15]. In partic-

ular, Langevin MCMC is one of the most widely used sampling techniques in the

field [16, 17, 18]. The convergence is also studied extensively as found in literature

[16, 17, 19, 20]. Thanks to its advantages over existing sampling methods it has been

applied to various learning problems such as Bayesian learning [18] and inverse rein-

forcement learning [21]. Yet tractable even in high dimensional spaces, sampling via

Langevin MCMC still suffers from the curse of dimensionality requiring a tremen-

dous amount of computation. To alleviate the issues various acceleration methods are

studied (see [18, 22, 23, 24, 25] and references therein). In particular, [18, 26, 27] in-

troduced a preconditioner from which our new algorithm and analysis are motivated.

1.1 Contributions

We propose a new computationally tractable TS-based algorithm achieving the state-

of-art regret O(
√
T ) for learning LQR as well as the exact rate of convergence of

the sampled system parameter. Our algorithm features that a wide class of system

noises can be used and no a priori information on the admissible is needed. Central to

enhancing computational efficiency is introducing preconditioned Langevin dynamics

for sampling, which enables us to achieve O(
√
T ) Bayesian regret bound for learning

LQR problems.

• Preconditioned ULA: We introduce the preconditioned Langevin MCMC for the

acceleration of sampling process. The improved convergence rate between the

exact and approximate posterior is obtained, which results in achieving O(
√
T )
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Bayesian regret bound.

• Rate of convergence around true system parameter: The sampled system pa-

rameter obtained via our new algorithm concentrates around the true system

parameter with the rate Õ(t−
1
4 ). The action is perturbed only one time at the

end of each episode for efficient exploration. Thanks to this, we can improve

the polynomial-in-time state bound to constant and achieve the better regret as

above.

• Above all, we simply assume that the admissible set is bounded to achieve the

aforementioned results. It is the first work for achievingO(
√
T ) Bayesian regret

bound with non-Gaussian noise under such a mild assumption.

1.2 Related work

There is a rich body of literature regarding the estimation of system parameters and

synthesis of a control gain matrix for LQR problems, which can be categorized as

followings.

Optimism in the Face of Uncertainty (OFU): [28, 29] propose an OFU-based learn-

ing algorithm that iteratively selects the best-performing control actions while con-

structing the confidence sets. It is shown that the Õ(
√
T ) is regret bound yet com-

putationally unfavorable due to the complex constraint. To circumvent there is an at-

tempt to translate the original nonconvex optimization problem arising in the OFU ap-

proach into semidefinite programming [30, 31], which obtains the same regret Õ(
√
T )

with high probability. On the other hand, in[14, 32], randomized actions are employed

to avoid constructing confidence sets and address asymptotic regret bound Õ(
√
T ).

Recently, [33] proposes an algorithm that quickly stabilizes the system and obtains

Õ(
√
T ) regret bound without using stabilizing control gain matrix.

Thompson sampling (TS): It is shown that the upper bound for the frequentist re-

gret can be as worse as Õ(T 2/3) [13] and it is improved to Õ(
√
T ) [34] based on
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TS. However, both of them assume that the noise follows the Gaussian distribution

and deals with one-dimensional only. Later on, [35] extends the previous work to the

multi-dimensional case under the Gaussian noise. For Bayesian regret, previous results

[1, 2] open up the possibility of applying TS based algorithm with provable Õ(
√
T )

Bayesian regret bound yet the result suffers from some limitations. In their works

both noise and the prior distribution of system parameters are assumed to follow the

Gaussian, which allows updated posteriors to have the same structural properties and

log-concave potential thanks to its conjugacy. In their work, it is crucial to assume that

system parameters lie in a compact set that is defined via the true parameter itself.

The following work [2] relaxes the technical assumption but the admissible set is not

identified explicitly as well. Additionally, the columns of the system parameter matrix

are assumed to be independent.
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Chapter 2

Preliminaries

2.1 Linear-Quadratic Regulators

Consider a linear stochastic system of the form

xt+1 = Axt +But + wt, t = 1, 2, . . . , (2.1)

where xt ∈ Rn is the system input, and ut ∈ Rnu is the control input. The disturbance

wt ∈ Rn is an independent and identically distributed (i.i.d.) zero-mean random vector

with covariance matrix W. Throughout the paper, In represents n by n identity matrix

and, we define the norm as |v|P :=
√
v⊤Pv for a positive semidefinite matrix P and

a vector v.

Assumption 1. For every t = 1, 2, . . ., the random vector wt satisfies the following

properties:

1. The probability density function (pdf) of noise pw(·) is known, smooth and twice

differentiable. Additionally, the following inequalities hold:

mIn ⪯ −∇2
wt

log pw(wt) ⪯ mIn

for some m,m > 0,
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2. E[wt] = 0 and E[wtw
⊤
t ] = W, where W is positive definite.

Let d := n + nu and Θ ∈ Rd×n be the system parameter matrix defined by

Θ :=
[
Θ(1) · · · Θ(n)

]
:=

[
A B

]⊤
, where Θ(i) ∈ Rd denotes the ith column of

Θ. Here, the columns are not assumed to be Gaussian or independent as in [2, 1].

We also let θ := vec(Θ) := (Θ(1),Θ(2), . . . ,Θ(n)) ∈ Rdn denote the vectorized

version of Θ. We often refer to θ as the parameter vector.

Let ht := (x1, u1, . . . , xt−1, ut−1, xt) be the history of observations made up to

time t, and let Ht denote the collection of such histories at stage t. A (deterministic)

policy πt maps history ht to action ut, i.e., πt(ht) = ut. The set of admissible policies

is defined as

Π := {π = (π1, π2, . . .) | πt : Ht → Rnu is measurable ∀t}.

The stage-wise cost is chosen to be quadratic and is given by c(xt, ut) := x⊤t Qxt+

u⊤t Rut where Q ∈ Rn×n is symmetric positive semidefinite and R ∈ Rnu×nu is

symmetric positive definite. The cost matricesQ andR are assumed to be known.1 We

consider the infinite-horizon average cost LQ setting with the following cost function:

Jπ(θ) := lim sup
T→∞

1

T
Eπ

[ T∑
t=1

c(xt, ut)

]
.

Given θ ∈ Rdn, π∗(x; θ) denotes an optimal policy if it exists, and the corresponding

optimal cost is given by

J(θ) = inf
π
Jπ(θ).

It is well known that the optimal policy and cost can be obtained using the Riccati

equation under the standard stabilizability and observability assumptions [38].

Theorem 1. Suppose that (A,B) is stabilizable, and (A,Q1/2) is observable. Then,

the following algebraic Riccati equation (ARE) has a unique positive definite solution

1This assumption is common in the literature [28, 14, 31, 36, 35, 37]
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P (θ):

P (θ) = Q+A⊤P (θ)A−A⊤P (θ)B(R+B⊤P (θ)B)−1B⊤P (θ)A. (2.2)

Furthermore, the optimal cost function is given by

J(θ) = tr(WP (θ)),

which is continuously differentiable with respect to θ, and the optimal policy is uniquely

obtained as

π∗(x; θ) = K(θ)x,

where the control gain matrixK(θ) is given byK(θ) := −(R+B⊤P (θ)B)−1B⊤P (θ)A.

The optimal policy called the linear-quadratic regulator (LQR) is an asymptotically

stabilizing controller: it drives the closed-loop system state to the origin, that is, the

spectrum of A+BK(θ) is contained in the interior of a unit circle.

2.2 Online learning of LQR

The theory of LQR is useful when the true system parameters θ∗ := vec(Θ∗) :=

vec(
[
A∗ B∗

]⊤
) are fully known and stabilizable, which is not common. When the

true parameter vector θ∗ is unknown, online learning is a popular approach as pio-

neered in [28]. At each stage t, given the history ht of observations, the learner ex-

ecutes a control action ut and observes the resulting cost c(xt, ut). Then, the system

evolves according to the true linear dynamics xt+1 = A∗xt+B∗ut+wt. Through such

interactions between the learner and the system, the parameter vector and the policy

are updated online. The performance of a learning algorithm is measured by regret.

In particular, we consider the Bayesian setting, where the prior distribution µ1 (with

density p1) of θ∗ is assumed to be given, and use the following expected regret over T

stages:

R(T ) := E
[ T∑

t=1

(c(xt, ut)− J(θ∗))
]
. (2.3)
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Here, θ∗ is considered as a random variable of true parameter, and the expectation is

taken with respect to the prior of θ∗, the probability distribution of noise (w1, w2, . . . , wT )

and the randomness of the learning algorithm. It is desirable for a learning algo-

rithm to have a sublinear regret bound so that R(T )/T → 0 as T → ∞. When

ρ(A∗ + B∗K(θ)) > 1 where ρ(X) denotes the spectral radius of the matrix X , it is

pessimistic to obtain the sublinear regret bound. To cope with this problem, [1, 2] as-

sume that a compact stabilizing set whose element θ satisfies ρ(A∗ +B∗K(θ)) < 1 is

given, and the system parameter can be sampled from the set. However, this assump-

tion is unrealistic since one cannot tell if ρ(A∗ +B∗K(θ)) < 1 without knowing true

system parameters A∗ and B∗.

2.3 Thompson sampling

Thompson sampling (TS) or posterior sampling has been used in a large class of online

learning problems [39]. The description of the naive TS algorithm for learning LQR

is as follows. It starts with sampling a system parameter from the posterior µk at the

beginning of episode k. Regarding this sample parameter as true, the control gain

matrix K(θk) is computed by solving the ARE (2.2). During the episode, the control

gain matrix is used to produce control action ut = K(θk)xt, where xt is the system

state observed at time t. Along the way, the data D is collected and the posterior is

updated.

The posterior update is performed using Bayes’ rule and it preserves the log-

concavity of distributions. To see this we let zt := (xt, ut) ∈ Rd and write p(xt+1|zt, θ) =

pw(xt+1−Θ⊤zt) which is log-concave in θ under Assumption 1. Hence, the posterior

at stage t is given as

p(θ|ht+1) ∝ p(xt+1|zt, θ)p(θ|ht) = pw(xt+1 −Θ⊤zt)p(θ|ht) (2.4)

and it is log-concave as long as p(θ|ht) is log-concave.

11



Bayesian learning always involves sampling from posterior distributions. How-

ever, sampling is computationally intractable particularly when the distributions at

hand do not have conjugacy. Without conjugacy, posterior distribution does not have a

closed-form expression, hence, a novel numerical method has to be developed. To sam-

ple from general distributions, a Markov chain Monte Carlo (MCMC) type algorithm

needs to be introduced, which is of interest in the following subsection.

2.4 The Unadjusted Langevin algorithm (ULA)

To relax the decomposable Gaussian assumption in [1, 2] and handle a larger class of

distributions, it is necessary to introduce an approximate posterior sampling method.

To this end, we propose exploiting the unadjusted Langevin Algorithm (ULA), an

MCMC method which generates samples approximately from a target distribution.

We briefly go over the notion of Langevin algorithms together with the rate of conver-

gence.

Consider the problem of sampling from a probability distribution with density

p(x) ∝ e−U(x), where the potential U : Rnx → R is continuously differentiable.

The Langevin dynamics takes the form of

dXξ = −∇U(Xξ)dξ +
√
2dBξ,

where Bξ denotes the standard Brownian motion in Rnx . It is well-known that given

an arbitrary X0, the pdf of Xξ converges to the target pdf p(x) as ξ →∞ [23, 40].

To solve for Xξ numerically, we apply the Euler–Maruyama discretization to the

Langevin diffusion and obtain the following unadjusted Langevin algorithm (ULA):

Xj+1 = Xj − γj∇U(Xj) +
√

2γjWj ,

where (Wj)j≥1 is an i.i.d. sequence of standard nx-dimensional Gaussian random

vectors, and (γj)j≥1 is a sequence of step sizes. Due to the discretization error, the

Metropolis–Hasting algorithm that corrects the error is used together in general [16,

12



41, 42]. However, when the stepsize is small enough, such an adjustment can be omit-

ted.

The condition number of the Hessian of the potential is an important factor in

determining the rate of convergence. More precisely, we can show the following con-

centration property of ULA, which is a modification of Theorem 5 in [43]. For the

sake of completeness, we present the proof in Appendix A.

Theorem 2. Suppose that pdf p(x) ∝ e−U(x) is strongly log-concave and U(x) is Lip-

schitz smooth with respect to x, i.e., λmin ⪯ ∇2U(x) ⪯ λmax for some λmax, λmin >

0. Let the stepsize is given by γj ≡ γ = O

(
λmin
λ2
max

)
and the number of iterations N

satisfy N ≥ O
(
(λmax
λmin

)2
)

. Given X0 = argminU(x), let pN denote the pdf of XN .

Then, the following inequality holds:

Ex∼p,x̃∼pN

[
|x− x̃|2

] 1
2 ≤ O

(√
1

λmin

)
.
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Chapter 3

Learning algorithm

The naive TS for learning LQR has two weaknesses. One of them arises in choosing

a destabilizing controller which makes the state grow exponentially and causes the re-

gret to blow up. To handle this problem, [1, 2] introduce an admissible set that allows

us to select only a stabilizing controller. However, verification of such a set is impossi-

ble in general without knowing the true system parameter. We show that no additional

assumption beyond compactness is needed to achieve O(
√
T ) Bayesian regret bound.

This means that the state grows exponentially with low probability and can be quan-

tified. The other comes from inefficiency in the sampling process when system noises

and the prior are not conjugate distributions. In such cases, ULA is an alternative but it

is often extremely slow. To speed up, we introduce a preconditioning technique, which

is indeed a simple change variable but results in faster convergence.

3.1 Preconditioned ULA for approximate posterior sampling

One key component of our approach is approximate posterior sampling via precondi-

tioned Langevin dynamics. The potential in ULA is chosen as Ut(θ) := − log p(θ|ht)

where p(θ|ht) denotes the posterior distribution of the true system parameter given

the history up to t. Unfortunately, a direct implementation of ULA to TS for LQR is

14



inefficient as it requires a large number of step iterations. To accelerate, we propose

a preconditioning technique that has been used for Langevin algorithms in different

contexts, e.g., see [44, 45, 46].

To describe the preconditioned Langevin dynamics, we first choose a positive

definite matrix P , preconditioner. The change of variable θ′ = P
1
2 θ yields dθξ =

−P−1∇Ut(θξ)dξ +
√
2P−1dBξ. Applying the Euler-Maruyama discretization with a

constant stepsize γ, we obtain the preconditioned ULA:

θj+1 = θj − γP−1∇U(θj) +
√

2γP−1Wj , (3.1)

where (Wj)j≥1 is an i.i.d. sequence of standard nx-dimensional Gaussian random vec-

tors. With the data zt = (xt, ut) collected, the preconditioner in our problem is defined

as

Pt := λIdn +
t−1∑
s=1

blkdiag{zsz⊤s }ni=1, (3.2)

where blkdiag{Ai}ni=1 ∈ Rdn×dn denotes the block diagonal matrix consisting of

Ai’s, and λ > 0 is determined by the prior. Our preconditioner is designed in a way

to reduce the number of step iterations, thereby guaranteeing a faster convergence for

general noise and prior distributions. We now propose the following lemma which

implies that the curvature of the Hessian of the potential is bounded when scaled along

the spectrum of the preconditioner.

Lemma 1. Under Assumption 1, for all θ and t,

m ⪯ P− 1
2

t ∇2Ut(θ)P
− 1

2
t ⪯M,

where m = min{m, 1}, M = max{m, 1}, Pt = λIdn +
∑t−1

s=1 blkdiag({zsz⊤s }ni=1)

and the potential of the posterior Ut(θ) = − log p(θ|ht) where U1 satisfies∇2
θU1(·) =

λIdn for some λ > 0.

The proof is given in Appendix B. It follows from this lemma that we can rescale

the number of iterations needed for the convergence of ULA while ensuring a better
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level of accuracy for the concentration of the sampled system parameter. Throughout

the paper, we useUk := Utk to explicitly show their dependency on the current episode

k.

3.2 Main Algorithm

Before illustrating the main algorithm, let us first specify the admissible set for prior

avoiding the unrealistic prespecified compact set of stabilizing parameters as in [1, 2].

In [1], their algorithms assume that {θ : |A∗ + B∗K(θ) ≤ δ < 1} is available, which

is not verifiable when the true parameters (A∗, B∗) are unknown. In the following

work [2], authors assume existence of the confidence set Ω1 as follows: for any θ, ϕ ∈

Ω1 and 0 < δ < 1, ρ(Aθ + BθK(ϕ)) ≤ δ. However, the construction of such a set is

still mysterious. To alleviate this issue, they bypass the explicit construction of such a

set leveraging the result [47].

We emphasize that even with the stabilization a technique that exploits random

control gain matrices to identify the stabilizable set, one can only obtain a probabilistic

guarantee. Furthermore, such an implementation is performed before the algorithm

begins. We instead introduce a simple bounded set whose element θ is assumed to

be stabilizable and to induce finite infinite-horizon cost J . The verification of this

condition is indeed straightforward as no information on the true system parameter

is needed, which is the major difference from the existing approach in the Bayesian

setup.

Let us introduce an admissible set used for the algorithm as suggested in [34].

Definition 1. S := {θ ∈ Rdn : |θ| ≤ S, |A + BK(θ)| ≤ ρ < 1, J(θ) ≤ MJ} for

some S, ρ,MJ > 0 and θ = vec(
[
A B

]⊤
).

For θ ∈ S , there exists MP > 0 such that |P (θ)| ≤ MP as found in [13]. There-

fore, |[I K(θ)⊤]| ≤ MK for some MK > 1 and a direct implication of this result

is that |A∗ + B∗K(θ)| ≤ Mρ for some Mρ > 0. Here, K(θ) denotes the control gain
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matrix associated with θ.

Definition 2. |P (θ)| ≤ MP , |[I K(θ)⊤]| ≤ MK , and |A∗ + B∗K(θ)| ≤ Mρ for

some MP ,MK ,Mρ > 0 when θ ∈ S. We further assume that Mρ ≥ 1.

Assumption 2. For λ ≥ 1, let the prior p1 satisfy that ∇2
θU1(·) = λIdn for potential

U1(θ) = − log p1(·) and supp(p1(·)) ⊂ S.

Remark 1. For instance, the projection of multivariate normal distribution with co-

variance 1
λIdn on S yields the prior satisfying the Assumption 2.

Furthermore, once constants S, ρ, andMJ are specified, one easily rejects sampled

system parameters if it is not contained in S , which is one of the major differences from

[1] as no miracle stabilizing set is needed.

We next state our main algorithm. Let tk and Tk denote the start time and the length

of episode k respectively. By the definition, t1 = 1 and tk+1 = tk + Tk. The length of

episode k is chosen as Tk = k + 1.

To update the posterior, or equivalently, its potential at episode k, we use the tran-

sition dataset D := {(zt, xt+1)}tk−1≤t≤tk−1 collected during the previous episode. It

follows from (2.4) that the potential can be updated using the observations as

Uk(θ) = Uk−1(θ)−
∑

(zt,xt+1)∈D

log pw(xt+1 −Θ⊤zt),

where U0 is set to be U1, the potential of the prior.

Having the posterior updated, approximate posterior sampling is performed us-

ing the preconditioned ULA. To begin, we choose the preconditioner, stepsize, and

number of iterations as Pk = Ptk , γk = γtk and Nk = Ntk for Pt := λIdn +∑t−1
s=1 blkdiag{zsz⊤s }ni=1, γt :=

mλmin,t

16M2 max{λmin,t,t} andNt :=
4 log2(max{λmin,t,t}/λmin,t)

mγt

where θmin,t is a minimizer of the potential Ut, and λmin,t, λmax,t are minimum, max-

imum eigenvalues of Pt.
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ν1 ν2

Figure 3.1: Infusing noise for better exploration

With γk and Nk defined above, the update rule (3.1) for the preconditioned ULA

is expressed as

θj+1 ∼ N (θj − γkP−1
k ∇Uk(θj), 2γkP

−1
k ). (3.3)

Given S > 0, 0 < ρ < 1 and MJ > 0, we check whether θNk
achieved from

performing the update above Nk times is contained in S. If so, set θ̃k = θNk
. Finally,

the controller Kk = K(θ̃k) for kth episode is computed using Theorem 1 with the

sampled system parameter θ̃k. As soon as observing the current state xt, the control

action ut is executed to the system at time t. Accordingly, the dataset D is constructed

collecting (zt, xt+1) for all t ∈ [tk, tk+1 − 1]. One notable feature of our algorithm

is that the action ut is perturbed by random vector (νs)s≥1 right before the end of

each episode. Precisely, the action ut = Kkxt is applied when t = [tk, tk+1 − 2] and

ut = Kkxt+νt is executed when t = tk+1−1 for additional random noise νt satisfying

the assumption below. This perturbation enhances the exploration. The external noise

signal contributes to the effect of persistence excitation Proposition 3 which states that

the minimum eigenvalue of the preconditioner grows in time. The schemetic diagram

is provided in Figure 3.2.

Assumption 3. The sequence of L̄ν-sub-Gaussian1 random variable νs ∈ Rnu satis-

fies νs = 0 if s ∈ [tj , tj+1 − 2] for all j ≥ 2. For s /∈ [tj , tj+1 − 2], let E[νs] = 0

and W′ := E[νsν⊤s ] is a positive definite matrix whose maximum and minimum eigen-

1A distribution is Lν -sub-Gaussian if Pr(|ν| > y) < Cexp(− 1
2L2

ν
y2) for any y > 0 and some

C > 0.
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values are identical to those of W, the covariance of system noise. Without loss of

generality we may assume ν1 = ν2 = 0.

Remark 2. The assumption on the minimum eigenvalue of W′ is needed just for sim-

plicity in the proof of Proposition 3 which is about the growth of λmin(Pt).

We end this section by discussing in detail why the proposed preconditioner Pk

is useful. Recalling Lemma 1, we see that mλmin,kIdn ⪯ ∇2Uk ⪯ Mλmax,kIdn. It

follows from Theorem 2 that Nk = O((
λmax,k

λmin,k
)2) iterations is required for 1√

λmin,k

error bound.

On the other if we can show that |xt| < C for some C, the trace inequality would

yield that λmax,k = O(tk) since λmax,k ≤ tr(Pt) ≤ Ct for different constant C. If we

further have λmin,k = O(
√
tk), then Nk = O(

√
tk) by our choice of γk and Nk. We

will show in the following section that this particular choice allows us to achieve 1√
tk

rate of convergence rather than 1√
λmin,k

.
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Algorithm 1 Thompson sampling with Langevin dynamics for LQR
1: Given p1;

2: Initialization: t← 1, t0 ← 0, x1 ← 0, D ← ∅,

U0 ← U1, θ̃0 ← argminU1(θ), θmin,0 ← θ̃0;

3: for Episode k = 1, 2, . . . do

4: Tk ← k + 1;

5: tk ← t;

6: Uk(·) := Uk−1(·)−
∑

(zt,xt+1)∈D log p(xt+1|zt, ·);

7: D ← ∅;

8: θmin,k ∈ argminUk(θ);

9: Compute the preconditioner Pk, the step size γk, and the number of iterations

Nk;

10: while True do

11: θ0 ← θmin,k;

12: for Step j = 0, 1, . . . , Nk − 1 do

13: Sample θj+1 according to (3.3);

14: end for

15: if θNk
∈ S then

16: θ̃k ← θNk

17: Break;

18: end if

19: end while

20: Compute the gain matrix Kk := K(θ̃k);

21: while t ≤ tk + Tk − 1 do

22: Apply control ut = Kkxt + νt for νt satisfying Assumption 3;

23: Observe new state xt+1;

24: Update D ← D ∪ {(zt, xt+1)};

25: t← t+ 1;

26: end while

27: end for
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Chapter 4

Concentration properties

In this section, the concentration properties as well as the growth of the state trajectory

are discussed.

Let us define the exact and approximate posterior distributions concerned with the

potential Ut. We call the probability measure µt ∼ exp(−Ut) exact posterior. For the

approximate posterior, let us recall the preconditioned ULA,

θj+1 ∼ N (θj − γtP−1
t ∇Ut(θj), 2γtP

−1
t ),

for θ0 = θmin,t and Pt, γt, Nt defined in Section 3.2. Here, θmin,t is a minimizer of Ut.

We call the distribution of θNt approximate posterior and denote it by µ̃t. Throughout

the section, we denote the random variable following µt and µ̃t by θt and θ̃t respec-

tively. Unless stated otherwise, we continue to use the following previously introduced

notations to state results; λ satisfying Assumption 2, ρ,MK ,Mρ, S from Definition 2

and 1, L̄ν and W from Assumption 3, L̄ = 1√
2m

with m defined in Lemma 1.

4.1 Comparing exact and approximate posteriors

We begin by introducing a concentration result for the distribution of approximate

system parameters and exact posterior. It is one of the essential parts for obtaining a
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Theorem 3:

polynomial-in-time

bound for the state |xt|

Prop 1 & Prop 2:

probabilistic bound

for concentration between

µt&µ̃t and µt & θ∗

Theorem 4:

concentration of µ̃t

around θ∗

Prop 3:

decay of 1
λmin,t

as t → ∞

Theorem 5:

the bound of

|xt|2 and |xt|4

Theorem 6: regret

R(T ) ≤ O(
√

T )

Bellman’s principle

Figure 4.1: Outline of the proofs

non-asymptotic guarantee of the improved regret O(
√
T ) dropping log T as it will be

noted in Section 5.

The following proposition gives us the concentration between µt and µ̃t. The result

quantifies the concentration depending on the moment p. The higher moment bound

for p > 2 is used to characterize a set of system parameters where the state does not

grow exponentially as illustrated in the following subsection while the bound for p = 2

is necessary for the regret analysis.

Proposition 1. Suppose Assumption 1 and 2 hold. For any t > 0 and trajectory

(zs)s≥1, the exact posterior µt and the approximate posterior µ̃t obtained by pre-

conditioned ULA satisfy

Eθt∼µt,θ̃t∼µ̃t

[
|θt − θ̃t|pPt

| ht
]
≤ Dp,

where Dp =

(
pdn
m

) p
2
(
22p+1 + 5p

)
for p ≥ 2. When p = 2, we further have

Eθt∼µt,θ̃t∼µ̃t

[
|θt − θ̃t|2 | ht

] 1
2 ≤

√
D

max{λmin,t, t}
,

where D = 114dn
m and λmin,t denotes the minimum eigenvalue of Pt.
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Proof. See Appendix C.

Without the preconditioner, Theorem 2 would yield that we are only able to get

O( 1√
λmin,t

) rate of convergence, which is an LQR version of Theorem 5 in [43].

To improve the concentration, we infuse the timestep t into the stepsize required for

ULA so that the right-hand side decreases as the episode proceeds. The relationship

max{λmin,t, t} ≥ λmin,t contributes to achieving the better concentration.

Another important result we need is the probabilistic bound for the distance be-

tween the exact posterior and the true system parameter θ∗, which is essential in char-

acterizing a confidence set relevant for TS-based learning.

Proposition 2. Let Assumption 1 and 2 be enforced. Given a trajectory (zs)s≥1, define

Pt = λIdn +
∑t−1

s=1 blkdiag{zsz⊤s }nj=1. Then for any δ > 0 and p ≥ 2,

Eθt∼µt

[
|θt − θ∗|pPt

| ht
] 1
p ≤ 2p

√
8nM2

m3
log

(
n

δ

(
λmax,t

λ

) d
2
)
+ C (4.1)

holds with probability at least 1− δ for some constant C = C(d, λ,m, n) > 0. Here,

λmax,t denotes the maximum eigenvalue of Pt.

4.2 Bounding expected state norms by a polynomial of time

A nontrivial result we can derive from Proposition 1 and 2 is that the system state

has a polynomial-time growth in expectation. To justify this property we modify the

confidence set and self-normalization technique developed for OFU approach [28, 48].

Our idea is to construct a set containing sampled system parameters obtained by ULA

with high probability. The higher moment bound from Proposition 1 and 2 is crucial

for the analysis as Markov type inequalities can be exploited for any power p. We then

split the probability space of the stochastic process into two sets, good and bad as in

standard OFU approaches.
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Theorem 3. Suppose that Assumption 1,2 and 3 hold. For T > 0, p ≥ 2 and any

trajectory (xs)
T
s=1 generated by Algorithm 1, we have

E[max
j≤t
|xj |p] ≤ Ct

7
2
p(d+1)

for some constant C(d, λ,m, p, ρ, L̄ν ,Mρ, S) > 0.

Remark 3. In the next section, we will further improve the bound to constant, which

is one of the main contributions of this work.

4.2.1 Concentration of µt and µ̃t around θ∗

Leveraging the previous results on the concentration and the expected state norms, we

can deduce that the minimum eigenvalue of the preconditioner actually grows in time

which is given in Proposition 3. With this property as well as Theorem 3 on hand, the

concentration property of exact posterior follows. Finally, the triangle inequality yields

the result desired, the concentration of approximate posterior around the true system

parameter.

Let us begin with the observation that λmin(Pt) grows at least
√
t with high proba-

bility, which is motivated by [36]. The high-level description is as follows. To analyze

the minimum eigenvalue of
∑

s zsz
⊤
s , we recall the decomposition∑

s

zsz
⊤
s

=
∑

(Lsψs)(Lsψs)
⊤︸ ︷︷ ︸

random matrix part

− (
∑

ys(Lsψs)
⊤)⊤(

∑
ysy

⊤
s + Id)

−1(
∑

ys(Lsψs)
⊤)︸ ︷︷ ︸

self-normalization

−Id

Here, for j ≤ k and s denoting the timestep, and

ys :=

 A∗xs−1 +B∗us−1

Kj(A∗xs−1 +B∗us−1)

 ,
where Kj denotes the control gain matrix computed at the beginning of jth episode.

We also let

Ls :=

 In 0

Kj Inu

 , and ψs :=

ws−1

νs

 .
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The random matrix part is indeed a sum of random matrices and it is shown that they

accumulate the minimum eigenvalue high probability.

The self-normalization term must be minimized to guarantee the growth of min-

imum eigenvalue. Thanks to Theorem 3, it is bounded by O(log T ) with high prob-

ability. Since the random matrix part has Ω(
√
T ) growth rate, we obtain our desired

result.

Proposition 3. Suppose that Assumption 1,2 and 3 hold. Given p ≥ 3 and k ≥

k0(d, λ,m, p, ρ, L̄ν ,MK ,Mρ, S,W), we have

E
[

1

λpmin,k+1

]
≤ Ck−p

for some constant C(d, λ,m, p, ρ, L̄ν ,MK ,Mρ, S,W) > 0. Here, λmin,k+1 denotes

the smallest eigenvalue of λId+
∑tk+1−1

s=1 zsz
⊤
s where (zs)s≥1 is obtained via our main

algorithm.

Remark 4. In fact, λmin,k is same as that of our preconditioner Pk.

A direct consequence of the proposition above is that E
[

1
λp
min,t

]
≤ Ct−

p
2 as λmin,t

increases as t grows.

Recalling the probabilistic bound for |θt − θ∗|Pt from Proposition 2, one can see

that |θt − θ∗| is controlled in terms of 1
λmin,t

and self-normalization term. Thanks to

Theorem 3, the latter is dominated by the former that has polynomial-time growth as

seen in Proposition 3. Consequently, we claim the concentration result on the exact

posterior µt.

Proposition 4. Suppose that Assumption 1,2 and 3 hold. Given p ≥ 3 and t ≥

t0(d, λ,m, p, ρ, L̄ν ,MK ,Mρ, S,W), the exact posterior µt obtained by Algorithm 1

and the true system parameter θ∗ satisfy

E[Eθt∼µt [|θt − θ∗|pht]] ≤ C
(
t−

1
4

√
log t

)p

for some constant C(d, λ,m, n, p, ρ, L̄ν ,MK ,Mρ, S,W) > 0.
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Combining the result above with Proposition 1 through triangle inequality, we ob-

tain the following concentration property of the approximate posterior.

Theorem 4. Suppose that Assumption 1,2 and 3 hold. Given p ≥ 3,

t ≥ t0(d, λ,m, p, ρ, L̄ν ,MK ,Mρ, S,W), the true parameter θ∗ and the approximate

posterior µ̃t satisfy

E
[
Eθ̃t∼µ̃t

[
|θ̃t − θ∗|p|ht

]]
≤ C

(
t−

1
4

√
log t

)p

for some constant C(d, λ,m, n, p, ρ, L̄ν ,MK ,Mρ, S,W) > 0. Here, µ̃t denotes the

approximate posterior corresponding to the posterior µt obtained by our algorithm.

Proof. By Jensen’s inequality,

E
[
Eθ̃t∼µ̃t

[
|θ̃t − θ∗|p|ht

]]
= E

[
Eθt∼µt,θ̃t∼µ̃t

[
|θ̃t − θ∗|p

∣∣ht]]
≤ 2p−1E

[
Eθt∼µt,θ̃t∼µ̃t

[
|θt − θ̃t|p|ht

]]
+ 2p−1E

[
Eθt∼µt,θ̃t∼µ̃t

[
|θt − θ∗|p|ht

]]
≤ 2p−1E

[
Dp

(
√
λmin,t)p

]
+ 2p−1C

(
t−

1
4

√
log t

)p

≤ C
(
t−

1
4

√
log t

)p

,

where the second inequality comes from Proposition 1 and 4.

This result is surprising in the sense that the learner disregards the possibility of

choosing a destabilizing θ̃ for t large even if we use a general admissible set S instead

of miracle sets [1, 2]. Furthermore, the result provides a hint on the sample complexity

for the quantification of the posterior around the true system parameter.
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Chapter 5

Main result

We finally present that the Algorithm 1 indeed achieves O(
√
T ) regret bound which

is a slight improvement from O(
√
T log T ) while handling a broader class of system

noises under the minimal assumption on the admissible set. One of key components

for obtaining this result is a uniform bound of the moment of state improving the

polynomial-in-time bound.

5.1 Improved state bound for E[|xt|2] and E[|xt|4]

As noted, we further improve the result 3 to constant bound. To do so we decompose

the state moment into two parts: |θ̃t − θ∗| ≤ ϵ0 and |θt − θ∗| > ϵ0 for some ϵ0 > 0.

When ϵ0 is small enough, |A∗ + B∗K(θ̃t)| < 1, hence, the state bound is obtained

easily. To deal with the second part, we invoke Markov inequality to balance out the

growth of the state and the tail probability by choosing an appropriate p. Such an

analysis is available thanks to Theorem 3 and Theorem 4.

Theorem 5. Suppose that Assumption 1,2 and 3 hold. For any T > 0 and trajectory

(xs)
T
s=1 generated by Algorithm 1, we have

E[|xt|q] < C, q = 2, 4,
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for some constant C(ϵ0, d, λ,m, n, ρ, L̄ν ,MK ,Mρ, S,W) > 0. Furthermore, ϵ0 is a

number such that |θ − θ∗| ≤ ϵ0 implies that |A∗ +B∗K(θ)| < 1.

5.2 Regret bound

Finally, we present our main result which states that O(
√
T ) regret bound is achieved.

Since we consider the Bayesian regime, we write the regret in the form of

R(T ) = E
[ nT∑
k=1

T∑
t=1

(c(xt, ut)− J(θ̄∗)
]
,

where θ̄∗ denotes the random variable for the true system parameter. Here, Thanks to

the astonishing result by Bellman [49], we have the recursive relation for the cumula-

tive cost

J(θ̃k) + x⊤t P̃kxt

= x⊤t Qxt + ũ⊤t Rũt + E[(Ãkxt + B̃kũt + wt)
⊤P̃k(Ãkxt + B̃kũt + wt) | ht]

= x⊤t Qxt + ũ⊤t Rũt + (Ãkxt + B̃kũt)
⊤P̃k(Ãkxt + B̃kũt) + E[w⊤

t P̃kwt | ht],

where t ∈ [tk, tk+1), θ̃k sampled at the beginning of the kth episode, ũt = K(θ̃k),

and P̃k = P (θ̃k). One should note that there is a small gap between controllers ũt and

the ut that we use for the algorithm since we infuse noise νt once in each episode.

However, the contribution of this perturbation to the regret is as low as
√
T since it is

executed at most
√
T times.

For the rest, we follow the argument provided in [1]. The difference is that we

use the Proposition 1 to control the part containing |θ̃t − θ| whereas [1] deals with

such terms using the explicit structure of distributions, hence, our concentration result

provides a novel way of reducing the regret even when ULA is exploited for sampling.

Furthermore, the use of Theorem 5 contributes to dropping the term log T . In regret

analysis based on Bellan’s principle, we estimate the second and fourth power of the

state by invoking Cauchy-Schwartz inequality to handle terms such as |xt||θ̃ − θ|.
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When the higher moment is available, we can effectively estimate quantities involving

such terms.

Theorem 6. Let our prior p1 satisfy Assumption 2. Then, under Assumption 1 and 3,

the expected cumulative regret (2.3) of Algorithm 1 satisfies

R(T ) ≤ O(
√
T ).

To our best knowledge, all Bayesian regret bounds obtained in the aforementioned

literature contain polylogarithmic terms in time horizon T while ours only includes

constants. The presence decreasing gap between the exact and approximate posterior

as shown in Proposition 1 contributes to obtaining the improved regret while the con-

centration property is not taken into account in [1]. We are able to achieve such a

concentration property thanks to the unique characteristic of our preconditioned ULA,

which results in an effective exploration of the true system parameter while learning.
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Chapter 6

Experiment

To test our algorithm, we plot the expected cumulative regret in various dimensions

considering Gaussian mixture and asymmetric noises which are non-Gaussian. In addi-

tion to that, we take the comparison experiment with [1] using Gaussian distrurbance.

Finally, we experimentally show that our preconditioner method is computationally

efficient.

6.1 Experimental setup

For the true system parameter Θ∗, we use

A∗ =


0.3 0.1 0.2

0.1 0.4 0

0 0.7 0.6

 , B∗ =


0.5 0.4 0.5

0.6 0.3 0

0.3 0 0.2

 ,
and

A∗ =



0.3 0.6 0.2 0.3 0.1

0 0.1 0.4 0 0.6

0.1 0.5 0.3 0 0.2

0.4 0 0.3 0.3 0

0.3 0.3 0.1 0.4 0.4


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B∗ =



0.5 0.4 0.2 0.5 0.4

0.6 0 0.3 0.1 0.3

0.5 0 0 0.1 0.2

0.1 0.5 0 0.2 0.4

0.2 0.1 0.6 0 0


and Q = 2In, R = In. for n = nu = 3 and 5 repsectively.

6.1.1 Gaussian mixture noise

In this section, we consider a Gaussian mixture noise which is given by

pw(wt) =
1

2(2π)3/2
(e

−(wt−a)2

2 + e
−(wt+a)2

2 ),

where a = [12 ,
1
2 ,

1
2 ]

⊤ and [14 ,
1
4 ,

1
4 ,

1
4 ,

1
4 ]

⊤ for n = 3 and 5. Taking gradients,

−∇ log pw(wt) = wt − a+
2a

1 + e2w
⊤
t a
,

and

−∇2 log pw(wt) = In − 4aa⊤
e2w

⊤
t a

(1 + e2w
⊤
t a)2

≥ In − aa⊤

≥ (1− |a|2)In.

Therefore, the first condition in Assumption 1 is satisfied for n = 3 and 5.:

1

4
I3 ≤ −∇2 log pw(wt) ≤ I3,

11

16
I5 ≤ −∇2 log pw(wt) ≤ I5.

Executing Algorithm 1 under the Gaussian noise, Figure 6.1 shows that the trajectory

oscillates around the origin.
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Figure 6.1: First component of state x(1) and control u(1)

6.1.2 Asymmetric noise

We also consider asymmetric noise. To proceed we begin by constructing a noise as

follows. Let all components ofwt be independent and its componentswt(1),wt(2), . . . ,

wt(n − 1) follow the standard Gaussian distribution where wt(i) denotes ith compo-

nent of wt. We set the Hessian of logwt(n) to be piecewise linear, namely,

− ∂2 log p(wt)

∂wt(n)2

=


m if wt(n) < α,

M−m
β−α wt(n) +m− (M−m)α

β−α if α ≤ wt(n) < β,

M if β ≤ wt(n)

for α < β which are chosen carefully to satisfy Assumption 1. We choose m = 1 and

M = 10 for the experiment. The comparison with the standard Gaussian distribution

using various values forM andm = 1 is demonstrated in Figure 6.2. We first generate

a sequence of noises following the prescribed distribution offline through ULA. With

the sample, the covariance is estimated.
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Figure 6.2: Comparison between wt(n) and standard Gaussian noise

6.2 Performance of our algorithm

We test our algorithm with a Gaussian mixture and asymmetric noises. We also con-

sider the Gaussian disturbance to make a comparison with [1] as their method is only

applicable to this particular noise.

Figure 6.3: Expected cumulative regret R(T ) over a time horizon T using Gaussian

mixture noise and asymmetric noise for n = nu = 3 (left), for n = nu = 5 (right).

We verify the effectiveness of our algorithm for various dimensions, n = nu = 3

and 5. The simulation result is preseneted in Figure 6.3. For the experiment, we set true

system parameters (A∗, B∗) to satisfy ρ(A∗ + B∗K) = 0.3365 for n = nu = 3 and

0.3187 for n = nu = 5 where K is the control gain matrix associated with (A∗, B∗).

The explicit numbers are demonstrated in Section 6.1. For the admissible set S, we

choose S = 20, MJ = 20000 and ρ = 0.99 for both cases regardless of the type
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noises. We also sample action perturbation νs from N (0, 1
10000Inu) at the end of each

episode. For all experiments, a prior is set to be Gaussian distribution where λ = 5 and

the mean of each is 0.5. The details for pathological noises we use for the experiment

is illustrated in Section 6.1 as well.

As shown in Figure 6.3, our algorithm effectively achieves
√
T expected regret

bound in all dimensions 3 and 5 with different type of noises.

Figure 6.4: The comparison of expected cumulative regret R(T ) (left) and ratio over a

time horizon T in comparison with PSRL-LQ [1] for n = nu = 3 (right).

We also provide experimental evidence to emphasize the benefit of our algorithm.

For this sake, the regret achieved by our algorithm is compared with obtained in [1],

which is referred as PSRL-LQ. A critical assumption needed for this experiment is

that the system noise follows from the Gaussian distribution as by no means the latter

algorithm can be applied yet ours can handle general noises. For PSRL-LQ, the distri-

bution of Θ(i) is assumed to be independent where Θ =
[
Θ(1) · · ·Θ(n)

]
and |Θ| ≤ S

for some S > 0 so that each column is updated independently as PSRL-LQ algo-

rithm proceeds. However, such a restriction is not required for our algorithm as long

as∇2
θU1(θ) ⪰ λIdn for λ ≥ 1. It is also worth noting that PSRL-LQ requires that sam-

pled system parameter θ be rejected based on the condition |A∗ + B∗K(θ)| ≤ ρ < 1

for the true system parameters A∗ and B∗ whereas ours only imposes the condition

θ ∈ S . For a fair comparison, we replace the rejection step in PSRL-LQ by the condi-

tion θ ∈ S. The figures in Figure 6.4 shows the superiority of our method compared to
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PSRL-LQ as it always achieves lower regret. Furthermore, the ratio R(T )√
T

is maintained

to be a constant as T increases.

6.3 Effect of preconditioner on number iterations

The computational advantage of our new method is corroborated empirically as seen

in Figure 6.5. For naive ULA, one chooses the stepsize and number of iterations from

Theorem 2 while preconditioned ULA chooses those based on Algorithm 1. We utilize

the system parameter chosen at the beginning of this section and use the standard

Gaussian distribution.

We observe a significant reduction in the number of iterations needed for the sam-

pling process when preconditioned ULA is implemented compared to the naive ULA.

Figure 6.5: Comparison for the number of iterations over time horizon T between

TSLD-LQ with naive ULA and preconditioned ULA. For naive ULA, we use the step-

size and the number of iterations in Theorem 2.

As shown in the figure, the number of iterations of naive ULA increases almost

linearly and is remarkably greater than that of preconditioned ULA. Altogether, it is

verified empirically that our algorithm achieves improved regret while using fewer

computational resources.
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Chapter 7

Conclusion

We propose a state-of-art computationally tractable Thompson sampling-based algo-

rithm for learning LQR problems with the various classes of disturbance achieving

O(
√
T ) Bayesian regret bound. A salient feature of our method is that we not only

drop the stabilizing compact set assumption but also the independence of columns of

Θ by introducing preconditioned ULA and executing a perturbed control action only

at the end of each episode. Several directions for future research can be proposed. Ex-

tending our algorithm to noises with non-convex potential is an important subject of

study. As the log-concavity of the potential of posteriors is preserved even for noises

we consider, acceleration of the sampling process was available. To handle more gen-

eral noises, some different aspects of ULA should be explored. Additionally, we also

address an open question on characterizing control gain matrices which induce more

efficient learning of LQR problems.
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[28] Y. Abbasi-Yadkori and C. Szepesvári, “Regret bounds for the adaptive control

of linear quadratic systems,” in Proceedings of the 24th Annual Conference on

Learning Theory. PMLR, 2011, pp. 19.1–26.

[29] M. Ibrahimi, A. Javanmard, and B. Roy, “Efficient reinforcement learning for

high dimensional linear quadratic systems,” Advances in Neural Information Pro-

cessing Systems, vol. 25, 2012.

[30] A. Cohen, T. Koren, and Y. Mansour, “Learning linear-quadratic regulators effi-

ciently with only
√
T regret,” in International Conference on Machine Learning.

PMLR, 2019, pp. 1300–1309.

[31] M. Abeille and A. Lazaric, “Efficient optimistic exploration in linear-quadratic

regulators via 1025 Lagrangian relaxation,” in International Conference on Ma-

chine Learning. PMLR, 2020, pp. 1026 23–31.

[32] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “Input perturbations for

adaptive control and learning,” Automatica, vol. 117, p. 108950, 2020.

[33] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar, “Reinforcement

learning with fast stabilization in linear dynamical systems,” in Interna-

tional Conference on Artificial Intelligence and Statistics. PMLR, 2022, pp.

5354–5390.

40



[34] M. Abeille and A. Lazaric, “Improved regret bounds for Thompson sampling

in linear quadratic control problems,” in International Conference on Machine

Learning. PMLR, 2018, pp. 1–9.

[35] T. Kargin, S. Lale, K. Azizzadenesheli, A. Anandkumar, and B. Hassibi,

“Thompson sampling achieves ˜O(
√
T ) regret in linear quadratic control,” in

Conference on Learning Theory. PMLR, 2022, pp. 3235–3284.

[36] Y. Jedra and A. Proutiere, “Minimal expected regret in linear quadratic con-

trol,” in International Conference on Artificial Intelligence and Statistics. PMLR,

2022, pp. 10 234–10 321.

[37] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “On the sample complexity of

the linear quadratic regulator,” Foundations of Computational Mathematics, vol.

20, no. 4, pp. 633–679, 2020.

[38] D. Bertsekas, Dynamic programming and optimal control: Volume II. Athena

Scientific, 2011.

[39] D. Russo, B. Van Roy, A. Kazerouni, I. Osband, and Z.Wen, “A tutorial on

Thompson sampling,” arXiv preprint arXiv:1707.02038, 2017.

[40] G. A. Pavliotis, Stochastic processes and applications: Diffusion processes, the

Fokker-Planck and Langevin equations. Springer, 2014, vol. 60.

[41] G. O. Roberts and O. Stramer, “Langevin diffusions and Metropolis-Hastings

algorithms,” Methodology and Computing in Applied Probability, vol. 4, no. 4,

pp. 337–357, 2002.

[42] N. Bou-Rabee and M. Hairer, “Nonasymptotic mixing of the MALA algorithm,”

IMA Journal of Numerical Analysis, vol. 33, no. 1, pp. 80–110, 2013.

41



[43] E. Mazumdar, A. Pacchiano, Y.-a. Ma, P. L. Bartlett, and M. I. Jor-

dan, “On Thompson sampling with Langevin algorithms,” arXiv preprint

arXiv:2002.10002, 2020.

[44] C. Li, C. Chen, D. Carlson, and L. Carin, “Preconditioned stochastic gradient

Langevin dynamics for deep neural networks,” in 30th AAAI Conference on Ar-

tificial Intelligence, 2016.

[45] J. Lu, Y. Lu, and Z. Zhou, “Continuum limit and preconditioned Langevin

sampling of the path integral molecular dynamics,” Journal of Computational

Physics, vol. 423, p. 109788, 2020.

[46] P. Bras, “Langevin algorithms for very deep neural networks with application to

image classifi cation,”arXiv preprint arXiv:2212.14718, 2022.

[47] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “Finite time identification

in unstable linear systems,” Automatica, vol. 96, pp. 342–353, 2018.

[48] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári, “Improved algorithms for linear
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Appendix A

Proof of Theorem 2

Lemma 2. Suppose Assumptions 1 holds. Let X ∈ Rnx be a random variable with

probability density function p(x) ∝ e−U(x) where λminInx ⪯ ∇2U ⪯ λmaxInx for

λmax, λmin > 0. Set {Yj}, Yj ∈ Rnx be generated by the ULA as

Yj+1 = Yj − γ∇U(Yj) +
√
2γWj ,

where Y0 is a random variable with an arbitrary density function, γ ≤ λmin
16λ2

max
. Then,

we have

E[|Yj −X|2] < 2−
λminγj

4 E[|Y0 −X|2] + 28
nxλ

2
max

λ2min

γ,

where

Proof. Let {Zξ}ξ≥0 be a continuous interpolation of {Yj}, defined by dZξ = −∇U(Yj)dξ +
√
2dBξ for ξ ∈ [jγ, (j + 1)γ)

Zξ = Yj for ξ = jγ.
(A.1)

Note that limξ↗jγ Zξ = Yj = limξ↘jγ Zξ for each j, and thus {Zξ} is a continuous

process. We introduce another stochastic process {Xξ}, defined by

dXξ = −∇U(Xξ)dξ +
√
2dBξ,

where X0 is a random variable with pdf p(x) ∝ e−U(x). By Lemma 3, Xξ has the

same pdf p(x) for all ξ. We use the same Brownian motionBξ to define both {Zξ} and
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{Xξ}. Fix an arbitrary j. Differentiating |Zξ−Xξ|2 with respect to ξ ∈ [jγ, (j+1)γ),

we have

d|Zξ −Xξ|2

dξ
= 2(Zξ −Xξ)

⊤
(
dZξ

dξ
−

dXξ

dξ

)
= 2(Zξ −Xξ)

⊤(−∇U(Yj) +∇U(Zξ)) + 2(Zξ −Xξ)
⊤(−∇U(Zξ) +∇U(Xξ)).

Therefore,

2(Zξ −Xξ)
⊤(−∇U(Yj) +∇U(Zξ)) + 2(Zξ −Xξ)

⊤(−∇U(Zξ) +∇U(Xξ))

≤ 2(Zξ −Xξ)
⊤(−∇U(Yj) +∇U(Zξ))− 2λmin(Zξ −Xξ)

⊤(Zξ −Xξ)

= 2|Zξ −Xξ|∇U(Zξ))−∇U(Yj)| − 2λmin|Zξ −Xξ|2.

where the second inequality follows from the strong log-concavity.

Using Young’s inequality, we have

|Zξ −Xξ||∇U(Zξ))−∇U(Yj)| ≤
λmin|Zξ −Xξ|2P

2
+
|∇U(Zξ))−∇U(Yj)|2

2λmin
.

It follows from the equality and the inequalities above that

d|Zξ −Xξ|2

dξ
≤ −λmin|Zξ −Xξ|2 +

1

λmin
|∇U(Zξ))−∇U(Yj)|2,

which implies

d

dξ
(eλminξ|Zξ −Xξ|2) ≤

eλminξ

λmin
|∇U(Zξ))−∇U(Yj)|2.

Integrating both sides from jγ to (j + 1)γ and multiplying e−λmin(j+1)γ , we have

|Z(j+1)γ −X(j+1)γ |2 ≤ e−λminγ |Zjγ −Xjγ |2

+
1

λmin

∫ (j+1)γ

jγ
e−λmin((j+1)γ−s)|∇U(Zs))−∇U(Yj)|2ds.

Since Xt and X have the same pdf by Lemma 3, we have

E[|Z(j+1)γ −X|2] (A.2)

≤ e−λminγE[|Zjγ −X|2] +
1

λmin

∫ (j+1)γ

jγ
E[|∇U(Zs))−∇U(Yj)|2]ds

≤ e−λminγE[|Zjγ −X|2] +
λ2max

λmin

∫ (j+1)γ

jγ
E[|(Zs − Yj)|2]ds, (A.3)
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where the first inequality follows from e−λmin((j+1)γ−s) ≤ 1 and the second inequality

follows from the Lipschitz smoothness.

To bound (A.3), we handle the first and second terms separately. Regarding the

second term, we first integrate the SDE (A.1) from jγ to s ∈ [jγ, (j + 1)γ) to obtain

Zs − Yj = −(s− jγ)∇U(Yj) +
√
2(Bs −Bjγ). (A.4)

The second term of (A.3) can then be bounded by∫ (j+1)γ

jγ
E[|Zs − Yj |2]ds =

∫ (j+1)γ

jγ
E[| − (s− jγ)∇U(Yj) +

√
2(Bs −Bjγ)|2]ds

≤ 2

[ ∫ (j+1)γ

jγ
E[|(s− jγ)∇U(Yj)|2]ds+ 2

∫ (j+1)γ

jγ
E[|Bs −Bjγ |2]ds

]
.

(A.5)

For s ∈ [jγ, (j + 1)γ), we note that |s− jγ| ≤ γ, and thus∫ (j+1)γ

jγ
E[|(s− jγ)∇U(Yj)|2]ds ≤ γ2

∫ (j+1)γ

jγ
E[|∇U(Yj)|2]

= γ3E[|∇U(Yj)|2]

= γ3E[|∇U(Yj)−∇U(xmin)|2]

≤ γ3λ2maxE[|Yj − xmin|2],

(A.6)

where xmin is a minimizer of potential U .

Then,

E[|Yj − xmin|2] ≤ (E[|Yj −X|2]
1
2 + E[|X − xmin|2]

1
2 )2

≤ 2(E[|Yj −X|2] + E[|X̃ − x̃min|2]).
(A.7)

Applying Lemma 10 in [43],

E[|Yj − xmin|2] ≤ 2E[|Yj −X|2] + 102
nx
λmin

. (A.8)

On the other hand, Lemma 8 in [43] yields∫ (j+1)γ

jγ
E[|Bs −Bjγ |2]ds ≤

4nx
e
γ2. (A.9)
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Combining (A.5)–(A.9), we obtain that∫ (j+1)γ

jγ
E[|Zs − Yj |2]ds ≤ 22λ2maxγ

3E[|Yj −X|2] + 2(10λmax)
2γ3

nx
λmin

+
16nx
e

γ2

≤ 22λ2maxγ
3E[|Yj −X|2] + 25nxγ

2,

(A.10)

where the second inequality follows from γ ≤ λmin
16λ2

max
.

Applying the result above to (A.3), we have

E[|Z(j+1)γ −X|2] < e−λminγE[|Zjγ −X|2] + 22
λ4max

λmin
γ3E[|Yj −X|2] + 25nx

λ2max

λmin
γ2

≤
(
1− λmin

4
γ

)2

E[|Yj −X|2]

+ 22
λ4max

λmin
γ3E[|Yj −X|2] + 25nx

λ2max

λmin
γ2,

(A.11)

where the second inequality follows from the fact that e−x ≤ 1− x
2 for x ∈ [0, 1]. To

further simplify the upper-bound, the following inequalities are needed:

22
λ4max

λmin
γ3 =

λmin

64

(
16λ2max

λmin

)2

γ3 ≤ λmin

64
γ,

and (
1− λmin

4
γ

)2

+
λmin

64
γ ≤

(
1− λmin

8
γ

)2

.

Consequently, E[|Z(j+1)γ −X|2] is bounded as

E[|Z(j+1)γ −X|2] <
(
1− λmin

8
γ

)2

E[|Yj −X|2] + 25nx
λ2max

λmin
γ2.
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Invoking the bound repeatedly, we obtain

E[|Z(j+1)γ −X|2]

<

(
1− λmin

8
γ

)2(j+1)

E[|Y0 −X|2] +
j∑

i=0

(
1− λmin

8
γ

)2i

25nx
λ2max

λmin
γ2

<

(
1− λmin

8
γ

)2(j+1)

E[|Y0 −X|2] +
1

1− (1− λmin
8 γ)

25nx
λ2max

λmin
γ2

=

(
1− λmin

8
γ

)2(j+1)

E[|Y0 −X|2] + 28nx
λ2max

λ2min

γ

≤
(
1− λmin

8
γ

)2(j+1)

E[|Y0 −X|2] + 28nx
λ2max

λ2min

γ.

(A.12)

Since (1− λmin
8 γ) ≤ (12)

λmin
8

γ , Z(j+1)γ = Yj+1, we conclude that

E[|Yj+1 −X|2] = E[|Z(j+1)γ −X|2] <
(
1

2

)λminγ(j+1)

4

E[|Y0 −X|2] + 28
nxλ

2
max

λ2min

γ.

Replacing j + 1 with j, the result follows.

Proof of Theorem 2. We now prove Theorem 2. It follows from Lemma 10 in [43]

that

Ex∼p

[
|x− xmin|2

] 1
2 ≤ 5

√
2nx
λmin

, (A.13)

where xmin is a minimizer of U . Using Lemma 2 in with nx = dn and the initial

distribution X0 ∼ δ(xmin) to obtain that

Ex∼p,x̃∼pN

[
|x− x̃|2

]
< 2−

λminγN

4 Ex∼p

[
|x− xmin|2

]
+ 28

nxλ
2
max

λ2min

γ.

Taking the stepsize and the number of steps as γ = λmin
16λ2

max
and N = 64λ2

max

λ2
min

, respec-

tively, the first and second terms in the inequality above is bounded as

2−
λminγN

4 Ex∼p

[
|x− xmin|2

]
=

1

2
Ex∼p

[
|x− xmin|2

]
≤ 25

nx
λmin

,
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and

28
nxλ

2
max

λ2min

γ ≤ 24
nx
λmin

,

respectively. Therefore, we have

Ex∼p,x̃∼pN

[
|x− x̃|2

] 1
2 <

√
41

nx
λmin

= O(

√
1

λmin
).
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Appendix B

Proof of Lemma 1

Proof. By direct calculation, the following holds:

∇2
θ log pw(xs+1 −Θ⊤zs) = ∇2

ws
log pw(xs+1 −Θ⊤zs)⊗ zsz⊤s ,

where ⊗ denotes Kronecker product. Then,∇2
θUt is given by

∇2
θUt = λIdn −

t−1∑
s=1

∇2
ws

log pw(xs+1 −Θ⊤zs)⊗ zsz⊤s .

By Assumption 1, for any state action pair zs = (xs, us),

mblkdiag({zsz⊤s }ni=1) ⪯ ∇2
ws

log pw(xs+1−Θ⊤zs)⊗zsz⊤s ⪯ mblkdiag({zsz⊤s }ni=1).

Then, we have

min{m, 1}
(
λIdn +

t−1∑
s=1

blkdiag({zsz⊤s }ni=1)

)
⪯ ∇2

θUt,

and

∇2
θUt ⪯ max{m, 1}

(
λIdn +

t−1∑
s=1

blkdiag({zsz⊤s }ni=1)

)
.

Finally, letting the preconditioner Pt = λIdn +
∑t−1

s=1 blkdiag({zsz⊤s }ni=1), we obtain

m ⪯ P− 1
2

t ∇2Ut(θ)P
− 1

2
t ⪯M.
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Appendix C

Details for Section 4.1

C.1 Proof of Proposition 1

To prove Proposition 1, we first introduce the following two lemmas regarding the

stationarity of the preconditioned Langevin diffusion and the non-asymptotic behavior

of the preconditioned ULA.

Lemma 3. Suppose that Assumptions 1 holds. Let Xξ ∈ Rnx denote the solution of

the preconditioned Langevin equation

dXξ = −P−1∇U(Xξ)dξ +
√
2P− 1

2dBξ,

where X0 is distributed according to p(x) ∝ e−U(x), and P ∈ Rnx×nx is an arbitrary

positive definite matrix. Then, Xξ has the same probability density p(x) for all ξ ≥ 0.

Proof. Consider the following Fokker-Planck equation associated with the precondi-

tioned Langevin equation:

∂q(x, ξ)

∂ξ
= −

nx∑
i=1

∂

∂xi
([P−1∇ log p(x)]iq(x, ξ)) +

nx∑
i=1

nx∑
j=1

∂2

∂xi∂xj
([P−1]ijq(x, ξ)).

(C.1)

Then, it is well known that q(x, ξ) is the probability density function of Xξ. We can

check that p(x) is a solution of the Fokker-Planck equation by plugging q(x, ξ) = p(x)
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into (C.1). Specifically,

−
nx∑
i=1

∂

∂xi
([P−1∇ log p(x)]ip(x)) +

nx∑
i=1

nx∑
j=1

∂2

∂xi∂xj
([P−1]ijp(x))

= −
nx∑
i=1

∂

∂xi

( nx∑
j=1

[P−1]ij
∂

∂xj
p(x)

)
+

nx∑
i=1

nx∑
j=1

∂2

∂xi∂xj
([P−1]ijp(x))

= 0 =
∂p(x)

∂ξ
.

(C.2)

Since the Fokker-Planck equation has a unique smooth solution [40], we conclude that

q(x, t) ≡ p(x) for all t, and the result follows.

Lemma 4. Suppose Assumptions 1 holds. Let X ∈ Rnx be a random variable with

probability density function p(x) ∝ e−U(x), and {Yj}, Yj ∈ Rnx be generated by the

preconditioned ULA as

Yj+1 = Yj − γP−1∇U(Yj) +
√

2γP−1Wj ,

where Y0 is a random variable with an arbitrary density function, γ ≤ mλmin
16M2 max{λmin,t} ,

and P ∈ Rn2
x is a positive definite matrix such that mInx ⪯ P− 1

2∇2UP− 1
2 ⪯ MInx

and λminInx ⪯ P ⪯ λmaxInx . Then, we have

E[|Yj −X|2P ] < 2−
mγj
4 E[|Y0 −X|2P ] + 28

nxM
2

m2
γ.

Proof. Let {Zξ}ξ≥0 be a continuous interpolation of {Yj}, defined by dZξ = −P−1∇U(Yj)dξ +
√
2P−1dBξ for ξ ∈ [jγ, (j + 1)γ)

Zξ = Yj for ξ = jγ.
(C.3)

Note that limξ↗jγ Zξ = Yj = limξ↘jγ Zξ for each j, and thus {Zξ} is a continuous

process. We introduce another stochastic process {Xξ}, defined by

dXξ = −P−1∇U(Xξ)dξ +
√
2P− 1

2dBξ,

where X0 is a random variable with pdf p(x) ∝ e−U(x). By Lemma 3, Xξ has the

same pdf p(x) for all ξ. We use the same Brownian motionBξ to define both {Zξ} and
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{Xξ}. Fix an arbitrary j. Differentiating |Zξ −Xξ|pP = |P
1
2 (Zξ −Xξ)|p with respect

to ξ ∈ [jγ, (j + 1)γ), we have

d|Zξ −Xξ|pP
dξ

= p|P
1
2 (Zξ −Xξ)|p−2(Zξ −Xξ)

⊤P

(
dZξ

dξ
−

dXξ

dξ

)
= p|P

1
2 (Zξ −Xξ)|p−2(Zξ −Xξ)

⊤(−∇U(Yj) +∇U(Zξ))

+ p|P
1
2 (Zξ −Xξ)|p−2(Zξ −Xξ)

⊤(−∇U(Zξ) +∇U(Xξ)).

Noting that mInx ⪯ P− 1
2∇2UP− 1

2 ⪯MInx , it follows that

p|P
1
2 (Zξ −Xξ)|p−2(Zξ −Xξ)

⊤(−∇U(Yj) +∇U(Zξ))

+ p|P
1
2 (Zξ −Xξ)|p−2(Zξ −Xξ)

⊤(−∇U(Zξ) +∇U(Xξ))

≤ p|P
1
2 (Zξ −Xξ)|p−2(Zξ −Xξ)

⊤P
1
2P− 1

2 (−∇U(Yj) +∇U(Zξ))

− pm|P
1
2 (Zξ −Xξ)|p−2(Zξ −Xξ)

⊤P (Zξ −Xξ)

= p|P
1
2 (Zξ −Xξ)|p−2

(
|Zξ −Xξ|P |P− 1

2∇U(Zξ))− P− 1
2∇U(Yj)| −m|Zξ −Xξ|2P

)
.

where the first inequality follows from the mean value theorem.

Recall the generalized Young’s inequality stating ab ≤ sαaα

α + s−βbβ

β for a, b, α, β >

0 and s > 0 and 1
α + 1

β = 1. Choosing s = ( pm
2(p−1))

(p−1)/p, α = p
p−1 , and β = p we

further derive that

|Zξ −Xξ|p−1
P |P− 1

2∇U(Zξ))− P− 1
2∇U(Yj)|

≤ p− 1

p

pm

2(p− 1)
|Zξ −Xξ|pP +

1

p

1

( pm
2(p−1))

p−1
|P− 1

2∇U(Zξ))− P− 1
2∇U(Yj)|p.

Hence,

d|Zξ −Xξ|pP
dt

≤ −pm
2
|Zξ −Xξ|pP +

2p−1

mp−1
|P− 1

2∇U(Zξ))− P− 1
2∇U(Yj)|p,

as pm
2(p−1) ≥

m
2 . As a result,

d

dξ
(e

pm
2

ξ|Zξ −Xξ|pP ) ≤ e
pm
2

ξ 2
p−1

mp−1
|P− 1

2∇U(Zξ))− P− 1
2∇U(Yj)|p.
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Integrating both sides from jγ to (j + 1)γ and multiplying both sides by e−
pm
2

(j+1)γ ,

we have

|Z(j+1)γ −X(j+1)γ |
p
P

≤ e−
pm
2

γ |Zjγ −Xjγ |pP

+
2p−1

mp−1

∫ (j+1)γ

jγ
e−

pm
2

((j+1)γ−s)|P− 1
2∇U(Zs))− P− 1

2∇U(Yj)|pds.

Since Xξ and X have the same pdf by Lemma 3, we have

E[|Z(j+1)γ −X|
p
P ]

≤ e−
pm
2

γE[|Zjγ −X|pP ] +
2p−1

mp−1

∫ (j+1)γ

jγ
E[|P− 1

2∇U(Zs))− P− 1
2∇U(Yj)|p]ds

= e−
pm
2

γE[|Zjγ −X|pP ] (C.4)

+
2p−1

mp−1

∫ (j+1)γ

jγ
E[|P− 1

2 (

∫ 1

0
∇2U(Yj + t(Yj − Zs))dt)(Zs − Yj)|p]ds

≤ e−
pm
2

γE[|Zjγ −X|pP ] (C.5)

+
2p−1

mp−1

∫ (j+1)γ

jγ
E[|P− 1

2 (

∫ 1

0
∇2U(Yj + t(Yj − Zs))dt)P

− 1
2 |p|P

1
2 (Zs − Yj)|p]ds

≤ e−
pm
2

γE[|Zjγ −X|pP ] +
2p−1Mp

mp−1

∫ (j+1)γ

jγ
E[|P

1
2 (Zs − Yj)|p]ds, (C.6)

where the first inequality follows from e−m((j+1)γ−s) ≤ 1 and the second inequality

follows from the mean value theorem and the last inequality follows from the assump-

tion in the lemma. To bound (C.6), we handle the first and second terms separately.

For the second term, we integrate (C.3) from jγ to s ∈ [jγ, (j + 1)γ) to obtain

Zs − Yj = −(s− jγ)P−1∇U(Yj) +
√
2P−1(Bs −Bjγ). (C.7)
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Ignoring the constant coefficient, the second term of (C.6) is then bounded by∫ (j+1)γ

jγ
E[|P

1
2 (Zs − Yj)|p]ds

=

∫ (j+1)γ

jγ
E[| − (s− jγ)P− 1

2∇U(Yj) +
√
2(Bs −Bjγ)|p]ds

≤ 2p−1

[ ∫ (j+1)γ

jγ
E[|(s− jγ)P− 1

2∇U(Yj)|p]ds+ 2p/2
∫ (j+1)γ

jγ
E[|Bs −Bjγ |p]ds

]
.

(C.8)

For s ∈ [jγ, (j + 1)γ), we note that |s− jγ| ≤ γ, and thus∫ (j+1)γ

jγ
E[|(s− jγ)P− 1

2∇U(Yj)|p]ds ≤ γp
∫ (j+1)γ

jγ
E[|P− 1

2∇U(Yj)|p]

= γp+1E[|P− 1
2∇U(Yj)|p]

= γp+1E[|P− 1
2∇U(Yj)− P− 1

2∇U(xmin)|p]

≤ γp+1MpE[|Yj − xmin|pP ],

(C.9)

where xmin is a minimizer of potential U .

Let X̃ = P
1
2X and denote the distribution of X̃ by p̃(x̃), i.e., X̃ ∼ p̃(x̃),

E[|Yj − xmin|pP ] ≤ 2p−1(E[|Yj −X|pP ] + E[|X̃ − x̃min|p]). (C.10)

Note first that p̃(x̃) = det(P− 1
2 )p(P− 1

2 x̃).

Hence, −∇2
x̃ log p̃(x̃) = −P− 1

2∇2
x log p(P

− 1
2 x̃)P− 1

2 which is m-strongly convex

with respect to x̃, one can apply Lemma 10 in [43]. As a consequence,

E[|Yj − xmin|pP ] ≤ 2p−1E[|Yj −X|pP ] +
10p

2

(pnx
m

)p/2
. (C.11)

On the other hand, Lemma 8 in [43] yields that∫ (j+1)γ

jγ
E[|Bs −Bjγ |p]ds ≤ 2

(pnx
e

)p/2
γp/2+1. (C.12)
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Combining (C.8)–(C.12), we obtain that∫ (j+1)γ

jγ
E[|Zs − Yj |pP ]ds

≤ 22p−2Mpγp+1E[|Yj −X|pP ] + 2p−2(10M)pγp+1
(pnx
m

)p/2
+ 23p/2

(pnx
e

)p/2
γp/2+1

≤ 22p−2Mpγp+1E[|Yj −X|pP ] + 23p(pnx)
p/2γp/2+1,

(C.13)

where the second inequality follows from γ ≤ mλmin
16M2 max{λmin,t} ≤

m
16M2 .

Consequently, applying the result above to (C.6), we have

E[|Z(j+1)γ −X|
p
P ]

≤ e−
pm
2

γE[|Zjγ −X|pP ] + 23p−3 M
2p

mp−1
γp+1E[|Yj −X|pP ]

+ 24p−1(pnx)
p/2 Mp

mp−1
γp/2+1.

To further simplify the bound, we modify the coefficient as

23p−3 M
2p

mp−1
γp+1 =

m

2p+3

(
16M2max{λmin, t}

mλmin

)p( λmin

max{λmin, t}

)p

γp+1 ≤ m

32
γ,

and

e−
pm
2

γ +
m

32
γ ≤ e−mγ +

m

32
γ ≤ 1− m

2
γ +

m

32
γ

< 1− m

4
γ,

where the second inequality follows from the fact that e−x ≤ 1 − x
2 for x ∈ [0, 1].

Consequently, E[|Z(j+1)γ −X|
p
P ] is bounded as

E[|Z(j+1)γ −X|
p
P ] <

(
1− m

4
γ

)
E[|Yj −X|pP ] + 24p−1(pnx)

p/2 Mp

mp−1
γp/2+1.

56



Invoking the bound repeatedly, we obtain that

E[|Z(j+1)γ −X|
p
P ]

<

(
1− m

4
γ

)(j+1)

E[|Y0 −X|pP ] +
j∑

i=0

(
1− m

4
γ

)i

24p−1(pnx)
p/2 Mp

mp−1
γp/2+1

<

(
1− m

4
γ

)(j+1)

E[|Y0 −X|pP ] +
1

1− (1− m
4 γ)

24p−1(pnx)
p/2 Mp

mp−1
γp/2+1

=

(
1− m

4
γ

)(j+1)

E[|Y0 −X|pP ] + 24p+1(pnx)
p/2M

p

mp
γp/2.

Since (1− m
4 γ) ≤ (12)

m
4
γ , Z(j+1)γ = Yj+1, we conclude that

E[|Yj+1 −X|pP ]

= E[|Z(j+1)γ −X|
p
P ]

<

(
1

2

)mγ(j+1)
4

E[|Y0 −X|pP ] + 24p+1(pnx)
p/2M

p

mp
γp/2.

Replacing j + 1 with j, the result follows.

Proof of Proposition 1. We now prove Proposition 1. For simplicity, we use the fol-

lowing notation throughout the proof. For a positive definite matrix P ,

Ep
P (µ, µ̃|h) := Ex∼µ,x̃∼µ̃[|x− x̃|pP |h],

and define λmax,t, λmin,t be the maximum, minimum eigenvalues of Pt.

Once again it follows from Lemma 10 in [43] that

Ep
Pt
(µt, δ(θmin,t)|ht) ≤ 5p

(
pdn

m

) p
2

(C.14)

for all t since µt’s are m-strongly log-concave. Here θmin,t is a minimizer of Ut.

Then, we use Lemma 4 with nx = dn and the initial distribution θ0 ∼ δ(θmin,t) in

Algorithm 1 to obtain that

Ep
Pt
(µt, µ̃t|ht) < 2−

mγtNt
4 Ep

Pt
(µt, δ(θmin,t)|ht) + 24p+1(pnx)

p/2M
p

mp
γ
p/2
t .
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In Algorithm 1, the stepsize and number of iterations are chosen to be

γt =
mλmin,t

16M2 max{λmin,t,t} and Nt =
4 log2(max{λmin,t,t}/λmin,t)

mγt
. Thus, the first and second

term in the inequality above are bounded as

2−
γtmNt

4 Ep
Pt
(µt, δ(θmin,t)|ht) = 2− log2(max{λmin,t,t}/λmin,t)Ep

Pk
(µt, δ(θmin,t)|ht)

≤ 5p
(
pdn

m

)p/2( λmin,t

max{λmin,t, t}

)
,

and

24p+1(pnx)
p/2M

p

mp
γ
p/2
t ≤ 22p+1 (pdn)

p/2

m
p
2

(
λmin,t

max{λmin,t, t}

) p
2

.

Therefore, we have

Ep
Pk
(µt, µ̃t|ht) <

(
pdn

m

) p
2
(
5p

λmin,t

max{λmin,t, t}
+ 22p+1

(
λmin,t

max{λmin,t, t}

) p
2
)
.

Finally,

Eθ∼µt,θ′∼µ̃t [|θ − θ̃|
p
Pt
| ht]

≤
(
pdn

m

) p
2
(
5p

λmin,t

max{λmin,t, t}
+ 22p+1

(
λmin,t

max{λmin,t, t}

) p
2
)

≤
(
pdn

m

) p
2
(
22p+1 + 5p

)
.

For a special case when p = 2, a simpler bound is achieved. Noting that

λmin,tEθt∼µt,θ̃t∼µ̃t
[|θt − θ̃t|2 | ht] ≤ E2

Pt
(µt, µ̃t | ht),

one can deduce that

Eθt∼µt,θ̃t∼µ̃t
[|θt − θ̃t|2 | ht]

1
2 <

√
D

max{λmin,t, t}
,

where D = 114dn
m .

C.2 Proof of Proposition 2

Proof of Proposition 2. Let θξ ∈ Rdn denote the solution of the following stochastic

differential equation:

dθξ = −P−1
t ∇Ut(θξ)dξ +

√
2P

− 1
2

t dBξ,
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where Pt = λIdn +
∑t−1

s=1 blkdiag({zsz⊤s }ni=1) and Ut = U1 + U ′
t for

U ′
t =

∑t−1
s=1 log pw(xs+1 −Θ⊤zs|zs, θ). Define V (θξ) as

V (θξ) =
1

2
eαξ|θξ − θ∗|2Pt

,

for α > 0 fixed. Applying Ito’s lemma to V (θξ), we have

V (θξ) = F1 + F2 + F3,

where

F1 =

∫ ξ

0
eαη∇θUt(θη)

⊤(θ∗ − θη)dη +
α

2

∫ t

0
eαη|θη − θ∗|2Pt

dη,

F2 =
dn

2

∫ ξ

0
eαηdη,

F3 =

∫ ξ

0
eαη(θη − θ∗)⊤P

1
2
t dBη.

To bound F1, we expand as following.

F1 =
1

2

∫ ξ

0
eαη∇θUt(θη)

⊤(θ∗ − θη)dη +
α

2

∫ ξ

0
eαη|θη − θ∗|2Pt

dη

= −1

2

∫ ξ

0
eαη(∇θUt(θη)−∇θUt(θ∗))

⊤(θη − θ∗)dη +
α

2

∫ ξ

0
eαη|θη − θ∗|2Pt

dη

+
1

2

∫ ξ

0
eαη∇θU1(θ∗)

⊤(θ∗ − θη)dη +
1

2

∫ ξ

0
eαη∇θU

′
t(θ∗)

⊤(θ∗ − θη)dη

≤ −m
2

∫ ξ

0
eαη(θη − θ∗)⊤Pt(θη − θ∗)dη +

α

2

∫ ξ

0
eαη|θη − θ∗|2Pdη

+
1

2

∫ ξ

0
eαη∇θU1(θ∗)

⊤(θ∗ − θη)dη +
1

2

∫ ξ

0
eαη∇θU

′
t(θ∗)

⊤(θ∗ − θη)dη

≤ α−m
2

∫ ξ

0
eαη|θη − θ∗|2Pt

dη +
1

2

∫ ξ

0
eαη∇θU1(θ∗)

⊤(θ∗ − θη)dη

+
1

2

∫ ξ

0
eαη∇θU

′
t(θ∗)

⊤(θ∗ − θη)dη,

To bound the second and third terms on the right-hand side, we invoke Young’s in-
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equality, which yields that∫ ξ

0
eαη∇θU1(θ∗)

⊤(θ∗ − θη)dη

≤
∫ ξ

0
eαη|P− 1

2
t ∇θU1(θ∗)||P

1
2
t (θ∗ − θη)|dη

≤ 1

m

∫ ξ

0
eαη|P− 1

2
t ∇θU1(θ∗)|2dη +

m

4

∫ ξ

0
eαη|θ∗ − θη|2Pt

dη.

and ∫ ξ

0
eαη∇θU

′
t(θ∗)

⊤(θ∗ − θη)dη

≤
∫ ξ

0
eαη|P− 1

2
t ∇θU

′
t(θ∗)||P

1
2
t (θ∗ − θη)|dη

≤ 1

m

∫ ξ

0
eαη|P− 1

2
t ∇θU

′
t(θ∗)|2dη +

m

4

∫ ξ

0
eαη|θ∗ − θη|2Pt

dη.

Putting altogether,

F1 ≤
2α−m

4

∫ ξ

0
eαη|θη − θ∗|2Pt

dη +
1

2m

∫ ξ

0
eαη|P− 1

2
t ∇θU1(θ∗)|2dη

+
1

2m

∫ ξ

0
eαη|P− 1

2
t ∇θU

′
t(θ∗)|2dη.

Choosing α = m
2 , we obtain

F1 ≤
1

2m

∫ ξ

0
eαη|P− 1

2
t ∇θU1(θ∗)|2dη +

1

2m

∫ ξ

0
eαη|P− 1

2
t ∇θU

′
t(θ∗)|2dη

≤ Ceαξ + 1

2m

∫ ξ

0
eαη|P− 1

2
t ∇θU

′
t(θ∗)|2dη.

On the other hand, F2 is bounded as

F2 =
dn

2

∫ ξ

0
eαηdη =

dn

2α
(eαξ − 1) ≤ dn

2α
eαξ =

dn

m
eαξ.

The last term F3 is bounded as follows. By Burkholder-Davis-Gundy inequality
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[50], for Ξ > 0 fixed,

E[ sup
0≤ξ≤Ξ

|F3|] ≤ 2
√
2E

[(∫ Ξ

0
e2αη|θη − θ∗|2Pt

dη

) 1
2
]

≤ 2
√
2E

[(
sup

0≤ξ≤Ξ
eαξ|θξ − θ∗|2Pt

∫ Ξ

0
eαηdξ

) 1
2
]

= 2
√
2E

[(
sup

0≤ξ≤Ξ
eαξ|θξ − θ∗|2Pt

(
eαΞ − 1

α

)) 1
2
]

≤ E
[(

8eαΞ

α

) 1
2

( sup
0≤ξ≤Ξ

eαξ|θξ − θ∗|2Pt
)
1
2

]
,

where the expectation is taken with respect to θξ. By Young’s inequality,

E
[(

8eαΞ

α

) 1
2

( sup
0≤ξ≤Ξ

eαξ|θξ − θ∗|2Pt
)
1
2

]
≤ E

[
8eαΞ

α
+

1

4
( sup
0≤ξ≤Ξ

eαξ|θξ − θ∗|2Pt
)

]
= 16meαΞ +

1

2
E
[

sup
0≤ξ≤Ξ

V (θξ)

]
.

Finally,

E
[

sup
0≤ξ≤Ξ

V (θξ)

]
= E

[
sup

0≤ξ≤Ξ
(F1 + F2 + F3)

]
≤ E

[
sup

0≤ξ≤Ξ
F1

]
+ E

[
sup

0≤t≤Ξ
F2

]
+ E

[
sup

0≤t≤Ξ
F3

]
≤ E

[(
C +

1

m2
|P− 1

2
t ∇θU

′
t(θ∗)|2 +

dn

m
+ 16m

)]
eαΞ +

1

2
E
[

sup
0≤t≤Ξ

V (θξ)

]
.

(C.15)

Here, we use different C whenever it appears but it only depends on m, d, n and the

prior U1. Rearranging with respect to E
[
sup0≤ξ≤Ξ V (θξ)

]
,

E
[

sup
0≤ξ≤Ξ

V (θξ)

]
≤ 2

(
C +

1

m2
|P− 1

2
t ∇θU

′
t(θ∗)|2 +

dn

m
+ 16m

)
eαΞ.
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Then,

E[|θΞ − θ∗|Pt |ht] = E[
√
2e−

1
2
αΞV (θΞ)

1
2 ]

≤
√
2e−

1
2
αΞ

(
E[ sup

0≤ξ≤Ξ
V (θΞ)]

) 1
2

≤ 2

√(
C +

1

m2
|P− 1

2
t ∇θU

′
t(θ∗)|2 +

dn

m
+ 16m

)
.

Taking the limit Ξ→∞ and using Fatou’s Lemma, we have

Eθt∼µt [|θt − θ∗|Pt |ht] ≤ 2

√(
C +

1

m2
|P− 1

2
t ∇θU

′
t(θ∗)|2 +

dn

m
+ 16m

)
.

For a random vectorX following log-concave distribution, Theorem 5.22 in [51] yields

that

E[|X|p]
1
p ≤ 2pE[|X|]

for any p > 0. Observe that y := P
1
2
t (θt − θ∗) is a random vector from a log-concave

distribution since its potential Ut(Pt
− 1

2 y + θ∗) is convex. Therefore, it follows that

Eθt∼µt [|θt − θ∗|
p
Pt
|ht] ≤ (2p)pEθt∼µt [|θt − θ∗|Pt |ht]p

≤ (2p)p
(
C +

4

m2
|P− 1

2
t ∇θU

′
t(θ∗)|2 +

4dn

m
+ 64m

) p
2

.

(C.16)

To proceed let us define Z :=
[
z1 · · · zt

]⊤
. Noting that

∂U ′
t(θ∗)

∂Θij
= −

∑T
t=1 Zti

∂ log pw(wt)
∂wt(j)

where the j-th component of noise wt is denoted

by wt(j). Therefore, Pt can be written as Pt = λIdn + blkdiag{Z⊤Z}ni=1 = In ⊗

(Z⊤Z + λId), and it is straightforward to verify that P−1
t = In ⊗ (Z⊤Z + λId)

−1.
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Denoting by θℓ := Θij for ℓ = (j − 1)d+ i, we deduce that

|P− 1
2

t ∇θU
′
t(θ∗)|2 =

dn∑
ℓ,k=1

∂U ′
t(θ∗)

∂θℓ
(Pt)

−1
ℓk

∂U ′
t(θ∗)

∂θk

=

d∑
i′,i=1

n∑
j′,j=1

∂U ′
t(θ∗)

∂Θi′j′
P−1
(j′−1)d+i′,(j−1)d+i

∂U ′
t(θ∗)

∂Θij

≤
n∑

j=1

t−1∑
s′,s=1

∂ log pw(ws′)

∂ws′(j)
(Z(Z⊤Z + λId)

−1Z⊤)s′s
∂ log pw(ws)

∂ws(j)
.

Recall first that v⊤∇w log pw(wt) is a M√
m

-sub-Gaussian random variable (Proposition

2.18 in [52]).

We are now ready to leverage the self-normalization technique, Lemma 6. For each

j fixed, we take Xs = zs and Vt = λId +
∑t−1

s=1 zsz
⊤
s , St =

∑t−1
s=1

∂ log pw(ws)
∂ws(j)

zs and

the probability bound δ to be δ
n in the statement of the lemma. Consequently, we derive

that

t−1∑
s,s′=1

∂ log pw(ws′)

∂ws′(j)
(Z(Z⊤Z + λId)

−1Z⊤)s′s
∂ log pw(ws)

∂ws(j)

≤ 2
M2

m
log

(
n

δ

(
n
√

det(Pt)

det(λIdn)

) 1
2
)

holds with probability at least 1- δn for each j fixed.

Plugging all into (C.16) and taking the union bound, with probability 1− δ

Eθt∼µt [|θt − θ∗|
p
Pt
|ht]

≤ (2p)p
(( n∑

j=1

8M2

m3
log

(
n

δ

(
n
√

det(Pt)

det(λId)

) 1
2
))

+
4dn

m
+ 64m+ C

) p
2

≤ (2p)p
(
8
nM2

m3
log

(
n

δ

(
λmax,t

λ

) d
2
)
+ C

) p
2

,

which finishes the proof.
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Appendix D

Details for Theorem 3

To get a uniform bound for the state, we start by showing that E[|xt|p] has a polynomial-

in-time bound for any p where the expectation is taken over all noises and the random-

ized algorithm. A key idea is to decompose an event into a good set and a bad set

as proposed in [28]. Let us first define Ω to be the probability space representing all

randomness incurred from noises and preconditioned ULA. Then we define the event

Et′ and Ft′ as

Et′ = {w ∈ Ω : ∀t ≤ t′, |θ̃t − θ∗|Pt ≤ βt(δ)}

with the constant C > 0 from Proposition 2, and

Ft′ = {w ∈ Ω : ∀t ≤ t′, |xt| ≤ αt},

where

βt(δ)

:= e(t(t+ 1))−1/ log δ

×
(
10

√
dn

m
log

(
1

δ

)
+ 2 log

(
1

δ

)√
8M2n

m3
log

(
nt(t+ 1)

δ

(
λmax,t

λ

) d
2
)
+ C

)
,
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and

αt :=
1

1− ρ

(
Mρ

ρ

)d

×
(
G(max

j≤t
|zj |)

d
d+1βt(δ)

1
2(d+1) + d(L̄+ SL̄ν)

√
2 log

(
2t2(t+ 1)

δ

))
,

where L̄ = 1√
2m

denotes the subgaussianity of our system noise obtained from Herbst

argument in [53] and G is a positive constant defined in Lemma 5. Let us briefly

describe how the proof proceeds. First, we examine the distance between the exact

posterior and true system parameter θ∗, which is given in Proposition 2 below. This

quantification in turn allows us to estimate |θ̃t− θ∗| with high probability with respect

to Et and Ft. Finally, one achieves the polynomial bound for the state combining all

together with Proposition 1 as given in Theorem 3. Our result is an extension of [28]

to the TS framework.

The next proposition asserts that the eventFt defined at the beginning of the section

happens with high probability. Thanks to this result, we can integrate the OFU-based

approach with the Bayesian approach where Thompson sampling is exploited. We

provide some details of the proof for the sake of completeness focusing on the part

which is different from [28].

Proposition 5. Suppose Assumption 1, 2 and 3 hold. Then for any δ > 0 such that

log(1δ ) ≥ 2 and t′ ∈ [1, T ], we have

Pr(Et′ ∩ Ft′) ≥ 1− 4δ.

Before proving the proposition, let us introduce some auxiliary results on the be-

havior of Mt := Θ̃t−Θ∗. One of the fundamental ideas is to identify critical columns

of Mt representing the column space of Mt where Θ̃t is a matrix whose vectorization

is θ̃t ∈ Rdn. We follow the argument presented in Appendix D of [28].

For B ⊂ Rd, v ∈ Rd and M ∈ Rd×n, let us define π(v,B) be projection of

the vector v onto the space B. Similarly, we define π(M,B) to be a column-wise
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projection of M onto B. We then define a sequence of subspaces Bt for t = T, ..., 1

with BT+1 = ∅ in the following way. Let ϵ > 0 be given and set Bt = Bt+1. If

|π(Mt,B⊥)|F > dϵ where | · |F denotes the Frobenius norm, we pick a column v from

Mt satisfying π(v,B⊥) > ϵ and update Bt ← Bt ⊕ {v}. Therefore, we have

|π(Mt,B⊥t )| ≤ |π(Mt,B⊥t )|F ≤ dϵ,

after this process ends.

Definition 3. Let TT be the set of timesteps at which subspace Bt expand. Clearly,

m := |TT | ≤ d since Mt has d columns. Let us denote the timesteps by t1 > t2 >

... > tm and define i(t) := max{i ≤ m : ti ≥ t}.

A key insight of this procedure is to discover a sequence of subspaces Bt support-

ing Mt’s. That way we derive the following estimate for the projection of any vector x

onto Bt:

Uϵ2d ≤ |π(x,Bt)|2 ≤
i(t)∑
i=1

|M⊤
ti x|

2,

whereU = U0
H . Here,U0 =

1
16d−2 max{1,S2(d−2)} , andH is chosen to be a positive num-

ber strictly larger than max{16, 4S2M̃2

dU0
} and M̃ = supY≥0

(
nL̄

√√√√d log

(
1+TY/λ

δ

)
+
√
λS

)
Y

where S > 0 is from Definition 1, λ satisfies Assumption 2, and T denotes the time

horizon.

Using this relation, we have the following result. For the proof, we only highlight

the part which is different from [28].

Lemma 5. For any t ∈ [1, T ], on the event Et,

max
s≤t,s/∈Tt

|M⊤
s zs| ≤ GZ

d
d+1

t βt(δ)
1

2(d+1) ,

where G = 2
(
2Sdd+0.5

√
U

) 1
d+1 and Zt = maxs≤t |zs|.

66



Proof. For Mt = Θ̃t −Θ∗, we note that the following holds on the event Et:

βt(δ) ≥ |θ̃t − θ∗|Pt

=
d∑

i,i′=1

n∑
j,j′=1

(θ̃t − θ∗)d(j−1)+iPd(j−1)+i,d(j′−1)+i′(θ̃t − θ∗)d(j′−1)+i′

=

d∑
i,i′=1

n∑
j,j′=1

(Θ̃t −Θ∗)ij(In)jj′(

t−1∑
s=1

zsz
⊤
s + λId)ii′(Θ̃t −Θ∗)i′j′

=
d∑

i,i′=1

n∑
j=1

(Θ̃t −Θ∗)
⊤
ji(

t−1∑
s=1

zsz
⊤
s + λId)ii′(Θ̃t −Θ∗)i′j

= tr(M⊤
t (

t−1∑
s=1

zsz
⊤
s + λId)Mt)

≥ max
1≤s<t

|M⊤
t zs|2.

Therefore, max1≤s<t |M⊤
t zs|2 ≤ βt(δ) so that we can follow the same lines in Lemma

18 [28].

We are now ready to prove Proposition 5. Roughly, we combine Proposition 1

and 2 to show the event Et happens with high probability, which gives us an estimate

for |θ̃t − θ∗|. Once established, one can control the event on which the state norm is

bounded above by the state norm with lower power, i.e., |xt| ≤ C|xt|
d

d+1 for all t.

Proof of Proposition 5. By Proposition 2, we first see that

Eθt∼µt

[
|θt − θ∗|pPt

| ht
] 1
p ≤ 2p

√
8M2n

m3
log

(
nt(t+ 1)

δ

(
λmax,t

λ

) d
2
)
+ C

holds with probability 1 − δ
t(t+1) . Recalling Proposition 1 and using Minkowski in-

equality, it holds that

Eθ̃t∼µ̃t

[
|θ̃t − θ∗|pPt

| ht
] 1
p

≤ Eθt∼µt,θ̃t∼µ̃t

[
|θ̃t − θt|pPt

| ht
] 1
p + Eθt∼µt

[
|θ − θ∗|pPt

| ht
] 1
p

≤ 10

√
pdn

m
+ 2p

√
8M2n

m3
log

(
nt(t+ 1)

δ

(
λmax,t

λ

) d
2
)
+ C,
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with probability 1− δ
t(t+1) for p ≥ 2. By Markov inequality, for any ϵ > 0,

Pr(|θ̃t − θ∗|Pt > ϵ | ht)

≤
Eθ̃∼µ̃t

[
|θ̃ − θ∗|pPt

| ht
]

ϵp

≤ 1

ϵp

(
10

√
pdn

m
+ 2p

√
8M2n

m3
log

(
nt(t+ 1)

δ

(
λmax,t

λ

) d
2
)
+ C

)p

.

We choose p = log

(
1
δ

)
and

ϵ = e(t(t+ 1))1/p
(
10
√

pdn
m + 2p

√
8M2n
m3 log

(
nt(t+1)

δ

(
λmax,t

λ

) d
2
)
+ C

)
.

Then,

Pr

(
|θ̃t − θ∗|Pt > βt(δ) | ht

)
≤ δ

t(t+ 1)
,

which reads that Pr(|θt − θ∗|t ≤ βt(δ)|ht) ≥ 1− δ
t(t+1) . Noticing that

Pr(|θt − θ∗|t ≤ βt(δ)) = E[E[1|θt−θ∗|t≤βt(δ)|ht]]

= E[Pr(|θt − θ∗|t ≤ βt(δ)|ht)]

≥ (1− δ

t(t+ 1)
)2,

we derive that Pr(|θt − θ∗|t ≤ βt(δ)) ≥ 1− 2δ
t(t+1) for any t ≥ 1. Set St = {w ∈ Ω :

|θt − θ∗| ≤ βt(δ)}, then Pr(Sc
t ) ≤ 2δ

t(t+1) .

Pr(∩t′t=1St) = 1− Pr(∪t′t=1S
c
t ) ≥ 1−

t′∑
t=1

Pr(Sc
t ) ≥ 1− 2δ.

Therefore,

Pr(Et′) ≥ 1− 2δ

for any t′ ≤ T .

Let t ≤ T be given. We rewrite the system equation as

xs+1 = Γsxs + rs,
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where

Γs =


Θ̃⊤

s K̃(θ̃s) s /∈ Tt,

Θ⊤
∗ K̃(θ̃s) s ∈ Tt,

and

rs =


(Θ̃s −Θ∗)

⊤zs +B∗νs + ws s /∈ Tt,

B∗νs + ws s ∈ Tt.

Here, K̃(θ)⊤ =
[
In K(θ)⊤

]
. Then,

xt = Γt−1xt−1 + rt−1

= Γt−1(Γt−2xt−2 + rt−2) + rt−1

= Γt−1Γt−2xt−2 + Γt−1rt−2 + rt−1

= Γt−1Γt−2Γt−3xt−3 + Γt−1Γt−2rt−3 + Γt−1rt−2 + rt−1

= Γt−1Γt−2 . . .Γ2r1 + · · ·+ Γt−1Γt−2rt−3 + Γt−1rt−2 + rt−1

=
t−2∑
j=1

( t−1∏
s=j+1

Γs

)
rj + rt−1.

We know that

|Θ̃⊤
t K̃(θ̃t)| ≤ ρ < 1,

and

|Θ⊤
∗ K̃(θ̃t)| ≤Mρ,

as the prior has compact support (Assumption 2). Since |Tt| ≤ d,

t−1∏
s=j+1

|Γs| ≤Md
ρ ρ

t−d−j−1.

Hence, we obtain that

|xt| =
(
Mρ

ρ

)d t−2∑
j=1

ρt−j−1|rj |+ |rt−1| ≤
1

1− ρ

(
Mρ

ρ

)d

max
j≤t
|rj |.
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By the definition of rt,

max
j≤t
|rj | ≤ max

j≤t,j /∈Tt
|(Θ̃j −Θ∗)

⊤zj |+ Smax
j≤t
|νj |+max

j≤t
|wj |,

and from Lemma 5, on Et, we have

max
j≤t,j /∈Tt

|(Θ̃j −Θ∗)
⊤zj | ≤ G(max

j≤t
|zj |)

d
d+1βt(δ)

1
2(d+1)

with probability 1− 2δ since Pr(Et) ≥ Pr(ET ) ≥ 1− 2δ.

Noticing our system noise is L̄-sub-Gaussian random vector where L̄ = 1√
2m

by

Herbst argument in [53], we have

max
j≤t
|wj | ≤ dL̄

√
2 log

(
2t2(t+ 1)

δ

)
(D.1)

with probability 1− δ
t(t+1) . Similarly, since νj is L̄ν-sub-Gaussian random vector, we

also have

max
j≤t
|νj | ≤ dL̄ν

√
2 log

(
2t2(t+ 1)

δ

)
(D.2)

with probability 1 − δ
t(t+1) . Let us denote the events satisfying (D.1) and (D.2) by

Êw,t, Êν,t respectively. Then, on the event Êw,t ∩ Êν,t, we obtain that

|xt|

≤ 1

1− ρ

(
Mρ

ρ

)d(
G(max

j≤t
|zj |)

d
d+1βt(δ)

1
2(d+1) + d(L̄+ SL̄ν)

√
2 log

(
2t2(t+ 1)

δ

))
= αt.

For Ht′ := ∩t
′
t=1(Êw,t ∩ Êν,t), we can see that

Ht′ ∩ Et′ ⊂ Ft′ .

By the union bound argument,

Pr(Ht′ ∩ Et′) ≥ 1− Pr(∪t′t=1(Ê
c
w,t ∪ Êc

ν,t))− Pr(Ec
t′) ≥ 1− 4δ

since Pr(Êc
w,t) ≤ δ

t(t+1) , Pr(Êc
ν,t) ≤ δ

t(t+1) and Pr(Ec
t′) ≤ 2δ.
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Consequently, we deduce that

Pr(Et′ ∩ Ft′) ≥ Pr(Ht′ ∩ Et′ ∩ Ft′) = Pr(Ht′ ∩ Et′) ≥ 1− 4δ.

Proof of Theorem 3. One can decompose E[maxj≤t |xt|p] as

E[max
j≤t
|xt|p] = E[max

j≤t
|xt|p1Ft ] + E[max

j≤t
|xt|p1F c

t
]. (D.3)

Using Cauchy-Schwartz inequality and the fact that Pr(F c
t ) ≤ 4δ, the second term is

estimated as

E[max
j≤t
|xt|p1F c

t
] ≤

√
E[1F c

t
]
√
E[max

j≤t
|xt|2p] ≤

√
4δ
√
E[max

j≤t
|xt|2p].

Letting Dt = Θ⊤
∗ K̃(θ̃t) and rt = B∗νt + wt,

xt = Dt−1xt−1 + rt−1 = Dt−1(Dt−2xt−2 + rt−2) + rt−1

= Dt−1Dt−2Dt−3xt−3 +Dt−1Dt−2rt−3 +Dt−1rt−2 + rt−1

= Dt−1Dt−2 . . . D2r1 + · · ·+Dt−1Dt−2rt−3 +Dt−1rt−2 + rt−1

=

t−2∑
j=1

( t−1∏
s=j+1

Ds

)
rj + rt−1.

Since |Dt| ≤Mρ,

E[|xt|2p] = E[|
t−2∑
j=1

( t−1∏
s=j+1

Ds

)
rj + rt−1|2p]

≤ (t− 1)2p−1E[
t−2∑
j=1

|
( t−1∏

s=j+1

Ds

)
rj |2p + |rt−1|2p]

≤ (t− 1)2p−1E[
t−1∑
j=1

M2p(t−j−1)
ρ |rj |2p]

≤ (t− 1)2p−1E[|rt|2p]
(M

2p(t−1)
ρ − 1)

M2p
ρ − 1

≤ (t− 1)2p−1E[|rt|2p]M2pt
ρ ,
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where the second inequality holds from Jensen’s inequality.

Using Lemma 7 with δ = 1

t2pM2pt
ρ
≤ 1

t , the first term of (D.3) is estimated as

E[max
j≤t
|xt|p1Ft ] ≤ E

[
C

(
log

(
1

δ

)2
√
log

(
t

δ

))p(d+1)

1Ft

]

≤ C
(
log

(
1

δ

)2
√

log

(
t

δ

))p(d+1)

.

Finally,

E[max
j≤t
|xt|p]

≤ C
(
log

(
1

δ

)2
√
log

(
t

δ

))p(d+1)

+
√
4δ
√

E[|xt|2p]

≤ C
(
log

(
t2pM2pt

ρ

)2
√

log

(
t2p+1M2pt

ρ

))p(d+1)

+
√
E[|rt|2p]

≤ Ct
5
2
p(d+1) +

√
E[|rt|2p].

By Jensen’s inequality and the subgaussianity of νt and wt,

E[|rt|2p] ≤ 2p−1(S2pE[|νt|2p] + E[|wt|2p])

≤ 2p−1p!(S2p(4L̄2
ν)

p + (
2

m
)p).

Hence, the result follows.
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Appendix E

Details for Section 4.2.1

Proof of Proposition 3. Given j ∈ [1, k], let A∗, B∗ be the true system parameters and

s ∈ (tj , tj+1) := Ij . We first define the following quantities for s ∈ Ij :

ys :=

 A∗xs−1 +B∗us−1

Kj(A∗xs−1 +B∗us−1)

 ,
where Kj denotes the control gain matrix computed at the beginning of jth episode.

Writing

Ls :=

 In 0

Kj Inu

 , and ψs :=

ws−1

νs

 ,
we can decompose zs as zs = ys + Lsψs by the construction of the algorithm.

For a trajectory (zs)s≥1, let us introduce a sequence of random variables up to time

s, which is denoted by

h̃s := (x1,W1, ν1, ..., xs,Ws, νs),

where Ws denotes randomness incurred by the ULA when triggered, hence, Ws = 0

if s ̸= tj for some j. Defining the index set

Jk := {s ∈ Ij : j ∈ [1, k]},
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. . . F ′
tj−1 || F ′

tj+1 . . . F ′
s−1 F ′

s
. . . F ′

tj+1−1 || F ′
tj+1+1 . . .

ytj+1

Ltj+1

ys

Ls

Figure E.1: Filtration and the measurability of (ys) and (Ls).

we consider the modified filtration

F ′
s :=


σ(∪j≤sh̃j) for s ∈ Jk − {t2 − 1, t3 − 1, ..., tk − 1},

σ(∪j≤s+1h̃j) for s ∈ {t2 − 1, t3 − 1, ..., tk − 1}.

This way we can incorporate the information observed at s = tj with that made up to

s = tj − 1 as seen in Figure E.1.

Yet simple but important observation is that for Jk = {ni : n1 < n2 < ... <

n k(k+1)
2

} both stochastic processes (Lns), (yns) are F ′
ns−1

-measurable and (ψns) is

F ′
ns

-measurable.

To proceed we first notice that

λmin(λId +

tk+1−1∑
s=1

zsz
⊤
s ) ⪰ λmin(λId +

∑
s∈Jk

zsz
⊤
s ).

Invoking Lemma 8 with ϵ = λ̃ = 1 and ξs = Lsψs, it follows that

k∑
j=1

∑
s∈Ij

zsz
⊤
s

⪰
k∑

j=1

∑
s∈Ij

(Lsψs)(Lsψs)
⊤

− (

k∑
j=1

∑
s∈Ij

ys(Lsψs)
⊤)⊤(Id +

k∑
j=1

∑
s∈Ij

ysy
⊤
s )

−1(

k∑
j=1

∑
s∈Ij

ys(Lsψs)
⊤)

︸ ︷︷ ︸
(∗)

−Id.

(E.1)

Our goal is to find a lower bound of (E.1).
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To begin with, define ψ1,s =

ws−1

0

 and ψ2,s =

 0

νs

 for s ≥ 1 setting w0 = 0

for simplicity. Noting that Lsψs = Lsψ1,s + ψ2,s, we apply Lemma 8 with ϵ = 1
2 ,

λ̃ = 1 to obtain

k∑
j=1

∑
s∈Ij

(Lsψs)(Lsψs)
⊤

=
k∑

j=1

∑
s∈Ij

(Lsψ1,s)(Lsψ1,s)
⊤ +

1

2

k∑
j=1

∑
s∈Ij

ψ2,sψ
⊤
2,s

− 2 (
k∑

j=1

∑
s∈Ij

ψ2,s(Lsψ1,s)
⊤)⊤(Id +

k∑
j=1

∑
s∈Ij

ψ2,sψ
⊤
2,s)

−1(
k∑

j=1

∑
s∈Ij

ψ2,s(Lsψ1,s)
⊤)

︸ ︷︷ ︸
(∗∗)

−1

2
Id.

(E.2)

The first term of (E.2) is written as

∑
s∈Jk

(Lsψ1,s)(Lsψ1,s)
⊤ =

∑
s∈Jk

 ws−1w
⊤
s−1 ws−1(Kv(s)ws−1)

⊤

(Kv(s)ws−1)w
⊤
s−1 (Kv(s)ws−1)(Kv(s)ws−1)

⊤


=:

X⊤X X⊤Y

Y ⊤X Y ⊤Y

 ,
where v(s) is indicates the episode number such that s ∈ Iv(s). By Lemma 9, we

conclude that

∑
s∈Jk

(Lsψ1,s)(Lsψ1,s)
⊤ =

X⊤X X⊤Y

Y ⊤X Y ⊤Y

 ⪰
 λ̄

|Y |2+λ̄
X⊤X 0

0 −λ̄Inu

 (E.3)

for any λ̄ > 0 whereX⊤X =
∑

s∈Jk
ws−1w

⊤
s−1 and Y ⊤Y = (Kv(s)ws−1)(Kv(s)ws−1)

⊤.

Next, we invoke Lemma 11 with ϵ = 1
2λmin(W) for ψs = ws−1, ψs = νs respec-

tively to characterize good noise sets. Choosing ρ = log 2
δ in Lemma 11, there exists

C > 0 such that for any δ > 0 and k ≥ C
√
2 log(2δ ) + 5d, the following events hold
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with probability at least 1− δ:

E1,k = {w ∈ Ω :
1

4
λmin(W)k(k − 1)In ⪯

k∑
j=1

∑
s∈Ij

ws−1w
⊤
s−1 ⪯

1

2
λWk(k − 1)In},

E2,k = {ν ∈ Ων :
1

2
λmin(W)kInu ⪯

k∑
j=1

∑
s∈Ij

νsν
⊤
s ⪯ λWkInu},

where λW = λmax(W) + 1
2λmin(W), Ων ⊂ Ω denotes the probability spaces asso-

ciated with the noise sequence (νs)s≥1 and Ω is the probability space representing all

randomness in the algorithm as defined in the previous subsection.

Furthermore, from the observation,

tr(
∑
s∈Jk

(Kv(s)ws−1)(Kv(s)ws−1)
⊤) ≤

∑
s∈Jk

tr((Kv(s)ws−1)(Kv(s)ws−1)
⊤)

≤M2
K

∑
s∈Jk

|ws−1|2

=M2
Ktr(

∑
s∈Jk

ws−1w
⊤
s−1),

we also have the following event is a subevent of E1,k:

E3,k = {w ∈ Ω :
∑
s∈Jk

(Kv(s)ws−1)(Kv(s)ws−1)
⊤ ⪯

nM2
K

2
λWk(k − 1)Inu}.

To proceed we choose λ̄ = 1
8λmin(W)k in (E.3) and recall that |Y |2 = λmax(Y

⊤Y ).

On the event E1,k∩E2,k∩E3,k, first two terms on the right-hand side of (E.2) is lower
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bounded as

k∑
j=1

∑
s∈Ij

(Lsψ1,s)(Lsψ1,s)
⊤ +

1

2

k∑
j=1

∑
s∈Ij

ψ2,sψ
⊤
2,s

⪰

 λ̄
|Y |2+λ̄

X⊤X 0

0 −λ̄Inu

+
1

2

∑
s∈Jk

 0

νs

[
0 ν⊤s

]

⪰

 1
32

λ2
min(W)k2(k−1)

1
2
nM2

KλWk(k−1)+ 1
8
λmin(W)

In 0

0 −1
8λmin(W)kInu

+

0 0

0 1
4λmin(W)kInu


= k

 λ2
min(W)k(k−1)

16M2
KλWk(k−1)+4λmin(W)

In 0

0 1
8λmin(W)Inu


⪰ CkId

for some C > 0.

We next deal with (∗) in (E.1) and the (∗∗) in (E.2) together as they have the same

structure. Let us begin by defining

Sk(ψ2, Lψ1)

:= (
k∑

j=1

∑
s∈Ij

ψ2,s(Lsψ1,s)
⊤)⊤(Id +

k∑
j=1

∑
s∈Ij

ψ2,sψ
⊤
2,s)

−1(
k∑

j=1

∑
s∈Ij

ψ2,s(Lsψ1,s)
⊤).

Similarly,

Sk(y, Lψ) := (

k∑
j=1

∑
s∈Ij

ys(Lsψs)
⊤)⊤(Id +

k∑
j=1

∑
s∈Ij

ysy
⊤
s )

−1(

k∑
j=1

∑
s∈Ij

ys(Lsψs)
⊤).

Applying Lemma 12 with ρ = log(1δ ) to the stochastic processes (ψs)s∈Ij ,∀j and

(ys)s∈Ij ,∀j , the following holds with probability at least 1− δ:

E4,k = {w ∈ Ω, ν ∈ Ων : |Sk(ψ2, Lψ1)| ≤ 7L̄2
ν

√
M2

K + 2 log

(
edΨ

δ

)
},

E5,k = {w ∈ Ω, ν ∈ Ων : |Sk(y, Lψ)| ≤ 7L̄2
√
M2

K + 2 log

(
edY

δ

)
},
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where Ψ = det(Id +
∑k

j=1

∑
s∈Ij ψ2,sψ

⊤
2,s) and Y = det(Id +

∑k
j=1

∑
s∈Ij ysy

⊤
s ).

Due to maxs≤t |Ls| ≤
√
M2

K + 2, this result holds. To verify it, we recall that |Ls| =√
λmax(LsL⊤

s ). For

LsL
⊤
s =

 In K⊤
j

Kj KjK
⊤
j + Inu


and any v = [x⊤, y⊤]⊤ with |v| = 1 where x ∈ Rn and y ∈ Rnu , we have

v⊤

 In K⊤
j

Kj KjK
⊤
j + Inu

 v ≤ |x|2 + 2x⊤K⊤
j y +M2

K |y|2 + |y|2

≤ (M2
K + 1)(x2 + y2) + |y|2

≤M2
K + 2.

• Bound of Sk(ψ2, Lψ1) on E2,k ∩ E4,k:

On E2,k,

det

(
Id +

∑
s∈Jk

ψ2,sψ
⊤
2,s

) 1
d

≤ 1

d
(d+

∑
s∈Jk

ψ⊤
2,sψ2,s)

=
1

d
(d+

∑
s∈Jk

|νs|2)

≤ nu
d
λWk + 1

≤ Ck

for some C > 0 where the second inequality follows by

∑
s∈J
|νs|2 = tr(

∑
s∈Jk

νsν
⊤
s ) ≤ nuλmax(

∑
s∈Jk

νsν
⊤
s )

≤ nuλWk.
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Altogether, on the event E2,k ∩ E4,k,

Sk(ψ2, Lψ1)

= |(
∑
s∈Jk

ψ2,s(Lsψ1,s)
⊤)⊤(Id +

∑
s∈Jk

ψ2,sψ
⊤
2,s)

−1(
∑
s∈Jk

ψ2,s(Lsψ1,s)
⊤)|

≤ 7L̄2
ν

√
M2

K + 2 log

(
Cedkd

δ

)
.

• Bound of Sk(y, Lψ) on Ftk+1
∩ E1,k ∩ E5,k:

On E1,k,

det

(
Id +

∑
s∈Jk

ysy
⊤
s

) 1
d

≤ 1

d

(
d+

∑
s∈Jk

|ys|2
)

=
1

d

(
d+

∑
s∈Jk

( |xs − ws−1|2︸ ︷︷ ︸
≤2|xs|2+2|ws−1|2

+ |Kv(s)(xs − ws−1)|2︸ ︷︷ ︸
≤2M2

K |xs|2+2M2
K |ws−1|2

)

)

≤ 1

d

(
d+

∑
s∈Jk

((2 + 2M2
K)|xs|2 + (2 + 2M2

K)|ws−1|2)
)

≤
(M2

K + 1)

d

(
2
∑
s∈Jk

|xs|2︸ ︷︷ ︸
(a)

+n(λmax(W) +
1

2
λmin(W))k(k − 1)︸ ︷︷ ︸

by taking trace in E1,k

)
+ 1,

where the last inequality follows from

∑
s∈J
|ws−1|2 = tr(

∑
s∈Jk

ws−1w
⊤
s−1) ≤ nλmax(

∑
s∈Jk

ws−1w
⊤
s−1)

≤ n

2
(λmax(W) +

1

2
λmin(W))k(k − 1).

To bound (a) above, let us observe that tk+1 = (k+1)(k+2)
2 ≤ kp for any p ≥ 3

and consider the event Ftk+1
∩ E1,k. Applying Lemma 7 with δ = k−p ≤ t−1

k+1,
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we deduce that

∑
s∈Jk

|xs|2 =
∑
s∈Jk

|xs|2 ≤ tk+1 max
s≤tk+1

|xs|2

≤ tk+1

(
C(log k)3

√
log k

)2(d+1)

≤ Ck2
(
k
√
log k

)2(d+1)

≤ Ck3d+5

for some C > 0 depending on p ≥ 3 and the constant from Lemma 7.

Therefore, on the event Ftk+1
∩ E1,k ∩ E5,k, we have

det

(
Id +

∑
s∈Jk

ysy
⊤
s

) 1
d

≤ (M2
K + 1)

(
2C

d
k3d+5 + λWk(k − 1)

)
+ 1

≤ Ck3d+5

for some constant C > 0. As a result,

Sk(y, Lψ) = |(
∑
s∈Jk

ys(Lsψs)
⊤)⊤(Id +

∑
s∈Jk

ysy
⊤
s )

−1(
∑
s∈Jk

ys(Lsψs)
⊤)|

≤ 7L̄2
√
M2

K + 2 log

(
Cedkd(3d+5)

δ

)
.

Combining altogether and plugging them into (E.1), on the event Ftk+1
∩E1,k∩E2,k∩

E3,k ∩ E4,k ∩ E5,k, one can show that

λmin(λId +
k∑

j=1

∑
s∈Ij

zsz
⊤
s ) ≥ λ+ C1k − C2 log k + C3 log(δ)− C4

≥ Ck
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for some Ci, C > 0 with δ = k−p and k large enough. Moreover, for such a k,

Pr

(
λmin(λId +

t∑
s=1

zsz
⊤
s ) ≥ Ck

)
≥ 1− Pr(F c

tk+1
∪ Ec

1,k ∪ Ec
2,k ∪ Ec

3,k ∪ Ec
4,k ∪ Ec

5,k)

≥ 1− 9δ.

Finally, defining the event F̄k+1 := Ftk+1
∩ E1,k ∩ E2,k ∩ E3,k ∩ E4,k ∩ E5,k,

E
[

1

λpmin,k+1

]
= E

[
1

λpmin,k+1

1F̄k+1

]
+ E

[
1

λpmin,k+1

1F̄ c
k+1

]
≤ CE

[
k−p

1F̄k+1

]
+ E

[
1F̄ c

k+1

]
≤ Ck−p + 9δ ≤ Ck−p (E.4)

where second inequality holds from λmin,t ≥ λ ≥ 1.

Proof of Proposition 4. From (C.16) in Proposition 2 in Appendix D, we know that

Eθt∼µt [|θt − θ∗|
p
Pt
|ht] ≤ (2p)p

(
4

m2
|P− 1

2
t ∇θU

′
t(θ∗)|2 +

4dn

m
+ 64m+ C

) p
2

.

whereU ′
t(θ) =

∑t−1
s=1 log pw(xs+1−Θ⊤zs). Since λ

p
2
min,tE[|θt−θ∗|p] ≤ E[|θt−θ∗|pPt

],

it follows that

E[Eθ∼µt [|θ − θ∗|p|ht]]

≤ (2p)p

√
E
[

1

λpmin,t

]√
E
[(

4

m2
|P− 1

2
t ∇θU

′
t(θ∗)|2 +

4dn

m
+ 64m+ C

)p]

≤ (2p)p

√
E
[

1

λpmin,t

]√
2p−1

(
4p

m2p
E
[
|P− 1

2
t ∇θU

′
t(θ∗)|2p

]
+

(
4dn

m
+ 64m+ C

)p)
,

(E.5)

where the second inequality holds by Jensen’s inequality. To bound E
[
|P− 1

2
t ∇θU

′
t(θ∗)|2p

]
,

let us first define Z :=
[
z1 · · · zt−1

]⊤
and denote the jth component of noise wt
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by wt(j). A naive bound is achieved as

|P− 1
2

t ∇θU
′
t(θ∗)|2 =

n∑
j=1

t−1∑
s′,s=1

∂ log pw(ws′)

∂ws′(j)
(Z(Z⊤Z + λId)

−1Z⊤)s′s
∂ log pw(ws)

∂ws(j)

≤
n∑

j=1

t−1∑
s′,s=1

∂ log pw(ws′)

∂ws′(j)
(Z(Z⊤Z)−1Z⊤)s′s

∂ log pw(ws)

∂ws(j)

≤
n∑

j=1

t−1∑
s=1

(
∂ log pw(ws)

∂ws(j)

)2

=
t−1∑
s=1

|∇w log pw(ws)|2, (E.6)

where the second inequality follows from the fact that Z(Z⊤Z)−1Z⊤ is a projection

matrix.

We now claim that E
[
|P− 1

2
t ∇θU

′
t(θ∗)|2p

]
has a better bound compared to the naive

one with high probability. For s ≥ 0, let us consider the natural filtration

Fs = σ((z1, ..., zs+1))

where zs = (xs, us). Clearly, for s ≥ 1, zs is Fs−1-measurable and the random vector

∇w log pw(ws) is Fs-measurable. Then for each j ∈ [1, n], we set ηs = ∂ log pw(ws)
∂ws(j)

,

Xs = zs, St =
∑t−1

s=1 ηsXs =
∑t−1

s=1
∂ log pw(ws)

∂ws(j)
zs. Here, ηs is a M√

m
-sub-Gaussian

random variable since v⊤∇w log pw(wt) is M√
m

-sub-Gaussian random variable for any

v ∈ Rn given when wt is sub-Gaussian (Proposition 2.18 in [52]). We then invoke

Lemma 6 yielding that

λId +
t−1∑
s=1

XsX
⊤
s = λId + Z⊤Z.
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Consequently,

(

t−1∑
s=1

ηsXs)
⊤(λId +

t−1∑
s=1

XsX
⊤
s )−1(

t−1∑
s=1

ηsXs)

=

t−1∑
s,s′=1

∂ log pw(ws′)

∂ws′(j)
(Z(Z⊤Z + λId)

−1Z⊤)s′s
∂ log pw(ws)

∂ws(j)

≤ 2
M2

m
log

(
n

δ

(
n
√
det(Pt)

det(λId)

) 1
2
)
,

holds with probability at least 1 − δ
n . Here, we use the fact that det(λId + Z⊤Z) =

n

√
det(λIdn +

∑t−1
s=1 blkdiag{zsz⊤s }ni=1) =

n
√

det(Pt).

By the union bound argument,

|P− 1
2

t ∇θU
′
t(θ∗)|2 =

n∑
j=1

t−1∑
s,s′=1

∂ log pw(ws′)

∂ws′(j)
(Z(Z⊤Z + λId)

−1Z⊤)s′s
∂ log pw(ws)

∂ws(j)

≤ 2
nM2

m
log

(
n

δ

(
n
√

det(Pt)

det(λId)

) 1
2
)
, (E.7)

with probability at least 1 − δ for any δ > 0. Let us denote this event as Ẽ so that

Pr(Ẽ) ≥ 1− δ.

Combining the naive bound (E.6) and improved bound (E.7),

E
[
|P− 1

2
t ∇θU

′
t(θ∗)|2p

]
= E

[
1Ẽ |P

− 1
2

t ∇θU
′
t(θ∗)|2p

]
+ E

[
1Ẽc |P

− 1
2

t ∇θU
′
t(θ∗)|2p

]
≤ E

[(
2
nM2

m
log

(
n

δ

(
n
√

det(Pt)

det(λId)

) 1
2
))p]

︸ ︷︷ ︸
by (E.7)

+

√
E
[
1Ẽc

]√
E
[
|P− 1

2
t ∇θU

′
t(θ∗)|4p

]

≤ E
[(

2
nM2

m
log

(
n

δ

(
λmax,t

λ

) d
2
))p]

+
√
δ

√√√√E
[( t−1∑

s=1

|∇w log pw(ws)|2
)2p]

︸ ︷︷ ︸
by (E.6)

.

(E.8)

We handle two terms on the right hand side separately. Recall that g : x → (log x)p

is concave on x ≥ 1 whenever p > 0. By the Jensen’s inequality, the first term is
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bounded as

E
[(

2
nM2

m
log

(
n

δ

(
λmax,t

λ

) d
2
))p]

= E
[(

dnM2

m
log

(
n

δ
2
d

λmax,t

λ

))p]
≤

(
dnM2

m

)p

log

(
n

λδ
2
d

E[λmax,t]

)p

≤
(
dnM2

m

)p

log

(
n

λδ
2
d

E[
1

n
tr(Pt)]

)p

≤
(
dnM2

m

)p

log

(
n

λδ
2
d

E[dλ+
t−1∑
s=1

|zs|2]
)p

≤
(
dnM2

m

)p

log

(
n

λδ
2
d

(
dλ+M2

KtE[ max
j≤t−1

|xj |2]
))p

≤
(
dnM2

m

)p

log

(
n

λδ
2
d

(
dλ+ CM2

Kt
7d+8

))p

,

where the last inequality holds from the Theorem 3.

On the other hand, the second term of (E.8) can be handled similarly. Recalling the

Jensen’s inequality,

(

∑n
i ai
n

)2p ≤
∑n

i=1 a
2p
i

n

for ai ∈ R and p ≥ 1, we have that

√
δ

√√√√E
[( t−1∑

s=1

|∇w log pw(ws)|2
)2p]

≤
√
δ

√√√√t2p−1E
[ t−1∑

s=1

|∇w log pw(ws)|4p
]

≤
√
δtp

√
E
[
|∇w log pw(wt)|4p

]

≤
√
δtp

√(
4M2

m

)2p

(2p)!

≤ 8p
M2p

mp
pp
√
δtp,

where the third inequality comes from well-known fact that any L̄-sub-Gaussian ran-

dom vector X satisfies E[X2q] ≤ q!(4L̄2)q for any q > 0.
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Choosing δ = 1
t2p

and combining two bounds,

E
[
|P− 1

2
t ∇θU

′
t(θ∗)|2p

]
≤

(
dnM2

m

)p

log

(
n

λδ
2
d

(
dλ+ CM2

Kt
7d+8

))p

+ 8p
M2p

mp
pp
√
δtp

≤
(
dnM2

m

)p

log

(
nt

4p
d

(
d+

CM2
K

λ
t7d+8

))p

+ 8p
M2p

mp
pp.

Finally, plugging (E.8) and the result of Proposition 3 to (E.5),

E[Eθt∼µt [|θt − θ∗|p|ht]]

≤ (2p)p

√
E
[

1

λpmin,t

]√
2p−1

(
4p

m2p
E
[
|P− 1

2
t ∇θU

′
t(θ∗)|2p

]
+

(
4dn

m
+ 64m+ C

)p)
≤ O(t−

1
4

√
log t)p.
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Appendix F

Miscellaneous Lemmas

Lemma 6 (Theorem 1 [48], Self-Normalized Bound for Vector-Valued Martingale).

Let (Fs)
∞
s=1 be a filtration. Let (ηs)∞s=1 be a real-valued stochastic process such that

ηs is Fs-measurable and ηs is conditionally R-sub-Gaussian for some R > 0. Let

(Xs)
∞
s=1 be an Rd-valued stochastic process such that Xs is Fs−1-measurable. For

any t ≥ 1, define

Vt = λId +

t∑
s=1

XsX
⊤
s , St =

t∑
s=1

ηsXs,

where λ > 0 is given constant. Then, for any δ > 0, with probability 1 − δ, for all

t ≥ 1, one has

|St|2V −1
t
≤ 2R2 log

(
1

δ

√
det(Vt)

det(λId)

)
.

Lemma 7 (Lemma 5 in [28]). Let t > 1 be given. For someC(d,m, ρ,Mρ, L̄ν , S) > 0

and any δ ≤ 1
t ,

1Ft max
j≤t
|xj | ≤ C

(
log

(
1

δ

)2
√

log

(
t

δ

))d+1

.

Proof. On the event Ft, define Xt := maxj≤t |xj | ≤ αt. Here, we may assume that

Xt ≥ 1 as the result above holds with some C > 0 large enough when Xt < 1. We
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observe that

|xt|

≤ 1

1− ρ

(
Mρ

ρ

)d(
G(max

j≤t
|zj |)

d
d+1βt(δ)

1
2(d+1) + d(L̄+ SL̄ν)

√
2 log

(
2t2(t+ 1)

δ

))
= αt,

and αt is monotone increasing in Ft. From

Xt = max
j≤t
|xj | ≤ αt,

in Ft, we derive that

Xt ≤ G1βt(δ)X
d

d+1

t +G2

√
log

(
t

δ

)
(F.1)

by choosing constants Gi’s appropriately. Let us recall βt(δ) which is given as

βt(δ)

= e(t(t+ 1))−1/ log δ

×
(
10

√
dn

m
log

(
1

δ

)
+ 2 log

(
1

δ

)√
8M2n

m3
log

(
nt(t+ 1)

δ

(
λmax,t

λ

) d
2
)
+ C

))
.

For δ ≤ 1
t ,

(t(t+ 1))−1/ log δ ≤ (t(t+ 1))1/ log t

≤ (2t2)1/ log t

= 21/ log tt2/ log t

≤ e3.

As a result,

βt(δ)

≤ e4
(
10

√
dn

m
log

(
1

δ

)
+ 2 log

(
1

δ

)√
8M2n

m3
log

(
nt(t+ 1)

δ

(
λmax,t

λ

) d
2
)
+ C

))
=: β′t(δ).
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In turn, (F.1) implies that

Xt ≤ G1β
′
t(δ)X

d
d+1

t +G2

√
log

(
t

δ

)
.

We now claim that one further has

Xt ≤
(
G1β

′
t(δ) +G2

√
log

(
t

δ

))d+1

, (F.2)

when G1β
′
t(δ) +G2

√
log

(
t
δ

)
≥ 1. To see this, let us set

f(x) = x− αx
d

d+1 − β

with α = G1β
′
t(δ) and β = G2

√
log

(
t
δ

)
. Here, we may assume that α + β ≥ 1 by

adjusting the constants. Clearly, f(x) is increasing when x >
(

αd
d+1

) 1
d+1

. Noting that

f((α+ β)d+1) = β(α+ β)d − β ≥ 0,

since α + β ≥ 1, it follows that x ≤ (α + β)d+1 whenever f(x) ≤ 0. Therfore, the

claim follows.

To proceed let us handle the term β′t(δ). We first see that the preconditioner Pt

satisfies that

λmax,t ≤
1

n
tr(Pt) = dλ+

t−1∑
s=1

|zs|2 ≤ dλ+M2
KtX

2
t , (F.3)

where MK is from Definition 2. Using this relation, one derives that

β′t(δ)

= G1

√
log

(
1

δ

)
+G2 log

(
1

δ

)√
G3 logXt +G4 log

(
t

δ

)
+ C

≤ G1

√
log

(
1

δ

)
+G2 log

(
1

δ

)√
logXt +G3 log

(
1

δ

)√
log

(
t

δ

)
+G4 log

(
1

δ

)
.

(F.4)
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for appropriately chosen Gi > 0. Here, Gi’s represent different constants whenever it

appears for brevity.

Define at := X
1

d+1

t ≥ 1. Combining (F.2) and (F.4), for δ > 0 small enough,

at ≤ G1 log

(
1

δ

)√
log at +G2 log

(
1

δ

)√
log

(
t

δ

)
.

To finish the proof, we claim the following.

Claim] Given c1, c2 ≥ 1, when x ≥ 1 satisfies that

x ≤ c1
√

log x+ c2,

then, x ≤ Cc21c2 where C is independent of c1 and c2.

Proof of the claim. Let

f(x) = x− c1
√
log x− c2.

From

f(x) ≥ x− c1
√
x− c2 = (

√
x− c1 +

√
c21 + 4c2
2

)(
√
x− c1 −

√
c21 + 4c2
2

),

f(x) ≤ 0 implies that x ≤ Cc1c2 from some C > 0 which is independent of c1 and

c2.

Finally, setting

c1 = G1 log

(
1

δ

)
and c2 = log

(
1

δ

)√
log

(
t

δ

)
,

we deduce that

at ≤ G1 log

(
1

δ

)3
√
log

(
t

δ

)
.

Lemma 8 (Lemma 10 in [36]). Let (zs)∞s=1, (ys)∞s=1 and (ψs)
∞
s=1 be three sequences

of vectors in Rd, satisfying the linear relation zs = ys +ψs for all s ≥ 0. Then, for all
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λ̃ > 0, all t ≥ 1 and all ϵ ∈ (0, 1], we have

t∑
s=1

zsz
⊤
s ⪰

t∑
s=1

ψsψ
⊤
s + (1− ϵ)

t∑
s=1

ysy
⊤
s

− 1

ϵ
(

t∑
s=1

ysψ
⊤
s )

⊤(λ̃Id +

t∑
s=1

ysy
⊤
s )

−1(

t∑
s=1

ysψ
⊤
s )− ϵλ̃Id.

Lemma 9 (Lemma 12 in [36]). For two matrices X and Y and any λ̄ > 0, we haveX⊤X X⊤Y

Y ⊤X Y ⊤Y

 ⪰
 λ̄

|Y |2+λ̄
X⊤X 0

0 −λ̄I

 .
Lemma 10 ([54]). Let W ∈ Rd×d be a random matrix and ϵ ∈ (0, 12) and N be ϵ-net

in Sd−1 with minimal cardinality. Then, for any ρ > 0,

Pr(|W | > ρ) ≤ (
2

ϵ
+ 1)dmax

x∈N
Pr(|x⊤Wx| > (1− 2ϵ)ρ).

Lemma 11 (Modification of Proposition 8 in [36]). Let (ψs)
∞
s=1 be a sequence of

independent, zero mean, L̄-sub-Gaussian and Fs-measurable random vector ∈ Rd.

Then, for all ρ > 0, 0 < ϵ < 1 and t ≥ min{322L̄4

ϵ2
, 32L̄

2

ϵ }(2ρ+ 5d),

Pr

(
(λmin(E[ψtψ

⊤
t ])− ϵ)tId ⪯

t∑
s=1

ψsψ
⊤
s ⪯ (λmax(E[ψtψ

⊤
t ])+ ϵ)tId

)
≥ 1− 2e−ρ.

Proof. Recalling the proof of Proposition 8 in [36] with Ms = Id and ξs = ψs, it is

straightforward to obtain

Pr

(∣∣∣∣ t∑
s=1

(x⊤ψs)
2 −

t∑
s=1

E[(x⊤ψs)
2]

∣∣∣∣ > ρ

)
≤ 2 exp

(
− 1

2
min{ ρ2

(4L̄)4t
,

ρ

(4L̄)2
}
)
.

Now we apply Lemma 10 with ϵ = 1
4 and W =

∑t
s=1(ψsψ

⊤
s − E[ψsψ

⊤
s ]), we get

Pr

(∣∣∣∣ t∑
s=1

ψsψ
⊤
s −

t∑
s=1

E[ψsψ
⊤
s ]

∣∣∣∣ > ρ

)
≤ 2 ·9d exp

(
− 1

2
min{ ρ2

4(4L̄)4t
,

ρ

2(4L̄)2
}
)
.

Reparameterizing, we further obtain

Pr

(∣∣∣∣ t∑
s=1

ψsψ
⊤
s −

t∑
s=1

E[ψsψ
⊤
s ]

∣∣∣∣ > 32L̄2tmax{
√

2ρ+ 5d

t
,
2ρ+ 5d

t
}
)
≤ 2e−ρ.
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For t ≥ min{322L̄4

ϵ2
, 32L̄

2

ϵ }(2ρ+ 5d),

Pr

(∣∣∣∣ t∑
s=1

ψsψ
⊤
s −

t∑
s=1

E[ψsψ
⊤
s ]

∣∣∣∣ > ϵt

)
≤ 2e−ρ.

Since ψsψ
⊤
s is a symmetric matrix, the inequality

∣∣∣∣∑t
s=1 ψsψ

⊤
s −

∑t
s=1 E[ψsψ

⊤
s ]

∣∣∣∣ ≤
ϵt implies that

λ2max(

t∑
s=1

ψsψ
⊤
s −

t∑
s=1

E[ψsψ
⊤
s ]) ≤ ϵ2t2

and

λ2min(
t∑

s=1

ψsψ
⊤
s −

t∑
s=1

E[ψsψ
⊤
s ]) ≤ ϵ2t2.

As a result,

(λmin(E[ψtψ
⊤
t ])− ϵ)tId ⪯

t∑
s=1

E[ψsψ
⊤
s ]− ϵtId

⪯
t∑

s=1

ψsψ
⊤
s

⪯
t∑

s=1

E[ψsψ
⊤
s ] + ϵtId

⪯ (λmax(E[ψtψ
⊤
t ]) + ϵ)tId.

Lemma 12 (Proposition 9 in [36]). LetFs be a filtration and (ψs)
∞
s=1 be a sequence of

independent, zero mean, L̄-sub-Gaussian and Fs measurable random vectors in Rd.

Let (Ls)
∞
s=1 be a sequence of random matrices in Rd×d such that Fs−1 measurable

and |Ls| < ∞. Let (ys)∞s=1 be a sequence of Fs−1 measurable random variables in

Rd. Then for all positive definite matrix V ≻ 0, the following self-normalized matrix

process defined by

St(y, Lψ) = (

t∑
s=1

ys(Lsψs)
⊤)⊤(V +

t∑
s=1

ysy
⊤
s )

−1(

t∑
s=1

ys(Lsψs)
⊤)
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satisfies

Pr

[
|St(y, Lψ)| > L̄2( max

1≤s≤t
|Ls|)

(
(2 log

(
det

(
Id + V −1

t∑
s=1

ysy
⊤
s

))
+ 4ρ+ 7d

)]
≤ e−ρ.

for all ρ, t ≥ 1.
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Appendix G

Details for Section 5

G.0.1 Proof of Theorem 5

At kth episode, for timestep t ∈ [tk, tk+1), xt is written as

xt+1 = (A∗ +B∗K(θ̃t))xt + rt. (G.1)

where rt = B∗νt+wt. Squaring and taking expectations on both sides of the equation

above with respect to noises, the prior and randomized actions,

E[|xt+1|2] ≤ E[|Dt|2|xt|2] + E[|rt|2], (G.2)

where Dt = A∗ +B∗K(θ̃t).

Since θ∗ is stabilizable, it is clear to see that there exists ϵ0 > 0 small for which

|θ − θ∗| ≤ ϵ0 implies that |A∗ + B∗K(θ)| ≤ ∆ < 1 for some ∆ > 0. Splitting

E[|Dt|2|xt|2] around the true system parameter θ∗,

E[|Dt|2|xt|2] = E[|Dt|2|xt|21|θ̃t−θ∗|≤ϵ0
]︸ ︷︷ ︸

(i)

+E[|Dt|2|xt|21|θ̃t−θ∗|>ϵ0
]︸ ︷︷ ︸

(ii)

.

One can see that (i) is bounded by ∆2E[|xt|2] by the construction. For (ii), we note

that |Dt| ≤ Mρ by Assumption 2. Using Cauchy-Schwartz inequality, (ii) is bounded

as

E[|Dt|2|xt|21|θ̃t−θ∗|>ϵ0
]] ≤M2

ρ

√
Pr(|θ̃t − θ∗| > ϵ0)

√
E[|xt|4]. (G.3)
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By Markov’s inequality,

Pr(|θ̃t − θ∗| > ϵ0) ≤
E[|θ̃t − θ∗|p]

ϵp0

≤ C
(
t−

1
4

√
log t

)p

,

where the last inequality holds for t ≥ t0 thanks to Theorem 4, and C is a positive

constant depending only on p and ϵ0. Taking p large enough to satisfy p > 28(d+ 1),

Theorem 3 yields that

M2
ρ

√
Pr(|θ̃t − θ∗| > ϵ0)

√
E[|xt|4] ≤M2

ρC

(
t−

1
4

√
log t

)p

t7(d+1) < C

for some C > 0.

Therefore, E[|xt+1|2] is estimated as

E[|xt+1|2] ≤ ∆2E[|xt|2] + C + E[|rt|2].

As rt is sub-Gaussian, we also have E[|rt|2] is bounded, and hence,

E[|xt|2] < C

for all t ∈ [1, T ] and C > 0 by the recursive relation.

To handle the fourth moment, we take the fourth power on both sides and expecta-

tion to (G.1) to get

E[|xt+1|4]

≤ E[|Dtxt|4] + 4E[|Dtxt|2(Dtxt)
⊤wt]︸ ︷︷ ︸

=0

+6E[|Dtxt|2|rt|2] + 4E[|Dtxt||rt|3] + E[|rt|4]

≤ [|Dt|4|xt|41|θ̃t−θ∗|≤ϵ0
] + E[|Dt|4|xt|41|θ̃t−θ∗|≥ϵ0

]

+ 6M2
ρE[|rt|2]E[|xt|2] + 4MρE[|rt|3]E[|xt|] + E[|rt|4]︸ ︷︷ ︸

<C

≤ ∆4E[|xt|4] +M4
ρ

√
Pr(|θ̃t − θ∗| ≥ ϵ0)

√
E[|xt|8] + C,
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since E[|xt|2] ≤ C. We recall Theorem 3 once again with p satisfying p > 56(d + 1)

to deduces that

M2
ρ

√
Pr(|θ̃t − θ∗| > ϵ0)

√
E[|xt|8] ≤M2

ρC

(
t−

1
4

√
log t

)p

t14(d+1) ≤ C

for some C > 0.

Hence,

E[|xt+1|4] ≤ ∆4E[|xt|4] + C,

and, one can conclude that

E[|xt|4] < C

for some C > 0.

G.0.2 Proof of Theorem 6

It follows from [13] that J is Lipschitz continuous on Ω with a Lipschitz constant

LJ > 0. We then estimate one of the key components of regret.

Lemma 13. Suppose that Assumption 1,2 and 3 hold. Recall that Θ̄∗ ∈ Rd×n de-

note the matrix of the true parameter random variables, Θ̃k ∈ Rd×n is the matrix of

the parameters sampled in episode k, and zt := (xt, ut) ∈ Rd. Then, the following

inequality holds:

R1 := E
[ nT∑
k=1

tk+1−1∑
t=tk

z⊤t [Θ̄∗P̃kΘ̄
⊤
∗ − Θ̃kP̃kΘ̃

⊤
k ]zt

]
≤
√
D(2
√
CSMPM

2
K + tr(W))nT ,

where P̃k := P (θ̃k) is the symmetric positive definite solution of the ARE (2.2) with

θ := θ̃k.

Proof of Lemma 13. We first observe that for any θ which satisfies |θ| ≤ S,

|zt| = |(xt, ut)| = |(xt,K(θ)xt + νt)| =

∣∣∣∣∣∣
 In

K(θ)

xt + νt

∣∣∣∣∣∣ ≤MK |xt|+ |νt|,
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and

|P̃ 1/2
k Θ⊤zt| ≤M1/2

P S|zt|,

where MP is from Definition 2. We then consider

|P̃ 1/2
k Θ̄⊤

∗ zt|2 − |P̃
1/2
k Θ̃⊤

k zt|2

= (|P̃ 1/2
k Θ̄⊤

∗ zt|+ |P̃
1/2
k Θ̃⊤

k zt|)(|P̃
1/2
k Θ̄⊤

∗ zt| − |P̃
1/2
k Θ̃⊤

k zt|)

≤ (|P̃ 1/2
k Θ̄⊤

∗ zt|+ |P̃
1/2
k Θ̃⊤

k zt|)|P̃
1/2
k (Θ̄∗ − Θ̃k)

⊤zt|

≤ 2MPS|zt||(Θ̄∗ − Θ̃k)
⊤zt|.

(G.4)

Note that

Θ⊤zt =
[
Θ(1) · · · Θ(d)

]⊤
zt ∈ Rn.

Thus, with < x, y > denoting the inner product of two vectors x, y ∈ Rd,

|(Θ̄∗ − Θ̃k)
⊤zt|2 =

d∑
i=1

| < (Θ̄∗ − Θ̃k)(i), zt > |2

≤
d∑

i=1

|(Θ̄∗ − Θ̃k)(i)|2|zt|2

≤ |zt|2
d∑

i=1

|(Θ̄∗ − Θ̃k)(i)|2

= |zt|2|θ̄∗ − θ̃k|2.

(G.5)

Combining (G.4) and (G.5) yields that

R1 ≤ 2MPSE
[ nT∑
k=1

tk+1−1∑
t=tk

|zt|2|θ̄∗ − θ̃k|
]

≤ 2MPS

(
M2

KE
[ nT∑
k=1

tk+1−1∑
t=tk

|xt|2|θ̄∗ − θ̃k|
]
+ E

[ nT∑
k=1

tk+1−1∑
t=tk

|νt|2|θ̄∗ − θ̃k|
])
.

(G.6)

Invoking the Cauchy-Schwarz inequality, we have

E[|xt|2|θ̄∗ − θ̃k|] ≤
√
E[|xt|4]E[|θ̄∗ − θ̃k|2].
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It follows from the tower rule together with Proposition 1 that√
E[|θ̄∗ − θ̃k|2] =

√
E[Eθ̄∗∼µk,θ̃k∼µ̃k

[|θ̄∗ − θ̃k|2|htk ]] ≤

√
D

max{λmin,k, tk}
≤

√
D

tk
,

where D = 66dn
m . Similarly, second term of (G.6) is bounded as

E
[ nT∑
k=1

tk+1−1∑
t=tk

|νt|2|θ̄∗ − θ̃k|
]
≤ tr(W)

nT∑
k=1

tk+1−1∑
t=tk

E[|θ̄∗ − θ̃k|]

≤ tr(W)

nT∑
k=1

tk+1−1∑
t=tk

√
E[|θ̄∗ − θ̃k|2]

≤ tr(W)
√
D

nT∑
k=1

tk+1−1∑
t=tk

1√
tk
.

Now putting these together with Lemma 5, we obtain

R1 ≤
√
D(2CMPSM

2
K + tr(W))

nT∑
k=1

Tk√
tk
. (G.7)

Finally, to bound
∑nT

k=1
Tk√
tk

, we recall that Tk = k + 1 and tk = tk−1 + Tk−1. Thus,

tk = Tk(Tk+1)
2 . Then, the sum

∑nT
k=1

Tk√
tk

is bounded as follows:

nT∑
k=1

Tk√
tk
≤

nT∑
k=1

√
2Tk√

Tk(Tk + 1)
≤

nT∑
k=1

√
2 =
√
2nT . (G.8)

Therefore, the result follows.

Combining Proposition 5 and Lemma 13, we finally prove Theorem 6, which

yields the O(
√
T ) regret bound. Recall that the system parameter sampled in Algo-

rithm 1 is denoted by θ̃k, which is used in obtaining the control gain matrix Kk =

K(θ̃k) for t ∈ [tk, tk+1). Let P̃k := P (θ̃k) for brevity and ũt = Kkxt be an opti-

mal action for θ̃k. Fix an arbitrary t ∈ [tk, tk+1). Then, the Bellman equation for t in

episode k is given by

J(θ̃k) + x⊤t P̃kxt

= x⊤t Qxt + ũ⊤t Rũt + E[(Ãkxt + B̃kũt + wt)
⊤P̃k(Ãkxt + B̃kũt + wt) | ht]

= x⊤t Qxt + ũ⊤t Rũt + (Ãkxt + B̃kũt)
⊤P̃k(Ãkxt + B̃kũt) + E[w⊤

t P̃kwt | ht],

(G.9)
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where the expectation is taken with respect to wt, and the second inequality holds

because the mean of wt is zero. On the other hand, the observed next state is expressed

as

xt+1 = Θ̄⊤
∗ zt + wt,

where Θ̄∗ ∈ Rd×n is the matrix of the true parameter random variables. We then notice

that

E[w⊤
t P̃kwt | ht]

= E[x⊤t+1P̃kxt+1 | ht]− (Θ̄⊤
∗ zt)

⊤P̃k(Θ̄
⊤
∗ zt).

(G.10)

Plugging (G.10) into (G.9) and rearranging it,

x⊤t Qxt + ũ⊤t Rũt = J(θ̃k) + x⊤t P̃kxt − E[x⊤t+1P̃kxt+1 | ht]

+ (Θ̄⊤
∗ zt)

⊤P̃k(Θ̄
⊤
∗ zt)− (Ãkxt + B̃kũt)

⊤P̃k(Ãkxt + B̃kũt).

(G.11)

Since ũt = ut − νt, we derive that

ũ⊤t Rũt = u⊤t Rut − ν⊤t Rũt − ũ⊤t Rνt − ν⊤t Rνt, (G.12)

and

(Ãkxt + B̃kũt)
⊤P̃k(Ãkxt + B̃kũt)

= (Θ̄⊤
k zt)

⊤P̃k(Θ̄
⊤
k zt)− (B̃kνt)

⊤P̃k(Ãkxt)− (Ãkxt)
⊤P̃k(B̃kνt)

− (B̃kνt)
⊤P̃k(B̃kũt)− (B̃kũt)P̃k(B̃kνt)− ν⊤t B̃⊤

k P̃kB̃kνt.

(G.13)

Combining (G.11), (G.12) and (G.13), we conclude that

E[c(xt, ut)]

= J(θ̃k) + x⊤t P̃kxt − E[x⊤t+1P̃kxt+1 | ht]

+ (Θ̄⊤
∗ zt)

⊤P̃k(Θ̄
⊤
∗ zt)− (Θ̄⊤

k zt)
⊤P̃k(Θ̄

⊤
k zt) + E[ν⊤t B̃⊤

k P̃kB̃kνt] + E[ν⊤t Rνt],

where the expectation is taken with respect to wt and νt.
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Using this expression and observing tnT ≤ T ≤ tnT+1 − 1, the expected regret of

Algorithm 1 is decomposed as

R(T ) = E
[ nT∑
k=1

tk+1−1∑
t=tk

(c(xt, ut)− J(θ̄∗))
]
− E

[ tnT+1−1∑
t=T+1

(c(xt, ut)− J(θ̄∗))
]

:= R1 +R2 +R3 +R4 +R5,

where

R1 = E
[ nT∑
k=1

tk+1−1∑
t=tk

z⊤t [Θ̄∗P̃kΘ̄
⊤
∗ − Θ̃kP̃kΘ̃

⊤
k ]zt

]
,

R2 = E
[ nT∑
k=1

tk+1−1∑
t=tk

(x⊤t P̃kxt − E[x⊤t+1P̃kxt+1|ht])
]
,

R3 = E
[ nT∑
k=1

Tk(J(θ̃k)− J(θ̄∗))
]
,

R4 = E
[ nT∑
k=1

tk+1−1∑
t=tk

(ν⊤t B̃
⊤
k P̃kB̃kνt + ν⊤t Rνt)

]
,

R5 = E
[ tnT+1−1∑

t=T+1

(J(θ̄∗)− c(xt, ut))
]
.

To obtain the exact regret bound, we include R5 which is not considered in [1]. By

Lemma 13, R1 is bounded as

R1 ≤
√
D(2CSMPM

2
K + tr(W))nT .

Since Tk = k + 1, we have

T ≥ 1 +

nT−1∑
k=1

Tk =
nT (nT + 1)

2
≥
n2T
2
,

which implies that

nT ≤
√
2T . (G.14)

Therefore, we conclude that

R1 ≤
√
2D(2CSMPM

2
K + tr(W))

√
T .
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Regarding R2, we use the tower rule E[E[Xt|ht]] = E[Xt] to obtain

R2 = E
[ nT∑
k=1

tk+1−1∑
t=tk

(x⊤t P̃kxt − x⊤t+1P̃kxt+1)

]

= E
[ nT∑
k=1

(x⊤tk P̃kxtk − x
⊤
tk+1

P̃kxtk+1
)

]

≤ E
[ nT∑
k=1

x⊤tk P̃kxtk

]

≤ E
[ nT∑
k=1

MP |xtk |
2

]
≤MPCnT (∵ Theorem 5)

≤MPC
√
2T ,

where the last inequality follows from (G.14).

We also need to deal with R3 carefully. What is different from the analysis pre-

sented in [1], the term simply vanishes using the intrinsic property of probability

matching of Thompson sampling as exact posterior distributions are used. However,

in our analysis, approximate posterior is considered instead so a different approach is

required. To cope with this problem, we adopt the notion of Lipschitz continuity of J

for estimation. Specifically,

R3 ≤ E
[ nT∑
k=1

Tk|J(θ̃k)− J(θ̄∗)|
]

≤ E
[ nT∑
k=1

TkLJ |θ̃k − θ̄∗|
]

=

nT∑
k=1

TkLJE
[
E[|θ̃k − θ̄∗||htk ]

]
≤

nT∑
k=1

TkLJE
[
E[|θ̃k − θ̄∗|2|htk ]

1
2
]

≤
nT∑
k=1

LJ

√
DTk

1√
tk
,

whereLJ is a Lipschitz constant of J and the last inequality follows from Proposition 1
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with D = 66dn
m .

Using the bound (G.8) of
∑nT

k=1
Tk√
tk

in the proof of Lemma 13, we have

R3 ≤
√
2LJ

√
DnT

≤ 2LJ

√
D
√
T .

By the definition of νt, R4 is bounded as

R4 = E
[ nT∑
k=1

tk+1−1∑
t=tk

(ν⊤t B̃
⊤
k P̃kB̃kνt + ν⊤t Rνt)

]

≤ E
[ nT∑
k=1

tk+1−1∑
t=tk

(S2MP + |R|)|νt|2
]

≤
nT∑
k=1

(S2MP + |R|)tr(W)

≤ (S2MP + |R|)tr(W)nT

≤ (S2MP + |R|)tr(W)
√
2T ,

where MP is from Definition 2. Lastly, R5 is bounded as

R5 = E
[ tnT+1−1∑

t=T+1

(J(θ̄∗)− c(xt, ut))
]

≤ E
[ tnT+1−1∑

t=T+1

J(θ̄∗)

]
≤ (tnT+1 − T − 1)MJ

≤ (TnT − 1)MJ (∵ tnT ≤ T ≤ tnT+1 − 1)

≤MJnT

≤MJ

√
2T ,

where MJ is from Definition 2. Putting all the bounds together, we conclude that

R(T ) ≤ C
√
T ,

and thus the result follows. One novelty in our analysis is that the concentration of

approximate posterior is naturally embedded into the analysis, which eventually drops

the log T term in the resulting regret.
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초록

톰슨 샘플링(Thompson sampling)은 온라인 학습 문제에서 탐색과 활용 사이

의 균형을 맞추는 데 널리 사용되는 방법으로, 이에는 선형 이차 제어기 (Linear

Quadratic Regulator)를위한강화학습을포함한다.그러나선형이차제어기학습에

사용되는 톰슨 샘플링의 이론적 분석은 종종 가우시안 잡음의 경우에만 제한되는

경우가 많다. 또한, 우리는 알려진 시스템 파라미터가 미리 지정된 한정된 집합에

속한다는 가정을 더할 때 샘플링을 직접 수행할 수 있으며, 이는 제한적인 것으로

보인다[1]. 이에 우리는 선형 이차 제어기를 위한 새로운 톰슨 샘플링 알고리즘을

제안하며,비가우시안잡음을포함한더넓은범위의문제를다루기위해랑주뱅동

역학(Langevin dynamics)를활용하려한다.또한,특정초기화방법이나실제시스템

파라미터에대한정보를필요로하지않으면서도,사전분포와허용가능한집합에

대한 최소한의 가정만으로 우리의 알고리즘은 근사 사후 분포로부터 빠르게 샘플

링할수있다.우리알고리즘은 O(
√
T )의기대후회(regret)상한을가지며,이는 [1]

의 알고리즘 성능보다 개선된 결과이다. 또한, 우리의 알고리즘 성능 분석은 자기

정규화기법과함께사전조건화된랑주뱅동역학의수렴부등식을활용한다.우리

알고리즘의성능은수치실험을통해입증되었다.

주요어:선형 2차제어기,톰슨샘플링,랑주뱅동역학

학번: 2020-26137
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