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Abstract

With the global deployment of the fifth-generation (5G) systems, research on the

sixth generation (6G) systems for 2030 and beyond has been fully launched. 6G aims

to integrate non-communication technologies like sensing, computing, and artificial

intelligence (AI), while also building upon the capabilities and scenarios established by

5G applications. The driving forces behind the development of 6G are the increasing

mobile traffic demands and the emergence of innovative applications such as holo-

graphic telepresence, extended reality (XR), digital twin, and autonomous systems.

These applications impose stringent requirements on the key performance indicators

(KPIs) of 6G, demanding approximately 10 ∼ 100 times higher rates, reliability, lower

latency, improved mobility, and energy efficiency compared to 5G. As a result, 6G is

expected to achieve a peak data rate of 1 terabit-per-second (Tbps) and significantly

reduced latency, reaching sub-millisecond levels. To meet these demanding require-

ments, novel technologies are required, as the existing mechanisms and conventional

approaches cannot suffice.

In the first part of this dissertation, we focus on the channel estimation framework

for near-field reconfigurable intelligent surface (RIS)-assisted terahertz (THz) systems.

RIS-assisted THz communications have garnered considerable attention as they offer

the potential to support extremely high data rates in 6G wireless networks. By adjusting

the wireless propagation environment of THz systems through phase shifts of reflect-

ing elements, RIS can dramatically enhance overall throughput. However, accurately

acquiring channel information is crucial to realizing the full potential of RIS-assisted

THz systems. Conventional channel estimation techniques based on planar wavefront

assumptions fail to deliver satisfactory performance in near-field RIS-assisted THz

systems due to the spherical wavefront of the THz electromagnetic signal. In light

of this challenge, we propose an efficient channel estimation technique for near-field
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RIS-assisted wideband THz systems called the Polar-Domain Frequency-Dependent

RIS-Assisted Channel Estimation (PF-RCE) scheme. Key idea of the proposed PF-RCE

scheme is to estimate the sparse multipath components (i.e., angles, distances, and

path gains) of the near-field THz channel by exploiting the polar-domain sparsity and

common support properties.

In the second part of the dissertation, we investigate an energy-efficient power con-

trol and beamforming scheme for RIS-assisted Internet of Things (IoT) networks. RIS,

composed of numerous low-cost reflecting elements arranged in a planar metasurface,

has garnered significant attention for its ability to enhance both spectrum and energy

efficiencies by reconfiguring the wireless propagation environment. In this work, we

propose an optimization technique for RIS phase shifts and base station (BS) beam-

forming that minimizes the uplink transmit power of the RIS-aided IoT network. Key

idea of the proposed scheme, referred to as Riemannian conjugate gradient-based joint

optimization (RCG-JO), is to jointly optimize the RIS phase shifts and the BS beam-

forming vectors using the Riemannian conjugate gradient technique. By leveraging the

product Riemannian manifold structure of the sets of unit-modulus phase shifts and

unit-norm beamforming vectors, we convert the nonconvex uplink power minimization

problem into an unconstrained problem and then find out the optimal solution over the

product Riemannian manifold.

In the third part of the dissertation, we address a crucial challenge faced in wideband

THz communication: the considerable array gain loss caused by the beam split effect.

This phenomenon occurs when path components split into different spatial directions at

various subcarrier frequencies, posing a significant hurdle for the practical application of

conventional phase shift control and beamforming techniques in wideband THz systems.

To overcome this issue, we propose a RIS-assisted wideband beamforming (RWB)

technique, specifically designed to maximize the achievable data rate of RIS-assisted

wideband THz systems. Key idea of RWB is to optimize the analog beamforming vector
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and the RIS phase shift vector alternately, while carefully designing the parameters

of the beamforming network. This novel approach empowers us to fully unleash the

potential of the wideband THz system, thereby maximizing its achievable data rate.

By effectively managing the beam split effect, RWB paves the way for enhanced

performance in wideband THz communication, playing a pivotal role in realizing the

ambitious goals set for 6G wireless networks.

keywords: 6G wireless communications, reconfigurable intelligent surface, terahertz

communications, channel estimation, wideband beamforming

student number: 2019-36083
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Chapter 1

Introduction

1.1 Background

With the success of the fifth generation new radio (5G NR), we are now witnessing

the emergence of the sixth generation (6G) communication and its applications such as

holographic telepresence, extended reality (XR), digital twin, and autonomous systems.

The fundamental communication mechanism underlying these applications diverges

significantly from the conventions of traditional communication systems. Rather than

merely transmitting and receiving data, the focus now extends to delivering specialized

services while addressing crucial aspects such as latency, energy efficiency, reliability,

flexibility, and connection density. Key Performance Indicators (KPIs) for 6G present a

significant leap, typically ranging from 10 to 100 times higher than previous generations

in terms of data rate, reliability, latency, mobility, and energy efficiency. For example,

the peak data rate is expected to reach 1 terabit-per-second (Tbps) and the latency is

expected to be reduced to sub-millisecond levels. Given the unprecedented demands

posed by these exacting requirements, the existing mechanisms and conventional

approaches fall short in offering adequate support. This necessitates the development of

an entirely new transmission approach to cater to 6G’s unique challenges. Before we

proceed further, we provide the fundamental of the key technologies and techniques

1



Figure 1.1: Employment of RIS in wireless communication networks.

that shape 6G wireless communications.

1.1.1 Basics of Reconfigurable Intelligent Surfaces

Reconfigurable intelligent surface (RIS), a planar metasurface consisting of a large

array of reflecting elements, has received considerable interest for its potential to

enhance the capacity and coverage of wireless networks. With the ability to dynamically

manipulate the wireless communication environment, RIS has become a focal point of

research in wireless communications, aiming to alleviate diverse challenges encountered

within 6G wireless networks. The advantages of RIS are listed as follows.

• Easy to deploy: RISs are essentially passive devices crafted from electromagnetic

(EM) materials. As illustrated in Fig. 1.1, the deployment of RIS extends to

various structures, encompassing building facades, indoor walls, aerial platforms,

roadside billboards, highway poles, vehicle windows, and even pedestrians’ attire,
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owing to their cost-effectiveness.

• Spectral efficiency enhancement: RIS exhibits the capability to actively reshape

the wireless propagation environment by mitigating power loss over extended

distances. This is achieved through the passive reflection of incoming radio

signals, enabling the creation of virtual line-of-sight (LoS) connections between

base stations (BSs) and mobile users. Significant enhancement in throughput

arises when the direct LoS link between BSs and users is obstructed by obstacles,

such as tall buildings. Leveraging the intelligent deployment and design of RISs,

it becomes feasible to construct a software-defined wireless environment. This, in

turn, opens doors to potential improvements in the received signal-to-interference-

plus-noise ratio (SINR).

• Environment-friendly: Unlike traditional relaying systems like amplify-and-

forward (AF) and decode-and-forward (DF), which typically involve power

amplification, RIS operates differently. It molds incoming signals by manipulating

the phase shifts of individual reflecting elements. This approach renders the

deployment of RISs not only more energy-efficient but also environmentally

conscious when compared to conventional AF and DF systems.

• Compatibility: RIS facilitates full-duplex (FD) and full-band transmission by

virtue of its nature as an electromagnetic wave reflector. Moreover, networks

enhanced by RIS are seamlessly compatible with the standards and hardware of

pre-existing wireless networks.

Due to the aforementioned attractive characteristics, RIS has been recognized as an

effective solution for mitigating a wide range of challenges in 6G communications.

1.1.2 Basics of Terahertz Communications

Terahertz (THz) band (0.1 ∼ 10THz) communication is envisioned as one of the

key enabling technologies to satisfy the exponential growth of data traffic volume, while

3



Figure 1.2: Extreme requirements of 6G.

meeting escalating demands in 6G and beyond wireless systems. As illustrated in Fig.

1.2, the anticipated landscape of 6G wireless systems encompasses peak data rates

reaching 1Tbps, accompanied by an envisaged peak spectral efficiency of 60 bps/Hz.

Moreover, these systems target end-to-end reliability with a packet error rate of 10−9

and a latency as short as 0.1ms. In addition, energy efficiency is expected to improve by

over 100 times compared to 5G. The forthcoming Internet of Things (IoT) will provide

1 to 3mm sensing resolutions, supporting billions of devices at an unprecedented scale.

Millimeter-wave (mmWave) communications (30–300GHz) under 100GHz have

been officially adopted in recent 5G cellular systems. While the trend for higher carrier

frequencies is apparent, achieving Tbps data rates and meeting the stringent Quality of

Service (QoS) remain formidable for mmWave systems. Within the mm-wave systems

under 100GHz, constrained by a total consecutive bandwidth of less than 10GHz,

achieving a spectrum efficiency of 100 bps/Hz is an exceptionally demanding task, even

with advanced physical layer techniques. The THz band presents itself as a pivotal

wireless technology poised to address the future requirements of 6G wireless systems.
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This is due to its four distinct strengths:

• Broad bandwidth: Offering contiguous bandwidth ranging from tens to hundreds

of GHz.

• Ultra-fast symbol duration: Symbol durations measured in picoseconds.

• Antenna integration: Capable of integrating thousands of sub-millimeter-long

antennas.

• Spectrum compatibility: Ease of coexistence with other regulated and standard-

ized spectrums.

Traditionally, the THz band has been one of the least explored portions of the EM spec-

trum, largely due to the absence of efficient and practical THz transceivers and antennas.

Nevertheless, it is acknowledged that THz communications confront a significant chal-

lenge arising from the pronounced signal directivity and severe signal attenuation. This

often necessitates the establishment of LoS links to maintain communication quality.

1.1.3 Basics of Compressed Sensing Technique

Compressed sensing (CS) is a new paradigm to acquire, process, and recover sparse

signals. This new approach is a very competitive alternative to conventional information

processing operations including sampling, sensing, compression, estimation, and detec-

tion. Traditional way to acquire and reconstruct analog signals from sampled signals

is based on Nyquist-Shannon’s sampling theorem which states that the sampling rate

should be at least twice the bandwidth of an analog signal to restore it from the discrete

samples accurately. While these fundamental principles work well, they might be a

bottleneck of resource overhead and also complexity in a situation where signals are

sparse, meaning that the signals can be represented using a relatively small number of

nonzero coefficients. At the heart of the CS lies the fact that a sparse signal vector can

be recovered from the underdetermined linear system in a computationally efficient
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way. In other words, a small number of linear measurements of the signal contain

enough information for its reconstruction. Main wisdom behind the CS is that essential

knowledge in the large dimensional signals is just handful, and thus measurements

with the size being proportional to the sparsity level of the input signal are enough to

reconstruct the original signal. In the last decade, CS techniques have spread rapidly in

many disciples such as medical imaging, machine learning, radar detection, seismology,

computer science, statistics, and many others. Also, various wireless communication

applications exploiting the sparsity of a target signal have been proposed in recent years.

Notable examples, among many others, include channel estimation, interference cancel-

lation, direction estimation, spectrum sensing, and symbol detection. To understand the

principle of CS, we introduce a system given

y = Hs, (1.1)

where y ∈ Rm×1 is the measurement vector, H ∈ Rm×n is the system matrix (a.k.a.,

the sensing matrix), and s ∈ Rn×1 is the desired signal vector. In the case of an overde-

termined system (m ≥ n) and the system matrix is a full rank matrix, one can recover

s using a simple algorithm. However, when the system matrix is underdetermined,

finding a solution is challenging and not straightforward. When the desired vector s is a

non-sparse signal, one can apply a solution minimizing the l2-norm of s. That is,

s∗ = argmin ∥s∥2 s.t.,y = Hs, (1.2)

and one can obtain the estimated desired signal s∗ as

s∗ = HT(HHT)−1y. (1.3)

When the desired signal is a sparse vector, that is l0-norm of the desired signal s

∥s∥0 = k where k < n, one can apply to find the l0 from the measurement vector.

s∗ = argmin ∥s∥0 s.t.,y = Hs. (1.4)
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Since this solution counts the number of nonzero elements in s, one needs to search all

possible combinations which is not practical for a large n and k. Alternative approach

is to minimize l1-norm as follow:

s∗ = argmin ∥s∥1 s.t.,y = Hs. (1.5)

Using the l1-norm minimization, one can apply convex optimization for finding the

solution. While the linear programming to solve l1-norm minimization problem is

effective, it requires substantial computational complexity and is not feasible in practical

scenarios.

To overcome this problem, a greedy algorithm has been proposed over the years.

By this, one hopes to find the local optimal in each iteration expecting to find the global

optimal in the end. Most popular algorithm is the orthogonal matching pursuit (OMP).

In each iteration, a column maximally correlated with the observation vector is chosen.

Once the solver selects the correct columns, now the system goes to the overdetermined

system. There are three key observations from the CS recovery problem.

• When the sparsity k is smaller than the size of the desired signal vector, one can

find the support of s more accurately.

• When the size of measurement vector m is given, one can recover the desired

signal vector more accurately as k increases.

• When the fact that k < n is given to the solver, one can find more accurate s than

the solver without using the fact.

1.1.4 Basics of Riemannian Manifold Optimization Technique

Roughly speaking, a smooth manifold is a generalization of the Euclidean space

on which a notion of differentiability exists. A smooth manifold together with an inner

product, often called a Riemannian metric, forms a smooth Riemannian manifold.

Since the smooth Riemannian manifold is a differentiable structure equipped with an

7



inner product, we can use various ingredients such as Riemannian gradient, Hessian

matrix, exponential map, and parallel translation, for solving optimization problems

with quadratic cost function. Therefore, optimization techniques in the Euclidean vector

space (e.g., steepest descent, Newton method, conjugate gradient method) can be readily

extended to solve a problem in the smooth Riemannian manifold.

An essential concept in Riemannian manifold optimization is the tangent space.

At each point on the manifold, there exists a tangent space, which is a vector space

that approximates the manifold near that point. The tangent space captures the local

geometry of the manifold and allows us to define operations like addition and scalar

multiplication of tangent vectors.

To optimize a function on a Riemannian manifold, iterative methods such as gradient

descent are commonly employed. However, in this context, the notion of gradient differs

from that in Euclidean spaces. Instead, we use the Riemannian gradient, which measures

the rate of change of the objective function with respect to the tangent vector at each

point on the manifold. The Riemannian gradient takes into account the Riemannian

metric and the curvature of the manifold, providing a direction for optimization.

Various optimization algorithms have been developed for Riemannian manifold

optimization, each with its strengths and considerations. These algorithms include

Riemannian gradient descent, conjugate gradient methods, trust-region methods, and

quasi-Newton methods. They leverage the Riemannian geometry of the manifold

and incorporate appropriate adjustments to handle its curvature, ensuring effective

optimization.

Riemannian manifold optimization finds applications in diverse fields, including

machine learning, computer vision, robotics, and physics. It enables efficient optimiza-

tion on curved manifolds, allowing for the development of algorithms that can handle

non-Euclidean data structures and complex geometries. By incorporating the intrinsic

geometry of the manifold, Riemannian manifold optimization provides a powerful

framework for solving optimization problems in these domains.
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1.2 Contribution and Organization

In this dissertation, we introduce a RIS-assisted wireless communication system for

6G.

In Chapter 2, we introduce a novel channel estimation framework for near-field

RIS-assisted THz systems. To support extremely high data rates in 6G wireless net-

works, RIS-assisted THz communications have gained much attention in recent years.

By manipulating the phase shifts of reflecting elements, RIS can proactively adjust

the wireless propagation environment of THz systems, thereby enhancing the overall

throughput significantly. To realize the full potential of RIS-assisted THz systems, an

acquisition of accurate channel information is of great importance. However, since

the wavefront of the THz electromagnetic signal is spherical, the conventional chan-

nel estimation techniques using the planar wavefront assumption suffer from severe

performance degradation in the near-field RIS-assisted THz systems. An aim of this

work is to propose an effective channel estimation technique for near-field RIS-assisted

wideband THz systems. Key idea of the proposed polar-domain frequency-dependent

RIS-assisted channel estimation (PF-RCE) scheme is to estimate the sparse multipath

components (i.e., angles, distances, and path gains) of the near-field THz channel by

exploiting the polar-domain sparsity and common support properties.

In Chapter 3, we present an energy-efficient power control and beamforming scheme

for RIS-assisted IoT networks. RIS, a planar metasurface consisting of a large num-

ber of low-cost reflecting elements, has received much attention due to the ability to

improve both the spectrum and energy efficiencies by reconfiguring the wireless propa-

gation environment. In this work, we propose an RIS phase shift and BS beamforming

optimization technique that minimizes the uplink transmit power of the RIS-aided

IoT network. Key idea of the proposed scheme, referred to as Riemannian conjugate

gradient-based joint optimization (RCG-JO), is to jointly optimize the RIS phase shifts

and the BS beamforming vectors using the Riemannian conjugate gradient technique.

By exploiting the product Riemannian manifold structure of the sets of unit-modulus
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phase shifts and unit-norm beamforming vectors, we convert the nonconvex uplink

power minimization problem into the unconstrained problem and then find out the

optimal solution over the product Riemannian manifold.

In Chapter 4, we propose an innovative approach to address the challenges of

frequency-dependent beamforming for RIS-assisted wideband THz systems. A signif-

icant hurdle in wideband THz communication pertains to the severe array gain loss

caused by the beam split effect that path components split into distinct spatial directions

across different subcarrier frequencies. Therefore, the conventional phase shift control

and beamforming techniques cannot be directly applied to wideband THz systems. In

this work, we introduce a new paradigm called RIS-assisted wideband beamforming

(RWB) technique that maximizes the achievable data rate of the RIS-assisted wide-

band THz systems. Key idea of RWB involves the alternating optimization of the

analog beamforming vector and the RIS phase shift vector. By properly designing the

parameters encompassing time delays, analog phase shifts, and RIS phase shifts of

the beamforming network, we aim to the maximize the achievable data rate of the

wideband THz system. To counteract the array gain loss caused by the beam split

effect, we leverage a small yet strategic ensemble of true-time delay (TDD)-based phase

shifters and analog phase shifters. This ensemble allows to simultaneously generate

frequency-dependent beams aligning with the physical directions at different subcarrier

frequencies. Using the frequency-dependent beamforming vector, we then exploit the

Riemannian conjugate gradient (RCG) method to find out the phase shifts that maximize

the achievable data rate of RIS-assisted wideband THz systems.

Chapter 5 summarizes the contribution of the dissertation and discusses the future

research directions based on studies of this dissertation.
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Chapter 2

Parametric Sparse Channel Estimation for RIS-Assisted

Terahertz Systems

In this chapter, we study the channel estimation framework tailored for near-field

RIS-assisted THz systems. To facilitate the demanding data rates expected in 6G

wireless networks, there has been a significant surge of interest in RIS-assisted THz

communications in recent years. Through the strategic manipulation of phase shifts

in reflective elements, the RIS can proactively adjust the wireless propagation envi-

ronment of THz systems, leading to a substantial enhancement in overall throughput.

To realize the full potential of RIS-assisted THz systems, an acquisition of accurate

channel information is of great importance. However, since the wavefront of the THz

electromagnetic signal is spherical, the conventional channel estimation techniques

relying on the assumption of planar wavefront suffers severe performance degradation

in near-field RIS-assisted THz systems. An aim of this work is to introduce an effi-

cient channel estimation technique designed for near-field RIS-assisted wideband THz

systems. Key idea of the proposed polar-domain frequency-dependent RIS-assisted

channel estimation (PF-RCE) scheme is to estimate the sparse multipath components

(i.e., angles, distances, and path gains) of the near-field THz channel by exploiting the

polar-domain sparsity and common support properties.
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2.1 Introduction

To support the exponential growth of data traffic in 6G networks, terahertz (THz)

communications have attracted considerable interest from both industry and academia

[2]. By leveraging the broad spectrum available in the THz band (0.1 ∼ 10THz),

THz communications can enable truly immersive mobile services, such as digital twin,

holographic telepresence, and metaverse experiences. However, THz communications

face a significant challenge posed by the strong directivity and severe signal attenuation

of transmit signals, which often necessitate a line-of-sight (LoS) link to maintain

the communication quality. Recently, reconfigurable intelligent surfaces (RIS) that

proactively modify the wireless channel through intelligent signal reflection have

emerged as a potential solution to provide an alternative LoS link [3]. To fully exploit

the potential of RIS-assisted THz communications, the phases of RIS reflecting elements

should be properly configured to reflect the surrounding environment [4]. To do so, an

acquisition of the RIS-assisted channel information at the base station (BS) is of great

importance [5].

Over the years, various channel acquisition techniques for RIS-assisted high fre-

quency systems have been proposed [6–9]. In [6], a channel estimation technique using

the tensor completion method has been proposed for RIS-assisted systems. In [7], a

two-stage channel estimation technique for RIS-assisted multi-user systems has been

proposed. Potential problem of these approaches is the huge pilot overhead caused by

the full-dimensional RIS-assisted channel estimation. To reduce the dimension of the

channel to be estimated, compressed sensing (CS)-based techniques that exploit the

limited scattering property of THz/mmWave channels have been proposed [8–10]. Since

the system models of these CS techniques are typically based on the far-field channel

model where electromagnetic (EM) radiation is modeled as planar waves, the CS-based

channel estimation techniques may not perform well in near-field THz systems where

EM radiation is modeled as spherical waves. In fact, in the RIS-assisted THz systems

where the extremely large number of reflecting elements is used, the array aperture is
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comparable to the propagation distance so that the THz channel can be categorized as a

near-field channel1.

Unfortunately, the estimation of near-field RIS-assisted THz channel is not easy

since the angular-domain sparsity is not available due to the spherical wavefront. In

the near-field region, the incident angle at each antenna is different, meaning that the

near-field THz channel is no longer sparse in the angular-domain. Furthermore, since

the phase delay between two adjacent antennas depends on both the angle and the

distance, the near-field THz channel is modeled as a complex function of angle and

distance. Due to this so-called near-field effect, the conventional channel estimation

schemes relying on the angular-domain sparsity are ineffective for near-field RIS-

assisted THz systems [11]. Yet another important issue in the wideband THz systems

is that the difference between carrier and subcarrier frequencies is large so that the

array response vector (a set of phase delays in antenna elements) of each subcarrier

is different [12]. This phenomenon, so-called frequency-wideband effect, makes it

difficult to estimate multiple subcarrier channels simultaneously. Therefore, to come up

with a proper channel acquisition mechanism alleviating the near-field and frequency-

wideband effects is crucial for the success of the near-field RIS-assisted wideband THz

systems.

An aim of this chapter is to propose an efficient channel estimation technique for

the near-field RIS-assisted wideband THz systems. Key idea of the proposed scheme,

referred to as the polar-domain frequency-dependent RIS-assisted channel estimation

(PF-RCE), is to estimate the sparse multipath components (i.e., angles, distances,

and path gains) of the near-field RIS-assisted THz channel by exploiting the polar-

domain sparsity and common support properties. Since the near-field channel is a

function of the angles and distances of a few dominant paths, the near-field RIS-assisted
1For example, in the 512-antenna THz MIMO systems operating at 0.1THz, the Rayleigh distance

(i.e., a boundary between the far-field region and near-field region) is around 400m, which covers a large

part of the THz cell area.
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THz channel vector can be readily modeled as a sparse vector in the polar-domain, a

coordinate system represented by the angle and distance. Also, since the signals of

different subcarriers propagate through the same physical path in wideband systems,

the non-zero element positions (i.e., support) of the sparse channel vectors are the

same for all subcarriers. By leveraging this property, we can formulate a joint sparse

recovery problem for the acquisition of the multipath components and solve it using the

block-sparse recovery algorithm.

We note that there have been some works investigating the near-field effect in

wireless communication systems [13–18]. In [13] and [14], theoretical limitations for

RIS-assisted wideband localization and near-field localization have been investigated.

In [15], a joint dictionary learning and sparse recovery algorithm for near-field channel

estimation has been proposed. In [16] and [17], low-complexity near-field localization

techniques that exploit RIS as a lens have been proposed. Also, in [18], a channel esti-

mation technique for hybrid RIS-empowered multiple-input multiple-output (MIMO)

systems has been proposed. A downside of these approaches is that the wideband

effect which causes the channel to have a frequency-dependent sparse structure is

not accounted for so the performance degradation would be severe in the near-field

RIS-assisted wideband THz systems. Our work is distinct from previous works in the

following aspects:

• While previous works have focused on the channel estimation of traditional

cellular systems without RIS, our work deals with the channel estimation of RIS-

assisted communication systems. To the best of our knowledge, this is the first

work investigating the channel estimation of near-field wideband RIS-assisted

THz systems while considering both near-field and wideband effects. This makes

the proposed PF-RCE scheme particularly important for emerging RIS-assisted

THz communication systems.

• We propose a novel polar bin design to enhance the sparse recovery performance

of PF-RCE. Note that the performance of the sparse recovery algorithm depends
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heavily on the column correlation of the sensing matrix. The previous works

use a simple polar bin generation strategy based on uniform quantization. In our

work, we deliberately design the polar bin to minimize the column correlation of

the sensing matrix.

• We propose an RIS phase shift control scheme to support the proposed channel

estimation framework. While the conventional phase shift control schemes focus

on the design of phase shifts maximizing the throughput, little work has been

done on the design of phase shifts improving the channel estimation accuracy.

By configuring the RIS phase shifts to achieve desirable properties of the sensing

matrix (e.g., column orthogonality), we can improve the channel estimation

accuracy without using additional pilot resources.

• We provide the empirical simulation results from which we demonstrate that

PF-RCE outperforms the conventional channel estimation schemes by a large

margin in terms of the normalized mean square error (NMSE). For example, when

compared to the conventional far-field and narrowband CS-based schemes, PF-

RCE achieves more than 4.2 dB and 7.8 dB NMSE gains, respectively. We also

demonstrate that PF-RCE achieves the near-optimal sparse recovery performance

(close to the oracle bound). Furthermore, we show that by employing the proposed

polar bin design and the RIS phase shift control scheme, the NMSE gain of PF-

RCE can be increased by 1.2 dB.

Notations: Lower and upper case symbols are used to denote vectors and matrices,

respectively. The superscripts (·)∗, (·)T, (·)H, and (·)† denote the conjugate, transpose,

Hermitian transpose, and pseudo-inverse, respectively. ∥x∥2 and ∥X∥F are used as

the Euclidean norm of a vector x and the Frobenius norm of a matrix X, respectively.

exp(x) denotes the exponential function of x, vec(X) denotes the vectorization of X,

and diag(x) denotes a diagonal matrix whose diagonal elements are x. X ⊙ Y and

X ⊗ Y denote the Hadamard and Kronecker products of X and Y, respectively. In
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Figure 2.1: Near-field RIS-assisted THz system model.

addition, X ∗Y and X •Y denote the column-wise and row-wise Khatri-Rao products

of X and Y, respectively.

2.2 RIS-Assisted Wideband THz System Model

In this section, we present the system model and the uplink channel estimation

protocol for the near-field RIS-assisted wideband THz system. We also discuss the RIS-

assisted THz channel model accounting for both the near-field and frequency-wideband

effects.

2.2.1 RIS-Assisted Wideband THz System Model

We consider an RIS-assisted THz system where a N -antenna BS serves a single-

antenna UE (see Fig. 2.1). We assume that the RIS consists of M reflecting elements
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Figure 2.2: RIS-assisted wideband THz channel estimation protocol.

arranged in a uniform linear array (ULA)2 and an RIS controller operated by the BS is

connected to the RIS through a dedicated control link. Also, we consider the OFDM

system with the carrier frequency fc and S subcarriers. During the uplink channel

estimation period, the UE transmits the uplink pilot signals and then the BS estimates

the uplink channel information using the received pilot signals. To be specific, the

uplink channel estimation period consists of P successive subframes, each of which is

divided into L time slots (see Fig. 2.2). By exploiting the channel reciprocity of time

division duplexing (TDD) systems, the BS uses the acquired uplink channel information

in the phase shift control and the downlink data transmission.

In the RIS-assisted THz systems, other than the direct channel, the reflected chan-

nels (i.e., the UE-RIS channel hr[s] ∈ CM×1 and the RIS-BS channel G[s] ∈ CN×M )

need to be considered. Here, we consider a practical scenario where the direct links

are severely blocked due to obstacles (e.g., walls and corners), and thus the BS com-

municates with the UE only via the RIS-assisted links3. The effective uplink channel
2Note that the proposed channel estimation framework can be readily extended to the uniform planar

array (UPA)-type RIS-assisted systems, in which the azimuth angles as well as the elevation angles at the

RIS are used for the channel model. Since the polar-domain sparsity and the common support properties

are valid in UPA-type RIS-assisted THz systems, we can estimate both azimuth and elevation angles using

the proposed scheme.
3The proposed scheme can be readily extended to a scenario considering the direct BS-UE commu-

17



h[s] ∈ CN×1 from the UE to the BS at the s-th subcarrier is

h[s] = G[s]diag(ϕ)hr[s] (2.1)

= G[s]diag(hr[s])ϕ (2.2)

= H[s]ϕ, (2.3)

where H[s] = G[s]diag(hr[s]) ∈ CN×M is the RIS-assisted channel matrix and

ϕ = [ejφ1 , · · · , ejφM ]T is the phase shift vector with φm being the phase shift of the

m-th RIS reflecting element.

Under this setup, the received pilot signal rp[s] ∈ CN×1 of UE associated with s-th

subcarrier at p-th subframe is expressed as

rp[s] = H[s]ϕpxp[s] + np[s], p = 1, · · · , P, (2.4)

where ϕp ∈ CM×1 is the RIS phase shift vector, xp[s] is the pilot symbol, and np[s]

is the Gaussian noise vector of s-th subcarrier at p-th subframe. During L successive

time slots, the BS sequentially employs the combining vectors {wl}Ll=1 to obtain the

processed signal yl,p[s]:

yl,p[s] = wH
l H[s]ϕpxp[s] + nl,p[s], l = 1, · · · , L, p = 1, · · · , P. (2.5)

By combining the processed signals into a L× P pilot signal matrix Y[s], we obtain

Y[s] = WHH[s]ΦX[s] +N[s], (2.6)

where W = [w1, · · · ,wL] ∈ CN×L is the combining matrix, Φ = [ϕ1, · · · ,ϕP ] ∈

CM×P is the RIS phase shift matrix (see Section IV.B for the detailed RIS phase shift

design), and X[s] = diag(x1[s], · · · , xP [s]) is the pilot symbol matrix.

nication link. By switching off all the reflecting elements, the direct channel can be easily estimated via

conventional channel estimation techniques.
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Figure 2.3: Illustration of the near-field RIS-assisted THz channel.

2.2.2 Near-Field Effect of RIS-Assisted THz Systems

The Rayleigh distance is widely used to quantify the boundary between the far-

field and near-field regions. The Rayleigh distance D is proportional to the number of

antennas M and the wavelength λc (i.e., D = 1
2M

2λc) [1]. In the mmWave systems, D

is only a few meters (e.g., D ≈ 5m when M = 32 and fc = 28GHz) so that most of

the signal transmissions take place in the far-field region. However, due to the extremely

large number of RIS reflecting elements (e.g., M = 128 ∼ 1024), D can be up to

a few hundred meters (e.g., D ≈ 400m when M = 512 and fc = 0.1THz) in the

RIS-assisted THz systems, meaning that most of the coverage area can be classified as

a near-field region.

In the near-field THz channel model, due to the spherical wavefront of the EM

waves, the phase delay between two adjacent antennas is affected by both the angle and

distance. To be specific, let rm and r be the distances between the transmitter and the

m-th receiving antenna and reference antenna, respectively, then the phase delay of the

m-th receiving antenna is given by e−j2πf∆rm/c where ∆rm = rm − r and f is the
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signal frequency. In the far-field channel, ∆rfar
m is a function of the incident angle θ at

the reference antenna:

∆rfar
m = −d(m− 1) sin θ, (2.7)

where d is the antenna spacing. Then, the far-field array response vector can be expressed

as afar(θ) = [e−j2πf∆r
far
1 /c, · · · , e−j2πf∆rfar

M/c]T.

In the near-field channel, however, ∆rm depends on both angle and distance due

to the spherical wavefront. When the coordinate of the reference antenna is set to

(0, 0), then the coordinates of the transmitter and the m-th receiving antenna are

(r cos θ, r sin θ) and (0, d(m− 1)), respectively, so that ∆rnear
m consisting of far-field

and near-field terms is given by (see Fig. 2.3)

∆rnear
m =

√
(r cos θ)2 + (r sin θ − (m− 1)d)2 − r (2.8)

(a)
≈ −d(m− 1) sin θ︸ ︷︷ ︸

far-field term

+
d2(m− 1)2

2

cos2 θ

r︸ ︷︷ ︸
near-field term

, (2.9)

where (a) follows from
√
1 + x ≈ 1 + 1

2x − 1
8x

2 [19]. Since ∆rnear
m is a function of

the incident angle θ and the distance r, the near-field array response vector can be

expressed as anear(θ, r) = [e−j2πf∆r
near
1 /c, · · · , e−j2πf∆rnear

M /c]T.

2.2.3 RIS-Assisted Wideband THz Channel Model

In this work, we use the near-field geometric channel models for the RIS-BS channel

G[s] and the UE-RIS channel hr[s] [20].

First, the near-field RIS-BS channel G[s] ∈ CN×M at the s-th subcarrier is ex-

pressed as

G[s] =

Pg∑
l=1

αl,saB,s(ψg,l)a
H
R,s(θg,l, rg,l)e

−j2πfsrg,l/c, (2.10)

where Pg is the number of propagation paths, αl,s is the path gain, fs is the baseband

frequency of the s-th subcarrier, ψg,l is the angle of arrival (AoA), θg,l is the angle of

departure (AoD), and rg,l is the distance between the reference reflecting element and

20



the scatterer or BS of the l-th path. Also, aB,s(ψg,l) and aR,s(θg,l, rg,l) are the far-field

and near-field array response vectors at the BS and RIS, respectively, given by [20]

aB,s(ψg,l) = [e
j 2π
λc

(1+ fs
fc

)d sinψg,l , · · · , ej
2π
λc

(1+ fs
fc

)d(N−1) sinψg,l ]T, (2.11)

aR,s(θg,l, rg,l) = [e
−j 2π

λc
(1+ fs

fc
)∆rg,l,1 , · · · , e−j

2π
λc

(1+ fs
fc

)∆rg,l,M ]T, (2.12)

where fc is the carrier frequency, λc is the wavelength, and ∆rg,l,m is the difference of

the distance between the m-th reflecting element and the reference reflecting element

given by

∆rg,l,m ≈ −d(m− 1) sin θg,l +
d2(m− 1)2

2

cos2 θg,l
rg,l

. (2.13)

By definingψg = [ψg,1, · · · , ψg,Pg ]
T, θg = [θg,1, · · · , θg,Pg ]

T, and rg = [rg,1, · · · , rg,Pg ]
T,

we obtain the matrix-vector form of G[s]:

G[s] = AB,s(ψg)ΛsA
H
R,s(θg, rg), (2.14)

where AB,s(ψg) = [aB,s(ψg,1), · · · ,aB,s(ψg,Pg)] is the far-field array response matrix

at the BS, AR,s(θg, rg) = [aR,s(θg,1, rg,1), · · · ,aR,s(θg,Pg , rg,Pg)] is the near-field ar-

ray response matrix at the RIS, and Λs = diag(α1,se
−j2πfsrg,1/c, · · · , αPg ,se

−j2πfsrg,Pg/c)

is the path gain matrix.

Second, the UE-RIS channel hr[s] at the s-th subcarrier is expressed as

hr[s] =

Pr∑
l=1

βl,saR,s(θr,l, rr,l)e
−j2πfsrr,l/c, (2.15)

where Pr is the number of propagation paths, βl,s is the path gain, θr,l is the AoA, and

rr,l is the distance between the reference reflecting element and the scatterer or UE of

the l-th path. By defining θr = [θr,1 · · · θr,Pr ]
T and rr = [rr,1 · · · rr,Pr ]

T, we obtain the

matrix-vector form of hr[s]:

hr[s] = AR,s(θr, rr)βs, (2.16)

where AR,s(θr, rr) = [aR,s(θr,1, rr,1), · · · ,aR,s(θr,Pr , rr,Pr)] is the near-field array

response matrix at the RIS and βs = [β1,se
−j2πfsrr,1/c, · · · , βPr,se

−j2πfsrr,Pr/c]T is

the path gain vector.
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Using (2.14) and (2.16), the RIS-assisted channel H[s] at the s-th subcarrier can

be expressed as a function of multipath components (i.e., AoAs, AoDs, distances, and

path gains) [21].

Lemma 1. The RIS-assisted channel matrix H[s] = G[s]diag(hr[s]) can be expressed

as [21]

H[s] = AB,s(ψg)(Λs ⊗ βT
s )(A

∗
R,s(θr, rr) •AR,s(θg, rg))

H. (2.17)

Also, the vectorized RIS-assisted channel vec(H[s]) can be expressed as

vec(H[s]) =
(
(AR,s(θr, rr) •A∗

R,s(θg, rg))⊗AB,s(ψg)
)
vec(Λs ⊗ βT

s ). (2.18)

Finally, by vectorizing Y[s] into y[s] = vec(Y[s]) ∈ CLP×1, we obtain the linear

system:

y[s] = ((ΦX[s])T ⊗WH)vec(H[s]) + n[s] (2.19)

= ((ΦX[s])T ⊗WH)
(
(AR,s(θr, rr) •A∗

R,s(θg, rg))⊗AB,s(ψg)
)

vec(Λs ⊗ βT
s ) + n[s] (2.20)

= Ψ[s]g[s] + n[s], (2.21)

where Ψ[s] = ((ΦX[s])T ⊗ WH)
(
(AR,s(θr, rr) • A∗

R,s(θg, rg)) ⊗ AB,s(ψg)
)
∈

CLP×P 2
g Pr is the system matrix and g[s] = vec(Λs ⊗βT

s ) ∈ CP 2
g Pr×1 is the combined

path gain vector.

2.2.4 Frequency-Wideband Effect of RIS-Assisted THz Systems

In the linear system (2.21), the system matrix Ψ[s] is expressed as a function of

the array response matrices AB,s(ψg), AR,s(θg, rg), and AR,s(θr, rr). Note that these

array response matrices are functions of the ratio γs = fs
fc

between the carrier frequency

fc and the subcarrier frequency fs (see (2.11) and (2.12)). In the mmWave band, fs

is relatively smaller than fc so that γs ≈ 0 in most cases. This means that the array
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response vectors of all subcarriers are almost identical. However, in the THz band, γ is

larger or smaller than 0 due to the extremely large bandwidth so that the array response

vector is expressed as a function of the subcarrier frequency. One can deduce from this

discussion that Ψ[s] corresponding to one subcarrier is different from others [22]. Due

to this so-called frequency-wideband effect, in the wideband THz systems, it is very

difficult to estimate the multipath components of multiple subcarriers simultaneously.

2.3 Sparse Channel Estimation for Near-Field RIS-Assisted

THz Systems

The primary goal of the proposed PF-RCE is to estimate the sparse multipath

components, i.e., angles (ψg, θg, θr), distances (rg, rr), and path gains ({Λs,βs}), of

the near-field RIS-assisted wideband THz channel. To this end, we map the angles and

distances to the positions of non-zero elements of the sparse path gain vector. In doing

so, we can convert the multipath components estimation problem to the problem to

find out the support of the sparse path gain vector. Also, since the signals of different

subcarriers propagate through the same physical path in the wideband systems, the

sparse path gain vectors of all subcarriers have the common support. Thus, by exploiting

the measurements of all subcarriers, we formulate a joint sparse recovery problem to

find out the common support. Using the block-sparse recovery algorithm, we can

effectively acquire the common support and the corresponding multipath components

and then recover the near-field RIS-assisted THz channel from the acquired multipath

components [23].

Overall process of PF-RCE is as follows:

• Polar-domain sparse mapping: We map the angles (ψg, θg, θr) and distances

(rg, rr) to the positions of non-zero elements (i.e., support Ω) of the sparse path

gain vector.

• Block-sparse representation: We formulate the block-sparse linear system as
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y = Ψ̄ḡ+z where Ψ̄ is the polar-domain sensing matrix and ḡ is the block-sparse

path gain vector.

• Block-sparse recovery and channel reconstruction: Using the block-sparse

recovery algorithm, we find out Ω and ḡ. After that, we acquire the angles (ψg,

θg, θr), distances (rg, rr), and path gains ({Λs,βs}) and then reconstruct the

RIS-assisted THz channel {H[s]}.

2.3.1 Polar-Domain Sparse Mapping

In this step, from the set of quantized angle and distance pairs so-called polar

bin (θ̄, r̄), we generate the polar-domain dictionary matrices ĀB,s and ĀR,s and the

corresponding sparse path gain vector ḡ[s] for each subcarrier. Using the polar-domain

dictionary matrices and the sparse path gain vectors, we reformulate the linear system

in (2.21) into a sparse linear system.

Specifically, the polar-domain BS and RIS dictionary matrices ĀB,s ∈ CN×Qθ

and ĀR,s ∈ CM×(QθQr) generated from (θ̄, r̄) (see Section IV.A for detailed polar bin

design) are given by

ĀB,s = [aB,s(θ̄1), · · · ,aB,s(θ̄Qθ
)], (2.22)

ĀR,s = [aR,s(θ̄1, r̄1), · · · ,aR,s(θ̄QθQr , r̄QθQr)], (2.23)

where Qθ and Qr are the quantization levels of angle and distance, respectively. Using

ĀB,s and ĀR,s, the sparse representation of the near-field RIS-assisted channel matrix

H[s] is given by

H[s] = ĀB,s(Λ̄s ⊗ β̄
T
s )(Ā

∗
R,s • ĀR,s)

H, (2.24)

where Λ̄s ∈ CQθ×(QθQr)2 and β̄s ∈ C(QθQr)2×1 are the sparse RIS-BS path gain matrix

and UE-RIS path gain vector, respectively, such that ∥Λ̄s∥0 = Pg and ∥β̄s∥0 = Pr.

Then the vectorized RIS-assisted channel vec(H[s]) can be expressed as

vec(H[s]) =
(
(ĀR,s • Ā∗

R,s)⊗ ĀB,s
)
vec(Λ̄s ⊗ β̄

T
s ). (2.25)
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Note that vec(H[s]) includes the term ĀR,s • Ā∗
R,s, a row-wise Khatri-Rao product

of the RIS dictionary matrix ĀR,s and its conjugate Ā∗
R,s. Due to the property of

the row-wise Khatri-Rao product, ĀR,s • Ā∗
R,s contains a large number of duplicated

columns4.

Lemma 2. ĀR,s • Ā∗
R,s ∈ CM×(QθQr)2 in (2.25) contains only (2Qθ − 1)(2Qr − 1)

distinct columns where Qθ and Qr are the quantization levels of angle and distance

(QθQr = Q), respectively. When removing the duplicated columns, ĀR,s • Ā∗
R,s is

reduced to D[s] = [d1,1, · · · ,d2Qθ−1,2Qr−1] ∈ CM×(2Qθ−1)(2Qr−1) where the m-th

element of dk,l is given by

[dk,l]m = exp
(
j
2π

λc
(1+

fs
fc
)
(2d(m−1)

Q
(k−Qθ+(l−Qr)Qθ)

− d2(m− 1)2

2rminQ
((k −Qθ)Qr + l −Qr)

))
, (2.26)

for m=1, · · · ,M , k = 1, · · · , 2Qθ − 1, and l=1, · · · , 2Qr − 1.

Proof. See Appendix A.

By removing the duplicated column vectors of ĀR,s •Ā∗
R,s and merging the correspond-

ing elements of vec(Λ̄s ⊗ β̄
T
s ), the vectorized RIS-assisted channel vec(H[s]) can be

re-expressed as5

vec(H[s]) =
(
(ĀR,s • Ā∗

R,s)⊗ ĀB,s
)
vec(Λ̄s ⊗ β̄

T
s ) (2.27)

= (D[s]⊗ ĀB,s)ḡ[s] (2.28)

= Ā[s]ḡ[s], (2.29)

where Ā[s] = D[s]⊗ ĀB,s ∈ CMN×(2Qθ−1)(2Qr−1)Qθ is the total dictionary matrix.

4For example, the row-wise Khatri-Rao product of the 2-point DFT matrix F2 =
[
1 1
1 −1

]
and its

conjugate F∗
2 is F2 • F∗

2 =
[
1 1 1 1
1 −1 −1 1

]
which consists of 2 duplicated column vectors.

5Let y = Ax be a linear system where A = [a1,a2,a3,a1] and x = [x1, x2, x3, x4]
T. By merging

the duplicated columns of A and the corresponding elements of x, we obtain y = Āx̄ where Ā =

[a1,a2,a3] and x̄ = [x1 + x4, x2, x3]
T.
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Figure 2.4: Overall description of the proposed PF-RCE algorithm.

By plugging (2.29) into (2.19), we obtain the sparse linear system:

y[s] = ((ΦX[s])T ⊗WH)vec(H[s]) + n[s] (2.30)

= ((ΦX[s])T ⊗WH)(D[s]⊗ ĀB,s)ḡ[s] + n[s] (2.31)

= Ψ̄[s]ḡ[s] + n[s], (2.32)

where Ψ̄[s] ∈ CLP×Qtot is the polar-domain sensing matrix given by

Ψ̄[s] = ((ΦX[s])T ⊗WH)(D[s]⊗ ĀB,s), (2.33)

and ḡ[s] ∈ CQtot×1 is the combined sparse path gain vector such that ∥ḡ[s]∥0 = PgPr,

and Qtot = (2Qθ − 1)(2Qr − 1)Qθ.

2.3.2 Block-Sparse Representation

Since the angles and distances are the same for all subcarriers, the sparse path gain

vectors {ḡ[s]}Ss=1 share the common support Ω. Based on this observation, we combine

the i-th elements of {ḡ[s]}Ss=1 into a vector ḡi. Note that the elements of ḡi are either

all nonzero (i ∈ Ω) or all zero (i /∈ Ω). Thus, by concatenating ḡ1, · · · , ḡQtot , we can

obtain the block-sparse path gain vector ḡ where the non-zero elements appear in a

few blocks of the vector (see Fig. 2.4). Using this, we can formulate the block-sparse
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linear system in the form of y = Ψ̄ḡ + z (Ψ̄ is the block sensing matrix) and then find

out Ω and ḡ using the block-sparse recovery algorithm. Once Ω is recovered, we can

extract the angle and distance information from the corresponding column vectors of

the dictionary matrix. Using the extracted angles, distances, and path gains, we can

reconstruct the vectorized RIS-assisted channel vec(H[s]) from which we acquire the

near-field RIS-assisted THz channel H[s].

To be specific, we first combine the elements of {ḡ[s]}Ss=1 at the i-th position into

ḡi ∈ CS×1:

ḡi = [ḡi[1], · · · , ḡi[S]]T, i = 1, · · · , Qtot, (2.34)

where ḡi[s] is the i-th element of ḡ[s]. Since {ḡ[s]}Ss=1 have the common support Ω,

the elements of ḡi are either all nonzero (i ∈ Ω) or all zero (i /∈ Ω). This means that

ḡ = [ḡT
1 , · · · , ḡT

Qtot
]T is a block-sparse vector where the nonzero elements appear in a

few S × 1 blocks. Similarly, we combine the i-th column vectors of {Ψ̄[s]}Ss=1 into a

block-diagonal matrix Ψ̄i ∈ CLPS×S as

Ψ̄i = diag(ψ̄i[1], · · · , ψ̄i[S]), i = 1, · · · , Qtot, (2.35)

where ψ̄i[s] ∈ CLPS×1 is the i-th column vector of Ψ̄[s]. Using the combined matrix

is Ψ̄ = [Ψ̄1, · · · , Ψ̄Qtot ] and ḡ, we obtain the block-sparse linear system:

y = [y[1]T, · · · ,y[S]T]T = Ψ̄ḡ + n, (2.36)

where Ψ̄ = [Ψ̄1, · · · , Ψ̄Qtot ] ∈ CLPS×QtotS is the block sensing matrix and ḡ =

[ḡT
1 , · · · , ḡT

Qtot
]T ∈ CQtotS×1 the block-sparse path gain vector6. The corresponding

6For example, when the common support is Ω = {2, 6}, ḡ[1] = [0, 1, 0, 0, 0, 2, 0]T, and ḡ[2] =

[0, 3, 0, 0, 0, 4, 0]T, then ḡ2 = [1, 3]T, ḡ6 = [2, 4]T, and {ḡ}i = [0, 0]T for i /∈ Ω. In this case, ḡ =

[0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0]T is a block 2-sparse vector where the nonzero elements appear in 2 of

2× 1 blocks.
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block-sparse recovery problem to recover the block-sparse path gain vector ḡ is

P0 : min
ḡ=[ḡT

1,··· ,ḡT
Qtot

]T
∥y − Ψ̄ḡ∥2 (2.37a)

s.t.
Qtot∑
i=1

I(∥ḡi∥2) = PgPr, (2.37b)

where I(x) is the indicator function such that I(x) = 1 if x ̸= 0 and I(x) = 0

otherwise. Note that
∑Qtot

i=1 I(∥ḡi∥2) represents the number of non-zero blocks in ḡ.

2.3.3 Block-Sparse Recovery and Channel Reconstruction

In solving P0, one can use the block-sparse recovery algorithm such as block

orthogonal least squares (BOLS) [24]. In the BOLS algorithm, an index of the submatrix

of the sensing matrix is chosen at a time using a greedy strategy and then the residual is

updated. To be specific, in the t-th iteration, an index ω̂t corresponding to the submatrix

Ψ̄ω̂t of the block sensing matrix Ψ̄ that leads to the most significant reduction in the

residual power is chosen as

ω̂t = arg min
i=1,··· ,Qtot

∥P⊥
Ω̂t−1∪{i}

rt−1∥22, t = 1, · · · , PgPr, (2.38)

where Ω̂t = {ω̂1, · · · , ω̂t} and rt−1 = P⊥
Ω̂t−1

y is the residual. Also, P⊥
Ω̂t

= ILPS −

PΩ̂t
is the orthogonal complement of PΩ̂t

where PΩ̂t
= Ψ̄Ω̂t

Ψ̄†
Ω̂t

is the orthogonal

projection onto span(Ψ̄Ω̂t
) and Ψ̄Ω̂t

= [Ψ̄ω̂1 , · · · , Ψ̄ω̂t ]. It is worth mentioning that

since each Ψ̄ω̂t = diag(ψ̄ω̂t
[1], · · · , ψ̄ω̂t

[S]) is a block-diagonal matrix, the orthogonal

projection matrix PΩ̂t
∈ CLPS×LPS is also a block-diagonal matrix whose diagonal

elements are the orthogonal project matrices {PΩ̂t
[s]}Ss=1 for S subcarriers:

PΩ̂t
= diag(PΩ̂t

[1], · · · ,PΩ̂t
[S]), (2.39)

where PΩ̂t
[s] = (Ψ̄[s])Ω̂t

(Ψ̄[s])†
Ω̂t

∈ CLP×LP and (Ψ̄[s])Ω̂t
=

[
ψ̄ω̂1

[s], · · · , ψ̄ω̂t
[s]

]
.

Using (2.39), we can significantly reduce the computational complexity of PF-RCE

since we only need to compute the low-dimensional projection matrices {PΩ̂t
[s]}Ss=1 ⊆
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Table 2.1: Comparison of computational complexity.

Computational Complexity

Proposed PF-RCE O(SL2P 2P 2
g P

2
r (2Qθ − 1)(2Qr − 1))

Conventional NB-CE O(SL2P 2P 2
g P

2
r (QθQr)

2)

Conventional FF-CE O(SL2P 2P 2
g P

2
rQ

2
θ)

CLP×LP instead of the high-dimensional projection matrix PΩ̂t
∈ CLPS×LPS . Also,

using (2.39), one can re-express (2.38) as

ω̂t = arg min
i=1,··· ,Qtot

S∑
s=1

∥(PΩ̂t−1∪{i}[s])
⊥rt−1[s]∥22, (2.40)

where t = 1, · · · , PgPr is the iteration index. The iteration is repeated until PgPr

indices are selected.

Once we obtain the support Ω̂ = {ω̂1, · · · , ω̂PgPr}, we can acquire the estimate of

{ḡ[s]} as

(ḡ∗[s])Ω̂ = (Ψ̄[s])†
Ω̂
y[s]. (2.41)

Since each quantized angle and distance pair of the polar bin corresponds to the column

vector of the dictionary matrix D[s] ⊗ ĀB,s, we can extract the angle and distance

information from
(
D[s]⊗ĀB,s

)
Ω

. Using the extracted angles, distances, and path gains,

we can reconstruct the vectorized near-field RIS-assisted THz channel (see (2.29)):

vec(H∗[s]) =
(
D[s]⊗ ĀB,s

)
Ω̂
(ḡ∗[s])Ω̂. (2.42)

Finally, one can acquire the near-field RIS-assisted THz channel H∗[s] from vec(H∗[s]).

2.3.4 Computational Complexity Analysis

In this subsection, we analyze the computational complexity of the proposed PF-

RCE algorithm. Specifically, the block-sparse recovery process in PF-RCE consists of

four major steps: 1) calculating the orthogonal complements {(PΩ̂t−1∪{i}[s])
⊥}Ss=1 of
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the projection matrices, 2) calculating the residual power
∑S

s=1∥(PΩ̂t−1∪{i}[s])
⊥rt−1[s]∥22

and finding out the index ω̂t minimizing the residual power, 3) updating the residual

rt, and 4) estimating the block-sparse path gain vectors {(ḡ∗[s])Ω̂}
S
s=1. The overall

complexity CPF-RCE of PF-RCE is expressed as

CPF-RCE = PgPr(C1 + C2 + C3) + C4, (2.43)

where C1, C2, C3, C4 are the computational complexities of the aforementioned steps.

Note that PgPr are multiplied at C1, C2, C3 since the block-sparse recovery process

consists of PgPr iterations. In the following lemma, we provide the overall complexity

CPF-RCE of PF-RCE.

Lemma 3. The total computational complexity CPF-RCE is given by

CPF-RCE = O(SL2P 2P 2
g P

2
r (2Qθ − 1)(2Qr − 1)), (2.44)

where Qθ and Qr are the quantization levels of angle and distance, respectively.

Proof. See Appendix B.

For comparison, we also discuss the complexities of the conventional narrow-band

channel estimation (NB-CE) scheme that estimates the polar-domain channel parameters

(i.e., angles, distances, and path gains) of each subcarrier channel separately [1] and the

far-field channel estimation (FF-CE) scheme that estimates the angular-domain channel

parameters (i.e., angles and path gains) of all subcarrier channels simultaneously [20].

It is clear from Table I that the computational complexity of PF-RCE is lower than

that of NB-CE. This is because by exploiting (2.39), the residual power calculation

of PF-RCE can be decomposed into S sub-calculations, resulting in a significant

reduction of computational complexity. Also, while NB-CE uses the high-dimensional

sensing matrix containing a large number of duplicated columns, PF-RCE uses the

low-dimensional sensing matrix where the duplicated columns are removed (see Lemma

2). Also, we see that the computational complexity of PF-RCE is higher than that of
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FF-CE, since PF-RCE estimates the whole multipath components (angles, distances,

and path gains) whereas FF-CE estimates only the angles and path gains.

2.4 Practical Issues in Near-Field RIS-Assisted THz Channel

Estimation

In this section, we discuss two practical issues related to RIS-assisted THz channel

estimation. We first describe the polar bin design and then discuss the RIS phase shift

control.

2.4.1 Polar Bin Design for RIS-assisted THz Channel Estimation

Note that the sparse recovery performance of PF-RCE relies heavily on the column

correlation of the polar-domain sensing matrix Ψ̄[s]. Since Ψ̄[s] is generated from the

total dictionary matrix Ā[s], the column correlation of Ψ̄[s] is determined by that of

Ā[s]. As shown in Lemma 2, Ā[s] is a function of the polar bin, a set of quantized angle

and distance pairs (θ̄, r̄). So, by deliberately designing (θ̄, r̄) such that the column

correlation of Ā[s] is minimized, we can reduce the column correlation of Ψ̄[s], thereby

improving the sparse recovery performance.

Recall that Ā[s] can be expressed as Ā[s] = D[s]⊗ĀB,s (see (2.29)) where D[s] is

the polar-domain RIS dictionary matrix (see Lemma 2) and ĀB,s is the angular-domain

BS dictionary matrix (see (2.22)). Thus, the column correlation of Ā[s] is the multipli-

cation of the column correlations of D[s] and ĀB,s (i.e., µ(Ā[s]) = µ(D[s])µ(ĀB,s)):

µ(Ā[s]) = max
(i,j)̸=(k,l)

|āH
i,j āk,l|2 (2.45)

= max
(i,j)̸=(k,l)

|(di ⊗ āB,j)
H(dk ⊗ āB,l)|2 (2.46)

= max
i ̸=k

|dH
i dk|2max

j ̸=l
|āH

B,j āB,l|2 (2.47)

= µ(D[s])µ(ĀB,s), (2.48)
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where āi,j , di, and āB,j are the column vectors of Ā[s], D[s], and ĀB,s, respectively. To

minimize µ(Ā[s]), we need to minimize µ(D[s]) and µ(ĀB,s). Since ĀB,s is generated

from the angular bin θ̄ and the optimal angular bin minimizing µ(ĀB,s) can be easily

obtained by uniformly discretizing sin θ̄ in [−1, 1), we only need to find out the optimal

polar bin minimizing the column correlation of D[s].

To be specific, µ(D[s]) can be expressed as a function of polar bin (θ̄, r̄) as

µ(D[s]) = max
i ̸=j

f(θ̄i, r̄i, θ̄j , r̄j), (2.49)

where f(θ̄i, r̄i, θ̄j , r̄j) = | 1
M aH

R,s(θ̄i, r̄i)aR,s(θ̄j , r̄j)|2 and aR,s(θ̄i, r̄i) is the near-field

array response vector in (2.12). Then the optimization problem Pbin to find out the polar

bin (θ̄, r̄) minimizing µ(D[s]) is formulated as

Pbin : min
(θ̄,r̄)

max
i ̸=j

f(θ̄i, r̄i, θ̄j , r̄j), (2.50a)

s.t. 0 ≤ θ̄i < 2π, rmin ≤ r̄i ≤ rmax, i = 1, · · · , Q, (2.50b)

where [rmin, rmax] is the range of communication distance and Q = QθQr is the

number of quantized angle and distance pairs in (θ̄, r̄). Since µ(D[s]) is a nonlinear

function of (θ̄, r̄), it is not easy to find out the optimal solution of Pbin. As a remedy,

we exploit the observation that the m-th element of aR,s(θ̄i, r̄i) consists of the far-

field term d(m − 1) sin θ̄i and the near-field term d2(m−1)2

2
cos2 θ̄i
r̄i

(see (2.9)). Based

on this observation, we express f(θ̄i, r̄i, θ̄j , r̄j) as a function of |sin θ̄i − sin θ̄j | and∣∣ cos2 θ̄i
r̄i

− cos2 θ̄j
r̄j

∣∣ and then convert the column correlation minimization problem to the

problem to maximize the sum of these two terms.

Proposition 1. The normalized correlation f(θ̄i, r̄i, θ̄j , r̄j) = | 1
M aH

R,s(θ̄i, r̄i)aR,s(θ̄j , r̄j)|2

between the near-field array response vectors aR,s(θ̄i, r̄i) and aR,s(θ̄j , r̄j) can be ap-

proximated as a function of α = sin θ̄i − sin θ̄j and β = cos2 θ̄i
r̄i

− cos2 θ̄j
r̄j

:

f(θ̄i, r̄i, θ̄j , r̄j) ≈
1

M2dβ

(
C
(
M
√
dβ− α√

dβ

)
+C

( α√
dβ

))2
+

1

M2dβ

(
S
(
M
√
dβ− α√

dβ

)
+S

( α√
dβ

))2
, (2.51)
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Figure 2.5: Correlation between the near-field array response vectors

where C(x) =
∫ x
0 cos(12πt

2)dt and S(x) =
∫ x
0 sin(12πt

2)dt are the Fresnel integrals.

Proof. See Appendix C.

As shown in Fig. 2.5, f(θ̄i, r̄i, θ̄j , r̄j) can be approximated to the decreasing

function of |sin θ̄i − sin θ̄j | and
∣∣ cos2 θ̄i

r̄i
− cos2 θ̄j

r̄j

∣∣. Thus, the problem to minimize

maxi ̸=j f(θ̄i, r̄i, θ̄j , r̄j) can be converted to the problem to maximize the sum of

mini ̸=j |sin θ̄i − sin θ̄j | and mini ̸=j
∣∣ cos2 θ̄i

r̄i
− cos2 θ̄j

r̄j

∣∣:
P ′

bin : max
(θ̄,r̄)

(
min
i ̸=j

|sin θ̄i−sin θ̄j |2+cmin
i ̸=j

∣∣∣cos2 θ̄i
r̄i

− cos2 θ̄j
r̄j

∣∣∣2) (2.52a)

s.t. 0 ≤ θ̄i < 2π, rmin ≤ r̄i ≤ rmax, i = 1, · · · , Q, (2.52b)

where c > 0 is the regularization parameter. Since θ̄ and r̄ are coupled with each other

in the objective function, it is very difficult to optimize them jointly. To find out a

tractable solution of P ′
bin, we optimize θ̄ and r̄ in an alternating fashion.

First, when θ̄ is fixed, P ′
bin is reduced to the distance quantization problem Pdis:

Pdis : max
r̄

min
i ̸=j

∣∣∣cos2 θ̄i
r̄i

− cos2 θ̄j
r̄j

∣∣∣ (2.53a)

s.t. rmin ≤ r̄i ≤ rmax, i = 1, · · · , Q. (2.53b)

The optimality condition for Pdis is provided in the following lemma.
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Lemma 4. Given a bounded function f : X → [fmin, fmax] and set of bounded non-

negative weights {ci}Qi=1 ⊆ [cmin, cmax], the optimal solution of P :max{xi}⊆X mini ̸=j |cif(xi)−

cjf(xj)| is

x∗i = f−1

(
1

ci

(
cminfmin + i

cmaxfmax − cminfmin

Q

))
, i = 1, · · · , Q. (2.54)

Proof. See Appendix D.

Remark 1. One can see that from Lemma 4 that the optimal solution {x∗i } of the

problem P satisfies two properties: 1) {cif(x∗1)}
Q
i=1 are all distinct values and 2)

{cif(x∗i )}
Q
i=1 are uniformly quantized in [cminfmin, cmaxfmax].

By plugging f(x) = 1
x ∈

[
0, 1

rmin

]
and ci = cos2 θ̄i ∈ [0, 1] to (2.54), we obtain the

optimal solution r̄ of Pdis as

r̄i =
rminQ

i
cos2 θ̄i, i = 1, · · · , Q. (2.55)

Once r̄ is obtained, the second term of the objective function in P ′
bin is fixed

to mini ̸=j
∣∣ cos2 θ̄i

r̄i
− cos2 θ̄j

r̄j

∣∣ = 1
rminQ

. Then P ′
bin is reduced to the angle quantization

problem Pang:

Pang : max
θ̄

min
i ̸=j

|sin θ̄i − sin θ̄j | (2.56a)

s.t. 0 ≤ θ̄i < 2π, i = 1, · · · , Q. (2.56b)

Similarly, by plugging f(x) = sin(x) ∈ [−1, 1] and ci = 1 to (2.54), one can obtain

the optimal solution θ̄ of Pang as

θ̄(i−1)Qr+j = arcsin
(
− 1+

2

Q
(i− 1+(j− 1)Qθ)

)
, i = 1, · · · , Qθ, j = 1, · · · , Qr,

(2.57)

where Qθ and Qr are the quantization levels of angle and distance (Q = QθQr),

respectively.

In Fig. 2.6, we plot {(sin θ̄i, cos
2 θ̄i
r̄i

) | i = 1, · · · , Q} for the polar bin (θ̄, r̄) gener-

ated by the proposed quantization method (see (2.55) and (2.57)) and the conventional
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Figure 2.6: Comparison of polar bins generated by (a) the proposed method (see (2.55)

and (2.57)) and (b) the conventional method in [1] whenQθ = 5,Qr = 4, and rmin = 4.

One can see that the minimum distance dmin between the points of the proposed method

(dmin = 0.1179) is much larger than that of the conventional method (dmin = 0.0625).

method in [1]. Note that the conventional polar bin ({θ̄i}Qi=1, {r̄}
Q
i=1) are simply chosen

from the uniform grid points of [−1, 1]× [0, 1
rmin

] ([−1, 1] and [0, 1
rmin

] are the ranges of

sin θ̄i and cos2 θ̄i
r̄i

), which may result in some elements sharing the same sin θ̄i or cos2 θ̄i
r̄i

value (see Fig. 2.6). In contrast, based on Lemma 4, the proposed polar bin design en-

sures that sin θ̄i and cos2 θ̄i
r̄i

values of each (θ̄i, r̄i) are not overlapped. This results in the

inclined pattern observed in Fig. 2.6. One can also observe that the minimum distance

between the points of the proposed scheme is much larger than that of the conventional

method. Recall that the normalized correlation between the near-field array steering

vectors f(θ̄i, r̄i, θ̄j , r̄j) can be approximated to the decreasing function of the distance

between the points. Hence, the column correlation µ(D[s]) = maxi ̸=j f(θ̄i, r̄i, θ̄j , r̄j)

of the proposed scheme is smaller than that of the conventional method, meaning that

the sparse recovery performance can be improved via the proposed polar bin generation

method.

2.4.2 Phase Shift Control for RIS-assisted THz Channel Estimation

In the proposed PF-RCE scheme, we convert the near-field RIS-assisted THz

channel estimation problem to the block-sparse recovery problem and then solve it
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using the BOLS algorithm. From (2.33), one can see that the polar-domain sensing

matrix of the block-sparse recovery problem is a function of the RIS phase shift matrix.

Since the block-sparse recovery performance depends heavily on the correlations

between the sub-matrices of the block sensing matrix (i.e., block-mutual coherence),

the phase shift matrix should be properly designed such that the block-mutual coherence

of the sensing matrix is minimized.

To be specific, the block-mutual coherence µb of Ψ̄ = [Ψ̄1 · · · Ψ̄Qtot ] representing

the maximum correlation among the sub-matrices {Ψ̄i}Qtot
i=1 is defined as

µb(Φ) = max
1≤i<j≤Qtot

∥Ψ̄H
i (Φ)Ψ̄j(Φ)∥2

∥Ψ̄i(Φ)∥2∥Ψ̄j(Φ)∥2
. (2.58)

Then the block-mutual coherence minimization problem P1 to find out the optimal

phase shift matrix Φ minimizing µb(Φ) is formulated as

P1 : min
Φ∈M

µb(Φ) (2.59a)

s.t.
∣∣[Φ]m,p

∣∣ = 1, m = 1, · · · ,M, p = 1, · · · , P. (2.59b)

By defining the auxiliary matrix Σi,j=
Ψ̄H

i (Φ)Ψ̄j(Φ)

∥Ψ̄i(Φ)∥2∥Ψ̄j(Φ)∥2
, we obtain µb=max1≤i<j≤Qtot∥Σi,j∥2

so that P1 is reformulated as

P2 : min
Σ,Φ

max
1≤i<j≤Qtot

∥Σi,j∥2 (2.60a)

s.t. Σi,j =
Ψ̄H
i (Φ)Ψ̄j(Φ)

∥Ψ̄i(Φ)∥2∥Ψ̄j(Φ)∥2
, 1 ≤ i < j ≤ Qtot, (2.60b)∣∣[Φ]m,p

∣∣ = 1, m = 1, · · · ,M, p = 1, · · · , P, (2.60c)

where Σ = [Σ1,2, · · · ,ΣQtot−1,Qtot ] is the block-mutual coherence matrix. Due to the

quadratic fractional structure of (2.60b) and the unit-modulus constraints (2.60c), P2 is

modeled as a non-convex problem where the global optimal solution is very difficult

to find. Also, since Σ and Φ are coupled with each other in (2.60b), it is not easy to

optimize them simultaneously.

To make the problem tractable, we employ the augmented Lagrangian relaxation

technique that adds a quadratic penalty term to the objective function. To be specific,
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the modified objective function L, so-called the augmented Lagrangian, is defined as

L(Σ,Φ,Λ)

= max
1≤i<j≤Qtot

∥Σi,j∥2 + 1M(Φ)

+ 2
∑

1≤i<j≤Qtot

Re

{
tr
(
ΛH
i,j

(
Σi,j−

Ψ̄H
i (Φ)Ψ̄j(Φ)

∥Ψ̄i(Φ)∥2∥Ψ̄j(Φ)∥2
))}

+
ρ

2

∑
1≤i<j≤Qtot

∥∥∥∥Σi,j −
Ψ̄H
i (Φ)Ψ̄j(Φ)

∥Ψ̄i(Φ)∥2∥Ψ̄j(Φ)∥2

∥∥∥∥2
F
, (2.61)

where 1M(·) is the indicator function, M = {Φ ∈ CM×P :
∣∣[Φ]m,p

∣∣ = 1,∀m,∀p}

is the manifold of the phase shift matrix Φ satisfying the unit-modulus constraints

(2.60c), Λ = [Λ1,2, · · · ,ΛQtot−1,Qtot ] is the Lagrangian multiplier matrix, and ρ > 0 is

the scaling factor. Using L(Σ,Φ,Λ), the dual problem P3 can be expressed as

P3 : max
Λ

min
Σ,Φ

L(Σ,Φ,Λ). (2.62)

It is worth noting that P3 is an unconstrained problem, and thus it is much easier

to handle than the primary problem P2. In fact, by exploiting the weak duality7, the

optimal value of P3 serves as a lower bound of the optimal value of P2. Unfortunately,

it is still not easy to solve P3 since the augmented Lagrangian L is a joint function

of Σ, Φ, and Λ. So, we solve the problem by alternately updating the block-mutual

coherence matrix Σ, the phase shift matrix Φ, and the Lagrangian multiplier matrix Λ:

Σ(t+1) = argmin
Σ

L(Σ,Φ(t),Λ(t)), (2.63)

Φ(t+1) = arg min
Φ∈M

L(Σ(t+1),Φ,Λ(t)), (2.64)

Λ(t+1) = Λ(t)+ρ

(
Σ

(t+1)
i,j − Ψ̄H

i (Φ
(t+1))Ψ̄j(Φ

(t+1))

∥Ψ̄i(Φ(t+1))∥2∥Ψ̄j(Φ(t+1))∥2

)
. (2.65)

First, the optimization problem PΣ corresponding to (2.63) is given by

PΣ : min
Σ

max
1≤i<j≤Qtot

∥Σi,j∥2 +
ρ

2

∑
1≤i<j≤Qtot

∥Σi,j − Z
(t)
i,j∥

2
F, (2.66)

7Note that the primary problem can be rewritten as P2 = minΣ,Φ maxΛ L(Σ,Φ,Λ). By using the

max-min inequality such that maxx miny f(x, y) ≤ miny maxx f(x, y) for any function f(x, y), the

weak duality is obtained.
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where Z
(t)
i,j =

Ψ̄H
i (Φ

(t))Ψ̄j(Φ
(t))

∥Ψ̄i(Φ(t))∥2∥Ψ̄j(Φ(t))∥2
− Λ

(t)
i,j

ρ . Note that PΣ is a matrix ℓ2-norm min-

imization problem which can be equivalently converted to the convex semidefinite

program (SDP). By using the convex optimization tool (e.g., SDPT3 [25]), we can

obtain the global optimal solution Σ∗.

Second, the optimization problem PΦ corresponding to (2.64) is given by

PΦ : min
Φ

∑
1≤i<j≤Qtot

∥∥∥∥ Ψ̄H
i (Φ)Ψ̄j(Φ)

∥Ψ̄i(Φ)∥2∥Ψ̄j(Φ)∥2
−W

(t)
i,j

∥∥∥∥2
F

(2.67a)

s.t.
∣∣[Φ]m,p

∣∣ = 1, m = 1, · · · ,M, p = 1, · · · , P, (2.67b)

where W(t)
i,j = Σ

(t+1)
i,j +

Λ
(t)
i,j

ρ . One major obstacle in solving PΦ is the non-convex unit-

modulus constraints (2.67b). To handle this issue, one can exploit the property that the

set of unit-modulus phase shift matrices M = {Φ ∈ CM×P :
∣∣[Φ]m,p

∣∣ = 1,∀m,∀p}

has a smooth Riemannian manifold structure8 [26]. Using this property, we can convert

PΦ to an unconstrained optimization problem on the Riemannian manifold [27]. Since

the optimization over the Riemannian manifold is conceptually analogous to that in

the Euclidean space, optimization tools of Euclidean space (e.g., conjugate gradient

method) can be readily employed to solve the problem on the Riemannian manifold

(e.g., Riemannian conjugate gradient (RCG) method)9 [26, 28].

After updating Σ and Φ, as shown in (2.65), we update Λ using the dual ascent

method [29]. The update procedures (2.63)-(2.65) are repeated until Φ converges. Once

the RIS phase shift matrix Φ minimizing the block-mutual coherence µb is obtained,

the BS employs Φ for the configuration of RIS phase shifts to improve the block-sparse

recovery performance of PF-RCE.
8A smooth Riemannian manifold is a generalization of the Euclidean space on which the notion of

differentiability exists.
9When compared with the conventional conjugate gradient method, the RCG method requires two

additional operations: 1) projection operator to find out Riemannian gradient on the tangent space from the

Euclidean gradient and 2) retraction operator to make sure that the updated point lies on the manifold [26].

38



-20 -10 0 10 20 30

SNR (dB)

-8

-6

-4

-2

0

2

4

6

8

10

N
M

S
E

 (
d
B

)

Oracle-LS

PF-RCE (BOLS)

PF-RCE (BOMP)

NB-CE (OLS)

P-SOMP

FF-CE (BOLS)

G-SOMP

Figure 2.7: NMSE vs. SNR.

2.5 Simulation Results

2.5.1 Simulation Setup

In this section, we present numerical results to validate the effectiveness of the

proposed PF-RCE technique. We consider the near-field RIS-assisted THz systems

where a single-antenna UE transmits the uplink pilot signal to a N = 16-antenna BS

with the aid of an RIS equipped with M = 128 passive reflecting elements. The RIS

and UE are located randomly around the BS within the cell radius of R = 20m. For

both BS-RIS and UE-RIS channels, we use the block-fading multipath channel model

where each channel consists of Pg = Pr = 2 paths. The carrier frequency, bandwidth,

and the number of subcarriers are set to fc = 0.1THz, B = 10GHz, and S = 128,

respectively. The uplink pilot transmission period includes P = 12 subframes, each of

which consists of L = 4 time slots. Also, the quantization levels of angle and distance

are set to Qθ = Qr = 128. Throughout the simulations, we set the signal-to-noise-ratio

(SNR) to 30 dB. At each point of the figures, the simulation results are averaged over

1, 000 independent channel realizations.
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Figure 2.8: NMSE vs. number of subframes.

For comparison, we employ the following benchmark schemes: 1) the oracle-LS

scheme where the BS-RIS and UE-RIS angle and distance information is perfectly

known at the BS and only the BS-RIS-UE path gains are estimated via LS technique, 2)

the narrowband channel estimation schemes, including the OLS-based narrowband chan-

nel estimation (NB-CE) algorithm and the polar-domain simultaneous OMP (P-SOMP)

algorithm [1], and 3) the far-field channel estimation schemes, including the BOLS-

based far-field channel estimation (FF-CE) algorithm and the generalized simultaneous

OMP (G-SOMP) algorithm [20]. As a performance metric, we use the normalized mean

square error (NMSE) defined as NMSE =
∑S

s=1 E
[
∥H∗[s]−H[s]∥2F/∥H[s]∥2F

]
.

2.5.2 Simulation Results

In Fig. 2.7, we plot the NMSE as a function of SNR. Overall, we see that the

proposed PF-RCE scheme outperforms the conventional channel estimation schemes

by a large margin. For instance, when SNR = 30 dB, PF-RCE achieves around 3 dB

and 3.6 dB NMSE gains over the conventional FF-CE scheme and G-SOMP scheme,

respectively. Even when compared to the oracle-LS scheme, PF-RCE performs similarly
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Figure 2.9: NMSE vs. number of subcarriers.

to the oracle-LS scheme. This is because PF-RCE estimates the whole multipath

components (angles, distances, and path gains) by exploiting the polar-domain sparsity

whereas the conventional far-field channel estimation schemes estimate only the angles

and path gains.

In Fig. 2.8, we plot the NMSE as a function of the number of subframes P used for

the uplink channel estimation. We find that the proposed PF-RCE achieves a significant

pilot overhead reduction over the conventional channel estimation schemes. For instance,

to achieve −2 dB NMSE, PF-RCE requires 6 subframes while the narrowband channel

estimation schemes require more than 20 subframes. Even when compared to the far-

field channel estimation schemes, PF-RCE achieves around 60% reduction on the pilot

overhead. It is clear from the results that PF-RCE is effective in reducing the pilot

overhead of the RIS-assisted THz systems especially when the ultra-massive antenna

array is deployed at the RIS.

In Fig. 2.9, we plot the NMSE as a function of the number of subcarriers S. We

observe that PF-RCE achieves a significant NMSE gain over the conventional schemes.

We also see that while the NMSEs of the conventional narrowband channel estimation
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Figure 2.10: NMSE vs. system bandwidth.

schemes are similar in all regimes under test, the NMSE of PF-RCE decreases with

the number of subcarriers. For example, when the number of subcarriers increases

from S = 3 to S = 128, the NMSE of BOLS-based PF-RCE decreases from −3.4 dB

to around −6.8 dB. The reason is that when the number of subcarriers increases, the

performance gain of PF-RCE obtained from the joint sparse recovery of all subcarrier

channels also increases but such is not the case for the narrowband channel estimation

schemes since they estimate the multipath components of each subcarrier channel

separately.

In Fig. 2.10, we plot the NMSE as a function of the system bandwidth B. Similar to

Fig. 9, we see that the NMSE gain of PF-RCE over the narrowband channel estimation

schemes increases with B. For example, when B = 0.1GHz, the NMSE gain of PF-

RCE over NB-CE is around 6.4 dB but it increases up to 7.8 dB when B = 20GHz. In

the narrowband systems, the difference between the carrier frequency and the subcarrier

frequency is close to zero so that the sensing matrices of different subcarriers are the

same. Thus, the NMSE gain of PF-RCE obtained from the joint sparse recovery of

subcarrier channels is marginal. In the wideband THz systems, however, the sensing
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Figure 2.11: NMSE vs. UE-RIS distance.

matrices of different subcarriers are frequency-dependent, and thus PF-RCE can fully

enjoy the benefit of joint sparse recovery.

In Fig. 3.1, we plot the NMSE as a function of the distance between the UE and

RIS dUE. We observe that the proposed PF-RCE scheme outperforms the conventional

channel estimation schemes. In particular, we observe that the NMSE gain of PF-RCE

over the far-field channel estimation schemes increases when the UE-RIS distance

decreases. For instance, when the UE-RIS distance decreases from 22m to 2m, the

NMSE gain of PF-RCE over FF-CE increases from 2.7 dB to 4.2 dB. When the UE

is close to the RIS, the UE locates at the near-field region of the RIS so that the RIS-

assisted THz channel is expressed as a function of the angles, UE-RIS distances, and

path gains. Since the far-field channel estimation schemes estimate only the angles

and path gains, they suffer from severe performance degradation. In contrast, using the

polar-domain sparsity, PF-RCE finds out both the angle and distance from which the

near-field RIS-assisted THz channel information can be acquired.

In Fig. 3.2, we plot the NMSE as a function of the number of RIS reflecting elements

M . We observe that the performance gap between PF-RCE and the far-field channel
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Figure 2.12: NMSE vs. number of reflecting elements.

estimation schemes increases with M . When M = 64, for instance, the NMSE gain

of PF-RCE over FF-CE is 0.6 dB but it increases to 3.6 dB when M = 128. This is

because when the number of RIS reflecting elements is large, the array aperture is

comparable to the communication distance. In this case, the RIS-assisted THz channel

is categorized as the near-field channel so that the performance degradation of the

conventional schemes relying on the far-field channel model is considerable.

In Fig. 3.3, we compare the block-mutual coherence of polar-domain sensing

matrix achieved by the proposed phase shift control scheme and the random phase

shift scheme. We observe that by employing the proposed phase shift control scheme,

the block-mutual coherence can be reduced by more than 33%. We also see that the

proposed scheme converges within 10 iterations.

In Fig. 3.4, to demonstrate the effectiveness of the proposed polar bin design and

RIS phase shift control, we compare the NMSEs of PF-RCE and the conventional

schemes [1]. We observe that when SNR = 30 dB, the proposed polar bin generation

scheme achieves around 0.5 dB NMSE gain over the conventional polar bin generation

scheme. Moreover, by exploiting the proposed RIS phase shift control method, the
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Figure 2.13: Block-mutual coherence vs. number of iterations.

NMSE gain of PF-RCE increases to 1.2 dB. This is because deliberately designed polar

bin and RIS phase shifts can minimize the column correlation of the polar-domain

sensing matrix in PF-RCE but the conventional schemes have no such mechanism to

improve the sparse recovery performance.

In Fig. 3.5, we plot the NMSE as a function of the number of propagation paths.

We observe that the proposed PF-RCE works well even when the number of paths is

Pg = Pr = 4. Interestingly, we observe that the performance gap between the OLS-

based and OMP-based schemes increases with the number of paths. This is because

the OLS algorithm performs well even when the sparsity level is high but the OMP

algorithm performs well only when the sparsity level is low.

2.6 Summary

In this chapter, we proposed an efficient channel estimation technique for near-

field RIS-assisted wideband THz systems. The proposed PF-RCE scheme estimates

the multipath components (angles, distances, and path gains) of the near-field RIS-
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assisted THz channel by exploiting the polar-domain sparsity and common support

properties. Since the number of multipath components is much smaller than that of the

RIS reflecting elements, the pilot overhead can be reduced significantly. In PF-RCE, by

exploiting the polar-domain sparsity, the multipath components estimation problem is

converted into the sparse recovery problem in the polar-domain. Then using the common

support property, the multipath components of all subcarriers are jointly estimated via

the block-sparse recovery algorithm. We demonstrated from numerical evaluations that

PF-RCE can accurately estimate the near-field RIS-assisted wideband THz channel with

low pilot overhead. In our work, we focused on the development of the RIS-assisted

THz channel estimation framework, but an extension to the beamforming design using

the acquired channel information would also be an interesting research direction worth

pursuing.
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2.7 Proofs

2.7.1 Proof of Lemma 2

From the definition of row-wise Khatri-Rao product, ĀR,s•Ā∗
R,s can be re-expressed

as

ĀR,s • Ā∗
R,s = [diag(aR,s(θ̄1, r̄1))Ā

∗
R,s, · · · , diag(aR,s(θ̄Q, r̄Q))Ā

∗
R,s]. (2.68)

One can see that the column vectors of ĀR,s • Ā∗
R,s have the form of aR,s(θ̄i, r̄i) ⊙

a∗R,s(θ̄j , r̄j). Recall that aR,s(θ̄, r̄) = [e
−j 2π

λc
(1+ fs

fc
)∆r1(θ̄,r̄), · · · , e−j

2π
λc

(1+ fs
fc

)∆rM (θ̄,r̄)
]T

where

∆rm(θ̄, r̄) ≈ −d(m− 1) sin θ̄ +
1

2
d2(m− 1)2

cos2 θ̄

r̄
. (2.69)
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Thus, the natural logarithm of the m-th element am(i, j) of aR,s(θ̄i, r̄i)⊙ a∗R,s(θ̄j , r̄j)

is given by

ln am(i, j) =− j
2π

λc

(
1 +

fs
fc

)
(∆rm(θ̄i, r̄i)−∆rm(θ̄j , r̄j)) (2.70)

=j
2π

λc

(
1 +

fs
fc

)(
d(m− 1)(sin θ̄i − sin θ̄j)

− 1

2
d2(m− 1)2

(cos2 θ̄i
r̄i

− cos2 θ̄j
r̄j

))
. (2.71)

By plugging (2.55) and (2.57) into (2.71), we obtain

ln am(i, j) =j
2π

λc

(
1 +

fs
fc

)(2d(m− 1)

Q

(
xi − xj + (yi − yj)Qθ

)
− d2(m− 1)2

2rminQ

(
(xi − xj)Qr + yi − yj

))
where i = (xi − 1)Qr + yi and j = (xj − 1)Qr + yj for 1 ≤ xi, xj ≤ Qθ and

1 ≤ yi, yj ≤ Qr. Also, Qθ and Qr are the quantization levels of angle and distance

(Q = QθQr), respectively. Based on 1−Qθ ≤ xi−xj ≤ Qθ−1 and 1−Qr ≤ yi−yj ≤

Qr − 1, the number of distinct column vectors of ĀR,s • Ā∗
R,s is (2Qθ − 1)(2Qr − 1)

in total.

Let D[s] ∈ CM×(2Qθ−1)(2Qr−1) be the matrix composed by the distinct columns

of ĀR,s • Ā∗
R,s. By denoting k = xi − xj + Qθ and l = yi − yj + Qr, the (k, l)-th

column vector dk,l of D[s] is

[dk,l]m = exp
(
j
2π

λc

(
1 +

fs
fc

)(2d(m−1)
Q

(k−Qθ+(l−Qr)Qθ)

− d2(m− 1)2

2rminQ
((k −Qθ)Qr+l−Qr)

))
, (2.72)

for m = 1, · · · ,M , k = 1, · · · , 2Qθ−1, and l = 2Qr−1. Thus, we obtain the desired

results.

2.7.2 Proof of Lemma 2

First, since the computational complexity of calculating the pseudo-inverse matrix

of a M × N matrix is O(M2N) (M ≥ N ) and 1 ≤ t ≤ PgPr, the computational
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complexity C1 for calculating P⊥
Ω̂t−1∪{i}

for i = 1, · · · , Qtot is

C1 = O(SL2P 2PgPrQtot). (2.73)

Second, the computational complexity C2 for calculating the residual power and

finding out the index ω̂t minimizing the residual power is

C2 = O(SL2P 2Qtot). (2.74)

Third, since the residual is updated as rt = [((PΩ̂t
[1])⊥y[1])T, · · · , ((PΩ̂t

[S])⊥y[S])T]T,

the computational complexity C3 required for the residual update is

C3 = O(SL2P 2). (2.75)

Lastly, recall that we obtain the block-sparse path gain vectors using the LS es-

timation as (ḡ∗[s])Ω̂) = (Ψ̄[s])†
Ω̂
y[s] for s = 1, · · · , S. Thus, the computational

complexity C4 required for the block-sparse path gain vector estimation is

C4 = O(SL2P 2PgPr). (2.76)

Using (2.73)-(2.76), we obtain the overall complexity CPF-RCE of PF-RCE:

CPF-RCE = PgPr(C1 + C2 + C3) + C4 (2.77)

= O(SL2P 2P 2
g P

2
rQtot). (2.78)
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2.7.3 Proof of Proposition 2

Using the definition a(θ̄, r̄) =
[
1, · · · , e−j

2πf
c

(−d(M−1) sin θ̄+ 1
2
d2(M−1)2 cos2 θ̄

r̄
)
]T,

the correlation function f(θ̄i, r̄i, θ̄j , r̄j) = | 1
M aH(θ̄i, r̄i)a(θ̄j , r̄j)|2 can be expressed as

f(θ̄i, r̄i, θ̄j , r̄j)

=

∣∣∣∣ 1M
M∑
m=1

exp
(
j
2πf

c

(
− d(m− 1)(sin θ̄i − sin θ̄i)

+
1

2
d2(m− 1)2

(cos2 θ̄i
r̄i

− cos2 θ̄i
r̄i

)))∣∣∣∣2 (2.79)

=

∣∣∣∣ 1M
M−1∑
m=0

exp
(
j
1

2
π

(√
2fd2

c

(cos2 θ̄i
r̄i

− cos2 θ̄j
r̄j

))2

(
m− sin θ̄i − sin θ̄j

d
(
cos2 θ̄i
r̄i

− cos2 θ̄j
r̄j

))2)∣∣∣∣2 (2.80)

=

∣∣∣∣ 1M
M−1∑
m=0

ej
1
2
πw2(m−v)2

∣∣∣∣2, (2.81)

where w =
√

2fd2

c

(
cos2 θ̄i
r̄i

− cos2 θ̄j
r̄j

)
and v =

sin θ̄i−sin θ̄j

d
(

cos2 θ̄i
r̄i

−
cos2 θ̄j

r̄j

) . By employing the ap-

proximation
∑M−1

m=0 e
j 1
2
πw2(m−v)2 ≈

∫M
0 ej

1
2
πw2(x−v)2dx, (2.81) can be re-expressed

as ∣∣∣∣ 1M
M−1∑
m=0

exp
(
j
1

2
πw2(m− v)2

)∣∣∣∣2
≈

∣∣∣∣ 1M
∫ M

0
exp

(
j
1

2
πw2(x− v)2

)
dx

∣∣∣∣2 (2.82)

=
1

M2w2

(∣∣∣ ∫ w(M−v)

−wv
cos

(1
2
πt2

)
dt
∣∣∣2 + ∣∣∣ ∫ w(M−v)

−wv
sin

(1
2
πt2

)
dt
∣∣∣2), (2.83)

Finally, using the Fresnel integralsC(x) =
∫ x
0 cos(12πt

2)dt and S(x) =
∫ x
0 sin(12πt

2)dt

and d = λc
2 = c

2f , f(θ̄i, r̄i, θ̄j , r̄j) can be approximated as

f(θ̄i, r̄i, θ̄j , r̄j) ≈
1

M2dβ

(
C
(
M

√
dβ − α√

dβ

)
+ C

( α√
dβ

))2
+

1

M2dβ

(
S
(
M

√
dβ− α√

dβ

)
+S

( α√
dβ

))2
, (2.84)

where α = sin θ̄i − sin θ̄j and β = cos2 θ̄i
r̄i

− cos2 θ̄j
r̄j

.
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2.7.4 Proof of Lemma 3

For a given {x∗i } in (2.54), the objective function mini ̸=j |cif(x∗i )− cjf(x
∗
j )| of P

is given by

min
i ̸=j

|cif(x∗i )− cjf(x
∗
j )| =

cmaxfmax − cminfmin

Q− 1
. (2.85)

Now assume that there exists {xi} which provides a higher objective function value

than {x∗i }, i.e., mini ̸=j |cif(xi) − cjf(xj)| > cmaxfmax−cminfmin
Q−1 . Also, without the loss

of generality, assume that x1, · · · , xQ are ordered as c1f(x1) ≤ · · · ≤ cQf(xQ). Then

we obtain

ci+1f(xi+1)− cif(xi) >
cmaxfmax − cminfmin

Q− 1
, (2.86)

By combining (2.86) for i = 1, · · · , Q− 1, we obtain

cQf(xQ)− c1f(x1) > cmaxfmax − cminfmin. (2.87)

This contradicts the fact that cif(xi) ∈ [cminfmin, cmaxfmax]. Thus, {x∗i } provides the

maximum objective function value of P , meaning that {x∗i } is the optimal solution of

P .
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Chapter 3

Energy-Efficient Power Control and Beamforming for

Reconfigurable Intelligent Surface-Aided Uplink IoT

Networks

In this chapter, we study an energy-efficient power control and beamforming scheme

for RIS-assisted IoT networks. RIS, a planar metasurface consisting of a large num-

ber of low-cost reflecting elements, has received much attention due to the ability to

improve both the spectrum and energy efficiencies by reconfiguring the wireless propa-

gation environment. In this work, we propose an RIS phase shift and BS beamforming

optimization technique that minimizes the uplink transmit power of the RIS-aided

IoT network. Key idea of the proposed scheme, referred to as Riemannian conjugate

gradient-based joint optimization (RCG-JO), is to jointly optimize the RIS phase shifts

and the BS beamforming vectors using the Riemannian conjugate gradient technique.

By exploiting the product Riemannian manifold structure of the sets of unit-modulus

phase shifts and unit-norm beamforming vectors, we convert the nonconvex uplink

power minimization problem into the unconstrained problem and then find out the

optimal solution over the product Riemannian manifold.
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3.1 Introduction

As a paradigm to embrace the connection of massive number of devices, such as

sensors, wearables, health monitors, and smart appliances, internet of things (IoT) has

received much attention recently [30]. Since most of IoT devices are battery-limited,

saving the device power is crucial for the dissemination of IoT networks. Recently,

reconfigurable intelligent surface (RIS) has been emerging as a potential solution

to enhance the sustainability of the IoT network [31]. In a nutshell, RIS is a planar

metasurface consisting of a large number of low-cost passive reflecting elements, each

of which can independently adjust the phase shift on the incident signal [32, 33]. Due

to the capability to modify the wireless channel by controlling the phase shift of

each reflecting element, RIS offers various benefits; When the direct link between

the IoT device and the base station (BS) is blocked by obstacles, RIS can provide a

virtual line-of-sight (LoS) link between them, ensuring the reliable link connection

without requiring heavy transmit modules [34]. Due to its simple structure, lightweight,

and conformal geometry, RIS can be easily deployed in the desired location. Also,

with a small change in wireless standard, RIS can be easily integrated into existing

communication systems.

Over the years, various efforts have been made to improve the energy efficiency

of IoT networks [35–40]. In [35], a joint beamforming technique to minimize the

downlink power consumption of wireless networks has been proposed. In [36], a joint

power control and beamforming scheme for the RIS-aided device-to-device (D2D)

network has been proposed. In [37], the energy-efficient downlink power control and

phase shift designs for the Terahertz and MISO systems have been presented. In [38],

an RIS phase shift control technique to maximize the downlink energy efficiency of

RIS-aided systems has been proposed. In [39], an alternating optimization-based energy

efficiency maximization scheme for the uplink RIS-aided systems has been proposed.

Also, achievable sum throughput of an RIS-aided wireless powered sensor network

(WPSN) has been investigated in [40].
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While most of existing works focused on the downlink power control of RIS-aided

systems, not much work has been made for the power minimization on the uplink

side. Since IoT devices are battery-limited, it is of importance to come up with an

energy-efficient uplink power control mechanism based on the RIS technique.

A major problem of the RIS-aided uplink power control is that the constraints on the

RIS phase shifts and the BS beamforming vectors are nonconvex. This is because RIS

can only change the phase shift of an incident signal so that the passive beamforming

coefficients of reflecting elements are subject to the unit-modulus constraints [31]. This,

together with the fact that the active beamforming vectors of BS are subject to the

unit-norm constraints [41], makes it very difficult to find out the proper RIS phase shifts

and BS beamforming vectors.

An aim of this chapter is to propose an approach that minimizes the uplink transmit

power of an RIS-aided IoT network. Key idea of the proposed scheme, referred to

as Riemannian conjugate gradient-based joint optimization (RCG-JO), is to jointly

optimize the RIS phase shifts and the BS beamforming vectors using the Riemannian

conjugate gradient (RCG) algorithm. Specifically, by exploiting the smooth product

Riemannian manifold structure of the sets of unit-modulus phase shifts and unit-norm

beamforming vectors, we convert the uplink power minimization problem into the

unconstrained problem on the Riemannian manifold. Since the optimization over the

Riemannian manifold is conceptually analogous to that in the Euclidean space, opti-

mization tools of the Euclidean space, such as the gradient descent method, can be

readily used to solve the optimization problem on the Riemannian manifold [42]. In

our approach, we employ the Riemannian conjugate gradient (RCG) method to find

out the RIS phase shifts and BS beamforming vectors minimizing the uplink transmit

power of an RIS-aided IoT network.

In recent years, there have been some efforts exploiting the manifold optimization

technique for the RIS phase shifts control [4, 43, 44]. In [4], a Riemannian manifold-

based alternating optimization technique for the design of RIS phase shifts and BS
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beamforming vectors has been proposed. In this scheme, the RIS phase shifts and the

BS beamforming vectors are optimized on the Riemannian manifolds in an alternative

fashion. In [43, 44], the manifold optimization-based RIS phase shifts control schemes

have been proposed to maximize the downlink sum rate.

Our work is distinct from the previous works in the following aspects:

• We propose a Riemannian conjugate gradient-based joint optimization (RCG-

JO) algorithm to find out the RIS phase shifts and the BS beamforming vectors

minimizing the uplink transmit power of an RIS-aided IoT network. RCG-JO

jointly optimizes the RIS phase shifts and the BS beamforming vectors on the

product Riemannian manifold of the sets of unit-modulus RIS phase shifts and

unit-norm BS beamforming vectors.

• We propose a channel estimation technique for the uplink RIS-aided IoT networks.

Specifically, the RIS receives the pilot signals at the active reflecting elements

and then feeds them back to the BS. Using the pilot signals, we estimate the

partial RIS-aided channel information from which we recover the full RIS-aided

channel information via the low-rank matrix completion (LRMC) algorithm.

• We present the convergence analysis of RCG-JO and demonstrate from the

numerical experiments that RCG-JO converges to a fixed point within a few

number of iterations.

• We provide the empirical simulation results from which we demonstrate that

RCG-JO outperforms the conventional power control schemes by a large margin

in terms of the uplink transmit power and the computational complexity. For

example, when compared to the conventional power control scheme without RIS,

RCG-JO saves around 94% of the uplink transmit power. Even when compared

to the semidefinite relaxation (SDR)-based power control scheme, RCG-JO saves

more than 44% of the uplink transmit power and achieves around 98% reduction

in the computational complexity.
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Figure 3.1: Illustration of the RIS-aided uplink IoT network.

Notations: Lower and upper case symbols are used to denote vectors and matrices,

respectively. The superscripts (·)∗, (·)T, and (·)H denote the conjugate, transpose, and

conjugate transpose, respectively. The operation ⊙ denotes the Hadamard product. ∥x∥

and ∥X∥F denote the Euclidean norm of a vector x and the Frobenius norm of a matrix

X, respectively. |x| represents a vector of element-wise absolute values of x. tr(X) is

the trace of X. diag(x) and ddiag(X) form diagonal matrices whose diagonal elements

are x and diagonal elements of X, respectively. In addition, blkdiag(X1,X2) denotes a

block-diagonal matrix with X1 and X2 on the block-diagonal.

3.2 RIS-Aided Uplink IoT System Model

In this section, we present the system model, the channel estimation, and the data

transmission protocols of RIS-aided uplink IoT networks. We then formulate the power

minimization problem.
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3.2.1 RIS-Aided Uplink IoT Network

We consider a single-input multi-output (SIMO) uplink IoT network where K

devices with a single antenna transmit signals to the BS equipped with M antennas

(see Fig. 3.1). In this network, an RIS consisting of a planar array of N = Nx ×Ny

reflecting elements is deployed to assist the uplink transmission. For example, each

RIS reflecting element can adjust the phase of the incident signal independently using

positive-intrinsic-negative (PIN) diodes [31]. The phase shifts of RIS reflecting elements

are configured through the dedicated control link. In the setup, the effective uplink

channel between the k-th IoT device and the BS is given by

hk = dk +Gdiag(θ)uk (3.1)

= dk +Gdiag(uk)θ (3.2)

= dk +GHkθ, (3.3)

where dk ∈ CM×1 is the direct channel from the k-th IoT device to the BS, uk ∈ CN×1

is the channel from the k-th IoT device to the RIS, and G ∈ CM×N is the channel from

the RIS to BS (see Fig. 1). Also, Hk = diag(uk) and θ = [µ1θ1, · · · , µNθN ]T is the

phase shift vector of RIS. In addition, µn ∈ [0, 1] is the reflection amplitude coefficient1

and θn = ejϕn is the passive beamforming coefficient where ϕn ∈ [0, 2π) is the phase

shift2.
1In this work, we assume the ideal phase shift model where the reflection amplitude and phase shift are

independent. In our system, the RIS controller coordinates the switching between two working modes, i.e.,

receiving mode (µn = 0) for environment sensing (e.g., channel estimation) and reflecting mode (µn = 1)

for scattering the incident signals (e.g., data transmission).
2To characterize the performance limits of RIS, we assume the phase shifts vary continuously in [0, 2π).

Note that the proposed scheme can be readily extended to practical systems with finite level of phase shifts

via discrete phase quantization [45].
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Figure 3.2: Illustration of uplink RIS-aided channel estimation consisting of two major

procedures: 1) estimation of the partial channel information observed at the active

reflecting elements and 2) reconstruction of the full RIS-aided channel via the LRMC

algorithm.

3.2.2 Uplink Channel Estimation

In this subsection, we propose the uplink channel estimation process in time-

division duplexing (TDD)-based RIS-aided IoT networks3. To enjoy the full potential

of RIS, the BS needs to acquire not only the conventional direct channel dk but also

the channels reflected by the RIS (i.e., G and uk). When compared to the direct

channel estimation, the estimation of RIS-aided channels is far more difficult since

RIS contains a large number of reflecting elements. Recently, the RIS architectures

exploiting active reflecting elements that can reflect and also receive the signal have been

proposed [31, 34]. Using the pilot signals fed back from the active reflecting elements,

the BS can directly estimate the RIS-aided channel components. However, due to the

practical limitations such as the implementation cost of RF chains, hardware complexity,
3In the 5G systems and beyond, TDD will be a competitive duplexing option due to the improved

spectrum efficiency, better adaptation quality to asymmetric uplink/downlink traffics, low transceiver cost,

and better support of the massive MIMO [46].
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and power consumption, only a few active reflecting elements can be employed. That is,

the BS can acquire only partial information of the RIS-aided channels from the active

reflecting elements.

To estimate the whole channel from the partial information, we exploit the property

that the RIS-aided channels are dominated by LoS paths. Since there is only one

propagation path, the channel matrix can be readily modeled as a low-rank matrix.

When the channel matrix has a low-rank property, BS can reconstruct the full channel

matrix from the partial observations using the LRMC algorithm [47]. Once the full

RIS-aided channel information is obtained, BS can perform the uplink power allocation

and the RIS phase shift control.

Sampled Channel Estimation

We assume that the RIS consists of N̄ active reflecting elements where the index set4

of active reflecting elements is Ω (see Fig. 3.2). The uplink channel estimation process

consists of (M +K) time slots where the m-th BS antenna transmits downlink pilot

signal to the RIS at the m-th time slot (m = 1, · · · ,M ) and then the k-th IoT device

transmits uplink pilot signal to the RIS at the (M + k)-th time slot (k = 1, · · · ,K).

Let xBS
m be the downlink pilot signal of the m-th BS antenna at the m-th time slot

and xD
k be the downlink pilot signal of the k-th IoT device at the (M + k)-th time

slot. Then the received signal matrices YBS
m ,YD

k ∈ CNx×Ny of RIS from the m-th BS

antenna and the k-th IoT device are

YBS
m = (xBS

m )∗PΩ(Gm) +NBS
m , m = 1, · · · ,M, (3.4)

YD
k = xD

kPΩ(Uk) +ND
k , k = 1, · · · ,K, (3.5)

where Gm ∈ CNx×Ny is the channel matrix from the m-th BS antenna to the RIS

such that vec(Gm) is the m-th row vector of G, Uk ∈ CNx×Ny is the channel matrix

4Note that Ω ⊆ {1, · · · , Nx} × {1, · · · , Ny}. For example, Ω = {(1, 2), (4, 3), (5, 6)} when Nx =

Ny = 8 and N̄ = 3.
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from the k-th IoT device to the RIS such that vec(Uk) = uk, and NBS
m and ND

k are

the additive Gaussian noises. Also, PΩ(Gm) and PΩ(Uk) are the sampled matrices5

of Gm and Uk. Note that the sampling operator is used since only active reflecting

elements can receive the pilot signals. Then the BS can easily acquire the sampled

channel matrices PΩ(Gm) and PΩ(Uk) using the conventional least squares (LS) and

minimum mean square error (MMSE) estimation techniques.

Full Channel Reconstruction

After the sampled channel estimation, the BS reconstructs the full channel matrices

{Gm}Mm=1 and {Uk}Kk=1 from {PΩ(Gm)}Mm=1 and {PΩ(Uk)}Kk=1 via the LRMC

algorithm [47].

To be specific, Gm can be reconstructed by solving the rank minimization problem:

min
X∈CNx×Ny

rank(X) (3.6a)

s.t. PΩ(X) = PΩ(Gm). (3.6b)

The solution X∗ of (3.6) is the estimate of Gm. Since the rank minimization problem

is NP-hard, this problem is computationally intractable. To deal with the problem, we

replace the non-convex objective function with its convex surrogate. The nuclear norm

∥X∥∗, the sum of the singular values of X, has been widely used as a convex surrogate

of rank(X)6:

min
X∈CNx×Ny

∥X∥∗ (3.7a)

s.t. PΩ(X) = PΩ(Gm). (3.7b)

5PΩ is the sampling operator such that [PΩ(A)]x,y = [A]x,y if (x, y) ∈ Ω and otherwise zero for a

matrix A.
6It has been shown that the nuclear norm is the convex envelope of rank function on the set {X :

∥X∥ ≤ 1} [47].

60



The nuclear norm minimization problem (3.7) can also be recast as a semidefinite

programming (SDP) [47]:

min
Z

tr(Z) (3.8a)

s.t. tr(AH
x,yZ) = [Gm]x,y, (x, y) ∈ Ω, (3.8b)

Z ⪰ 0, (3.8c)

where Z =

[
Z1 X

XH Z2

]
∈ C(Nx+Ny)×(Nx+Ny) for the Hermitian matrices Z1 ∈

CNx×Nx and Z2 ∈ CNy×Ny , Ax,y = exe
T
y+Nx

is the linear sampling matrix, and

ex is the x-th column vector of INx+Ny . Since (3.8) is a convex problem, the solu-

tions Z∗ and X∗ of (3.8) can be obtained using the convex optimization solvers (e.g.,

CVX [48]). Finally, Gm is obtained by Gm = X∗.

Similarly, Uk can be recovered from PΩ(Uk) by solving the low-rank matrix

completion problem. Finally, the whole RIS-aided channels G and uk are obtained as

G = [vec(G1) · · · vec(GM )]T and uk = vec(Uk).

3.2.3 Uplink Data Transmission

After the channel estimation, BS performs the uplink power allocation and the RIS

phase shift control using the acquired channel information. Then BS sends the uplink

transmit power indicator pk and the RIS phase shift vector θ to the k-th IoT device and

RIS, respectively. Finally, each IoT device transmits the data to BS through the uplink

channel.

Let xk =
√
pksk be the data signal of the k-th IoT device where sk and pk(≥ 0) are

the normalized data symbol and the transmit power of the k-th IoT device, respectively.
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Then, the received signal at BS from the k-th IoT device yk is

yk =wH
k

(
hkxk +

K∑
j ̸=k

hjxj + nk

)
(3.9)

=
√
pkw

H
k (dk +GHkθ)sk +

K∑
j ̸=k

√
pjw

H
k (dj +GHjθ)sj +wH

knk, (3.10)

where wk ∈ CM×1 is the normalized BS beamforming vector for the k-th IoT device,

i.e., ∥wk∥ = 1, and nk ∼ CN (0, σ2kI) is the additive Gaussian noise. In this setting,

the uplink achievable rate Rk of the k-th IoT device is given by

Rk = log2
(
1 +

pk|wH
k (dk +GHkθ)|2∑K

j ̸=k pj |wH
k (dj +GHjθ)|2 + σ2k

)
. (3.11)

3.2.4 Uplink Power Minimization Problem Formulation

The uplink power minimization problem to optimize the RIS phase shift vector

θ, the BS beamforming matrix W = [w1 · · ·wK ], and the device power vector p =

[p1 · · · pK ] is formulated as

P1 : min
θ,W,p

K∑
k=1

pk (3.12a)

s.t.
pk|wH

k (dk +GHkθ)|2∑K
j ̸=k pj |wH

k (dj +GHjθ)|2 + σ2k
≥ 2R

min
k − 1,

∀k ∈ K, (3.12b)

|θn| = 1, ∀n ∈ N , (3.12c)

∥wk∥ = 1, ∀k ∈ K, (3.12d)

0 ≤ pk ≤ pmax
k , ∀k ∈ K, (3.12e)

where K and N are the sets of IoT devices and RIS reflecting elements and Rmin
k

and pmax
k are the rate requirement and the maximum transmit power of the k-th IoT

device, respectively. Note that (3.12c) is the unit-modulus constraint of the RIS phase

shift and (3.12d) is the unit-norm constraint of the BS beamforming vector. Due to
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Algorithm 1 Riemannian conjugate gradient-based joint optimization algorithm
Input: Number of iterations T , rate requirement Rmin

k , maximum transmit power pmax
k

Output: Uplink transmit power p, RIS phase shift vector θ, BS beamforming matrix

W

Initialize: t = 1, pt = pini, θt = θini, Wt = Wini

while Ptotal does not converge do
Optimize θt and Wt simultaneously using Algorithm 2 when pt is fixed

Optimize pt by solving an LP problem when θt and Wt are fixed

t = t+ 1

end

the nonconvexity of the unit-modulus and unit-norm constraints, P1 is a non-convex

problem. This, together with the quadratic fractional and coupled structure of the rate

function in (3.12b), makes P1 very difficult to solve.

3.3 Riemannian Conjugate Gradient-based joint optimiza-

tion Algorithm

The primal goal of the proposed RCG-JO technique is to find out the RIS phase shifts

and the BS beamforming vectors minimizing the uplink transmit power of RIS-aided

IoT networks. As mentioned, main obstacles in solving the uplink power minimization

problem are the nonconvex unit-modulus constraint of the RIS phase shift and unit-

norm constraint of the BS beamforming vector. To handle these issues, we exploit

the smooth product Riemannian manifold structure of the sets of unit-modulus phase

shifts and unit-norm beamforming vectors. Since the product of two manifolds is also a

Riemannian manifold with smooth structure, we can readily convert the uplink power

minimization problem P1 to an unconstrained problem on the product Riemannian

manifold. After that, by using the differential geometry tools, we can design the gradient

descent algorithm on the Riemannian manifold and use it to obtain the optimal RIS
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phase shifts and the BS beamforming vectors minimizing the uplink transmit power of

the RIS-aided IoT network.

In a nutshell, the proposed RCG-JO algorithm consists of two major steps: 1) La-

grangian relaxation to move the complicated rate constraint to the objective function

and 2) alternating optimization of p and (θ,W) to minimize the modified objective

function on the product Riemannian manifold. To be specific, in the alternating op-

timization step, we first fix the device power p and then jointly optimize the phase

shift vector θ and the BS beamforming matrix W using the RCG method. Once the

optimal θ and W are obtained, the optimization problem of p is formulated as a linear

programming (LP) problem where the optimal solution can be easily obtained using the

convex optimization technique. We repeat these procedures until the objective function

Ptotal =
∑K

k=1 pk converges (see Algorithm 1).

3.3.1 Notions on Riemannian Manifolds

In this subsection, we briefly introduce properties and operators of the optimization

on Riemannian manifold. Roughly speaking, a smooth manifold is a generalization of

the Euclidean space on which the notion of differentiability exists [49]. The tangent

space TXY at a point X of a manifold Y is the set of the tangent vectors of all the

curves at X, where the curve γ of Y is a mapping from C to Y . Put it formally, for

a given point X ∈ Y , the tangent space of Y at X is defined as TXY = {γ′(0) :

γ is a curve in Y, γ(0) = X} (see Fig. 3.3(a)). A manifold Y together with a smoothly

varying inner product g = ⟨·, ·⟩ : TXY × TXY → C on the tangent space TXY forms a

smooth Riemannian manifold, denoted as (Y, g) where g is termed as the Riemannian

metric.

When the Riemannian manifold (Y, g) is the cartesian product of two Riemannian

manifolds (Y1, g1) and (Y2, g2), then the Riemannian metric g is defined as g = g1+g2.

In the following lemma, we show that the tangent space on the product Riemannian

manifold is the direct sum of the tangent spaces on each Riemannian manifold.
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Figure 3.3: Illustration of (a) the tangent space TXY , (b) the Riemannian gradient

gradYf(X), and (c) the retraction operator RX(V) at the point X in the Riemannian

manifold Y . Note that Euclidean gradient ∇Xf(X) is a direction for which the objective

function is reduced in CP whereas the Riemannian gradient gradYf(X) is a direction

for which the objective function is reduced in TXY .

Lemma 5. For the point X = X1 ⊕X2 where X1 ∈ Y1, X2 ∈ Y2, the tangent space

at X of the product Riemannian manifold Y = Y1 × Y2 is given by

TXY = TX1Y1 ⊕ TX2Y2. (3.13)

Given a smooth objective function f on the Riemannian manifold Y , minimization

of f requires the notion of gradient at every X ∈ Y . To be specific, the Riemannian

gradient of f at X, denoted by gradYf(X), is defined as a unique vector on TXY that

yields the steepest-descent of f . Put it formally, gradYf(X) is obtained by projecting

∇Xf(X) onto TXY (see Fig. 3.3(b)).

Using Lemma 1, the Riemannian gradient gradYf(X) is given by

gradYf(X) = gradY1
f1(X1)⊕ gradY2

f2(X2), (3.14)

where gradYi
fi(Xi) ∈ TXiYi is the Riemannian gradient of fi at Xi ∈ Yi for i = 1, 2.

Definition 1. An orthogonal projection onto the tangent space TXY is a mapping

PTXY : Ca×b → TXY such that for a given U ∈ Ca×b, ⟨U−PTXY(U),V⟩ = 0 for all

V ∈ TXY . In particular, the orthogonal projection onto the tangent space of product
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manifold Y = Y1 × Y2 is

PTXY(U) = PTX1
Y1(U1)⊕ PTX2

Y2(U2), (3.15)

where PTXi
Yi(Ui) is the projection of Ui onto TXiYi for i = 1, 2.

In order to express the concept of moving in the direction of a tangent space while

staying on the manifold, we need an operation called retraction. As illustrated in Fig.

3.3(c), the retraction is a mapping from TXY to Y that preserves the gradient at X [49].

Definition 2. The retraction RX(V) of a matrix V ∈ TXY onto Y is defined as

RX(V) = argmin
Z∈Y

∥X+V − Z∥F. (3.16)

In particular, the retraction onto the product manifold Y = Y1 × Y2 is

RX(V) = RX1(V1)⊕ RX2(V2), (3.17)

where RXi(Vi) is the retraction of Vi ∈ TXiYi onto Yi for i = 1, 2.

3.3.2 Joint RIS Phase Shift and BS Beamforming Optimization on Prod-

uct Manifold

In the first step, we fix the device power and then jointly optimize the RIS phase

shifts and BS beamforming vectors using the RCG method.

When the device power is given, P1 is reduced to

P2 : Find (θ,W) (3.18a)

s.t.
pk

2R
min
k − 1

Ak,k(θ,wk)−
K∑
j ̸=k

pj Aj,k(θ,wk) ≥ σ2k,

∀k ∈ K, (3.18b)

|θn| = 1, ∀n ∈ N , (3.18c)

∥wk∥ = 1, ∀k ∈ K, (3.18d)
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where Aj,k(θ,wk) = |wH
k (dj +GHjθ)|2 for j, k ∈ K. Since the rate expression in

(3.18b) is a joint quadratic function of θ and W, (3.18b) is a nonconvex constraint.

To handle this issue, we use the Lagrangian relaxation to move the complicated rate

constraints to the objective function. To be specific, the modified objective function is

given by

L(θ,W,λ) =
K∑
k=1

λk

(
− pk

2R
min
k − 1

Ak,k(θ,wk)+
K∑
j ̸=k

pjAj,k(θ,wk)+σ2k

)
, (3.19)

where λ = [λ1, · · · , λK ]T is the Lagrangian multiplier obtained by solving the corre-

sponding dual problem. Using L(θ,W,λ), P2 is relaxed into

P3 : min
θ,W,λ

K∑
k=1

λk

(
− pk

2R
min
k − 1

Ak,k(θ,wk) +
K∑
j ̸=k

pjAj,k(θ,wk) + σ2k

)
(3.20a)

s.t. |θn| = 1, ∀n ∈ N , (3.20b)

∥wk∥ = 1, ∀k ∈ K, (3.20c)

λk ≥ 0, ∀k ∈ K. (3.20d)

The relaxed problem P3 looks simpler than P2, but it is still nonconvex and difficult

to solve since the objective function of P3 is a joint quadratic function of θ and W.

Additionally, we need to deal with the unit-modulus constraints (3.20b) and the unit-

norm constraints (3.20c). To handle the problem, we jointly optimize θ and W on the

product manifold of the unit-modulus phase shifts and the unit-norm beamforming

vectors using the RCG method. Once we obtain θ and W, we update the Lagrangian

multiplier λ. We repeat these procedures until θ and W converge.

Joint RIS Phase Shift and BS Beamforming Optimization

For a given λ, P3 is reduced to the unconstrained problem on the product manifold:

P(θ,W) : min
(θ,W)∈Mθ×MW

L(θ,W), (3.21)
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where Mθ and MW are the complex circle manifold and complex oblique manifold

given by

Mθ = {θ ∈ CN×1 : |θn| = 1, ∀n ∈ N}, (3.22)

MW = {W ∈ CM×K : ddiag(WHW) = IK}, (3.23)

with the inner products defined as gθ(z1, z2) = ⟨z1, z2⟩ = Re{zH
1 z2} and gW(Z1,Z2) =

⟨Z1,Z2⟩ = Re{tr(ZH
1Z2)}, respectively.

By combining θ and W into Σ = blkdiag(θ,W), P(θ,W) is re-expressed as

PΣ : min
Σ∈M

L(Σ), (3.24)

where M = Mθ ×MW is the product manifold with the inner product defined as

gΣ=gθ + gW. In the following lemma, we provide the tangent space of the product

manifold M.

Lemma 6. The tangent space TΣM of the product manifold M at the point Σ is given

by

TΣM = TθMθ ⊕ TWMW, (3.25)

where TθMθ = {z ∈ CN×1 : Re{z∗ ⊙ θ} = 0N} is the tangent space of Mθ at

θ and TWMW = {Z ∈ CM×K : ddiag(Re{WHZ})=0K} is the tangent space of

MW at W.

In order to minimize the objective function L(Σ) in PΣ, we need a Riemannian

gradient which is obtained by projecting the Euclidean gradient of L(Σ) at Σ onto

TΣM.

Lemma 7. The orthogonal projection PTΣM(Ū) of Ū = blkdiag(u,U) onto TΣM is

PTΣM(Ū) = PTθMθ
(u)⊕ PTWMW

(U), (3.26)

where PTθMθ
(u) = u−Re{θ∗⊙u}⊙θ is the orthogonal projection of d onto TθMθ

and PTWMW
(U)=U−W ddiag(Re{WHU}) is the orthogonal projection of U onto

TWMW [49].
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To make sure that the point Σ is updated in the direction of the tangent space TΣM

while staying on M, a retraction operation, a mapping from TΣM to M, is needed.

Lemma 8. The retraction RΣ(V̄) of V̄ = blkdiag(v,V) ∈ TΣM is

RΣ(V̄) = Rθ(v)⊕ RW(V), (3.27)

where Rθ(v) = (θ + v) ⊙ 1
|θ+v| is the retraction of v ∈ TθMθ and RW(V) =

(W+V)
∥ddiag((W+V)H(W+V))∥F

is the retraction of V ∈ TWMW [49].

To find out Σ minimizing L(Σ) on the product manifold M, we exploit the RCG

method, an extension of the conjugate gradient (CG)7 method to the Riemannian

manifold. In this approach, the update equations of the conjugate direction D and the

point Σ are given by

Di = −gradML(Σi) + βiPTΣi
M(Di−1), (3.28)

Σi+1 = RΣi(αiDi), (3.29)

where gradML(Σi) is the Riemannian gradient of L(Σi) at Σi, βi is the Fletcher-

Reeves conjugate gradient parameter, and αi is the step size [50].

We note that the RCG method is distinct from the conventional CG method in three

respects: 1) the projection of the previous conjugate direction Di−1 onto the tangent

space TΣiM is needed before performing a linear combination of gradML(Σ) and

Di−1 since they lie on two different spaces TΣiM and TΣi−1M, 2) the Riemannian

gradient gradML(Σ) is used instead of the Euclidean gradient ∇ΣL(Σ) since we need

to find out the search direction on the tangent space of M, and 3) the retraction is

required to ensure that the updated point Σi+1 lies on M. Specifically, the Riemannian

gradient gradML(Σ) = PTΣM(∇ΣL(Σ)) is obtained by projecting the Euclidean

7The update equation of the conventional CG method is Σi+1 = Σi + αiDi where αi is the

step size and Di is the conjugate direction. In addition, the conjugate direction is updated as Di =

−∇ΣL(Σ) + βiDi−1 where ∇ΣL(Σ) is the Euclidean gradient of L(Σ) at Σ and βi is conjugate

update parameter.
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gradient onto the tangent space. In the following lemma, we provide the closed-form

expression of gradML(Σ) of L(Σ) on M.

Lemma 9. The Riemannian gradient gradML(Σ) of L(Σ) on M is

gradML(Σ) = gradMθ
L(θ)⊕ gradMW

L(W). (3.30)

Specifically, the Riemannian gradient gradMθ
L(θ) of L(θ) on Mθ is

gradMθ
L(θ) = PTθMθ

(∇θL(θ))

= ∇θL(θ)− Re{θ∗ ⊙∇θL(θ)} ⊙ θ, (3.31)

where ∇θL(θ) is the Euclidean gradient of L(θ) given by (see (3.19))

∇θL(θ) =
K∑
k=1

λk

(
− pk

2R
min
k − 1

∂Ak,k(θ,wk)

∂θ
+

K∑
j ̸=k

pj
∂Aj,k(θ,wk)

∂θ

)
, (3.32)

and
∂Aj,k(θ,wk)

∂θ
= HH

j G
Hwkw

H
k (dj +GHjθ). (3.33)

Also, the Riemannian gradient gradMW
L(W) of L(W) on MW is

gradMW
L(W)=PTWMW

(∇WL(W)) (3.34)

=∇WL(W)−Wddiag(Re{WH∇WL(W)}), (3.35)

where ∇WL(W) =
[
∂L(W)
∂w1

, · · · , ∂L(W)
∂wK

]
is the Euclidean gradient of L(W) given

by (see (3.19))

∂L(W)

∂wk
=λk

( −pk
2R

min
k − 1

∂Ak,k(θ,wk)

∂wk
+

K∑
j ̸=k

pj
∂Aj,k(θ,wk)

∂wk

)
, (3.36)

and
∂Aj,k(θ,wk)

∂wk
= (dj +GHjθ)(dj +GHjθ)

Hwk. (3.37)

Once Σ is determined, we can obtain the phase shift vector θ and beamforming

matrix W by decomposing Σ. The optimization steps of θ and W are summarized in

Algorithm 2.
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Lagrangian Multiplier Update

After updating the RIS phase shift vector θ and the BS beamforming matrix W,

we update the Lagrangian multiplier λ. To be specific, λ is updated in the direction of

maximizing the dual function D(λ) = minθ,W L(θ,W,λ) as

λ = argmax
λ⪰0

D(λ). (3.38)

Since D(λ) is the optimal value of the optimization problem P3, we cannot take

derivative with respect to λ, meaning that we cannot directly use the conventional

gradient ascent method in finding out the optimal value of λ.

To address this problem, we use the subgradient method, a generalized concept of

gradient method for the non-smooth convex functions [51]. In particular, the subgradient

g = [g1, · · · , gK ]T of the dual function D(λ) is given by

gk = − pk

2R
min
k − 1

Ak,k(θ,wk) +

K∑
j ̸=k

pjAj,k(θ,wk) + σ2k. (3.39)

Using gk, we obtain the update equation of λ:

λi+1 = max(λi + ηigi, 0), (3.40)

where ηi is the step size [51].

3.3.3 Uplink Transmit Power Minimization

Once the RIS phase shift vector θ and the BS beamforming matrix W are obtained,

we next find out the device power vector p minimizing the total uplink transmit power.

When θ and W are given, the original uplink transmit power minimization problem P1

is reduced to

P4 : min
p

K∑
k=1

pk (3.41a)

s.t.
pk

2R
min
k − 1

Ak,k(θ,wk)−
K∑
j ̸=k

pjAj,k(θ,wk) ≥ σ2k, ∀k ∈ K, (3.41b)

0 ≤ pk ≤ pmax
k , ∀k ∈ K. (3.41c)
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Algorithm 2 Optimization of (θ,W) on product manifold M
Input: Tolerance ϵ, number of iterations T , c1 = 0.0001, c2 = 0.1

Output: (θ,W)

Initialize: i = 1, Σ1 = blkdiag(θ1,W1) ∈ M, D1 = −gradML(Σ1), β1 = 0

while i ≤ T do
gradML(Σi) = PTΣi

M(∇ΣL(Σi))

βi =
∥gradML(Σi)∥2

∥gradML(Σi−1)∥2

Di = −gradML(Σi) + βiPTΣi
M(Di−1)

Find a step size αi > 0 such that

L(RΣi(αiDi)) ≤ L(Σi) + c1αi⟨gradML(Σi),Di⟩

|⟨gradML(RΣi(αiDi)),PTRΣi
(αiDi)

M(Di)⟩| ≤ −c2⟨gradML(Σi),Di⟩

Σi+1 = RΣi(αiDi)

if ∥Σi+1 −Σi∥2 ≤ ϵ then
θi+1 = Σi+1(1 : N, 1)

Wi+1 = Σi+1(N + 1 : N +M, 2 : K + 1)

Exit from the while loop

end

i = i+ 1

end

Since P4 is an LP optimization problem, the optimal solution can be easily obtained

using the convex optimization tools (e.g., CVX [48]).

3.4 Convergence and Computational Complexity Analysis of

RCG-JO

In this section, we analyze the convergence and the computational complexity of

RCG-JO.
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3.4.1 Convergence Analysis of RCG-JO Algorithm

Recall that the proposed RCG-JO technique consists of two major iterations: 1)

inner iteration for jointly optimizing θ and W on the product Riemannian manifold

(Algorithm 2) and 2) outer iteration for alternately updating (θ,W) and p (Algorithm

1). In case of Algorithm 1, due to the alternating optimization operations, it is very

difficult to prove its convergence analytically so that we demonstrate its convergence

from the numerical results. In case of Algorithm 2, we show that it converges to a local

minimizer in this subsection.

We first explain the strong Wolfe conditions used to determine the step size αi.

Definition 3. A step size αi is said to satisfy the strong Wolfe conditions, restricted to

the conjugate direction Di, if the following two inequalities hold [49]:

L(RΣi(αiDi)) ≤ L(Σi) + c1αi⟨gradML(Σi),Di⟩, (3.42)

|⟨gradML(RΣi(αiDi)),PTRΣi
(αiDi)

M(Di)⟩| ≤ −c2⟨gradML(Σi),Di⟩. (3.43)

The first condition, known as Armijo’s rule, ensures that the step size decreases the cost

functionL(Σ) sufficiently. The second condition, known as curvature condition, ensures

that the Riemannian gradient converges to zero. Note that since gradML(RΣi(αiDi)) ∈

TRΣi
(αiDi)M, the second Wolfe condition (3.43) can be converted to

|⟨gradML(RΣi(αiDi)),Di⟩| ≤ −c2⟨gradML(Σi),Di⟩. (3.44)

It has been shown that the step size satisfying the strong Wolfe conditions always

exists if gradML(RΣ(D)) is Lipschitz continuous along D [52, Proposition 1]. In the

following proposition, we show the Lipschitz continuity of the Riemannian gradient.

Proposition 2. The objective function L(Σ) is bounded below, meaning that there

exists a constant L∗ ∈ R such that for all Σ ∈ M, L∗ ≤ L(Σ). Also, the Riemannian

gradient gradML(RΣ(D)) is Lipschitz continuous along D. That is, for every Σ ∈ M,

there exists a K > 0 such that for all D ∈ TΣM,

∥gradML(RΣ(D))− gradML(RΣ(0))∥ ≤ K∥D∥. (3.45)
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Proof. See Appendix A.

Since the Riemannian gradient does not converge if its derivative is unbounded,

the Lipschitz continuity of the Riemannian gradient is crucial for the convergence

of RCG method. Using the strong Wolfe conditions and the Lipschitz continuity of

Riemannian gradient, we can show that the angle between the Riemannian gradient and

the conjugate direction is bounded.

Theorem 1. (Zoutendijk condition) Let Σi ∈ M be the point and Di ∈ TΣiM be the

conjugate direction of i-th RCG iteration. Then
∞∑
i=1

⟨gradML(Σi),Di⟩2

∥Di∥2
<∞. (3.46)

Proof. See Appendix B.

Next, in the following proposition, we prove that the inner product of Riemannian

gradient gradML(Σ) and the conjugate direction Di is bounded.

Proposition 3. Let Σi ∈ M be the point and Di ∈ TΣiM be the conjugate direction

of i-th RCG iteration with the conjugate gradient parameter βi =
∥gradML(Σi)∥2

∥gradML(Σi−1)∥2 . If

the step size αi satisfies the strong Wolfe conditions (3.42) and (3.43) with c2 < 1/2,

then for every i ∈ N,

− 1

1− c2
≤ ⟨gradML(Σi),Di⟩

∥gradML(Σi)∥2
≤ 2c2 − 1

1− c2
. (3.47)

Proof. See Appendix C.

Finally, by combining Theorem 1 and Proposition 2, we show the convergence of

RCG method.

Theorem 2. (Convergence of RCG method) Let Σi ∈ M be the point and Di ∈ TΣiM

be the conjugate direction of i-th RCG iteration with the conjugate gradient parameter

βi =
∥gradML(Σi)∥2

∥gradML(Σi−1)∥2 . If the step size αi satisfies the strong Wolfe conditions (3.42)

and (3.43) with c2 < 1/2, then

lim inf
i→∞

∥gradML(Σi)∥ = 0. (3.48)
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Proof. See Appendix D.

Remark 2. Theorem 2 shows that the RCG iteration of proposed scheme converges to

a local minimizer Σ∗ of objective function L(Σ) on the product manifold M.

3.4.2 Computational Complexity Analysis of RCG-JO Algorithm

In our analysis, we measure the complexity in terms of the number of floating point

operations (flops). We first provide the complexity analysis of the joint optimization of

θ and W in Algorithm 2.

Lemma 10. The total computational complexity C(θ,W) of Algorithm 2 is given by

C(θ,W) = O(K2N2M +K2N3 +K2M2). (3.49)

Proof. See Appendix E.

After updating the RIS phase shift vector θ and the BS beamforming matrix W,

we update the Lagrangian multiplier λ using the subgradient method. The complexity

of updating λ is Cλ = O(K2N2M).

Once θ, W, and λ are updated, the optimization of the uplink power vector p is

achieved by solving an LP problem in (3.41). Note that the numbers of flops to compute

Aj,k(θ,W) and to solve the LP problem are N2M and K3, respectively. Thus, the

overall complexity to optimize p is Cp = O(K2N2M +K3).

In conclusion, the computational complexity CRCG-JO of the proposed RCG-JO

scheme is

CRCG-JO = C(θ,W) + Cλ + Cp

= O(K2N2M +K3 +K2N3 +K2M2). (3.50)

For comparison, we also discuss the complexity of the conventional SDR-based

scheme, which consists of three major steps: 1) optimization of θ using SDR for fixed

w and p, 2) optimization of w using SDR for fixed θ and p, and 3) optimization of p
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Figure 3.4: Locations of BS, RIS, and IoT devices for K = 2.

by solving an LP problem with the obtained θ and W. It has been shown that the worst-

case complexity of the SDR method for optimizing θ ∈ CN×1 is O(N6) [35]. Similarly,

the worst-case complexity of optimizing W ∈ CM×K using SDR is O(K6M6). In

addition, the optimization of p is achieved by solving the LP problem, so that the

complexity is O(K2N2M + K3). In summary, the overall complexity CSDR of the

SDR-based scheme is

CSDR = O(K2N2M +N6 +K6M6). (3.51)

3.5 Simulation Results

3.5.1 Simulation Setup

In this section, we present the numerical results to evaluate the performance of

proposed RCG-JO algorithm. Our simulation setup is based on the uplink IoT net-

work where K = 2 single-antenna devices transmit signals to the BS equipped with

M = 4 receiving antennas (see Fig. 3.4). This uplink transmission is assisted by the
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RIS equipped with N = 64 reflecting elements, which is randomly located at the

circumference of the circle centered at the BS with the radius R = 65m. Also, K

devices are uniformly distributed on a line that is perpendicular to the line connecting

the BS and the RIS. The maximal vertical distance between the IoT devices and the

line is dv = 3m. We set the horizontal distance between the BS and IoT devices to

dh = 57m. Throughout the simulations, we set the rate requirement Rmin
k and noise

power σ2k to 0.3 bps/Hz and −60 dBm, respectively.

We use the Rician fading channel models for dk, uk and G with the Rician factors

κd = 0, κk = 10, and κG = ∞, respectively. First, the channel matrix from the RIS to

BS G is given by

G =
√
βG

(√ κG

κG + 1
GLoS +

√
1

κG + 1
GNLoS

)
, (3.52)

where GLoS = aBS(ϑG)aH
RIS(ψG, φG) is the LoS component with ϑG, ψG, and φG

being the angle of arrival (AoA) at the BS, the azimuth and elevation of the angles of de-

parture (AoDs) at the RIS, respectively, GNLoS is the NLoS component generated from

complex Gaussian distribution, βG is the path loss between RIS and BS, and κG(≥ 0) is

the Rician factor. Here, aBS(ϑG) = [1, · · · , e−jπ(M−1) sinϑG ]T ∈ CM×1 is the BS array

steering vector and aRIS(ψG, φG) = aRIS,x(ψG, φG)⊗aRIS,y(ψG, φG) ∈ CN×1 is the

RIS array steering vector where aRIS,x(ψG, φG) = [1, · · · , e−jπ(Nx−1) cosψG sinφG ]T

and aRIS,y(ψG, φG) = [1, · · · , e−jπ(Ny−1) sinψG sinφG ]T. Second, the channel vector

from the k-th IoT device to the RIS uk is expressed as

uk =
√
βk

(√ κk
κk + 1

uLoS
k +

√
1

κk + 1
uNLoS
k

)
, (3.53)

where uLoS
k = aRIS(ψk, φk) is the LoS component with ψk and φk being the azimuth

and elevation of the AoAs at the RIS, respectively, uNLoS
k ∼ CN (0, IN ) is the NLoS

component, βk is the path loss, and κk(≥ 0) is the Rician factor. The channel vector

from the k-th IoT device to BS dk is modeled similarly with uk. In general, RIS is

deployed at the position where the LoS links with the BS and IoT devices are guaranteed,

so G and uk are dominated by the LoS paths. The path loss is β = C0(d/D0)
−α, where
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Table 3.1: System parameters

Parameters Values

Number of devices (K) 2

Number of BS antennas (M ) 4

Number of RIS reflecting elements (N ) 64

BS-RIS distance (R) 65m

BS-devices horizontal distance (dh) 57m

BS-devices vertical distance (dv) 3m

Carrier frequency (f ) 2.5GHz

Noise power (σ2k) −60 dBm

Rate requirement of devices (Rmin
k ) 0.3 bps/Hz

Maximum transmission power (pmax
k ) 1W

d is the distance, α is the path loss exponent, and C0 = −30 dB is the path loss at

the reference distance D0 = 1m [35]. For the channels dk, uk and G, we set α to

be 3.8, 2.8, and 2, respectively. In each point of the plots, the simulation results are

averaged over 1, 000 independent channel realizations. The simulation parameters are

summarized in Table II.

For comparison, we test the following benchmark techniques: 1) SDR-based scheme

where θ and W are optimized alternately using SDR8 [35], 2) difference-of-convex

(DC)-based scheme where θ and W are optimized alternately using the DC program-

ming [53], 3) deep reinforcement learning (DRL)-based scheme where θ and W are

jointly optimized by leveraging the DRL technique [54], 4) random phase shifts where

θ is randomly generated and the maximum ratio transmission (MRT) is used for W,

and 5) conventional system without RIS where W is generated randomly.
8Note that in the SDR-based scheme, after solving the relaxed SDP problem, the Gaussian randomiza-

tion technique is employed to find out the feasible rank-one solution.
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Figure 3.5: Uplink transmit power vs. number of reflecting elements N .

3.5.2 Simulation Results

In Fig. 3.5, we plot the uplink transmit power as a function of the number of

RIS reflecting elements N . From the simulation results, we observe that RCG-JO

outperforms the conventional schemes using SDR and random phase shifts. For example,

when the number of RIS reflecting elements is N = 64, the proposed scheme achieves

44% and 74% reduction in power over the SDR-based scheme and the conventional

scheme using random phase shifts, respectively. Also, we see that the performance gap

between RCG-JO and the SDR-based scheme increases gradually with N . Furthermore,

we see that the power saving gain of the conventional scheme using random phase shifts

does not change with N . This is because without the optimization of RIS phase shifts

and BS beamforming vectors, the RIS reflected signal power is comparable to the signal

power transmitted from the direct link, so that the gain obtained from the joint active

and passive beamforming is marginal. Also, we compare the uplink transmit power

of RCG-JO with the DRL-based scheme. We observe that RCG-JO achieves 57% of

power reduction over the DRL-based scheme. Note, for the DRL-based approach, it is

not easy to find out the optimal decision (i.e., RIS phase shifts and BS beamforming
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Figure 3.6: Uplink transmit power vs. rate requirement of devices Rmin
k .

vectors) minimizing the uplink transmit power and at the same time satisfying the rate

requirements of the IoT devices. This is because the goal of DRL is to learn the decision

policy maximizing the cumulative reward so that the minimization of uplink transmit

power and the rate requirements might not be satisfied simultaneously.

We next evaluate the uplink transmit power of the proposed RCG-JO algorithm

and benchmark schemes as a function of the rate requirement of IoT devices Rmin
k . As

shown in Fig. 3.6, we observe that the uplink transmit power increases when the rate

requirement of IoT devices becomes more strict. Also, when compared to the case

without RIS, the rate requirement of IoT devices can be satisfied with lower uplink

transmit power in the proposed scheme. For instance, when the rate requirement of

devices isRmin
k = 0.4 bps/Hz, RCG-JO achieves around 92% of uplink power reduction

over the conventional scheme without RIS. This is because through the joint active

and passive beamforming at the BS and RIS, we can improve the signal power and

reduce the interference so that the rate requirements of IoT devices can be satisfied

with lower transmit power. Furthermore, we see that RCG-JO significantly reduces

the uplink transmit power over the benchmark schemes using SDR, DRL, and random
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Figure 3.7: Uplink transmit power vs. BS-devices horizontal distance dh.

phase shift. When Rmin
k = 0.8 bps/Hz, for example, RCG-JO saves more than 65% of

uplink transmit power over the conventional scheme using random phase shift. Even

when compared to the DC-based scheme, RCG-JO achieves 24% of the uplink power

saving gain. Note that in the DC-based scheme, due to the non-smoothness of matrix

spectral norm, the subgradient method should be employed to minimize the objective

function. Since the subgradient does not guarantee the steepest-descent of objective

function, the performance degradation over the conventional gradient descent method is

unavoidable. Whereas, in the proposed RCG-JO, we can directly minimize the objective

function on the smooth Riemannian manifold using the Riemannian gradient descent

method.

In Fig. 3.7, we plot the uplink transmit power as a function of the horizontal

distance between the BS and IoT devices dh. We observe that RCG-JO outperforms

the benchmark schemes as dh increases. For example, when the horizontal distance

between the BS and devices is dh = 55m, RCG-JO saves 29% and 40% of the uplink

transmit power over the SDR-based scheme and the conventional scheme using random

phase shift, respectively. In the system where the RIS is not employed, we see that

81



-80 -75 -70 -65 -60 -55

Noise power (dBm)

-5

0

5

10

15

20

25

30

35

U
p
li

n
k
 t

ra
n
sm

it
 p

o
w

er
 (

d
B

m
)

RCG-JO

SDR-based scheme

Random phase shift

Without RIS

Figure 3.8: Uplink transmit power vs. noise power σ2k.

the uplink transmit power is considerable due to the signal attenuation, in particular

when the devices are located far away from the BS. Whereas, in the RIS-aided IoT

networks, we see that the uplink transmit power increases initially and then decreases

as the horizontal distance increases. Basically, when the IoT device is far from the BS,

large uplink transmit power is needed to satisfy the rate requirement of a device. In

this case, the IoT device is getting close to the RIS so that the RIS-aided channel gain

increases gradually. As a result, the rate requirement can be satisfied with relatively

lower uplink transmit power.

In Fig. 3.8, we investigate the uplink transmit power of the proposed scheme

and benchmark schemes as a function of the noise power σ2k. From the simulation

results, we observe that the uplink transmit power increases with the noise power

σ2k and RCG-JO outperforms the benchmark schemes. For example, when the noise

power σ2k = −55 dBm, the proposed scheme achieves 51% and 70% of uplink power

reductions over the conventional schemes using SDR and the random phase shift,

respectively. We also see that by using the RIS, the uplink transmit power of RCG-JO

is significantly reduced (more than 80%) over the conventional scheme without RIS.

82



1 3 5 7 9 11

Number of IoT devices

10

15

20

25

30

35

40

U
p
li

n
k
 t

ra
n
sm

it
 p

o
w

er
 (

d
B

m
)

RCG-JO

SDR-based scheme

Random phase shift

Without RIS

Figure 3.9: Uplink transmit power vs. number of IoT devices K.

In Fig. 3.9, we evaluate the uplink transmit power of RCG-JO and benchmark

schemes as a function of the number of IoT devices K. We observe that RCG-JO

outperforms the benchmark schemes in all tested scenarios. For example, whenK = 11,

RCG-JO saves 35% and 78% of the uplink transmit power over the SDR-based scheme

and the conventional scheme without RIS, respectively. We also see that the power

saving gain of RCG-JO over the SDR-based scheme increases with K. For instance,

when we change K from 5 to 11, the power saving gain of RCG-JO over the SDR-

based scheme increases from 18% to 35%. While RCG-JO solves the unconstrained

optimization problem on the product manifold, the SDR-based scheme needs to find out

the feasible rank-one solution after solving the SDP problem so that the performance

degradation is inevitable. This, together with the result of computational complexity

analysis in Section 3.4.2, demonstrates the effectiveness of RCG-JO.

To evaluate the effectiveness of proposed channel estimation technique, we investi-

gate the uplink transmit power of RCG-JO using the perfect channel information, the

estimated channel information, and the sampled channel information when N = 100.

In Fig. 3.10, we observe that when the percentage of active reflecting elements is larger

83



20 30 40 50 60 70 80 90

Sampling ratio

-35

-34

-33

-32

-31

-30

-29

-28

U
p
li

n
k
 t

ra
n
sm

it
 p

o
w

er
 (

d
B

m
)

RCG-JO (perfect channel)

RCG-JO (estimated channel)

RCG-JO (sampled channel)

Figure 3.10: Uplink transmit power vs. percentage of active reflecting elements.
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Figure 3.11: Cumulative distribution of the number of iterations required to converge.

than 20%, RCG-JO using the estimated channel information performs close to RCG-JO

using the genie channel information. This is because the RIS-aided channel matrix can

be readily modeled as a low-rank matrix and thus the LRMC algorithm can effectively

reconstruct the full channel matrix (see Section 3.2.2).
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In Fig. 3.11, we investigate the cumulative distributions of the number of iterations

required for the convergence of outer iteration (Algorithm 1) and inner iteration (Al-

gorithm 2). We test the number of iterations required for the convergence when using

10, 000 independent channel realizations. In all tested cases, we observe that Algorithm

1 converges within 15 iterations and Algorithm 2 converges within 30 iterations.

3.6 Summary

In this chapter, we proposed an RIS phase shift and BS beamforming optimization

technique to minimize the uplink transmit power of an RIS-aided IoT network. Key

idea of the proposed RCG-JO algorithm is to jointly optimize the RIS phase shifts

and BS beamforming vectors using the Riemannian conjugate gradient method. By

exploiting the product Riemannian manifold structure of the sets of unit-modulus RIS

phase shift and unit-norm BS beamforming vector, we converted the uplink power

minimization problem to an unconstrained problem on the Riemannian manifold. Then,

we employed the Riemannian conjugate gradient method to find out the optimal RIS

phase shifts and the BS beamforming vectors simultaneously. We demonstrated from the

performance analysis and numerical evaluations that the proposed RCG-JO algorithm

is effective in saving the uplink transmit power of RIS-aided IoT networks. In our work,

we assumed the ideal phase shift model where the reflection amplitude and phase shift

are independent, but an extension to the realistic scenarios with the phase-dependent

reflection amplitude would also be an interesting research direction worth pursuing.

3.7 Proofs

3.7.1 Proof of Proposition 1

One can easily see that due to the unit-modulus constraint of θ (3.12c) and the

unit-norm constraint of W (3.12d), the objective function L(Σ) is bounded.

85



Recall that the Riemannian gradient can be decomposed as gradML(RΣ(D̄) =

gradMθ
L(Rθ(d))⊕ gradMW

L(RW(D)) where D̄ = d⊕D. Thus, we firstly find out

the constantsKθ andKW satisfying the Lipschitz conditions for gradMθ
L(Rθ(d)) and

gradMW
L(RW(D)), respectively. We then obtain the constant K = max(Kθ,KW)

satisfying the Lipschitz condition for gradML(RΣ(D̄)).

When W is given, L(θ) is a quadratic function with respect to θ:

L(θ) =
K∑
k=1

λk

(
− pk

2R
min
k − 1

Ak,k(θ,wk) +
K∑
j ̸=k

pjAj,k(θ,wk) + σ2k

)
= θHBθ + bHθ + θHb+ b, (3.54)

where B =
∑K

k=1 λk
(
− pk

2
Rmin
k −1

HH
kG

Hwkw
H
kGHk +

∑K
j ̸=k pjH

H
j G

Hwkw
H
kGHj

)
and b =

∑K
k=1 λk

(
− pk

2
Rmin
k −1

HH
kG

Hwkw
H
kdk +

∑K
j ̸=k pjH

H
j G

Hwkw
H
kdj

)
. Then

gradMθ
L(Rθ(d)) is expressed as

gradMθ
L(Rθ(d)) = PTθMθ

(∇θL(Rθ(d)))

= PTθMθ
(BRθ(d) + b)

= BRθ(d) + b− Re{θ ⊙ (BRθ(d) + b)} ⊙ θ. (3.55)

Using the triangle inequality, we have

∥gradMθ
L(Rθ(d))− gradMθ

L(Rθ(0))∥

≤∥B(Rθ(d)− Rθ(0))∥+ ∥Re{θ ⊙ (B(Rθ(d)− Rθ(0)))} ⊙ θ∥

≤ 2∥B(Rθ(d)− Rθ(0))∥

≤ 2∥B∥∥Rθ(d)− Rθ(0)∥. (3.56)

Since B is a quadratic function of W and the elements of W are bounded by the

unit-norm constraints, ∥B∥ is bounded on W ∈ MW.

Now, what we need to show is that the retraction operator Rθ is Lipschitz continuous.

To do so, we prove that each element of Rθ is Lipschitz continuous. Let θn and dn be
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the n-th elements of θ and d, respectively. Since |θn| = 1, we have

|Rθn(dn)−Rθn(0)| =
∣∣∣∣ θn + dn
|θn + dn|

− θn

∣∣∣∣
= |θn|

∣∣∣∣ 1 + dnθ
−1
n

|θn||1 + dnθ
−1
n |

− 1

∣∣∣∣
=

∣∣∣∣ 1 + dnθ
−1
n

|1 + dnθ
−1
n |

− 1

∣∣∣∣. (3.57)

Without the loss of generality, we assume that θn = 1. If |dn| ≥ 1
2 , then we have∣∣∣∣ 1 + dn

|1 + dn|
− 1

∣∣∣∣ ≤ ∣∣∣∣ 1 + dn
|1 + dn|

∣∣∣∣+ 1 = 2 ≤ 4|dn|. (3.58)

Also, if |dn| < 1
2 , then we have∣∣∣∣ 1 + dn
|1 + dn|

− 1

∣∣∣∣2 = |1 + dn| − Re{1 + dn}
|1 + dn|

=
2 Im2{1 + dn}

|1 + dn|(|1 + dn|+Re{1 + dn})

≤ 2|dn|2

|1 + dn|2

≤ 8|dn|2. (3.59)

Combining (3.56), (3.58), and (3.59), we see that Kθ = 8 supW∈MW
∥B∥ satisfies

the Lipschitz condition for gradMθ
L(Rθ(d)). Similarly, we can obtain KW using the

fact that the column vectors of W have unit-norm. Finally, we obtain the constant

K = max(Kθ,KW) satisfying the Lipschitz condition for gradML(RΣ(D̄)).

3.7.2 Proof of Theorem 1

Using the second Wolfe condition (3.44) and the Lipschitz continuity (3.45), we

have

(c2 − 1)⟨gradML(Σi),Di⟩ ≤ ⟨gradML(RΣi(αiDi))− gradML(Σi),Di⟩

= ⟨gradML(RΣi(αiDi))− gradML(RΣi(0)),Di⟩

≤ ∥gradML(RΣi(αiDi))− gradML(RΣi(0))∥∥Di∥

≤αiK∥Di∥2. (3.60)

87



Then from the first Wolfe condition (3.42) and (3.60), we have

L(Σi+1) = L(RΣi(αiDi))

≤ L(Σi) + c1αi⟨gradML(Σi)),Di⟩

≤ L(Σi)− c1
1− c2
K

⟨gradML(Σi),Di⟩2

∥Di∥2
. (3.61)

Finally, by combining (3.61) for i = 1, · · · , I , we have
I∑
i=1

⟨gradML(Σi),Di⟩2

∥Di∥2
≤ K(L(Σ1)− L(ΣI+1))

c1(1− c2)

(a)

≤ K(L(Σ1)− L∗)

c1(1− c2)
, (3.62)

where (a) is from the fact that L(Σ) is bounded below by L∗. By taking the limit

I → ∞ of (3.62), we obtain the desired result (3.46).

3.7.3 Proof of Proposition 2

We use the mathematical induction to prove Proposition 2. When i = 1, D1 =

−gradML(Σ1) so that we can easily see that (3.47) holds. Now suppose that (3.47)

holds for i ≥ 1. By using the update equation of Di in (3.28) and the Fletcher-Reeves

conjugate gradient parameter βi =
∥gradML(Σi)∥2

∥gradML(Σi+1)∥2 , we have

⟨gradML(Σi+1),Di+1⟩
∥gradML(Σi+1)∥2

=
⟨gradML(Σi+1),−gradML(Σi+1) + βi+1PTΣi+1

M(Di)⟩
∥gradML(Σi+1)∥2

= −1 + βi+1

⟨gradML(Σi+1),PTΣi+1
M(Di)⟩

∥gradML(Σi+1)∥2

= −1 +
⟨gradML(RΣi(αiDi)),Di⟩

∥gradML(Σi)∥2
. (3.63)

Then, using the second Wolfe condition (3.44) and (3.63), we obtain

−1 + c2
⟨gradML(Σi),Di⟩
∥gradML(Σi)∥2

≤ ⟨gradML(Σi+1),Di+1⟩
∥gradML(Σi+1)∥2

≤ −1− c2
⟨gradML(Σi),Di⟩
∥gradML(Σi)∥2

. (3.64)

By employing the induction hypothesis (3.47) for i, we see that (3.47) holds for i+ 1,

which establishes the proposition 2.
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Appendix D

Proof of Theorem 2

Using the update equation of Σi in (3.29), (3.47), and the second Wolfe condition

(3.43), we obtain

|⟨gradML(Σi),PTΣi
M(Di−1)⟩| = |⟨gradML(RΣi(αi−1Di−1)),PTRΣi

(αi−1Di−1)
M(Di−1)⟩|

≤ −c2⟨gradML(Σi−1),Di−1⟩

≤ c2
1− c2

∥gradML(Σi−1)∥2. (3.65)

Then from the update equation of conjugate direction Di in (3.28), we have

∥Di∥2 = ∥ − gradML(Σi) + βiPTΣi
M(Di−1)∥2

= ∥gradML(Σi)∥2−2βi⟨gradML(Σi),PTΣi
M(Di−1)⟩+ β2i ∥PTΣi

M(Di−1)∥2

≤ ∥gradML(Σi)∥2 +
2c2

1− c2
βi∥gradML(Σi−1)∥2 + β2i ∥Di−1∥2

= ∥gradML(Σi)∥2 +
2c2

1− c2
∥gradML(Σi)∥2 +

∥gradML(Σi)∥4

∥gradML(Σi−1)∥4
∥Di−1∥2

=
1 + c2
1− c2

∥gradML(Σi)∥2 +
∥gradML(Σi)∥4

∥gradML(Σi−1)∥4
∥Di−1∥2. (3.66)

By sequentially applying (3.66) until i = 1, we obtain

∥Di∥2 ≤
1 + c2
1− c2

∥gradML(Σi)∥4
i∑

j=1

1

∥gradML(Σj)∥2
. (3.67)

If we assume lim infi→∞ ∥gradML(Σi)∥ ≠ 0, meaning that ϵ(> 0) such that ∥gradML(Σi)∥ ≥

ϵ for all i ∈ N exists, then we have

∥Di∥2 ≤
1 + c2
1− c2

∥gradML(Σi)∥4
i

ϵ2
. (3.68)

This implies that

∞∑
i=1

∥gradML(Σi)∥4

∥Di∥2
≥ 1− c2

1 + c2
ϵ2

∞∑
i=1

1

i
= ∞. (3.69)
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However, Theorem 1 and Proposition 2 imply that
∑∞

i=1
∥gradML(Σi)∥4

∥Di∥2 <∞, which is a

contradiction to (3.69). Therefore, we otain the desired result lim infi→∞ ∥gradML(Σi)∥ =

0.

3.7.4 Proof of Lemma 6

In the first step of Algorithm 2, we compute gradML(Σ), which is given by

gradML(Σi)

= (∇θL(θi)− Re{θ∗i ⊙∇θL(θi)} ⊙ θi)

⊕ (∇WL(Wi)−Wi ddiag(Re{WH
i ∇WL(Wi)})). (3.70)

Note that the numbers of flops required for computing the Euclidean gradients ∇θL(θi)

and ∇WL(Wi) are K2N2M + K2N3 and K2N2M + K2M2, respectively. Thus,

the complexity C1 of computing gradML(Σi) is

C1 = O(K2N2M +K2N3 +K2M2). (3.71)

Using the Riemannian gradient gradML(Σi), we then compute the RCG coefficient

βi =
∥gradML(Σi)∥2

∥gradML(Σi−1)∥2 . The complexity C2 of computing βi is

C2 = O(K2N +K2M). (3.72)

Then the complexity C3 for updating the Riemannian conjugate direction Di =

−gradML(Σi) + βiPTΣi
M(Di−1) is

C3 = O(K2M +KN). (3.73)

Next, we find out the step size αi via the line search which consists of the compu-

tation of the following elements: 1) RΣi(αiDi), 2) gradML(Σi), 3) L(RΣi(αiDi)),

and 4) L(Σi). To compute the retraction RΣi(αiDi), the required number of flops

is K2M +N . To compute gradML(Σi), the required number of flops is K2N2M +

K2N3 +K2M2. Also, the numbers of flops required for computing L(RΣi(αiDi))
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and L(Σi) are both K2N2M . Thus, the complexity C4 of the line search for updating

αi is

C4 = O(K2N2M +K2N3 +K2M2). (3.74)

Finally, the complexity C5 of updating Σi is

C5 = O(K2M +N). (3.75)

In summary, the complexity C(θ,W) of Algorithm 2 is

C(θ,W) = C1 + C2 + C3 + C4 + C5

= O(K2N2M +K2N3 +K2M2). (3.76)
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Chapter 4

Towards Reconfigurable Intelligent Surfaces-Assisted

Wideband Beamforming for 6G

In this chapter, we introduce a novel frequency-dependent beamforming scheme

for RIS-assisted wideband THz systems. One major challenge of the wideband THz

communication is the severe array gain loss caused by the beam split effect that the

path components split into different spatial directions at different subcarrier frequencies.

Therefore, the conventional phase shift control and beamforming techniques cannot

be directly applied to wideband THz systems. In this work, we propose a RIS-assisted

wideband beamforming (RWB) technique maximizing the achievable data rate of the

RIS-assisted wideband THz systems. Key idea of RWB is to alternately optimize the

analog beamforming vector and the RIS phase shift vector by properly designing the

parameters of the beamforming network such that the average data rate of the wideband

THz system is maximized. We demonstrate from the numerical evaluations that RWB

achieves a significant data rate gain over the conventional schemes.

4.1 Introduction

To support the exponential growth of data traffic in 6G networks, THz massive

multiple-input multiple-output (MIMO) communications have received much attention
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[55, 56]. By exploiting the large available spectrum in THz frequency band (0.1 ∼

10THz) and the high array gain achieved by a large number of antennas, THz massive

MIMO communications can support immersive mobile services such as digital twin,

holographic telepresence, and metaverse realized by XR devices [2]. One notable feature

of the THz band signal is that due to the strong directivity and severe attenuation, the

communication link quality relies heavily on the existence of a LoS link [57]. To deal

with this problem, RIS, a planar metasurface consisting of a large number of low-cost

reflecting elements, has been widely used [58]. By smartly controlling the phase shifts

of reflecting elements, RIS can provide a virtual LoS link and thus compensate for the

severe path loss of THz communications. To realize the full potential of RIS-assisted

THz massive MIMO communications, the proper design of the beamforming and RIS

phase shifts is of great importance.

Recently, various beamforming techniques for RIS-assisted THz systems have been

proposed [59–61]. In [59], a joint RIS phase shifts control and beamforming scheme

for multi-hop RIS-assisted THz systems has been proposed. In [60], an angular domain

beamforming technique for holographic RIS-assisted THz systems has been proposed.

Also, a deep learning-based hybrid beamforming technique to maximize the sum rate

of RIS-assisted THz systems has been proposed in [61]. Note that these beamforming

schemes generate directional beams aligned with the spatial directions of the path

components, which can realize the full array gain of narrowband systems but will lead

to severe array gain loss for wideband systems. In fact, in RIS-assisted wideband THz

systems, the path components split into totally separated spatial directions at different

subcarrier frequencies, and thus the phase-controlled beams generated by the traditional

frequency-independent phase shifters can only realize high array gain around the central

frequency while suffering from the severe array gain loss at most subcarrier frequencies.

This phenomenon, so-called beam split effect, will result in a serious data rate loss and

counteract the data rate gain benefiting from the bandwidth increase [20]. Therefore, to

come up with a beamforming method mitigating the beam split effect is crucial for the
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success of RIS-assisted wideband THz systems.

An aim of this chapter is to put forth an efficient beamforming technique maximiz-

ing the achievable data rate of the RIS-assisted wideband THz system. The proposed

scheme, henceforth referred to as RIS-assisted wideband beamforming (RWB), alter-

nately optimizes the analog beamforming vector and the RIS phase shift vector by

properly designing the parameters (time delays, analog phase shifts, and RIS phase

shifts) of the beamforming network such that the achievable data rate of the wideband

THz system is maximized. To compensate for the array gain loss caused by the beam

split effect, we exploit a small number of true-time delay (TDD)-based phase shifters

and analog phase shifters to simultaneously generate frequency-dependent beams align-

ing with the spatial directions at different subcarriers. For the frequency-invariant phase

shift vector, we exploit the Riemannian conjugate gradient (RCG) method to find out

the phase shifts that maximize the average data rate of the RIS-assisted wideband THz

systems.

We demonstrate from the numerical evaluations that RWB achieves a significant

achievable data rate gain over the conventional schemes. For example, when compared

with the RCG-based frequency-independent beamforming (FIB) scheme, RWB achieves

more than 290% data rate gain. Even when compared with the RCG-based delay-phase

precoding (DPP) scheme, RWB achieves around 12% data rate gain.

4.2 RIS-Assisted Wideband THz Systems

4.2.1 RIS-Assisted THz System Model

We consider an RIS-assisted THz OFDM system where a N -antenna BS serves a

single-antenna UE. An RIS consisting of M reflecting elements is deployed to assist

the downlink transmission. We assume the analog beamforming architecture at the

BS where an RF chain is connected with N analog phase shifters. The number of

OFDM subcarriers is S, the carrier frequency is fc, and the bandwidth is B. Also, we
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assume that the direct BS-UE link is blocked by obstacles and thus the effective channel

hi∈CN between the BS and the UE is

hi = GH
i diag(ψ)ui = GH

i diag(ui)ψ = HH
i ψ, (4.1)

where Gi∈CM×N is the BS-RIS channel matrix, ui∈CM is the RIS-UE channel vector,

and Hi=diag(ui)HGi∈CM×N is the RIS reflected channel matrix at the i-th subcarrier.

Also, ψ=[ejψ1 ,· · ·, ejψM ]T∈CM is the RIS phase shift vector and ψm∈ [0, 2π) is the

phase shift of the m-th reflecting element.

As for the channel models of Gi and ui, we use the frequency-selective LoS-based

THz channel models. The BS-RIS channel Gi at the i-th subcarrier is expressed as

Gi = αie
−j2πfiτgaM (ϕi)a

H
N (θi), (4.2)

where αi is the complex path gain, τg is the propagation delay, and fi = fc − B
2 +

B
S−1(i−1) is the i-th subcarrier frequency. Also, aN (θi) and aM (ϕi) are the BS and

RIS response vectors:

aN (θi) = [1, ejθi , · · · , ej(N−1)θi ]T, (4.3)

aM (ϕi) = [1, ejϕi , · · · , ej(M−1)ϕi ]T, (4.4)

where θi and ϕi are the spatial directions of the BS and RIS at the i-th subcarrier,

respectively, defined as

θi = γiπ sinϑ, ϕi = γiπ sinφ, (4.5)

where γi = fi
fc

, ϑ ∈ [0, 2π) and φ ∈ [0, 2π) are the AoD at the BS and the AoA at the

RIS, respectively. Similarly, the RIS-UE channel ui at the i-th subcarrier is expressed

as

ui = βie
−j2πfiτuaM (ϵi), (4.6)

where βi is the complex path gain, τu is the propagation delay, and aM (ϵi) is the RIS

response vector, given by

aM (ϵi) = [1, ejϵi , · · · , ej(M−1)ϵi ]T, (4.7)
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where ϵi is the spatial direction of the RIS. Then the RIS reflected channel Hi can be

expressed as

Hi = diag(ui)HGi = αiβie
−j2πfi(τg−τu)aM (ϕi − ϵi)a

H
N (θi).

Let si be the transmitted symbol such that E[|si|2] = 1, then the received signal yi

of UE at the i-th subcarrier is given by

yi = hH
i fisi + ni = (HH

i ψ)
Hfisi + ni = ψ

HHifisi + ni, (4.8)

where fi∈CN is the beamforming vector and ni∼CN (0,σ2n ) is the additive Gaussian

noise at the i-th subcarrier. The corresponding achievable data rate R of the UE is given

by

R =
1

S

S∑
i=1

log2
(
1 +

|ψHHifi|2

σ2n

)
. (4.9)

One can easily see that when the analog beams and RIS reflected beams align with the

spatial directions at the BS and RIS, respectively, the achievable data rate is maximized.

In wideband THz systems, however, the beams generated by the frequency-independent

analog phase shifters and reflected by the RIS may split into different physical directions

at different subcarrier frequencies, which leads to a severe data rate loss.

4.2.2 Conventional True Time Delay-based Phase shifter

To compensate for the data rate loss, the frequency-dependent beamforming tech-

niques realized by the true-time delay (TTD)-based phase shifters have been proposed

for wideband THz systems [62–64]. Essence of this approach is to change the phase

of the RF signal using multiple TTDs, thereby generating frequency-dependent beams

directed to distinct spatial directions at all subcarrier frequencies. As shown in Fig. 4.1,

let si(t) be the input RF signal, then an output of the n-th TDD for the i-th subcarrier

signal will be xi,n(t, τ) = si(t−(n−1)τ) = si(t)e
−j2πfi(n−1)τ . By stacking xi,n(t, τ)
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Figure 4.1: Structure of a N -TTD array.

of all N TTDs, the output xi(t) of the TTD array for i-th subcarrier signal is

xi(t) = [xi,1(t, τ), · · · , xi,N (t, τ)]T

= [si(t), · · · , e−j2πfi(N−1)τsi(t)]
T

= f ttd
i (τ)si(t). (4.10)

Note that f ttd
i (τ)=[1,· · ·, e−j2πfi(N−1)τ ]T=aN (−j2πfiτ) is the TTD beamforming vec-

tor. By properly controlling the time delay τ , one can generate the frequency-dependent

beamforming vectors f ttd
1 (τ), · · · , f ttd

S (τ) heading towards the spatial directions of

different subcarrier frequencies.

4.2.3 Data Rate Maximization Problem Formulation

The achievable data rate maximization problem to optimize the beamforming vector

{fi}Si=1 and the RIS phase shift vector ψ is formulated as

P1 : max
fi,ψ

1

S

S∑
i=1

log2
(
1 +

|ψHHifi|2

σ2n

)
(4.11a)

s.t. ∥fi∥ = 1, ∀i = 1, · · · , S, (4.11b)

|ψm| = 1, ∀m = 1, · · · ,M. (4.11c)
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Figure 4.2: Overall structure of the RIS-assisted wideband beamforming (RWB)

scheme.

Note that (4.11b) is the unit-norm constraint of BS beamforming vector and (4.11c) is

the unit-modulus constraint of RIS phase shift vector. Due to the nonconvexity of the

unit-norm and unit-modulus constraints, P1 is a nonconvex problem. This, together

with the quadratic and coupled structure of the rate function in (4.11a), makes P1 very

difficult to solve.

4.3 RIS-Assisted Wideband Beamforming

Main goal of RWB is to find out the beamforming vectors {fi}Si=1 and phase

shift vector ψ maximizing the achievable data rate of the RIS-assisted wideband THz

systems. Since {fi}Si=1 and ψ are coupled together in the objective function (4.11a),

we optimize them in an alternating fashion. We first propose the RWB architecture

that generates the frequency-dependent beams aligning with the spatial directions at all

subcarriers when ψ is fixed. We then exploit the Riemannian manifold structure of the

set of unit-modulus RIS phase shifts and convert P1 to an unconstrained problem on

the Riemannian manifold. By using the Riemannian conjugate gradient (RCG) descent

method, we can obtain the optimal RIS phase shift vector maximizing the achievable

data rate.
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4.3.1 Frequency-Dependent Beamforming Optimization

RWB Structure

The overall structure of RWB includes three main parts (see Fig. 4.2): 1) time delay

network generating frequency-dependent beams using the TTD-based phase shifters,

2) analog network changing the spatial directions of the beams generated by the time

delay network, and 3) intensifier network suppressing the sidelobes of the subcarrier

beams generated by the time delay network and the analog network. Key ingredient

of RWB is the intensifier network compensating for the difference between the RWB

beam and the desired directional beam, thus improving the beamforming gain.

RWB Beamforming Vector Design

Let f td
i (τ) ∈ CN , f ana(θc) ∈ CN , and f it

i (η) ∈ CN be the beamforming vectors gen-

erated by the time delay network, analog network, and intensifier network, respectively,

then the RWB beamforming vector fi ∈ CN can be expressed as

fi = f it
i (η)⊙ f ana(θ)⊙ f td

i (τ), i = 1, · · · , S, (4.12)

where τ and η are the time delays in the time delay network and intensifier network.

By properly controlling the RWB parameters (τ, θ, η), BS can generate the RWB

beams {fi}Si=1 directed to the desired directions {θi}Si=1 at different subcarriers. Note

that the desired direction area of the generated RWB beams is [θ1, θS ] with the width

Width({f td
i }Si=1) = θS − θ1 and the center Center({f td

i }Si=1) =
1
2(θ1 + θS).

In the time delay network, we employ T (< N) TTDs each of which is connected

to P = N
T phase shifters. The time delay network beamforming vector f td

i (τ) at the i-th

subcarrier is

f td
i (τ) = [1,· · ·, e−j(T−1)2πfiτ ]T⊗1P = aT (−2πfiτ)⊗1P . (4.13)

Lemma 11. The spatial direction of the time delay network beamforming vector f td
i (τ)

at the i-th subcarrier is −2πfiτ
P .

99



Proof. See Appendix A.

Using Lemma 1, one can see that the spatial directions of the first subcarrier beam

f td
1 (τ) and the last subcarrier beam f td

S (τ) are −2πf1τ
P and −2πfSτ

P , respectively. Since

Width({f td
i }Si=1) = −2πτ

P (fS − f1), by adjusting τ as

τ = − P (θS − θ1)

2π(fS − f1)
= −P (θS − θ1)

2πB
, (4.14)

we can enforce Width({f td
i }Si=1) = θS − θ1. Note that the central direction of the

generated beams is Center({f td
i }Si=1) = −π(f1+fS)τ

P = f1+fS
2B (θS − θ1).

The analog network beamforming vector f ana(θ) is

f ana(θ) = [1, · · · , ej(N−1)θ]T = aN (θ). (4.15)

Then the i-th subcarrier beam f ana(θ)⊙ f td
i (τ) generated by the time delay network and

analog network is expressed as

f ana(θ)⊙ f td
i (τ) =aN (θ)⊙(aT (−2πfiτ)⊗ 1P )

(a)
= (aT (Pθ)⊗aP (θ))⊙(aT (−2πfiτ)⊗1P )

(b)
= (aT (Pθ)⊙aT (−2πfiτ))⊗(aP (θ)⊙1P )

(c)
= aT (Pθ − 2πfiτ)⊗ aP (θ)

(d)
= aT (Pθ +

Pfi
B

(θS − θ1))⊗ aP (θ), (4.16)

where (a), (b), (c), and (d) follow from aN (θ) = aT (Pθ)⊗aP (θ), (A⊗B)⊙(C⊗D) =

(A⊙C)⊗ (B⊙D), aN (θ)⊙ aN (ϕ) = aN (θ + ϕ), and (4.14), respectively. Using

Lemma 1 and (4.16), one can see that the spatial direction of f ana(θ) ⊙ f td
i (τ) is

θ′i=θ+
fi
B (θS− θ1). Since Center({f ana(θ)⊙ f td

i }Si=1)=θ+
f1+fS
2B (θS−θ1), by setting

θ as

θ =
1

2
(θ1 + θS)−

f1 + fS
2B

(θS − θ1) =
fSθ1 − f1θS

B
, (4.17)

we can enforce Center({f ana(θ)⊙ f td
i }Si=1) =

1
2(θ1 + θS).

In short, by setting τ and θ as (4.14) and (4.17), we can set the direction area of

{f ana(θ)⊙ f td
i (τ)}Ss=1 to [θ1, θS ]. However, the generated beams suffer from a severe
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degradation of beamforming gain due to the sidelobe leakage. In the following lemma,

we exploit the beamforming gain of the generated beams f ana(θ)⊙ f td
i (τ) to quantify

the sidelobe leakage.

Lemma 12. The beamforming gain Gi of f ana(θ)⊙ f td
i (τ) is

Gi =

∣∣∣∣ 1N aH
N (θ

′
i)
(
f ana(θ)⊙ f td

i (τ)
)∣∣∣∣2 = ∣∣∣∣ 1N sin 2πfiτ

sin 2πfiτ
P

∣∣∣∣2.
Note that Gi is a function of τ and achieves the maximum value at τ = 0. However,

if τ = 0, the spatial directions of beams generated by the time delay network and the

analog network will be the same (θ′i = θ) so that the data rate loss is still very high.

Thus, τ should not be zero, meaning that Gi cannot achieve the maximum value.

Main purpose of the intensifier network is to concentrate the signal power to the

mainlobe by compensating for the difference between the RWB beam fi and the desired

directional beamforming vector aN (θi) (θi is the spatial direction of fi). Basically, the

intensifier network consists of P TTDs, each of which is connected to T = N
P analog

phase shifters. The intensifier beamforming vector f it
i (η) at the i-th subcarrier is

f it
i (η) = 1T ⊗ [1, · · · , e−j(P−1)2πfiη]T = 1T ⊗ aP (−2πfiη).

Then the RWB beam fi in (4.12) can be re-expressed as

fi = f it
i (η)⊙ f ana(θ)⊙ f td

i (τ)

= (1T⊗aP (−2πfiη))⊙
(
aT (Pθ+

Pfi
B

(θS − θ1))⊗aP (θ)
)

= aT (Pθ − 2πfiτ)⊗ aP (θ − 2πfiη). (4.18)

From Lemma 1, one can see the spatial direction θi of fi is

θi = θ1 +
i− 1

S − 1
(θS − θ1). (4.19)

Using θi, fi can be re-expressed as

fi = aT (Pθi)⊗ aP (θi −
fi
B
(θS − θ1)− 2πfiη). (4.20)
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Also, the desired directional beamforming vector aN (θi) is

aN (θi) = aT (Pθi)⊗ aP (θi). (4.21)

Comparing (4.20) and (4.21), one can easily obtain that the time delay η satisfying

fi = aN (θi) is given by

η = τ/P. (4.22)

Finally, by adjusting the RWB parameters (τ, θ, η) as (4.14), (4.17), and (4.22), one

can generate the RWB beams {fi}Si=1 directed to the desired directions {θi}Si=1 while

achieving the maximum beamforming gain GRWB
i =

∣∣ 1
N aH

N (θi)fi
∣∣2 = 1. That is, when

ψ is fixed, {fi}Si=1 are the optimal beamforming vectors such that the achievable data

rate is maximized.

4.3.2 RIS Phase Shift Vector Optimization

Once the beamforming vectors are obtained, we convert P1 to an unconstrained

problem on the Riemannian manifold by exploiting the smooth manifold structure

of the set of unit-modulus RIS phase shifts [65]. We then design the gradient decent

algorithm on the Riemannian manifold and use it to obtain the optimal RIS phase shifts

maximizing the achievable data rate of the RIS-assisted wideband THz systems.

Specifically, for the given {fi}Si=1, P1 is reduced to the unconstrained problem on

the complex circle manifold M:

Pψ : min
ψ∈M

R(ψ) =
1

S

S∑
i=1

log2
(
1 +

|ψHHifi|2

σ2n

)
, (4.23)

where M={ψ∈CM : |ψm|=1} is the complex circle manifold with the inner product

g(z1, z2)=Re{zH
1 z2} and the tangent space TψM={z∈CM : Re{z∗ ⊙ ψ}=0M}

of M at ψ.

To minimize the objective function R(ψ), we need a Riemannian gradient which is
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obtained by projecting the Euclidean gradient of R(ψ) at ψ onto TψM. That is,

gradMR(ψ) = PTψM(∇ψR(ψ))

= ∇ψR(ψ)− Re{ψ∗ ⊙∇ψR(ψ)} ⊙ψ, (4.24)

where ∇ψR(ψ)= 1
Sln2

∑S
s=1

σ2
nHsfsfH

s HH
sψ

σ2
n+ψ

HHsfsfH
s HH

sψ
is the Euclidean gradient of R(ψ) and

PTψM(∇ψR(ψ)) =∇ψR(ψ)−Re{ψ∗⊙∇ψR(ψ)}⊙ψ is the orthogonal projection of

∇ψR(ψ) onto TψM. Then the conjugate direction D is updated as

Dt = −gradMR(ψt) + βtPTψtM(Dt−1), (4.25)

where βt is the Fletcher-Reeves conjugate gradient parameter.

Finally, the optimal RIS phase shift vector ψt+1 is

ψt+1 = Rψt(αtDt), (4.26)

where Rψt(αtDt) = (ψt+αtDt)⊙ 1
|ψt+αtDt| is the retraction operation ensuring that

the point ψ is updated in the direction of the tangent space TψM while staying on M

and αt is the step size [49].

4.4 Numerical Results

4.4.1 Simulation Setup

In this section, we present numerical results to validate the effectiveness of the

proposed RWB technique. We consider the RIS-assisted wideband THz system where

a BS equipped with N = 256 antennas serves a single-antenna UE with the aid of

an RIS equipped with M = 128 passive reflecting elements. The RIS and UE are

located randomly around the BS within the cell radius of R = 20m. For both BS-

RIS and UE-RIS channels, we use the wideband THz LoS channel model where the

carrier frequency is fc = 0.1THz, the bandwidth is B = 40GHz, and the number
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Figure 4.3: Achievable data rate vs. noise power σ2n.

of subcarriers is S = 70. The number of TTDs used in the time delay network and

intensifier network are set to T = P =
√
N . The noise power is σ2n = −90 dBm. At

each point of the figures, we test 1, 000 randomly generated RIS-assisted wideband

THz systems.

For comparison, we use three benchmark schemes: 1) random phase shifts-based

FDB scheme exploiting the proposed frequency-dependent beamforming scheme and

randomly generated phase shifts, 2) RCG-based delay phase precoding (DPP) scheme

exploiting the DPP scheme and the RCG-based phase shift design [66], 3) RCG-based

frequency-independent beamforming (FIB) scheme exploiting the frequency-invariant

beams and the RCG-based phase shift design.

4.4.2 Simulation Results

In Fig. 4.3, we plot the achievable data rate as a function of the noise power σ2n. We

observe that the proposed RWB scheme outperforms the conventional beamforming

schemes in all regimes under test. For example, when σ2n = −40 dBm, RWB achieves a

significant rate gain (more than 290% data rate improvement) over the RCG-based FIB
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Figure 4.4: Achievable data rate vs. number of reflecting elements M .

scheme. This is because that a phase shift of the RCG-based FIB scheme relying on

the analog phase shifters is invariant to the frequency so the beams for all subcarriers

are directed towards the same spatial direction. Since the directions of THz subcarrier

channels are distinct due to the beam split effect, a mismatch between the analog

beam and the subcarrier channels is unavoidable, resulting in a considerable loss of

the data rate. Whereas, in the proposed scheme, multiple frequency-dependent beams

are generated using the TTD-based phase shifters so that the achievable data rate loss

caused by the beam split effect can be effectively mitigated.

In Fig. 4.4, we plot the achievable data rate as a function of the number of RIS

reflecting elements M . We observe that the proposed RWB achieves a significant

achievable data rate gain over the benchmark schemes. For example, when M = 128,

RWB achieves more than 2 bps/Hz data rate gain over the RCG-based FIB scheme. We

also observe that the achievable data rate gain of RWB over the benchmark schemes

increases with the number of reflecting elements. When M = 64, RWB shows around

3 bps/Hz achievable data rate gain over the random phase shifts-based FDB scheme

but it increases up to 5 bps/Hz when M = 128. This is because when the number of
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Figure 4.5: Achievable data rate vs. number of subcarriers S.

reflecting elements increases, the RIS reflected beams become sharper so that the loss

of beamforming gain caused by the misalignment between the RIS reflected beams and

the spatial directions at the RIS also increases.

In Fig. 4.5, we plot the achievable data rate as a function of the number of subcar-

riers S. We observe that the performance gain of RWB increases with the number of

subcarriers. Specifically, when the number of subcarriers increases from S = 10 to

S = 70, the data rate gain of RWB over the RCG-based DPP scheme increases from

6% to 12%. The reason is that when the number of subcarriers increases, the sidelobe

leakage of DPP beam also increases (see Lemma 2) but such is not the case for RWB

due to the suppression of the sidelobe leakage using the intensifier network.

4.5 Summary

In this chapter, we proposed a novel RIS-assisted wideband beamforming (RWB)

scheme for the THz system to improve the achievable data rate. Key idea of the proposed

RWB scheme is to alternately optimize the analog beamforming vector and the RIS
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phase shift vector by properly designing the time delays, analog phase shifts, and

RIS phase shifts of the RIS-assisted frequency-dependent beamforming network such

that the achievable data rate is maximized. To do so, we first exploit a small number

of TTD-based phase shifters and analog phase shifters to simultaneously generate

frequency-dependent beams aligning with the spatial directions at different subcarriers.

We then exploit the Riemannian conjugate gradient method to optimize the phase shifts

that maximize the achievable data rate of the RIS-assisted wideband THz systems.

From the simulation results, we demonstrated that RWB outperforms the conventional

phase shift control and beamforming schemes by a large margin.

4.6 Proofs

4.6.1 Proof of Lemma 1

The beamforming gain of the delay network beamforming vector f td
i (τ) on the

spatial direction θi is

|aH
N (θi)f

td
i (τ)|2 =

∣∣∣∣ T∑
t=1

ej(t−1)(−Pθi−2πfiτ)
P∑
p=1

e−j(p−1)θi

∣∣∣∣2
=

∣∣∣∣sin T
2 (−Pθi − 2πfiτ)

sin 1
2(−Pθi − 2πfiτ)

×
sin P

2 (−θi)
sin 1

2(−θi)

∣∣∣∣2
=

∣∣∆T (−Pθi − 2πfiτ)
∣∣2 × ∣∣∆P (−θi)

∣∣2.
We can see that the beamforming gain of f td

i (τ) is the product of two Dirichlet sinc

functions (i.e., ∆N (x) =
sin Nx

2
sin x

2
). For

∣∣∆T (−Pθi − 2πfiτ)
∣∣2, the maximum point is

θmax
T,i = −2πfiτ

P by setting Pθc − Pθi − 2πfiτ = 0, and the mainlobe width is 4π
N .

Similarly for
∣∣∆P (θi)

∣∣2, the maximum point is θmax
P,i = 0 and the mainlobe width is 4π

P .

Considering that −2πfiτ ∈ [−π, π], we obtain θmax
T,i ∈ [θc − π

P , θc +
π
P ], meaning that

the maximum point of
∣∣∆T (−Pθi − 2πfiτ)

∣∣2 locates in the mainlobe of
∣∣∆P (θi)

∣∣2
with the range of [−2π

P ,
2π
P ]. Then, considering that the mainlobe width of

∣∣∆P (θi)
∣∣2

is T times wider than
∣∣∆T (−Pθi − 2πfiτ)

∣∣2, the variation range of
∣∣∆P (θi)

∣∣2 in
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the mainlobe of
∣∣∆T (−Pθi − 2πfiτ)

∣∣2 is much smaller than the variation range of∣∣∆T (−Pθi − 2πfiτ)
∣∣2. Therefore, the maximum value of |aH

N (θi)f
td
i (τ)|2 can be

approximated as

θmax
T,i = argmax

θi
|aH
N (θi)f

td
i (τ)|2 = −2πfiτ

P
. (4.27)
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Chapter 5

Conclusion

In this dissertation, THz channel acquisition schemes in the context of 6G wireless

networks have been extensively studied. Specifically, we have made the following

contributions.

• In Chapter 2, we introduced an efficient channel estimation technique tailored for

near-field RIS-assisted wideband THz systems. The proposed PF-RCE scheme

estimates the multipath components (angles, distances, and path gains) of the

near-field RIS-assisted THz channel by exploiting the polar-domain sparsity

and common support properties. Since the number of multipath components is

much smaller than that of the RIS reflecting elements, the pilot overhead can be

reduced significantly. In PF-RCE, by exploiting the polar-domain sparsity, the

multipath components estimation problem is converted into the sparse recovery

problem in the polar-domain. Then using the common support property, the

multipath components of all subcarriers are jointly estimated via the block-sparse

recovery algorithm. We demonstrated from numerical evaluations that PF-RCE

can accurately estimate the near-field RIS-assisted wideband THz channel with

low pilot overhead.

• In Chapter 3, we proposed an RIS phase shift and BS beamforming optimization
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technique to minimize the uplink transmit power of an RIS-assisted IoT network.

Key idea of the proposed RCG-JO algorithm is to jointly optimize the RIS phase

shifts and BS beamforming vectors using the Riemannian conjugate gradient

method. By leveraging the product Riemannian manifold structure of the sets

of unit-modulus RIS phase shift and unit-norm BS beamforming vector, we

converted the uplink power minimization problem to an unconstrained problem

on the Riemannian manifold. Then, we employed the Riemannian conjugate

gradient method to find out the optimal RIS phase shifts and the BS beamforming

vectors simultaneously. We demonstrated from the performance analysis and

numerical evaluations that the proposed RCG-JO algorithm is effective in saving

the uplink transmit power of RIS-aided IoT networks.

• In Chapter 4, we proposed a novel RIS-assisted wideband beamforming scheme

for wideband THz systems, aiming at enhancing the achievable data rate. Key idea

of the proposed RWB scheme is to alternately optimize the analog beamforming

vector and the RIS phase shift vector by properly designing the time delays,

analog phase shifts, and RIS phase shifts of the RIS-assisted frequency-dependent

beamforming network such that the achievable data rate is maximized. To do

so, we first exploit a small number of TTD-based phase shifters and analog

phase shifters to simultaneously generate frequency-dependent beams aligning

with the spatial directions at different subcarrier frequencies. We then exploit the

Riemannian conjugate gradient method to optimize the phase shifts that maximize

the achievable data rate of the RIS-assisted wideband THz systems. From the

simulation results, we demonstrated that RWB outperforms the conventional

phase shift control and beamforming schemes by a large margin.
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초록

전 세계적으로 5세대(5G) 시스템이 구축됨에 따라 2030년 이후를 위한 6세대

(6G) 시스템 연구가 본격화되었으며, 6G는 센싱, 컴퓨팅, 인공지능(AI) 등 비통신

기술의 결합을 구상하고 있다, 5G 애플리케이션 시나리오의 기능을 계승하고 개

발하는것외에도.주요동인은증가하는모바일트래픽과홀로그램텔레프레젠스,

확장현실(XR),디지털트윈및자율시스템과같은새로운애플리케이션이다.이러

한 새로운 애플리케이션은 6G의 주요 성능 지표(KPI)를 일반적으로 속도, 신뢰성,

대기 시간, 이동성 및 에너지 소비 측면에서 10 ∼ 100 배 더 높게 만든다. 최대 데

이터 속도는 1 테라비트/초(Tbps)에 도달하고 대기 시간은 밀리초 미만 수준으로

감소할것으로예상된다.현재의메커니즘과기존의접근방식은이러한엄격한요

구사항을지원할수없기때문에, 6G비전을실현하기위한새로운기술이필요하다.

논문의첫번째부분에서,우리는근거리재구성가능지능형표면(RIS)지원테라헤

르츠(THz)시스템을위한채널추정프레임워크를연구한다. 6G무선네트워크에서

매우 높은 데이터 속도를 지원하기 위해 재구성 가능한 지능형 표면(RIS) 지원 테

라헤르츠(THz)통신이최근몇년동안많은관심을받고있다. RIS는반사요소의

위상 이동을 조작함으로써 THz 시스템의 무선 전파 환경을 능동적으로 조정하여

전체 처리량을 크게 향상시킬 수 있다. RIS 지원 THz 시스템의 잠재력을 최대한

실현하려면정확한채널정보를획득하는것이매우중요하다.그러나 THz전자기

신호의파면은구형이기때문에평면파면가정을사용하는기존의채널추정기법

은근거리 RIS지원 THz시스템에서심각한성능저하를겪는다.이연구의목표는

근거리 RIS 지원 광대역 THz 시스템에 대한 효율적인 채널 추정 기법을 제안하는
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것이다.제안된극성도메인주파수종속 RIS지원채널추정(PF-RCE)체계의핵심

아이디어는 극성 도메인 희소성과 공통 지원 속성을 활용하여 근거리 THz 채널의

희소다중경로구성요소(즉,각도,거리및경로이득)를추정하는것이다.

논문의 두 번째 부분에서, 우리는 RIS 지원 사물인터넷(IoT) 네트워크를 위한

에너지효율적인전력제어및빔포밍체계를연구한다.많은수의저가반사요소로

구성된 평면 메타 표면인 RIS는 무선 전파 환경을 재구성하여 스펙트럼과 에너지

효율을모두향상시킬수있는능력으로인해많은관심을받아왔다.본연구에서는

RIS지원 IoT네트워크의업링크전송전력을최소화하는 RIS위상편이및 BS빔포

밍최적화기술을제안한다.리만공역그레이디언트기반조인트최적화(RCG-JO)

라고 하는 제안된 체계의 핵심 아이디어는 리만 공역 그레이디언트 기법을 사용하

여 RIS위상이동과 BS빔포밍벡터를공동으로최적화하는것이다.단위-모듈러스

위상 이동 및 단위-노름 빔포밍 벡터 세트의 제품 리만 다양체 구조를 활용하여 비

볼록업링크전력최소화문제를제약없는문제로변환한다음제품리만다양체에

대한최적의솔루션을찾는다.

논문의 세 번째 부분에서, 우리는 RIS 지원 광대역 THz 시스템을 위한 주파수

의존적 빔 형성 체계를 연구한다. 광대역 THz 통신의 주요 과제 중 하나는 경로

구성요소가 서로 다른 서브캐리어 주파수에서 서로 다른 공간 방향으로 분할되는

빔분할효과로인한심각한어레이이득손실이다.따라서,종래의위상편이제어

및 빔포밍 기법은 광대역 THz 시스템에 직접 적용될 수 없다. 본 연구에서는 RIS

지원 광대역 THz 시스템의 평균 데이터 속도를 최대화하는 RIS 지원 주파수 종속

빔포밍(RWB)기술을제안한다. RWB의핵심아이디어는광대역 THz시스템의평

균 데이터 속도가 최대화되도록 RWB 네트워크의 매개 변수를 적절하게 설계하여

아날로그빔포밍벡터와 RIS위상편이벡터를교대로최적화하는것이다.
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