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Abstract

In the physical design of high-speed and low-power design implementation, multi-

bit flip-flop synthesis and retention storage allocation problem are important issues.

This dissertation presents two methodologies related to storage synthesis and alloca-

tion that can contribute to improving the performance and power consumption of the

target design.

Firstly, we propose a design and technology co-optimization (DTCO) flow utiliz-

ing multi-bit flip-flop cells in a way to enhance routability and timing at the placement

and routing stages. Precisely, we make the non-flexible MBFF cell flipping to be fully

flexible by generating MBFF layouts supporting diverse D-to-Q flow directions, and

enhance the setup and clock-to-Q delay on timing critical flip-flops in MBFF through

gate upsizing (i.e., transistor folding) by using the unused space in MBFF. Through

experiments with benchmark circuits in advanced node, it is shown that our proposed

DTCO flow using MBFFs is very promising to improve routability and timing slack in

chip implementation.

Secondly, we propose an optimal solution to the problem of allocating state reten-

tion storage in power gated circuit. Precisely, we transform the allocation problems

constraining the wakeup latency constraint l to 2 and 3 clock cycles into unate cover-

ing problems and solve them optimally with three objective options: minimizing total

bits of retention storage, directly minimizing total leakage power consumed by reten-

tion storage, and minimizing total implementation area of retention storage. Through

experiments with benchmark circuits, it is shown that our optimal algorithm is able

to further reduce the total bits of retention storage, the leakage power on retention

storage, and the retention storage area while l is set to 3 over that produced by the

conventional best-known allocation heuristic.
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Chapter 1

Introduction

1.1 Multi-bit Flip-flop Methodology

With a set of limited power and thermal budget constraints for modern ASIC de-

signs that are to be implemented with a huge number of transistors and intercon-

nects, minimizing the amount of power consumption is one of the utmost impor-

tant design objectives for diverse applications. Diverse methodologies aimed at mini-

mizing power consumption have been proposed, including clock gating [7], employ-

ment of multi-VT cells [8], dynamic voltage and frequency scaling(DVFS) [9], and

utilization of multi-bit registers [10]. Among them, one effective method to reduce

power consumption particularly on the flip-flops and driving clock networks is to

use multi-bit flip-flop (MBFF) (also called register bank and multi-bit bank) cells

[11, 12, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

Fig. 1.1 compares the internal structures of two 1-bit flip-flops (left side) and their

functionally equivalent 2-bit MBFF (right side). The power saving on the 2-bit MBFF

is attributed by the sharing of the two clock inverters among the two master and two

slave latches. It is reported that 2-bit MBFF can save power by 14%, at the same time,

reducing the area by 4% [21]. Furthermore, as the number of inverters within the flip-

flops decreases, the leaf nodes of the clock tree also decrease, simplifying the structure

1



(a)

CLK

1-bit

Master Slave

1-bit

D1 Q1

Q2D2

2-bit

D1 Q1

D2 Q2

CLK

(b)

Master Slave

Master Slave

Master Slave

Figure 1.1: (a) Structure of two 1-bit flip-flops. (b) Structure of 2-bit MBFF merging

the two 1-bit flip-flops in (a).

of the clock tree as illustrated in Fig. 1.2. The number of clock tree buffers can also

be significantly reduced, leading to a potential reduction of up to 40% in clock power

consumption, according to the recent Polaris architecture [24] for GPUs (Here, clock

power is known to account for 20-35% of the total chip power, indicating its significant

impact on power consumption.).

Extensive studies have been conducted for grouping single-bit flip-flops to gener-

ate multi-bit flip-flops. [20, 21] grouped single-bit flip-flops during the logic synthesis

step. The work in [21] transformed the flip-flop grouping problem into an instance of

set cover problem on a conflict graph with the objective of minimizing flip-flop and

clock tree power consumption. In [10], flip-flops were grouped using the BFS algo-

rithm in gate-level designs, which resulted in advantageous control of the scan ring

structure and clock skew. There are also studies that conducted flip-flop grouping dur-

ing the placement stage [17, 16, 18]. The work in [18, 16] took into account saving

flip-flop power as well as reducing clock latency in placement. In [11, 22, 23, 12, 14],

MBFF grouping was conducted during the post-placement stage, which consisted of

two major steps: flip-flop clustering and MBFF placement. Clustering involves identi-

fying the feasible placement regions for each flip-flop and grouping together the flip-

2



(a) Clock tree structure using 1-bit flip-

flops

(b) Clock tree structure using 4-bit multi-

bit flip-flops

Figure 1.2: Comparison of clock tree structure of circuit using (a) 1-bit flip-flops and

(b) 4-bit multi-bit flip-flops.

flops that share common regions. The feasible region for each flip-flop is the intersec-

tion of the regions that indicate the maximum allowable distance (usually calculated

based on timing slack) from all the pins connected to the flip-flop. In [11, 22, 12, 14],

they used graph-based clustering with the goal of reducing total flip-flop power and

wirelength. The work in [23] utilizes graph-based clustering to minimize the total num-

ber of clock sinks and the total net switching power. MBFF placement involves consid-

ering placement density constraints. [14] proposed a placement algorithm that includes

capacity-constrained signal rerouting to improve routability. [11, 12] placed MBFFs

by creating an optimal bounding box using the coordinates of fan-in and fan-out pins

to minimize total wirelength. [23] proposed a weighted median interval to minimize

weighted total wirelength, that is total net switching power, for MBFF placement.

Recently, [25] tried to debank MBFFs to enhance the flexibility of the application of

useful clock skew scheduling and [19] used graph-based clustering with mixed-driving

MBFF to minimize the total number of clock sinks and the total net switching power

at the post-placement stage. However, to our knowledge, no work has considered the

3



diversification of MBFF layouts to enable design and technology co-optimization.

In practice, increasing the size of MBFF to accommodate many flip-flops imposes

two new challenging problems in physical design, which are (1) non-flexible MBFF

cell flipping and (2) unbalanced or wasted use of MBFF footprint space. Details of the

two problems are described in the next two paragraphs.

MBFFs are in general constructed by stacking single-bit flip-flops to retain the

regularity of the internal cell layout. (One well-known example is shown in the TSMC

patent in [26].) This implies that the cell flipping, which has been used as a useful

technique in placement and routing to optimize design parameters (e.g., wirelength

and routability), is not always effectively applicable to MBFF cells. This is because

an MBFF cell flipping exactly means reversing all D-to-Q flow directions in the cell

and it does not mean selectively reversing the individual flow directions. For example,

for a 2-bit MBFF cell instance in a placement, shown in Fig. 1.3(a), with predictable

routability, either unflipping (upper one) or flipping (lower) the cell never help to im-

prove the routability to both flip-flops in the cell.

The second problem is space waste on MBFF footprint, as illustrated in Fig. 1.3(b).

Since one non-dummy gate poly is enough to implement each clock inverter in an

MBFF, noting that the advance of process technology below 64nm enables even a

minimum sized inverter to still drive multiple master and slave latches in flip-flops

without input slew violation [11], the space to occupy exactly two (non-dummy) gate

polys suffice to deploy the two internal clock inverters. As a result, for a 4-bit MBFF

cell shown in Fig. 1.3(b), the cell layout induces two empty spaces (gray color), one in

flip-flop f1 and the other in flip-flop f4.

4
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Figure 1.3: Examples illustrating two physical limitations that hinder an extensive use

of MBFF cells. (a) Non-flexible cell flipping. (b) Space waste in cell layout.

1.2 State Retention Storage Allocation on Power Gated Cir-

cuit

Minimizing leakage power of circuit has been a major issue in according to the semi-

conductor process node shrinking. One of the technologies to reduce leakage power

consumption is power gating, which is shutting down the power supply or ground on

circuit so that the circuit no more consumes the power. The power gated circuit re-

quires to save its flip-flops’ states before being shut down to enter sleep mode, so that

the circuit should continue execution from the saved states when waking up.

Broadly, there are two ways to save and restore states in power gating. One is using

scan chain to store all states in memory. Once the states are saved, the circuit is shut

down and there are no always-on parts in the circuit if an external memory is used for

the state retention. The other is using state retention flip-flops that are composed of the

original flip-flops and always-on state retention storages [27, 28].

Replacing every original flip-flop in circuit with a flip-flop having a distinct 1-bit

retention storage is called SBRFF (single bit retention flip-flip) allocation [27]. Thus,

5



for a circuit with n flip-flops, they use n total number of retention bits. However,

replacing all original flip-flops with 1-bit retention flip-flops occupies a considerable

area, so consuming significant always-on leakage power. It is shown that 1-bit retention

flip-flop has generally 20% more area than the original flip-flop [27].

Many researches have been performed to reduce the amount of retention storage.

The works in [29, 30, 31] proposed so-called SSRPG (selective state retention power

gating), which allocates retention storage only to some essential flip-flops to satisfy

the perfect state recovery. SSRPG assumes power gating to be applied to given a small

number of FSM states, equivalently a few known checkpoints in RTL code. Thus,

the objective of SSRPG is to identify the (non-essential) flip-flips unrelated to the

FSM states to exclude them from state retention. They used simulation and formal

verification to extract essential flip-flops for which a full knowledge of the behavior

of target circuit or RTL code is required in advance. Chen et al. [3] proposed to use

multi-bit retention flip-flop (MBRFF). Fig. 1.4 shows the internal structure of a k-

bit MBRFF. The k-bit shift retention storage can save up to k consecutive states of

the original flip-flop. The always-on retention storage is implemented with high Vth

transistors to reduce always-on leakage power [32]. The control logic generates signals

to control state saving or restoration when the circuit goes to sleep mode or active

mode. Since k clock cycles are required for each of state saving and restoration for

MBRFFs while one clock cycle suffices for SBRFFs and SSRPG, it is necessary to use

a small k value of MBRFFs at the expense of retention storage. The works in [1, 33]

proposed MBRFF allocation algorithms that try to extract a minimal number of flip-

flops, each of which is to be replaced with strictly k-bit MBRFF, and the rest are left

as they are.

Unlike the methods of uniform MBRFF allocation in [1, 33], Fan et al. [2] pro-

posed a non-uniform MBRFF allocation algorithm which determines the size of reten-

tion storage of the individual flip-flops so that the total retention bits is minimized. For

example, Fig. 1.6(a) shows a uniform MBRFF allocation result for a flip-flop depen-
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Figure 1.4: The internal structure of k-bit MBRFF in [3]. The blue and red translucent

lines indicate the flow of state saving and restoration, respectively.
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Figure 1.5: Illustration of cycle-by-cycle state restoration for the MBRFF allocation.

Initially, at time t0 flip-flip f1 retains 3 states and f3 2 states. During the following three

cycles, the states of flip-flops are set through the retention storage or logic propagation

from their driving flip-flops.
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dency graph1 in which f1 and f3 are replaced with 3-bit MBRFFs though f3 can be

replaced with 2-bit MBRFFs as shown in Fig. 1.6(b).

3-bit

𝑓1
𝑓2

𝑓6

3-bit

𝑓3

𝑓7

𝑓4

𝑓5

(a) Uniform MBRFF allocation: 6 total bits,

but enabling simple control network

3-bit

𝑓1
𝑓2

𝑓6

2-bit

𝑓3

𝑓7

𝑓4

𝑓5

(b) Non-uniform MBRFF allocation: 5 total

bits, but increasing control network overhead

Figure 1.6: Comparison of uniform and non-uniform MBRFF allocations in terms of

total retention bits and control network overhead.

Recently, a new MBRFF allocation algorithm was proposed by [34], introducing

2-phase operation for single-bit retention flip-flops, so that their state save/recovery

can be done either in the first or in the second clock step. However, supporting this 2-

phase operation requires exactly 2 clock cycles of save/restoration and demands more

complicated control logic.

Fig. 1.5 illustrates a cycle-by-cycle state restoration process for an MBRFF allo-

cation. Initially, at time t0, flip-flip f1 retains 3 states and f3 2 states. At the first cycle

(t1) of restoration, the state of f1 is set and at the second cycle (t2), the states of f2 and

f6 driven from f1 and the state of f3 are set. Lastly, at the third cycle, the state of f7

driven from f6 and the states of f4 and f5 driven from f3 are set. The state restoration

process for MBRFF allocation entails two overheads:

1. (Long wakeup latency) The wakeup latency in MBRFF allocation should be at

least equal to or greater than the largest bit size of retention storage among the

MBRFFs produced by the allocation.
1The flip-flop dependency graph of a circuit is a directed graph G(V,A) where nodes in V indicate

distinct flip-flops and there is an arc (fi, fj) ∈ A if fj ∈ V is driven from a combinational logic path

from fi ∈ V .
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2. (More control signals) Distinct wakeup control signals to MBRFFs are required

if the sizes of their retention storage are different.

Consequently, to reduce the two overheads, it is highly desirable to allocate MBRFFs

such that the maximum bit size among retention storages as well as the number of

MBRFF groups according to the storage bit size is as small as possible.

The conventional MBRFF allocation algorithms ([3, 1, 33, 2]) have two fundamen-

tal limitations in common:

1. (No cycle, including self-loop) The allocation algorithms accept a flip-flop de-

pendency graph with no cycle as input. This means the original flip-flop de-

pendency graph of circuit with cycle should be transformed into an acyclic one

before applying the allocation algorithms. However, circuits normally contain

many self-loops mostly corresponding to mux-feedback loops in flip-flops in

circuits2 as well as many flip-flop cycles, which could clearly worsen the qual-

ity of MBRFF allocation.

2. (Heuristic) All existing allocation algorithms are in fact heuristic. So far, there is

no way to find out how much the allocation results are close to an optimal one in

terms of total bits of retention storage, storage leakage power, and storage area.

2Most self-loop flip-flops are synthesized from the if-statements with no else-part in HDL description.
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1.3 Contributions of this Dissertation

In this dissertation, we present several methodologies related to storage synthesis and

optimization algorithms to improve the performance and power consumption of target

design.

In Chapter 2, we propose a design and technology co-optimization (DTCO) tech-

niques that are able to effectively resolve the two limitations imposed by MBFFs

[35, 36]. The main contributions of this work can be summarized as:

1. To overcome the less flexible cell flipping problem, we introduce a new concept

of selective D-to-Q flow flipping and propose to synthesize MBFF cells of var-

ious combinations of D-to-Q flow flipping and non-flipping. Then, we propose

a cost-based algorithm, for each MBFF cell instance in placement, to find and

synthesize an MBFF of flow flipping/non-flipping combination that leads to a

maximal routability benefit by cell instance replacement.

2. To further enhance the timing performance of the chip by utilizing various com-

binations of D-to-Q flow, we refine the D-to-Q flow, in global routing, on the

basis of the data extracted from the timing and net congestion analysis. We pro-

pose an iterative greedy approach to adjust the flipping/unflipping of D-to-Q

flow for MBFF instances with the aim of optimizing timing without increasing

net congestion.

3. To overcome the space waste problem, we use the empty space for optimiz-

ing timing through upsizing transistors in MBFFs at the post-route stage. We

optimize the upsizing level in a way to resolve the timing violations while min-

imizing the power overhead. We formulated the sizing problem into an ILP and

solve it optimally.

4. We propose a DTCO framework integrating items 1, 2, and 3 to explore and

resynthesize MBFF cells in the placement and routing stages that leads to effec-

10



tively improve routability and resolve timing problem on target circuit imple-

mentation while minimizing the power consumption overhead.

In Chapter 3, we propose an optimal non-uniform MBRFF allocation algorithm

that are able to overcome the two limitations while taking into account minimizing the

two overheads of wakeup latency and control signals [37]. The main contributions of

this work are summarized as:

• We propose an optimal non-uniform MBRFF allocation algorithm that can be di-

rectly applied to the original flip-flop dependency graph of target circuit, equipped

with two options of constraining wakeup latency: l = 2 and l = 3 clock cycles

and three options of minimization objectives: total bits of retention storage, total

leakage power on retention storage, and total area.

• We formulate the non-uniform MBRFF allocation problem into a weighted unate

covering problem by exhaustively generating valid covering segments together

with their cost3 from the input flip-flop dependency graph and solve it optimally.

In addition, we handle the scalability problem for large circuits in experiments.

• We provide a set of comprehensive experimental results to measure how the

existing SBRFF method and best-known MBRFF allocation heuristic close to

an optimum.

3It represents retention bit size, leakage power on retention storage, or retention storage area.
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Chapter 2

Enhancing Design Qualities Utilizing Multi-bit Flip-flops:

A Design and Technology Co-optimization Driven Ap-

proach

2.1 Key Observations and Enabling Optimization Directions

We observe two distinct features on MBFFs whose effective utilization could provide

a considerable impact on the improvement of the quality of chip implementation.

1. Utilizing the full flexibility of D-to-Q flows in MBFFs to save route cost: A

flip-flop basically consists of master and slave latches, and two clock inverters to

deliver the inverted and non-inverted clock signals to both latches. The D-to-Q

flow of a flip-flop refers to the internal logic path from input D to output Q in the

flip-flop. Since D is an input to the master latch and Q is an output from the slave

latch, the distance from input port D to output port Q in most of conventional

flip-flop cells amounts to the cell width. (For example, in Figs. 2.2(a) and (b),

the distance is 0.81um = 54nm (= CPP) × 15 gate polys according to ASAP7

PDK [4].)

For a single-bit flip-flop, it is possible to reduce route cost (e.g., wirelength,

routability, DRVs (design rule violations)) by flipping the flip-flop cell instance

13



in placement/routing stage, as shown in Fig. 2.1(a). On the contrary, for an

MBFF, entirely flipping the MBFF cell instance does not always save route

cost, as illustrated in Fig. 2.1(b), since its D-to-Q flows are compelled to be

reversed all together. However, as shown by the case in Fig. 2.1(c), a full sav-

ing of route cost can be achieved if MBFF cells with all combinations of flipped

and non-flipped individual flip-flops are available. Note that since the individual

flip-flops themselves are never tapped by flipping, all such MBFFs will preserve

the same timing and power characteristics.

2. Utilizing the unused space in MBFF footprint to resolve the timing problem:

For n-bit MBFFs (n > 2), sharing clock inverters by the individual flip-flops

stacked in MBFFs inevitably induce empty space on their footprint, as previ-

ously shown in Fig. 1.3(b). To exploit this space effectively, we may include ad-

ditional gate polys (i.e., upsizing transistors by transistor folding) to this empty

space in a way to enhance the timing performance of their associated internal

flip-flops. For example, as shown in Figs. 2.2(c) and (d), by including one or

more gate polys to each of f1 and f4 with 2 or 4 fins to the empty space i.e.,

upsizing the transistors adjacent to the empty space, the timing of the flip-flops

can be improved.

Specifically, Table 2.1 shows the changes of timing, in terms of the sum of worst

slack time and worst clock-to-Q delay, on the individual flip-flops of 4-bit MBFF

produced by applying transistor upsizing with 2 fins in inverter U1 in master

latch (upsizing to level-1 in Fig. 2.2(d)), 2 fins in transmission gates M3 and M4

in slave latch (upsizing to level-2 in Fig. 2.2(d)), and 2 fins in U1 and 2 fins in

M3 and M4 (upsizing to level-3 in Fig. 2.2(d)) to f1 and f4 in Fig. 2.2(c). (In our

experiments, we synthesized 4-bit MBFFs of various sizing by stacking 1-bit

flip-flop cell DFFHQNX1 in ASAP 7nm cell library [4] with clock inverter in

the middle and characterized MBFF cells by using Cadence and Synopsys tool

chain. Note that a spacing of at least two dummy polys is required between the
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Figure 2.1: Effectiveness of cell flipping on reducing route cost. (a) Flipping a single-

bit flip-flop: Fully effective. (b) Flipping an MBFF: Partially or little effective. (c)

Flipping individual D-to-Q flows in MBFF: Fully effective.
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source/drain regions of two adjacent transistors in cell layout if they cannot be

shared according to ACTIVE design rules in ASAP 7nm PDK.)

We can see from Table 2.1 that it is able to achieve timing improvement of 10.1%

(136.1ps → 122.2ps) on f1 and 10.4% (137.9ps → 123.5ps) on f4 in a 4-bit

MBFF by upsizing transistors with a few additional fins while retaining the same

cell size and having no timing loss on flip-flops f2 and f3 at all. Thus, by building

up a cell library with timing-diversified MBFFs through the utilization of empty

space, we are able to use the MBFFs selectively in a way to resolve the timing

closure problem in chip implementation. However, it should be noted that the

timing benefit counts the cost of power consumed by the inclusion of additional

fins. Thus, a careful selection of MBFFs is required to resolve negative timing

slacks while minimizing the power overhead.

Table 2.1: Timing (setup time + clock-to-Q delay) on the flip-flops f1, f2, f3, and f4

in Fig. 2.2 as the transistor upsizing (i.e., folding) to level-1, level-2, and level-3 is

applied to each of f1 and f4 without increasing cell size.

Transistor upsizing

Flip-flop Unsizing Level-1 Level-2 Level-3

f1 136.1ps (1) 129.1ps 130.9ps 122.2ps (0.899)

f2 137.7ps 138.3ps 135.5ps 136.3ps

f3 136.5ps 136.8ps 134.0ps 134.5ps

f4 137.9ps (1) 130.8ps 132.1ps 123.5ps (0.896)
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2.2 DTCO Framework for Multi-bit Flip-flops

2.2.1 The Proposed DTCO Flow

Fig. 2.3 shows our proposed DTCO flow, called MBFF-opt, that integrates three new

tasks for implementing target designs utilizing MBFF cells: (1) D-to-Q flow optimiza-

tion in Step 1 with the objective of improving routability in the placement stage,

(2) timing driven D-to-Q flow refinement in Step 2 with the objective of improving

routability and timing in the global routing stage, and (3) timing optimization in Step 3

with the objective of resolving the timing violations in the post-routing stage. The in-

put of Step 1 is a logic synthesized and placed design produced by using a conventional

standard cell library and PDK. (We used ASAP 7nm cells and PDK [4].) We perform

Step 1 in two sub-steps: (1.1) evaluating D-to-Q flow flipping for MBFF instances and

(1.2) Replacing D-to-Q flow optimized MBFFs for the MBFFs in (1.1) based on the

flipping cost to perform a flow replacement. For a global routing result, we apply Step

2 i.e., (2) refining D-to-Q flow of MBFF instances by analyzing timing and congestion

data. Meanwhile, the input of Step 3 is the outcome of detailed routing with timing

analysis data. We carry out Step 3 in three steps: (3.1) reordering the flip-flop stacking

position in the MBFF instances with timing violation by assessing timing criticality,

(3.2) upsizing transistors on the MBFFs in (3.1), and (3.3) elaborating timing in case

there still exists a negative timing slack. The following three subsections describe the

details of Steps 1, 2, and 3.

2.2.2 D-to-Q Flow Optimization

Step 1.1 (Evaluating D-to-Q flow flipping): We refer D-to-Q flow flipping of an in-

ternal flip-flop fi, 1 ≤ i ≤ K, in a K-bit MBFF to as reversing the D-to-Q flow i.e.,

the Q-to-D flow in the MBFF, which is exactly equivalent to the D-to-Q flow in the

flipped flip-flop in a new MBFF produced by flipping the fi in the initial MBFF. For

a K-bit MBFF, since we have two options to choose D-to-Q flow for each internal
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flip-flop namely, unflipped D-to-Q flow and flipped D-to-Q flow, there are total of 2K

MBFF cells with different D-to-Q flow configurations.

For every MBFF instance in placement, we want to find the MBFF of D-to-Q flow

configuration which has the least total amount of routability cost to connect its 2K D

and Q ports. Let tDi and tQi be the cell terminals that should be connected to ports Di

and Qi on flip-flop fi in an MBFF. Then, we compute the quantity of the following

equation for each internal flip-flop with isFlip = 0 and 1:

C(fi, isF lipi) = CWL(Di, t
D
i , isF lipi) + CWL(Qi, t

Q
i , isF lipi) (2.1)

where CWL(Di, t
D
i , isF lip) indicates the cost1 of physically connecting Di and tDi

when D-to-Q flow flipping is unapplied (i.e., isF lipi = 0) or applied (i.e., isF lipi = 1)

to fi. Likewise, CWL(Qi, t
Q
i , isF lip) is defined similarly.

Then, we find a K-dimensional 0/1 vector Γ = [isF lip1, · · · , isF lipK ] that mini-

mizes the quantity of Ctot:

Ctot =
K∑
i=1

min{C(fi, isF lip), isF lip = 0, 1} (2.2)

We call the isFlip vector, Γ, obtained by Eq.2.2 the maximal profit vector of the MBFF

instance among all possible 2K K-dimensional 0/1 vectors.

Fast computation of the maximal profit vector: Since we are interested in deter-

mining a better option between D-to-Q flow unflipping and flipping for each inter-

nal flip-flop, rather than fully computing the equations in Eq.2.1 and Eq.2.2, we can

quickly setup the 0/1 values in the maximal profit vector Γ by merely comparing the

interval between Di and Qi in x-coordinate with the interval between tDi and tQi in

x-coordinate:
1In this work, we assume the cost is the HPWL value of the bounding box of Di and tDi .
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case 1. The interval between tDi and tQi contains the interval

between Di and Qi inclusive.

case 2. The interval between Di and Qi contains the interval

between tDi and tQi inclusive.

case 3. The interval between tDi and tQi contains exactly one

of Di and Qi inclusive.

case 4. The two intervals between Di and Qi and between tDi

and tQi do not overlap.

For an MBFF instance, say M , in placement, we can identify the case to which each

internal flip-flop fi belongs and set the corresponding bit isF lipi to 0 or 1 to produce

maximal profit vector ΓM .

The binary element setting procedure is shown in Algorithm. 1. For case 1, we

can easily set isF lipi by calling isRevDir(), which distinguishes the two states in

Fig. 2.4(a) i.e., isRevDir() == TRUE (line 4-7) indicating the upper state, thus setting

isF lipi = 1 and otherwise, setting isF lipi = 0. Similarly, we can set isF lipi for case

3. For case 2, in line 8-11, we can determine isF lipi by calculating 2(hDi + hQi −L)

because the wirelength profit C(fi, 1) = hDi + hQi − hfDi
− hfQi

becomes 2(hDi +

hQi − L) as hfDi
= L− hDi and hfQi

= L− hQi , as shown in Fig. 2.4(b). For case

4, isF lipi can be set to either 0 or 1 since there is no change in total wirelength (line

16-18).

Step 1.2 (Replacing MBFFs): From the set of Γ configurations obtained from Step

1.1, we utilize an MBFF cell synthesized corresponding to each Γ configuration. The

MBFF synthesis is simply stacking individual flip-flops with either unflipping or flip-

ping, obeying their isF lip 0/1 values in Γ. Let L be the set of MBFF cells produced by

this step. Then, we replace every MBFF instance in placement whose original isFlip
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Figure 2.4: Analysis of x-coordinate relation between Di, Qi, tDi , and tQi where

I(A,B) represents the interval between A and B in x-coordinate and x(A) denotes

the x-coordinate of A. (a) I(Di, Qi) ⊂ I(tDi , t
Q
i ). (b) I(tDi , t

Q
i ) ⊂ I(Di, Qi).

(c) {x(tDi ) ∈ I(Di, Qi), x(t
Q
i ) /∈ I(Di, Qi)} or {x(tDi ) /∈ I(Di, Qi), x(t

Q
i ) ∈

I(Di, Qi)}. (d) I(Di, Qi) ∩ I(tDi , t
Q
i ) = ϕ.
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Algorithm 1 Computing the maximal profit vector of every MBFF instance M

Input: x(Di), x(Qi), x(tDi ), x(t
Q
i ) of flip-flop fi in M

Output: HashtableH (key, value) = (Γ, list of MBFF instances)

▷ L = |x(Di)− x(Qi)|

▷ hDi = |x(Di)− x(tDi )|

▷ hQi = |x(Qi)− x(tQi )|

1: for all M in MBFF instances do

2: for all i in K flip-flops on M do

3: isF lipi ← 0

4: if I(Di, Qi) ⊂ I(tDi , t
Q
i ) then ▷ case 1

5: if isRevDir(x(Di), x(Qi), x(tDi ), x(t
Q
i )) then

6: isF lipi ← 1

7: end if

8: else if I(tDi , t
Q
i ) ⊂ I(Di, Qi) then ▷ case 2

9: if 2(hDi + hQi − L) > 0 then

10: isF lipi ← 1

11: end if

12: else if {x(tDi ) ∈ I(Di, Qi), x(t
Q
i ) /∈ I(Di, Qi)} or {x(tDi ) /∈ I(Di, Qi),

x(tQi ) ∈ I(Di, Qi)} then ▷ case 3

13: if isRevDir(x(Di), x(Qi), x(tDi ), x(t
Q
i )) then

14: isF lipi ← 1

15: end if

16: else if I(Di, Qi) ∩ I(tDi , t
Q
i ) = ϕ then ▷ case 4

17: isF lipi ← 0

18: end if

19: ΓM [i]← isF lipi

20: end for

21: H[ΓM ].insert(M)

22: end for

23: ReturnH
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Function - isRevDir (x(Di), x(Qi), x(t
D
i ), x(t

Q
i ))

1: if (x(Di) < x(Qi) and x(tDi ) > x(tQi )) or (x(Di) > x(Qi) and x(tDi ) < x(tQi ))

then

2: Return TRUE

3: else

4: Return FALSE

5: end if

Algorithm 2 Synthesizing and replacing MBFFs
Input: HashtableH (key, value) = (Γ, list of MBFF instances)

▷ cM : MBFF cell with ΓM flow

1: L ← ϕ,R ← ϕ

2: for all key ΓM inH do

3: L = L ∪ cM

4: for all value M ofH[ΓM ] do

5: R = R∪ (M, cM )

6: end for

7: end for

8: Replacing MBFF instances according toR by using L
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vector is not matched with its maximum profit vector Γ by the MBFF cell in L with

Γ. This step is described in Algorithm using the hashtable H produced in Step 1.1 as

input.

In fact, the MBFF cells that cover all kinds of D-to-Q flow combinations (2K)

entail lots of redundancy. For example, for K = 4, Fig. 2.5(a) (d) shows that MBFF

cells corresponding to four configurations of D-to-Q flows can be obtained by flip-

ping or rotating a single MBFF cell. Assume that for a flip-flop, r denotes its D-to-Q

flow such that D is on the left side and Q is on the right side of the flip-flop, and

l denotes the reverse of D-to-Q flow such that D is on the right side and Q is on

the left side. For example, the sequence of D-to-Q flow of the MBFF in Fig. 2.5(a)

can be expressed as rrrl. By using an MBFF cell with rrrl, we can represent flow

sequence lllr by flipping it over the y-axis as shown in Fig. 2.5(b). We can also rep-

resent flow sequence lrrr by flipping the MBFF over x-axis and reversing the or-

der of pins i.e., {D1, D2, D3, D4} → {D4, D3, D2, D1} and {Q1, Q2, Q3, Q4} →

{Q4, Q3, Q2, Q1}. In addition, we can represent flow sequence rlll by rotating the

MBFF in 180 degree and reversing the order of pins. Fig. 2.5(e) shows only 6 flow

sequences for 4-bit MBFF, covering all of 16 D-to-Q flow combinations. The minimal

number of flow sequences to cover all 2K flow combinations, NMBFF , is computed

by

NMBFF = 1 +

K
2∑

n=1

(
K
n

)
−mn

2
+m′

n = 1 +

K
2∑

n=1

(
K
n

)
+mn

2
(2.3)

where mn =


(K

2
n
2

)
when n = even number and 2n ̸= K

0 otherwise.

where m′
n =


mn
2 when n = even number and 2n = K

mn otherwise.
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Figure 2.5: Illustration of covering every D-to-Q flow combination of 4-bit MBFF by

using 6 cells.
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2.2.3 Timing-driven D-to-Q Flow Refinement

In the prior step, we conducted D-to-Q flow flipping with the goal of minimizing wire-

length cost between cells at the post-placement. In this step, we pay attention to timing

with timing-driven cost formulation and proceed D-to-Q flow flipping on the global

routing result, performing the following two sub-steps.

Step 2.1 (Evaluating D-to-Q flow flippings): From a global routing result, we extract

a timing report related to MBFF instances. By extracting timing report on every path

between individual flip-flop pins (D, Q) of MBFF instances, we compute flipping cost,

pi, of flip-flop fi, 1 ≤ i ≤ K:

pi = n−
WL − n+

WL (2.4)

in which n−
WL represents the number of fan-in or fan-out pins with negative slacks that

would decrease the wirelength if D-to-Q flow of fi were flipped. Conversely, n+
WL

represents the number of fan-in or fan-out pins that would increase the wirelength

when D-to-Q flow of fi were flipped. The reduced wirelength of each of D and Q pins

according to fan-in pin tDi and fan-out pins tQj

i , 1 ≤ j can be calculated by identify-

ing the case (Fig. 2.4) the flip-flop belongs to and using Table 2.2 that represents the

wirelength reduction for the cases to be identifed with isRevDir() in Algorithm. 1. We

flip fi when pi is positive, which means the possibility of improving negative slack is

higher than that of worsening the negative slack if its D-to-Q flow were flipped.

Step 2.2 (Replacing MBFFs): When D-to-Q flow flipping is to be performed towards

improving negative timing slack, but is very likely to make net detours due to conges-

tion, resulting timing may deteriorate. Thus, MBFF cell replacement should consider

congestion. A naive approach is to make D-to-Q flow flipping for each of the MBFF in-

stances identified in Step 2.1 one by one, checking if congestion increases and keeping

only safe ones. However, this method requires a long run time. Instead, we propose

a method of selecting a subset of MBFF instances from the ones obtained Step 2.1

based on the following replacement profit cost, PMBFF , of each MBFF instance, and
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Table 2.2: Wirelength reduction between Di and tDi (∆WLD), and Qi and t
Qj

i

(∆WLQj ) for all cases in Fig. 2.4. (isRevDir() is described in Algorithm. 1.)

∆WLD ∆WLQj

isRevDir() !isRevDir() isRevDir() !isRevDir()

Case 1 L −L L −L

Case 2 2hD − L L− 2hD 2hQ − L L− 2hQ

Case 3 L -L 2hQ − L L− 2hQ

Case 4 L -L -L L

replacing them with the corresponding flipped cells all at once:

PMBFF =
K∑
i=1

max(0, pi) +
1

L

K∑
i=1

∆WLi (2.5)

where the first term corresponds to the sum of D-to-Q flow flipping/non-flipping costs

of the internal flip-flops in the MBFF and the second term indicates the sum of HPWL

changes, denoted by ∆WLi, by the flipping/non-flipping of the internal flip-flops,

normalized by L, which is the D-to-Q distance in the MBFF cell.

Precisely, ∆WLi for an internal flip-flop fi is computed by

∆WLi = max(0,∆WLD
i ) +

|FO|∑
j=1

max(0,∆WL
Qj

i ) (2.6)

∆WLD
i =


0 if slackD ≥ 0

∆WLD if slackD < 0

(2.7)

∆WL
Qj

i =


0 if slackQj ≥ 0

∆WLQj if slackQj < 0

(2.8)

in which FO represents the set of fan-out pins driven by pin Q in fi, and slackD

and slackQj indicate the timing slack from fan-in pin tDi to Di and from Qi through
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fan-out pin t
Qj

i , respectively. (Note that ∆WLD and ∆WLQj are computed by the

formulation in Table 2.2.

We convert the problem of selecting MBFF instances maximizing PMBFF into an

instance of maximal weighted independent set (MWIS) problem in a directed graph

G(V,A) such that a node in V indicates a distinct MBFF instance in circuit and an

arc from node ni to node nj exists in A if there is a timing path from a flip-flop in

the MBFF instance of ni to a flop-flop in the MBFF instance of nj . Every vertex vi

in V has a weight wi that represents the replacement cost of the corresponding MBFF

instance. We solve the MWIS problem by formulating it into an ILP (integer linear

programming):

Maximize:
|V |∑
i=1

wi · xi

subject to: xi + xj ≤ 1, if {i, j} ∈ A

xi ∈ {0, 1}

where xi = 1 indicates that its MBFF instance is selected for MBFF replacement.

We iteratively perform the selection of MBFF instances by finding the independent

set of maximal cost followed by replacing them with the MBFFs of minimal PMBFF

value. Let MI be the set of MBFF instances selected in the current iteration. Then, by

analyzing the global routing result of the circuit with the MBFF replacement in MI ,

we count the number of congestion overflows and timing violated paths. If the number

of timing violated paths decreases (i.e., ∆TV P < 0) and the number of congestion

overflows does not increase (i.e., ∆OF ≤ 0), we accept the replacement of MI , up-

date G(V,A) by removing nodes in MI , and repeat the iteration process. Otherwise,

we insert the MBFF instances in MI into queue Qm in non-increasing order of replace-

ment profit PMBFF . Then, we iteratively pop an element from Qm and replace it with

the corresponding MBFF cell as long as the above condition is satisfied. The iteration

process repeats from the circuit with partially replaced MBFF instances. Fig. 2.6 show

the flow of MBFF replacement process.
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Figure 2.6: Proposed flow of timing-driven D-to-Q flow refinement by MBFF replace-

ment.
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2.2.4 Timing Optimization at Post-Route Stage

Step 3.1 (Reordering flip-flops in MBFF instances): This step performs two inde-

pendent sub-tasks that will be used in Step 3.2:

1. (Finding an optimal flip-flop reordering) For each MBFF instance in routing,

we find a rearrangement (i.e., mapping ϕ) of the flip-flops in the instance that

maximizes the mapping cost C(ϕ):

C(ϕ) =
K∑
i=1

▽(ϕ(i)) (2.9)

where ▽(ϕ(i)) indicates an estimation of timing saving by moving flip-flop fi

to the location of flip-flop index ϕ(i) and is computed by

▽(ϕ(i)) = α1 · yD(ϕ(i)) + α2 · yQ(ϕ(i)) (2.10)

where yD(ϕ(i)) and yQ(ϕ(i)) represent the distance saving in y-direction by

moving fi to the location of flip-flop index ϕ(i), respectively, and α1 = 1 if no

timing violation occurs on port D on fi or ϕ(i) ̸= 1 and K. (Note that we want

to use the empty space in the top and bottom flip-flops (i.e., f1 and fK) for

transistor upsizing.) Otherwise, α1 is set to 5 (or a large number greater than 0).

α2 is similarly set to that of α1.

Fig. 2.7(b) shows an example of computing the values of ▽(ϕ(·)) for mapping

ϕ to the flip-flops in an MBFF instance in Fig. 2.7(a). (We set |yD(i) − yD(j)|

= |yQ(i)− yQ(j)| = |i− j|, i, j ∈ {1, 2, · · · ,K}.)

We formulate the problem of finding an optimal mapping ϕ for an MBFF in-

stance into a problem instance of weighted maximal matching on a complete

bipartite graph G(V 1, V 2,W ), in which V 1 is the set of flip-flops in the in-

stance and V 2 is the set of the flip-flop bin indices, and the edge between

vi ∈ V 1 and vj ∈ V 2 is assigned with a weight w(vi, vj) ∈ W such that

w(vi, vj) = ▽(ϕ(i) = j). For example, Fig. 2.7(c) shows G(V 1, V 2,W ) of the
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MBFF instance in Fig. 2.7(a), in which the heavy lines indicate the solution of

maximal matching, producing the maximal total saving, which is C(ϕ) = 6 and

generates reordered MBFF instance in Fig. 2.7(d). We formulate the maximal

matching problem into an ILP:

Maximize:
K∑
i=1

K∑
j=1

w(vi, vj) · xi,j

subject to:
K∑
j=1

xi,j = 1, for all i = 1, · · · ,K

K∑
i=1

xi,j = 1, for all j = 1, · · · ,K

xji ∈ {0, 1}

where the 0/1 variable xi,j becomes 1 if flip-flop fi is assigned to bin index j

and 0, otherwise.

2. (Generating MBFF cell library by an exhaustive exploration of transistor up-

sizing) For a K-bit MBFF, we use the empty space in the top flip-flop (i.e., f1)

and in the bottom flip-flop (i.e., fK) for transistor upsizing to level-1, level-2,

and level-3 as well as unsizing, as illustrated in Figs. 2.2(c) and (d). Thus, we

prepare a K-bit MBFF cell library, L′MB , of 16 (= 42) MBFF cells, for K = 4,

for each synthesized MBFF cell in the previous steps. Then, we characterize the

cells in L′MB to extract timing and power numbers.
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Figure 2.7: Example of finding an optimal flip-flop reordering. (a) An MBFF instance

with timing violation on the route path (red color) to pin D2. (b) Mapping function

ϕ and computation of the values of ▽(ϕ(·)). (c) Bipartite graph G(V 1, V 2,W ) of

the MBFF instance in (a). (d) Reordered MBFF instance according to the solution of

maximal matching in (c).
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Step 3.2 (Optimal Transistor Sizing in MBFFs): Once the flip-flop rearrangement

function is obtained in Step 3.1 for every MBFF instance, we find an optimal solu-

tion of MBFF transistor upsizing in the target circuit to resolve all timing violations

while minimizing the power overhead. We formulate the problem into an ILP with the

preparation of the following two sets of timing data.

1. By characterizing the transistor unsized and upsized MBFF cells in L′MB , for

each flip-flop in an MBFF in L′MB , we take (list 1) a list of setup time values

corresponding to the combinations of a number of transition times (slew rates)

at pin D and a number of transition times at pin CLK and take (list 2) a list

of clock-to-Q delay values corresponding to the combinations of a number of

the out-loads at pin Q and a number of transition times at pin CLK. Then, to

make a power optimal replacement of all MBFF instances of timing violation

in the circuit with MBFF cells in L′MB , an accurate timing calculation related

to the MBFF replacement in circuit is essential. To this end, we apply a linear

interpolation or extrapolation to the setup time values in list 1 to produce a setup

time function, FSetup(trD, trCLK) as well as to the clock-to-Q delay values in

list 2 to produce a clock-to-Q delay function, FC2Q(ldQ, trCLK) where trD,

trCLK , and ldQ indicate the transition time on D, transition time on CLK, and

out-load on Q, respectively.

2. We extract information regarding the worst slack timing paths in circuit from

the post-route timing report, which includes timing slack, setup time, clock-to-

Q delay, required time, arrival time, input pin transition times, and out-load in

association with all MBFF instances in the target circuit.
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Table 2.3: Notations used in our ILP formulation

Description

L′MB Set of MBFF cells with tr. unsizing/sizing produced by step 2.1

M Set of the MBFF instances in the target circuit

idM Index of an MBFF instance M inM

Pi

Set of the timing paths on Mi ∈M

(|Pi| = 2K if Mi is a K-bit MBFF instance since pins D and Q each has one timing path)

pi,k pi,k ∈ Pi, k = 1, · · · , |Pi|

PWRj Power consumed by M ′
j ∈ L′MB

xji

1 if Mi ∈M is replaced by M ′
j ∈ L′MB;

0, otherwise.

reqi,k Required time on path pi,k before replacement

arri,k Arrival time on path pi,k before replacement

init setupi,k Setup time on pin D of path pi,k before replacement

init clk2qi,k Clock-to-Q delay on Q of path pi,k before replacement

new setupi,k Setup time on pin D of path pi,k (It will be determined by solving ILP)

new clk2qi,k Clock-to-Q delay on pin Q of path pi,k (It will be determined by solving ILP)

setupji,k Setup time on pin D of path pi,k when Mi ∈M is replaced with M ′
j ∈ L′MB

clk2qji,k Clock-to-Q delay on pin Q of path pi,k when Mi ∈M is replaced with M ′
j ∈ L′MB
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Let Setupa,b denote the setup time when the transition time on D is trDa and the

clock-to-Q delay is trCLKb
that are specified in list 1. Suppose trD and trCLK are

not specified in list 1, but The trD value is in between trDi and trDj (trDi < trDj )

and the trCLK value is in between trCLKp and trCLKq (trCLKp < trCLKq ). Then,

setup time function FSetup(trD, trCLK) can be expressed as that in Eq.2.11, in which

variables A, B, C, and D can be computed by Eqs.2.12, 2.13, 2.14, and 2.15. Likewise,

FC2Q(ldQ, trCLK) can be expressed similarly.

FSetup(trD, trCLK)

= A · trD +B · trCLK + C · trD · trCLK +D (2.11)

A · trDi +B · trCLKp + C · trDi · trCLKp +D = Setupi,p (2.12)

A · trDi +B · trCLKq + C · trDi · trCLKq +D = Setupi,q (2.13)

A · trDj +B · trCLKp + C · trDj · trCLKp +D = Setupj,p (2.14)

A · trDj +B · trCLKq + C · trDj · trCLKq +D = Setupj,q (2.15)

The variables (xji , new setupi,k, new clk2qi,k) and constant (all the rest) nota-

tions used for our ILP formulation of MBFF replacement are summarized in Table 2.3.

Then, we can express the objective and all constraints of the ILP formulation as:
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Minimize:
|M|∑
i=1

|L′
MB |∑
j=1

PWRj · xji (2.16)

subject to:

for all i = 1, · · · , |M|, j = 1, · · · , |L′MB|, k = 1, · · · , |Pi|,

(reqi,k + init setupi,k − new setupi,k) −

(arri,k − init clk2qi,k + new clk2qi,k) ≥ 0 (2.17)

new setupi,k =


init setupi,k if id1i,k = −1

setupji,k if xjid1i,k = 1

(2.18)

new clk2qi,k =


init clk2qi,k if id0i,k = −1

clk2qji,k if xjid0i,k = 1

(2.19)

id0i,k =


idM if the launch register, M, on pi,k is inM

−1 otherwise
(2.20)

id1i,k =


idM if the capture register, M, on pi,k is inM

−1 otherwise
(2.21)

|L′
MB |∑
j=1

xji = 1, for all i = 1, · · · , |M| (2.22)

xji ∈ {0, 1}, for all i = 1, · · · , |M|, j = 1, · · · , |L′MB| (2.23)
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The objective shown in Eq.2.16 is to minimize the total amount of power consumed

by all MBFF instances in the target circuit. Eq.2.17 ensures the satisfaction of setup

timing constraints of all paths on the internal flip-flops in the MBFFs in target design2

Precisely, according to the setup time satisfaction condition:

Required time−Arrival time ≥ 0

where Required time amounts to CLK capture arrival time plus TCLK minus setup

time while Arrival time equals to CLK launch arrival time plus combinational delay +

clk-to-Q delay.

In addition, Eq.2.18 and Eq.2.19 explore the MBFF cells in L′MB to find an MBFF

cell consuming the least power to replace each MBFF instance in the circuit while

meeting the constraint in Eq.2.17. Such exploration of MBFF cells is related to tim-

ing values setupji,k
3 in Eq.2.18, id1i,k in Eq.2.21, clk2qji,k

4 in Eq.2.19, and id0i,k in

Eq.2.20 as well as to the power value PWRj in Eq.2.16. In addition, Eq.2.22 and

Eq.2.23 ensure that every MBFF instance in the target circuit should be replaced by

exactly one MBFF cells in L′MB .

Step 3.3 (Timing Elaboration):

In the following, we elaborate the timing optimized in Step 3.2 to deal with the

case where all timing violations are not completely resolved in Step 3.2: We replace

the term ‘0’ in Eq.2.17 with an epsilon (negative) value, which varies through iterations

in a binary search, to quickly find a minimal absolute epsilon value that satisfies the

ILP formulation. For example, suppose we set the epsilon precision to 0.25 and if our

ILP formulation with an initial epsilon = -10 succeeds in finding a solution, we reset

epsilon to the mean value (= -5) of 0 (target) and -10, and apply the ILP solver again.

This process is repeated to approximate the worst negative timing slack as long as the

ILP succeeds in finding a solution and the epsilon gap updated in an iteration is not
2The hold time constraints can also be expressed in a similar way. We omit the expression for brevity.
3The values are computed by the setup time function FSetup(trD, trCLK).
4The values are computed by the clock-to-Q delay function FC2Q(ldQ, trCLK).
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smaller than the precision of 0.25. When a minimal absolute epsilon value is found,

we can continuously optimize the total negative timing slack by iteratively applying

the elaborating process. Let M be the set of MBFF instances with sized transistor

in the previous iteration. Then, at the beginning of the current iteration, we fix the

transistor size in M and remove the timing constraints according to the pins in M

from the timing constraints. We then assign the best minimal absolute epsilon value

to the initial epsilon value, and continue the process until the best minimal absolute

epsilon value from the previous iteration is the same with the best minimal absolute

epsilon value in the current iteration. The overall flow of timing elaboration is shown

in Fig. 2.8

2.3 Experimental Results

2.3.1 Experimental Setup

We implemented our proposed DTCO flow MBFF-opt by using C++ and Gurobi op-

timizer [38] as an ILP solver in a linux machine with Intel i7-4770K 3.5GHz CPU and

32GB memory and demonstrate the efficacy of our proposed flow by comparing place-

ment and routing PPA (power-performance-area) results with two conventional flows:

(1) placement and routing with no use of MBFFs, which we label Conv. No-banking,

(2) placement and routing with use of MBFFs imposing non-flexible of flipping and

footprint waste, which we label Conv. MBFF. The placement and routing flows of

Conv. No-banking, Conv. MBFF, and our MBFF-opt are depicted in Fig. 2.9.

We used IWLS 2005 OpenCores benchmark circuits [39] for the experiments. Ta-

ble 2.4 shows the statistics on the benchmark circuits, which include the total number

of cell instances (“#cells”), the number of flip-flop cell instances (“#FFs”), and the

number of nets (“#nets”). We synthesized and implemented the circuit by using Syn-

opsys Design Compiler and Cadence Innovus5 using ASAP7 7nm standard cell library.
5For grouping flip-flops, in pre-CTS optimization step, we used commands
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Logic Synthesis

Placement

Cell LIB/LEF Design netlist

MBFF banking using 𝑐𝑀𝐵𝐹𝐹

Clock Tree SynthesisClock Tree Synthesis

Global Routing Global Routing

Implemented design 

from Conv. MBFF

Implemented design 

from Conv. No-banking

(a) (b)

Step 3. 

Timing optimization

Implemented design 

from MBFF-opt

(c)

Step 1. 

D-to-Q flow optimization

Step 2. 

D-to-Q flow refinement

Detail Routing Detail Routing

Detail Routing

CTS and Global Routing

Figure 2.9: Three different flows of placement and routing conducted in our experi-

ments. (a) Conv. No-banking: Conventional flow with no use of MBFFs. (b) Conv.

MBFF: Conventional flow with use of MBFFs imposing non-flexible of flipping and

footprint waste. (c) MBFF-opt: Our proposed flow with use of MBFFs resolving non-

flexible of flipping and footprint waste in a way to enhance routability and timing.
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Table 2.4: IWLS benchmark circuits used for the experiments.

Circuit #cells #FFs #nets

MEM CTRL 5460 1118 5575

USB FUNCT 7949 1739 8063

AES CIPHER 11149 530 11408

WB CONMAX 20294 818 21424

ETHERNET 38484 10543 38580

DES3 53052 8808 53286

NOVA 119611 10864 138300

publicly available in [4]6. We synthesized 2-bit, 4-bit MBFF cells based on ASAP7 and

use them in Conv. MBFF and MBFF-opt.

2.3.2 Comparing MBFF-opt with Conventional MBFF Allocation

To assess the efficacy of our MBFF-opt, we adjusted the chip utilization and clock pe-

riod for practical worst negative timing slacks (<20% of clock period) of each bench-

mark circuit. Table 2.5 summarizes the PPA results of the implementations produced

by the flows of Conv. MBFF and MBFF-opt, which compare the die area (Area in

um2), total wirelength (WL in um), the number of design rule violations (#DRVs), the

worst negative slack (WNS in ps), total negative slack (TNS in ps), and total amount

of power consumption (Power in pW ) 7.

setLimitedAccessFeature FlipFlopMergeAndSplit 1 and setOptMode

–multiBitFlopOpt True
6Note that the cell description formats in ASAP7 PDK library are acceptable to Cadence tool platform

of placement and routing.
7The 5th, 7th, 9th, 11th, and 13th columns in Table 2.5 indicate the reduction rate of PPA, which

represents the quantity of (Conv. MBFF - MBFF-opt) / Conv. MBFF.
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Table 2.5: PPA comparison of the implementations produced by Conv. MBFF and our

MBFF-opt.

Circuit Conv.MBFF
MBFF-opt

Step 1 only Step 1 + Step 2 Step 1 + Step 3 Step 2 + Step 3 Step 1 + Step 2 + Step 3

MEM CTRL

Area 12445 12411 0.3% 12425 0.2% 12411 0.3% 12445 0.0% 12425 0.2%

WL 76367 72824 4.6% 72905 4.5% 72816 4.7% 76427 -0.1% 72900 4.5%

#DRVs 45 44 2.2% 45 0.0% 42 6.7% 45 0.0% 41 8.9%

WNS -39.40 -25.00 36.5% -23.07 41.4% -24.99 36.6% -38.04 3.4% -23.05 41.5%

TNS -926.47 -380.80 58.9% -276.121 70.2% -380.46 58.9% -893.11 3.6% -275.12 70.3%

Power 1641.25 1559.63 5.0% 1559.38 5.0% 1559.97 5.0% 1641.10 0.0% 1559.63 5.0%

USB FUNCT

Area 19392 19381 0.1% 19366 0.1% 19381 0.1% 19378 0.1% 19366 0.1%

WL 131626 132864 -0.9% 132952.9 -1.0% 132899 -1.0% 132080.4 -0.3% 132981 -1.0%

#DRVs 104 88 15.4% 83 20.2% 56 46.2% 48 53.8% 53 49.0%

WNS -42.00 -41.98 0.0% -38.01 9.5% -35.57 15.3% -31.06 26.1% -35.45 15.6%

TNS -495.11 -356.71 28.0% -344.16 30.5% -276.44 44.2% -333.43 32.7% -246.18 50.3%

Power 7409.54 7472.88 -0.9% 7491.78 -1.1% 7474.96 -0.9% 7409.28 0.0% 7495.02 -1.2%

AES CIPHER

Area 18547 18514 0.2% 18547 0.0% 18514 0.2% 18577 -0.2% 18547 0.0%

WL 164955 164758 0.1% 164881 0.0% 164760.4 0.1% 165714.1 -0.5% 164885 0.0%

#DRVs 120 121 -0.8% 114 5.0% 100 16.7% 94 21.7% 74 38.3%

WNS -29.30 -21.19 27.7% -19.74 32.6% -21.01 28.3% -20.15 31.2% -19.62 33.0%

TNS -1034.01 -467.67 54.8% -428.57 58.6% -358.58 65.3% -406.73 60.7% -369.13 64.3%

Power 1908.88 1885.12 1.2% 1880.26 1.5% 1886.57 1.2% 1914.53 -0.3% 1881.74 1.4%

WB CONMAX

Area 38558 38406 0.4% 38396 0.4% 38406 0.4% 38574 0.0% 38396 0.4%

WL 466862 463540.88 0.7% 463910 0.6% 463542 0.7% 467293 -0.1% 463910 0.6%

#DRVs 553 534 3.4% 486 12.1% 528 4.5% 492 11.0% 483 12.7%

WNS -86.90 -92.54 -6.5% -85.56 1.5% -92.54 -6.5% -81.64 6.1% -85.59 1.5%

TNS -3193.91 -2168.83 32.1% -2024.98 36.6% -2169.86 32.1% -2544.04 20.3% -2026.01 36.6%

Power 6298.65 6073.91 3.6% 6078.82 3.5% 6073.91 3.6% 6306.75 -0.1% 6078.82 3.5%

ETHERNET

Area 103160 103358 -0.2% 103407 -0.2% 103358 -0.2% 103578 -0.4% 103407 -0.2%

WL 849714 862133 -1.5% 861802 -1.4% 862133 -1.5% 853805 -0.5% 861800 -1.4%

#DRVs 301 172 42.9% 154 48.8% 172 42.9% 178 40.9% 154 48.8%

WNS -182.02 -135.97 25.3% -76.03 58.2% -122.71 32.6% -179.19 1.6% -63.54 65.1%

TNS -3374.43 -2026.65 39.9% -1617.22 52.1% -2013.58 40.3% -2237.14 33.7% -1607.28 52.4%

Power 11263.73 11562.93 -2.7% 11543.79 -2.5% 11563.01 -2.7% 11469.42 -1.8% 11543.95 -2.5%

DES3

Area 106526 106705 -0.2% 106724.4 -0.2% 106705.2 -0.2% 106539.8 0.0% 106724 -0.2%

WL 560175 556374 0.7% 556978.2 0.6% 556349.5 0.7% 560177.8 0.0% 556973 0.6%

#DRVs 85 82 3.5% 77 9.4% 68 20.0% 64 24.7% 61 28.2%

WNS -33.93 -26.64 21.5% -25.11 26.0% -26.63 21.5% -28.49 16.0% -24.90 26.6%

TNS -2830.64 -2947.90 -4.1% -2724.63 3.7% -2933.11 -3.6% -2768.56 2.2% -2706.88 4.4%

Power 25568.68 25769.10 -0.8% 25750.42 -0.7% 25769.73 -0.8% 25596.80 -0.1% 25751.38 -0.7%

NOVA

Area 346386 346466 0.0% 346395 0.0% 346466 0.0% 346060 0.1% 346395 0.0%

WL 3458498 3464932 -0.2% 3465874 -0.2% 3464935 -0.2% 3458250 0.0% 3465880 -0.2%

#DRVs 2392 2347 1.9% 1996 16.6% 2346 1.9% 1842 23.0% 1997 16.5%

WNS -452.25 -216.59 52.1% -200.42 55.7% -216.58 52.1% -353.22 21.9% -200.41 55.7%

TNS -11312.50 -6727.85 40.5% -2692.37 76.2% -6720.77 40.6% -12121.60 -7.2% -2686.35 76.3%

Power 6462.16 6419.95 0.7% 6419.51 0.7% 6420.00 0.7% 6449.61 0.2% 6419.58 0.7%

Average

Area 92145 92177 0.0% 92180 0.0% 92177 0.0% 92165 0.0% 92180 0.0%

WL 815457 816775 -0.2% 817043 -0.2% 816776 -0.2% 816250 -0.1% 817047 -0.2%

#DRVs 514 484 5.9% 422 17.9% 473 8.0% 395 23.3% 409 20.5%

WNS -123.68 -79.99 35.3% -66.85 46.0% -77.15 37.6% -104.54 15.5% -64.65 47.7%

TNS -3309.58 -2153.77 34.9% -1444.01 56.4% -2121.83 35.9% -3043.52 8.0% -1416.71 57.2%

Power 8650.41 8677.65 -0.3% 8674.85 -0.3% 8678.31 -0.3% 8683.93 -0.4% 8675.73 -0.3%
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The column labeled Step 1 only in Table 2.5 shows the results produced by apply-

ing our D-to-Q flow optimization (i.e., Step 1) in MBFF-opt. In summary, it reduces

the worst negative slack and total negative slack by 35.3% and 34.9% on average even

with 5.9% fewer DRVs in comparison with the implementations produced by Conv.

MBFF. By integrating our D-to-Q flow refinement step (i,e., Step 2) into MBFF-opt,

as shown in the column labeled Step 1 + Step 2, we are able to further reduce the

worst negative slack and total negative slack by 46.0% and 56.4% on average even

with 17.9% fewer DRVs in comparison with the implementations produced by Conv.

MBFF. In addition, by integrating our timing optimization step (i.e., Step 3) as well

as Steps 1 and 2 into MBFF-opt, as shown in the column labeled Step 1 + Step 2

+ Step 3, we can further reduce the worst negative slack and total negative slack at a

little power cost incurred by the MBFF transistor upsizing for timing. Fig. 2.10 shows

the comparison of the distribution of DRVs and timing violation registers on the im-

plementations of circuit USB FUNCT in Table 2.5 produced by Conv. MBFF and our

MBFF-opt. By comparing the results in the columns labeled ‘Step 1 + Step 2’, ‘Step 1

+ Step 3’, ‘Step 2 + Step 3’, and ‘Step 1 + Step 2 + Step 3’, it is observed that the com-

plete MBFF-opt flow makes the highest improvement on the worst and total negative

slacks as well as the number of DRVs at a little cost of power increase.

Table 2.6 shows statistics on the number of MBFF cell instances labeled as #MBFF

(#M2 for 2-bit MBFFs and #M4 for 4-bit MBFFs) in the initial circuits produced by

multi-bit banking, the number of MBFF cell instances labeled as #Flipping 1, replaced

in Step 1 (i.e., by D-to-Q flow flipping) of our MBFF-opt, the number of MBFF cell

instances labeled as #Flipping 2, replaced in Step 2 (i.e., by D-to-Q flow refinement) of

our MBFF-opt, and the number of MBFF cell instances labeled as #Sizing, replaced

in Step 3 (i.e., by transistor upsizing) of MBFF-opt.
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Table 2.6: The number of MBFF cell instances replaced by our MBFF-opt.

Circuit

Initial MBFF-opt

#MBFF #Flipping 1 #Flipping 2 #Sizing

#M4 #M2 #M4 #M2 #M4 #M2 #M4

MEM CTRL 186 9 128 2 2 0 3

USB FUNCT 427 9 303 3 1 0 17

AES CIPHER 128 7 88 3 30 2 13

WB CONMAX 44 5 9 0 2 0 0

ETHERNET 2296 42 1066 11 90 1 1

DES3 2170 44 889 4 63 1 1

NOVA 6051 112 1194 17 8 0 4

(a) Conv. MBFF : 

(104 DRVs, 75 timing viols.)

(b) MBFF-opt :

(53 DRVs, 21 timing viols.)

Figure 2.10: Comparison of the distribution of DRVs (white crosses) and timing viola-

tion registers (red rectangles) on the implementations of circuit USB FUNCT produced

by Conv. MBFF and our MBFF-opt. (a) Conv. MBFF: 104 DRVs and 75 timing vi-

olations. (b) MBFF-opt: 53 DRVs and 21 timing violations.
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2.3.3 Comparing MBFF-opt with Conventional No-Banking Flow

Table 2.7 shows PPA (performance, power, area) comparison of the implementations

produced by the conventional flow with no use of MBFFs and MBFF-opt8 Grouping

individual flip-flops to make MBFFs results in an inflexible cell placement, possi-

bly causing inferior circuit timing as well as less routability. However, as shown in

Table 2.7, MBFF-opt performs well in overcoming the potential loss of timing and

routability even less power consumption.

2.3.4 Runtime Analysis of MBFF-opt

Table 2.8 shows the runtime of Step 1, Step 2, and Step 3 in MBFF-opt. Steps 2 and

3 take 85.1% and 14.7% of the total runtime which takes most of the total runtime, as

shown in Table 2.8 due to checking the congestion and timing in iterations in Step 2

and iterative ILP solving in Step 3 (We set time limit to 30 seconds in solving one round

of ILP iteration in Step 3.) Fig. 2.11(b) shows ILP runtimes in Step 3 according to the

number of MBFF instances in all benchmark circuits. It shows that the ILP runtime

intends to increase, as the number of MBFFs increases, which in fact increases the

number of variables used in ILP.

2.3.5 Comparing MBFF-opt with Conventional No-Banking flow with

more timing-optimized MBFF banking design

To demonstrate the effectiveness of our MBFF-opt approach in a more timing-optimized

design, we upgraded our version of Innovus and employed high timing effort to merge

and split MBFFs using the commands setOptMode -MBFFSplitTimingEffort

high and setOptMode -MBFFMergeTimingEffort high. Table 2.9 shows

a PPA comparison of the implementations produced by the conventional flow with no

use of MBFFs and conv. MBFF and our MBFF-opt, in which conv. MBFF yields
8The values in columns Conv. MBFF and MBFF-opt indicate reduction rate on PPA, which is the

outcome of Conv. No-banking minus Conv. MBFF or MBFF-opt divided by Conv. No-banking.
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Table 2.8: Runtime of Steps 1, 2, and 3 in MBFF-opt.

Circuit
Runtime(s)

Step 1 Step 2 Step 3

MEM CTRL <1 1 93

USB FUNCT <1 397 282

AES CIPHER <1 699 364

WB CONMAX <1 436 2

ETHERNET 7 510 659

DES3 5 1071 720

NOVA 17 12955 660

Average 4 2295 397
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Figure 2.11: Changes of ILP runtime as the number of 4-bit MBFF instances changes

in Step 3.
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better designs in terms of WNS and TNS compared to the conv. MBFF results shown

in Table 2.7. Table 2.9 demonstrates that our MBFF-opt further improves WNS, TNS,

and #DRVs compared to both the conv. MBFF and Conv. No-banking designs. On

average, the area improvement rate achieved by the conv. MBFF and MBFF-opt is

-0.6% and -0.8%, respectively. These results show that our MBFF-opt performs well

in mitigating potential timing and routability issues, even in highly timing-optimized

designs.
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Chapter 3

Minimally Allocating Always-on State Retention Stor-

age for Supporting Power Gating Circuits

3.1 Motivations

• Dealing with cycles, including self-loops: The cycles in a flip-flop dependency

graph make the allocation problem hard to be solved optimally since at least one flip-

flop in every cycle should be replaced with a flip-flop with retention storage, otherwise

we have no idea which flip-flop(s) should initiate the state restoration. All the exist-

ing works, as a preprocessing step, cut the cycles to produce a flip-flop dependency

graph G(V,A′) with no cycle, and apply their allocation algorithms to G(V,A′). For

example, in [3], an iterative heuristic based on the minimum cost feedback vertex set

(MFVS) [40] is used to break all cycles with a minimal number of cuts. Note that

the pre-processing step worsens the allocation quality due to the fact that the mini-

mal cycle-cut is an NP-hard problem and the cycle-cut process in all existing works is

completely decoupled from their allocation algorithms. For example, Figs. 3.1(a) and

(b) show two possible cycle-cut results (labeled G1 and G2) on a flip-flop dependency

graph with two cycles f1 → f2 → f1 and f1 → f2 → f5 → f1. Then, Figs. 3.1(c)

and (d) respectively show optimal MBRFF allocations with wakeup latency constraint
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l = 3 for G1 and G2 in Figs. 3.1(a) and (b), in which G1 uses 4 retention bits while

G2 uses 3. On the other hand, our proposed optimal algorithm performs cutting cycles

and allocating MBRFFs simultaneously.

𝑓2𝑓1

𝑓3 𝑓4

𝑓5

x

x
(a) Acyclic graph (G1) produced by cutting

f2 → f1 and f5 → f1.

𝑓2𝑓1

𝑓3 𝑓4

𝑓5x

(b) Acyclic graph (G2) produced by cutting

f1 → f2.

3-bit

𝑓1
𝑓2

1-bit

𝑓4

𝑓5

𝑓3

(c) Optimal MBRFF allocation with l = 3 for

G1 in (a), using 4 total bits.

3-bit

𝑓2
𝑓5

𝑓3

𝑓1

𝑓4

(d) Optimal MBRFF allocation with l = 3 for

G2 in (b), using 3 total bits.

Figure 3.1: Example illustrating the effect of cycle-cut on allocation quality.

• Impact of wakeup latency constraint: More saving on retention storage is generally

expected as we increase the value of wakeup latency constraint l. Fig. 3.2 shows a

comparison of the amount of retention storage reduction when l is set to 2, 3, and

4 clock cycles, saying that for l exceeding 3, very little saving is achieved. In other

words, l = 2 or 3 suffices for MBRFF allocation. Consequently, we focus on the

MBRFF allocation problems for l = 2 and l = 3, and propose optimal solutions to

both of l = 2 and l = 3.

• Supporting multiple objective functions: All existing MBRFF allocation algo-

rithms target one objective, which is to minimize the total number of retention bits

because it indirectly minimizes the leakage power on retention storage or total reten-
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circuits when the wakeup latency constraint l is set from 1 to 2, 1 to 3, and 1 to 4 clock

cycles.

tion area. Table 3.1 shows the leakage power on the retention storage in MBRFFs in

Synopsys generic library (using a tri-state buffer between latches) and [1] (using delay

buffers and transmission gate between latches), explaining that for some MBRFF im-

plementation, there is a big mismatch between the leakage power in retention storage

of k-bit MBRFF and the k times of the leakage power on 1-bit MBRFF. In addition,

Table 3.2 shows the area of MBRFFs in Synopsys generic library and [1], indicating a

trend similar to that in the leakage power. Thus, for minimizing leakage power or total

area, it is necessary to use the leakage power or total area as the direct cost function to

be minimized rather than using total retention bits. So far, no works have considered

those cost functions in their allocation algorithms. Our proposed algorithm accepts the

three objectives of total bits, leakage, and area.

3.2 Optimal MBRFF Allocation Algorithm for l = 2

Our MBRFF allocation algorithm called MBRFF-opt accepts the original flip-flop

dependency graph, G(V,A), of a target circuit for power gating as input. Then, it
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Table 3.1: Leakage power on the always-on retention storage in k-bit MBRFFs in

Synopsys 32nm generic library and Chen [1].

k Synopsys (nW) ratio Chen [1] (nW) ratio

1 61.96 1.00 40.50 1.00

2 137.77 2.22 80.89 1.99

3 197.69 3.19 121.28 2.99

Table 3.2: Area of k-bit MBRFFs in Synopsys 32nm generic library and Chen [1].

(k = 0 indicates flip-flop with no retention storage.)

k Synopsys (um2) ratio Chen [1] (um2) ratio

0 (no ret.) 6.608 - 6.610 -

1 13.215 1.00 11.183 1.00

2 18.502 1.79 14.233 1.67

3 23.780 2.60 17.283 2.33
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performs three steps: (1) MBRFF-opt transforms G into G′ by node replication to fa-

cilitate generating every segment that corresponds to an MBRFF allocation; (2) It finds

a set of segments that can cover G′ with no overlap such that it produces a minimal

quantity of the total number of retention bits, total leakage power or total area of re-

tention storage; (3) MBRFF-opt allocates retention storage according to the covering

segments obtained in (2).

3.2.1 Transforming Flip-flop Dependency Graph

We illustrate why the original graph is required to be updated before applying the sub-

sequent step using an example of MBRFF allocation in Fig. 3.3, in which we want

to allocate MBRFFs of a minimal total number of retention bits for the flip-flop de-

pendency graph G in Fig. 3.3(a). Then, Fig. 3.3(b) lists all partial subgraphs (called

covering segments), each of which can be entirely allocated with a 1-bit or a 2-bit

MBRFF. Precisely, segments s1, · · · , s4 can be assigned with 1-bit MBRFFs while

s5, · · · , s8 assigned with 2-bit MBRFFs, but s7 and s8 can be removed since s7 ⊂ s5

and s8 ⊂ s5, and the costs of s7 and s8 are not smaller than that of s5.

Then, minimal covering segments for G are s2 and s5 (marked with red checking).

Fig. 3.3(c) shows the two-cycle state recovering process for the MBRFF allocation to

s2 and s5. However, the state of flip-flop f4 will not be restored since f2 never feeds

f4 during the wakeup cycles t1 and t2. Instead, if we choose covering segments s5

and s6 (marked with green checking), resulting in one more retention bits, the state

restoration process can be done successfully, as shown in Fig. 3.3(d). As a result, this

leads to transform G to G′ by including node replication for every node that is driven

by multiple flip-flops, so that s2 and s5 cannot be a complete cover on G′.

Precisely, we include a new node f41 and update the segments s4 and s6 as shown

in Fig. 3.3(e). Note that a node with self-loop will be duplicated as well. For example,

Fig. 3.4(b) shows the transformed graph G′ of the original graph G in Fig. 3.4(a), in

which f3 is replicated twice since f3 is driven by three flip-flops including f3 itself.
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𝑓1
𝑓3

𝑓2
𝑓4

(a) Flip-flop dependency

graph G.

Segments

X

X𝑠8

𝑠7𝑓1

𝑓2

𝑓3

𝑓4

𝑓1
𝑓3

𝑓4

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6 𝑓2
𝑓4

𝑓1
𝑓3

invalid

𝑓1 𝑓4

invalid

 





𝑓𝑖 : cost = 1 𝑓𝑖 : cost = 2

(b) Covering segments of G.

𝑓3

𝑓4

2-bit

𝑓1

𝑡 = 𝑡0 𝑡 = 𝑡2

1-bit

𝑓2

𝑡 = 𝑡1
𝑓3

𝑓4

2-bit

𝑓1

1-bit

𝑓2

𝑓3

𝑓4
2-bit

𝑓1

1-bit

𝑓2

Not restored

(c) Restoration process with red checked segments (s2, s5).

𝑓3

𝑓4

2-bit

𝑓1

𝑡 = 𝑡0 𝑡 = 𝑡2𝑡 = 𝑡1
𝑓3

𝑓4

2-bit

𝑓1 𝑓3

𝑓4
2-bit

𝑓1

2-bit

𝑓2

2-bit

𝑓2

2-bit

𝑓2

&

Restored

(d) Restoration process with green checked segments (s5, s6).

𝑓1
𝑓3

𝑓2
𝑓4 𝑓2

𝑓41

𝑓4

𝑓41

𝑓41𝑠4

𝑠6x

(e) Node replication and updating segments.

Figure 3.3: Example of transforming an original flip-flop dependency graph to a feasi-

ble covering graph for MBRFF allocation.
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Let P = {fj1 , fj2 , · · · } be the set of nodes (i.e., flip-flops) that drive fi in G. Node

replication rule is that: if |P | > 1, we replicate fi to produce R = {fi1 , fi2 , · · · , fim}

where m = |P | − 1 and all replicated nodes together with fi are collectively consid-

ered in G′ when generating edges and covering segments. Such node replication will

constrain that if we want to restore the state of fi in G with the help of its driving flip-

flops, all the driving flip-flops (i.e. P ) should be allocated with 2-bit MBRFFs since,

otherwise, it causes an incomplete state restoration, as illustrated in Figs. 3.3(c), (d),

and (e) where (incoming edge updating rule) R = {f41} is added to G′ with edge

f2 → f41 while deleting f2 → f4. This node replication and incoming edge updating

lead to the following fact:

Fact 1. Restoring the state of fi in G can be done by completing state restoration on

fi in G′ as well as all replicated nodes in its R. (The flip-flops in R are assumed to

have ‘virtual’ states.)

Fig. 3.4 shows a comprehensive example of node replication in G for generating fea-

sible covering segments. Since f3 in the flip-flop dependency graph in Fig. 3.4(a) has

three driving nodes f1, f2, and f3 (i.e., self-loop), two more nodes f31 and f32 are

created with edges f1 → f3 and f2 → f31 , as shown in Fig. 3.4(b).1

Except for f32 caused by self-loop, (outgoing edge updating rule) f3 and f31 in

G′ have outgoing edges to both f4 and f5, which are the flop-flops driven by f3 in G

to ensure that an MBRFF allocation to f3 in G can be done by allocating the MBRFF

to {f3, f31 , f32} in G′. This node replication and outgoing edge updating lead to the

following fact:

Fact 2. Allocating an MBRFF to a flip-flop fi in G can be done by allocating the

MBRFF to fi in G′ and MBRFFs of the same bit size to all nodes in its R. (The flip-

flops in R are assumed to be allocated with ‘virtual’ MBRFFs.)

Based on Facts 1 and 2, Fig. 3.4(c) shows all possible covering segments produced

from G′ in Fig. 3.4(b) where segments s1, · · · , s6 and s7, · · · , s11 are responsible for
1f3 → f32 is not shown since f3 and f32 are the same flip-flop.
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all possible 1-bit and 2-bit MBRFF allocations, respectively. In particular, segment s3

intends to allocate a 1-bit MBRFF collectively to {f3, f31 , f32} while segment s9 in-

tends to allocate a 2-bit MBRFF collectively to {f3, f31 , f32}. MBRFF-opt generates

all segments from G′ for 1-bit and 2-bit MBRFF allocations in a way to satisfy the

following fact:

Fact 3. Every segment of (i) single nodes and (ii) pairs of nodes with driving-driven

relation in G′ produced by MBRFF-opt is responsible for allocating exactly a distinct

MBRFF of 1-bit size for (i) and 2-bit size for (ii) in G.

3.2.2 Minimal-cost Covering for the Transformed Graph

Let S = {s1, s2, · · · } be the covering segments produced by Step 1 in MBRFF-opt.

Then, we formulate the problem of extracting a subset of S which has the minimal

quantity of each objective into a weighted unate covering problem (UCP) and solve it

optimally.

The weighted UCP [41] is, given a matrix M of m rows and n columns, for which

Mi,j is either 0 or 1, the problem of finding a column subset U with a minimum total

weight that satisfies

∃j∈UMi,j = 1,∀i ∈ {1, · · · ,m}. (3.1)

That is, the columns in the set U cover M in the sense that every row of M contains

an 1-entry in at least one of the columns of U , and there is no smaller-cost set that also

covers M . The matrix M is called constraint matrix.

We construct a constraint matrix with columns corresponding to S and rows cor-

responding to the flip-flops including replicated nodes. Mi,j = 1 if the flip-flop in the

ith row is in the covering segment in the jth column, and Mi,j = 0, otherwise. For

example, Fig. 3.5(a) shows the constraint matrix of the transformed flip-flop depen-

dency graph in Fig. 3.4(b), in which the matrix has eight rows, one for each flip-flop,

and eleven columns, one for each segment. The columns enclosed by red dashed lines
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𝑒7
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(a) An initial flip-flip dependency graph G

𝑓32

𝑓2 𝑓5

𝑓1 𝑓4𝑓3 𝑓6

𝑓31

(𝑒6)

(𝑒1)

(𝑒2)

(b) Graph G′ transformed from G by node replication and edge

updating

Segments

𝑓1

𝑓2

𝑓4

𝑓1 𝑓3

𝑠1

𝑠2

𝑠3

𝑠4

𝑠7

𝑠8

𝑠9

𝑠10

𝑠5 𝑓5

𝑠6

𝑓3 𝑓31 𝑓32

𝑓6

𝑓2

𝑓31

𝑠11

𝑓5

𝑓4𝑓3
𝑓31

𝑓32

𝑓4 𝑓6

𝑓2 𝑓5

𝑓𝑖 : cost = 1 𝑓𝑖 : cost = 2

(c) All covering segments for satisfying Facts 1 and 2

Figure 3.4: An illustration of node replication, edge updating, and segment generation

to maintain consistency, i.e., Fact 3, with the flip-flop state restoration process in G.
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𝒔𝟏 𝒔𝟐 𝒔𝟑 𝒔𝟒 𝒔𝟓 𝒔𝟔 𝒔𝟕 𝒔𝟖 𝒔𝟗 𝒔𝟏𝟎 𝒔𝟏𝟏
1 1 1 1 1 1 2 2 2 2 2

𝒇𝟏 X X

𝒇𝟐 X X X

𝒇𝟑 X X X

𝒇𝟑_𝟏 X X X

𝒇𝟑_𝟐 X X

𝒇𝟒 X X X

𝒇𝟓 X X X

𝒇𝟔 X X

(a)

2-bit

𝑓3
𝑓4

1-bit

𝑓1

1-bit

𝑓6

𝑓5
1-bit

𝑓2

𝑠1

𝑠2

𝑠9 𝑠6

(b)

Figure 3.5: (a) Construction of constraint matrix and UCP solution. (b) MBRFF allo-

cation for the solution in (a).

indicate a minimal-cost subset to cover all flip-flops and the sum of the weights of

those columns, which is 5, is the value of the minimum total cost.

3.2.3 Allocating MBRFFs According to Minimal-cost Covering

This step allocates an MBRFF to every covering segment extracted in Step 2. For

example, Fig. 3.5(b) shows the MBRFF allocation result according to the selection

of covering segments in Fig. 3.5(a) by Step 2 of MBRFF-opt. The validation of the

correctness of MBRFF allocation results by MBRFF-opt is supported by Lemma 1

and Theorem 1.

Lemma 1. For every cycle, including self-loop in G, MBRFF-opt with l = 2 allocates

1-bit or 2-bit MBRFF(s) to at least one flip-flop in the cycle.

Proof. If a cycle in G is self-loop, the self-loop flip-flip will be duplicated in G′.

According to the incoming edge updating rule, the duplicated node, say fd, (e.g., f32

in Fig. 3.4(b)) has no incoming edge. Thus, to cover fd, UCP solver must select a

segment containing fd for triggering the state restoration. If a cycle in G is not self-

loop, the cycle has at least two nodes in G′ with driving-driven relation, say fi → fj .

If no MBRFF were allocated to fj , UCP solver will select a segment consisting of fi
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and fj to cover fj , resulting in allocating a 2-bit MBRFF to fi; if no MBRFF were

allocated to fi, by Fact 2 UCP solver will select a segment containing fj to cover fj ,

resulting in allocating 1-bit or 2-bit MBRFF to fj .

The abundance of self-loop flip-flops in circuits i.e., 62%∼87%, as summarized in

Table 3.3 and the claim in Lemma 1 clearly explain the inherent ineffectiveness of

further reducing the total bits of retention storage even though the wakeup latency l

increases to over 3, as shown in Fig.3.2 in Sec. 3.1.

Theorem 1. MBRFF-opt allocates MBRFFs optimally while ensuring a correct and

non-conflicting state restoration with l = 2.

Proof. Since UCP solver (i.e., Step 2 of MBRFF-opt) selects a subset of non-overlapping

covering segments to cover G′ such that it has the least total cost, it directly leads to

an optimal MBRFF allocation according to Fact 3. In addition, the correctness of the

state restoration is justified by the node replication in G together with edge updating

to satisfy Facts 1 and 2 as well as by generating covering segments for G′ to satisfy

Fact 3.

3.3 Extending Optimality of MBRFF-opt for l = 3

3.3.1 Extending Node Replication and Edge Updating

Since l is set to 3, MBRFF-opt needs to consider allocating 3-bit MBRFFs besides

1-bit and 2-bit MBRFFs. Thus, MBRFF-opt requires covering segments of the form

fi → fj → fk. MBRFF-opt applies the rules of node replication and edge updating to

G, assuming l = 2, to produce G′. Again, MBRFF-opt applies node replication and

edge updating for the nodes in G′ driven by the nodes that were involved in replication

in G′ to produce G′′, so that G′′ allows to generate all segments of the form fi → fj →

fk. We illustrate the construction of G′′ using G in Fig. 3.4(a). First, we construct G′

as shown in Fig. 3.6(a) from G to satisfy Facts 1, 2, and 3. Then, we construct G′′ as
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shown in Fig. 3.6(b) from G′ by duplicating f4 and f5 and updating edges following

the rules in Sec. 3.2.1. Thus, G′′ contains R = {f41} for f4 and R = {f51} for f5 in

addition to R = {f31 , f32} for f3, all of which are required to support Facts 1 and 2.

Fig. 3.6(c) shows all segments produced by MBRFF-opt from G′′ for 1-bit, 2-bit, and

3-bit MBRFF allocations in a way to satisfy the following fact:

Fact 3 (extended). Every segment of (i) single nodes (ii) pairs of nodes, and (iii) triples

of nodes with driving-driven relation in G′′ produced by MBRFF-opt is responsible

for allocating exactly a distinct MBRFF of 1-bit size for (i), 2-bit size for (ii), and 3-bit

size for (iii) in G.

Fig. 3.7 shows the constraint matrix of G′′ in Fig. 3.6(b). The columns enclosed

by red dashed lines indicate a minimal-cost subset to cover all flip-flops. The sum of

the weigths of those columns, which is 4, corresponds exactly to a minimum total cost

of MBRFF allocation as shown in Fig. 3.7(b).

It is quite straightforward to prove the extended versions of Lemma 1 and Theorem

1 for l = 3. (We omit the proofs.)
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3-bit MBRFFs
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(c) All covering segments for satisfying Facts 1 and 2.

Figure 3.6: An illustration of node replication, edge updating, and segment generation

to maintain consistency, i.e., Fact 3 (extended), with the flip-flop state restoration pro-

cess in G.
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𝑓5

𝑠1
𝑠14

𝑓2

𝑓6
3-bit

𝑓3

(b)

Figure 3.7: (a) Construction of constraint matrix and UCP solution. (b) MBRFF allo-

cation for the solution in (a).

3.4 Experimental Results

We implemented our optimal MBRFF allocation algorithm MBRFF-opt in C++ and

solved the weighted UCPs by linking to CPLEX [42]. IWLS benchmark circuits [5]

are used to compare our MBRFF allocation results with that of the existing best-known

heuristic (Fan [2]) which used MFVS technique [40] to cut cycles in the flip-flop de-

pendency graphs of the circuits. The benchmark circuits were synthesized and imple-

mented using Synopsys Design Compiler and IC Compiler with Synopsys 32/28nm

Generic Library that contains standard cells of retention flip-flops. We set the oper-

ating clock frequency to 200MHz for all circuits. We performed our experiments on

4.7GHz Intel Core machine under the Linux operating system with 64GB memory.

Table 3.3 shows the detailed benchmark circuit information, including the number

of flip-flops (“#FFs”), the number of edges (“#Edges”), and the number of self-loop

flip-flops (“#Self-loop FFs (ratio)”) in the flip-flop dependency graphs of the circuits.
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Table 3.3: IWLS benchmark circuits

Circuit #FFs #Edges #Self-loop FFs (ratio)

SPI 229 3690 195 (85%)

WB DMA 523 7351 328 (62%)

WB CONMAX 818 12174 658 (80%)

MEM CTRL 1118 59954 872 (78%)

USB FUNCT 1737 19876 1245 (72%)

AC97 CTRL 2199 14891 1723 (78%)

PCI BRIDGE32 3403 78633 2973 (87%)

(a) (b) (c) 

Figure 3.8: MBRFF distribution of the allocation results for MEM CTRL in Table 3.4

and 3.6 where the green, yellow, and red small rectangles indicate 1-bit, 2-bit, and 3-bit

MBRFFs, respectively. (a) Distribution by Fan [2] in Table 3.4 and 3.6. (b) Distribu-

tion by MBRFF-opt in Table 3.4, reducing 2-bit MBRFFs by 42 at the expense of 4

more 3-bit MBRFFs. (c) Distribution by MBRFF-opt in Table 3.6, which optimizes

total area by using 11 more 3-bit MBRFFs over that in (a).
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Table 3.7: Problem sizes before and after partitioning flip-flop dependency graphs for

large circuits.

Circuit #FFs #Edges
Before partition After partition (total)

#Segments #Nodes #Segments #Nodes

MEM CTRL 1118 59954 2852 5268K 2411 741K

PCI BRIDGE32 3403 78633 9747 1344K 5157 422K

DES PERF 8808 34736 26176 207K 23973 77K

ETHERNET 10544 248887 30927 2752K 13466 150K

3.4.1 Minimizing Total Number of Bits of Retention Storage

To demonstrate the efficacy of MBRFF-opt on minimizing the total number of re-

tention bits, we set the costs of the covering segments to the bit sizes of MBRFFs

accordingly while constraining the wakeup latency (l) to 2 and 3. Table 3.4 summa-

rizes the comparison of the results, in which the values in column “#x-bit RFF” are

the numbers of x-bit MBRFFs used by Fan [2] and MBRFF-opt, and the values in

column “#RetBits” are the total numbers of retention bits. Note that the flip-flops with

primary inputs were included in the vertex set of flip-flop dependency graph for fair

comparison with the previous work. Column “Run time (sec)” indicates the run time

spent by MBRFF-opt.

We partition the flip-flop dependency graphs of the circuits MEM CTRL, PCI BRIDGE32,

and two additional circuits marked by “*” in Table 3.4, 3.5 and 3.6 into several sub-

graphs by using KL (Kernighan-Lin) min-cut partitioning heuristic, modifying KL

to max-cut on nodes with many fanin flip-flops, to reduce the problem complexity

in terms of the number of node replications and covering segments before applying

MBRFF-opt with l = 3. Table 3.7 summarizes the reduction in the number of nodes

and covering segments for the transformed graphs (i.e., G′′ in Sec. 3.3.1 by the parti-

tioning). The comparison in Table 3.4 shows that MBRFF-opt is able to save 3.42%
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more retention bits over the best-known algorithm Fan [2]. In addition, we can find

that the existing algorithm ([2]) performs well for l = 2 as its MBRFF allocations are

nearly close to or the same as our optimal ones for l = 2.

3.4.2 Minimizing Total Leakage Power on Retention Storage

To demonstrate the efficacy of MBRFF-opt on minimizing total leakage power on the

always-on retention storage, we set the covering segment costs to the (normalized)

leakage powers on the retention storages in MBRFF implementations in Synopsys

generic library. Table 3.5 shows the comparison of the leakage power consumed by

Fan [2] and MBRFF-opt. Specifically, MBRFF-opt reduces the leakage power by

3.38% further for circuit WB CONMAX when l = 2 and 5.58% further for USB FUNCT

for l = 3. In particular, for DES PERF, MBRFF-opt saves the leakage power by 9.91%

when l = 3, which clearly reveals that MBRFF-opt employing the KL based graph

partitioning for large circuits works well.

3.4.3 Minimizing Total Area of Retention Storage

We set the covering segment costs to the (normalized) implementation area of the

retention storage in the MBRFF implementations by [1]. Table 3.6 shows the com-

parison of retention storage area used by Fan [2] and MBRFF-opt, in which “#FFs

(µm2)” means total original flip-flop area. Specifically, MBRFF-opt reduces the area

by 4.46% further for DES PERF when l = 3.

Figs. 3.8(a) and (b) show the distribution of the MBRFFs in layouts of circuit

MEM CTRL produced by Fan [2] and MBRFF-opt for l = 3 with the objective of

minimizing total bits of retention storage in Table 3.4. The comparison shows that

MBRFF-opt reduces the number of 2-bit MBRFFs (yellow ones) from 77 to 28 at the

expense of 4 more 3-bit MBRFFs (red ones). On the other hand, Fig. 3.8(c) shows the

distribution of the MBRFFs in layouts of circuit MEM CTRL produced by MBRFF-opt

for l = 3 with the objective of minimizing total area in Table 3.6.
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Chapter 4

Further Consideration

4.1 Multi-bit Flip-flops in Power Gated Circuits

For power-gated circuits, each flip-flop has its own state retention storage [43, 44, 6],

commonly implemented with a high-Vt latch, to retain the flip-flop state during the

sleep period of the circuits. Fig. 4.1 shows a typical flip-flop used in power gated cir-

cuits, in which signal RETAIN is set to high just before entering sleep mode so that

the latch should retain the flip-flop state or just before waking up so that the flip-flop

should restore the retained state from the latch. Since the state retention storage is non-

trivial in terms of power and area, retention storage of non-uniform size is proposed to

save the total bits of retention storages [45, 13, 46, 47, 6, 37]. For example, Figs. 4.2(a)

and (b) show respectively, for the same flip-flop dependency graph of circuit, the reten-

tion storage allocation of a total of 3 bits with two clock cycles of wakeup latency and

the naive allocation of a total of 4 bits, one for each flip-flop, with one cycle of latency.

Consequently, in terms of power and cell area, the allocation in Fig. 4.2(a) is preferred.

However, in view of chip implementation with multi-bit flip-flops, the inefficiency of

the non-uniform storage allocation like that in Fig. 4.2(a) is outstanding: As illustrated

with 4-bit MBFF cells in Figs. 4.2(c) and (d), the MBFF cell in Fig. 4.2(c) requires

multiple RETAIN signals to drive save/restore to flip-flops f1 and f4 differently while
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Figure 4.1: Retention flip-flop structure used in power gated circuit [6].

the cell in Fig. 4.2(d) needs just a single RETAIN signal. In addition, the regularity of

the MBFF cell layout in Fig. 4.2(d) is superior to that in Fig. 4.2(c), even with no waste

of layout space. To sum up, the decision on choosing one of the options of MBFF cells

in power gated circuits should be made with a comprehensive consideration of the

target design goals and constraints.
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Figure 4.2: Illustration of state retention storage allocation on a flip-flop dependency

graph. (a) Total of 3 bits with latency of two clock cycles using non-uniform retention

storage. (b) Total of 4 bits with latency of one clock cycle using uniform retention

storage. (c) 4-bit MBFF cell corresponding to the allocation in (a). (d) 4-bit MBFF cell

corresponding to the allocation in (b).
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Chapter 5

Conclusions

5.1 Chapter 2

In Chapter 2, we addressed two new inherent and challenging problems related to

multi-bit flip-flop (MBFF) cells in physical design, which are (1) non-flexible MBFF

cell flipping for multiple D-to-Q signals and (2) unbalanced or wasted use of MBFF

footprint space. We tackled the two problems in a way to enhance chip routability and

timing at the placement and routing stages. Specifically, for problem 1, we resolved the

non-flexible MBFF cell flipping to be fully flexible by generating MBFF layouts sup-

porting diverse D-to-Q flow directions in the detailed placement to improve routability

while for problem 2, we enhanced the setup time and clock-to-Q delay on timing crit-

ical internal flip-flops in MBFF cell instances through transistor upsizing by utilizing

the unused space in MBFFs to improve timing slack at the post-routing stage. Our ex-

periments with benchmark circuits showed that our proposed DTCO flow optimizing

MBFF cells amenable to the target circuit solved the two problems very effectively,

producing chip implementations with 20.5% fewer design rule violations and 47.7%

reduced worst negative timing slack with a little power fluctuation than that produced

by the conventional design flow with MBFFs.
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5.2 Chapter 3

In Chapter 3, we proposed an optimal MBRFF allocation algorithm by formulating

the problem into a weighted unate covering problem, supporting three objectives of

minimizing total bits of state retention storage, total leakage power consumed by the

always-on retention storage, and total implementation area of the retention storage.

According to design objectives, our algorithm could always guarantee optimal MBRFF

allocations in terms of a weighted sum of total bits of storage, total leakage power,

and total implementation area. Besides, it should be noted that our MBRFF allocation

algorithm can seamlessly link to the allocation of multi-bit flip-flops (MBFFs) either

before or after the step of MBFF allocation and also can seamlessly apply to the flip-

flop dependency graph created using selected essential flip-flops from [30].
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초록

고속및저전력칩구현의물리적설계에서는다중비트플립플롭(multi-bit flip-

flop)의 합성 및 상태 보존 저장소(state retention storage) 할당 문제가 중요한 문제

이다. 본 논문에서는 대상 디자인 설계의 성능과 전력 소비를 향상시킬 수 있는 두

가지의저장소합성및할당방법론을제안한다.

먼저,본논문에서는스탠다드셀배치및라우팅단계에서라우팅가능성과타

이밍을향상시키기위해다중비트플립플롭셀을활용한설계및기술공동최적화

플로우를 제안한다. 구체적으로 다양한 D-to-Q 플로우 방향을 지원하는 다중 비트

플립플롭 셀 레이아웃을 생성함으로써 비융통성 있는 다중 비트 플립플롭 셀의 뒤

집기를완전히유연하게만들고,다중비트플립플롭내의미사용공간을이용하여

다중비트플립플롭의타이밍크리티컬한플립플롭의셋업시간(setup time)및클럭-

큐(Q)딜레이(clock-to-Q delay)를향상시킨다.최신공정을적용한벤치마크회로에

대한 실험을 통해, 제안된 다중 비트 플립플롭을 사용한 설계 및 기술 공동 최적화

플로우가 대상 디자인의 라우팅 가능성과 타이밍 여유를 크게 향상시킬 수 있음을

보인다.

두번째로,본논문에서는전력게이팅이적용된디자인에서최적으로상태보존

저장소를할당하는알고리즘을제안한다.구체적으로,우리는깨움대기시간제약

조건(wakeup latency constraint)을 2와 3클록주기로제한하는할당문제를단방향

커버링문제로변환하고,총보존저장소비트를최소화하는것,보존저장소에의해

직접소비되는총누설전력을최소화하는것,그리고보존저장소의총구현영역을

최소화하는것과같은세가지목적옵션을사용한최적할당알고리즘을제안한다.

28나노 공정을 적용한 벤치마크 회로에 대한 실험을 통해, 제안된 보존 저장소의
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할당알고리즘이가장최근에제안된휴리스틱한방법으로보존저장소를할당하는

알고리즘에 비해 깨움 대기 시간 제약 조건을 3으로 설정할 때 보존 저장소의 총

비트,총누설전력,그리고총구현영역을더감소시킬수있음을보인다.

주요어:다중비트플립플롭합성,설계및기술공동최적화,트랜지스터크기조정,

보존저장소할당,전력게이팅,누설전력

학번: 2018-20366
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