creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Storage Synthesis and Optimization
Algorithms for High-speed and
Low-power Chips

TS B AR A 97 A% B0 A D H A
FelZ
BY
SOOMIN KIM
AUGUST 2023

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



Ph.D. DISSERTATION

Storage Synthesis and Optimization
Algorithms for High-speed and
Low-power Chips

TS B AR A 97 A% B0 A D H A
FelZ
BY
SOOMIN KIM
AUGUST 2023

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY



Storage Synthesis and Optimization
Algorithms for High-speed and

Low-power Chips

]

o

20234 8

or

Ho

J_,NO

A7

ToH

]

o

20234 8

5t

3 ool
0| | co

OSSN

2 A
g

o 2o 1l o1 o
=

—

o o

OF 1F 3F oF oF




Abstract

In the physical design of high-speed and low-power design implementation, multi-
bit flip-flop synthesis and retention storage allocation problem are important issues.
This dissertation presents two methodologies related to storage synthesis and alloca-
tion that can contribute to improving the performance and power consumption of the
target design.

Firstly, we propose a design and technology co-optimization (DTCO) flow utiliz-
ing multi-bit flip-flop cells in a way to enhance routability and timing at the placement
and routing stages. Precisely, we make the non-flexible MBFF cell flipping to be fully
flexible by generating MBFF layouts supporting diverse D-to-Q flow directions, and
enhance the setup and clock-to-Q delay on timing critical flip-flops in MBFF through
gate upsizing (i.e., transistor folding) by using the unused space in MBFFE. Through
experiments with benchmark circuits in advanced node, it is shown that our proposed
DTCO flow using MBFFs is very promising to improve routability and timing slack in
chip implementation.

Secondly, we propose an optimal solution to the problem of allocating state reten-
tion storage in power gated circuit. Precisely, we transform the allocation problems
constraining the wakeup latency constraint 1 to 2 and 3 clock cycles into unate cover-
ing problems and solve them optimally with three objective options: minimizing total
bits of retention storage, directly minimizing total leakage power consumed by reten-
tion storage, and minimizing total implementation area of retention storage. Through
experiments with benchmark circuits, it is shown that our optimal algorithm is able
to further reduce the total bits of retention storage, the leakage power on retention
storage, and the retention storage area while 1 is set to 3 over that produced by the

conventional best-known allocation heuristic.



keywords: multi-bit flip-flop synthesis, DTCO, transistor sizing, retention storage
allocation, power gating, leakage power

student number: 2018-20366

ii



Contents

Abstract i
Contents ii
List of Tables iv
List of Figures vi
1 Introduction 1
1.1 Multi-bit Flip-flop Methodology . . . . . .. ... ... ... .. 1
1.2 State Retention Storage Allocation on Power Gated Circuit 5
1.3 Contributions of this Dissertation . . . . .. .. ... ... ...... 10

2 Enhancing Design Qualities Utilizing Multi-bit Flip-flops: A Design and
Technology Co-optimization Driven Approach 13
2.1 Key Observations and Enabling Optimization Directions . . . . . . . 13
2.2 DTCO Framework for Multi-bit Flip-flops . . . . ... ... ... .. 18
2.2.1 TheProposed DTCOFlow . . . .. ... ........... 18
2.2.2  D-to-Q Flow Optimization . . . . ... ... ... ...... 18
2.2.3  Timing-driven D-to-Q Flow Refinement . . . . . . . ... .. 27
2.2.4  Timing Optimization at Post-Route Stage . . . . . . ... .. 31
2.3 Experimental Results . . . . . ... ... ... . ... ... ... 39

2.3.1 Experimental Setup . . . . . . ... ... ... ... ..... 39

ii



2.3.2  Comparing MBFF-opt with Conventional MBFF Allocation .
2.3.3  Comparing MBFF-opt with Conventional No-Banking Flow .
2.3.4 Runtime Analysis of MBFF-opt . . . . ... ... ... ...
2.3.5 Comparing MBFF-opt with Conventional No-Banking flow

with more timing-optimized MBFF banking design . . . . . .

3 Minimally Allocating Always-on State Retention Storage for Supporting

Power Gating Circuits

3.1 Motivations . . . . . ...

3.2 Optimal MBRFF Allocation Algorithm for /=2 . . . . . . ... ...
3.2.1 Transforming Flip-flop Dependency Graph . . . . .. .. ..
3.2.2 Minimal-cost Covering for the Transformed Graph . . . . . .
3.2.3 Allocating MBRFFs According to Minimal-cost Covering . .

3.3 Extending Optimality of MBRFF-optfor{=3 . ... ... .....
3.3.1 Extending Node Replication and Edge Updating . . . . . . .

3.4 Experimental Results . . . .. ... ... ... .. ... . ...
3.4.1 Minimizing Total Number of Bits of Retention Storage . . . .
3.4.2 Minimizing Total Leakage Power on Retention Storage . . . .

3.4.3 Minimizing Total Area of Retention Storage . . . . . . . . ..

4 Further Consideration

4.1 Multi-bit Flip-flops in Power Gated Circuits . . . . . . ... ... ..

5 Conclusions
5.1 Chapter2 . . . . . . . e
5.2 Chapter3 . . . . . . . e

Abstract (In Korean)

iii

42

47

47

51
51
53
55
58
60
61
61
64
69
70
70

71
71

75
75
76

85



2.1

2.2

23
24
2.5

2.6
2.7

2.8

List of Tables

Timing (setup time + clock-to-Q delay) on the flip-flops fi, f2, f3, and
f11n Fig. 2.2 as the transistor upsizing (i.e., folding) to level-1, level-2,
and level-3 is applied to each of f; and f4 without increasing cell size. 17
Wirelength reduction between D; and tZD (AW Lp), and QQ; and tl-Qj
(AWLQJ.) for all cases in Fig. 2.4. (isRevDir() is described in Algo-

rithm. 1) . . . . . 28
Notations used in our ILP formulation . . . . . ... ... ... ... 35
IWLS benchmark circuits used for the experiments. . . . . . ... .. 42

PPA comparison of the implementations produced by Conv. MBFF
andour MBFF-opt. . . . ... ... ... .. 43
The number of MBFF cell instances replaced by our MBFF-opt. . . . 45
PPA comparison of the implementations produced by Conv. No-banking,
Conv. MBFF, and our MBFF-opt. The unit of Conv. MBFF and
MBFF-opt is percentage(%) and the blue-colored numbers indicate
improvement in comparison with that in Conv. No-banking. . . . . . 46

Runtime of Steps 1,2, and 3 in MBFF-opt. . . .. ... ... .. .. 48

v



2.9

3.1

3.2

33
34

3.5

3.6

3.7

PPA comparison of the implementations produced by Conv. No-banking,
Conv. MBFF, and our MBFF-opt using high timing effort to merge
and split MBFF. The unit of Conv. MBFF and MBFF-opt is percent-
age(%) and the blue-colored numbers indicate improvement in com-

parison with that in Conv. No-banking. . . . . ... ... ... ... 50

Leakage power on the always-on retention storage in k-bit MBRFFs
in Synopsys 32nm generic library and Chen [1]. . . . ... ... .. 54
Area of k-bit MBRFFs in Synopsys 32nm generic library and Chen
[1]. (k = 0 indicates flip-flop with no retention storage.) . . ... .. 54
IWLS benchmark circuits . . . . . . . .. ... ... ... ... 65
Comparisons of the effectiveness of the existing best-known MBRFF
allocation algorithm (Fan [2]) and our MBRFF-opt in total bits of
retention storage of view. (“*” indicates the circuit is partitioned to a
manageable size.) . . . . . . ... .. 66
Comparisons of the effectiveness of the existing best-known MBRFF
allocation algorithm (Fan [2]) and our MBRFF-opt in total leakage
power on retention storage of view. (“*” indicates the circuit is parti-
tioned to a manageable size.) . . . . . . . .. ... ... 67
Comparisons of the effectiveness of the existing best-known MBRFF
allocation algorithm (Fan [2]) and our MBRFF-opt in total imple-
mentation area of retention storage of view. (“*” indicates the circuit
is partitioned to a manageable size.) . . . ... ... ... ... ... 68
Problem sizes before and after partitioning flip-flop dependency graphs

for large circuits. . . . . . . . . ... 69



1.1

1.2

1.3

1.4

1.5

1.6

2.1

List of Figures

(a) Structure of two 1-bit flip-flops. (b) Structure of 2-bit MBFF merg-
ing the two 1-bit flip-flopsin(a). . . . . . ... ... ... ... ...
Comparison of clock tree structure of circuit using (a) 1-bit flip-flops
and (b) 4-bit multi-bit flip-flops. . . . . . ... ...
Examples illustrating two physical limitations that hinder an extensive
use of MBFF cells. (a) Non-flexible cell flipping. (b) Space waste in
cell layout. . . . . . . ..
The internal structure of k-bit MBRFF in [3]. The blue and red translu-
cent lines indicate the flow of state saving and restoration, respectively.
Ilustration of cycle-by-cycle state restoration for the MBRFF alloca-
tion. Initially, at time ¢g flip-flip f; retains 3 states and f3 2 states. Dur-
ing the following three cycles, the states of flip-flops are set through
the retention storage or logic propagation from their driving flip-flops.
Comparison of uniform and non-uniform MBRFF allocations in terms

of total retention bits and control network overhead. . . . . . . . . ..

Effectiveness of cell flipping on reducing route cost. (a) Flipping a
single-bit flip-flop: Fully effective. (b) Flipping an MBFF: Partially or
little effective. (c) Flipping individual D-to-Q flows in MBFF: Fully

effective. . . . . . e e e

vi

|



2.2

23

24

2.5

2.6

2.7

Utilization of the empty space induced by the clock inverter sharing
in MBFFs. (a) A CMOS circuit of DFFHQNX1 cell in ASAP7nm [4]
constructed from two CMOS latches. (b) Layout of DFFHQNx1 cell
in ASAP7nm. (¢) An MBFF composed of four stacked DFFHQNX1
cells with clock inverters in the middle. (d) Upsizing transistors in f;
and f; by folding on the transistors of Ul, M3, or M4 in (a) to the
EMPLY SPACE. . . . v v e e e e e e e e e e e
Our proposed DTCO flow MBFF-opt for synthesizing and utilizing
MBFFs that are most suitable for target designs. The objective in Step
1 is to improve chip routability and Step 2 is to improve timing in
global routing stage as well as chip routability while the objective in
Step 3 is to resolve timing violations in association with MBFF timing.
Analysis of z-coordinate relation between D;, Q;, tP, and tiQ where
Z(A, B) represents the interval between A and B in x-coordinate and
x(A) denotes the z-coordinate of A. (a) Z(D;,Q;) C Z(tP tQ). (b)

[

I(tP,t¢) C I(Di, Qs). () {x(tP) € T(Dys, Qy), x(t?) ¢ T(Dy, Q:)}

or {z(tP) ¢ T(Di, Q;), z(t9) € T(Di, Qi)Y (d) T(Dy, Q))NT (P 12) =

107

lustration of covering every D-to-Q flow combination of 4-bit MBFF
byusing6cells. . . .. .. ...
Proposed flow of timing-driven D-to-Q flow refinement by MBFF re-
placement. . . . . . . ... ...
Example of finding an optimal flip-flop reordering. (a) An MBFF in-
stance with timing violation on the route path (red color) to pin D2.
(b) Mapping function ¢ and computation of the values of 57 (¢(+)). (c)
Bipartite graph G(V'1,V2, W) of the MBFF instance in (a). (d) Re-

ordered MBFF instance according to the solution of maximal match-

vii

19



2.8 Timingelaborationflow . . .. ... ... ... .. ... . ..., .
2.9 Three different flows of placement and routing conducted in our ex-
periments. (a) Conv. No-banking: Conventional flow with no use of
MBFFs. (b) Conv. MBFF: Conventional flow with use of MBFFs im-
posing non-flexible of flipping and footprint waste. (c) MBFF-opt:
Our proposed flow with use of MBFFs resolving non-flexible of flip-
ping and footprint waste in a way to enhance routability and timing.
2.10 Comparison of the distribution of DRVs (white crosses) and timing
violation registers (red rectangles) on the implementations of circuit
USB_FUNCT produced by Conv. MBFF and our MBFF-opt. (a) Conv.
MBFF: 104 DRVs and 75 timing violations. (b) MBFF-opt: 53 DRVs
and 21 timing violations. . . . . . . . .. ... ... ... ... ..
2.11 Changes of ILP runtime as the number of 4-bit MBFF instances changes

inStep3. . ..

3.1 Example illustrating the effect of cycle-cut on allocation quality. . . .
3.2 Comparison of retention storage reduction produced by [2] on IWLS
[5] circuits when the wakeup latency constraint [ is set from 1 to 2, 1
to3,and 1to4clockcycles. . . .. ... ... ... ... ......
3.3 Example of transforming an original flip-flop dependency graph to a
feasible covering graph for MBRFF allocation. . . ... ... .. ..
3.4 An illustration of node replication, edge updating, and segment gen-
eration to maintain consistency, i.e., Fact 3, with the flip-flop state
restoration processin G. . . . . ... ...
3.5 (a) Construction of constraint matrix and UCP solution. (b) MBRFF
allocation for the solutionin(a). . . . . ... ... ... .......
3.6 Anillustration of node replication, edge updating, and segment gener-
ation to maintain consistency, i.e., Fact 3 (extended), with the flip-flop

state restoration process in G. . . . .. ...

viii

41

52



3.7

3.8

4.1
4.2

(a) Construction of constraint matrix and UCP solution. (b) MBRFF
allocation for the solutionin(a). . . . .. .. ... ... .. .....
MBREFF distribution of the allocation results for MEM_CTRL in Ta-
ble 3.4 and 3.6 where the green, yellow, and red small rectangles in-
dicate 1-bit, 2-bit, and 3-bit MBRFFs, respectively. (a) Distribution by
Fan [2] in Table 3.4 and 3.6. (b) Distribution by MBRFF-opt in Ta-
ble 3.4, reducing 2-bit MBRFFs by 42 at the expense of 4 more 3-bit
MBRFFs. (c) Distribution by MBRFF-opt in Table 3.6, which opti-

mizes total area by using 11 more 3-bit MBRFFs over that in (a).

Retention flip-flop structure used in power gated circuit [6]. . . . . . .
Illustration of state retention storage allocation on a flip-flop depen-
dency graph. (a) Total of 3 bits with latency of two clock cycles using
non-uniform retention storage. (b) Total of 4 bits with latency of one
clock cycle using uniform retention storage. (c) 4-bit MBFF cell cor-
responding to the allocation in (a). (d) 4-bit MBFF cell corresponding

to the allocationin(b). . . . . . . . .. .. ... ... ...,

iX



Chapter 1

Introduction

1.1 Multi-bit Flip-flop Methodology

With a set of limited power and thermal budget constraints for modern ASIC de-
signs that are to be implemented with a huge number of transistors and intercon-
nects, minimizing the amount of power consumption is one of the utmost impor-
tant design objectives for diverse applications. Diverse methodologies aimed at mini-
mizing power consumption have been proposed, including clock gating [7], employ-
ment of multi-VT cells [8], dynamic voltage and frequency scaling(DVFS) [9], and
utilization of multi-bit registers [10]. Among them, one effective method to reduce
power consumption particularly on the flip-flops and driving clock networks is to
use multi-bit flip-flop (MBFF) (also called register bank and multi-bit bank) cells
[11, 12,10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

Fig. 1.1 compares the internal structures of two 1-bit flip-flops (left side) and their
functionally equivalent 2-bit MBFF (right side). The power saving on the 2-bit MBFF
is attributed by the sharing of the two clock inverters among the two master and two
slave latches. It is reported that 2-bit MBFF can save power by 14%, at the same time,
reducing the area by 4% [21]. Furthermore, as the number of inverters within the flip-

flops decreases, the leaf nodes of the clock tree also decrease, simplifying the structure



1-bit

D1 > Master — Slave ——»Ql 2-bit

—
—|>J\——I'$'| Master Slave

CLK : |
1-bit CLK +>» S

> — — 02
- { Master Slave Q D2 Master [ slave [T Q2

m—

(@) (b)

Figure 1.1: (a) Structure of two 1-bit flip-flops. (b) Structure of 2-bit MBFF merging
the two 1-bit flip-flops in (a).

of the clock tree as illustrated in Fig. 1.2. The number of clock tree buffers can also
be significantly reduced, leading to a potential reduction of up to 40% in clock power
consumption, according to the recent Polaris architecture [24] for GPUs (Here, clock
power is known to account for 20-35% of the total chip power, indicating its significant
impact on power consumption.).

Extensive studies have been conducted for grouping single-bit flip-flops to gener-
ate multi-bit flip-flops. [20, 21] grouped single-bit flip-flops during the logic synthesis
step. The work in [21] transformed the flip-flop grouping problem into an instance of
set cover problem on a conflict graph with the objective of minimizing flip-flop and
clock tree power consumption. In [10], flip-flops were grouped using the BFS algo-
rithm in gate-level designs, which resulted in advantageous control of the scan ring
structure and clock skew. There are also studies that conducted flip-flop grouping dur-
ing the placement stage [17, 16, 18]. The work in [18, 16] took into account saving
flip-flop power as well as reducing clock latency in placement. In [11, 22, 23, 12, 14],
MBFF grouping was conducted during the post-placement stage, which consisted of
two major steps: flip-flop clustering and MBFF placement. Clustering involves identi-

fying the feasible placement regions for each flip-flop and grouping together the flip-



(@) Clock tree structure using 1-bit flip- (b) Clock tree structure using 4-bit multi-
flops bit flip-flops

Figure 1.2: Comparison of clock tree structure of circuit using (a) 1-bit flip-flops and

(b) 4-bit multi-bit flip-flops.

flops that share common regions. The feasible region for each flip-flop is the intersec-
tion of the regions that indicate the maximum allowable distance (usually calculated
based on timing slack) from all the pins connected to the flip-flop. In [11, 22, 12, 14],
they used graph-based clustering with the goal of reducing total flip-flop power and
wirelength. The work in [23] utilizes graph-based clustering to minimize the total num-
ber of clock sinks and the total net switching power. MBFF placement involves consid-
ering placement density constraints. [14] proposed a placement algorithm that includes
capacity-constrained signal rerouting to improve routability. [11, 12] placed MBFFs
by creating an optimal bounding box using the coordinates of fan-in and fan-out pins
to minimize total wirelength. [23] proposed a weighted median interval to minimize
weighted total wirelength, that is total net switching power, for MBFF placement.
Recently, [25] tried to debank MBFFs to enhance the flexibility of the application of
useful clock skew scheduling and [19] used graph-based clustering with mixed-driving
MBFF to minimize the total number of clock sinks and the total net switching power

at the post-placement stage. However, to our knowledge, no work has considered the

e g ke

S |



diversification of MBFF layouts to enable design and technology co-optimization.

In practice, increasing the size of MBFF to accommodate many flip-flops imposes
two new challenging problems in physical design, which are (1) non-flexible MBFF
cell flipping and (2) unbalanced or wasted use of MBF'F footprint space. Details of the
two problems are described in the next two paragraphs.

MBFFs are in general constructed by stacking single-bit flip-flops to retain the
regularity of the internal cell layout. (One well-known example is shown in the TSMC
patent in [26].) This implies that the cell flipping, which has been used as a useful
technique in placement and routing to optimize design parameters (e.g., wirelength
and routability), is not always effectively applicable to MBFF cells. This is because
an MBFF cell flipping exactly means reversing all D-to-Q flow directions in the cell
and it does not mean selectively reversing the individual flow directions. For example,
for a 2-bit MBFF cell instance in a placement, shown in Fig. 1.3(a), with predictable
routability, either unflipping (upper one) or flipping (lower) the cell never help to im-
prove the routability to both flip-flops in the cell.

The second problem is space waste on MBFF footprint, as illustrated in Fig. 1.3(b).
Since one non-dummy gate poly is enough to implement each clock inverter in an
MBFF, noting that the advance of process technology below 64nm enables even a
minimum sized inverter to still drive multiple master and slave latches in flip-flops
without input slew violation [11], the space to occupy exactly two (non-dummy) gate
polys suffice to deploy the two internal clock inverters. As a result, for a 4-bit MBFF
cell shown in Fig. 1.3(b), the cell layout induces two empty spaces (gray color), one in

flip-flop f1 and the other in flip-flop f.



w'i _ o
% LﬁJ L f -é Master Slave _5,
’ !DZ—'QZI: I ’ _ = S
J &i’ f2 | 8 |Master | S| Slave | &
cell , = 3 5
— = (@)
= ’! L fs | 2| Master | =| Slave =
’ ﬁ:1Q1<—D1i E E 5
|
:lQ2<—DzL _ o
FF
’ fa 'é Master Slave .§~

Flipped C;

(a) (b)

Figure 1.3: Examples illustrating two physical limitations that hinder an extensive use

of MBFF cells. (a) Non-flexible cell flipping. (b) Space waste in cell layout.

1.2 State Retention Storage Allocation on Power Gated Cir-
cuit

Minimizing leakage power of circuit has been a major issue in according to the semi-
conductor process node shrinking. One of the technologies to reduce leakage power
consumption is power gating, which is shutting down the power supply or ground on
circuit so that the circuit no more consumes the power. The power gated circuit re-
quires to save its flip-flops’ states before being shut down to enter sleep mode, so that
the circuit should continue execution from the saved states when waking up.

Broadly, there are two ways to save and restore states in power gating. One is using
scan chain to store all states in memory. Once the states are saved, the circuit is shut
down and there are no always-on parts in the circuit if an external memory is used for
the state retention. The other is using state retention flip-flops that are composed of the
original flip-flops and always-on state retention storages [27, 28].

Replacing every original flip-flop in circuit with a flip-flop having a distinct 1-bit

retention storage is called SBRFF (single bit retention flip-flip) allocation [27]. Thus,



for a circuit with n flip-flops, they use n total number of retention bits. However,
replacing all original flip-flops with 1-bit retention flip-flops occupies a considerable
area, so consuming significant always-on leakage power. It is shown that 1-bit retention
flip-flop has generally 20% more area than the original flip-flop [27].

Many researches have been performed to reduce the amount of retention storage.
The works in [29, 30, 31] proposed so-called SSRPG (selective state retention power
gating), which allocates retention storage only to some essential flip-flops to satisfy
the perfect state recovery. SSRPG assumes power gating to be applied to given a small
number of FSM states, equivalently a few known checkpoints in RTL code. Thus,
the objective of SSRPG is to identify the (non-essential) flip-flips unrelated to the
FSM states to exclude them from state retention. They used simulation and formal
verification to extract essential flip-flops for which a full knowledge of the behavior
of target circuit or RTL code is required in advance. Chen et al. [3] proposed to use
multi-bit retention flip-flop (MBRFF). Fig. 1.4 shows the internal structure of a k-
bit MBRFF. The k-bit shift retention storage can save up to k£ consecutive states of
the original flip-flop. The always-on retention storage is implemented with high 1,
transistors to reduce always-on leakage power [32]. The control logic generates signals
to control state saving or restoration when the circuit goes to sleep mode or active
mode. Since k clock cycles are required for each of state saving and restoration for
MBRFFs while one clock cycle suffices for SBRFFs and SSRPG, it is necessary to use
a small k value of MBRFFs at the expense of retention storage. The works in [1, 33]
proposed MBRFF allocation algorithms that try to extract a minimal number of flip-
flops, each of which is to be replaced with strictly k-bit MBRFF, and the rest are left
as they are.

Unlike the methods of uniform MBRFF allocation in [1, 33], Fan et al. [2] pro-
posed a non-uniform MBRFF allocation algorithm which determines the size of reten-
tion storage of the individual flip-flops so that the total retention bits is minimized. For

example, Fig. 1.6(a) shows a uniform MBRFF allocation result for a flip-flop depen-



L + Data out
Original Always-on, high v-th

Data in — flip-flop k-bit shift storage element

XN

Latch || Latch |, ... | Latch

1 2 k
Clock ’
' T
1Save/Restore 1Save/Restore
TV TN !
- < ~ 1
- control A I
0" logic .-

S — 1

Figure 1.4: The internal structure of k-bit MBRFF in [3]. The blue and red translucent

lines indicate the flow of state saving and restoration, respectively.

t= t=t,
fa fi fu
| |
fS 2-| blt . fS
|_3-bit_| .
—t
i ' T 5 toity | \
ol Restore to! Restore o4 Restore 6o Restore
— (inactive) (inactive) | / (active) (inactive)
t= t =t ,
fa fi fZ l:| fu
L] LgJ
fs | 2 bit ! fs
3-bit \\
4 \
toltrity oo — ittt N
0 1‘; Rest‘ore tolt,\t, Restore Loityila: ; Restore bty fg f;; Restore
77 (active ; i —I % (active) ;
& ( ) _V// (active) % ( u % (active)

Figure 1.5: lllustration of cycle-by-cycle state restoration for the MBRFF allocation.
Initially, at time ¢o flip-flip f; retains 3 states and f5 2 states. During the following three
cycles, the states of flip-flops are set through the retention storage or logic propagation

from their driving flip-flops.



dency graph! in which f; and f3 are replaced with 3-bit MBRFFs though f3 can be
replaced with 2-bit MBRFFs as shown in Fig. 1.6(b).

7
Lgﬁfm

3-hit 2-hit

(|
i fs 117 | fs | £ fo b—{ 7 | fs |

(a) Uniform MBREFF allocation: 6 total bits, (b) Non-uniform MBRFF allocation: 5 total

but enabling simple control network bits, but increasing control network overhead

Figure 1.6: Comparison of uniform and non-uniform MBRFF allocations in terms of

total retention bits and control network overhead.

Recently, a new MBRFF allocation algorithm was proposed by [34], introducing
2-phase operation for single-bit retention flip-flops, so that their state save/recovery
can be done either in the first or in the second clock step. However, supporting this 2-
phase operation requires exactly 2 clock cycles of save/restoration and demands more
complicated control logic.

Fig. 1.5 illustrates a cycle-by-cycle state restoration process for an MBRFF allo-
cation. Initially, at time to, flip-flip f; retains 3 states and f3 2 states. At the first cycle
(t1) of restoration, the state of f; is set and at the second cycle (¢2), the states of fo and
fe driven from f; and the state of fs are set. Lastly, at the third cycle, the state of fr
driven from fg and the states of f4 and f5 driven from f5 are set. The state restoration

process for MBRFF allocation entails two overheads:

1. (Long wakeup latency) The wakeup latency in MBRFF allocation should be at
least equal to or greater than the largest bit size of retention storage among the

MBRFFs produced by the allocation.

'The flip-flop dependency graph of a circuit is a directed graph G(V, A) where nodes in V indicate
distinct flip-flops and there is an arc (f;, f;) € Aif f; € V is driven from a combinational logic path
from f; € V.



2. (More control signals) Distinct wakeup control signals to MBRFFs are required

if the sizes of their retention storage are different.

Consequently, to reduce the two overheads, it is highly desirable to allocate MBRFFs
such that the maximum bit size among retention storages as well as the number of
MBREFF groups according to the storage bit size is as small as possible.

The conventional MBRFF allocation algorithms ([3, 1, 33, 2]) have two fundamen-

tal limitations in common:

1. (No cycle, including self-loop) The allocation algorithms accept a flip-flop de-
pendency graph with no cycle as input. This means the original flip-flop de-
pendency graph of circuit with cycle should be transformed into an acyclic one
before applying the allocation algorithms. However, circuits normally contain
many self-loops mostly corresponding to mux-feedback loops in flip-flops in
circuits” as well as many flip-flop cycles, which could clearly worsen the qual-

ity of MBRFF allocation.

2. (Heuristic) All existing allocation algorithms are in fact heuristic. So far, there is
no way to find out how much the allocation results are close to an optimal one in

terms of total bits of retention storage, storage leakage power, and storage area.

“Most self-loop flip-flops are synthesized from the if-statements with no else-part in HDL description.

I ey 1
":l"\-_i _'-;.- ok 11



1.3 Contributions of this Dissertation

In this dissertation, we present several methodologies related to storage synthesis and
optimization algorithms to improve the performance and power consumption of target
design.

In Chapter 2, we propose a design and technology co-optimization (DTCO) tech-
niques that are able to effectively resolve the two limitations imposed by MBFFs

[35, 36]. The main contributions of this work can be summarized as:

1. To overcome the less flexible cell flipping problem, we introduce a new concept
of selective D-to-Q flow flipping and propose to synthesize MBFF cells of var-
ious combinations of D-to-Q flow flipping and non-flipping. Then, we propose
a cost-based algorithm, for each MBFF cell instance in placement, to find and
synthesize an MBFF of flow flipping/non-flipping combination that leads to a

maximal routability benefit by cell instance replacement.

2. To further enhance the timing performance of the chip by utilizing various com-
binations of D-to-Q flow, we refine the D-to-Q flow, in global routing, on the
basis of the data extracted from the timing and net congestion analysis. We pro-
pose an iterative greedy approach to adjust the flipping/unflipping of D-to-Q
flow for MBFF instances with the aim of optimizing timing without increasing

net congestion.

3. To overcome the space waste problem, we use the empty space for optimiz-
ing timing through upsizing transistors in MBFFs at the post-route stage. We
optimize the upsizing level in a way to resolve the timing violations while min-
imizing the power overhead. We formulated the sizing problem into an ILP and

solve it optimally.

4. We propose a DTCO framework integrating items 1, 2, and 3 to explore and

resynthesize MBFF cells in the placement and routing stages that leads to effec-

10



tively improve routability and resolve timing problem on target circuit imple-

mentation while minimizing the power consumption overhead.

In Chapter 3, we propose an optimal non-uniform MBRFF allocation algorithm
that are able to overcome the two limitations while taking into account minimizing the
two overheads of wakeup latency and control signals [37]. The main contributions of

this work are summarized as:

* We propose an optimal non-uniform MBRFF allocation algorithm that can be di-
rectly applied to the original flip-flop dependency graph of target circuit, equipped
with two options of constraining wakeup latency: [ = 2 and [ = 3 clock cycles
and three options of minimization objectives: total bits of retention storage, total

leakage power on retention storage, and total area.

* We formulate the non-uniform MBRFF allocation problem into a weighted unate
covering problem by exhaustively generating valid covering segments together
with their cost® from the input flip-flop dependency graph and solve it optimally.

In addition, we handle the scalability problem for large circuits in experiments.

* We provide a set of comprehensive experimental results to measure how the
existing SBRFF method and best-known MBRFF allocation heuristic close to

an optimum.

31t represents retention bit size, leakage power on retention storage, or retention storage area.

11



12

: _--‘: ;‘1 %I‘H ﬁ‘I']-JT—

SECRIL WATIOMAL LIMINVERSTY



Chapter 2

Enhancing Design Qualities Utilizing Multi-bit Flip-flops:
A Design and Technology Co-optimization Driven Ap-

proach

2.1 Key Observations and Enabling Optimization Directions

We observe two distinct features on MBFFs whose effective utilization could provide

a considerable impact on the improvement of the quality of chip implementation.

1. Utilizing the full flexibility of D-to-Q flows in MBFFs to save route cost: A
flip-flop basically consists of master and slave latches, and two clock inverters to
deliver the inverted and non-inverted clock signals to both latches. The D-to-Q
flow of a flip-flop refers to the internal logic path from input D to output Q in the
flip-flop. Since D is an input to the master latch and Q is an output from the slave
latch, the distance from input port D to output port Q in most of conventional
flip-flop cells amounts to the cell width. (For example, in Figs. 2.2(a) and (b),
the distance is 0.81um = 54nm (= CPP) x 15 gate polys according to ASAP7
PDK [4].)

For a single-bit flip-flop, it is possible to reduce route cost (e.g., wirelength,
routability, DRVs (design rule violations)) by flipping the flip-flop cell instance
7]

—
|

13



in placement/routing stage, as shown in Fig. 2.1(a). On the contrary, for an
MBEFF, entirely flipping the MBFF cell instance does not always save route
cost, as illustrated in Fig. 2.1(b), since its D-to-Q flows are compelled to be
reversed all together. However, as shown by the case in Fig. 2.1(c), a full sav-
ing of route cost can be achieved if MBFF cells with all combinations of flipped
and non-flipped individual flip-flops are available. Note that since the individual
flip-flops themselves are never tapped by flipping, all such MBFFs will preserve

the same timing and power characteristics.

. Utilizing the unused space in MBFF footprint to resolve the timing problem:
For n-bit MBFFs (n > 2), sharing clock inverters by the individual flip-flops
stacked in MBFFs inevitably induce empty space on their footprint, as previ-
ously shown in Fig. 1.3(b). To exploit this space effectively, we may include ad-
ditional gate polys (i.e., upsizing transistors by transistor folding) to this empty
space in a way to enhance the timing performance of their associated internal
flip-flops. For example, as shown in Figs. 2.2(c) and (d), by including one or
more gate polys to each of f; and fy with 2 or 4 fins to the empty space i.e.,
upsizing the transistors adjacent to the empty space, the timing of the flip-flops

can be improved.

Specifically, Table 2.1 shows the changes of timing, in terms of the sum of worst
slack time and worst clock-to-Q delay, on the individual flip-flops of 4-bit MBFF
produced by applying transistor upsizing with 2 fins in inverter Ul in master
latch (upsizing to level-1 in Fig. 2.2(d)), 2 fins in transmission gates M3 and M4
in slave latch (upsizing to level-2 in Fig. 2.2(d)), and 2 fins in U1 and 2 fins in
M3 and M4 (upsizing to level-3 in Fig. 2.2(d)) to fi and fy in Fig. 2.2(c). (In our
experiments, we synthesized 4-bit MBFFs of various sizing by stacking 1-bit
flip-flop cell DFFHQNX1 in ASAP 7nm cell library [4] with clock inverter in
the middle and characterized MBFF cells by using Cadence and Synopsys tool

chain. Note that a spacing of at least two dummy polys is required between the

14



\ﬁD—>Q

G

|D1—>Q1

I et

==l

l_JD4—>Q4I

o1

|D1—>Q1

I d—ol

i IIJ_ o3 — 03]

l_JD4—>Q4I

G,

—

Cell
flipping
—>

(@)

Cell

flipping
—

(b)

D-to-Q
flow

flipping
—

(©)

Q«——D

Flipped C;

| gw_ml I

=
&T Thee—ol_]
| foi—oil
Flipped 027 i"

' et

Jo— o1

s

e

D4—>Q4I

Il

D-to-Q flow
flipped C,

[ ]

Figure 2.1: Effectiveness of cell flipping on reducing route cost. (a) Flipping a single-

bit flip-flop: Fully effective. (b) Flipping an MBFF: Partially or little effective. (c)

Flipping individual D-to-Q flows in MBFF: Fully effective.

15

m |
T
—

,JE:I e t_'_” 'E:} U



-9oeds Aydwe oy 01 () ur HIA 10 ‘€N ‘1N JO
s103s1suer) oy} uo 3urpjoj £q 7 pue 1 ur s1oisisuen; Surzisd) (p) “O[PPIW Y UT SIALISAUL JOO[O M S[[30 [XNOHAAQ Paorls Inoj
Jo pasodwios JAGIA UV (9) ‘WULJVSV Ul [[99 [XNOH:LIA JO In0KeT (q) "SaydIe] SOIND 0M) WOIJ PAlonmnsuod [] wu/dySy ul
199 TXNOHHAAJ JO 111 SOAD V (B) "SIIGIA Ul SuLIeys J91I9AUL 3000 9y} Aq paonpul aoeds Aydws oy jJo uonezim :g'g 231y

() (@)
ARAEAREEEL = pmp—— Ap—— L ™r w"!
I THAHT | ML ENE L R
1 R - Ll i 0
4 gijin YAl suizisdn [P oo |lLe i A |
n _ﬂi 7 N 7 L NPIS BN -K el
e X IR RN 7| NOE | et ool TR
L END A daA
Y z-19ne g ]| .7 AR Ii |
* e T C T
LAY w_,ﬁ MM I -j ¢
\, \ H I
— Ny WL g [ 1N
s\ - A'D
17 7 //., few
G ————
T-19A7] AN [ ¥12AN1
asn: oI7: ooy : [ Ajod aieo - [] Buizisdn <310

A

16



source/drain regions of two adjacent transistors in cell layout if they cannot be

shared according to ACTIVE design rules in ASAP 7nm PDK.)

We can see from Table 2.1 that it is able to achieve timing improvement of 10.1%
(136.1ps — 122.2ps) on f; and 10.4% (137.9ps — 123.5ps) on fy4 in a 4-bit
MBEFF by upsizing transistors with a few additional fins while retaining the same
cell size and having no timing loss on flip-flops f2 and f5 at all. Thus, by building
up a cell library with timing-diversified MBFF's through the utilization of empty
space, we are able to use the MBFF's selectively in a way to resolve the timing
closure problem in chip implementation. However, it should be noted that the
timing benefit counts the cost of power consumed by the inclusion of additional
fins. Thus, a careful selection of MBFFs is required to resolve negative timing

slacks while minimizing the power overhead.

Table 2.1: Timing (setup time + clock-to-Q delay) on the flip-flops fi, f2, f3, and fy
in Fig. 2.2 as the transistor upsizing (i.e., folding) to level-1, level-2, and level-3 is

applied to each of f; and f; without increasing cell size.

Transistor upsizing

Flip-flop Unsizing | Level-1 | Level-2 | Level-3

f 136.1ps (1) | 129.1ps | 130.9ps | 122.2ps (0.899)
fo 137.7ps 138.3ps | 135.5ps | 136.3ps
f3 136.5ps 136.8ps | 134.0ps | 134.5ps

fa 137.9ps (1) | 130.8ps | 132.1ps | 123.5ps (0.896)

17



2.2 DTCO Framework for Multi-bit Flip-flops

2.2.1 The Proposed DTCO Flow

Fig. 2.3 shows our proposed DTCO flow, called MBFF-opt, that integrates three new
tasks for implementing target designs utilizing MBFF cells: (1) D-to-Q flow optimiza-
tion in Step 1 with the objective of improving routability in the placement stage,
(2) timing driven D-to-Q flow refinement in Step 2 with the objective of improving
routability and timing in the global routing stage, and (3) timing optimization in Step 3
with the objective of resolving the timing violations in the post-routing stage. The in-
put of Step 1 is a logic synthesized and placed design produced by using a conventional
standard cell library and PDK. (We used ASAP 7nm cells and PDK [4].) We perform
Step 1 in two sub-steps: (1.1) evaluating D-to-Q flow flipping for MBFF instances and
(1.2) Replacing D-to-Q flow optimized MBFF's for the MBFFs in (1.1) based on the
flipping cost to perform a flow replacement. For a global routing result, we apply Step
2 i.e., (2) refining D-to-Q flow of MBFF instances by analyzing timing and congestion
data. Meanwhile, the input of Step 3 is the outcome of detailed routing with timing
analysis data. We carry out Step 3 in three steps: (3.1) reordering the flip-flop stacking
position in the MBFF instances with timing violation by assessing timing criticality,
(3.2) upsizing transistors on the MBFFs in (3.1), and (3.3) elaborating timing in case
there still exists a negative timing slack. The following three subsections describe the

details of Steps 1, 2, and 3.

2.2.2 D-to-Q Flow Optimization

Step 1.1 (Evaluating D-to-Q flow flipping): We refer D-to-Q flow flipping of an in-
ternal flip-flop f;, 1 <4 < K, in a K-bit MBFF to as reversing the D-to-Q flow i.e.,
the Q-to-D flow in the MBFF, which is exactly equivalent to the D-to-Q flow in the
flipped flip-flop in a new MBFF produced by flipping the f; in the initial MBFF. For

a K-bit MBFF, since we have two options to choose D-to-Q flow for each internal

18



Anpigenos diyo se [[am se a3e)s Sunnol [eqo[3 ur surn aaoldwr 03 st g doig pue Ajjiqeinos diyo aaoxdut 03 st | doig ur 9anosafqo

AL, "SuSIsop 1931e) 10§ S[qRINS JsOW Ik Jey) S{JGIN Suizijnn pue Surzisayiuis 10J Jdo-44g\ Moy 0DLd pasodord mQ :¢ g am3ig

437/4171 449N
pazisdn Joisisuel |

‘Surun JIGIA YIm UOTJRIOOSSE UL SUOTJR[OIA SUTWI) 9A[OSAI 0} ST ¢ do1§ ur aanoalqo ay o[rym

ubisap pazisayiuAs
paziwndo 1amod 7 Burwi

oA

L |

uoneloqel3 Bulwil “g's dais

A

s449N U1 Buizis
Jojsisuesy fewndo ‘z'e dais

JuswauLal MOJ)
0-0)-Q usAup-Bulwil "z dois

4
Bunnoy 1eqo|9

ﬂ

A

saourISul 44 g\ ul sdojy
-dij} Buniapioay ‘T dais

s449N Buroejday “z'T deis

uolreziwndo Buiwi] g deis

¢SISIXa Yoe|s aAnebaN

sIsAjeuy Buiwi

+
Bunnoy |re1e@

]

+
SR AL 33/917 4G
0-01-a Bunenjenz ‘1’7 deis paddyy
Moy} 0-0)-a
uoneziwndo mojy O-01-Q ‘T daIs |«
+
Juswiade|d
+
SISayIuAS 21607

1s1138u ubIsa@

4371/a11113D

19



flip-flop namely, unflipped D-to-Q flow and flipped D-to-Q flow, there are total of 2/
MBFF cells with different D-to-Q flow configurations.

For every MBFF instance in placement, we want to find the MBFF of D-to-Q flow
configuration which has the least total amount of routability cost to connect its 2K D
and Q ports. Let tZD and tzQ be the cell terminals that should be connected to ports D;
and Q; on flip-flop f; in an MBFF. Then, we compute the quantity of the following

equation for each internal flip-flop with isFlip =0 and 1:

C(fs, isFlip;) = Cwr (D, tP isFlip;) + Cwi(Qi, 12, isFlip;) — (2.1)

where Cyy (D, tlD ,isFlip) indicates the cost! of physically connecting D; and tzD
when D-to-Q flow flipping is unapplied (i.e., s F'lip; = 0) or applied (i.e., isFlip; = 1)
to f;. Likewise, Cyw 1 (Q, tZQ, isFlip) is defined similarly.
Then, we find a K-dimensional 0/1 vector I" = [isF'lipy, - - - ,isFlipk] that mini-
mizes the quantity of Cj:
K
Cior = »_min{C(fi,isFlip),isFlip = 0,1} (2.2)
i=1
We call the isFlip vector, I, obtained by Eq.2.2 the maximal profit vector of the MBFF

instance among all possible 2% K -dimensional 0/1 vectors.

Fast computation of the maximal profit vector: Since we are interested in deter-
mining a better option between D-to-Q flow unflipping and flipping for each inter-
nal flip-flop, rather than fully computing the equations in Eq.2./ and Eq.2.2, we can
quickly setup the 0/1 values in the maximal profit vector I' by merely comparing the
interval between D; and (); in x-coordinate with the interval between tZD and tZQ in

x-coordinate:

'In this work, we assume the cost is the HPWL value of the bounding box of D; and tiD .

20



case 1. The interval between t and tiQ contains the interval
between D; and (Q; inclusive.

case 2. The interval between D; and (); contains the interval
between tlD and tZQ inclusive.

case 3. The interval between t,LD and tiQ contains exactly one
of D; and (); inclusive.

case 4. The two intervals between D; and (); and between tiD

and t? do not overlap.

For an MBFF instance, say M, in placement, we can identify the case to which each
internal flip-flop f; belongs and set the corresponding bit isF'lip; to O or 1 to produce
maximal profit vector I'y.

The binary element setting procedure is shown in Algorithm. 1. For case I, we
can easily set isFlip; by calling isRevDir(), which distinguishes the two states in
Fig. 2.4(a) i.e., isRevDir() == TRUE (line 4-7) indicating the upper state, thus setting
1sFlip; = 1 and otherwise, setting isF'lip; = 0. Similarly, we can set ¢sF'lip; for case
3. For case 2, in line 8-11, we can determine isF'lip; by calculating 2(hp, + hg, — L)
because the wirelength profit C'(f;,1) = hp, + hg, — hyp, — hyg, becomes 2(hp, +
hg, —L)ashyp, = L — hp, and hyg, = L — hg,, as shown in Fig. 2.4(b). For case
4, isFlip; can be set to either 0 or 1 since there is no change in total wirelength (line
16-18).

Step 1.2 (Replacing MBFFs): From the set of I' configurations obtained from Step
1.1, we utilize an MBFF cell synthesized corresponding to each I' configuration. The
MBFF synthesis is simply stacking individual flip-flops with either unflipping or flip-
ping, obeying their is F'lip 0/1 values in I'. Let £ be the set of MBFF cells produced by

this step. Then, we replace every MBFF instance in placement whose original isFlip

21



D D
hDi tl hDi tl
I,.__ r--------_‘z
P g te it tiQ =
I tL :le ;“‘vl EUQL
D: D:
l ?l Qi ! TI Qi
Unflipped Unflipped
ty
hep.
tlD&Ihf D; Q ??ﬂ_‘z
hpo 1\ hro "L 1)
,w-’*lZIQ LVrDy == | Vo
Vraii £ Y Vroi/s y
afl M of N
Flipped Flipped Flipped Flipped
(@) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

Figure 2.4: Analysis of x-coordinate relation between D;, Q;, tZD , and tZQ where

Z(A, B) represents the interval between A and B in xz-coordinate and z(A) denotes
the z-coordinate of A. (a) Z(D;, Q) C Z(tP,t?). () Z(tP,t7) < I(Di, Qy).
© {z(tP) € T(Di, Q). x(t?) ¢ T(D;,Qi)} or {x(tP) ¢ I(Di,Qi). (t?) €
Z(D;, Q0)}. @ Z(D;, Q) NI(tP, 17) = .

22



Algorithm 1 Computing the maximal profit vector of every MBFF instance M

Input: x(D;), 2(Q;), x(tP), x(t?) of flip-flop f; in M
Output: Hashtable # (key, value) = (', list of MBFF instances)

1: for all M in MBFF instances do

2: for all ¢ in K flip-flops on M do

3: isFlip; + 0

4 if Z(D;, Qi) C Z(tP,19) then > case 1
5: if isRevDir(z(D;), x(Q;), z(tP), x(t?)) then

6: 1sFlip; < 1

7: end if

8: else if Z(t2, tZQ) C Z(D;, Q;) then > case 2
9: if 2(hp, + hg, — L) > 0 then

10: isFlip; <+ 1

11: end if

12: else if {z(tP) € T(Dy, Qi), x(t¢) ¢ T(Di, Q)Y or {x(tP) ¢ T(D;, Q),

x(tZQ) € I(D;, Q;)} then > case 3

13: if isRevDir(z(D;), z(Q;), z(t2), z(t2)) then

14: 1sFlip; < 1

15: end if

16: else if Z(D;, Q;) NZ(tP,t¥) = ¢ then > case 4
17: 1sFlip; <+ 0

18: end if

19: Lasli] < isFlip;
20: end for
21 HIL pr].insert(M)
22: end for
23: Return H -'Jx'-‘i L I !

> L= |x(D;) — x(Q;)]
> hp, = |z(D;) — z(tP))|
> h, = |2(Q;) — x(t%)]

23



Function - isRevDir (z(D;), z(Q;), z(tP), :L‘(tiQ))

15 3 (2(D) < 2(Qy) and 2(tP) > 2(2)) or (¢(D;) > 2(Qs) and 2(tP) < 2(t2))
then

2: Return TRUE

3: else

4: Return FALSE

5. end if

Algorithm 2 Synthesizing and replacing MBFFs

Input: Hashtable H (key, value) = (T, list of MBFF instances)
> cps - MBFF cell with I'y; flow
. L+, R+ ¢
2: for all key I'p; in H do
3: L=LUcpy
4: for all value M of H[I"y/] do

5: R:RU(M,CM)
6: end for
7: end for

8: Replacing MBFF instances according to R by using £

24



vector is not matched with its maximum profit vector I' by the MBFF cell in £ with
I'. This step is described in Algorithm using the hashtable H produced in Step 1.1 as
input.

In fact, the MBFF cells that cover all kinds of D-to-Q flow combinations (2%)
entail lots of redundancy. For example, for K = 4, Fig. 2.5(a) (d) shows that MBFF
cells corresponding to four configurations of D-to-Q flows can be obtained by flip-
ping or rotating a single MBFF cell. Assume that for a flip-flop, r denotes its D-to-Q
flow such that D is on the left side and Q is on the right side of the flip-flop, and
[ denotes the reverse of D-to-Q flow such that D is on the right side and Q is on
the left side. For example, the sequence of D-to-Q flow of the MBFF in Fig. 2.5(a)
can be expressed as rrrl. By using an MBFF cell with rrrl, we can represent flow
sequence [llr by flipping it over the y-axis as shown in Fig. 2.5(b). We can also rep-
resent flow sequence [rrr by flipping the MBFF over x-axis and reversing the or-
der of pins i.e., {D1, D2, D3, D4} — {D4, D3, D2, D1} and {Q1,Q2,Q3,Q4} —
{Q4,Q3,Q2,Q1}. In addition, we can represent flow sequence rlll by rotating the
MBFF in 180 degree and reversing the order of pins. Fig. 2.5(e) shows only 6 flow
sequences for 4-bit MBFF, covering all of 16 D-to-Q flow combinations. The minimal
number of flow sequences to cover all 2K flow combinations, Na;grr, is computed

by K K
T K\ T (K
Nyprr =143 o s G

K
(2) when n = even number and 2n # K
where m,, = 2

0 otherwise.

, 73> when n = even number and 2n = K
where m,, =

m, otherwise.

25



Flip
over
X-axis

(

lrrr

Flip
over
y-axis

'

Rotate

N

Ulr

IQ1<— Dll

IQ2<— D2|

IQ3<— D3|

I D4—>Q4|/

(b)
rill

I D4—>Q4|

IQ3<— D3|

Flow Coverable flow
sequence sequence

rrer rrrr, LI

rril rril, lrr

rilr rilr, lrrl

lrlr Irir,rirl

rrril rrrl, Ulr, lrrr, rlll

rrir rrir,rirr, lril, lrl

IQ2<— D2|

IQ1<— D1|

(d)

(e)

Figure 2.5: Illustration of covering every D-to-Q flow combination of 4-bit MBFF by

using 6 cells.

26

2 A2ty



2.2.3 Timing-driven D-to-Q Flow Refinement

In the prior step, we conducted D-to-Q flow flipping with the goal of minimizing wire-
length cost between cells at the post-placement. In this step, we pay attention to timing
with timing-driven cost formulation and proceed D-to-Q flow flipping on the global
routing result, performing the following two sub-steps.

Step 2.1 (Evaluating D-to-Q flow flippings): From a global routing result, we extract
a timing report related to MBFF instances. By extracting timing report on every path
between individual flip-flop pins (D, Q) of MBFF instances, we compute flipping cost,
p;, of flip-flop f;, 1 <1 < K:

Pi =Ny — g (2.4)

in which ny;, ; represents the number of fan-in or fan-out pins with negative slacks that
would decrease the wirelength if D-to-Q flow of f; were flipped. Conversely, n% I
represents the number of fan-in or fan-out pins that would increase the wirelength
when D-to-Q flow of f; were flipped. The reduced wirelength of each of D and Q pins
according to fan-in pin tZD and fan-out pins tZQj , 1 < j can be calculated by identify-
ing the case (Fig. 2.4) the flip-flop belongs to and using Table 2.2 that represents the
wirelength reduction for the cases to be identifed with isRevDir() in Algorithm. 1. We
flip f; when p; is positive, which means the possibility of improving negative slack is
higher than that of worsening the negative slack if its D-to-Q flow were flipped.

Step 2.2 (Replacing MBFFs): When D-to-Q flow flipping is to be performed towards
improving negative timing slack, but is very likely to make net detours due to conges-
tion, resulting timing may deteriorate. Thus, MBFF cell replacement should consider
congestion. A naive approach is to make D-to-Q flow flipping for each of the MBFF in-
stances identified in Step 2.1 one by one, checking if congestion increases and keeping
only safe ones. However, this method requires a long run time. Instead, we propose
a method of selecting a subset of MBFF instances from the ones obtained Step 2.1

based on the following replacement profit cost, Pysprr, of each MBFF instance, and

27



Table 2.2: Wirelength reduction between D; and tZD (AW Lp), and ); and tin
(AWLQj) for all cases in Fig. 2.4. (isRevDir() is described in Algorithm. 1.)

AW Lp AW Lg,
isRevDir() | lisRevDir() | isRevDir() | !lisRevDir()
Case 1 L —L L —L
Case2 || 2hp— L L —2hp 2hg — L L —2hg
Case 3 L -L 2hg — L L —2hg
Case 4 L -L -L L

replacing them with the corresponding flipped cells all at once:

K K
1
i=1

i=1

where the first term corresponds to the sum of D-to-Q flow flipping/non-flipping costs
of the internal flip-flops in the MBFF and the second term indicates the sum of HPWL
changes, denoted by AW L;, by the flipping/non-flipping of the internal flip-flops,
normalized by L, which is the D-to-Q distance in the MBFF cell.

Precisely, AW L; for an internal flip-flop f; is computed by

|FO
AW L; = max(0, AWLP) + Z max(0, AWL?j) (2.6)
j=1
0 if slackp > 0
AWLP = (2.7)
AWLp if slackp <0
. 0 if slackp. > 0
AW L — © 28)
AW Lq, ifslackg; <0

in which F'O represents the set of fan-out pins driven by pin Q in f;, and slackp

and slackgq; indicate the timing slack from fan-in pin tP to D; and from Q; through

28



fan-out pin tin , respectively. (Note that AW Lp and AW L, are computed by the
formulation in Table 2.2.

We convert the problem of selecting MBFF instances maximizing Py;prr into an
instance of maximal weighted independent set (MWIS) problem in a directed graph
G(V, A) such that a node in V' indicates a distinct MBFF instance in circuit and an
arc from node n; to node n; exists in A if there is a timing path from a flip-flop in
the MBFF instance of n; to a flop-flop in the MBFF instance of n;. Every vertex v;
in V has a weight w; that represents the replacement cost of the corresponding MBFF
instance. We solve the MWIS problem by formulating it into an ILP (integer linear

programming):
14
Maximize: E Wy + T
i=1

subject to:  x; +x; <1, if {i,j} € A
x; € {0, 1}

where x; = 1 indicates that its MBFF instance is selected for MBFF replacement.

We iteratively perform the selection of MBFF instances by finding the independent
set of maximal cost followed by replacing them with the MBFFs of minimal Py;prr
value. Let M7 be the set of MBFF instances selected in the current iteration. Then, by
analyzing the global routing result of the circuit with the MBFF replacement in M7,
we count the number of congestion overflows and timing violated paths. If the number
of timing violated paths decreases (i.e., ATV P < 0) and the number of congestion
overflows does not increase (i.e., AOF < 0), we accept the replacement of My, up-
date G(V, A) by removing nodes in M7, and repeat the iteration process. Otherwise,
we insert the MBFF instances in M7 into queue @, in non-increasing order of replace-
ment profit Py;prpr. Then, we iteratively pop an element from (), and replace it with
the corresponding MBFF cell as long as the above condition is satisfied. The iteration
process repeats from the circuit with partially replaced MBFF instances. Fig. 2.6 show

the flow of MBFF replacement process.

29



Global Routing

v

Step 2.1 Eyaluating D-to-Q flow flippings

|

Step 2.2

Generate M, using MWIS

—ATVP < 0 and AOF < 0

Push MBFFs € M; in Q,,
in descending order of Pygrr
v
Pop m from Q,,
& Replace the m

—ATVP < 0 and AOF < 07

Delete elements in M;
from G(V, A)

|

Update timing

P —
Return to
previous design

l

Detail Routing

Figure 2.6: Proposed flow of timing-driven D-to-

ment.

30

Q flow refinement by MBFF replace-



2.2.4 Timing Optimization at Post-Route Stage

Step 3.1 (Reordering flip-flops in MBFF instances): This step performs two inde-

pendent sub-tasks that will be used in Step 3.2:

1. (Finding an optimal flip-flop reordering) For each MBFF instance in routing,
we find a rearrangement (i.e., mapping ¢) of the flip-flops in the instance that

maximizes the mapping cost C'(¢):

C(¢) = Z v(6(i)) 2.9)

where v/(¢(7)) indicates an estimation of timing saving by moving flip-flop f;

to the location of flip-flop index ¢(i) and is computed by

V(6(2)) = a1 - yp(¢(i) + a2 - yo(¢(i)) (2.10)

where yp(¢(i)) and yg(¢(i)) represent the distance saving in y-direction by
moving f; to the location of flip-flop index ¢(i), respectively, and a; = 1 if no
timing violation occurs on port D on f; or ¢(i) # 1 and K. (Note that we want
to use the empty space in the top and bottom flip-flops (i.e., f1 and fx) for
transistor upsizing.) Otherwise, o is set to 5 (or a large number greater than 0).

a2 1s similarly set to that of «;.

Fig. 2.7(b) shows an example of computing the values of 5/(¢(+)) for mapping
¢ to the flip-flops in an MBFF instance in Fig. 2.7(a). (We set |yp (i) — yp(j)|
=lye(i) —yeU)l=li—jl.i.j € {1,2,--- ,K})

We formulate the problem of finding an optimal mapping ¢ for an MBFF in-
stance into a problem instance of weighted maximal matching on a complete
bipartite graph G(V'1,V2, W), in which V1 is the set of flip-flops in the in-
stance and V2 is the set of the flip-flop bin indices, and the edge between
v; € V1and v; € V2 is assigned with a weight w(v;,v;) € W such that
w(v;,vj) = V(¢(i) = j). For example, Fig. 2.7(c) shows G(V'1,V2, W) of the

31



MBFF instance in Fig. 2.7(a), in which the heavy lines indicate the solution of
maximal matching, producing the maximal total saving, which is C'(¢) = 6 and
generates reordered MBFF instance in Fig. 2.7(d). We formulate the maximal

matching problem into an ILP:

K K
Maximize: E E w(v, vj) - Tij

i=1 j=1
K
subject to: Zx” =1, foralli=1,--- | K
j=1
K
in,j =1, forallj=1,--- | K
i=1
z] € {0,1}

where the 0/1 variable x; ; becomes 1 if flip-flop f; is assigned to bin index j

and 0, otherwise.

. (Generating MBFF cell library by an exhaustive exploration of transistor up-
sizing) For a K-bit MBFF, we use the empty space in the top flip-flop (i.e., f1)
and in the bottom flip-flop (i.e., fx) for transistor upsizing to level-1, level-2,
and level-3 as well as unsizing, as illustrated in Figs. 2.2(c) and (d). Thus, we
prepare a K -bit MBFF cell library, ’M g of 16 (= 42) MBFF cells, for K = 4,
for each synthesized MBFF cell in the previous steps. Then, we characterize the

cells in £/, 5 to extract timing and power numbers.

32



1 > $(1)=3
iDlﬁle ¢(2) =1
7 $(3) =2
foo o P4 =4
{Dsﬁ»QS} P($(1) = V3) = 1-2) + 12) = 0
os oo P(§(2)=V(1)=5(1)+ 1(-1) =4
V(@) =r@2)=11)+1(1)=2
V(d(4)=V(@4)=10)+1-(0)=0

(b)

Q2<fiD2}

§0s L oo

iDlLQll

D4£>Q4

(d)

Figure 2.7: Example of finding an optimal flip-flop reordering. (a) An MBFF instance
with timing violation on the route path (red color) to pin D2. (b) Mapping function
¢ and computation of the values of 7(¢(+)). (c) Bipartite graph G(V'1,V2 W) of
the MBFF instance in (a). (d) Reordered MBFF instance according to the solution of

maximal matching in (c).

33



Step 3.2 (Optimal Transistor Sizing in MBFFs): Once the flip-flop rearrangement
function is obtained in Step 3.1 for every MBFF instance, we find an optimal solu-
tion of MBFF transistor upsizing in the target circuit to resolve all timing violations
while minimizing the power overhead. We formulate the problem into an ILP with the

preparation of the following two sets of timing data.

1. By characterizing the transistor unsized and upsized MBFF cells in £, 5, for
each flip-flop in an MBFF in £/, 5, we take (list 1) a list of setup time values
corresponding to the combinations of a number of transition times (slew rates)
at pin D and a number of transition times at pin CLK and take (list 2) a list
of clock-to-Q delay values corresponding to the combinations of a number of
the out-loads at pin Q and a number of transition times at pin CLK. Then, to
make a power optimal replacement of all MBFF instances of timing violation
in the circuit with MBFF cells in £, 5, an accurate timing calculation related
to the MBFF replacement in circuit is essential. To this end, we apply a linear
interpolation or extrapolation to the setup time values in /ist 1 to produce a setup
time function, Fserup(trp, trori) as well as to the clock-to-Q delay values in
list 2 to produce a clock-to-Q delay function, Fioog(ldg,trork) where trp,
trcrk, and ldg indicate the transition time on D, transition time on CLK, and

out-load on Q, respectively.

2. We extract information regarding the worst slack timing paths in circuit from
the post-route timing report, which includes timing slack, setup time, clock-to-
Q delay, required time, arrival time, input pin transition times, and out-load in

association with all MBFF instances in the target circuit.

34



Table 2.3: Notations used in our ILP formulation

Description
L' vp Set of MBFF cells with tr. unsizing/sizing produced by step 2.1
M Set of the MBFF instances in the target circuit
idpg Index of an MBFF instance M in M
» Set of the timing paths on M; € M
i (|P;| = 2K if M; is a K-bit MBFF instance since pins D and Q each has one timing path)
Dik Pik € Pik=1,---,|F]
PWR; Power consumed by M} € Ly
Ij Lif M; € M is replaced by M} € L/ p;
' 0, otherwise.
req; k Required time on path p; ;. before replacement
arr; Arrival time on path p; ;, before replacement

init_setup; i,

Setup time on pin D of path p; ;. before replacement

init_clk2q;

Clock-to-Q delay on Q of path p; ;, before replacement

new_setup; i

Setup time on pin D of path p; ; (It will be determined by solving ILP)

new_clk2q; i,

Clock-to-Q delay on pin Q of path p; ;, (It will be determined by solving ILP)

setupg &

Setup time on pin D of path p; ; when M; € M is replaced with M} € L}, p

clk?qf’k

Clock-to-Q delay on pin Q of path p; ;, when M; € M is replaced with M} € L}, 5

35



Let Setup,; denote the setup time when the transition time on D is ¢rp, and the
clock-to-Q delay is trork, that are specified in list 1. Suppose trp and tropi are
not specified in list 1, but The trp value is in between trp, and trp, (trp, <trp j)
and the tropk value is in between tropg, and tropk, (tropk, < trork,)- Then,
setup time function Fsety,(t7p, trork) can be expressed as that in Eg.2.11, in which
variables A, B, C, and D can be computed by Egs.2.12,2.13, 2.14, and 2.15. Likewise,

Foog(ldg, trori) can be expressed similarly.

Fsetup(trp,treri)

=A-trp+B-trepg +C -trp - trepg + D (2.11)
A- trp, + B - ”'CLKP +C- trp, 'tTCLKp + D= Setupm, (2.12)
A-trp, + B-trcpk, +C - trp, - trepk, + D = Setup; 4 (2.13)

A- trp; + B -trepk, + C- trp, -trerk, + D = Setup; (2.14)

A-trp, + B-tropk, + C - trp; - tropk, + D = Setup; 4 (2.15)

The variables (wg , new_setup; , new_clk2q; ;) and constant (all the rest) nota-
tions used for our ILP formulation of MBFF replacement are summarized in Table 2.3.

Then, we can express the objective and all constraints of the ILP formulation as:

36



M £y 5 ‘
Minimize: » Y  PWR;-a] (2.16)
i=1 j=1

subject to:
foralli=1,--- M|, j=1,---,|Lygl, k=1,---,|P],

(reg; r + init_setup; j, — new_setup; i) —

(arr; j — init_clk2q; ), + new_clk2q; ) > 0 (2.17)
init_setup; p, ifidl; ) = —1
new_setup; = ' ' (2.18)
setup] | if mfdli =1

init_clk2q; p, if id0; p, = —1
new_clk2q; j, = ' A (2.19)
clk2q] if xfdoi =1

idys  if the launch register, M, on p; j, is in M
1d0; ), = (2.20)

—1  otherwise

idys  if the capture register, M, on p; 1 is in M
idl; = (2.21)

—1  otherwise

[Chpl
z] =1, foralli=1,--- | M| (2.22)
j=1
xf € {071}’ foralli=1,.-- ,‘M’, J=1-- 7|'C/MB| (2.23)
3 0 =11
£y I|I 1_.]'

37



The objective shown in Eg.2.16 is to minimize the total amount of power consumed
by all MBFF instances in the target circuit. Eq.2.17 ensures the satisfaction of setup
timing constraints of all paths on the internal flip-flops in the MBFFs in target design?

Precisely, according to the setup time satisfaction condition:
Required_time — Arrival_time > 0

where Required_time amounts to CLK capture arrival time plus Torx minus setup
time while Arrival_time equals to CLK launch arrival time plus combinational delay +
clk-to-Q delay.

In addition, Eq.2.18 and Eq.2.19 explore the MBFF cells in £, ; to find an MBFF
cell consuming the least power to replace each MBFF instance in the circuit while
meeting the constraint in £q.2.17. Such exploration of MBFF cells is related to tim-
ing values setup] 3 in Eq.2.18, idl; . in Eq.2.21, clk2q] * in Eq.2.19, and id0; 4 in
Eq.2.20 as well as to the power value PW R, in Eq.2.16. In addition, Eg.2.22 and
Eq.2.23 ensure that every MBFF instance in the target circuit should be replaced by

exactly one MBFF cells in L'y, ;.

Step 3.3 (Timing Elaboration):

In the following, we elaborate the timing optimized in Step 3.2 to deal with the
case where all timing violations are not completely resolved in Step 3.2: We replace
the term ‘0’ in Eq.2.17 with an epsilon (negative) value, which varies through iterations
in a binary search, to quickly find a minimal absolute epsilon value that satisfies the
ILP formulation. For example, suppose we set the epsilon precision to 0.25 and if our
ILP formulation with an initial epsilon = -10 succeeds in finding a solution, we reset
epsilon to the mean value (= -5) of 0 (target) and -10, and apply the ILP solver again.
This process is repeated to approximate the worst negative timing slack as long as the

ILP succeeds in finding a solution and the epsilon gap updated in an iteration is not

The hold time constraints can also be expressed in a similar way. We omit the expression for brevity.
3The values are computed by the setup time function Fisetup(trp, trorLi).
“The values are computed by the clock-to-Q delay function Foag (Idg, tror).

38



smaller than the precision of 0.25. When a minimal absolute epsilon value is found,
we can continuously optimize the total negative timing slack by iteratively applying
the elaborating process. Let M be the set of MBFF instances with sized transistor
in the previous iteration. Then, at the beginning of the current iteration, we fix the
transistor size in M and remove the timing constraints according to the pins in M
from the timing constraints. We then assign the best minimal absolute epsilon value
to the initial epsilon value, and continue the process until the best minimal absolute
epsilon value from the previous iteration is the same with the best minimal absolute
epsilon value in the current iteration. The overall flow of timing elaboration is shown

in Fig. 2.8

2.3 [Experimental Results

2.3.1 Experimental Setup

We implemented our proposed DTCO flow MBFF-opt by using C++ and Gurobi op-
timizer [38] as an ILP solver in a linux machine with Intel i17-4770K 3.5GHz CPU and
32GB memory and demonstrate the efficacy of our proposed flow by comparing place-
ment and routing PPA (power-performance-area) results with two conventional flows:
(1) placement and routing with no use of MBFFs, which we label Conv. No-banking,
(2) placement and routing with use of MBFFs imposing non-flexible of flipping and
footprint waste, which we label Conv. MBFF. The placement and routing flows of
Conv. No-banking, Conv. MBFF, and our MBFF-opt are depicted in Fig. 2.9.

We used IWLS 2005 OpenCores benchmark circuits [39] for the experiments. Ta-
ble 2.4 shows the statistics on the benchmark circuits, which include the total number
of cell instances (“#cells”), the number of flip-flop cell instances (“#FFs”), and the
number of nets (“#nets”). We synthesized and implemented the circuit by using Syn-

opsys Design Compiler and Cadence Innovus® using ASAP7 7nm standard cell library.

SFor  grouping flip-flops, in pre-CTS optimization step, we used commands

39



{s44an pezIs N IN = IN ¢

MO[J uoneIoge[d SurwlL], :g'g 2In31

I\ D S44gIN a2e|day

«
¥

N YHm 82UBpI0dIE Ul
SjuleJIsuod Buiwn anoway

wo0q3 4 doiy -

z 1

NE mu_u_m_s‘_r 10 9715 X14 _ _
v 13 — wo330q;
J3=1t3 _ (3¢ )xew = 13
R 2
T+1=1 _

d1uny

[sum=02=1| | ennoslo |

_ SJUIEASUOD

uo1eJa) Yi-1 Ul dnjeA uojisda ainjosge [ewiuiw : '3

40



Cell LIB/LEF Design netlist J

Logic Synthesis ‘ Step 1.
v D-to-Q flow optimization
Placement y
3 ‘ CTS and Global Routing ‘
MBFF banking using cyprr ‘ Sten 2 ¥
tep 2.
*7
- D-to-Q flow refinement
Clock Tree Synthesis ‘ Clock Tree Synthesis ‘ & v
: . : Detail Routing ‘
Global Routing ‘ Global Routing ‘ )
v v Step 3.
Detail Routing ‘ Detail Routing ‘ Timing optimization
v v v

Implemented design Implemented design Implemented design

from Conv. No-banking from Conv. MBFF from MBFF-opt

(@) (b) (©)

Figure 2.9: Three different flows of placement and routing conducted in our experi-
ments. (a) Conv. No-banking: Conventional flow with no use of MBFFs. (b) Conv.
MBFF: Conventional flow with use of MBFFs imposing non-flexible of flipping and
footprint waste. (¢) MBFF-opt: Our proposed flow with use of MBFFs resolving non-

flexible of flipping and footprint waste in a way to enhance routability and timing.

41



Table 2.4: IWLS benchmark circuits used for the experiments.

Circuit #cells #FFs #nets

MEM_CTRL 5460 1118 5575

USB_FUNCT 7949 1739 8063

AES_CIPHER 11149 530 11408

WB_CONMAX || 20294 818 21424

ETHERNET 38484 | 10543 | 38580

DES3 53052 | 8808 | 53286

NOVA 119611 | 10864 | 138300

publicly available in [4]°. We synthesized 2-bit, 4-bit MBFF cells based on ASAP7 and
use them in Conv. MBFF and MBFF-opt.

2.3.2 Comparing MBFF-opt with Conventional MBFF Allocation

To assess the efficacy of our MBFF-opt, we adjusted the chip utilization and clock pe-
riod for practical worst negative timing slacks (<20% of clock period) of each bench-
mark circuit. Table 2.5 summarizes the PPA results of the implementations produced
by the flows of Conv. MBFF and MBFF-opt, which compare the die area (Area in
um?), total wirelength (WL in wm), the number of design rule violations (#DRVs), the
worst negative slack (WNS in ps), total negative slack (TNS in ps), and total amount

of power consumption (Power in pI¥) 7.

setLimitedAccessFeature FlipFlopMergeAndSplit 1 and setOptMode

—multiBitFlopOpt True
®Note that the cell description formats in ASAP7 PDK library are acceptable to Cadence tool platform

of placement and routing.
"The 5th, 7th, 9th, 11th, and 13th columns in Table 2.5 indicate the reduction rate of PPA, which

represents the quantity of (Conv. MBFF - MBFF-opt) / Conv. MBFF.

42



Table 2.5: PPA comparison of the implementations produced by Conv. MBFF and our

MBFF-opt.
Circuit Conv.MBFF MBFF-opt

Step 1 only Step1+Step2 | Step1+Step3 | Step2+ Step3 | Step 1 + Step 2 + Step 3
Area 12445 12411 0.3% 12425 02% 12411 0.3% 12445  0.0% 12425 0.2%
WL 76367 72824  4.6% 72905  4.5% 72816  4.7% 76427  -0.1% 72900 4.5%
#DRVs 45 4 22% 45 0.0% 42 6.7% 45 0.0% 41 8.9%

MEM_CTRL
WNS -39.40 -25.00 36.5% -23.07 41.4% -2499  36.6% -38.04 3.4% -23.05 41.5%
TNS -926.47 -380.80 58.9% | -276.121 70.2% -380.46  58.9% -893.11  3.6% -275.12 70.3%
Power 1641.25 1559.63  5.0% 1559.38  5.0% 1559.97  5.0% 1641.10  0.0% 1559.63 5.0%
Area 19392 19381  0.1% 19366 0.1% 19381  0.1% 19378  0.1% 19366 0.1%
WL 131626 132864 -0.9% | 1329529 -1.0% 132899 -1.0% | 132080.4 -0.3% 132981 -1.0%
#DRVs 104 88 15.4% 83 20.2% 56  46.2% 48 53.8% 53 49.0%

USB_FUNCT
WNS -42.00 -41.98  0.0% -38.01  9.5% -35.57 15.3% -31.06  26.1% -35.45 15.6%
TNS -495.11 -356.71 28.0% -344.16  30.5% -276.44  44.2% -333.43  32.7% -246.18 50.3%
Power 7409.54 7472.88  -09% | 749178 -1.1% | 747496 -0.9% 7409.28  0.0% | 7495.02 -1.2%
Area 18547 18514 0.2% 18547  0.0% 18514  0.2% 18577 -0.2% 18547 0.0%
WL 164955 164758  0.1% 164881  0.0% | 1647604  0.1% | 165714.1 -0.5% 164885 0.0%
#DRVs 120 121 -0.8% 114 5.0% 100 16.7% 94 21.7% 74 38.3%

AES_CIPHER
WNS -29.30 -21.19  27.7% -19.74  32.6% -21.01 28.3% -20.15 31.2% -19.62 33.0%
TNS -1034.01 -467.67 54.8% -428.57 58.6% -358.58 65.3% -406.73  60.7% -369.13 64.3%
Power 1908.88 1885.12 1.2% 1880.26 1.5% 1886.57 1.2% 191453 -0.3% 1881.74 1.4%
Area 38558 38406  0.4% 38396  0.4% 38406  0.4% 38574 0.0% 38396 0.4%
WL 466862 | 463540.88  0.7% 463910  0.6% 463542 0.7% 467293  -0.1% 463910 0.6%
#DRVs 553 534 34% 486 12.1% 528  4.5% 492 11.0% 483 12.7%

WB_CONMAX
WNS -86.90 -92.54  -6.5% -85.56 1.5% 9254 -6.5% -81.64 6.1% -85.59 1.5%
TNS -3193.91 -2168.83  32.1% | -2024.98 36.6% | -2169.86 32.1% -2544.04 20.3% | -2026.01 36.6%
Power 6298.65 6073.91 3.6% | 6078.82 3.5% | 6073.91 3.6% 6306.75 -0.1% 6078.82 3.5%
Area 103160 103358 -0.2% 103407 -0.2% 103358 -0.2% 103578  -0.4% 103407 -0.2%
WL 849714 862133 -1.5% 861802 -1.4% 862133  -1.5% 853805 -0.5% 861800 -1.4%
#DRVs 301 172 42.9% 154 48.8% 172 42.9% 178  40.9% 154 48.8%

ETHERNET
WNS -182.02 -135.97 253% -76.03  58.2% -122.71  32.6% -179.19  1.6% -63.54 65.1%
TNS -3374.43 -2026.65 39.9% | -1617.22 52.1% | -2013.58 40.3% | -2237.14 33.7% | -1607.28 52.4%
Power 11263.73 1156293  -2.7% | 1154379 -2.5% | 11563.01 -2.7% | 11469.42 -1.8% | 11543.95 -2.5%
Area 106526 106705 -0.2% | 1067244 -0.2% | 1067052 -0.2% | 106539.8  0.0% 106724 -0.2%
WL 560175 556374  0.7% | 556978.2  0.6% | 556349.5 0.7% | 560177.8  0.0% 556973 0.6%
#DRVs 85 82 3.5% 77 9.4% 68  20.0% 64 24.7% 61 28.2%
pEs3 WNS -33.93 -26.64 21.5% -25.11  26.0% -26.63 21.5% -28.49  16.0% -24.90 26.6%
TNS -2830.64 -294790 -4.1% | -2724.63  3.7% | -2933.11 -3.6% | -2768.56 22% | -2706.88 4.4%
Power 25568.68 | 25769.10 -0.8% | 25750.42 -0.7% | 25769.73 -0.8% | 25596.80 -0.1% | 25751.38 -0.7%
Area 346386 346466  0.0% 346395  0.0% 346466  0.0% 346060  0.1% 346395 0.0%
WL 3458498 3464932 -0.2% | 3465874 -0.2% | 3464935 -0.2% 3458250  0.0% | 3465880 -0.2%
#DRVs 2392 2347 1.9% 1996  16.6% 2346 1.9% 1842 23.0% 1997 16.5%
rova WNS -452.25 -216.59  52.1% -200.42  55.7% -216.58  52.1% -353.22 21.9% -200.41 55.7%
TNS -11312.50 -6727.85 40.5% | -2692.37 76.2% | -6720.77 40.6% | -12121.60 -7.2% | -2686.35 76.3%
Power 6462.16 641995  0.7% | 641951  0.7% | 6420.00 0.7% 6449.61 0.2% | 6419.58 0.7%
Area 92145 92177 0.0% | 92180 0.0% | 92177 0.0% 92165  0.0% | 92180 0.0%
WL 815457 816775 -0.2% 817043  -0.2% 816776  -0.2% 816250 -0.1% 817047 -0.2%
#DRVs 514 484 59% 422 17.9% 473 8.0% 395 233% 409 20.5%
Average WNS -123.68 -79.99  353% -66.85 46.0% -71.15  37.6% -104.54 15.5% -64.65 47.7%
TNS -3309.58 -2153.77 34.9% | -1444.01 56.4% | -2121.83 359% | -3043.52 8.0% | -1416.71 57.2%

Power 8650.41 8677.65 -03% | 867485 -0.3% | 8678.31 -0.3% 8683.93 -04% J:I‘SQSW

43

O_ ¥y
I L=
1



The column labeled Step 1 only in Table 2.5 shows the results produced by apply-
ing our D-to-Q flow optimization (i.e., Step 1) in MBFF-opt. In summary, it reduces
the worst negative slack and total negative slack by 35.3% and 34.9% on average even
with 5.9% fewer DRVs in comparison with the implementations produced by Conv.
MBFF. By integrating our D-to-Q flow refinement step (i,e., Step 2) into MBFF-opt,
as shown in the column labeled Step 1 + Step 2, we are able to further reduce the
worst negative slack and total negative slack by 46.0% and 56.4% on average even
with 17.9% fewer DRVs in comparison with the implementations produced by Conv.
MBFF. In addition, by integrating our timing optimization step (i.e., Step 3) as well
as Steps 1 and 2 into MBFF-opt, as shown in the column labeled Step 1 + Step 2
+ Step 3, we can further reduce the worst negative slack and total negative slack at a
little power cost incurred by the MBFF transistor upsizing for timing. Fig. 2.10 shows
the comparison of the distribution of DRVs and timing violation registers on the im-
plementations of circuit USB_FUNCT in Table 2.5 produced by Conv. MBFF and our
MBFF-opt. By comparing the results in the columns labeled ‘Step 1 + Step 2°, “Step 1
+ Step 3’, ‘Step 2 + Step 3°, and ‘Step 1 + Step 2 + Step 3’, it is observed that the com-
plete MBFF-opt flow makes the highest improvement on the worst and total negative
slacks as well as the number of DRV at a little cost of power increase.

Table 2.6 shows statistics on the number of MBFF cell instances labeled as #MBFF
(#M2 for 2-bit MBFFs and #M4 for 4-bit MBFFs) in the initial circuits produced by
multi-bit banking, the number of MBFF cell instances labeled as #Flipping 1, replaced
in Step 1 (i.e., by D-to-Q flow flipping) of our MBFF-opt, the number of MBFF cell
instances labeled as #Flipping 2, replaced in Step 2 (i.e., by D-to-Q flow refinement) of
our MBFF-opt, and the number of MBFF cell instances labeled as #Sizing, replaced
in Step 3 (i.e., by transistor upsizing) of MBFF-opt.

44



Table 2.6: The number of MBFF cell instances replaced by our MBFF-opt.

Initial MBFF-opt
Circuit #MBFF #Flipping 1 | #Flipping 2 | #Sizing
#M4  #M2 | #M4  #M2 | #M4  #M2 #M4

MEM_CTRL 186 9 128 2 2 0 3
USB_FUNCT 427 9 303 3 1 0 17
AES_CIPHER 128 7 88 3 30 2 13
WB_CONMAX 44 5 9 0 2 0 0
ETHERNET 2206 42 | 1066 11 90 1 1
DES3 2170 44 889 4 63 1 1
NOVA 6051 112 | 1194 17 8 0 4

(@) Conv. MBFF : (b) MBFF-opt :
(104 DRVs, 75 timing viols.) (53 DRVs, 21 timing viols.)

Figure 2.10: Comparison of the distribution of DRV's (white crosses) and timing viola-
tion registers (red rectangles) on the implementations of circuit USB_FUNCT produced
by Conv. MBFF and our MBFF-opt. (a) Conv. MBFF: 104 DRVs and 75 timing vi-
olations. (b) MBFF-opt: 53 DRVs and 21 timing violations.

s ATl ot
45 o



oSy OT6Tl- TSSI- LS TS ST- | TP ¥I68I- LbEE- 806t LS ST- | 61881 L'LE8-  €9b-  OSH €0LYIL  LTS06 : adeIeny
1°es 8CST L0y TlI- 9'L- L'T- | 8¢S L'G8E1- Sve0l- TIC V'L L1- | 900LET  VI9L- 6'6c-  PvL6I 10602TE€  9€90t€ VAON
80S  T'19€S- 9491 SSh 09 1T |TIS  €0€19- 60ST- TE6~ 99 61 | 9T8€TS 'S~ L6 b €€L5TS  SESHOT ¢sdaa
9v9  8Te-  90-  6€9  ¥OI- 0€ | SS9 8L~ €881~ S6CT 88 LT |Svrore 0017~ €9 LTb TE608L  £YY001 || LANWAHLE
6 66¢ 8IS 89 1 TO0 |T9 TS 1’18 89 80 TO- | 8SIL9  869€E- LLLI- 8IS 9LLOLY  OLYSE || XVIWNOD dm
19¢ VN VN 6%l  S1- SI- | TSE VN VIN 6L ST- ST- | €¥b6T 00 00 L8 01ST91 8781 || ¥AHAID saV
€65 T081T- 09~ T8I L6 €T | LSS  €6SSe- €I¥S-  9LS-  §8 vT- | 0Ep9T SEI- 99 99 68TITI 67681 || 1ONnd-dsn
Sy LOb LST  TLI-  0¢€ TO |LTW L66- Ovb- 98T 6L ¥0- | €798 OV LT SE 8LLOL  S6ETT TILO WAN
Tomod SN.L SNM  SAdd# TM  BaIV | Tomod SNL SNM  SAIA# TM BIV | Tomod SNL SNM  SAdd# ™ BIIY

(%) do-44aI (%) 44aN AuoD Bunjueg-oN ‘Au0D R

ur Jey) s uosLredurod ur JuduaA0IduwT 9)BIIPUT SIIqUINU PAIO[0I-aN[q Y} Puk (9;)a8eiuadrad st Jdo-44gIA PUB 44gIN "AU0D Jo

yun oy, '1do-44gN Ino pue ‘44gIA ‘AuU0D ‘Bujueq-oN ‘Au0D Aq paonpoid suonejuawadur ay) jo uostredwod vdd LT AI9BL

‘Bunjueq-oN ‘AU0D

46



2.3.3 Comparing MBFF-opt with Conventional No-Banking Flow

Table 2.7 shows PPA (performance, power, area) comparison of the implementations
produced by the conventional flow with no use of MBFFs and MBFF-opt® Grouping
individual flip-flops to make MBFFs results in an inflexible cell placement, possi-
bly causing inferior circuit timing as well as less routability. However, as shown in
Table 2.7, MBFF-opt performs well in overcoming the potential loss of timing and

routability even less power consumption.

2.3.4 Runtime Analysis of MBFF-opt

Table 2.8 shows the runtime of Step 1, Step 2, and Step 3 in MBFF-opt. Steps 2 and
3 take 85.1% and 14.7% of the total runtime which takes most of the total runtime, as
shown in Table 2.8 due to checking the congestion and timing in iterations in Step 2
and iterative ILP solving in Step 3 (We set time limit to 30 seconds in solving one round
of ILP iteration in Step 3.) Fig. 2.11(b) shows ILP runtimes in Step 3 according to the
number of MBFF instances in all benchmark circuits. It shows that the ILP runtime
intends to increase, as the number of MBFFs increases, which in fact increases the

number of variables used in ILP.

2.3.5 Comparing MBFF-opt with Conventional No-Banking flow with
more timing-optimized MBFF banking design

To demonstrate the effectiveness of our MBFF-opt approach in a more timing-optimized
design, we upgraded our version of Innovus and employed high timing effort to merge
and split MBFFs using the commands set OptMode -MBFFSplitTimingEffort
high and setOptMode -MBFFMergeTimingEffort high. Table 2.9 shows
a PPA comparison of the implementations produced by the conventional flow with no

use of MBFFs and conv. MBFF and our MBFF-opt, in which conv. MBFF yields

8The values in columns Conv. MBFF and MBFF-opt indicate reduction rate on PPA, which is the

outcome of Conv. No-banking minus Conv. MBFF or MBFF-opt divided by Conv. No-banking.

47



Table 2.8: Runtime of Steps 1, 2, and 3 in MBFF-opt.

Runtime(s)
Circuit
Step 1 | Step2 | Step 3
MEM_CTRL <1 1 93
USB_FUNCT <1 397 282
AES_CIPHER <1 699 364
WB_CONMAX <1 436 2
ETHERNET 7 510 659
DES3 5 1071 720
NOVA 17 | 12955 660
Average 4 | 2295 397
900
800
—~ 700 )
K . it .
o 600
o
&3 500 //,.—
S 400 .
s -
g 300 /t'/
§ 200
100 .
0 °

0 1000 2000 3000 4000 5000 6000 7000
The number of 4-bit MBFF instances

Figure 2.11: Changes of ILP runtime as the number of 4-bit MBFF instances changes

in Step 3.

48



better designs in terms of WNS and TNS compared to the conv. MBFF results shown
in Table 2.7. Table 2.9 demonstrates that our MBFF-opt further improves WNS, TNS,
and #DRVs compared to both the conv. MBFF and Conv. No-banking designs. On
average, the area improvement rate achieved by the conv. MBFF and MBFF-opt is
-0.6% and -0.8%, respectively. These results show that our MBFF-opt performs well
in mitigating potential timing and routability issues, even in highly timing-optimized

designs.

49



%6E S %6T  WYE | BOE  WBTL-  %BIT- %OT- | LS'IST8T SLLES-  TE9P-  YIOSH aSeroay
%BES  BOOI  %BOOI  %SE | BES %98~ BOT- %EI- | LSLTILL SS691%- #1181~ 658 VAON
%BOE  BTOT- Bbb-  BES | BOS  BSTT- WES- %BIT | 86'S8909 €9°S9LE- 9T'vT-  9I1 €sda
%BLY  BOOT  %OOT %6E | BLY  %6T %9  %IE- | 86'LESSE 68L6-  LLL- I LANYAHLE
%6 %OV WIS WL %9 %S BIS WL~ | 6LSILY  08'69€€- S9LLI- 8IS XVIANOD M
%6l BSE-  BLI-  BEY | BIT  BT8  BEY- %9S- | 96TIEE  1TE0- €I'6v- 8l YAHAID SAV
%OS %L~ BT BEE | BOS %Oy BTI- %ST | 9SL99LT LT8Y-  SEVI- LT LONNA 9SN
%y %Iy WOl BLI- | %EY  %OOI- Bbb-  %6T- | STTIST  €OV9P-  9€'LT-  SE TILD AN
2M0d  SNL  SNM SANQ# | ¥mod  SNL  SNM  SAJQ# | 1omod SNL  SNM  SANQ#

(%) 1do-JIGIN (%) dAFIN Au0D Buryueq-oN ‘Au0) R

‘Buueq-oN "AU0D Ul Jey) Yim uostreduwod ur juswosoidur ajedrpur

SI2qUINU PAIO[0I-An[q AY) puk (9,)a3eIuadrad st Jdo-44gIA Pue 44gIN ‘AUO0D) Jo un 3y, ‘JIGIN N[ds pue d810Ww 0) 110} Surwn

ysiy Sursn }do-44g|\ Ino pue ‘44g\ ‘AuoD ‘Bunjueq-oN ‘AU Aq paonpoid suonejuswardur ay) Jo uostredwod ydd :6'C A[9BL

50



Chapter 3

Minimally Allocating Always-on State Retention Stor-

age for Supporting Power Gating Circuits

3.1 Motivations

¢ Dealing with cycles, including self-loops: The cycles in a flip-flop dependency
graph make the allocation problem hard to be solved optimally since at least one flip-
flop in every cycle should be replaced with a flip-flop with retention storage, otherwise
we have no idea which flip-flop(s) should initiate the state restoration. All the exist-
ing works, as a preprocessing step, cut the cycles to produce a flip-flop dependency
graph G(V, A") with no cycle, and apply their allocation algorithms to G(V, A"). For
example, in [3], an iterative heuristic based on the minimum cost feedback vertex set
(MFVS) [40] is used to break all cycles with a minimal number of cuts. Note that
the pre-processing step worsens the allocation quality due to the fact that the mini-
mal cycle-cut is an NP-hard problem and the cycle-cut process in all existing works is
completely decoupled from their allocation algorithms. For example, Figs. 3.1(a) and
(b) show two possible cycle-cut results (labeled G; and GG2) on a flip-flop dependency
graph with two cycles fi — fo — fi1and fi — fo — f5 — fi1. Then, Figs. 3.1(c)

and (d) respectively show optimal MBRFF allocations with wakeup latency constraint

51



I = 3 for G; and G5 in Figs. 3.1(a) and (b), in which G uses 4 retention bits while
G2 uses 3. On the other hand, our proposed optimal algorithm performs cutting cycles

and allocating MBRFF's simultaneously.

Ry On0 oF0
()~ (1)~(5) ()% (55-(7)
X

(a) Acyclic graph (G;) produced by cutting (b) Acyclic graph (G3) produced by cutting
f2 = frand f5 — fi. fi = fo

{3
f
Iy

3-hit

(c) Optimal MBRFF allocation with [ = 3 for (d) Optimal MBRFF allocation with [ = 3 for

(31 in (a), using 4 total bits. G5 in (b), using 3 total bits.

Figure 3.1: Example illustrating the effect of cycle-cut on allocation quality.

o Impact of wakeup latency constraint: More saving on retention storage is generally
expected as we increase the value of wakeup latency constraint [. Fig. 3.2 shows a
comparison of the amount of retention storage reduction when [ is set to 2, 3, and
4 clock cycles, saying that for [ exceeding 3, very little saving is achieved. In other
words, [ = 2 or 3 suffices for MBRFF allocation. Consequently, we focus on the
MBREFF allocation problems for [ = 2 and [ = 3, and propose optimal solutions to
bothof l =2 andl = 3.

¢ Supporting multiple objective functions: All existing MBRFF allocation algo-
rithms target one objective, which is to minimize the total number of retention bits

because it indirectly minimizes the leakage power on retention storage or total reten-

52



e
)

-

(normalized)

storage reduction ratio

o

1:1-2 1:1-3 I:1-4
wakeup latency constraint (1)
Figure 3.2: Comparison of retention storage reduction produced by [2] on IWLS [5]
circuits when the wakeup latency constraint [ is set from 1 to 2, 1 to 3, and 1 to 4 clock

cycles.

tion area. Table 3.1 shows the leakage power on the retention storage in MBRFFs in
Synopsys generic library (using a tri-state buffer between latches) and [1] (using delay
buffers and transmission gate between latches), explaining that for some MBRFF im-
plementation, there is a big mismatch between the leakage power in retention storage
of k-bit MBRFF and the k& times of the leakage power on 1-bit MBRFF. In addition,
Table 3.2 shows the area of MBRFFs in Synopsys generic library and [1], indicating a
trend similar to that in the leakage power. Thus, for minimizing leakage power or total
area, it is necessary to use the leakage power or total area as the direct cost function to
be minimized rather than using total retention bits. So far, no works have considered
those cost functions in their allocation algorithms. Our proposed algorithm accepts the

three objectives of total bits, leakage, and area.

3.2 Optimal MBRFF Allocation Algorithm for [ =2

Our MBREFF allocation algorithm called MBRFF-opt accepts the original flip-flop

dependency graph, G(V, A), of a target circuit for power gating as input. Then, it

S EEiRT!
53 S A



Table 3.1: Leakage power on the always-on retention storage in k-bit MBRFFs in

Synopsys 32nm generic library and Chen [1].

k || Synopsys (nW) | ratio || Chen [1] (nW) | ratio

1 61.96 1.00 40.50 1.00
2 137.77 2.22 80.89 1.99
3 197.69 3.19 121.28 2.99

Table 3.2: Area of k-bit MBRFFs in Synopsys 32nm generic library and Chen [1].

(k = 0 indicates flip-flop with no retention storage.)

k Synopsys (um?) | ratio || Chen [1] (um?) | ratio
0 (no ret.) 6.608 - 6.610 -

1 13.215 1.00 11.183 1.00
2 18.502 1.79 14.233 1.67
3 23.780 2.60 17.283 2.33

54



performs three steps: (1) MBRFF-opt transforms G into G’ by node replication to fa-
cilitate generating every segment that corresponds to an MBRFF allocation; (2) It finds
a set of segments that can cover G’ with no overlap such that it produces a minimal
quantity of the total number of retention bits, total leakage power or total area of re-
tention storage; (3) MBRFF-opt allocates retention storage according to the covering

segments obtained in (2).

3.2.1 Transforming Flip-flop Dependency Graph

We illustrate why the original graph is required to be updated before applying the sub-
sequent step using an example of MBRFF allocation in Fig. 3.3, in which we want
to allocate MBRFFs of a minimal total number of retention bits for the flip-flop de-
pendency graph G in Fig. 3.3(a). Then, Fig. 3.3(b) lists all partial subgraphs (called
covering segments), each of which can be entirely allocated with a 1-bit or a 2-bit
MBREFFE. Precisely, segments si,--- , 4 can be assigned with 1-bit MBRFFs while
S5, -, Sg assigned with 2-bit MBRFFs, but s7 and sg can be removed since s7 C s5
and sg C s5, and the costs of s7 and sg are not smaller than that of s5.

Then, minimal covering segments for G are s3 and s5 (marked with red checking).
Fig. 3.3(c) shows the two-cycle state recovering process for the MBRFF allocation to
so and s5. However, the state of flip-flop f4 will not be restored since fo never feeds
fa during the wakeup cycles ¢; and t». Instead, if we choose covering segments ss
and sg (marked with green checking), resulting in one more retention bits, the state
restoration process can be done successfully, as shown in Fig. 3.3(d). As a result, this
leads to transform G to G’ by including node replication for every node that is driven
by multiple flip-flops, so that so and s5 cannot be a complete cover on G

Precisely, we include a new node fy, and update the segments s4 and sg as shown
in Fig. 3.3(e). Note that a node with self-loop will be duplicated as well. For example,
Fig. 3.4(b) shows the transformed graph G’ of the original graph G in Fig. 3.4(a), in

which f3 is replicated twice since f3 is driven by three flip-flops including f3 itself.

55



Segments

EONE CIMENCSOMLECR

invalid
» ® | |*@0®|,

S1

®

(a) Flip-flop dependency @ rcost=1 @ cost=2
graph G. (b) Covering segments of G.
t = tO t = tl t = tz
fl f3 fl f3 fl f3
L] (=] [=] 0
. -
2 LoD A S fi
L | L] [o] o
1-bit 1-bit 1-bit NOt rEStored

(c) Restoration process with red checked segments (s2, S5).
t= tO t = tl t= tz
fi f3 fi f3 fi f3

o =
[ 2bit | 2ot | 25 |

fo = fi = fa
- Sk
]| Ol Restored

2-bit 2:bit

(d) Restoration process with green checked segments (ss, sg).

e a S
2 ®
Sy f, \ % @
a4 S

N

(e) Node replication and updating segments.

Figure 3.3: Example of transforming an original flip-flop dependency graph to a feasi-

ble covering graph for MBRFF allocation.

56

e g ke

]
|

1L



Let P = {fj,, fj,, - - } be the set of nodes (i.e., flip-flops) that drive f; in G. Node
replication rule is that: if | P| > 1, we replicate f; to produce R = { fi,, fiy, s fir, }
where m = |P| — 1 and all replicated nodes together with f; are collectively consid-
ered in G' when generating edges and covering segments. Such node replication will
constrain that if we want to restore the state of f; in G with the help of its driving flip-
flops, all the driving flip-flops (i.e. P) should be allocated with 2-bit MBRFFs since,
otherwise, it causes an incomplete state restoration, as illustrated in Figs. 3.3(c), (d),
and (e) where (incoming edge updating rule) R = {f4, } is added to G’ with edge
fa — fa, while deleting fo — f4. This node replication and incoming edge updating

lead to the following fact:

Fact 1. Restoring the state of f; in G can be done by completing state restoration on
fi in G’ as well as all replicated nodes in its R. (The flip-flops in R are assumed to

have ‘virtual’ states.)

Fig. 3.4 shows a comprehensive example of node replication in G for generating fea-
sible covering segments. Since f3 in the flip-flop dependency graph in Fig. 3.4(a) has
three driving nodes fi, fo, and f3 (i.e., self-loop), two more nodes f3, and f3, are
created with edges f1 — f3 and fo — f3,, as shown in Fig. 3.4(b).!

Except for f3, caused by self-loop, (outgoing edge updating rule) f5 and f3, in
G’ have outgoing edges to both fy; and f5, which are the flop-flops driven by f5 in G
to ensure that an MBRFF allocation to f3 in GG can be done by allocating the MBRFF
to {fs, f3,, f3,} in G'. This node replication and outgoing edge updating lead to the
following fact:
Fact 2. Allocating an MBRFF to a flip-flop f; in G can be done by allocating the

MBRFF to f; in G' and MBRFFs of the same bit size to all nodes in its R. (The flip-

flops in R are assumed to be allocated with ‘virtual’ MBRFFs.)

Based on Facts 1 and 2, Fig. 3.4(c) shows all possible covering segments produced

from G’ in Fig. 3.4(b) where segments sq, - - - , s and s7, -+ , s11 are responsible for

'fs — fa, is not shown since fs and f3, are the same flip-flop.

57



all possible 1-bit and 2-bit MBRFF allocations, respectively. In particular, segment s3
intends to allocate a 1-bit MBRFF collectively to { fs, f3,, f3,} while segment sg in-
tends to allocate a 2-bit MBRFF collectively to { fs, fs,, f3, }- MBRFF-opt generates
all segments from G’ for 1-bit and 2-bit MBRFF allocations in a way to satisfy the

following fact:

Fact 3. Every segment of (i) single nodes and (ii) pairs of nodes with driving-driven
relation in G' produced by MBRFF-opt is responsible for allocating exactly a distinct
MBRFF of 1-bit size for (i) and 2-bit size for (ii) in G.

3.2.2 Minimal-cost Covering for the Transformed Graph

Let S = {s1, s2,- -} be the covering segments produced by Step 1 in MBRFF-opt.
Then, we formulate the problem of extracting a subset of .S which has the minimal
quantity of each objective into a weighted unate covering problem (UCP) and solve it
optimally.

The weighted UCP [41] is, given a matrix M of m rows and n columns, for which
M; ; is either O or 1, the problem of finding a column subset U with a minimum total

weight that satisfies

HjeUMi,j =1,Vi e {1, s ,m}. 3.1

That is, the columns in the set U cover M in the sense that every row of M contains
an l-entry in at least one of the columns of U, and there is no smaller-cost set that also

covers M. The matrix M is called constraint matrix.

We construct a constraint matrix with columns corresponding to S and rows cor-
responding to the flip-flops including replicated nodes. M; ; = 1 if the flip-flop in the
it" row is in the covering segment in the j** column, and M; ; = 0, otherwise. For
example, Fig. 3.5(a) shows the constraint matrix of the transformed flip-flop depen-

dency graph in Fig. 3.4(b), in which the matrix has eight rows, one for each flip-flop,

and eleven columns, one for each segment. The columns enclosed by red dashed lines

58



(b) Graph G’ transformed from G by node replication and edge
updating

Segments

@ 55 @ S9 @g’:
@ S6 S10
S3 S S11

Sy Sg

@:cost:l @:costzz

(c) All covering segments for satisfying Facts 1 and 2

N

Figure 3.4: An illustration of node replication, edge updating, and segment generation
to maintain consistency, i.e., Fact 3, with the flip-flop state restoration process in G.
,-;’x—-.! 5 1_'_] i &l T
| e | - -
59



Ty 7 T 7 S So
I [} 1 I 1 I 1 1 Se
IS1 (S2 ,S3 S4 S5 !S¢  S7 Sg 1S9 S10 S11
1 I| 1 1 1 1 1
111 1 1 11,2 2 102, 2 2
—— — —
fo X b ) ma) R m]
fa v X [ X X 1-bit 2-bit 1-bit
1 1 1 1
fa g X RS X Sy
faap )X - X X!
! I\ 1 ! 1 ! 1 f :
faz i ¢ X o X 2 f
foli 4 X P! PX X 5|
fs 0! X! DX ! X Lbit
fo i 1 X L X
N = = N o N = N = =
(a) (b)

Figure 3.5: (a) Construction of constraint matrix and UCP solution. (b) MBRFF allo-

cation for the solution in (a).

indicate a minimal-cost subset to cover all flip-flops and the sum of the weights of

those columns, which is 5, is the value of the minimum total cost.

3.2.3 Allocating MBRFFs According to Minimal-cost Covering

This step allocates an MBRFF to every covering segment extracted in Step 2. For
example, Fig. 3.5(b) shows the MBRFF allocation result according to the selection
of covering segments in Fig. 3.5(a) by Step 2 of MBRFF-opt. The validation of the
correctness of MBRFF allocation results by MBRFF-opt is supported by Lemma 1

and Theorem 1.

Lemma 1. For every cycle, including self-loop in G, MBRFF-opt with | = 2 allocates
1-bit or 2-bit MBRFF(s) to at least one flip-flop in the cycle.

Proof. If a cycle in G is self-loop, the self-loop flip-flip will be duplicated in G’
According to the incoming edge updating rule, the duplicated node, say fq, (e.g., f3,
in Fig. 3.4(b)) has no incoming edge. Thus, to cover f;, UCP solver must select a
segment containing f,; for triggering the state restoration. If a cycle in G is not self-
loop, the cycle has at least two nodes in G’ with driving-driven relation, say f; — f;.

If no MBRFF were allocated to f;, UCP solver will select a segment consisting of f;

60



and f; to cover f;, resulting in allocating a 2-bit MBRFF to f;; if no MBRFF were
allocated to f;, by Fact 2 UCP solver will select a segment containing f; to cover f;,

resulting in allocating 1-bit or 2-bit MBRFF to f;. O

The abundance of self-loop flip-flops in circuits i.e., 62%~87%, as summarized in
Table 3.3 and the claim in Lemma 1 clearly explain the inherent ineffectiveness of
further reducing the total bits of retention storage even though the wakeup latency [

increases to over 3, as shown in Fig.3.2 in Sec. 3.1.

Theorem 1. MBRFF-opt allocates MBRFFs optimally while ensuring a correct and

non-conflicting state restoration with | = 2.

Proof. Since UCP solver (i.e., Step 2 of MBRFF-opt) selects a subset of non-overlapping
covering segments to cover G’ such that it has the least total cost, it directly leads to
an optimal MBRFF allocation according to Fact 3. In addition, the correctness of the
state restoration is justified by the node replication in G together with edge updating
to satisfy Facts 1 and 2 as well as by generating covering segments for G’ to satisfy

Fact 3. OJ

3.3 Extending Optimality of MBRFF-opt for [ =3

3.3.1 Extending Node Replication and Edge Updating

Since [ is set to 3, MBRFF-opt needs to consider allocating 3-bit MBRFFs besides
1-bit and 2-bit MBRFFs. Thus, MBRFF-opt requires covering segments of the form
fi = f; = fr. MBRFF-opt applies the rules of node replication and edge updating to
G, assuming | = 2, to produce G’. Again, MBRFF-opt applies node replication and
edge updating for the nodes in G’ driven by the nodes that were involved in replication
in G’ to produce G”, so that G” allows to generate all segments of the form f; — f; —
fr. We illustrate the construction of G” using G in Fig. 3.4(a). First, we construct G’

as shown in Fig. 3.6(a) from G to satisfy Facts 1, 2, and 3. Then, we construct G as

61



shown in Fig. 3.6(b) from G’ by duplicating f4 and f5 and updating edges following
the rules in Sec. 3.2.1. Thus, G” contains R = { fy, } for f4 and R = {f5,} for f5 in
addition to R = {fs,, f3,} for f3, all of which are required to support Facts 1 and 2.
Fig. 3.6(c) shows all segments produced by MBRFF-opt from G” for 1-bit, 2-bit, and
3-bit MBRFF allocations in a way to satisfy the following fact:

Fact 3 (extended). Every segment of (i) single nodes (ii) pairs of nodes, and (iii) triples
of nodes with driving-driven relation in G" produced by MBRFF-0pt is responsible
for allocating exactly a distinct MBRFF of 1-bit size for (i), 2-bit size for (ii), and 3-bit
size for (iii) in G.

Fig. 3.7 shows the constraint matrix of G” in Fig. 3.6(b). The columns enclosed
by red dashed lines indicate a minimal-cost subset to cover all flip-flops. The sum of
the weigths of those columns, which is 4, corresponds exactly to a minimum total cost
of MBRFF allocation as shown in Fig. 3.7(b).

It is quite straightforward to prove the extended versions of Lemma 1 and Theorem

1 for [ = 3. (We omit the proofs.)

62



(a) G’ transformed from G to support up to 2- (b) G transformed from G’ to support up to
bit MBRFFs 3-bit MBRFFs

Segments (cost = 1) Segments (cost = 2) Segments (cost = 3)

(c) All covering segments for satisfying Facts 1 and 2.

Figure 3.6: An illustration of node replication, edge updating, and segment generation
to maintain consistency, i.e., Fact 3 (extended), with the flip-flop state restoration pro-

cess in G.



== ==,

:51 182 S3 Sy S5 Se¢ S7 Sg S9 S10 S11 S12 S13 :514:515

:l : 1 1 1 1 1 2 2 2 2 2 3 3 :3 : 3
fa X! X X I s S1a

1 | ! 1

! X X X X X X
. oF
fa X X o XX fo s
T3, E : X X X X EX: X 1 3-bit
f3, | | X X X |

1 1

HE X X X X X
ff4 ! i X X X X :X:
f41 i ! X X X :>< ! X L s
Sho P
fs, i ! X X X X 1xyX
fe ! i X X :X:

(a) (b)

Figure 3.7: (a) Construction of constraint matrix and UCP solution. (b) MBRFF allo-

cation for the solution in (a).

3.4 Experimental Results

We implemented our optimal MBRFF allocation algorithm MBRFF-opt in C++ and
solved the weighted UCPs by linking to CPLEX [42]. IWLS benchmark circuits [5]
are used to compare our MBRFF allocation results with that of the existing best-known
heuristic (Fan [2]) which used MFVS technique [40] to cut cycles in the flip-flop de-
pendency graphs of the circuits. The benchmark circuits were synthesized and imple-
mented using Synopsys Design Compiler and IC Compiler with Synopsys 32/28nm
Generic Library that contains standard cells of retention flip-flops. We set the oper-
ating clock frequency to 200MHz for all circuits. We performed our experiments on
4.7GHz Intel Core machine under the Linux operating system with 64GB memory.
Table 3.3 shows the detailed benchmark circuit information, including the number
of flip-flops (“#FFs”), the number of edges (“#Edges”), and the number of self-loop
flip-flops (“#Self-loop FFs (ratio)”) in the flip-flop dependency graphs of the circuits.

64



Table 3.3: IWLS benchmark circuits

Circuit #FFs | #Edges | #Self-loop FFs (ratio)
SPI 229 | 3690 195 (85%)
WB_DMA 523 7351 328 (62%)
WB_CONMAX 818 12174 658 (80%)
MEM_CTRL 1118 | 59954 872 (78%)
USB_FUNCT 1737 | 19876 1245 (72%)
AC97_CTRL 2199 | 14891 1723 (78%)
PCI_BRIDGE32 || 3403 | 78633 2973 (87%)

Figure 3.8: MBRFF distribution of the allocation results for MEM_CTRL in Table 3.4
and 3.6 where the green, yellow, and red small rectangles indicate 1-bit, 2-bit, and 3-bit
MBREFFs, respectively. (a) Distribution by Fan [2] in Table 3.4 and 3.6. (b) Distribu-
tion by MBRFF-opt in Table 3.4, reducing 2-bit MBRFFs by 42 at the expense of 4
more 3-bit MBRFFs. (c) Distribution by MBRFF-opt in Table 3.6, which optimizes

total area by using 11 more 3-bit MBRFFs over that in (a).

65



0LO1 /TTL| %8L0 /%E00 | 6ve \Ei L€ \-To_ /1L | 1e6c /98t : oses \5; Pl \.7 L09 /68 | s601 /0SCI : Say
veor /- | wvo0 /- €501 /- ve /- €€ /- |vesor /- 96501 /- st /-] v /- |eocor /- ALANYAHIE
LoST /- | %000 /- 3088 /- 88T /- |¥8s /- | oo /- 3088 /- 19 /-|€ser /- 65 /- sd¥AdSAa
S10C /S0S | %000 /%000 | L6EE /L6ES 9 /-| o1 /1S | Lvec sseTe | Less /Less | Tb /-| 6T /1L | €1TE /SSTE || sreApanigiod
V6T /19 | %600 /%000 | L8IT /68IT T /| L Jte | i sseic | esic /esic 0 /-| €€ see | st setie|| TmaoLeov
VZZl /€9 | BTYE /%000 | L991 /9TLI|  O1 /- | 0Tl /9Ll | L6ST /PLEL | 9zL1 /9T ¢ /-| orc ssiz| t6er /96Tt | 1oNnaasn
6100 /¥T1 | %IST /%000 | 9801 /9111 9 /-| ST /vb | €101 /801 | strr /ornn T /- oL Tl | 69 sue || wmarowaw
¢8F /0T | %000 /%000 | 818 /SIS 0 /-| s sser| wvoL sz9s | sis /88 0 /-| ser /sTr| T9s /9s || xvwNOOEM
T /L0 | %610 /%610 | 9IS /9IS T/ oL /vl | e /89 LIS /LIS 1 /-] oot /101 wie /sIg VNG M
9T /T0 | %000 /%000 | 62T /6TC 0o /-] o /0 6tc /6TT || 6TT /6Tt 0o /-] 0 /0 67 /67T 1ds
(09s) owm uny Pous, | wawws | dninaes | dnnecy | aniems SHEOME | ATANA-EH | ATANGTH | LD GT# .
(€=1/¢=1 1do-444an (€=1/c=10 [Jueq e

"9ZIS d[qeaSeurw v (02} Dﬁosﬁtﬁm ST JINJJID Y] S3ajedipurl ‘MITA JO OMNHOHW uonuajarl Jo Sjig rejol ur

1do-444g\ no pue ([¢] ueq) wyiLio3[e uonedore LIYGIN UMOUY-1Saq SUNSIX Y} JO SSOUIATIOIR Y} Jo suostredwio)) ¢ 9[qe].,

66



(¢=1/2 =1 1do-444gGInN

(€=1/¢2=0DIlclued

BS6'T /%S | 8¥10T /LS'88 v/ T /v | ¥eLe /0Tyl 69'60C /L9°68 say
%910 /- €8°CS9 /- 81 /- v /- | OLYOL /- L8€S9 /- # LANYHIHLE
%I6'6 /- vLSYS /- 0 /- 0 /- 8088 /- 8L°S09 /- IR e £ NG (¢l
B6E0 [ %BEYO | SSOIT /9S01T S /- I /9 | 08€E /6S8¢¢ 81T /¥ 11T || xCcaDAd 10d
BEEO /BITO | ¥9°SET  /08'SET T /- 8 /TI| S9IT /S91C 6091 /60°9¢€1 TALO™L6IV
%8S'S | %EST | 8L'EOT  /+1°LOT L /- L /0T | LE9T /LOLI 16601 /T6'601 LONNd~€gSN
BILE [%BIET | LVL9 /TT69 S /- 0 /1 €L0T /SITI 80°0L /¥1°0L # TALO AN
BYE'E [ %VEE | 89°0S /8908 0 /- 0 /0 818 /818 9'TS /9¥'TS XVIANOD™ M
BLOE | BLOE | T¥TE [ 1FTE 0 /- 0 /0 €CS  /€TS €V'EE  /EbEE VING M
%000 /%000 | 6I'F1 61Vl 0 /- 0 /0 6CC 16T 6Ivl /611 Ids
PAY (Mmr) emod | AIING-¢# | AAINQ-TH | AT NQ-T# (M) 1emod oo

(-oz1s 9[qeadeueur € 0} pauonnied SI1INOIIO Y} SAIBIIPUIL | ,.,.) "MIIA JO 958I0)S UOTIUIAI U0 Jomod aSeyes] 1810} Ul

1do-444gIN no pue ([7] ue4) wyio3[e uonedo[e YN UMOU-1saq SunsIXd aY) JO SSOUIANIAYR Y} Jo suostredwo)) :G'¢ 9[qe],

67



BOY'T 1 %61°0 | STHO8ET  /¥0'6LEY €LT /- | 8ST /901 | 8IIT /6ITI || ELOLOVT /¥LTOEEY || S8'69L6T say
BETO /- 0S'SL6LY /- w /-| Ly /- L1E0OT /- 00'8€08% /- 78'56969 »LANYTHLE
%ovY /- §s1L0TE /- €6cc /- | SI8 /- €0g /- LTOLSEE /- 88°0TT8S xdd8d”s4d
%6E0 /1 %¥00 | 00°€0EST /8T OTHSI TS /- 09 /06 STIE /TTTE || 8E€T9EST  / SE9THST || €8°€6VCT | »TEADATIE 1Dd
%090 /%TE0 | S9°0066 /90°8T66 LT /-| 1T 109 | L90T /1LOT | +0°0966 /00966 || 6£SESHI T4LO™L6DV
BITE 1%Y90 | 09°STEL /L89ISL TL /- | LIT /98T | 01T /LOIT || ¥6'LSSL /SS'S9SL | LS I8¥IT LONNA~€gsn
%081 /%900 | ¥T968% /LL 066 €L /- Te IvL L86 /896 61'9867 /18°¢66t || 86'68EL # TILD WA
%000 /%000 | LL'SYSE /LL'SYSE 0 /-|8Tr /8Tl 798 /79§ LL'SYSE [ LL'SYSE || 86'90%S XVIANOD gM
%8T0 /%8TO0 | 08°T0TC /TEHOTT I /- | 101 /201 e /2ig 06'80CC /TH01TT || €O°LSHE VINA~gM
BYLT /%000 | 868201 /TTLYOT 1Ic /-] 0 /0 9L1 /6CT TTLYOT  /TTLYOT || 69°€ISIT 1ds
POA% (guurl) eary A Nq-€# | AAING-T# | AJI NQ-1# (g eary
(gwrt) sdd oIy
(€ =1/t =1 1do-444aIN (€=1/¢=1Ilclueq

(-oz1s o[qeaSeueur € 0] pauonnied ST 3INDIIO AY) SAIBIIPUL ,.,) "MIIA JO 358I0)S UONIUIAI JO Bale uonejuawadwl 1810} ut

1do-444gIN no pue ([7] ue4) wyio3[e uonedo[e YN UMOU-15aq SunSIXd ) JO SSOUIANIAYR Y} Jo suostredwo)) :9°¢ 9[qeL,

68



Table 3.7: Problem sizes before and after partitioning flip-flop dependency graphs for

large circuits.

Before partition After partition (total)

Circuit #FFs | #Edges
#Segments | #Nodes || #Segments | #Nodes
MEM_CTRL 1118 59954 2852 | 5268K 2411 741K
PCI_BRIDGE32 3403 78633 9747 | 1344K 5157 422K
DES_PERF 8808 34736 26176 207K 23973 77K
ETHERNET 10544 | 248887 30927 | 2752K 13466 150K

3.4.1 Minimizing Total Number of Bits of Retention Storage

To demonstrate the efficacy of MBRFF-opt on minimizing the total number of re-
tention bits, we set the costs of the covering segments to the bit sizes of MBRFFs
accordingly while constraining the wakeup latency (I) to 2 and 3. Table 3.4 summa-
rizes the comparison of the results, in which the values in column “#x-bit RFF” are
the numbers of z-bit MBRFFs used by Fan [2] and MBRFF-opt, and the values in
column “#RetBits” are the total numbers of retention bits. Note that the flip-flops with
primary inputs were included in the vertex set of flip-flop dependency graph for fair
comparison with the previous work. Column “Run time (sec)” indicates the run time
spent by MBRFF-opt.

We partition the flip-flop dependency graphs of the circuits MEM_CTRL, PCI_BRIDGE32,
and two additional circuits marked by “*” in Table 3.4, 3.5 and 3.6 into several sub-
graphs by using KL (Kernighan-Lin) min-cut partitioning heuristic, modifying KL
to max-cut on nodes with many fanin flip-flops, to reduce the problem complexity
in terms of the number of node replications and covering segments before applying
MBRFF-opt with [ = 3. Table 3.7 summarizes the reduction in the number of nodes
and covering segments for the transformed graphs (i.e., G” in Sec. 3.3.1 by the parti-

tioning). The comparison in Table 3.4 shows that MBRFF-opt is able to save 3.42%

69



more retention bits over the best-known algorithm Fan [2]. In addition, we can find
that the existing algorithm ([2]) performs well for [ = 2 as its MBRFF allocations are

nearly close to or the same as our optimal ones for [ = 2.

3.4.2 Minimizing Total Leakage Power on Retention Storage

To demonstrate the efficacy of MBRFF-opt on minimizing total leakage power on the
always-on retention storage, we set the covering segment costs to the (normalized)
leakage powers on the retention storages in MBRFF implementations in Synopsys
generic library. Table 3.5 shows the comparison of the leakage power consumed by
Fan [2] and MBRFF-opt. Specifically, MBRFF-opt reduces the leakage power by
3.38% further for circuit WB_CONMAX when [ = 2 and 5.58% further for USB_FUNCT
for [ = 3. In particular, for DES_PERF, MBRFF-opt saves the leakage power by 9.91%
when [ = 3, which clearly reveals that MBRFF-opt employing the KL based graph

partitioning for large circuits works well.

3.4.3 Minimizing Total Area of Retention Storage

We set the covering segment costs to the (normalized) implementation area of the
retention storage in the MBRFF implementations by [1]. Table 3.6 shows the com-
parison of retention storage area used by Fan [2] and MBRFF-opt, in which “#FFs
(wm?)” means total original flip-flop area. Specifically, MBRFF-opt reduces the area
by 4.46% further for DES_PERF when [ = 3.

Figs. 3.8(a) and (b) show the distribution of the MBRFFs in layouts of circuit
MEM_CTRL produced by Fan [2] and MBRFF-opt for [ = 3 with the objective of
minimizing total bits of retention storage in Table 3.4. The comparison shows that
MBRFF-opt reduces the number of 2-bit MBRFFs (yellow ones) from 77 to 28 at the
expense of 4 more 3-bit MBRFFs (red ones). On the other hand, Fig. 3.8(c) shows the
distribution of the MBRFF:s in layouts of circuit MEM_CTRL produced by MBRFF-opt

for [ = 3 with the objective of minimizing total area in Table 3.6.

70



Chapter 4

Further Consideration

4.1 Multi-bit Flip-flops in Power Gated Circuits

For power-gated circuits, each flip-flop has its own state retention storage [43, 44, 6],
commonly implemented with a high-Vt latch, to retain the flip-flop state during the
sleep period of the circuits. Fig. 4.1 shows a typical flip-flop used in power gated cir-
cuits, in which signal RETAIN is set to high just before entering sleep mode so that
the latch should retain the flip-flop state or just before waking up so that the flip-flop
should restore the retained state from the latch. Since the state retention storage is non-
trivial in terms of power and area, retention storage of non-uniform size is proposed to
save the total bits of retention storages [45, 13, 46, 47, 6, 37]. For example, Figs. 4.2(a)
and (b) show respectively, for the same flip-flop dependency graph of circuit, the reten-
tion storage allocation of a total of 3 bits with two clock cycles of wakeup latency and
the naive allocation of a total of 4 bits, one for each flip-flop, with one cycle of latency.
Consequently, in terms of power and cell area, the allocation in Fig. 4.2(a) is preferred.
However, in view of chip implementation with multi-bit flip-flops, the inefficiency of
the non-uniform storage allocation like that in Fig. 4.2(a) is outstanding: As illustrated
with 4-bit MBFF cells in Figs. 4.2(c) and (d), the MBFF cell in Fig. 4.2(c) requires

multiple RETAIN signals to drive save/restore to flip-flops f; and f; differently while

71



Data out
Original || Always-on, high v-th
Data in —» flip-flop RETAIN
>
i Latch | |
RETAIN
Clock T

RETAIN delayed | by a clock cycle

Bt T

’_~<—~l/‘\/"\
A}
4 control A RETAIN |
N o H ~ 7
: logic L
‘<\~—\ ,k_/

Figure 4.1: Retention flip-flop structure used in power gated circuit [6].

the cell in Fig. 4.2(d) needs just a single RETAIN signal. In addition, the regularity of
the MBFF cell layout in Fig. 4.2(d) is superior to that in Fig. 4.2(c), even with no waste
of layout space. To sum up, the decision on choosing one of the options of MBFF cells
in power gated circuits should be made with a comprehensive consideration of the

target design goals and constraints.

72



f2
; < i
. =
RETAIN2 3 - fa |f
RETAIN1 o
(a)

1 \ |
1-bit
1-bit f3

RETAIN1 '

=h
<

(b)

— RETAIN2

h

f2

)

f3

fa

_*z

(©)

RETAIN1

f

f2

N G [

f3

]
T —

fa

[=]

E]

(d)

RETAIN1

Figure 4.2: Illustration of state retention storage allocation on a flip-flop dependency

graph. (a) Total of 3 bits with latency of two clock cycles using non-uniform retention

storage. (b) Total of 4 bits with latency of one clock cycle using uniform retention

storage. (c) 4-bit MBFF cell corresponding to the allocation in (a). (d) 4-bit MBFF cell

corresponding to the allocation in (b).



74

: _--‘: ;‘1 %I‘H ﬁ‘I']-JT—

SECRIL WATIOMAL LIMINVERSTY



Chapter 5

Conclusions

5.1 Chapter 2

In Chapter 2, we addressed two new inherent and challenging problems related to
multi-bit flip-flop (MBFF) cells in physical design, which are (1) non-flexible MBFF
cell flipping for multiple D-to-Q signals and (2) unbalanced or wasted use of MBFF
Jootprint space. We tackled the two problems in a way to enhance chip routability and
timing at the placement and routing stages. Specifically, for problem 1, we resolved the
non-flexible MBFF cell flipping to be fully flexible by generating MBFF layouts sup-
porting diverse D-to-Q flow directions in the detailed placement to improve routability
while for problem 2, we enhanced the setup time and clock-to-Q delay on timing crit-
ical internal flip-flops in MBFF cell instances through transistor upsizing by utilizing
the unused space in MBFFs to improve timing slack at the post-routing stage. Our ex-
periments with benchmark circuits showed that our proposed DTCO flow optimizing
MBEFF cells amenable to the target circuit solved the two problems very effectively,
producing chip implementations with 20.5% fewer design rule violations and 47.7%
reduced worst negative timing slack with a little power fluctuation than that produced

by the conventional design flow with MBFFs.

75



5.2 Chapter 3

In Chapter 3, we proposed an optimal MBRFF allocation algorithm by formulating
the problem into a weighted unate covering problem, supporting three objectives of
minimizing total bits of state retention storage, total leakage power consumed by the
always-on retention storage, and total implementation area of the retention storage.
According to design objectives, our algorithm could always guarantee optimal MBRFF
allocations in terms of a weighted sum of total bits of storage, total leakage power,
and total implementation area. Besides, it should be noted that our MBRFF allocation
algorithm can seamlessly link to the allocation of multi-bit flip-flops (MBFFs) either
before or after the step of MBFF allocation and also can seamlessly apply to the flip-

flop dependency graph created using selected essential flip-flops from [30].

76



[1]

(2]

(3]

[4]

[5]

[6]

Bibliography

Y.-G. Chen, H. Geng, K.-Y. Lai, Y. Shi, and S.-C. Chang, “Multibit retention reg-
isters for power gated designs: Concept, design, and deployment,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33,

no. 4, pp. 507-518, 2014.

G.-G. Fan and M. P-H. Lin, “State retention for power gated design with non-
uniform multi-bit retention latches,” in 2017 IEEE/ACM International Confer-

ence on Computer-Aided Design (ICCAD). 1EEE, 2017, pp. 607-614.

Y.-G. Chen, Y. Shi, K.-Y. Lai, G. Hui, and S.-C. Chang, “Efficient multiple-bit
retention register assignment for power gated design: Concept and algorithms,” in
Proceedings of the International Conference on Computer-Aided Design, 2012,
pp- 309-316.

L. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, C. Ramamurthy,
and G. Yeric, “Asap7: A 7-nm finfet predictive process design Kkit,”’
Microelectronics Journal, vol. 53, pp. 105-115, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S002626921630026 X

C. Albrecht, “Iwls 2005 benchmarks,” Tech. Rep., 2005.

G. Hyun and T. Kim, “Allocation of multibit retention flip-flops for power gated

circuits: Algorithm-design unified approach,” IEEE Transactions on Computer-

77



[7]

[8]

[9]

[10]

[11]

[12]

[13]

Aided Design of Integrated Circuits and Systems, vol. 40, no. 5, pp. 892-903,
2021.

Q. Wu, M. Pedram, and X. Wu, “Clock-gating and its application to low power
design of sequential circuits,” IEEE Transactions on Circuits and Systems I: Fun-

damental Theory and Applications, vol. 47, no. 3, pp. 415420, 2000.

T. Luo, D. Newmark, and D. Z. Pan, “Total power optimization combining place-
ment, sizing and multi-vt through slack distribution management,” in 2008 Asia

and South Pacific Design Automation Conference, 2008, pp. 352-357.

G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi, S. Dwarkadas, and
M. Scott, “Energy-efficient processor design using multiple clock domains with
dynamic voltage and frequency scaling,” in Proceedings Eighth International

Symposium on High Performance Computer Architecture, 2002, pp. 29-40.

R. Pokala, R. Feretich, and R. McGuffin, “Physical synthesis for performance op-
timization,” in [1992] Proceedings. Fifth Annual IEEE International ASIC Con-
ference and Exhibit, 1992, pp. 34-37.

Y.-T. Chang, C.-C. Hsu, M. P.-H. Lin, Y.-W. Tsai, and S.-F. Chen, “Post-
placement power optimization with multi-bit flip-flops,” in 2010 IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD), 2010, pp. 218—
223.

L. Jiang, C. Chang, and Y. Yang, “Integra: Fast multibit flip-flop clustering for
clock power saving,” IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, vol. 31, no. 2, pp. 192-204, 2012.

M. Lin, C. Hsu, and T. Chang, ‘“Recent research in clock power saving with multi-
bit flip-flops,” in 2011 IEEE 54th International Midwest Symposium on Circuits
and Systems (MWSCAS), 2011, pp. 1-4.

78



[14]

[15]

[16]

[17]

[18]

[19]

[20]

Z. Chen and J. Yan, “Routability-constrained multi-bit flip-
flop construction for  clock  power  reduction,’ Integration,
vol. 46, no. 3, pp. 290-300, 2013. [Online].  Available:
https://www.sciencedirect.com/science/article/pii/S0167926012000181

Y.-T. Shyu, J.-M. Lin, C.-P. Huang, C.-W. Lin, Y.-Z. Lin, and S.-J. Chang, “Ef-
fective and efficient approach for power reduction by using multi-bit flip-flops,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21,
no. 4, pp. 624-635, 2013.

C. Hsu, Y. Chen, and M. Lin, “In-placement clock-tree aware multi-bit flip-flop
generation for power optimization,” in 2013 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), 2013, pp. 592-598.

C.-C. Tsai, Y. Shi, G. Luo, and I. H.-R. Jiang, “Ff-bond: Multi-bit flip-flop
bonding at placement,” in Proceedings of the 2013 ACM International
Symposium on Physical Design, ser. ISPD ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 147-153. [Online]. Available:
https://doi.org/10.1145/2451916.2451955

M. P.-H. Lin, C.-C. Hsu, and Y.-C. Chen, “Clock-tree aware multibit flip-flop
generation during placement for power optimization,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 2, pp.
280-292, 2015.

M.-Y. Liu, Y.-C. Lai, W.-K. Mak, and T.-C. Wang, “Generation of mixed-driving
multi-bit flip-flops for power optimization,” in 2022 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), 2022, pp. 1-9.

Y. Kretchmer and L. Logic, “Using multi-bit register inference to save area and

power: the good, the bad, and the ugly,” EE Times Asia, 2001.

79



[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

D. Yi and T. Kim, “Allocation of multi-bit flip-flops in logic synthesis for power
optimization,” in 2016 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2016, pp. 1-6.

J.-T. Yan and Z.-W. Chen, “Construction of constrained multi-bit flip-flops for
clock power reduction,” in The 2010 International Conference on Green Circuits

and Systems. 1EEE, 2010, pp. 675-678.

S.-H. Wang, Y.-Y. Liang, T.-Y. Kuo, and W.-K. Mak, “Power-driven flip-flop
merging and relocation,” in Proceedings of the 2011 international symposium on

Physical design, 2011, pp. 107-114.

I. Advanced Micro Devices. The polaris architecture. [Online]. Available:

https://www.amd.com/en.html

I. Seitanidis, G. Dimitrakopoulos, P. M. Mattheakis, L. Masse-Navette, and
D. Chinnery, “Timing-driven and placement-aware multibit register composi-
tion,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 38, no. 8, pp. 1501-1514, 2019.

C.Liu, T. Chiang, J. Kao, H. ZHUANG, L. Lu, S. Hsieh, and C. Huang, “Flip-flop
with delineated layout for reduced footprint,” May 2017, patent No. 9641161,
Filed May 2nd., 2016, Issued May. 2nd., 2017.

D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low power methodology manual.:
for system-on-chip design. Springer Science & Business Media, 2007.

H. Mahmoodi-Meimand and K. Roy, “Data-retention flip-flops for power-down
applications,” in 2004 IEEE International Symposium on Circuits and Systems

(IEEE Cat. No. 04CH37512), vol. 2. IEEE, 2004, pp. 1I-677.

80



[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

A. Darbari, B. M. Al Hashimi, D. Flynn, and J. Biggs, “Selective state retention
design using symbolic simulation,” in 2009 Design, Automation & Test in Europe

Conference & Exhibition. 1EEE, 2009, pp. 1644—1649.

S. Greenberg, J. Rabinowicz, and E. Manor, “Selective state retention power gat-
ing based on formal verification,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 62, no. 3, pp. 807-815, 2014.

M. A. Sheets, “Standby power management architecture for deep-
submicron systems,” Ph.D. dissertation, EECS Department, Uni-
versity of California, Berkeley, May 2006. [Online]. Available:
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-70.html

E. Pakbaznia and M. Pedram, “Design and application of multimodal power gat-
ing structures,” in 2009 10th International Symposium on Quality Electronic De-

sign. IEEE, 2009, pp. 120-126.

S.-H. Lin and M. P.-H. Lin, “More effective power-gated circuit optimization
with multi-bit retention registers,” in 2014 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD). IEEE, 2014, pp. 213-217.

G. Hyun and T. Kim, “Allocation of state retention registers boosting practical
applicability to power gated circuits,” in 2019 IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD). 1EEE, 2019, pp. 1-6.

S. Kim and T. Kim, “Design and technology co-optimization utilizing multi-bit
flip-flop cells,” in Proceedings of the 41st IEEE/ACM International Conference

on Computer-Aided Design, 2022, pp. 1-7.

——, “Optimizing timing in placement through i/o signal flipping on multi-bit
flip-flops,” in 2022 IEEE International Symposium on Circuits and Systems (IS-
CAS), 2022, pp. 2623-2624.

81



[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

——, “Minimally allocating always-on state retention storage for supporting
power gating circuits,” in 2021 22nd International Symposium on Quality Elec-

tronic Design (ISQED), 2021, pp. 482-487.

Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2022.

[Online]. Available: https://www.gurobi.com

C. Albrecht, “Iwls 2005 benchmarks,” in International Workshop for Logic Syn-
thesis (IWLS): http://www. iwls. org, 2005.

P. Ashar and S. Malik, “Implicit computation of minimum-cost feedback-vertex
sets for partial scan and other applications,” in Proceedings of the 31st annual

Design Automation Conference, 1994, pp. 77-80.

G. D. Hachtel and F. Somenzi, Logic synthesis and verification algorithms.

Springer Science & Business Media, 2006.
L I Cplex, “V12. 1: User’s manual for cplex,” p. 157, 2009.

D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low power methodology manual:
for system-on-chip design. Springer Science & Business Media, 2007.

H. Mahmoodi-Meimand and K. Roy, “Data-retention flip-flops for power-down
applications,” in 2004 IEEE International Symposium on Circuits and Systems

(IEEE Cat. No.0O4CH37512), vol. 2, 2004, pp. II-677.

Y.-G. Chen, Y. Shi, K.-Y. Lai, G. Hui, and S.-C. Chang, “Efficient multiple-bit
retention register assignment for power gated design: Concept and algorithms,” in
2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
2012, pp. 309-316.

G.-G. Fan and M. P.-H. Lin, “State retention for power gated design with non-
uniform multi-bit retention latches,” in 2017 IEEE/ACM International Confer-

ence on Computer-Aided Design (ICCAD), 2017, pp. 607-614.

82



[47] Y.-G. Chen, H. Geng, K.-Y. Lai, Y. Shi, and S.-C. Chang, “Multibit retention reg-
isters for power gated designs: Concept, design, and deployment,” IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33,

no. 4, pp. 507-518, 2014.

83



84

: _--‘: ;‘1 %I‘H ﬁ‘I']-JT—

SECRIL WATIOMAL LIMINVERSTY



(multi-bit flip-

g 2A7}

|y

o

=8

S}
=

Z] %k A~ (state retention storage)

=
—

% 8 el 1

o

flop) 2]

Al

St D-t0-Q

S

& rior

il

Hj

] _
=]

=

Al ZF(setup time) X =

Q) E &l °](clock-to-Q delay) &

o
"
~

Ho

—

297t U919 2k ] 7H5 At ol

I
=

TRRlo] A 2202 AE B

2 29}3

Z71(wakeup latency constraint)

B!

o
ol

&/
T
JF
_z.*o
Al

d
o

I

85



oF
=)

il e 7] AIZE Al

]

oju

o

B!

;O

=

Tr
&
T
| .._O

|

SHH: 2018-20366

86



	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Multi-bit Flip-flop Methodology
	1.2 State Retention Storage Allocation on Power Gated Circuit
	1.3 Contributions of this Dissertation

	2 Enhancing Design Qualities Utilizing Multi-bit Flip-flops: A Design and Technology Co-optimization Driven Approach
	2.1 Key Observations and Enabling Optimization Directions
	2.2 DTCO Framework for Multi-bit Flip-flops
	2.2.1 The Proposed DTCO Flow 
	2.2.2 D-to-Q Flow Optimization 
	2.2.3 Timing-driven D-to-Q Flow Refinement
	2.2.4 Timing Optimization at Post-Route Stage 

	2.3 Experimental Results 
	2.3.1 Experimental Setup
	2.3.2 Comparing MBFF-opt with Conventional MBFF Allocation 
	2.3.3 Comparing MBFF-opt with Conventional No-Banking Flow 
	2.3.4 Runtime Analysis of MBFF-opt 
	2.3.5 Comparing MBFF-opt with Conventional No-Banking flow with more timing-optimized MBFF banking design


	3 Minimally Allocating Always-on State Retention Storage for Supporting Power Gating Circuits
	3.1 Motivations
	3.2 Optimal MBRFF Allocation Algorithm for l  2 
	3.2.1 Transforming Flip-flop Dependency Graph 
	3.2.2 Minimal-cost Covering for the Transformed Graph 
	3.2.3 Allocating MBRFFs According to Minimal-cost Covering 

	3.3 Extending Optimality of MBRFF-opt for l  3 
	3.3.1 Extending Node Replication and Edge Updating 

	3.4 Experimental Results 
	3.4.1 Minimizing Total Number of Bits of Retention Storage 
	3.4.2 Minimizing Total Leakage Power on Retention Storage 
	3.4.3 Minimizing Total Area of Retention Storage 


	4 Further Consideration
	4.1 Multi-bit Flip-flops in Power Gated Circuits 

	5 Conclusions
	5.1 Chapter 2 
	5.2 Chapter 3 

	Abstract (In Korean)


<startpage>15
Abstract i
Contents ii
List of Tables iv
List of Figures vi
1 Introduction 1
 1.1 Multi-bit Flip-flop Methodology 1
 1.2 State Retention Storage Allocation on Power Gated Circuit 5
 1.3 Contributions of this Dissertation 10
2 Enhancing Design Qualities Utilizing Multi-bit Flip-flops: A Design and Technology Co-optimization Driven Approach 13
 2.1 Key Observations and Enabling Optimization Directions 13
 2.2 DTCO Framework for Multi-bit Flip-flops 18
  2.2.1 The Proposed DTCO Flow  18
  2.2.2 D-to-Q Flow Optimization  18
  2.2.3 Timing-driven D-to-Q Flow Refinement 27
  2.2.4 Timing Optimization at Post-Route Stage  31
 2.3 Experimental Results  39
  2.3.1 Experimental Setup 39
  2.3.2 Comparing MBFF-opt with Conventional MBFF Allocation  42
  2.3.3 Comparing MBFF-opt with Conventional No-Banking Flow  47
  2.3.4 Runtime Analysis of MBFF-opt  47
  2.3.5 Comparing MBFF-opt with Conventional No-Banking flow with more timing-optimized MBFF banking design 47
3 Minimally Allocating Always-on State Retention Storage for Supporting Power Gating Circuits 51
 3.1 Motivations 51
 3.2 Optimal MBRFF Allocation Algorithm for l  2  53
  3.2.1 Transforming Flip-flop Dependency Graph  55
  3.2.2 Minimal-cost Covering for the Transformed Graph  58
  3.2.3 Allocating MBRFFs According to Minimal-cost Covering  60
 3.3 Extending Optimality of MBRFF-opt for l  3  61
  3.3.1 Extending Node Replication and Edge Updating  61
 3.4 Experimental Results  64
  3.4.1 Minimizing Total Number of Bits of Retention Storage  69
  3.4.2 Minimizing Total Leakage Power on Retention Storage  70
  3.4.3 Minimizing Total Area of Retention Storage  70
4 Further Consideration 71
 4.1 Multi-bit Flip-flops in Power Gated Circuits  71
5 Conclusions 75
 5.1 Chapter 2  75
 5.2 Chapter 3  76
Abstract (In Korean) 85
</body>

