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Abstract

With the success of the fifth generation new radio (5G NR), we are now witnessing

the emergence of the sixth generation (6G) communication and its applications such as

autonomous driving, drone delivery, smart city/factory, and remote medical diagnosis.

The communication mechanism of these applications is very different from the con-

ventional communication systems, which dedicate to transmit and receive data without

considering the services, in terms of latency, energy efficiency, reliability, flexibility, and

connection density. From the 5G NR, various performance requirements such as lower

latency, higher reliability, massive connectivity, and better energy efficiency have been

newly introduced. In the upcoming 6G communication systems, these requirements

will be more intensive to support the coexistence of human-centric and machine-type

services. Since the current mechanism and conventional approaches cannot support

these stringent requirements, a new type of transmission approach is required.

In the first part of the dissertation, we study channel estimation technique for the

Terahertz (THz) communication systems. Terahertz communications will be considered

as an important technique in the 6G communication system to support extremely high

data rates. One main difficulty of the THz communication is the severe signal attenuation

caused by the foliage loss, oxygen/atmospheric absorption, body and hand losses in

the THz band. To compensate for the severe path loss, multiple-input-multiple-output

(MIMO) antenna array-based beamforming has been widely used. Since the beams

should be aligned with the signal propagation path, the channel estimation is the key to

the success of THz MIMO systems. In our work, deep learning (DL) figures out the

mapping function between the received pilot signal and the sparse channel parameters

characterizing the spherical domain channel. By exploiting the long short-term memory

(LSTM) as a main deep neural network (DNN) engine, we extract the temporally

correlated features of sparse channel parameters and make an accurate estimation with
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relatively small pilot overhead.

In the second part of the dissertation, we study a new type of data acquisition

framework for DL-aided wireless systems. As an entirely-new paradigm to design the

communication systems, DL has received much attention recently. In order to fully

realize the benefit of DL-aided wireless system, we need to collect a large number of

training samples. Unfortunately, collecting massive samples in the real environments is

very challenging since it requires significant signal transmission overhead. In our work,

generative adversarial network (GAN) is used to generate samples approximating the

real samples. To reduce the amount of training samples required for the wireless data

generation, we train GAN with the help of the meta learning.

In the third part of the dissertation, we study a localization scheme for 6G com-

munication systems in the non-line-of-sight (NLoS)-existent scenarios. In the 6G

communication era, the demands on accurate localization are ever-increasing to support

numerous applications and devices. To mitigate the NLoS propagation problem in

conventional triangulation-based localization techniques, angle-based localization tech-

nique has been widely used. However, in the 6G wireless communication systems, the

information necessary for the conventional angle-based localization techniques might

not be fully obtained from propagated signal. We propose a DL-based localization

technique which utilizes spatial information of obstacles around the base station (BS)

for NLoS-existent environments. By using the spatial information, the DNN can learn

the common propagation features among various propagation environments. Also, we

employ meta-learning, a training method for quick adaptation to a new environment

with only few training samples.

keywords: wireless communications, deep learning, channel estimation,

localization, wireless data generation

student number: 2015-22780
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Chapter 1

Introduction

1.1 Background

With the success of the fifth generation new radio (5G NR), we are now witnessing the

emergence of the sixth generation (6G) communication and its applications such as

autonomous driving, drone delivery, smart city/factory, and remote medical diagnosis.

The communication mechanism of these applications is very different from the con-

ventional communication systems, which dedicate to transmit and receive data without

considering the services, in terms of latency, energy efficiency, reliability, flexibility, and

connection density. From the 5G NR, International Telecommunication Union (ITU)

has classified the services into three categories: enhanced mobile broadband (eMBB),

massive machine-type communications (mMTC), and ultra-reliable and low-latency

communications (URLLC). Also, various performance requirements such as lower

latency, higher reliability, massive connectivity, and better energy efficiency have been

newly introduced. In the upcoming 6G communication systems, these requirements

will be more intensive to support the coexistence of human-centric and machine-type

services. Since the current mechanism and conventional approaches cannot support

these stringent requirements, a new type of transmission approach is required. Before

we proposed, we provide the fundamentals of the deep learning technique and deep
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learning-based wireless communication systems.

1.1.1 Basics of Deep Learning

Deep learning (DL) is a set of methods to approximate the desired mapping function

by using various nonlinear and linear transformation. The basic component of deep

learning is the neural networks, which (linear or nonlinear) transform into latent space or

desired space. The neural network can model the linear or nonlinear function f between

an input x and an output y with respect to network parameter Θ (i.e., y = f(x;Θ)).

To be specific, linear transformation with weight matrix W and bias b and nonlinear

activation function σ is used to model function f :

y = σ(Wx+ b). (1.1)

By imposing the activation to the linearly transformed input, one can better promote

the nonlinear operation and systematic nonlinearity. By stacking the multiple neural

networks, deep neural networks (DNN) is formed. As the term speaks for itself, deep

learning is a learning approach to train a DNN model using a lot of data.

As an architecture of DNN model, the neural network can be divided into three types

based on the connection shape between neighboring layers: fully-connected network

(FCN), convolutional neural network (CNN), and recurrent neural network (RNN).

FCN can be used universally since each hidden unit (neuron) is connected to all neurons

in the next layer. In CNN, each neuron is computed by the convolution between the 2D

spatial filter and a part (e.g., rectangular shaped region) of neurons in the previous layer.

Due to the local connectivity of the convolution filter, CNN facilitates the extraction of

spatial correlated feature. When the input sequence is temporally correlated, RNN or

long-short term memory (LSTM) might be a good choice. By employing the current

inputs together with outputs of the previous hidden layer, temporally correlated feature

can be extracted.

After the architecture is determined, the parameters of the DNN model (e.g., weight

matrix W and bias b) is estimated (or updated) through the training process. The
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primary goal of training is to minimize the loss (objective) function J(Θ). When the

J(Θ) is differentiable, DNN parameters can be updated by the gradient descent method

in each training iterations. As a loss function, the mean squared error (MSE) and cross

entropy (CE) can be used commonly. Given the desired output y and its estimate ŷ,

MSE can be expressed as

JMSE(y, ŷ) = ∥y − ŷ∥22, (1.2)

and CE is defined as

JCE(y, ŷ) = −
K∑
i=1

yk log ŷk, (1.3)

where K is the number of class in the classification problem. Using these type of

loss functions, the parameters are updated by the stochastic gradient descent (SGD)

algorithm and the backpropagation mechanism.

1.1.2 Deep Learning-based Wireless Communication Systems

As an entirely-new paradigm to deal with the problem, DL has been popularly used in

various applications such as computer vision, speech recognition, robot control, and

autonomous driving recently [1]. When a system is not well-behaving, meaning that it

has complicated inputs/outputs relationship and the internal structure is highly nonlinear,

it would be very difficult to come up with a closed-form solution for the problem. In

fact, when the solution lies on the nonlinear manifold so that analytic approaches are

not working properly, DL can be used as a surrogate to the problem at hand. A holy

grail of DL is to let machine learn the complicated, often highly nonlinear, relationship

between the input dataset and the desired output without human intervention. In a

nutshell, DL-based systems are distinct from the conventional systems in two main

respects: data-driven training and end-to-end learning of the black box. Instead of

following the analytical avenue, the DL model approximates the desired function as

a whole using the training dataset. In the training phase, DL parameters (weights and
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biases) are updated to identify the end-to-end mapping between the input dataset and

the desired output. Once the training is finished, DL returns the predicted output for the

input in the inference phase. This means that what we essentially need to do is to feed a

training dataset into the properly designed DL model.

1.2 Contribution and Organization

In this dissertation, we introduce a DL-based wireless communication systems for 6G.

In Chapter 2, we introduce a channel estimation technique for the near-field THz

MIMO communication systems. Exploiting the property that the near-field THz channel

can be expressed as a few parameters in the spherical domain, viz., angle of departures

(AoDs), angle of arrivals (AoAs), distances, and path gains, the proposed technique,

dubbed as deep sparse time-varying channel estimation (D-STiCE), estimates the sparse

channel parameters and then reconstructs the channel using the obtained parameters. To

estimate the sparse channel parameters in the continuous domain, D-STiCE employs

a deep learning (DL) technique, a data-driven learning approach to approximate the

desired function. In our context, the proposed D-STiCE can learn the mapping function

between the sequential data (in our case, pilot measurements) and the continuous

channel parameters varying over time. D-STiCE alleviates the performance degradation

caused by the channel model mismatch and angle and path gain quantization, resulting

in an improvement of channel estimation quality. As a main engine for the task at hand,

we exploit the long short-term memory (LSTM), a model specialized for extracting

temporally correlated features from the sequential data. By extracting the temporal

correlation of the channel parameters, we make a fast yet accurate channel estimation

with relatively small amount of pilot resources.

In Chapter 3, we introduce a new type of data acquisition framework for DL-aided

wireless systems. The key idea of the proposed strategy, dubbed as deep wireless data

collection (D-WiDaC), is to acquire a massive number of real-like wireless samples

4



using a generative adversarial network (GAN). In short, GAN is a DL model that

generates samples approximating the input dataset [2]. When GAN is trained prop-

erly, generated samples will be similar to the real samples, meaning that there is no

fundamental difference between the GAN output and real samples. Since the GAN

training still requires a large amount of training samples, we exploit a meta learning,

special training technique to quickly learn a task using a small number of samples [3].

Since GAN pre-trained by the meta learning can exploit the common features in various

wireless environments, it requires far smaller number of samples than that required by

the vanilla (original) GAN.

In Chapter 4, we introduce a novel localization scheme for 6G communication

systems in the NLoS-existent scenarios. To deal with these scenarios where propagation

information is not sufficiently given, we exploit the deep learning (DL) technique, a

learning approach to approximate the nonlinear and complex functions. Key idea of

the proposed scheme, henceforth dubbed as Deep Spatial Localization Network (D-

SLN), is to learn the propagation mechanism (e.g., reflection and penetration) from the

propagation measurements and environment information. To do so, we use a specially

designed input, spatial information (e.g., position and width/height of the obstacle),

which is easily obtained from the environment. Since the propagation path is determined

by the obstacles in the environment, our model can learn the propagation mechanism

using the propagation information and spatial information. Furthermore, we exploit a

meta learning, a special training technique to quickly learn a task using a small number

of samples. Since D-SLN pre-trained by meta learning can extract the common features

in various environments, D-SLN requires fewer samples than the model trained without

meta learning.

Chapter 5 summarizes the contribution of the dissertation and discuss the future

research directions based on studies of this dissertation.
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Chapter 2

Parametric Near-field Channel Estimation for 6G THz

MIMO Systems

In this chapter, we introduce a channel estimation technique for the near-field THz

MIMO communication systems. Exploiting the property that the near-field THz channel

can be expressed as a few parameters in the spherical domain, viz., angle of departures

(AoDs), angle of arrivals (AoAs), distances, and path gains, the proposed technique,

dubbed as deep sparse time-varying channel estimation (D-STiCE), estimates the sparse

channel parameters and then reconstructs the channel using the obtained parameters. To

estimate the sparse channel parameters in the continuous domain, D-STiCE employs

a deep learning (DL) technique, a data-driven learning approach to approximate the

desired function. In our context, the proposed D-STiCE can learn the mapping function

between the sequential data (in our case, pilot measurements) and the continuous

channel parameters varying over time. D-STiCE alleviates the performance degradation

caused by the channel model mismatch and angle and path gain quantization, resulting

in an improvement of channel estimation quality. As a main engine for the task at hand,

we exploit the long short-term memory (LSTM), a model specialized for extracting

temporally correlated features from the sequential data. By extracting the temporal

correlation of the channel parameters, we make a fast yet accurate channel estimation

6



with relatively small amount of pilot resources.

2.1 Introduction

As a key technology to meet the demand for ever increasing data rate in 6G, terahertz

(THz) communication has received great deal of attention in recent years [4, 5, 6, 7].

By exploiting the plentiful spectrum resources in the THz frequency band (0.1THz ∼

10THz), THz communication can support way higher data rate than the conventional

sub-6GHz and millimeter-wave wireless communication systems can offer. Well-known

shortcoming of the THz communication is the severe attenuation of signal power

caused by the high diffraction and penetration loss, atmospheric absorption, and rain

attenuation [8]. To overcome the severe signal attenuation, the beamforming technique

using the multiple-input-multiple-output (MIMO) antenna arrays has been used [9, 10].

Since the beamforming gain is maximized only when the transmit beams are aligned

with the channel propagation paths, acquiring the accurate channel information is

crucial for the THz MIMO systems.

Traditionally, linear estimation techniques such as least squares (LS) and linear

minimum mean square error (LMMSE) estimators have been widely used for the

channel estimation of the MIMO systems [11, 12, 13, 14]. Potential problem of the

conventional approaches is that the amount of pilot resources needed for channel

estimation is proportional to the number of the transmit antennas. This problem is

even more serious in the THz communication systems since the required number of

transmit antenna to achieve the beamforming gain is quite large (hundred to thousand

elements). For example, if the number of transmit antennas is NT = 64, then the base

station (BS) has to transmit at least 3 resource blocks (RBs) (12× 14 resources in each

RB of 5G NR) just for the pilot signals, occupying almost 25% of a subframe in 5G

NR. In order to reduce the pilot transmission overhead associated with the channel

estimation, compressed sensing (CS)-based channel estimation technique has been
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introduced [13, 14]. In the CS-based approach, by exploiting the fact that the number

of effective paths is at most a few (line-of-sight (LoS) and 0 ∼ 1 non-line-of-sight

(NLoS) paths) in the THz channel, one can convert the channel estimation problem

into the sparse recovery problem on the angular domain. Since the premise of the CS

technique is that the sparse channel can be recovered with measurements whose size

being proportional to O(k log(n/k)) where k is the number of propagation paths and n

is dimension of quantized angles, the required pilot resources for the channel estimation

can be reduced considerably.

While the CS-based channel estimation is effective to some extent, the benefit

will vanish when the channel exhibits the near-field effect characteristics. Since the

wavefront of the THz electromagnetic signal is spherical, the conventional angular

domain channel model obtained by the planar wavefront model in far-field will not

be accurate and in fact make a severe mismatch in most practical scenarios [15].

This mismatch between the real and modeled channels will clearly lead to the severe

degradation in the channel estimation performance so that a new channel model and

estimation technique suited for the near-field THz channel is needed.

2.2 THz MIMO System Model

In this section, we discuss the system model for THz communications and near-field

channel model. We also provide a brief discussion of the conventional channel estima-

tion techniques.

2.2.1 Downlink THz OFDM System Model

We consider a wideband downlink THz MIMO-OFDM systems where the BS equipped

with NT = NTh ×NTv planar antenna array serves the user equipment (UE) equipped

with NR = NRh × NRv planar antenna array (see Fig. 2.1). We assume that both

BS and UE have NRF RF chains. The number of OFDM subcarriers is Ns, among
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Figure 2.1: Illustration of THz MIMO systems with NT transmission antennas, NR

receiver antennas, and NRF RF chains.

which K subcarriers are used for the downlink pilot transmission. Specifically, the

downlink training period consists ofM successive time frames, each of which is divided

into T sub-frames. In this work, we use K = {1, · · · ,K},M = {1, · · · ,M}, and

T = {1, · · · , T} to denote the sets of indices of pilot subcarriers, time frames, and

sub-frames, respectively (see Fig. 2.2).

In this setup, the received pilot signal (e.g., CSI-RS in 5G NR [16]) rm[k] ∈ CNR×1

of UE associated with k-th pilot subcarrier at m-th time frame is given by

rm[k] = H[k]fmsm[k] + vm[k], m ∈M, k ∈ K, (2.1)

where H[k] ∈ CNR×NT is the downlink channel matrix, fm ∈ CNT×1 is the beam-

forming vector, sm[k] ∈ C is the pilot symbol, and vm[k] ∈ CNR×1 is the additive

Gaussian noise vector of k-th pilot subcarrier at m-th time frame. During T successive

sub-frames, the UE sequentially employs combining vectors w1, · · · ,wT ∈ CNR×1 to

obtain the processed signal ym,k[k]:

ym,t[k] = wH
t H[k]fmsm[k] + nm,t[k], t ∈ T , m ∈M, k ∈ K (2.2)

where nm,t[k] = wH
t vm[k]. By combining the processed signals into M × T pilot

signal matrix Y[k], we obtain

Y[k] = WHH[k]FS[k] +N[k], k ∈ K, (2.3)

9



Figure 2.2: Illustration for time scale of sub-frames and time frames in channel coher-

ence block (M = 4 and T = 4).

where F = [f1, · · · , fM ] ∈ CNT×M is the beamforming matrix, W = [w1, · · · ,wT ] ∈

CNR×T is the combining matrix, and S[k] = diag(s1[k], · · · , sM [k]) is the pilot symbol

matrix. Finally, by vectorizing and concatenating the pilot signal matrices of K pilot

subcarriers, we obtain the measurement vector y as

y = [vec(Y[1])T, · · · , vec(Y[K])T]T. (2.4)

2.2.2 Near-field THz MIMO Channel Model

In the THz communication system, beamforming technique exploiting the massive

MIMO antenna array is needed to compensate for the huge path loss. In fact, main

purpose of the beamforming technique is to concentrate the signal power on the narrow

10



spatial region1. One of the notable characteristics of the THz communications is that the

Rayleigh distance, the boundary between the near-field and far-field, is fairly large. The

Rayleigh distance is formally defined as Z = 2D2

λc
, where D is the array aperture (i.e.,

maximum physical length of array antenna) and λc is the wavelength of the carrier [17].

Since the number of antenna arrays and the carrier frequency of the THz systems are

far larger than those of the conventional mmWave systems, one can easily see that the

Rayleigh distance Z of THz systems is way longer than that of mmWave systems. For

example, when the fc is increased from 30 GHz to 300 GHz (i.e., λc is decreased from

10 mm to 1 mm) and the antenna array aperture is increased from 0.1 m to 0.2 m, then

the Rayleigh distance is increased from 2 m to 80 m, covering the most of cell area.

Note also that the electromagnetic signal in a near-field region is propagated in the form

of a spherical wave so that the channel expressed by the far-field array response vector

corresponding to the planar wavefront cannot model the THz channel properly.

To handle the problem, we derive a THz channel model in the near-field region.

Let rx,y be the distance from the (x, y)-th antenna of a planar array to the mobile,

then the time delay between the signals transmitted from the (x, y)-th antenna and the

(1, 1)-th antenna (reference antenna) is ∆rx,y
c where ∆rx,y = rx,y − r and r = r1,1 is

the distance between the reference antenna and the mobile. Also, the corresponding

phase shift in the frequency-domain is given by ej2πfc
∆rx,y

c = ejπ
∆rx,y

d where fc is the

subcarrier frequency, d is the antenna spacing, c = fcλc and d = λc
2 . In the far-field, the

phase shift between adjacent antennas is constant due to the planar wavefront. However,

in the near-field, the phase shift between adjacent antennas depends on r due to the

spherical wavefront. Thus, to estimate the phase shift in the near-field, we need to

accurately model the distance between the mobile and each antenna.

In the conventional far-field channel where the signals are transmitted in parallel to
1Based on Friis’ law, signal attenuation is proportional to the square of the carrier frequency.
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Figure 2.3: Illustration of near-field and far-field wavefront and the distance

between(0, 0)-th antenna and (x, y)-th antenna in planar array antenna.

the antenna elements, ∆rx,y is expressed as

∆r(far)
x,y = −(x− 1)d cos θaz sin θel − (y − 1)d sin θaz sin θel (2.5)

= −(x− 1)dθ − (y − 1)dϕ, (2.6)

where θ = cos θaz sin θel and ϕ = sin θaz sin θel. Then, the far-field planar array re-

sponse vector can be expressed as a function of channel angle components θ and

12



ϕ:

afar(θ, ϕ) =
[
ejπ

∆r
(far)
1,1
d , · · · , ejπ

∆r
(far)
Nx,Ny
d

]T
(2.7)

= [1, · · · , e−jπ((Nx−1)θ+(Ny−1)ϕ)]T (2.8)

= afar,x(θ)⊗ afar,y(ϕ), (2.9)

where afar,x(θ) = [1, · · · , e−jπ(Nx−1)θ]T and afar,y(ϕ) = [1, · · · , e−jπ(Ny−1)ϕ]T .

In the near-field channel, ∆rx,y depends on both angle and distance due to the

spherical radiation wavefront (see Fig. 2.3). To be specific, when we consider the spher-

ical coordinate system where the position of reference antenna r1,1 is set to (0, 0, 0),

then the coordinates of the (x, y)-th antenna and the mobile are ((x− 1)d, (y − 1)d, 0)

and (r cos θaz sin θel, r sin θaz sin θel, r cos θel), respectively. Thus, ∆rx,y is given by

∆r(near)
x,y =

√
∆r2x +∆r2y +∆r2z − r

≈ −((x− 1)d cos θaz sin θel + (y − 1)d sin θaz sin θel)

+
d2

2r
((x− 1)2 + (y − 1)2 − ((x− 1) cos θaz sin θel + (y − 1) sin θaz sin θel)

2)

= −((x− 1)dθ + (y − 1)dϕ)︸ ︷︷ ︸
∆r(far)

x,y

+
d2

2r
((x− 1)2 + (y − 1)2 − ((x− 1)θ + (y − 1)ϕ)2), (2.10)

where ∆rx = r cos θaz sin θel − (x − 1)d, ∆ry = r sin θaz sin θel − (y − 1)d, and

∆rz = r cos θel are difference of the communication distance in x, y, and z axis,

respectively. One can readily see that, in contrast to the far-field array response model,

the distance difference ∆r(near)
x,y contains the distance r between the UE and BS. By

exploiting (2.9) and (2.10), the near-field array response vector of (x, y)-th antenna can

be expressed as

anear(r, θ, ϕ) =
[
ejπ

∆r
(near)
1,1
d , · · · , ejπ

∆r
(near)
Nx,Ny
d

]T
(2.11)

= D(r, θ, ϕ)afar(θ, ϕ), (2.12)
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where D(r, θ, ϕ) = diag(1, · · · , ejπ
d
2r

((Nx−1)2+(Ny−1)2−((Nx−1)θ+(Ny−1)ϕ)2)) is the

phase shift matrix induced by the spherical propagation of near-field signal. While the

far-field steering vector afar(θ, ϕ) is a function of angle components only, the near-field

array response vector anear(r, θ, ϕ) is a function of r and channel angle components

{θ, ϕ}. To sum up, the moral of the story is that we need to find out the 3D coordinate of

the mobile to generate the THz beamforming vector aligned with the near-field channel.

In this work, we use the block-fading near-field LoS channel model where the

downlink channel matrix H[k] ∈ CNT×NR from the BS to the mobile for k-th subcarrier

is expressed as2

H[k] = αe−j2π
r
c
kfsanear(r, θR, ϕR)a

∗
near(r, θT , ϕT ) (2.13)

where α is the complex path gain for path gain, r is the distance between the BS and

the mobile, θR, ϕR, θT , and ϕT are channel angles of AoD and AoA, respectively. Also,

c is light speed, and fs is subcarrier spacing. One can see that H[k] is parametrized by

a few channel parameters: channel AoAs {θR, ϕR}, channel AoDs {θT , ϕT }, distance

r, and path gains α. Typically, the number of propagation paths is much smaller than

the total number of antennas N = NT × NR (e.g., one or two propagation paths

and N = 16 ∼ 256) due to the high path loss and directivity of THz signal. Since

the THz channel is modeled by a small number of paths and each path consists of

a few channel parameters, one can effectively estimate the channel by estimating

these sparse parameters {θR, ϕR, θT , ϕT , r, α} instead of the full-dimensional MIMO

channel matrix H[k], meaning that one can greatly reduce the required number of

measurements.

2.2.3 Conventional THz MIMO Channel Estimation

In the conventional THz MIMO channel estimation strategy, the full-dimensional

channel matrix H[k] is estimated from Y[k] using the LS or LMMSE techniques.
2Note that in the THz communication systems, due to the significant path loss and directivity of THz

band, the LoS component is dominant among the THz channel paths.
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Specifically, when we denote ỹ[k] = vec(Y[k]) and h[k] = vec(H[k]), then the

LMMSE-based channel estimate is ĥ[k] = Cov(h[k], ỹ[k])Cov(ỹ[k], ỹ[k])−1ỹ[k].

To guarantee the accurate estimation of H[k], the number of measurements should

be larger than the number of antenna elements. However, in the practical THz sys-

tems, it is very difficult to acquire sufficient amount of measurements due to the

large number of antennas. For example, when the numbers of antennas at the BS and

UE are NT = 32 and NR = 8, respectively, then we need to allocate 2 subframes

(12 subcarriers/symbol× 14 symbols/subframe× 2 subframes = 336 > NR ×NT =

256) for the pilot transmission (more than 15 % of a frame in 5G NR).

As an approach to address the problem, CS-based channel estimation technique

has been widely used [13]. In this approach, by mapping the complex gains to the

sparse (path gain) vector, one can convert the channel estimation problem to the sparse

recovery problem:

ỹ[k] = ((FS[k])T ⊗WH)h[k] + vec(N[k]) (2.14)

= ((FS[k])T ⊗WH)Ag[k] + n[k], (2.15)

= Φ[k]g[k] + n[k], (2.16)

where Φ[k] = ((FS[k])T⊗WH)A is the sensing matrix, A = [a∗T(ϕ̄1)⊗aR(θ̄1), · · · ,

a∗T(ϕ̄W ) ⊗ aR(θ̄W )] ∈ CNTNR×W is the array steering matrix, g[k] ∈ CW×1 is the

sparse path gain vector, and {θ̄w, ϕ̄w}Ww=1 is the set of quantized angles.

While the CS-based scheme is effective in dealing with the sparsity of the THz

channel, efficacy of the approach would be degraded in practical scenarios where the

mismatch between the true angle and the quantized angle (a.k.a. power leakage) is

considerable. One can try to reduce this mismatch by increasing the quantization level of

an angle, but in this case the column dimension of the sensing matrix Φ[k] will increase

sharply, exceeding the dimension of measurement vector ỹ[k]. In this underdetermined

scenario where the number of unknown variables is far larger than the measurement
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Figure 2.4: Example of time scale of channel parameters. In this example, coherence

time interval of large-scale parameter (beam coherence interval) and small-scale param-

eter (channel coherence interval) is 20ms and 2ms, respectively.

size, the mutual coherence of Φ[k] will increase dramatically3, degrading the CS-based

channel estimation quality severely.

2.3 Deep Learning-aided Channel Parameter Estimation Us-

ing Long Short-Term Memory

Main idea of D-STiCE is to estimate the sparse channel parameters using the DL

technique. In our task, we exploit the fact that the THz channel is LoS dominant

due to the severe signal attenuation in NLoS paths. Therefore, what we need to do

is to find out a few parameters representing the LoS path in the spherical domain. In
3The mutual coherence µ(Φ) is defined as the largest magnitude of normalized inner product between

two distinct columns of Φ:

µ(Φ) = max
i ̸=j

| ⟨Φi,Φj⟩ |
∥Φi∥2∥Φj∥2

When the mutual coherence of two columns of Φ is large and only one of these is associated with the

nonzeros values in sparse vector g, then it might not be easy to distinguish the right column (column

associated with the nonzero value) from wrong one in the presence of noise.
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order to facilitate the estimation of two different types of channel parameters having

distinct coherence time, we propose two step estimation process: 1) large-scale channel

parameter estimation and 2) small-scale path gain parameter estimation. Large-scale

parameters including the distance and angles are extracted using the LSTM network in

a large time interval (i.e., beam coherence interval)4. Since the (continuous) movement

of a mobile has a good temporal correlation over time, the large-scale parameters can be

readily inferred from the LSTM network. By learning the temporal correlation between

the 3D spherical coordinates (which are implicitly contained in the pilot measurements),

D-STiCE can extract the large-scale near-field channel parameters accurately. Once the

large-scale parameter estimation is finished, the small-scale (instantaneous) parameters

are obtained using the conventional estimation techniques (e.g., LS or LMMSE) in a

small time interval (i.e., channel coherence interval) (see Fig. 2.4).

2.3.1 LSTM-based Large-scale Channel Parameter Estimation

In the large-scale channel parameter estimation, we exploit the combination of LSTM

and fully connected (FC) networks to learn a complicated nonlinear mapping between

the received downlink pilot signals (y1, · · · ,yl) and the large-scale channel parameters

(θlR, ϕ
l
R, θ

l
T , ϕ

l
T , r

l):

{θ̂lR, ϕ̂lR, θ̂lT , ϕ̂lT , r̂l} = g(y1, · · · ,yl; δ), (2.17)

where δ is the set of weights and biases. The overall block diagram of the D-STiCE

network is depicted in Fig. 2.5.

LSTM Network

The LSTM network consists of multiple LSTM cells, and each LSTM cell consists of

cell state and three gates, viz., input gate il ∈ RNL×1, forget gate f l ∈ RNL×1, and

output gate ol ∈ RNL×1 (see Fig. 2.5). The main component among these is the cell
4In fact, the coherence time of angles and distance is about 40 times larger than that of path gains [18].
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Figure 2.5: Overall receiver structure of the D-STiCE scheme.

state, which serves as a memory to store information extracted from the past inputs.

Using the current input and the previous output, the forget, input, and output gates

determine the information to be removed, written, and read in the cell state. Then, the

updated cell state passes through the next LSTM cell sequentially [19].

The gating operations in the l-th LSTM cell are expressed as

il = σ(Wiy
l +Uiz

l−1 + bi) (2.18)

f l = σ(Wfy
l +Ufz

l−1 + bf ) (2.19)

ol = σ(Woy
l +Uoz

l−1 + bo), (2.20)

where σ(x) = 1
1+e−x is the sigmoid function, Wi, Wf , Wo ∈ RNL×KMT are the

weight matrices for the input, Ui, Uf , Uo ∈ RNL×NL are the weight matrices for the

previous output, and bi, bf , bo ∈ RNL×1 are the bias vectors of input, forget, and

output gate, respectively. Then, the cell state is given by

Cl = f l ◦Cl−1 + il ◦ tanh(Wcy
l +Ul

cz
l−1 + bc), (2.21)
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where Wc ∈ RNL×KMT and Uc ∈ RNL×NL are weight matrices, bc ∈ RNL×1 is the

bias, ◦ is the element-wise product, and tanh is hyperbolic tangent function. Finally, the

output of LSTM network zl ∈ RNL×1 is given by

zl = ol ◦ tanh(Cl). (2.22)

One can consider the forget, input, and output gates as faucets controlling the

delivery of cell state according to the temporal correlation ρ between the past and

current near-field array steering vectors (i.e., ρ = ⟨anear(r
l−1, θl−1, ϕl−1),anear(r

l,

θl, ϕl)⟩). For example, when the mobility of a mobile is low and thus the temporal

correlation of the large-scale parameters is high (i.e., ρ ≈ 1), the current channel

parameters {θlR, ϕlR, θlT , ϕlT , rl} are highly affected by the past channel parameters

{θl−1
R , ϕl−1

R , θl−1
T , ϕl−1

T , rl−1}. In this case, the forget gate vector f l would be close to

zero vector and the input gate would be close to one vector. This helps the delivery of

the previous cell state cl−1 containing the large-scale channel parameter information

of past time slot (i.e., previous 3D spherical coordinates) to the current cell state cl

easily. Whereas, when the mobility of a mobile is high, the temporal correlation of the

large-scale channel parameters is low (i.e., ρ ≈ 0) so that it is desirable to focus on the

latest pilot measurements rather than the old ones. In this case, learning process will

enforce the forget and input gates such that these value will be close to one and zero,

respectively.

FC Network

After the LSTM network, we use the FC network to convert the extracted temporal chan-

nel features (LSTM output zl) to large-scale channel parameters {θlR, ϕlR, θlT , ϕlT , rl}.

Our FC network consists of the input layer, hidden layers, and output layer. The output

x0 of the input layer is expressed as

x0 = W0zl + b0, (2.23)
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where zl is output vector of the LSTM network (see (2.22)), W0 ∈ RNF×NL is the

weight matrix, and b0 ∈ RNF×1 is the bias vector of the input layer, respectively. After

the FC layer, we apply the batch normalization layer on x0 to obtain the model parame-

ters being robust to the noise and signal distortion. Let B = [x0,1, · · · ,x0,d, · · · ,x0,D]T

be the stacked output vectors of the first FC layer, then the output vector x̃0,d of the

batch normalization layer is expressed as [20]

x̃0,di = γ

(
x0,di − µB,i√

σ2B,i

)
+ β, (2.24)

where µB,i = 1
D

∑D
d=1 z

l,d
i and σ2B,i =

1
D

∑D
d=1(z

l,d
i − µB,i)2 are mini-batch-wise

mean and variance, respectively, γ is the scaling parameter, and β is the shifting

parameter. As mentioned, the main purpose of the deep neural network (DNN) in D-

STiCE is to learn the temporal variation of the large-scale channel parameters (r, θ, ϕ)

in the THz environments, not the random fluctuation in the complex gain α. To promote

such behavior, we average out the small variations and distortions (e.g., Doppler shift,

shadowing) in the pilot measurement y using the batch normalization layer (see (2.24)).

After the batch normalization process, the output vector x̌0 = fleaky-ReLU(x̃
0)

is generated by passing through the leaky rectified linear unit (leaky-ReLU) layer

fleaky-ReLU = max(0.1x, x). Then, the output vector x̌0 passes through the Nm hidden

layers consisting of the FC layer, batch normalization layer, and leaky-ReLU layer. The

output of the i-th hidden layer (i = 1, · · · , Nm) can be expressed as

x̌i = fleaky-ReLU

(
γi

(
Wix̌i−1 + bi − µ√

σ2

)
+ βi

)
, (2.25)

where Wi ∈ RNF×NF is the weight matrix and bi ∈ RNF×1 is the bias vector of i-th

hidden layer, respectively. Finally, using the output vector x̌Nm of the last hidden layer,

we obtain the large-scale near-field channel parameter estimates {θlR, ϕlR, θlT , ϕlT , rl}:

{θ̂lR, ϕ̂lR, θ̂lT , ϕ̂lT , r̂l} = tanh(Woutx̌NM + bout), (2.26)
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where Wout ∈ R5×NF is weight vector, and bout ∈ R5×1 is bias vector of output layer,

respectively5.

2.3.2 Small-scale Channel Parameter Estimation

Once the large-scale channel parameter estimation is finished, we estimate the small-

scale channel parameters using the simple linear estimation technique. After this,

using both large-scale and small-scale channel parameters, we can reconstruct the full-

dimensional THz MIMO channel matrix H, using which one can perform the channel

equalization, log-likelihood ratio (LLR) generation, and packet decoding at the UE side

(see Fig. 2.5). We note that LSTM is effective in extracting the temporal correlation

of the large-scale channel components but it might not be a good fit for estimating the

small-scale channel parameters behaving like an independent and identically distributed

(i.i.d.) random variable.

In summary, when the large-scale channel parameters {θ̂lR, ϕ̂lR, θ̂lT , ϕ̂lT , r̂l} are

obtained, we estimate the small-scale channel parameter using the conventional linear

estimation technique. Recall that the received pilot signal matrix of k-th pilot subcarrier

is expressed as

Yl[k] = WHHl[k]FS[k] +Nl[k], ∀k ∈ K. (2.27)

By vectorizing Yl[k] into ỹl[k], we have

ỹl[k] = vec(Yl[k])

= αle−j2πkfs
r̂l

c (a∗near(r̂
l, θ̂lT , ϕ̂

l
T )FS[k])

T ⊗WHanear(r̂
l, θ̂lR, ϕ̂

l
R) + vec(Nl[k])

= αle−j2πkfs
r̂l

c Φ[k] + nl[k], (2.28)

where Φ[k] = (a∗near(r̂, θ̂
l
T , ϕ̂

l
T )FS[k])

T ⊗WHanear(r̂, θ̂
l
R, ϕ̂

l
R) is the system matrix

and nl[k] is the vectorized noise vector. In this setting, the linear (e.g., LS and LMMSE)
5Since the channel AoAs {θR, ϕR} and AoDs {θT , ϕT } are parameters of the periodic function, the

output values should be limited in range to ensure one-to-one mapping. In D-STiCE, we use the hyperbolic

tangent function to limit the output and scale the channel parameters in the range (−1, 1).
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estimate of path gain vector αl is given by

α̂l = ej2πkfs
r̂l

c (Φ[k]HΦ[k])−1Φ[k]Hỹl[k]. (2.29)

Finally, by substituting the acquired channel parameters {θ̂lR, ϕ̂lR, θ̂lT , ϕ̂lT , r̂l, α̂l}

into the near-field THz MIMO channel model (2.13), we obtain the full-dimensional

channel matrix Ĥ[k]:

Ĥl[k] = α̂e−j2πkfs
r̂
c anear(r̂

l, θ̂lR, ϕ̂
l
R)a

∗
near(r̂

l, θ̂lT , ϕ̂
l
T ). (2.30)

2.3.3 Loss Function Design and Training of D-STiCE

In order to estimate the near-field channel parameters {θ̂lR, ϕ̂lR, θ̂lT , ϕ̂lT , r̂l, α̂l}, we

design the DNN such that the channel estimate Ĥl[k] in (2.30) is close to the true

channel matrix Hl[k]. To this end, we use MSE-based loss function Jδ as

Jδ =
1

L

L∑
l=1

K∑
k=1

∥Hl[k]− Ĥl[k; δ]∥2F , (2.31)

where L and K are the number of coherence intervals and the number of subcarriers,

respectively. Note that we express Ĥl[k] as Ĥl[k; δ] to clearly identify that the channel

estimate is parameterized by the DNN parameters δ. In our work, we obtain the ground-

truth channel Hl[k] by collecting the channel samples generated from the realistic

near-field THz MIMO downlink simulator (we will say more on this in Section V).

One might concern that the synthetically generated channel might be different from the

actual channel since the channel realizations can be changed by various factors such as

temperature, humidity, and oxygen/foliage absorption. Fortunately, we can circumvent

this issue since the THz channel mainly consists of geometric parameters so that small

variations can be readily modeled as a small scale parameter. In fact, since the THz

channel parameters of real and simulated environments are more or less similar, outputs

of D-STiCE are fairly accurate (see Section V).

In the training phase, using the loss function in (2.31), we update the network

parameters δ∗ characterizing the mapping function g. Specifically, the parameter update
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in the j-th training iteration δj is performed by the gradient descent method [21]:

δj = δj−1 − µ
L∑
l=1

▽δJ
l
δ, (2.32)

where µ is the learning rate determining the amount of step to be updated in each

iteration. To ensure the reliable channel parameter estimation performance, we finish

the training when the absolute fractional difference of the loss Jδ is smaller than the

predefined threshold ϵ = 0.0001 (i.e.,
∣∣∣∣Jδj−Jδj−1

Jδj−1

∣∣∣∣ < ϵ).

2.3.4 Complexity Analysis

In this subsection, we briefly analyze the computational complexity of D-STiCE in

the test phase. In our analysis, we measure the complexity in terms of the number of

floating point operations (flops).

Initially, in the LSTM cell, an input vector yl is multiplied by the weights {Wf ,Wi,

Wo,Wc} (see (2.18)-(2.21)). Since the complex-valued matrix multiplication and bias

addition operations are performed by dividing these operations in real and imaginary

parts, the complexity of the aforementioned operations Ccell1 is 4(4KMT − 1)NL =

16KMTNL − 4NL. In the similar manner, the complexity Ccell2 of the matrix multi-

plications between zl−1 ∈ RNL and {Uf ,Ui,Uo,Uc} ∈ RNL×NL can be expressed

as

Ccell2 = 4(4NL − 1)NL = 16N2
L − 4NL. (2.33)

Then, the bias additions (NL flops), sigmoid operations (4NL flops), tanh operations

(7NL flops), element-wise multiplication (NL flops), and element-wise addition (NL

flops) are performed four times, three times, two times, three times, and once, respec-

tively (see (2.18)-(2.22)). Thus, from (2.33) and the operations we just mentioned, the
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complexity of the L LSTM cells CLSTM can be expressed as

CLSTM = L(Ccell1 + Ccell2 + 34NL) (2.34)

= L(16KMTNL + 16N2
L − 8NL + 34NL) (2.35)

= 16LN2
L + (16LKMT + 26L)NL. (2.36)

After passing through L LSTM cells, the weight multiplication and bias addition

are performed in the FC layer (see (2.23)). Since W0 ∈ RNF×NL and b0 ∈ RNF×1,

the complexity Cin of the initial FC layer is

Cin = (2NL − 1)NF +NF = 2NLNF . (2.37)

Next, since the element-wise scalar multiplication (NF flops) and addition (NF flops)

are performed twice in the batch normalization process and then the leaky-ReLU

function (NF flops) is applied, the complexity Cin2 of the corresponding operations is

simply

Cin2 = 5NF . (2.38)

In the hidden layer, an input vector is multiplied by the weight Wi ∈ RNF×NF

and the bias bi ∈ RNF×1 is added. Then, the batch normalization (4NF flops) and

leaky-ReLU operation (NF flops) are performed. Therefore, the complexity Chide of

Nm hidden layers can be expressed as

Chide = Nm · ((2NF − 1)NF +NF + 5NF ) = 2NmN
2
F + 5NmNF . (2.39)

Finally, in the last hidden layer, the channel parameter estimates are extracted by

multiplying weight matrix Wout ∈ R4P×NF and then adding bias vector bout ∈ R4P×1

to the x̌Nm (see (2.26)). The complexity Cout of the last FC layer is

Cout = (2NF − 1)4P + 4P = 8PNF . (2.40)
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Table 2.1: Comparison of Computational Complexity

(K = 64, L = 10, NL = 500, Nm = 2, NF = 500, P = 3,W = NTNR,M =

NT
2 , T = NR

2 , C1 = 64, C2 = 3, C3 = 10)

the number of floating point operations (flops)
Complexity for various (NT , NR)

(16, 4) (32, 4) (32, 8)

D-STiCE
16LN2

L + 2NmN
2
F + (16LKMT + 26L)NL

3.34× 108 3.34× 108 3.34× 108

+(5Nm + 2NL + 8P + 5)NF

CS
(
2PW + P 4

12 + 5
18P

3 + 47
36P

2 + P
)
KLMT 4.96× 108 8.51× 108 1.30× 109

CNN (8C1C
2
2 + 2C2

1C
2
2C3)KLNRNT 1.19× 109 3.11× 109 6.74× 109

From (2.36) to (2.40), the complexity CD−STiCE of D-STiCE is summarized as

CD−STiCE = CLSTM + L · (Cin + Cin2 + Chide + Cout) (2.41)

= 16LN2
L + 2NmN

2
F + (16LKMT + 26L)NL

+ (5Nm + 2NL + 8P + 5)NF . (2.42)

In Table 2.1, we compare the complexities of D-STiCE, CS-based channel estima-

tion, and CNN-based channel estimation (see Appendix A for the detailed complexity

derivation). In order to examine the overall behavior, we compute the required flops

for various numbers of antennas. We observe that the complexity of D-STiCE is much

smaller than that of conventional approaches. For example, whenNT = 32 andNR = 4,

the complexity of D-STiCE is 50% and 70% lower than those of CS-based channel

estimation and CNN-based channel estimation, respectively. It is worth mentioning

that the complexity of D-STiCE depends heavily on the dimension of the network

parameters (NL and NF ), not the system parameters (NT and NR). For instance, when

NT increases from 16 to 64, the number of flops of CNN-based channel estimation

increases by 70% but the number of flops of D-STiCE remains unchanged. Thus, in the

practical massive MIMO scenario where the numbers of transmit and receive antennas
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are large, the D-STiCE scheme can achieve a significant reduction in complexity.

2.4 Practical Issues for D-STiCE Implementation

In this section, we go over two major issues when applying D-STiCE in the practical

scenarios. We first discuss the training data collection issue. This issue is crucial since

collecting a large amount of training data (i.e., THz channel) covering all the physical

location (r, θ, ϕ) is very difficult in terms of energy and time-frequency resources. We

next discuss an environment compatibility issue. If we re-train the D-STiCE whenever

the wireless communication environment is changing (e.g., indoor to outdoor and

urban to rural), computational overhead and time for the training process would be

humongous, limiting the applicability of D-STiCE.

2.4.1 Training Data Acquisition

In order to obtain the optimal network parameters δ∗, a considerable amount of training

samples (i.e., channels and the pilot measurements) are needed. Clearly, a network

trained with insufficient data might not converge or can be overfitted to the specific wire-

less environment (e.g., indoor classroom), degrading the channel parameter estimation

quality of D-STiCE.

Indeed, in the THz MIMO system, it is very difficult to collect an abundant amount

of real samples due to a large number of transmit/receive antennas. For example, when

collecting one million channel samples in 5G NR system using NT = 16 and NR = 4

antennas, it will take around 15 minutes (106 RBs × 0.1 frame/RB × 10 ms/frame).

This time will further increase due to the processing delay, packet transmission time,

and queuing delay (i.e., user-plane latency). Therefore, direct collection of real data

might not be practical in terms of energy consumption, latency, and resource utilization

efficiency.

As an answer to the problem at hand, we use a synthetically generated training
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Figure 2.6: Illustration of GAN-based realistic channel data collection

dataset in our work. Specifically, we generate the training data samples using the

THz MIMO downlink simulator where mobile users are randomly distributed. One

might suspect that the synthetically generated channels might be different from the real

channels. While it is true, this issue is not so serious since the physical characteristics of

the near-field THz channel depends heavily on a few geometric channel parameters (e.g.,

AoA/AoD, and distance) [22]. By applying a realistic path loss model and geometric

modeling for the synthetic data generation (we will say more on this in Section V), we

can alleviate the mismatch between the real and synthetically generated datasets.

One can also question that the use of synthetic data might not be sufficient to

validate the direct applicability of D-STiCE in the real-world scenario. To deal with this

potential problem, we exploit a generative adversarial network (GAN)-based dataset

generation approach to generate massive real-like samples from the real ones [2]. In

short, GAN is a DL model generating the samples approximating the input dataset (in

our case, real measured THz MIMO channel matrix H). The main ingredients of GAN

are a pair of DNNs called generator G and discriminator D (see Fig. 2.6). In our case,

G tries to generate real-like near-field THz channel samples G(z) from the random
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noise z and D tries to distinguish whether the generated channel G(z) is real or fake

channel, respectively. To train the GAN, we can adversarially train two DNNs using

the min-max loss function, expressed as the cross-entropy6 between the distribution of

generator output G(z) and that of the real channel data H:

min
G

max
D

EH[log(D(H))] + Ez[log(1−D(G(z)))], (2.43)

where D(H) is the discriminator output which corresponds to the probability of H

being real (non-fake). In the training process, parameters of G are updated while those

of D are fixed and vice versa. In doing so, when the training is finished properly, the

discriminator cannot judge whether the generated channel G(z) is real or fake (i.e.,

D(G(z)) ≈ 0.5). This means that the generated THz channel sample is fairly reliable

so that one can readily use the generated channel matrix H for the training of D-STiCE.

In particular, when compared to the manually designed channel models, GAN-based

channel samples well represent complicated channel characteristics (e.g., foliage loss,

atmospheric absorption, and cluttering density), so that GAN-based samples can be

readily used for the D-STiCE training.

2.4.2 Environment Compatibility Issue

Yet another important issue when applying D-STiCE is the environment compatibility.

In the THz propagation environment, due to the high penetration loss and movement

of mobile devices or obstacles, the wireless channel characteristics between the BS

and UE can be changed. For example, when the UE moves indoor to the outdoor,

distribution of the communication distance r (e.g., 5 m in the indoor room and 20 m

in the outdoor on average) and blockage ratio would vary, meaning that the D-STiCE

needs to be re-trained to adapt to the new scenario. This issue is crucial for D-STiCE

since the re-training in each environment will not be handy and incur the waste of

energy, resources, and time.
6The cross-entropy between x and x̂ is defined as H(x, x̂) = −x log(x̂)− (1− x) log(1− x̂).
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To handle the compatibility issue, we exploit the meta-learning, a special DL

technique to solve new task using only a small number of training samples (in our

case, pilot measurements). Basically, main idea of the meta-learning is to obtain the

pre-trained model and then quickly train the desired function with a few training

samples [3]. In our context, this means that we can reduce the required number of

THz near-field channel samples as long as we have a pre-trained D-STiCE which

already learned the common channel characteristics (e.g., parametric sparsity in the

3D spherical domain, temporal correlation of (r, θ, ϕ), LoS-dominant property). Since

what should be done for the new wireless environment is to learn the distinct channel

features (e.g., distance and angle change) describing a new environment (this process is

often called fine-tuning), we can avoid the re-training of D-STiCE model parameters δ.

To realize the concept, specifically, one needs to pre-train the proposed D-STiCE

using multiple near-field THz channel datasets, say M datasets {D1, · · · , DM}:

ψDi,t = δt−1 − η∇δJDi
δ , (2.44)

δt = δt−1 − ζ∇δ
M∑
i=1

JDi
ψDi,t

, (2.45)

where δt and δt−1 are the parameters updated by using M datasets in t-th step and

(t − 1)-th step, respectively. Also, ψDi,t is the temporal parameter associated with

dataset Di in t-th step, JDi is the loss function of D-STiCE for i-th dataset Di, and η

and ζ are the step sizes for the parameter update.

In a nutshell, key steps of the meta-learning are 1) to temporarily update the

D-STiCE parameters for each dataset in (3.3) and 2) to find out the centroid of the

temporarily updated D-STiCE parameters that can quickly adapt to the new THz dataset

in (3.4). Specifically, in each iteration, we temporarily update the D-STiCE parameters

for each dataset to obtain {ψDi,t}Mi=1 (see (3.3)). To update the pre-trained model

parameter δ, we evaluate the loss of each dataset JDi
ψDi,t

with respect to temporally

updated D-STiCE parameters {ψDi,t}Mi=1. We then update the D-STiCE parameters

δ in the direction to minimize the sum of losses
∑M

i=1 J
Di
ψDi,t

(see (3.4)). Using (3.3)
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Algorithm 1 Training Process of meta-learning

Input: Near-field THz channel datasets {Di}M+1
i=1 , learning rates η, ζ, and ηfine

1: randomly initialize D-STiCE parameters δ

2: while meta-learning do

3: for i← 1 to M do

4: Sample batch data x(i) from Di

5: Evaluate∇δJDi
δ using x(i) and MSE loss JDi

δ in Equation (2.31)

6: Compute temporal parameters with gradient descent: ψDi = δ − η∇δJDi
δ

7: Sample batch data for meta-update x′(i) from Di

8: end for

9: Update δ = δ− ζ∇δ
∑M

i=1 J
Di
ψi

using x′(i) and MSE loss JDi
ψi

in Equation (2.31)

10: end while

11: while fine-tuning do

12: Sample batch data x(M+1) from DM+1

13: Evaluate∇δJ
DM+1

δ using x(M+1) and MSE loss JDM+1

δ in Equation (2.31)

14: Compute D-STiCE parameters with gradient descent: δ = δ − ηfine∇δJ
DM+1

δ

15: end while

and (3.4), the pre-trained model of D-STiCE can be obtained, which learns the common

channel characteristics in the M datasets {Di}Mi=1. Then, in the fine-tuning phase, we

can use δ as an initialization point of D-STiCE, using which one can quickly learn

the parametric near-field channel estimation in a new THz dataset DM+1. Overall

procedure of meta-learning is described in Algorithm 1.
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Figure 2.7: Illustration of simulation environment. In our simulation, the UE are dis-

tributed within 10 m around the BS. The mobile user moves along the line trajectory

with a constant speed of 5 km/h.
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2.5 Simulations and Discussions

2.5.1 Simulation Setup

In this section, we investigate the performance of D-STiCE. In our simulations, we

consider the near-field THz MIMO systems with 1THz frequency band where the

BS and UE are equipped with NT = 64 and NR = 16 antennas, respectively. We

set the number of RF chains for the BS and UE and antenna spacing to NRF = 4

and d = 0.05, respectively. Following 5G NR standard, we set subcarrier spacing to

fs = 120 KHz [16]. We also set the numbers of pilot subcarriers, time frames, and sub-

frames to K = 4, M = 4, and T = 4, respectively, in each channel coherence interval.

The number of large-scale beam coherence intervals is L = 5. When generating the

beamforming matrix F and the combiner matrix W, we use stacked steering vectors

covering (−π/2, π/2]. To model the channel variation over the time, the UE moves

along the line trajectory with a constant speed (5 km/h). We assume that the small-

scale channel parameter α is independently and identically distributed (i.i.d.) complex

Gaussian random variable.

In the simulations of D-STiCE, we use the LSTM network (2 layers) and FC network

(2 hidden layers). Also, we set NL = 576 (the number of hidden layer units in LSTM

cell) and NF = 576 (the number of hidden layer units in FC network). We generate

200,000 samples for training, 10,000 samples for validation, and 10,000 samples for

testing. The channel samples are generated using (2.13). In the training process, we

use an Adam optimizer with learning rate 10−4. As performance metrics, we use

the NMSE= ∥H − Ĥ∥2F /∥H∥2F and BER. For comparison, we use four benchmark

schemes: 1) LS estimator, 2) LMMSE estimator, 3) CS-based channel estimation [23],

and 4) CNN-based channel estimation scheme [24].
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Figure 2.8: Normalized MSE performance of channel estimation techniques as function

of SNR.

Figure 2.9: BER performance of channel estimation techniques as function of SNR.
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Figure 2.10: Training loss of D-STiCE as a function of training iterations. We evaluate

the MSE loss every 100 iterations.

2.5.2 Simulation Results

In Fig. 2.8, we plot the NMSE of D-STiCE and competing schemes as the function

of SNR. We observe that D-STiCE outperforms the conventional channel estimation

algorithms by a large margin, especially in high SNR regime. For example, when

SNR = 20 dB, the NMSE of D-STiCE is less than 0.2 while those of the conventional

linear estimator (i.e., LS, LMMSE estimator), CS-based estimator, and the CNN-based

estimator are 0.7, 0.6, and 0.4, respectively. This is because the trained D-STiCE

exploits the sparsity of the spherical domain channel and thus it can accurately estimate

the channel in the limited pilot scenario. Whereas, since the conventional LS and

MMSE techniques estimate each channel coefficient without exploiting the parametric

sparsity, the performance of these schemes is not that appealing. We also observe that

the performance of D-STiCE is even better than that of the CNN-based approach in high

SNR regime since D-STiCE can effectively exploit the temporal correlation between
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Figure 2.11: BER performance of channel estimation schemes as function of ratio

between received pilot dimension and channel dimension. In this simulation, we fix the

SNR as 15dB.

the past and current channel parameters to narrow down the angle (and distance) search

range for the accurate channel parameter estimation.

We next evaluate the BER performance to measure the impact of D-STiCE on

the overall system performance. Since our purpose is to check the channel estimation

quality, we use the simple setup and detect the QPSK symbols using hard decision

decoding after the channel estimation. As shown in Fig. 2.9, D-STiCE achieves more

than 3 dB gain for all SNR regime. For instance, when BER = 0.23, D-STiCE achieves

3 dB gain and 10 dB gain over the CNN-based channel estimator and linear channel

estimator, respectively.

In Fig. 2.10, we evaluate the MSE loss of D-STiCE as a function of training

iterations. From the simulation results, we observe that as the training iteration increases,

the MSE loss of D-STiCE decreases gradually and finally converges. For example,

the MSE loss value converges to 0.12 at the SNR = 15 dB after 100,000 training
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iterations. We also observe that the MSE loss is further reduced as the SNR increases

when compared to that in the low SNR regime. For instance, the MSE loss converges to

0.5 in 0 dB and while that in 15 dB converges to 0.12. Since the random distortion in

the signal can be readily averaged out by the batch normalization layer in the high SNR

regime, D-STiCE can accurately distinguish the small differences in the distance and

angles, generating high-resolution estimates.

In Fig. 2.11, we plot the BER performance as a function of the ratio between the

number of received pilot signals and full-channel coefficients. From the simulation

results, we observe that D-STiCE outperforms the conventional channel estimation

schemes by a large margin even in the limited pilot scenarios. For example, when

compared to the linear, CS-based, and CNN-based channel estimators, D-STiCE only

requires less than half of the pilot signals at BER = 0.05 because the D-STiCE just

requires a few sparse parameters to reconstruct the full-channel. Whereas, since there is

no such mechanism for the conventional channel estimation techniques, the conventional

schemes perform well only when the number of pilots is large enough.

2.6 Summary

In this chapter, we proposed a DL-based parametric channel estimation technique for the

near-field THz MIMO systems. Using the property that the near-field THz channel can

be expressed with a few channel parameters in the spherical domain, viz., AoDs, AoAs,

distance, and path gain, the proposed D-STiCE estimates the large-scale sparse channel

parameters via LSTM-based DNN. Then, by combining the large-scale parameter

estimates and the small-scale channel parameter estimates obtained via linear estimator,

the THz MIMO channel matrix (i.e., full-channel) is reconstructed. Notable feature of

D-STiCE is that we exploit the temporally correlated feature of the spherical channel

model in the near-field THz systems. In doing so, D-STiCE makes a fast yet accurate

channel parameter estimation with relatively small pilot overhead. From the numerical
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evaluations in the 6G THz environment, we verified that the proposed D-STiCE is very

effective in the realistic near-field THz downlink environments. We believe that the

proposed D-STiCE can be a effective means to acquire channel in various future 6G

applications.
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Chapter 3

Massive Wireless Data Generation Using Generative

Adversarial Net and Meta Learning

In this chapter, we introduce a new type of data acquisition framework for DL-aided

wireless systems. The key idea of the proposed strategy, dubbed as deep wireless data

collection (D-WiDaC), is to acquire a massive number of real-like wireless samples

using a generative adversarial network (GAN). In short, GAN is a DL model that

generates samples approximating the input dataset [2]. When GAN is trained prop-

erly, generated samples will be similar to the real samples, meaning that there is no

fundamental difference between the GAN output and real samples. Since the GAN

training still requires a large amount of training samples, we exploit a meta learning,

special training technique to quickly learn a task using a small number of samples [3].

Since GAN pre-trained by the meta learning can exploit the common features in various

wireless environments, it requires far smaller number of samples than that required by

the vanilla (original) GAN.

3.1 Introduction

In recent years, we have witnessed the emergence of artificial intelligence (AI)-based

services such as driverless cars, smart factories, remote surgery, and drone-based deliv-
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ery [25, 26]. Communication mechanisms associated with these emerging applications

and services are way different from traditional wireless systems in terms of latency, en-

ergy efficiency, reliability, and connection density. As the wireless systems are becoming

more complicated, it is very difficult to come up with a simple yet tractable mathe-

matical model and algorithm. As an entirely-new paradigm to handle future wireless

systems, deep learning (DL), an approach that the machine learns the desired function

without human intervention, has received much attention recently [21, 27, 28, 29, 30].

Since the DL-based systems are data-driven in nature, to fully enjoy the benefit of

DL-aided wireless system, sufficient training dataset is indispensable. Unfortunately,

collecting a large number of training samples in real-world wireless system is very

difficult since it requires significant transmission overhead in terms of time, bandwidth,

and power consumption. For example, when one tries to collect one million received

samples in 5G NR systems, it will take more than 15 minutes (106 symbols × 0.1

frame/symbol × 10 ms/frame). To deal with the problem, one can use samples obtained

by the mathematical channel model (e.g., extended pedestrian A (EPA) channel or

extended vehicular A (EVA) channel model) [31]. Since the synthetic data can be

generated using a simple computer programming, time and effort to collect huge

training dataset can be greatly saved. However, as the wireless channels are non-

static in most cases and wireless environments are changing fast, a model mismatch

caused by the variation of fading/noise/interference distribution and input statistics is

unavoidable. In such case, DL-based algorithm trained with a synthetic dataset would

leave a considerable performance gap from the system using real data, resulting in a

degradation of bit error rate (BER) and block error rate (BLER) performance.

3.2 D-WiDaC for Wireless Data Collection

In this section, we present the proposed D-WiDaC technique. We first discuss the

basics of GAN and then explain the D-WiDaC architecture and the meta learning-based
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Figure 3.1: Illustration of GAN-based data synthesis.

training strategy.

3.2.1 Basics of Generative Adversarial Network

The main ingredients of GAN are a pair of DNNs called generator G and the discrimina-

tor D. The generator G tries to produce the real-like data samples and the discriminator

D tries to distinguish real (authentic) and fake data samples. To be specific, G is trained

to generate real-like data G(z) from the random noise vector z and D is trained to

distinguish whether the generator output G(z) is real or fake (see Fig. 3.1). In order

to accomplish the mission, a min-max loss function, expressed as the cross-entropy1

between the distribution of generator output G(z) and that of the real data x, is used [2]:

min
G

max
D

Ex[log(D(x))] + Ez[log(1−D(G(z)))], (3.1)

where D(x) is the discriminator output which corresponds to the probability of x being

real (non-fake). In the training process, parameters of G are updated while those of D

are fixed and vice versa. When the training is finished properly, the generator output
1The cross-entropy between x and x̂ is defined as H(x, x̂) = −x log(x̂)− (1− x) log(1− x̂).
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G(z) is fairly reliable so that the discriminator cannot judge whether the generator

output is real or fake (i.e., D(G(z)) ≈ 0.5). This means that we can safely use the

generator output for the training purpose.

3.2.2 D-WiDaC Architecture

The key idea of D-WiDaC is to collect real-like wireless samples using GAN. When

collecting samples, we need to make sure that GAN generates wireless samples of

interest since otherwise GAN might generate samples irrelevant to the desired wireless

environment. To do so, we use a special type of GAN, called conditional GAN (CGAN).

The distinct feature of CGAN over the vanilla GAN is to use an additional input on

top of the random noise, called condition c. In essence, the condition c is an indicator

(e.g., one-hot vector [0 1 0 · · · 0] or a scalar value) that points out the type of samples

we want to generate. In the proposed D-WiDaC, we design the condition such that it

properly designates the target wireless environment. For example, if we want to collect

samples for the second channel among 5 distinct channels, we set c = [0 1 0 0 0].

To be specific, let x(i) and Di = [x(i,1), · · · ,x(i,N)] (i = 1, · · · ,M ) be a real

sample and the set of real samples of i-th dataset, respectively. Also, let LDi and ci be

the loss function of CGAN and the condition corresponding to Di, respectively. Then,

the loss function LDi is expressed as [32]

LDi = min
G

max
D

Ex(i) [log(D(x(i)|ci))] + Ez[log(1−D(G(z|ci)))]. (3.2)

When CGAN is trained properly, it generates samples close to the target wireless

environment (see Fig. 3.2).

3.2.3 D-WiDaC Training

As mentioned, the main goal of D-WiDaC is to generate massive real-like wireless

samples with a small number of real samples. In reality, however, CGAN still requires

considerable training samples and hence the practical benefit of the proposed technique
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Figure 3.2: D-WiDaC architecture.
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Algorithm 2 Training Process of D-WiDaC

Input: Wireless data {Di}M+1
i=1 , condition {ci}M+1

i=1 , learning rates α, β, and γ

1: randomly initialize GAN parameters θ

2: while meta learning do

3: for i← 1 to M do

4: Sample batch data x(i) from Di

5: Evaluate∇θLDi using x(i), ci, and CGAN loss LDi in Equation (3.2)

6: Compute adapted parameters with gradient descent: ψDi = θ − α∇θLDi(θ)

7: Sample batch data for meta-update x′(i) from Di

8: end for

9: Update θ = θ − β∇θ
∑M

i=1 LDi(ψDi) using x′(i), ci, and CGAN loss LDi in

Equation (3.2)

10: end while

11: while parameter update do

12: Sample batch data x(M+1) from DM+1

13: Evaluate ∇θLDM+1
using x(M+1), cM+1, and CGAN loss LDM+1

in Equa-

tion (3.2)

14: Compute adapted parameters with gradient descent: θ = θ − γ∇θLDM+1
(θ)

15: end while

might be washed away. To overcome the shortcoming, we exploit the meta learning, a

technique to train a model on a variety of tasks such that it can solve new task using

only a small number of training samples [3]. In short, meta learning is a special training

technique to obtain the initialization parameters of DNN using which one can easily

and quickly learn the desired function with a few training samples.

Overall procedure of D-WiDaC training is as follows. First, we perform the meta

learning to obtain the initialization parameters. We then update the network parameters

to perform the fine-tuning of DNN such that the trained DNN generates samples for
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the desired wireless environments. In the meta learning phase, we extract the common

features of multiple wireless datasets, say M datasets {D1, · · · , DM}, and then use

them to obtain the network initialization parameters θ:

ψDi,t = θt−1 − α∇θLDi(θt−1), (3.3)

θt = θt−1 − β∇θ
M∑
i=1

LDi(ψDi,t), (3.4)

where θt and θt−1 are the parameters updated by using M datasets in t-th step and

(t− 1)-th step, respectively. Also, ψDi,t is the parameter associated with dataset Di in

t-th step, LDi is the loss function of CGAN for i-th dataset Di, and α and β are the

step sizes for the parameter update (see Algorithm 2). In each iteration, we temporarily

update the CGAN parameters for each dataset to obtain {ψDi,t}Mi=1 (see (3.3)). We

then update the CGAN parameters θ in the direction to minimize the sum of losses for

{ψDi,t}Mi=1 (see (3.4)). In doing so, the CGAN parameters θ learn the common features

in the M datasets {Di}Mi=1. Then, in the fine-tuning phase, we use θ as an initialization

point of D-WiDaC. Since all we need in the fine-tuning is to learn the distinct features

(of DM+1) unextracted from the meta learning, we can greatly reduce the overhead to

collect DM+1 samples.

To show the effectiveness of the meta learning in the proposed D-WiDaC, we briefly

explain the following analytic argument. In [33], it has been shown that the gap between

the losses for datasets {Di}Mi=1 and a new dataset DM+1 is bounded after the meta

learning. To be specific, the gap between the losses LDM+1
(θ∗) and 1

M

∑M
i=1 LDi(θ

∗)

is smaller than the total variation distance f(DM+1, {Di}Mi=1) which measures the

difference between two distributions P (DM+1) and P ({Di}Mi=1):

|LDM+1
(θ∗)− 1

M

M∑
i=1

LDi(θ
∗)| ≤ f(DM+1, {Di}Mi=1), (3.5)

where θ∗ is the optimal parameters minimizing 1
M

∑M
i=1 LDi(θ

∗).

In many communication scenarios, distributions of the wireless datasets are more

or less similar since the key characteristics of the wireless channels remain unchanged
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except for a few distinct ones. In our context, this directly implies that the parameters

θ∗ obtained via meta learning would be very close to the optimal CGAN parameter for

DM+1. Thus, by using the meta-trained CGAN parameters θ as an initialization param-

eters, we can accelerate CGAN training in the newly observed wireless environment.

3.2.4 D-WiDaC Implementation Example

In this subsection, we explain the wireless channel sample generation using the proposed

D-WiDaC technique.

As an example, we consider a narrowband geometric channel model with MISO

system where the numbers of transmit antennas and receive antenna are Nt and 1,

respectively. In this setup, the propagation channel model h ∈ CNt×1 between the

transmitter and receiver can be expressed as2

h =

√
Nt

L

L∑
l=1

ρla(θl), (3.6)

ρl ∼ CN (0, C) = CN (0,
P0

f2R2
), (3.7)

a(θl) =
1

Nt

[
1, ejθl , · · · , ej(Nt−1)θl

]T
, (3.8)

where ρl, C, P0, f , R, θl, a, and L are the complex gain, distance-dependent path loss,

power gain, center frequency, distance, azimuth angle of departure (AoD), transmit

array response vector associated with the l-th propagation path, and the number of

paths, respectively.

When we try to generate the channel samples without the channel information

described in (3.6)-(3.8), we apply D-WiDaC as follows. Let D1, D2, D3, and D4 be the

channel dataset at the central frequency f = 0.9, 3.5, 28, and 60GHz. As an input of

the generator G, we use the concatenation of the random noise vector z and condition

c. We assume that sufficient number of real samples for f = 0.9, 3.5, and 60GHz

channels are available but not for f = 28GHz channel.
2We simply let the antenna array of the transmitter be the uniform linear array (ULA).
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In the meta learning phase, we use {c1, D1}, {c2, D2}, and {c4, D4} to extract

the common features such as the number of dominant paths, AoD distribution, and

transmit array response. When the meta learning is finished, we perform the fine-tuning

of D-WiDaC parameters using {c3, D3} to generate the channels corresponding to

f = 28GHz. Since the mission of D-WiDaC in this parameter update phase is to learn

the unique features of 28GHz channel, we can train the network with small number of

training samples.

3.3 Simulation Results

In order to observe the validity of the proposed data acquisition strategy, we evaluate the

MSE performance of the DL-based channel estimator3 trained by the samples generated

by D-WiDaC. Specifically, to investigate the efficacy of D-WiDaC, we use two different

types of benchmark datasets: model-based channel samples and real measured channel

samples. As a model-based channel dataset, we exploit the samples generated from (3.6).

As a measured channel dataset, we employ the softnull dataset obtained by massive

MIMO systems at indoor environments [34].

In Fig. 3.3 (a), we investigate the MSE performance of DL-based channel estimator

trained by three different training datasets: 1) dataset obtained from (3.6) (we call it

genie dataset), 2) dataset generated from conventional CGAN (without meta learning),

and 3) dataset generated from D-WiDaC. For the meta learning of D-WiDaC, we exploit

80,000 samples corresponding to 28, 37, 41, and 60 GHz channel (M = 4). Also, we

use 800 samples of 39 GHz channel for the training of conventional CGAN and the

D-WiDaC fine-tuning. For the training of the DL-based channel estimation at 39 GHz,

we use 200,000 samples for all techniques under test.

As shown in Fig. 3.3 (a), the MSE performances of the DL models trained by the
3As a DL-based channel estimator, we use fully-connected network consisting of 5 hidden layers, each

of which has 256 hidden units. Also, in the training process, we simply use the channel MSE as a loss

function.
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(a)

(b)

Figure 3.3: MSE performance of the DL-based channel estimator using three distinct

datasets: genie dataset, generated dataset from conventional CGAN and D-WiDaC. (a)

Model-based channel samples. We use 10,000 samples of 39 GHz channel for testing.

(b) Real measured (softnull) dataset. We use 2,500 samples of 5 ft channel for testing.

(c) IRS-aided system channel samples. We use 10,000 samples for 4 different BS to

IRS link distances; 5, 10, 15, and 20 m.
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benchmark dataset and D-WiDaC dataset are more or less similar since D-WiDaC

trained by using various channel dataset can well extract the common channel features.

In fact, D-WiDaC can significantly reduce the number of real samples for the DL model

training (in our case, 200,000−800
200,000 = 99.6% reduction of 39 GHz channel samples) as

long as multiple wireless datasets having common features are available. Whereas, the

DL model trained by the conventional CGAN-based samples performs poor (around 3

dB loss at MSE=10−2) since the number of training samples is not sufficient enough to

train the generator G and discriminator D of CGAN.

We next evaluate the performance of D-WiDaC for the real channel samples [34].

In this test, we use the samples characterized by distinct propagation distances (3, 4, 5,

6, and 7 ft). For the meta learning of D-WiDaC, we use 2,600 samples corresponding to

3, 4, 6, and 7 ft channel (M = 4). Also, we use 1,000 samples of 5 ft channel for the

training of conventional CGAN and the D-WiDaC fine-tuning. In the training of the

DL-based channel estimator, we use 10,000 samples of 5 ft channel.

In Fig. 3.3 (b), we test the MSE performances of the DL-based channel estimator

trained by three different datasets: softnull dataset, dataset generated from the CGAN,

and the proposed D-WiDaC. We observe that the channel estimation performance of the

D-WiDaC-based approach is slightly worse than that using the real samples (e.g., 1.7

dB loss at MSE=10−2). Whereas, the performance gap of the CGAN-based approach

and the case using real samples is large (more than 6 dB at MSE=10−2) since this

approach does not have a mechanism to exploit the common features of diverse wireless

environments.

To validate the effectiveness of D-WiDaC in the complex wireless systems, we

plot the MSE performance of the DL-based intelligent reflecting surface (IRS) channel

estimation (see Fig. 3.4) [35]. In Fig. 3.4, we observe that the performance of the

DL-based channel estimator using D-WiDaC samples is close to that of the DL model

trained by the benchmark dataset. From this result, we see that the proposed D-WiDaC

can also reduce the data collection overhead required for the RIS channel measurement
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Figure 3.4: MSE performance of the DL-based channel estimator in IRS-aided system

using three distinct datasets: genie dataset, generated dataset from conventional CGAN

and D-WiDaC.

campaign.

In Fig. 3.5 (a), we evaluate the training and validation errors of D-WiDaC. To

quantify the training error, we measure the generator and discriminator losses for

the training dataset. From the experiments, we observe that the training loss of D-

WiDaC converges after 130,000 iterations. During the training, we also measure the

discriminator loss using the validation dataset. We see that the validation loss converges

without suffering from overfitting since the meta learning provides sufficient amount of

multiple datasets.

To see if D-WiDaC properly generates the samples for the target environment, we

measure the path gain of the model-based channel samples on various center frequencies

including f = 28, 37, 41, and 60GHz (see Fig. 3.5 (b)). We observe that the path gain

of the D-WiDaC channels converges to that of the model-based channels for all center

frequencies f = 28, 37, 41, and 60GHz as the training iteration increases. For example,
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(a)

(b)

Figure 3.5: CGAN model evaluations as a function of training iterations in the meta

learning phase: (a) training and validation losses and (b) path gain of model-based

channel samples for various center frequencies. We generate the channel data for

f = 28, 37, 41, and 60GHz in every 100 iterations.
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Table 3.1: Data generation overhead comparison with the conventional techniques. For

the conventional data generation techniques, we set the total number of data samples is

200,000.

FLOPs

D-WiDaC 143,896

SMOTE 7,288,540

MSMOTE 161,035,040

INOS 204,132,150

path gain of f =28 GHz channel data is 0.98 after 100,000 iterations, which is almost

the same as that of the benchmark, 1.04.

In Table 3.1, we verify the data generation overhead of the D-WiDaC. For com-

parison, we measure the number of floating point operations (flops) of D-WiDaC and

conventional data generation techniques including 1) SMOTE, 2) MSMOTE, and 3)

INOS. Specifically, we measure the number of flops required to generate one channel

sample4. As shown in Table 3.1, the number of flops of the proposed D-WiDaC is

smaller than conventional data generation techniques. Since the D-WiDaC only uses a

few steps of simple multiplications and additions, the data generation overhead is far

smaller than the conventional techniques requiring complicated sorting before the data

generation.

In Table 3.2, we summarize the path gain of the generated samples to show the

efficacy of the fine-tuning process. To be specific, we measure the average path gains

of the f = 39GHz channel data samples generated (with and without fine-tuning).

We observe that the path gain of samples from the fine-tuned model is closer to the

path gain of samples obtained from the meta learning only. This directly means that

the fine-tuning process enhances the data generation performance with a few training
4In our simulation, we use 3 FC layers in the generator layers, each of which uses 256 elements. Also,

we set the input and output vector dimensions as z ∈ R8×1, c ∈ R, and Nt = 8.
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Table 3.2: Average path gain of generated data samples in fine-tuned model and meta

trained model

Average path gain

Benchmark dataset 0.561

Fine-tuned dataset 0.583

Meta learned dataset 0.644

samples.

3.4 Summary

In this chapter, we proposed a new type of wireless data acquisition framework for the

DL-aided wireless systems. The key idea behind the proposed D-WiDaC technique

is to exploit CGAN and meta learning to reduce the training sample overhead. We

demonstrated from the numerical evaluations that the proposed scheme is effective in

generating the realistic wireless data and reducing the number of real samples over

the vanilla CGAN training. There are many wireless datasets that slightly differ in

some characteristics (e.g., center frequency, propagation distance, level of interference,

and Doppler frequency). If we properly design the condition c that can describe these

various features and perform meta learning, the problem caused by the lack of samples

will be greatly alleviated. We expect that our meta learning-based approach will be more

effective in the 6G era where the datasets generated from similar but distinct wireless

environments will be sufficient. For the test code of wireless examples discussed in this

chapter, check out http://islab.snu.ac.kr/publication.
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Chapter 4

Deep Learning-based localization for 6G Wirless Com-

munication Systems

In this chapter, we introduce a novel localization scheme for 6G communication sys-

tems in the NLoS-existent scenarios. To deal with these scenarios where propagation

information is not sufficiently given, we exploit the deep learning (DL) technique, a

learning approach to approximate the nonlinear and complex functions. Key idea of

the proposed scheme, henceforth dubbed as Deep Spatial Localization Network (D-

SLN), is to learn the propagation mechanism (e.g., reflection and penetration) from the

propagation measurements and environment information. To do so, we use a specially

designed input, spatial information (e.g., position and width/height of the obstacle),

which is easily obtained from the environment. Since the propagation path is determined

by the obstacles in the environment, our model can learn the propagation mechanism

using the propagation information and spatial information. Furthermore, we exploit a

meta learning, a special training technique to quickly learn a task using a small number

of samples. Since D-SLN pre-trained by meta learning can extract the common features

in various environments, D-SLN requires fewer samples than the model trained without

meta learning.
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4.1 Introduction

With the advent of the 6G era, the demands on the data rate, reliability, and latency

are ever-increasing to support mission-critical services including enhanced mobile

broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable

and low-latency communications (URLLC). In accordance with this trend, various new

types of use cases such as autonomous driving, smart factory/monitoring, drone delivery,

and remote surgery have received a great deal of attention. One crucial requirement for

these applications is an extremely low localization error, since these wireless tasks are

closely related to the mission-critical applications as well as safety issues [36, 37]. For

example, the localization error in order of few centimeters must be ensured to support

the platooning via wireless links.

Over the years, triangulation-based techniques have been widely used for localiza-

tion (e.g., global navigation satellite systems) [38, 39, 40]. From the intersection of the

spheres centered at the anchors with the radius of the measured distances by time of

arrival (ToA), time difference of arrival (TDoA), or received signal strength indicator

(RSSI) of propagated signal, the position of the target device can be derived [39].

However, this type of localization method does not perform well when the wireless

signal is propagated through non-line-of-sight (NLoS) paths since the measured dis-

tance received via NLoS path is longer than the actual distance. For instance, it is

shown that the average error of GPS is over 40m in NLoS dominant outdoor scenarios

(e.g., downtown and forest) [41]. Also, in the indoor environment, over 3m error on

average is reported inside an office [42]. In these cases, mission-critical services such

as autonomous driving and package distribution in logistics requiring error less than a

meter cannot be served.

In order to deal with localization in NLoS-propagation scenarios, various techniques

have been proposed over the years using additional propagation path information (e.g.,

angle of arrival (AoA) and angle of departure (AoD)) which can be obtained from

multiple antenna arrays [43, 44]. In [43], a ToA and AoA-based localization technique
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using signal from multiple base stations (BSs) has been proposed. Also, in [44], a

technique to estimate mobile position with ToAs, AoAs and AoDs in the presence

of multiple NLoS paths has also been proposed. However, in the 6G communication

systems, it is difficult to measure the additional propagation path in NLoS scenario

due to the complex and diverse communication system. For instance, in the mMTC

scenario, the machine-type device cannot deploy an antenna array due to manufacturing

cost so that obtaining the AoDs of NLoS path at the BS side is impossible. Also, in the

URLLC scenario, it is impractical to estimate the bi-directional angles (i.e., AoAs and

AoDs) considering the latency requirement in 6G (0.1 ms) since it takes considerable

amount of time (minimum 20 ms in 5G NR). Therefore, it is of importance to come up

with a new type of localization technique regardless of NLoS paths.

4.2 ToA/AoA-based 3D Localization with NLoS Paths

In this section, we present the system model for ToA/AoA-based 3D localization and

provide a brief discussion of the conventional method to solve the 3D localization

problem in NLoS propagation environments.

4.2.1 Narrowband Uplink System Model for Localization

We consider a narrowband uplink transmission scenario where a base station (BS)

equipped with NT uniform linear array (ULA) antennas serves a single antenna mobile

(see Fig. 4.1). In this setup, the received pilot signal y ∈ CNT×1 is given by

y = hs+ n, (4.1)

where h ∈ CNT×1 is the uplink channel vector from the mobile to the BS, s ∈ C is the

transmitted pilot symbol, and n ∈ CNT×1 is the additive Gaussian noise (CN (0, σ2n)).

As for the channel model, we consider a geometric channel model in the NLoS-
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Figure 4.1: An illustration for the narrowband uplink transmission scenario.

existent scenario where the uplink channel vector h is expressed as

h =

Np∑
i=1

αie
−j2πfsτia(θi, ϕi), (4.2)

where Np is the number of propagation paths, fs is the carrier frequency, αi is complex

gain of the i-th path, θi and ϕi are azimuth and elevation of AoA for the i-th path, and

τi is the path delay of the i-th path. Also, a(θ, ϕ) ∈ CNT×1 is the array response of BS

given by

a(θ, ϕ) = [1, ej2π
∆d
λ

sin(θ) sin(ϕ), · · · , ej(NT−1)2π∆d
λ

sin(θ) sin(ϕ)],

where λ is the wavelength and ∆d is the antenna spacing.

4.2.2 Conventional ToA/AoA-based Localization in NLoS-existent Sce-

nario

In case of the LoS localization, triangulation-based approaches are effective to esti-

mate the position of the mobile. The principle of the triangulation-based localization
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techniques is to find out the intersection of the spheres with the radius of the measured

distances. However, in the NLoS scenario, performance of triangulation-based local-

ization techniques is degraded since the measured distance is longer than the actual

distance. To mitigate the performance degradation, other additional information is

required (e.g., angles of propagation path).

In the conventional localization strategy for NLoS-existent scenarios, the position of

the mobile pm = [x, y, z] is estimated from AoAs {θ, ϕ} and ToA τ of the propagation

path using received pilot symbol y. To estimate {θ, ϕ} and τ , compressed sensing

(CS)-based technique has been popularly used [45]. In this approach, by mapping the

quantized angle and path delay to the nonzero indices of sparse angular-time domain

channel vector, one can convert the angle and path delay estimation problem to the

support identification problem. To be specific, we first represent the received pilot signal

as a sparse signal:

y = AGds+ n (4.3)

= (dT s⊗A)︸ ︷︷ ︸
Φ

vec(G)︸ ︷︷ ︸
g

+n (4.4)

= Φg + n, (4.5)

where Φ is sensing matrix, A = [a(θ̄1, ϕ̄1),a(θ̄1, ϕ̄2), · · · , a( ¯θGaz ,
¯ϕGel)] ∈ CNT×GazGel

is the array steering matrix, d = [1, e−2jπfτ̄1 , · · · , e−2jπfτ̄Gt ]T is discrete Fourier trans-

form vector, G is sparse path gain matrix1, g is sparse path gain vector, and {θ̄w}Gaz
w=1,

{ϕ̄w}Gel
w=1, and {τ̄w}Gt

w=1 are the set of quantized angle of azimuth and elevation, and

path delay, respectively. Then, the corresponding angle and path delay estimation

problem can be formulated as the support identification problem as

Ω̂ = argmin
|Ω|=Np

1

2
∥y −ΦΩgΩ∥22, (4.6)

1Note that (i, j)-th element of G is the angular-time domain path gain corresponding to the mod(i, Gel)-

th angular bin for the elevation, ceil(i/Gel)-th angular bin for the azimuth and path delay index j.
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where Ω̂ is the estimated support index set. By solving the aforementioned problem

using the sparse recovery algorithm such as orthogonal matching pursuit (OMP) [46]

and multipath matching pursuit (MMP) [47], one can obtain the azimuth and elevation

of AoA {θ, ϕ} and path delay τ . One can easily estimate the distance of propagation

path by using the light speed constant c (i.e., d = cτ ). While the CS-based scheme

is effective in estimating the angle of propagation path, it is not possible to obtain

full propagation information satisfying 6G communication requirements. For example,

if one tries to estimate the bi-directional angles (AoAs and AoDs), then the column

dimension of the sensing matrix Φ will increase sharply. In this case, the performance

of angle estimation is degrade severely2 and the URLLC latency requirement of 6G

might not be satisfied due to the computational complexity.

In the conventional localization [43], using the NLoS propagation information set

{dn, θn, ϕn}Nn=1 from N BSs, the optimal 3D position of the mobile p∗
m = [x∗, y∗, z∗]

can be obtained by solving the multivariate function:

p∗
m = argmin

pm

f(pm, {pr,n}Nn=1),

f(pm, {pr,n}Nn=1) =
N∑
n=1

ρn(db,n + dr,n − dn)2

+
N∑
n=1

σn

(
tan−1

(
yr,n − y
xr,n − x

)
− θ
)2

+

N∑
n=1

υn

(
tan−1

(
zr,n − z√

(xr,n − x)2 − (yr,n − y)2

)
− ϕ

)2

,

where {pr,n}Nn=1 is the 3D position set of the unknown reflection points on the NLoS

paths (i.e, pr,n = [xr,n, yr,n, zr,n] is the n-th reflection point corresponding to the

2When the number of unknown variables is far larger than the measurement size, the mutual coherence

of Φ will increase dramatically degrading the CS-based angle estimation quality severely.
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n-th BS), db,n is the distance between the n-th reflection point and the n-th BS, dr,n

is the distance between the n-th reflection point and the mobile, and the weighting

parameters {ρn, σn, υn}mean the accuracy of the estimated {dn, θn, ϕn}. This function

should be minimized within the constraint equations about the feasible regions of pm

and {pr,n}Nn=1. Then, p∗
m is estimated as the actual position of the mobile. While

the conventional localization technique can estimate the position of the mobile in the

NLoS scenario, the performance of this approach is not appealing when the propagation

information is insufficient (e.g., one BS connection due to short propagation distance).

4.3 Deep Learning-based 3D Localization Using Spatial In-

formation

The primary goal of D-SLN scheme is to estimate the exact 3D location of the mobile

in the NLoS-existent scenario using the DL technique. Since the NLoS propagation

path is determined by the obstacles in the environments such as buildings and trees,

D-SLN exploits the spatial information to learn the propagation mechanism of NLoS

propagation. To utilize both propagation and spatial information simultaneously, we

exploit the DNN having multiple hidden layers to approximate the mapping function

between both information and location of the mobile. To be specific, the estimated 3D

position of the mobile p̂m = [x̂, ŷ, ẑ] can be expressed by the mapping function g:

p̂m = g(r1, r2, · · · , rN , s1, · · · , sK ; δ), (4.7)

where rn = [dn, θn, ϕn], (n = 1, · · · , N) is the propagation information of the n-th

path among N multipath, and δ is the set of weight and bias in D-SLN architecture (see

Fig. 4.2). Also, sk = [xk, yk, wk, lk, hk], (k = 1, · · · ,K) is the spatial information for

K obstacles where xk and yk are the center coordinate of the k-th obstacle and wk, lk,

and hk are width, length, and height of the k-th obstacle. Since the DL-based approach

is data-driven in its nature, D-SLN should be re-trained whenever the environment
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Figure 4.2: The detailed training and inference sequence of D-SLN. In the meta learning

phase, it is pre-trained with M environments. Then, in the fine-tuning phase, it is fine-

tuned to the new environment with a few dataset.

varies. To address this issue, we apply meta learning, a training method enabling the

quick adaptation to a new environment with only a few samples.

4.3.1 D-SLN Architecture and Loss Function Design

The architecture of D-SLN is composed of a series of fully-connected (FC) layer, batch

normalization layer and activation layer. To be specific, we use FC layer to relate the

entire propagation and spatial information. Next, we employ the batch normalization to

obtain similar data distribution among different types of input (i.e., propagation and

spatial information). When the statistics among input elements is large, variation in

the weight update process will also be large, degrading the localization performance.

Moreover, we use rectified linear unit (ReLU) layer as activation layer. By using the

nonlinear function as the activation function, D-SLN can learn the nonlinearity in the

localization task induced by the NLoS propagation paths (e.g., reflected propagation

path on surface of obstacles).

As the input of the D-SLN x(0), we use a concatenated vector of propagation
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Algorithm 3 Training Process of D-SLN

Input: Propagation data {Di}M+1
i=1 , spatial information {si}M+1

i=1 , learning rates η, ζ,

and ηfine

1: randomly initialize DNN parameters δ

2: while meta learning do

3: for i← 1 to M do

4: Sample batch data ri from Di

5: Evaluate∇θLD
i

using
(
ri, si

)
, and MSE loss LDi

6: Compute adapted parameters with gradient descent:

ψDi = δ − η∇δLD
i

δ

7: Sample batch data for meta-update r′i from Di

8: end for

9: Update δ = δ − ζ∇δ
∑M

i=1 LD
i

ψDi
using

(
r′i, si

)
,

and MSE loss LDi

10: end while

11: while fine-tuning do

12: Sample batch data rM+1 from DM+1

13: Evaluate∇δLD
M+1

using
(
rM+1, sM+1

)
,

and MSE loss LDM+1

14: Compute adapted parameters with gradient descent:

δ = δ − ηfine∇δLD
M+1

δ

15: end while

information for N multipath and spatial information for K obstacles (i.e., x(0) =

[r1, · · · , rN , si, · · · , sK ]). The output vector of first FC layer z(0) is described as

z(0) = W(0)x(0) + b(0), (4.8)

where W(0) and b(0) are the weight matrix and the bias vector of the first layer,

respectively. After passing through the FC layer, we apply batch normalization layer.
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Let B =
[
z(0),1, · · · , z(0),j , · · · , z(0),b

]
be the stacked output vectors of the first FC

layer, then the output vector x̃0,d of the batch normalization layer is expressed as

z̃
(0),j
i = γ

z(0),ji − µB,i√
σ2B,i

+ β, (4.9)

where µB,i = 1
b

∑b
j=1 x

(0),j
i and σ2B,i =

1
b

∑b
j=1(x

(0),d
i − µB,i)2 are mini-batch-wise

mean and variance, respectively, γ is the scaling parameter, and β is the shifting param-

eter [48]. After the batch normalization process, the output vector ž(0) = fReLU(z̃
(0))

is generated by passing through the ReLU layer. Then, the output vector ž(0) passes

through L series of FC layer, batch normalization layer and activation layer. The output

of l-th series of layers is expressed as

ž(l) = fReLU

(
γ(l)

(
W(l)ž(l−1) + b(l) − µ√

σ2

)
+ β(l)

)
, (4.10)

where fReLU(x) = max(0, x) is the ReLU activation function, W(l) is the weight

matrix and b(l) is the bias vector of the l-th hidden FC layer, respectively. Finally, using

the output vector žL of the last hidden layer, we estimate the 3D location of the mobile

p̂m = [x̂, ŷ, ẑ]:

[x̂, ŷ, ẑ] = Wf žL + bf , (4.11)

where Wf and bf are weight matrix and bias vector of the output layer.

In order to train the proposed D-SLN, the estimated 3D location of the mobile p̂m

needs to be compared against the true location pm during the training. To do so, we

define the mean squared error (MSE)-based loss function Lδ as

Lδ = ∥p̂m − pm∥2. (4.12)

In our work, we obtain the ground-truth user location pm by collecting the samples

from the realistic ray-tracing simulator (we will say more on this in the Section IV).
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4.3.2 Meta Learning-aided D-SLN Training Strategy

As mentioned, the main goal of D-SLN is to estimate the 3D location of the mobile

using propagation information and spatial information. However, one might concern

that D-SLN model should be re-trained when the localization environment is changed

(e.g., office to hallway and classroom to auditorium) since the spatial information is

invariant in a certain environment. To handle this issue, we exploit the meta learning, a

training technique on a variety of tasks such that the DNN model can adapt to a new

task using only a few training samples. In a nutshell, meta learning is a special training

technique to obtain the initialization parameters of the DNN using which one can easily

and quickly learn the desired function with few training samples. In our framework, by

using the spatial information obtained from various environments, D-SLN can learn

the important common features of environments (e.g., the cuboid shape of the building

and the rectangular shape of the wall) during meta learning. Then, using the pre-trained

model parameters as initial parameters, D-SLN can easily and quickly learn the desired

function with a few training samples.

Overall training procedure of D-SLN consists of two stage: 1) the meta learning

phase and 2) the fine-tuning phase. In the meta learning phase, we extract the common

features from multiple datasets, say M datasets
{
D1, · · · , DM

}
, and then use them to

obtain the network initialization parameters δ. To realize the concept, the pre-trained

network parameters are updated by

ψDi,t = δt−1 − η∇δLD
i

δt−1
, (4.13)

δt = δt−1 − ζ∇δ
M∑
i=1

LDi

ψDi,t
, (4.14)

where δt is the network parameters updated at the t-th step, ψDi,t is the temporally

updated network parameters with dataset Di at the t-th step. Also, LDi
is the loss

function of D-SLN for the i-th dataset Di, and η and ζ are step sizes for the parameter

update. Overall procedure of meta learning is described in Algorithm 3.

In summary, the key steps of the meta learning are 1) to temporally update the
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Figure 4.3: An illustration of our environments corresponding to D1, D2, D3, D4,

andD5.

D-SLN parameters for each dataset in (4.13) and 2) to find out the centroid of the

temporally updated D-SLN parameters in (4.14). During the meta learning phase, D-

SLN can learn the common characteristics of various environments. After the meta

learning phase, we use the pre-trained model parameters δ as an initialization point of

D-SLN. Since all we need in the fine-tuning phase is to learn the distinct features of

DM+1, we can greatly reduce the re-training overhead for a new environment.

4.4 Simulations and Discussions

4.4.1 Simulation Setup

In our simulation, we consider 5 different outdoor environments where the size of the

environment is 140× 140 m2 (see Fig 4.3). In each environment, we deploy 5 random

obstacles with different size, location, and rotation (i.e., K = 5). For all environments,

we set the position of the BS as [0, 0, 10]. Also, we randomly distribute the mobile

around the BS. We generate 10, 000 propagation samples by using MATLAB raytracing

function for each environment. Each data sample consists of 4 multipath propagation

information (i.e., ToA and azimuth/elevation AoAs for each path).

As an architecture of D-SLN, we use fully-connected network consisting of 6 hidden

layers, each of which has 1,024 hidden units. When generating the pre-trained model

in the meta learning phase, 110, 000 iterations of parameter updates are computed. To

obtain the pre-trained D-SLN model, we use 4 datasets for meta learning strategy (i.e.,

{D}4i=1). Adam is applied as an optimizer for training with the both step size η in (4.13)
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Table 4.1: MAE comparison of the localization techniques with different types of input

propagation propagation + spatial

D-SLN 0.536 0.516

DNN without meta learning 1.198 1.232

Conventional 13.289 -

and the meta-step size ζ in (4.14) as 10−4. For the fine-tuning phase, we only use 1, 000

samples of D5. As a performance metric, we use mean absolute error (MAE) defined as

MAE = ∥p̂m − pm∥.

To show the performance of meta learning in our proposed model, we compare two

models, which are D-SLN and the model without parameter transfer respectively, with

the same dataset D5. To be more specific, while the DNN without meta learning is

trained with 10, 000 samples of D5, D-SLN is trained with only 1, 000 samples of D5.

4.4.2 Simulation Results

In Table 4.1, we test the MAE performance of the localization techniques with different

types of input. Since the propagation information is obtained from only one BS in our

simulation, the MAE performance of D-SLN and the DNN without meta learning is

much better than that of the conventional localization method. Also, D-SLN reduces

the MAE by 58.12% compared to DNN without meta learning when using an input of

propagation and spatial information.

In Fig. 4.4 (a), we evaluate the training loss of the D-SLN in the meta learning

phase according to the number of iterations. From the experiment, we observe that

the loss of D-SLN trained with spatial information is much lower than that of D-SLN

trained without spatial information. For instance, when number of iterations is 20, 000,

the MSE loss of D-SLN without spatial information is 1.61× 10−3 whereas the MSE
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Figure 4.4: Loss and MAE performance of D-SLN (a) Training MSE loss of D-SLN

according to the number of iteration (b) Validation MSE loss according to the number

of iteration.
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Figure 4.5: MAE with respect to the number of samples in D5 at test phase.

loss of D-SLN with spatial information is 9.56× 10−5. From this result, we see that the

proposed D-SLN can learn the propagation mechanism from the spatial information.

Next, we evaluate the validation loss with respect to number of iterations in D-SLN.

As shown in Fig. 4.4 (b), the validation loss of D-SLN trained with spatial information

is converged to 10−5 after 80,000 iterations, whereas the loss of D-SLN trained without

spatial information is converged to 10−3.

In Fig. 4.5, we investigate the MAE performance of D-SLN and the DNN without

meta learning with respect to the number of training samples in D5. We observe that

D-SLN outperforms the DNN without meta learning, especially when both models are

trained with a small number of samples. For example, when 500 samples are used for

training, the MAE of D-SLN is 0.8m while that of the DNN without meta learning

is 2m. Since D-SLN learns the common environmental features from {D}4i=1 during

the meta learning phase, it requires only a few samples for fine-tuning. Nonetheless,
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the DNN without meta learning has randomly initialized network parameters so that it

needs more samples to show proper localization performance.

4.5 Summary

In this chapter, we proposed a DL-based localization technique for the 6G commu-

nication systems using the spatial information of obstacles around the BS. The key

idea of the proposal is accelerating the DNN to learn the common propagation features

from the spatial information among various environments by applying meta learning

as a training technique. In doing so, D-SLN can easily and quickly adapt to a new

environment with only few training resources. From the numerical evaluation in the

6G environment, we verified that the proposed D-SLN is effective and is applicable to

new environments with fewer training samples than those required by the DNN without

meta learning. We believe that the proposed D-SLN will be the bridgehead satisfying

the craving for the fully-connected society in the 6G communication systems.
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Chapter 5

Conclusion

In this dissertation, DL-based wireless communication schemes for 6G have been

extensively studied. Specifically, we have made the following contributions.

• In Chapter 2, we introduce a channel estimation technique for the near-field

THz MIMO communication systems. Exploiting the property that the near-field

THz channel can be expressed as a few parameters in the spherical domain, viz.,

angle of departures (AoDs), angle of arrivals (AoAs), distances, and path gains,

the proposed technique, dubbed as deep sparse time-varying channel estimation

(D-STiCE), estimates the sparse channel parameters and then reconstructs the

channel using the obtained parameters. To estimate the sparse channel parameters

in the continuous domain, D-STiCE employs a deep learning (DL) technique, a

data-driven learning approach to approximate the desired function. In our context,

the proposed D-STiCE can learn the mapping function between the sequential

data (in our case, pilot measurements) and the continuous channel parameters

varying over time. D-STiCE alleviates the performance degradation caused by

the channel model mismatch and angle and path gain quantization, resulting in

an improvement of channel estimation quality. As a main engine for the task at

hand, we exploit the long short-term memory (LSTM), a model specialized for

extracting temporally correlated features from the sequential data. By extracting
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the temporal correlation of the channel parameters, we make a fast yet accurate

channel estimation with relatively small amount of pilot resources.

• In Chapter 3, we introduce a new type of data acquisition framework for DL-

aided wireless systems. The key idea of the proposed strategy, dubbed as deep

wireless data collection (D-WiDaC), is to acquire a massive number of real-like

wireless samples using a generative adversarial network (GAN). In short, GAN

is a DL model that generates samples approximating the input dataset [2]. When

GAN is trained properly, generated samples will be similar to the real samples,

meaning that there is no fundamental difference between the GAN output and

real samples. Since the GAN training still requires a large amount of training

samples, we exploit a meta learning, special training technique to quickly learn a

task using a small number of samples [3]. Since GAN pre-trained by the meta

learning can exploit the common features in various wireless environments, it

requires far smaller number of samples than that required by the vanilla (original)

GAN.

• we introduce a novel localization scheme for 6G communication systems in

the NLoS-existent scenarios. To deal with these scenarios where propagation

information is not sufficiently given, we exploit the deep learning (DL) technique,

a learning approach to approximate the nonlinear and complex functions. Key

idea of the proposed scheme, henceforth dubbed as Deep Spatial Localization

Network (D-SLN), is to learn the propagation mechanism (e.g., reflection and

penetration) from the propagation measurements and environment information.

To do so, we use a specially designed input, spatial information (e.g., position

and width/height of the obstacle), which is easily obtained from the environment.

Since the propagation path is determined by the obstacles in the environment, our

model can learn the propagation mechanism using the propagation information

and spatial information. Furthermore, we exploit a meta learning, a special
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training technique to quickly learn a task using a small number of samples. Since

D-SLN pre-trained by meta learning can extract the common features in various

environments, D-SLN requires fewer samples than the model trained without

meta learning.
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Chapter A

Proof of the Computational Complexity in Table 3.4

In this appendix, we analyze the computational complexities of CS-based channel

estimation and CNN-based channel estimation in Table I. We first analyze the com-

plexity of CS-based channel estimation. If the OMP algorithm is used to recover

the sparse vector g[k] (see (2.16)), a submatrix Φl[k] of Φ[k] having the maximum

correlation between the residual vector rj−1 is chosen, and gj [k] is estimated (i.e.,

ĝj [k] =
(
Φ[k]HΩj

Φ[k]Ωj

)−1
Φ[k]HΩj

ỹ[k]), then the residual vector is updated as

rj−1 = ỹ[k]−Φ[k]Ωj ĝ
j [k], (A.1)

where Ωj is the chosen indices until j-th iteration. Using the Cholesky decomposition,

we compute the complexities of corresponding operations as

COMP ≈ 2PMTW +
P∑
j=1

(
j

3
+MT )j2 +

P∑
j=1

2jMT (A.2)

= 2PMTW +
P 4 + 2P 3 + P 2

12
+MT · 2P

3 + 3P 2 + P

18
+ (P 2 + P )MT

(A.3)

=

(
2PW +

P 4

12
+

5

18
P 3 +

47

36
P 2 + P

)
MT. (A.4)

Since these operations are performed KL times to obtain the channels associated

with K subcarriers and L coherence blocks, the complexity of the CS-based channel
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estimation CCS is

CCS =

(
2PW +

P 4

12
+

5

18
P 3 +

47

36
P 2 + P

)
KLMT. (A.5)

We next analyze the complexity of CNN-based channel estimation [24]. In [24],

the first convolutional layer output is obtained by multiplying the C1 different C2 × C2

filters to the real-valued LS channel estimate
[
ℜ(Ĥl[k]) ℑ(Ĥl[k])

]
∈ RNR×NT×2. The

complexity of the first convolutional layer Cconv1 is

Cconv1 = 2 · (C1NRNT ) · 2C2
2 = 4C1C

2
2NRNT . (A.6)

Let C3 be the number of hidden layers in the CNN, then the complexity Cconv2 of C3

hidden layers using C1 different C2 × C2 filters can be expressed as

Cconv2 = 2 · C3 · (C1NRNT ) · (C1C
2
2 ) = 2C2

1C
2
2C3NRNT . (A.7)

Finally, the channel estimate is given by applying two convolutional filters having size

NR ×NT to the output of the C3-th hidden layer. The computational complexity of the

final layer is

Cconv3 = 2 · (2NRNT ) · (C1C
2
2 ) = 4C1C

2
2NRNT . (A.8)

From (A.6) to (A.8), the complexity Cconv of the operations in the convolutional layer

is summarized as1

Cconv = Cconv1 + Cconv2 + Cconv3 (A.9)

= (8C1C
2
2 + 2C2

1C
2
2C3)NRNT . (A.10)

These operations are performed KL times to obtain the channels associated with K

subcarriers and L coherence blocks so that the complexity of the CNN-based channel

estimation is

CCNN = (8C1C
2
2 + 2C2

1C
2
2C3)KLNRNT . (A.11)

1For simplicity, we omit the zero padding operations in complexity analysis of the CNN-based channel

estimation. Note that the complexity of zero padding is very marginal so that it has almost no impact on

the overall complexity.
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초록

5G NR의성공과더불어,우리는 6G와자율주행,드론배달,스마트시티및공

장,원격진료등의어플리케이션의등장을목도하고있다.이러한애플리케이션의

통신메커니즘은대기시간,에너지효율성,안정성,유연성및연결밀도측면에서

서비스를 고려하지 않고 데이터를 송수신하는데 전념하는 기존 통신 시스템과 매

우 다르다. 5G NR 부터, 낮은 지연 시간, 더 높은 안정성, 대규모 연결성, 더 나은

에너지효율성과같은다양한성능요구치도새로도입되었다.다가오는 6G통신시

스템에서는, 인간 중심과 기계형 서비스의 공존을 지원하기 위해 이러한 요구치가

더욱강화될것이다.현재메커니즘과기존접근방식은이러한엄격한요구사항을

지원할수없기때문에새로운유형의전송접근방식이필요하다.

우선,본논문은테라헤르츠 (THz)통신을위한채널추정기법을제안한다. THz

통신은초고속데이터전송률을지원하는 6세대통신시스템에서중요한기술로꼽

힌다. THz통신의주요어려움중하나는 THz대역에서산소/대기흡수,신체및손

손실등으로인한심각한신호감쇠이다.심각한경로손실을보상하기위해MIMO

(multiple-input-multiple-output) 안테나 어레이 기반 빔포밍이 널리 사용되어 왔다.

빔포밍 단계에서 형성된 빔은 신호 전파 경로와 정렬되어야 최대 이득을 얻을 수

있으므로채널추정은 THz MIMO시스템성공의핵심이다.본논문에서는딥러닝

기법을 활용하여 수신한 파일럿 신호와 근거리장에서 희소 채널 매개변수의 매핑

함수를학습힌다.장단기메모리 (LSTM)을심층신경망 (DNN)의중추로하여,희소

채널 매개변수의 시간에 따른 특징을 추출할 수 있으며 이를 이용하여 기존 기법

대비적은수의파일럿신호로원채널을추정할수있다.

본 논문의 두번째 파트에서는, 딥러닝 기반 무선 통신 시스템을 위한 데이터

80



수집 방법을 제안한다. 딥러닝 기반 무선 통신 시스템의 이점을 충분히 활용하기

위해서는, 많은 양의 훈련 데이터를 수집해야만 한다. 그러나, 많은 양의 데이터를

수집하는 것은 상당한 전송 오버해드를 야기하기 때문에 실제 환경의 데이터를 수

집하는것은매우어렵다.본논문에서는적대적생성네트워크 (GAN)을이용하여

실제 환경 데이터와 유사한 셈플을 생성한다. 또한, 적대적 생성 네트워크의 훈련

에 필요한 데이터 수를 줄이기 위해, 훈련 프로세스에서 메타 러닝 (meta learning)

기법을사용한다.

마지막으로,비직접파 (non-line-of-sight)가있는환경에서 6G통신을위한위치

측위기법을제안한다.기존삼각측량 (triangulation)기반위치측위기법은직접파

(line-of-sight)상황에서측정한거리에기반하기때문에,비직접파가있는경우는측

정거리가 늘어나기 때문에 위치가 정확하게 측정되지 않는다. 비직접파 상황에서

위치측위오차를줄이기위해서,각도기반위치측위기법이사용되어왔다.그러

나 6G 통신 시스템에서는 각 서비스 요구 조건을 만족하면서 각도 기반 위치 측위

기법에필요한정보들을모두얻을수없다.본논문에서는,공간정보를이용한딥

러닝 기반 위치 측위 기법을 제안한다. 공간 정보를 이용하여, 심층 신경망은 여러

환경에서 전파되는 공통적인 특징 (전파의 반사 혹은 흡수)을 학습한다. 또한, 훈

련과정에서 메타 러닝기법을 사용하여 새로운 환경에서도 빠르게 적용 할 수 있는

심층신경망을학습한다.

주요어:무선통신,딥러닝,채널추정,위치측위,무선데이터수집

학번: 2015-22780
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