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Abstract

To support extremely high data rates in 6G wireless networks, Terahertz (Thz)

communications that explore the abundant spectrum resources at the Thz band have

attracted great interest in recent years. However, due to the strong directivity and se-

vere signal attenuation of THz signals, the link quality is highly sensitive to obstacles,

especially when there is only a line-of-sight (LoS) path. To enable proactive handover

to a transmitter with an alternative LoS link, accurate blockage prediction is essential

to avoid the sudden drop in transmission quality. Unfortunately, existing methods fo-

cusing on outdoor environments often fail to predict blockages in complicated indoor

environments.

In this paper, we propose a background-aware vision-aided blockage prediction

framework that utilizes the sequences of historical RGB-depth (RGB-D) information

and the beam indices to detect and localize users and potential blockages, predict their

trajectories, and foresee the blockages in dynamic indoor scenarios. Specifically, we

first model the background with the medium filter and use a deep-learning-based object

detector to detect the users as well as potential blockages. We then predict the future

locations of the users using an LSTM-based neural network and predict the time when

the users locate behind the background. We demonstrate from numerical results that

the proposed scheme outperforms conventional schemes in terms of blockage predic-

tion and proactive handover decision-making accuracy.

Keywords: Vision-aided communications, Proactive handover, Blockage prediction,

Indoor communications

Student Number: 2021-24838
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Chapter 1

Introduction

Terahertz (THz) communications have recently received considerable attention for the

potential to support high data rates by exploiting abundant spectrum resources in THz

frequency band (0.1 ∼ 10THz) [1, 2]. The link quality of THz communications relies

heavily on the existence of the line-of-sight (LoS) link due to the strong directivity and

severe path loss of THz signals. When the LoS path between the base station (BS) and

the user equipment (UE) is blocked by obstacles (e.g., pedestrians, cars, buildings),

the signal transmission is suddenly interrupted, leading to a significant degradation in

link quality. To prevent such circumstances, proactive handover techniques that predict

the occurrence of blockage and trigger the handover operation before the blockage oc-

curs have been suggested [11]. Since the proactive handover is based on the prediction

of blockage, too many unnecessary handovers might occur if the blockage prediction

is inaccurate [10]. To avoid additional signalling and resource usage caused by un-

necessary handovers, fast and accurate blockage prediction is of great importance in

proactive handovers.

Over the years, various blockage prediction techniques for proactive handover have

been proposed [7, 8]. In [8], a machine learning-based blockage prediction technique

for mmWave systems has been proposed. Also, in [7], a deep reinforcement learning-

based blockage prediction technique for unmanned aerial vehicle (UAV) communica-
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tion systems has been proposed. In these schemes, sequential beam indices or refer-

ence signal received power (RSRP) are used as indicators to predict the occurrence of

blockage. However, since these indicators are obtained from the control signal trans-

mission and reception, the blockage prediction accuracy might degrade severely in a

low signal-to-noise ratio (SNR) regime.

Recently, vision-aided blockage prediction techniques have been proposed [4, 6].

With the rapid development of deep learning (DL) and neural processing unit (NPU)

technology, computer vision (CV) techniques have made remarkable success in object

detection, semantic segmentation, and object tracking [5]. By learning and understand-

ing the high-resolution visual information (e.g., RGB image, depth image) using DL

techniques, the vision-aided proactive handover scheme can significantly improve the

localization and blockage prediction accuracy significantly. In conventional vision-

aided blockage prediction techniques, the bounding box (the smallest box containing

the target object) of the detected object is identified using the DL-based object detector

and then embedded as the input to an RNN network to determine whether the blockage

will happen or not. A major drawback of these schemes is that since all objects, includ-

ing UEs and obstacles, should be detected, the processing latency and computational

overhead are considerable. This issue is even more serious in indoor communication

scenarios due to the complex surroundings and the vast diversity of obstacles.

An aim of this paper is to propose a novel background-aware vision-aided block-

age prediction and proactive handover technique for indoor THz communication sys-

tems. To do so, the proposed technique, henceforth referred to as background-aware

vision-aided blockage prediction (BV-BP), exploits the property that the majority of

indoor movements typically are related to human activities. Using this property, BV-

BP separately extracts the stationary background and the movable humans from the

image and then predicts the moment when the human holding the connected UE, lo-

cates behind the background. While the conventional vision-aided blockage prediction

schemes identify every object in the image including humans and other obstacles, BV-
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Figure 1.1: Proactive handover for indoor communications.

BP detects and tracks only the humans for the blockage prediction and obtains the

observation of other possible obstacles through the background modelling, thereby

achieving the processing latency reduction and the prediction accuracy improvement.

From the numerical results, we demonstrate that the proposed BV-BP scheme can

predict the blockage within 0.5 s with an accuracy of 97%. We also show that BV-BP

outperforms the conventional vision-aided scheme and the beam index-based scheme,

achieving an increase in blockage prediction accuracy of 15% and 30%, respectively.
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Chapter 2

Terahertz Indoor Communication Systems

We consider multiple-input single-output (MISO) THz indoor communication systems

where a BS equipped with a uniform planar array (UPA) of M = Mh ×Mv antennas

serves a single-antenna target UE (see Fig 2.1), which is held by a human, called target

user. We assume that there are multiple humans in the scenarios, and only the target

user is holding the UE that communicates with the BS while the other humans act as

obstacles to the communication between the BS and the target user. The BS is equipped

with a rx× ry resolution RGB-D camera to monitor the wireless communication envi-

ronment. The RGB-D camera provides sequences of RGB information R ∈ Rrx×ry×3

and depth information D ∈ Rrx×ry to the BS. In this setting, the received downlink

signal y ∈ C of the target UE is given by:

y =
√
Ptxh

Hfx+ n, (2.1)

where Ptx is the BS transmit power, h ∈ CM is the downlink channel vector, f ∈ CM

is the analog beamforming vector, x is the data symbol, and n ∼ CN (0, σ2
n) is the

complex Gaussian noise. Then the data rate R of the UE is defined as

R = log2

(
1 +

Ptx|hHf |2

σ2
n

)
. (2.2)

In this work, we use the narrowband geometric channel model where the channel
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vector h is expressed as [1]

h = δαLoSa(θLoS, ϕLoS) +
P∑
i=1

αNLoS
i a(θNLoS

i , ϕNLoS
i ), (2.3)

where δ represents the status of LoS link:

δ =


1 LoS link is available

0 LoS link is blocked
. (2.4)

We assume that there are two types of blockages: 1) blockage occurred by other hu-

mans when they move around and occupy the transmission link and 2) blockage oc-

curred by the background when the target user moves around and the objects in the

background obstruct the transmission signals.

Also, αLoS and αLoS
i are the complex path gains of the LoS path and the i-th

NLoS path, respectively, (θLoS, ϕLoS) and (θNLoS
i , ϕNLoS

i ) are the azimuth and eleva-

tion angles of departures of the LoS path and the i-th NLoS path, respectively, and

a(θ, ϕ) = ah(θ, ϕ) ⊗ av(ϕ) is the UPA steering vector of BS where ah(θ, ϕ) =

1√
Mh

[
1 · · · e−j

2πdh
λ

(Mh−1) sin θ sinϕ
]T and av(ϕ) = 1√

Mv

[
1 · · · e−j 2πdv

λ
(Mv−1) cosϕ

]T

are the horizontal and vertical array steering vectors and dh and dv are the horizon-

tal and vertical antenna spacings, respectively.

The beamforming vector f is chosen from the DFT-based beam codebook F =

{fi⊗ fj | i = 1, · · · ,MhOh, j = 1, · · · ,MvOv} with oversampling ratios Oh and Ov:

f = f̂i,ĵ = arg max
fi,j∈F

∣∣(fi ⊗ fj)
Hh

∣∣2, (2.5)

where

δ =


fi =

1√
Mh

[
1 e

j 2π
MhOh

i · · · ej
2π

MhOh
(Mh−1)i]T

fj =
1√
Mv

[
1 ej

2π
MvOv · · · ej

2π
MvOv

(Mv−1)j]T
. (2.6)

Note that due to the strong directivity and severe path loss of the THz signal, the

power gap between the LoS and NLoS path signals is significant (the power of LoS

path signal is almost 100 times stronger than that of NLoS path signals). Thus, when

5



Figure 2.1: Proactive handover for indoor communications.

the LoS link is stable (i.e., δ = 1), the beamforming vector f that is aligned with the

LoS channel component αLoSa(θLoS, ϕLoS) will be chosen from the beam codebook,

thereby achieving the maximum beamforming gain. Also, using the chosen indices

(̂i, ĵ) of the beam codebook, the BS can acquire rough estimates of the azimuth and

elevation angles:

(θ̂, ϕ̂) =
(
arccos

( λ

Ohdh sin ϕ̂
î
)
, arccos

( λ

Ovdv
ĵ
))

. (2.7)

When the LoS link is blocked by the obstacles, however, f that is aligned with the

NLoS channel component αLoS
i a(θNLoS

i , ϕNLoS
i ) will be chosen from the beam code-

book. Since the power of the NLoS channel component is much smaller than that of

the LoS channel component, the degradation of beamforming gain would be signifi-

cant in this case. To avoid such circumstances, it is of great importance to predict the

blockage and then handover the UE to another BS that can guarantee a reliable LoS

link.
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Chapter 3

Vision-aided Blockage Prediction and Proactive Han-

dover

Main goal of the proposed BV-BP scheme is to predict k sequential blockage statuses

{δ[t]}kt=1 in complicated indoor scenarios using the r RGB and depth information

{R[t],D[t]}0t=1−r and beam codeword index information {θ̂[t], ϕ̂[t]}0t=1−r. As men-

tioned, the conventional vision-aided blockage prediction schemes detect every object

including humans and obstacles so the processing latency and computational complex-

ity are considerable. To address this issue, BV-BP separately extracts the stationary

background and the movable humans and then models the stationary background and

tracks the trajectories of the movable humans to obtain a complete observation of the

environment. After that, the LoS status at each time slot is obtained by predicting if

the target user locates behind its background. The blockage prediction task can be

expressed as

{δ[t]}kt=1 = f({R[t],D[t], θ̂[t], ϕ̂[t]}0t=1−r;Λ), (3.1)

where f is the mapping function and Λ is the network parameters. Overall process of

BV-BP is as follows:

• Background extraction: extracting the background from the depth images us-

ing the medium filtering technique

7



Figure 3.1: Illustration of vision-aided blockage prediction and proactive handover

system.

• Target user identification: detecting the 3D bounding boxes of all humans us-

ing the DL-based object detector and identifying the target user by finding out

the bounding box closest to the beam direction in each time slot

• Trajectory tracking: tracking the trajectories of all users using long-short term

memory (LSTM) network

• Blockage prediction and handover decision-making: predicting the moment

of blockage occurrence by comparing the depths of estimated human trajectories

and the extracted background

3.1 Background Extraction

In vision-aided blockage prediction, precise identification of the target user and the

surrounding environment is crucial to obtain a complete observation for further estima-

tion of blockage. In complex indoor scenarios, however, due to a variety of randomly-

arranged furniture, the pre-defined classification labels of object detectors cannot de-

scribe the overall environment with an acceptable time and computational complexity.
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To overcome this, we exploit a temporal medium filter med to calculate the median

value over a temporal window for each pixel (x, y) in the depth image, through which

the transient objects or changes in the scenario can be filtered out. Then the entire

background can be expressed as

D̂(x, y) = med{D[t](x, y)}0t=1−n, (3.2)

where n is the size of the temporal window. 1 In doing so, we can capture stable back-

ground information while mitigating the noise effect and transient variations caused

by moving objects.

By assuming a Gaussian distribution N (µS(x, y), σ
2
S(x, y)) for D[t](x, y), we

compute the probability that D[t](x, y) does not follow the same distribution as the

previous estimation with the following formula:

P (D[t](x, y)) = 1− Φ

(
|D[t](x, y)− µS(x, y)|

σS(x, y)

)
(3.3)

where Φ(·) is the cumulative distribution function of the standard normal distribution.

If the probability of D[t](x, y) not following the background distribution is higher than

a predefined threshold, denoted as pth, we update the background model with the past

n time slot depth images. Empirically, we choose pth = 0.0013, which corresponds to

a probability of 99.87% of the pixel not following the background distribution, which

is equivalent to:

|D[t](x, y)− µS(x, y)| > 3σS(x, y). (3.4)

3.2 Target User Identification

Since the variations of the indoor environment are mainly caused by human activi-

ties including human blockage and device displacement, accurate blockage prediction
1Note that the temporal window size n is selected based on the object duration. For example, a larger

n is required if the moving objects stay in the scenario for a long duration to capture their complete

trajectory.
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highly relies on the prediction of the human’s locations in the upcoming time slots. To

do so, we first detect and localize the bounding boxes of all humans using a DL-based

object detector and then match the bounding box of individual humans in each time slot

through similarity matching. After that, by combining the bounding box information

and the quantized transmission angles, we identify the target user while considering

other humans as blockages.

3.2.1 Bounding Box Detection

To identify the target user, we use the DL-based object detector to analyze the RGB

images and determine the bounding box for each human. To be specific, the object

detector generates a set of anchor boxes with different sizes, using which it predicts

the confidence scores (the likelihood of the pixel being the centre of the object) and

the bounding box coordinates. Based on confidence scores, the object detector selects

the appropriate anchor boxes to obtain 2D coordinates of the detected objects.

Let g be the object detector, the bounding box detection process can be expressed

as

{bi[t]}Ni=1 = g(R[t]), (3.5)

where g is the mapping function, N is the number of detected humans and bi[t] =

(xi[t], yi[t], wi[t], li[t]) is the bounding box vector with (xi[t], yi[t]) and (wi[t], li[t])

being the top-left corner and width-height pair of the i-th detected bounding box in

the t-th time slot, respectively. By combining the bounding boxes and the depth infor-

mation, we then form a 3D bounding box vector bd
i [t] = (xi[t], yi[t], wi[t], li[t], di[t])

representing the 3D location and size of each detected human.

3.2.2 Bounding Box Pairing

After the bounding box detection, we group the detected bounding boxes of the same

human in sequential images to estimate the trajectory using the cosine similarity.

10



Specifically, we extract the feature vector vi from the last layer of the object detec-

tor to denote the visual feature of each detected human. We then calculate the cosine

similarity li,j [t] between the j-th human at time slot t and the i-th human at time slot

t− 1:

li,j [t] =
vj [t]

Tvi[t]

∥vj [t− 1]∥2∥vi[t− 1]∥2
. (3.6)

Next, we formulate the bounding box pairing task as an optimization problem where

we match the j-th detected human at time slot t with the i-th detected human at time

slot t−1 using a match function i = γ[t](j) where γ[t] = argmax
∑N

i=1 li,γ[t](i) such

that the cosine similarity is maximized. To find the optimal matching function γ[t] for

each time slot t, we use the Hungarian algorithm that iteratively adjusts task-resource

assignments in a weighted bipartite graph to maximize the summed cosine similarity,

li,γ[t].

3.2.3 User Identification

After detecting each human, we need to identify the target user who holds the UE

connected to the corresponding BS from the detected human. To do so, we first con-

vert the quantized transmission angles (θ̂, ϕ̂) to target two-dimensional coordinates in

RGB images. We utilize the interval [θmin, θmax] to denote the field of view (FOV) that

determines the angular range within which the visual information can be captured by

the camera, and thus the target coordinate in the RGB image is

(ûx, ûy)[t] = (rx
cot ϕ̂[t]− cotϕmin

cotϕmax − cotϕmin
, ry

tan θ̂[t]− tan θmin

cot θmax − tan θmin
). (3.7)

By selecting the detected human with the least average distance with the target coor-

dinates over r observed time slots, we find out the target user who holds the connected

UE:

îtarget = argmin
i

r∑
t=0

∥((ûx[t], ûy[t])− (xi[t] +
wi[t]

2
, yi[t] +

li[t]

2
)∥2. (3.8)
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Figure 3.2: Structure of LSTM-based trajectory tracking network.

3.3 LSTM-based Trajectory Tracking

We learn the nonlinear mapping between the past 3D box vectors (bd[t−r+1], · · · ,bd[t])

and the subsequent k future 3D box vectors (bd[t + 1], · · · ,bd[t + k]) through an

LSTM-based network, l:

{b̂d[t+ 1], · · · , b̂d[t+ k]} = l(bd[t− r + 1], · · · ,bd[t]|Θ), (3.9)

where Θ is the set of network parameters. The overall block diagram network is de-

picted in Fig 3.2.

In the proposed LSTM network, each layer consists of a sequence of LSTM cells,

and each LSTM cell includes a cell state, a hidden state, and three gates: the input

gate il ∈ RNl×1, forget gate f l ∈ RNl×1, and output gate ol ∈ RNl×1, where Nl is

the number of hidden units in l-th LSTM layer. Specifically, the cell state c ∈ RNl×1

stores information from previous inputs and the gates control the information flow by

determining which information to incorporate, discard, and obtain from the cell state.

Then the cell state at l-th layer at time slot t is

clt = f lt ⊙ clt−1 + ilt ⊙ tanh(Wchl−1hl−1
t +Wchlhl

t−1 + bl
c), (3.10)
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where Wchl−1 ∈ RNl×Nl−1 and Wchl ∈ RNl×Nl are weight matrices and bl
c ∈ RNl×1

is the bias.

The hidden state h ∈ RNl×1 is the primary output of each cell that stores the

summarised information and acts as the input to the subsequent LSTM layer, given by

hl
t = olt tanh(c

l
t). (3.11)

By exploiting a L = 2-layer LSTM network, we capture the complex spatio-temporal

patterns and higher-level abstractions in the input sequence as hL
t ∈ RNl×1.

Followed by the LSTM network, we use a fully connected (FC) layer to convert

the extracted features to the future 3D box vectors z[t] = (bd[t+1], · · · ,bd[t+ k]) ∈

Rk|b|×N2 , given by

z[t] = fReLU(WhL[t] + b), (3.12)

where W ∈ Rk|b|×N2 is the weight matrix, b ∈ Rk|b|×1 is the bias, and fReLU(x) =

max(0, x) is the rectified linear unit (ReLU) activation layer [?]. Next, we add the

dropout layers that randomly disable a fraction of the neurons during training to im-

prove the generalization ability and prevent over-fitting. To estimate the future loca-

tions and sizes during k time slots, we apply the MSE-based loss function J during

the training process:

JMSE =
1

N

N∑
n=1

∥zi[t]− ẑi[t]∥2F , (3.13)

where N is the batch size and ẑ[t] is the ground truth vector.

3.4 Blockage Prediction and Proactive Handover

In this subsection, we predict the blockage status of the target user at the following k

time slots using the obtained trajectory of each human and the background model with

pixel-wise depth information. To be specific, we first reconstruct the extracted back-

ground with respect to the target user: D̂u[t](xi, yi) = min(D̂(xi, yi), d̂i[t]) where

13



i ∈ {1, · · · , u− 1, u+ 1, · · · , N} and (xi, yi) ∈ {(x, y)|x̂i ≤ x ≤ x̂i + ŵi, ŷi ≤ y ≤

ŷi+ l̂i}. We then estimate whether the target user moves behind the background or not

to predict the LoS status at time slot t:

δ̂[t] =

 0, d̂u[t] < D̂u[t](xu, yu)

1, otherwise
. (3.14)

After that, we initiate the handover process based on the predicted blockage status

in k following time slots. Specifically, we choose the maximal acceptable blockage

period tac enduring the performance degradation for reduced power consumption if

the predicted continuous blockage time tbl < tac. We initiate the handover if τ =
⌊
tac
∆

⌋
continuous time slots is predicted to be blocked where ∆ is the prediction interval. In

practice, tac and τ can be properly determined based on the application scenarios and

the camera characteristics.

Finally, by predicting the occurrence and duration of the blockage on the trans-

mission link, we initiate the handover process. Therefore, we can effectively avoid the

sudden drop in throughput, achieving seamless and reliable wireless transmission in

complex indoor scenarios.
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Chapter 4

Numerical Evaluations

4.1 Communication Scenario and Dataset Generation

We consider a single-user indoor communication environment built using a game en-

gine that depicts a typical indoor environment with various elements (i.e., humans,

tables, and computers). We use the human folding phone to represent a UE, and there

are 3 humans included in the scenario. To imitate the walking trajectory of humans,

we randomly set reachable destinations and speeds, and add extra noise to the motion

trajectory at each time slot. The dimensions of the scenario are 20m in width and 30m

in length, with a 720× 480 resolution RGB-D camera capturing images from a bird’s-

eye view with different periods ranging from 0.25 s to 0.02 s. Furthermore, based on

the location of the BS and the target UE that is connected to the BS, we calculated the

transmission angles and correspondingly build a virtual transmission channel to obtain

the optimal beam indices, i and j, as shown in (5). We generated a total of 8750 RGB-

D images combined with labelled LoS status, the locations and sizes of humans, and

the optimal beam indices to form the dataset for training and evaluating the blockage

prediction and proactive handover system.

To evaluate the blockage prediction performance of the proposed BV-BP scheme,

we compared it with 3 benchmark schemes in the generated dataset: 1) Beam index-

15



Figure 4.1: Generated indoor communication scenarios.

based scheme [?] that utilizes an LSTM network to estimate the historical beam index

without vision information; 2) Object detector-based scheme [?] that detects and tracks

every object without background extraction; 3) Kalman filter-based scheme that em-

ploys Kalman filter for human trajectory tracking.

4.2 Simulation Results

In Fig. 4, we compare the prediction accuracy of the proposed BV-BP scheme over the

benchmark schemes with a prediction time slot of 0.1s. We observe that the proposed

BV-BP scheme generally outperforms other proactive handover schemes, which is be-

cause it obtains more accurate and complete observation of the environment through

background extraction. For example, when predicting LoS status in 0.5s, the BV-BP

scheme demonstrates superior performance compared to the beam-index-based and

object-detector-based schemes, with blockage prediction accuracy improvements of

over 10% and 25% respectively. Furthermore, compared to BV-BP with the Kalman

filter, the proposed LSTM network better tracks humans and achieves improved pre-

diction accuracy, especially for long-term prediction. This is because the Kalman filter

is better suited for capturing the linear trajectory and fails to capture the irregular mo-

16
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Figure 4.2: Blockage prediction accuracy v.s. prediction interval

tion manners of humans.

In Fig. 5, we plot the blockage prediction accuracy as a function of the prediction

interval when the time slot t = 0.5 s. We see that the prediction accuracy decreases

when the time instance increases because the prediction time horizon becomes longer

and there is a higher degree of uncertainty and variability involved. In contrast, the pre-

diction accuracy improves with shorter prediction intervals as the time span is shorter,

thereby capturing the immediate changes and dynamics in the object’s movement more

accurately. We also investigate the combined influence of these factors on prediction

accuracy at a fixed future time. We see that for a fixed prediction time, the accuracy is

improved when the prediction interval is increased. This is because a shorter time span

limits the network’s ability for capturing longer-term dynamics.
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Chapter 5

Conclusion

In this paper, we proposed a novel BV-BP scheme that utilizes the sequential RGB-D

images and the optimal beam indexes to predict the blockage on the LoS transmission

link and initiate handover in complicated indoor scenarios proactively. To do so, the

proposed BV-BP scheme separately extracts the stationary background and the mov-

able humans from the image and then predicts the time slots when the target user who

holds the UE moves behind the constructed background. From the simulation results,

we demonstrated that the proposed BV-BP scheme significantly improves the block-

age prediction accuracy for indoor scenarios and reduces the channel efficiency drop

caused by the blockage through proactive handover.
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초록

6G 무선 네트워크에서 매우 높은 데이터 전송률을 지원하기 위해 mmWave 및

테라헤르츠 (THz) 밴드와 같은 고주파 대역을 활용한 통신은 최근 큰 관심을 받고

있습니다.그러나고주파신호 (예: THz신호)의강한직접성과신호감쇠로인해링

크 품질은 장애물에 매우 민감하게 반응하며, 특히 시야 경로 (LoS)만 있는 경우에

그영향을크게받습니다.대체 LoS링크를가진송신기로선제적인핸드오버를가

능하게하기위해서는정확한차단예측이필수적으로요구되며,이는전송품질의

갑작스러운하락을피하기위한것입니다.유감스럽게도,기존의야외환경에초점

을맞춘기법들은복잡한실내환경에서의차단예측에실패하는경우가많습니다.

본논문에서는역사적인 RGB-깊이 (RGB-D)정보와빔인덱스의순열을활용하

여 사용자와 잠재적인 차단물을 감지하고 위치를 추적하며, 동적인 실내 시나리오

에서의차단을예측하는시각지원형차단예측프레임워크를제안합니다.구체적으

로,우리는먼저중간필터로배경을모델링하고,딥러닝기반의객체탐지기를사용

하여 사용자 및 잠재적인 차단물을 감지합니다. 그런 다음 LSTM 기반의 신경망을

사용하여사용자의미래위치를예측합니다.숫자적인결과로써,우리가제안한방

법이차단예측및선제적핸드오버결정정확도측면에서기존방법보다우수함을

보여줍니다.
주요어:적극적핸드오버,실내통신,비전지원통신

학번: 2021-24838
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