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Abstract 
 

 With the increasing need of autonomous robots for 

complicated environment situation such as underwater application, 

more robust algorithm is needed. In simultaneous localization and 

mapping algorithm, one of the core parts is the back end. The noisy 

measurement and robot trajectory are process to correct the 

drifting error using loop closure measurement (recognition of 

previously visited place). The process of optimizing the robot poses 

with respect to the sensor measurements is called pose graph 

optimization (PGO). Solving a PGO problem is equivalent to solve a 

maximum likelihood estimation problem where the objective 

function is the error between the measurement and the poses. The 

classical framework is to use a least-square formulation. However, 

this formulation has several drawbacks: The sensitivity to poses 

initialization first can lead to a local minima solution as it is a 

nonconvex problem. Then the presence of wrong measurement with 

large error, also called outliers, can lead to arbitrary wrong solution. 

In this research, we aim at studying a method for PGO which 

leverages the problem of initialization and is robust to outliers’ 

presence. The initialization sensitivity problem comes from the 

nonconvexity of the minimization problem as it introduces multiple 

local minima. The proposed solution is to relax the problem into a 

convex one with a single global minimum. The solution of the 

relaxed problem can be reprojected on the initial nonconvex 

problem feasible set. Additionally, using this method we have a 

contract on the certifiability of our solution, i.e we can ensure that 

the solution is the global minima, or we detect the failure. For the 

sensitivity to outliers, it mainly comes from the fact that the 
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formulation is quadratic in the error terms so if one measurement 

contains a wrong large error it will dominate the objective function. 

The proposed approach here is the use of M-estimator. A M-

estimator is adding a loss function around the error term to mitigate 

its impact if it is too large. This thesis aims at comparing different 

loss function that can be used on the chosen convex relaxation 

approach. Additionally, we suppose that only edge which are loop 

closure can be outliers. After deriving the formulation 

corresponding to our choice, we test on 3 synthetic datasets the 

different loss function and compare them. Our results show that the 

convex loss function, i.e L1, L2, identity tested here do well for 

highly connected pose graph but failed to stay robust for low 

connectivity pose graph.   
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1 Introduction 
 

1.1 Background 
 

Nowadays, we have seen a rapid and steady improvement in 

robotics techniques, and noticeably for the autonomous robot field. 

Autonomous robots are the ones operating without human control. 

For instance, when a robot is given the task to go to a precise 

position, in the past, we had either to detail its trajectory 

beforehand or to use a remotely operated vehicle (ROV). For 

autonomous robot, we only need to fix the final position. The robot 

will decide by himself how to attain the goal. Researchers first 

developed autonomous technologies for small robots in indoor 

environments. Yet the recent algorithm and sensor improvements 

made it possible to apply autonomous robots for outdoor 

applications such as self-driving cars. And recently, more projects 

using marine robots are taking place and pinpointing the possibility 

of using similar technologies and algorithms for naval robotics as 

shown in Zereik et al., 2018.  

 

There is a wide range of possible uses for autonomous robots 

in marine robotics such as for military operations, scientific and 

environmental research, transport of people or good or mining and 

oil industry. The marine robots are usually separated in two 

categories:  unmanned surface vehicles and unmanned underwater 

vehicles. The former type is design to navigate at the surface of the 

sea. One application is for merchandise transport, and more 

specifically for self-docking. The latter type is aiming for 

underwater operation. It can be for deep sea observation or ship 
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hull inspection as illustrate in figure 1-1. More applications 

examples can be found in Yuh et al. (2011). 

 

 

Figure 1-1 Active SLAM framework, demonstrated for ship 

hull inspection (Chaves et al., 2016) 

 

In all type of applications for autonomous navigation, the 

mainstream strategy which give the best result so far is 

simultaneous localization and mapping (SLAM). In this algorithm, 

the robot is computing its position and creating the map of its 

environment at the same time. This bring an additional complexity 

as the localization and mapping problem are intimately link. SLAM 

was usually called a chicken or the egg problem, because we need 

the map to compute our position and to build a map, we need to 

know our position. Nowadays different type of SLAM algorithms 

exists in function of the sensor data available on the robot and the 

real-life application. Still, they all tend to follow the same 

architecture show in figure 1-2. 

 

The input data for SLAM depends on the robot’s sensor at 

disposition, it can be images from a camera, point cloud from a lidar 

or spatial position from a GPS for instance. The output is generally 

the robot position and the map of the environment, but how we 
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represent the robot position, and the map depends on our need. The 

map can be a full 3D map representation or just the localization of 

interesting object in the space. The robot localization information is 

usually stored in a pose graph, the nodes of the graph are the 

estimated positions, and each edge of the graph contains a sensor 

measurement between these 2 positions.    

 

 

Figure 1-2 SLAM overall architecture   

 

As for the main core of the algorithm, it can be separated into 2 

interconnected parts: front end and back end. The front-end is a 

quick real-time process which process the raw sensor input data to 

compute a first approximate position of the robot, it also uses this 

processed data to initialize and update the pose graph and the map 

with noisy information. Sometimes the robot can recognize a place it 

already visits when comparing sensor data and the created map, 

when this happens, we create an extra edge in the pose graph 

linking the two corresponding poses. This type of edge is called 

loop closure edge as they form a loop in the pose graph. After the 

loop closure detection, we call the back-end part. Usually, it is a 
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slower process than the front-end and cannot be perform real-

time. Its main goal is to reduce the error in the estimated poses and 

map by the front-end due to the noise in the sensor. It first 

performs a pose graph optimization (PGO) to reduce the overall 

error in robot poses and then update the pose graph when finished. 

Finally, it also corrects the map using this new pose and the data 

available. In this approach the front-end is solving the localization 

problem using sensor data and the past information corrected by the 

back end. The back end is doing the mapping jobs based on the 

approximated positions compute by the front-end. They run at the 

same time on different thread, and so they can solve a SLAM 

problem.  

 

1.2 Objective and method 
 

One crucial step in the whole SLAM process is the pose graph 

optimization during the back end and we will focus on this part. As 

mentioned before, the noisy full trajectory is corrected using 

previous poses, new poses, and loop closure information. Pose 

graph optimization suffers from several short-coming in classical 

approach: timescale, initialization sensibility and outlier sensibility. 

 

In more details, the first important point to look at in PGO is the 

large size of the data to optimize and not all method for solving it 

scale well i.e., some methods are too slow to use in SLAM and can 

only be used for offline mapping. Another point is that the estimated 

poses are computed from all the measurements (edges) using a 

Maximum Likelihood (ML) formulation. That is solving a non-linear 

least squares minimization problem. Classical solvers such as g2o 

from Kümmerle et al. (2011) are based on gradient descend 
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approach which is sensitive to initialization as the problem contains 

multiple local minima (non-convex formulation). The scale and time 

problem will not be study in these first approach. For the 

initialization sensibility problem, we choose to focus on method 

using convex relaxation of the MLE formulation to solve PGO such 

as in Carlone et al. (2018). This method leverages the problem of 

multiple local minima.   

 

The last point is the sensitivity to outliers, we want to improve 

the robustness of the pose graph estimation algorithm against 

outlier. In the pose graph representation of the robot’s trajectory, 

each node is an estimated pose, and each edge is a measurement 

between two poses. Using this information, PGO try to minimize the 

error on edge by correcting the robot poses. But in this approach, if 

one edge measurement is corrupted by a larger noise or simply is 

an edge that does not describe the reality of our robot position, then 

the optimization process will converge to a wrong trajectory. We 

call this type of edge outliers, and one can severally impact the 

quality of the result trajectory. The figure 1-3 illustrates a failure 

of PGO because of wrong loop closure detection.    
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Figure 1-3 Example of failure due to loop closure outlier 

In SLAM, the front-end will generate new pose and 

measurement for the pose graph. When using images as input data it 

is more likely that some outliers will appear over time, especially 

when trying to recognize previously visited place (loop closure 

edge generation). To reduce the impact of these outliers on the 

PGO, we take the mitigation approach which means we want to keep 

using the information of this edge, but we reduce the importance 

given to it as it seems suspicious to have large error in the pose 

graph. One way to achieve this that we pick is to add a loss function 

to the error term in the MLE formulation, which a method called M-

estimators (Bosse et al., 2016). 

 

We want to study the impact of different loss functions apply 

to the loop closure edges to reduce the outlier impact in pose graph 

optimization solved with a convex relaxation approach in 3D. For 

this we propose a 2-stage approach where we solve first only the 

rotation problem by relaxing the problem, then round the solution 

and finally solve the translation problem using the rounded rotation 



 

 ７ 

matrix. The flowchart of our algorithm is show in image 1-4. 

 

  

Figure 1-4 Input, output, and flowchart of the proposed PGO 
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1.3 Contribution  
 

Our thesis brings new items and more details study to the 

research about robust pose graph optimization: 

 

1) Derivation of the convex relaxation for the MLE general 

formulation with loss function in 3D. 

 

2) Study and comparison of different loss functions use only on 

the loop closure edge.  
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1.4 Summary  
 

In Chapter 1, we introduce the topic of autonomous robotics 

and the drawbacks of pose graph optimization when use in SLAM 

algorithm. We also explain how we intend to contribute to the 

robust pose graph optimization literature. In Chapter 2, we will 

define the key concepts necessary for the understanding of the 

thesis and precisely detail the theoretical background needed. In 

Chapter 3, different PGO algorithms link to our approach are 

presented and compared with our approach. The chapter 4 and 5 

explains in more details the proposed PGO algorithm with the 

different choice made in its formulation, such as the 2-steps 

approach, the convex relaxation, and the loss function. In Chapter 6, 

the different loss functions are explained and studied. Starting from 

chapter 7, we will focus on the testing with first the description of 

the datasets used and the different parameters for testing. In 

chapter 8, the simulation results will be show and interpreted. In 

last, we will conclude and highlight the possible future works for 

this thesis.    
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2 Key Concepts and Theoretical background 
 

To understand completely this thesis, we need to explain in 

more details several concepts and their theoretical parts. In the 

introduction, we write that the trajectory of the robot is represent 

by a pose graph which is optimized to correct the error present in 

the measurement. In the part (2.1), we will detail the different 

representation possible for the positions and measurements and 

how to mathematically represent the pose graph optimization 

problem. Moreover, since we want to study robust pose graph 

optimization, the part (2.2) is given a review of how to handle 

outliers. In the last part (2.3), we explain the theory of convex 

optimization and how to use it even when the problem is not convex. 

 

2.1 Pose graph optimization 
 

 The trajectory of a robot is defined as the path that it takes 

through space as a function of time. An equivalent definition can be 

all the spatial positions of the robot at the different time instants. 

And so, following this idea, we intuitively represent the trajectory 

as a pose graph. Each node is a position 𝑥𝑖 at a certain instant 𝑡𝑖 of 

the robot. Between each computed position we have a sensor 

measurement 𝑥𝑖𝑗  which is represented by an edge containing the 

transformation between the two positions (𝑥𝑖  to 𝑥𝑗 ). The edges 

between consecutive poses model odometry measurements and are 

from sensor such as IMU or wheel encoders. The edges between 

nonconsecutive nodes are for loop closure measurements as they 

permit to create loop in the graph model and are necessary against 

the drift of odometry measurement. To detect them, images of the 

environment are mainly used with the map information to interpret 
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if we already visit the position and if we can create an edge. Grisetti 

et al. (2010) gives a deeper explanation of Graph-Based SLAM.    

  

 

Figure 2-1 Pose graph representation of robot trajectory (Grisetti 

et al., 2010) 

 Using the graph representation as illustrated in figure 2.1, 

we can used general graph optimization techniques to find the “best” 

positions/nodes given all the measurement/edges. This approach to 

determine the trajectory of our robot highlights the spatial structure 

of the problem and separates the work in 2 parts: first builds the 

graph from the raw sensors data (front-end) and second optimizes 

the node position to fit the overall measurements (back-end). The 

optimization part is not related to the sensors measurement but to 

the pose graph model chosen, which means the result will depend 

on the robot pose model and the sensor measurement model define 

when creating the graph.   
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2.1.1 Robot’s pose models  
 

The pose of a robot (rigid body assumption) is composed of 

2 elements: the position and the orientation. In a classical robotics 

setup as explained in Gao et al. (2021), we define a fixed world 

coordinate system as a basic for the map and a moving coordinate 

system which represents the robot. The position and orientation of 

the robot are described as the coordinate transform from the world 

coordinate to the robot coordinate system as illustrated in Figure 

2-2. So, the robot position will be seen as a translation and the 

robot orientation as a rotation. As we consider a rigid body motion, 

we can use Euclidean transform to represents the motion. It is 

composed as we said of rotation and translation. The translation is 

simply a dimension 3 vector 𝒕𝑊𝐶 which is the vector from the world 

system’s origin pointing to the robot system origin express in the 

world coordinate system. 

 

 

Figure 2-2 Coordinate transform (Xiang Gao et al., 2021) 
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For the rotation, it exists different way of expressing it 

mathematically. The most well-known is the rotation matrix 

representation. They are orthogonal matrices with determinant 1 

and form the special orthogonal group (SO). For the 3D case, all the 

rotation of the three-dimensional space are the set SO(3) defined 

as: 

 𝑆𝑂(3) = {𝑹 ∈ ℝ3×3|𝑹𝑹𝑇 = 𝑰, 𝑑𝑒𝑡(𝑹) = 𝟏} (2-1) 

 

So, the rotation from the robot coordinate system to the 

world coordinate system can be represented by the 3x3 matrix 𝑹𝑊𝐶. 

Using this matrix representation, if we have the vector 𝒂𝐶 measure 

in the robot coordinate system, then its coordinate 𝒂𝑊 in the world 

coordinate system can be compute using the formula:  

 

 𝒂𝑊 = 𝑹𝑊𝐶𝒂𝐶 + 𝒕𝑊𝐶 (2-2) 

 

This representation used 9 quantities to describes 3 degrees 

of freedom. So, an alternative method is to use a single 3-

dimensional rotation vector which represent 3 Euler angles of 

rotation (the actual rotation is decomposed into 3 consecutives 

rotation around predefined Euler axis). This is a minimal 

representation for the rotation, but it suffers from the singularity 

problem and so cannot be used for expressing pose directly. The 

last possible representation is a 4-dimensional vector called 

quaternion, it a compact and not singular form but non intuitive. 

They are extended complex numbers with a real part and three 

imaginary parts. We will use rotation matrix for the sake of 

simplicity in our research. 
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In our pose graph, each pose to estimate is noted 𝑻𝑖 ≜

[𝑹𝑖   𝒕𝑖 ] which comprises a translation vector 𝒕𝑖 ∈ ℝ
3 and a rotation 

matrix 𝑹𝑖 ∈ 𝑆𝑂(3). Additionally, they can be represented together in 

a matrix form using the special Euclidean group, define for the 3D 

case as: 

 𝑆𝐸(3) = {𝑻 = [
𝑹 𝒕
𝑶𝑇 1

] ∈ ℝ4×4| 𝑹 ∈ 𝑆𝑂(3), 𝒕 ∈ ℝ3} (2-3) 

 

 

2.1.2 Sensor measurements models  
 

Each edge in the pose graph contains information about a 

measurement from either processed sensors or computed loop 

closure. Since the pose is a rotation matrix and a translation vector, 

the measurement is also define using a rotation matrix and a 

translation vector, but they define a motion between 2 coordinates 

system not a coordinate system. In Euclidean geometry, if we have 

the pose 𝑻𝑖 and the pose 𝑻𝑗, the transform between the two of them 

is 𝑻𝑖𝑗 ≜ [𝑹𝑖𝑗   𝒕𝑖𝑗] and follows the formulae 𝒕𝑖𝑗 = 𝑹𝒊
𝑻(𝒕𝒋 − 𝒕𝒊)  and  𝑹𝑖𝑗 =

𝑹𝒊
𝑻𝑹𝒋. 

 

If the measurement were perfect, we could use this model, 

but the reality is that the measurements are noisy. So, we need to 

add an additional term to the measurement model, a noise term 

[𝑹𝑖𝑗
𝝐    𝒕𝑖𝑗

𝜖 ]. The model for the noisy measurement 𝑻𝑖𝑗̅̅ ̅̅ ≜ [ 𝑹𝑖𝑗̅̅ ̅̅    𝒕𝑖𝑗̅̅ ̅ ] is 

then: 

 
𝒕𝒊𝒋̅̅ ̅ = 𝑹𝒊

𝑻(𝒕𝒋 − 𝒕𝒊) + 𝒕𝒊𝒋
𝝐 , 𝑹𝒊𝒋̅̅ ̅̅ = 𝑹𝒊

𝑻𝑹𝒋𝑹𝒊𝒋
𝝐  (2-4) 

 

The noise is supposed to follow a probability distribution. The 

choice of the probability distribution type will strongly impact the 
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PGO results because it models how much of the measurement 

information can be wrong. There are several distributions that are 

commonly used for PGO formulation derivation (Carlone et al. 

(2018); Gómez, E. et al. (1998); Gao et al. (2021)), we will list 

them in the table 2-1 with their density function and parameters.  
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Table 2-1 Measurement noise distribution model  

Distribution Probability density function Variable Parameters 

Translation   𝒕𝒊𝒋
𝝐 ~ 

Multivariate 

Gaussian 

or Normal 

𝒩(𝒙;  𝜇, Σ) =
1

√(2𝜋)𝑑|Σ|)  
∗ exp(−

1

2
(𝒙 − 𝝁)𝑇𝛴−1(𝒙 − 𝝁)) 𝒙 ∈ ℝ𝑑 

Mean 𝜇 ∈ ℝ𝑑 

Covariance 0 ≼ Σ ∈ Sym(d) 

Multivariate 

exponential 

power 

𝐸𝑥𝑝𝑃𝑜𝑤(𝒙; 𝝁, Σ, β) = 𝑐 ∗ exp (−
1

2
[(𝒙 − 𝝁)𝑇𝛴−1(𝒙 − 𝝁)]𝛽) 𝒙 ∈ ℝ𝑑 

Mean 𝜇 ∈ ℝ𝑑 

Covariance 0 ≺ Σ 

Kurtosis 𝛽 > 0 

Normalization constant 𝑐 
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Rotation   𝑹𝒊𝒋
𝝐 ~ 

   Wrapped  

gaussian for 

SO(3) 

𝑹𝒊𝒋
𝝐 = 𝒆𝒙𝒑([

𝟎 −𝝐𝟑 𝝐𝟐 
𝝐𝟑 𝟎 −𝝐𝟏 
−𝝐𝟐 𝝐𝟏 𝟎

] ), where 𝛜 ∼ 𝓝( 𝜇, Σ) 
𝑹𝒊𝒋
𝝐 ∈ 𝑺𝑶(𝒅) 

𝛜 ∈ ℝ𝟑 

Mean 𝜇 ∈ ℝ3 

Covariance 0 ≼ Σ ∈ Sym(d) 

Von Mises 𝑉𝑜𝑛𝑀𝑖𝑠𝑒𝑠(𝜃, 𝜇, 𝜅) = 𝑐(𝜅) exp(𝜅cos ( 𝜃 − 𝜇)) 

𝑹𝒊𝒋
𝝐 (𝜃) ∈ 𝑺𝑶(𝟐) 

Angle 𝜃 

 

Mean 𝜇 

Concentration 𝜅 

  Isotropic  

Langevin 
𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛(𝑿;𝑀, 𝜅) =

1

𝑐𝑑(𝜅)
exp(𝜅 𝑡𝑟(𝑀𝑇𝑋)) 𝑿 ∈ 𝑆𝑂(𝑑) 

Mode 𝑀 ∈ 𝑆𝑂(𝑑) 

Concentration  𝜅 ≥ 0 

Normalization constant 𝑐𝑑(𝜅) 

Directional L

aplace 
𝐷𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜃; 𝜇, 𝜅) = 𝑐 ∗ 𝑒𝑥𝑝(−𝜅 |sin (

𝜃 − 𝜇

2
)|) 

𝑹𝒊𝒋
𝝐 (𝜃) ∈ 𝑺𝑶(𝟐) 

𝜃 ∈ (−𝜋,+𝜋] 

Mean 𝜇 ∈ (−𝜋,+𝜋] 

Scale  𝜅 > 0 

Normalization constant 𝑐 
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2.1.3 Maximum likelihood estimation problem  
 

 

The poses in the node are the variables of the optimization 

problem and the measurement edges are the information uses to 

adjust these poses variables. And more precisely, we know the 

sensor measurements and the chosen measurement model, so what 

we want is to minimize the errors between them by choosing the 

“best” value for the poses. This is equivalent to solve a maximum 

likelihood estimation problem where the 𝜃 is the unknow pose and 

the 𝑋𝑖 are the measurement.   

 max
𝜃
𝐿(𝜃|𝑋1, … , 𝑋𝑁) (2-5) 

 

The translation of this optimization problem is ‘we search 

the poses 𝜃 that are more likely to be knowing the measurement 𝑋𝑖’. 

We rewrite the generic MLE formula first by replacing the generic 

variable by our problem one and the likelihood by a probability 

distribution. 

 max
{𝒕𝑖},{ 𝑹𝑖}

ℙ ({𝑹𝑖𝑗̅̅ ̅̅ }, { 𝒕𝑖𝑗̅̅ ̅ } | {𝒕𝑖}, {𝑹𝑖}) (2-6) 

 

The probability distribution is for all nodes 𝑖, 𝑗 , to simplify the 

formulation we suppose that all the measurement {𝑹𝑖𝑗̅̅ ̅̅ }, { 𝒕𝑖𝑗̅̅ ̅ }  are 

independent so the total probability becomes the product of all 

probably over the edges of the graph.  

 
max
{𝒕𝑖},{ 𝑹𝑖}

∏ ℙ(
(𝑖,𝑗)∈ℰ

𝑹𝑖𝑗̅̅ ̅̅  , 𝒕𝑖𝑗̅̅ ̅ | 𝒕𝑖, 𝒕𝑗, 𝑹𝑖, 𝑹𝑗) (2-7) 

 

The next step is a well-known trick for MLE estimation problem 

reformulation, we take the negative logarithm of the objective 

function. Searching for the maximum of a function is the same as 
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searching for the minimum of the opposite function (max𝑓 = min−𝑓). 

The logarithm function is monotone increasing, so it scales the 

function but doesn’t change the position of the maxima/minima 

(min𝑓 = min log 𝑓). 

 

min
{𝒕𝑖},{ 𝑹𝑖}

−log ( ∏ ℙ(
(𝑖,𝑗)∈ℰ

𝑹𝑖𝑗̅̅ ̅̅  , 𝒕𝑖𝑗̅̅ ̅ | 𝒕𝑖, 𝒕𝑗, 𝑹𝑖 , 𝑹𝑗)) (2-8) 

From this we just separate the logarithm of the product into the 

sum of logarithm. Additionally, we can suppose that the translation 

and rotation are separate term too.  

 

min
{𝒕𝑖},{ 𝑹𝑖}

− ∑ ln (ℙ(
(𝑖,𝑗)∈ℰ

𝑹𝑖𝑗̅̅ ̅̅   | 𝑹𝑖 , 𝑹𝑗)) − ∑ ln (ℙ( 𝒕𝑖𝑗̅̅ ̅ | 𝒕𝑖 , 𝒕𝑗 , 𝑹𝑖))
(𝑖,𝑗)∈ℰ

 (2-9) 

 This formulation is the MLE used in PGO as show Carlone et 

al. (2015). The only last step to obtain a computational useful 

formula is to pick the probability distribution model for the 

measurement noise and replace ℙ(. ) by its explicit form. In a more 

general case, when solving a MLE the most common assumption for 

the noise is the gaussian distribution which leads to a non-linear 

least-square estimator:  

 

min
{𝑻𝑖}

 ∑ ||𝑒(𝑻𝑖𝑗 , 𝑻𝑖, 𝑇𝑗)||
2

2

(𝑖,𝑗)∈ℰ

 (2-10) 

2.2 Handling Outliers  
 

The standard form of the MLE in PGO assumes a nominal 

distribution of the noise (Gaussian distribution usually) which is a 

light-tailed noise distribution. This assumption leads to a quadratic 

form of the MLE objective function, so if some errors are far from 

the nominal value, they will strongly impact the results. If all 
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measurements are inliers, then the optimization process will work. 

But if there is one spurious measurement which move away from 

the nominal noise, then the algorithm fails, and the computed poses 

are incorrect estimates. The spurious measurements which are far 

away from the nominal noise are represented by a heavy-tailed 

noise distribution which violated the light-tailed noise distribution 

assumption. 

 

Outliers are measurements between 2 poses with a large 

error not representative of the reality of our robot movement. For 

instance, the robot arrives at position 𝑇𝑗 and see a blue chair. The 

front-end detects that a blue chair was seen before and so 

supposed the place was visited previously by the robot at the 

corresponding position 𝑇𝑖. It computed the difference of position 𝑇𝑖𝑗 

between 𝑖  and 𝑗  supposing the chair is the same one in the two 

images. Next in the pose graph a loop closure edge is created with 

the 𝑇𝑖𝑗  measurements information. However, the chair was a 

different one in reality and the position 𝑇𝑖 and 𝑇𝑗 are far from each 

other’s. So, the error 𝑇𝑗 − 𝑇𝑖𝑇𝑖𝑗  contains in the graph edge will be 

high compares to the other edge errors. When the back end 

minimizes the overall error on all edges, if the cost is quadratic this 

“wrong” edge will heavily impact the results.  

 

Sometimes outliers can come from a sensor failure. But 

most of the time in PGO, the outlier’s creation comes from incorrect 

data association as the example developed before show. This means 

supposing the loop closure edges are more likely to be outlier. 

Since we need loop closure edge in the pose graph to correct the 

drift error and increasing the connectivity of the graph, we tend to 
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be laxist on the condition for the loop closure detection and then 

considers that they will be outlier in the pose graph. Especially 

since in human made environments it is more likely that places will 

generate similar visual or information footprint that algorithms will 

not be able to tell apart. This phenomenon is called perceptual 

aliasing and is known to create highly correlated loop closure in 

pose graph as supposed in Lajoie et al. (2019). Techniques for 

handling outliers can be classified either as rejection or mitigation.   

 

2.2.1 Rejection techniques 
  

Also called removal techniques, they aim at explicitly 

identify spurious measurements or expressed differently, they try 

to establish if a given edge is an outlier or an inlier. A first type of 

approach is maximum consensus where we first used an algorithm 

such as RANSAC (random sample consensus) or RRR (realizing, 

reversing and recovering) from Latif et al. (2013) to identify the 

largest set of edge which are jointly consistent. Then we apply non 

robust optimization techniques on this pre-computed set. However, 

this add complexity and is inefficient. The other type of rejection 

techniques approach is aiming at finding the rejected outlier at the 

same time as optimization the pose, and so is a robust estimation 

technique which is better for computation time. 

 

The most well-known algorithm using rejection is 

switchable constraints (SC) from Niko Sünderhauf et al. (2012). 

The basic idea is to add a switch variable to all loop closure edge as 

shown in the figure 2-7. These extra variables decide if edges are 

use in the optimization process or not. They are optimized at the 

same time as the pose as they appear in the switch function 
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 Ψ(sij):  ℝ → [0,1]  which is multiply to the loop closure error in the 

objective function. There is a, open-source implementation in C++ 

called VERTIGO which permits to solve pose graph in g2o and 

gtsam with the switchable constraints method.   

 

 

Figure 2-3: Augmented pose graph with switch variables (Niko 

Sünderhauf et al., 2012) 

 

2.2.2 Mitigation techniques 
 

 In opposition with the removal techniques, the mitigation 

techniques want to keep all the measurements during the 

optimization. They want to reduce the impact of the outlier without 

neglecting some measurements. They exist several algorithms 

taking this approach, the dynamic covariance scaling (DCS) 

algorithm (Agarwal et al., 2013) is an extension of switchable 

constraints but instead of introducing new variables, it gives an 

analytic formula for the weight in front of the loop closure edge. 

Another approach which uses adaptive coefficient in front of the 

loop closure error is the expectation-maximization (EM) algorithm 

from Lee et al. (2013). It supposes the weight to be Cauchy 

function and first computes their value by minimizing the error (the 
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weights are the only variables), then using the computed weight it 

optimizes the pose graph. The Max-mixtures algorithm (Max-Mix) 

from Olson et al. (2013)  supposes the noise distribution to be a 

mixture of gaussians instead of a single gaussians. 

 

 But the mainstream approach for robust mitigation of outlier 

is the use of M-estimators as explain in Bosse et al. (2016). It is 

basically an extended MLE, where instead of solving the classical 

non-linear least-squares problem over the residuals, they add a 

loss function over the squared error: 

 

min
𝜃
 ∑𝝆( ||𝑒(𝜃)||

2
) (2-11) 

The goal is to use a loss function 𝝆 which reduce the influence of 

large error in the sum, for instance Huber or Geman-McClure (GM) 

function. This can be solve using Iterative Re-weighted non-linear 

least-squares. The DCS and expectation-maximization algorithms 

show similar behavior than M-estimator for specific loss function. 

Graduated non convexity technics are based on a M-estimator 

where the loss function convexity can be control by a parameter.     

 

2.3 Convex optimization 
 

All the theory from this part is explained in greater details in 

Boyd et al. (2004). Mathematical optimization problems have the 

following standard form with an optimization variable 𝑥, an objective 

function 𝑓0 , inequality constraint functions 𝑓𝑖(𝑥)  and equality 

constraint functions ℎ𝑖(𝑥).   
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 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 

𝑓0(𝑥) 

𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1,… ,𝑚 

ℎ𝑖(𝑥) = 0, 𝑖 = 1,… , 𝑝 

(2-12) 

 

Optimization problem can be classified in function of the forms of 

the objective and constraint functions. For instances, when all the 

functions are linear, we call the optimization problem a linear 

program. But PGO is known to be a non-linear optimization problem, 

which means that the objective and/or the constraints functions are 

non-linear. Most family of optimization problem have been studied 

and solution methods (algorithm) with their software 

implementation exists. But nonlinear optimization stays a 

challenging problem as we need to compromise between accuracy 

and time. The local optimization approach seeks to find a local 

minimum usually using derivative of the objective function. The 

most common algorithms are Gauss-Newton (GN) or Levenberg-

Marquardt (LM) and are implemented in solver such as g2o or 

ceres. It is a fast but need initialization and no guarantee of 

obtaining the global minima. Whereas global optimization method 

finds the global minimum but doesn’t scale well.  

 

A convex optimization problem has only one global minimum, 

so we can apply to it a fast local optimization algorithm without 

being worried about finding a local minimum (non-global minima). 

Given this nice property, convex optimization problem and their use 

for non-convex optimization problem have study and we will 

present the theory here.  
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2.3.1 Convex sets and function  
 

 A convex set is a set which contains the line segment 

between any two points in the set as illustrated in figure 2-3. The 

hexagon on the right is a convex set. But the kidney shaped set in 

the middle is not convex as part of a line segment is out the set. 

Similarly, the square shape on the right is not a convex set as some 

boundary points are not contains in the set so the line segment 

overlapping with the boundary will not be contains in this set.     

 

 

Figure 2-4 Examples of simple convex set (Left hexagon) and 

nonconvex sets (Middle kidney shape, Right square)(Boyd et al., 

2004)  

The mathematical definition of a convex set is just a formalization 

of this idea, for all point 𝑥1, 𝑥2 ∈ 𝐶 , the line segment   𝜃𝑥1 + (1 − 𝜃)𝑥2 

is in the set:  

 

𝑥1, 𝑥2 ∈ 𝐶,    0 ≤ 𝜃 ≤ 1     =>    𝜃𝑥1 + (1 − 𝜃)𝑥2 ∈ 𝐶 (2-13) 

 A convex function is a function define on a convex set which 

has all line segment between any two points of the function above 

the function as show in figure 2-4.  
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Figure 2-5 Graph of a convex function (Boyd et al., 2004) 

The formal definition is: a function 𝑓:ℝ𝑛 → ℝ is convex if 𝒅𝒐𝒎 𝑓 is a 

convex set and if for all 𝑥, 𝑦 ∈ 𝒅𝒐𝒎 𝑓, and 𝜃 with 0 ≤ 𝜃 ≤ 1, we have  

 
𝑓(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃𝑓(𝑥) + (1 − 𝜃)𝑓(𝑦) 

 
(2-14) 

2.3.2 Convex, polynomial, and semidefinite optimization 

problem  
 

A convex optimization problem is a problem of the form: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 

𝑓0(𝑥) 

𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1,… ,𝑚 

𝑎𝑖
𝑇𝑥

= 𝑏𝑖,           𝑖

= 1,… , 𝑝 

(2-

15) 

where 𝑓𝑂, … , 𝑓𝑚 are convex functions. So compared to the standard 

form of optimization problem, the additional constraints are the 

convexity of the objective and inequality constraint functions, and 

the equality constraint functions must be affine.  
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A polynomial optimization problem (POP) is a problem of the 

form: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 

𝑓0(𝑥) 

𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1,… ,𝑚 

ℎ𝑖(𝑥)

= 0,

𝑖

= 1,… , 𝑝 

(2-16) 

where 𝑓𝑂, … , 𝑓𝑚, ℎ0, … , ℎ𝑝  are real polynomials functions. Many 

fundamental problems in geometric perception such as PGO can be 

reformulated as POP. But POP are non-deterministic polynomial-

time hard problems (NP-hard), which means that we cannot prove 

that a polynomial time solution exists. Most robust estimators are 

hard to compute as show in Bernholt, T. (2006).      

 

A semidefinite programming problem (SDP) is a problem of 

the form: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 

𝑡𝑟(𝐶𝑋) 

𝑡𝑟(𝐴𝑖𝑋) = 𝑏𝑖, 𝑖 = 1,… , 𝑝 

𝑋 ≽ 0 

(2-17) 

Where the variable is a real symmetric matrix (𝑋 ∈ 𝑺𝑛), and the 

matrices 𝐶, 𝐴1, … , 𝐴𝑝 are also real symmetric matrix. The condition 

𝑋 ≽ 0 means that we search a positive semidefinite solution matrix. 

SDP program are convex optimization problem which can be solved 

efficiently for small and medium size problems with a global 

minimum.   
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2.3.3 Duality    
 

 For any optimization problem in standard form (equation 2-

12), we can define the Lagrangian dual function 𝑔  using the 

Lagrangian multiplier 𝜆𝑖, 𝜈𝑖. 

 

𝑔(𝜆, 𝜈) = inf
𝑥∈𝒟

( 𝑓𝑜(𝑥) +∑𝜆𝑖𝑓𝑖(𝑥) +∑𝜈𝑖ℎ𝑖(𝑥) 

𝑝

𝑖=1

) 

𝑚

𝑖=1

  (2-18) 

 

The Lagrangian dual function is concave and can have infinite value 

in some points. Using this function, we can write the dual problem 

of the primal initial optimization problem.  

 
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑔(𝜆, 𝜈) 

𝜆 ≽ 0 
(2-19) 

The optimal value for the primal problem is noted 𝑝∗ and the 

one for the dual problem 𝑑∗. In function of the problem type, the 

duality between the 2 problems can be a strong (𝑑∗ = 𝑝∗), or weak 

(𝑑∗ ≤ 𝑝∗). Weak duality always holds but strong duality does not 

hold in general. But for convex problems strong duality usually 

holds, and conditions that guarantee strong duality in convex 

problem are called constraint qualifications.  

 

One example of constraint qualifications largely used in practice is 

Slater’s constraint qualification defined as:  

Strong duality holds for a convex problem if any of the following 

equivalent conditions are met: 

1. The problem is strictly feasible. 

2. There exists a solution 𝑥∗ that satisfies all the constraints 



 

 ２９ 

and fulfills the nonlinear constraints with strict inequalities 

3. ∃𝑥 ∈ 𝒊𝒏𝒕 𝓓 ∶      𝑓𝑖(𝑥) < 0,     𝑖 = 1,… ,𝑚,      𝑎𝑖
𝑇𝑥 = 𝑏𝑖,    𝑖 = 1,… , 𝑝 

 

 We can also define the Karush-Kuhn-Tucker (KKT) 

conditions for a problem with differentiable constraints and 

objective functions (equation 2-12 with additional differentiability 

conditions). The KKT conditions are important as we know that if 

strong duality holds and 𝑥, 𝜆, 𝜈 are optimal, then they must satisfy 

the KKT conditions. Moreover, if �̃�, �̃�, 𝜈  satisfy the KKT for a 

convex problem, then they are optimal. So, we can solve the KKT 

conditions problem and obtain optimal solution for the initial 

problem. Not all convex problem admits a solution to the KKT 

conditions, but if a convex problem satisfy Slater’s condition, then it 

is sure that a solution to the KKT conditions problem exists.    

 

 KKT conditions are: 

1. Primal constraints : 𝑓𝑖(𝑥) ≤ 0,   𝑖 = 1,… ,𝑚,     ℎ(𝑖) = 0,    𝑖 = 1,… , 𝑝  

2. Dual constraints : 𝜆 ≽ 0 

3. Complementary slackness: 𝜆𝑖𝑓𝑖(𝑥) = 0,   𝑖 = 1,… ,𝑚 

4. Gradient of Lagrangian with respect to x vanishes:  

∇𝑓𝑜(𝑥) +∑𝜆𝑖∇𝑓𝑖(𝑥) +∑𝜈𝑖∇ℎ𝑖(𝑥) 

𝑝

𝑖=1

= 0 

𝑚

𝑖=1

 

  

2.3.4 Algorithms for resolution   
 

To solve convex optimization problem, there are different 

approach depending on the complexity of the problem, or more 
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precisely depending on the constraints of the problem. The idea is 

that there is a hierarchy in the convex optimization algorithms. The 

simplest problem are the unconstrained optimization problems 

which can be solve quickly. Then we have equality constrained 

problem which need extra steps. And finally convex optimization 

problem with inequality constrained are the hardest to solve. 

 

If the convex problem is unconstrained then it can be solve 

using a descent method. This method computes iteratively a 

solution 𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝑘  Δxk which is always at a lower point that the 

previous solution 𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘).  The principle is simple and the 

figure 2-5 shows the algorithm for a general descent method. 

There are 2 main steps: determining the descent direction Δ𝑥 and 

choosing the step size 𝑡.   

 

 

Figure 2-6 Descent method algorithm (Boyd et al., 2004) 

Different algorithms exist for the line search step (2) such as exact 

line search where we choose 𝑡 to minimize the objective function or 

backtracking line search where we approximately minimize the 

objective function. Several methods have been proposed for the 

descent direction choice step (1) and recapitulated in table 2-2.  
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Table 2-2 Descend direction method 

Item 
Gradient 

descend 

Steepest 

descend 
Newton’s 

Search direction  

𝚫𝒙 
−∇𝑓(𝑥) 

||∇𝑓(𝑥)||
∗
∗ Δ𝑥𝑛𝑠𝑑 

Δ𝑥𝑛𝑠𝑑 = 𝑎𝑟𝑔𝑚𝑖𝑛{ ∇𝑓(𝑥)
𝑇𝑣 | ||𝑣|| = 1} 

−∇2𝑓(𝑥)−1∇𝑓(𝑥) 

Stopping criterion ||∇𝑓(𝑥)||
2
≤ 𝜂 ||∇𝑓(𝑥)||

2
≤ 𝜂 ∇f(x)T ∇2𝑓(𝑥)−1∇𝑓(𝑥) ≤ 2𝜖 

Convergence 
 Approximately  

linear 
Approximately linear Rapid and quadratic near solution 

Notes 

Simplest method   

 however the   con

vergence rate  is  

too slow for most 

applications. 

The convergence rate depends on   

the norm chosen: good as we can    

find a norm to improve the speed,   

but bad as we need to find such a   

norm from a large panel. 

 Affine invariant, scale well with  

problem size and the parameter’s  

choice does not impact the           

convergence performance but      

storing the Hessian is costly. 
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When the problem has only equality constraint, we can take 

different approaches: use tricks to reduce it in an unconstrained 

equivalent problem or solve the dual problem to recover the 

solution. But if we want to exploit the problem structure (sparsity 

or others), we need to directly solve the equality constrained 

problem. And to do so, we can use an extension of the Newton’s 

method. The objective function is replaced by its second-order 

Taylor approximation near 𝑥 which made the problem a convex 

quadratic minimization problem solvable using the KKT matrix (if 

nonsingular). The Newton step Δ𝑥𝑛𝑡 in this case is compute at the 

same time as the associated optimal dual variable 𝑤 by resolving the 

system:  

 

[∇
2𝑓(𝑥) 𝐴𝑇

𝐴 0
] [
Δ𝑥𝑛𝑡
𝑤

] = [
−∇f(x)
0

] (2-20) 

The newton decrement used as stopping criterion is the same as in 

the unconstrained case. The convergence characteristics are the 

same than the ones for Newton’s unconstrained method, but we 

additionally have condition on the KKT matrix for convergence. It is 

also important to said that basic Newton’s methods are feasible 

descend methods (the initial points need to be feasible). Algorithms 

exist to make the method works even with initial points, and 

iterates, that are not feasible.  

 

For convex problems with inequalities constraints, the 

interior-point methods are commonly used. They apply Newton’s 

method to a sequence of equality constrained problems which 

approximate the inequalities constrained problem. Algorithms exist 

such that the barrier method or primal-dual interior point methods. 

The primal-dual interior-point methods are the more efficient in 
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many cases so we will briefly detail the basic one which algorithm 

is show in Figure 2-6.   

 

 

Figure 2-7 Basic Primal-dual interior-point algorithm (Boyd et al., 

2004)  

First, the initial complex problem is rewritten to make the inequality 

constraints implicit in the objective function. Then the objective 

function contains the indicator function which is not differentiable 

and so is approximate by a similar differentiable function. The 

quality of the estimate compares to the initial problem depends on 

the extra parameters 𝑡  introduce by the approximation. In the 

algorithm 𝑡 is chosen in function of the current surrogate duality gap 

�̂�(𝑥, 𝜆) = −𝑓(𝑥)𝑇𝜆 . From this approximated problem, the modified 

KKT conditions can be found: 

 

𝑟𝑡(𝑥, 𝜆, 𝜈) = 0 = [

∇𝑓0(𝑥) + 𝐷𝑓(𝑥)
𝑇𝜆 + 𝐴𝑇𝜈

−𝒅𝒊𝒂𝒈(𝜆)𝑓(𝑥) −
1

𝑡
𝟏

𝐴𝑥 − 𝑏

] (2-21) 

And in step 2, this nonlinear set of equations is solved for the fixed 

𝑡 parameters using Newton step. The primal-dual search direction 

Δ𝑦𝑝𝑑 = (Δ𝑥𝑝𝑑 , Δ𝜆𝑝𝑑 , Δ𝜈𝑝𝑑)  is the solution of the following matrix 
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system: 

[
 
 
 
 ∇2𝑓0(𝑥) +∑𝜆𝑖∇

2𝑓𝑖(𝑥)

𝑚

𝑖=1

𝐷𝑓(𝑥)𝑇 𝐴𝑇

−𝒅𝒊𝒂𝒈(𝜆)𝐷𝑓(𝑥) −𝒅𝒊𝒂𝒈(𝑓(𝑥)) 0

𝐴 0 0 ]
 
 
 
 

 [
Δ𝑥
Δ𝜆
Δ𝜈
] = −[

∇𝑓0(𝑥) + 𝐷𝑓(𝑥)
𝑇𝜆 + 𝐴𝑇𝜈

−𝒅𝒊𝒂𝒈(𝜆)𝑓(𝑥) −
1

𝑡
𝟏

𝐴𝑥 − 𝑏

] (2-22) 

The stopping criteria are when 𝑥, 𝜆, 𝜈 are feasible for the problem (in 

the tolerance range define) and the surrogate gap is under the 

wanted tolerance.   

 

2.3.5 Nonconvex problem and convex relaxation 
 

 

 Convex optimization is a powerful tool. The hard part of the 

job is not to resolve the optimization problem but to formulate the 

problem as a convex one. It is sometimes possible to find an 

equivalent convex problem for the initial problem but not all 

problem can be reduced to a convex problem. In this case, we can 

still use convex optimization in different ways to help solving the 

nonconvex problem. One idea is to initialize a local optimization 

process. The nonconvex problem is approximate to a convex one 

which is solve easily and without initialization. The solution, which 

is more likely to be close to the actual global minima, is used as a 

starting point for the local optimization method and then prevent the 

optimization to find a local minimum. Graduated non convexity (GNC) 

problem used this idea as in the article from McGann et al. (2022). 

By controlling the convexity of the problem with an extra variable, 

they solve step by step a less convex problem. Sometimes it is also 

possible to derive the dual problem and solve it as in Carlone et al. 

(2016) or using it to verify the quality of the solution as in Carlone 

et al. (2015).  
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 Another used of convex optimization for nonconvex problem 

is relaxation and lower bound computation. First, if we have a 

nonconvex problem, we can detail where the nonconvexity lies, i.e 

in the objective function or in the constraint functions. Then we can 

either find convex relaxation functions of the initial nonconvex 

functions or just drop nonconvex constraint functions. If we have a 

nonconvex function 𝑓 ∶ 𝑆 → ℝ where 𝑆 ⊂ ℝ𝑛  is a nonempty convex 

set, then a convex function ℎ ∶ 𝑆 → ℝ is a convex relaxation of 𝑓 if 

ℎ(𝑥) ≤ 𝑓(𝑥)   ∀ 𝑥 ∈ 𝑆. The figure 2-6 illustrates the definition.  

 

 

Figure 2-8 Convex relaxation concept of a function (Erik F. 

Alvarez; 2019) 

Using this we can approximate a nonconvex problem into a convex 

problem, but there is no equivalence between them, i.e. the solution 

of one problem is not ensured to be the same as the solution of the 

other problem. However, since one problem is a relaxation of the 

other, there is a condition between their minima which provides a 

lower bound for the optimal value of the nonconvex problem.  
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ℎ(𝑥∗) ≤ 𝑓(𝑥∗) (2-23) 

Some examples of relaxation are Lagrangian relaxation (solve the 

Lagrangian dual), L1 relaxation (Carlone et al., 2014), Lasserre 

hierarchy Relaxation (use the moment matrix as in Yang et al. 

(2023)) and SDP relaxation (the final problem is an SDP problem).  
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3 State of the art 
 

The problem of robust pose graph optimization has already been 

studied and several approaches have been proposed with different 

advantages and drawbacks. 5 algorithms are described here as they 

represent the different trend on robust pose graph optimization. We 

also compared them to the thesis content to emphasis the 

contribution of our work to the state of the art.    

 

3.1 SE-sync 
 

An algorithm to solve synchronization over the special 

Euclidean group using convex relaxation was published by Rosen et 

al. in 2017. It efficiently recovers certifiably globally optimal 

solutions for problem when the noise is non-adversarial. First, the 

MLE problem is reformulate into a semidefinite convex relaxation 

which is proven to be exact when the noise corrupting the data is 

under a certain threshold. This reformulation also provides an a 

posteriori condition to check the optimality of our obtained pose 

solution. Additionally, they use the low-rank, geometric and graph-

theoretic structure of the semidefinite relaxation to rewrite the 

problem on a Riemannian manifold. They utilize this to form a 

Riemannian truncated-Newton trust-region method which can 

solve large-scale problem efficiently. The last step is a simple 

rounding procedure to obtain the final solution of the 

synchronization problem. 
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Figure 3-1 The SE-Sync algorithm (David M. Rosen et al., 2017) 

This algorithm has 2 main advantages: it obtains an exact 

global optimal solution with a condition to check the optimality and it 

can be use for large-scale instance problem. They tested it on 

different synthetic datasets and large-scale real-world examples. 

SE-Sync can recover optimal solution and an order of magnitude 

faster than Gauss-Newton based approach. The main drawback is 

that it is design to be operating when the noise is under a certain 

threshold, so it does not contain any mechanism against outliers.  

 

3.2 Convex relaxation for 2D robust PGO 
 

In 2018, Carlone et al. developed a robust estimator to solve 

a 2D PGO problem where measurement with heavy noise can 

appears. To do so, they derive a convex relation process of the 

maximum likelihood initial problem for different PGO formulation 

setups. This leads to 3 robust estimator formulations which are 

presented: the first one is a least unsquared deviation estimator (L2 

loss function), the second is a least absolute deviation estimator 

(L1 loss function), and the last is a Huber estimator (Huber loss 

function). In addition, the difference between a 1-stage approach or 

2-stage approach for the resolution is tested. A 1-stage approach 
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means solving the optimization over the rotation and translation 

poses variables at the same time. Whereas a 2-stage approach 

decouple the rotation and translation problem. Only the rotational 

non-convex subproblem is relaxed and solve, then the rotation 

matrix is used in the translation subproblem to solve the already 

convex problem. 

  

 

Figure 3-2 Estimation errors for the 6 approaches for Geometric 

random graphs (Carlone et al., 2018) 

The advantage of using convex relaxation is first the fact 

that they don’t need an initial guess for resolution. And second, they 

can obtain guarantee condition on the suboptimality of the rounded 

solution by checking the rank of the relaxed solution matrix X and if 

the first 𝑛 2 × 2  blocks of its rank-2 approximation matrix are in 

𝑆𝑂(2) . They tested and compared the different formulation on 

synthetic pose graph dataset corrupted with an adaptive percentage 

of outliers with main results: The 2-stage approach outperformed 

the 1-stage for all dataset and percentage of outliers and shows 

robustness for high level of outliers when the graph is highly 

connected. The drawbacks for their implementation of the method 
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are the computation time which make it harder to use for large pose 

graph instance.  

 

3.3 DC-GM 
 

Pierre-Yves Lajoie et al. developed a discrete-continuous 

graphical model to represent the robot position and measurement 

edge as show in figure 3-3 in 2019. The first contribution of their 

model is the distinction between inliers and outliers for the edges 

between poses by using additional discrete variables. Additionally, 

the edges between theses discrete variables represent the 

correlation between measurements. Adding this information to the 

graph is meaningful as usually the outliers are highly correlated. So, 

if we detected one outlier, the correlated measurements with this 

outlier have a high chance to be outlier too. The second contribution 

is the use of convex relaxation for the MLE to optimize without 

initialization of the poses and with some condition on the sub-

optimality of the results.   

       

 

 

Figure 3-3 Discrete-continuous graphical model (Pierre-Yves 
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Lajoie et al., 2019) 

 

The use of binary variables to robustify the pose graph is 

equivalent to use a truncated LS cost on the measurement edges. 

The difference is that the truncated LS is non-convex and non-

differentiable, whereas minimizing over a binary variable do not add 

complexity. The DC-GM approach was tested on synthetic and 

real-world 2D datasets and showed good results against the state 

of art approach with no initialization. An advantage of this 

formulation is the intuitive way of tuning the parameter for 

differentiating the outliers and the inliers (maximum admissible 

residual). The main limitation of their paper is the computation time, 

which is the reason why they tested only on 2D data. The reason is 

the use of MATLAB solver. Another possible improvement is to 

make it in an online process.    

 

3.4 AEROS  
 

In 2022, Milad Ramezani et al. proposed an algorithm with an 

adaptive robust loss function against the outliers. First, they used 

on the MLE the Barron loss function which is an adaptive cost 

function with an additional parameter. The parameter chooses the 

shape of the loss function as show on the figure 3-4. The novelty 

of their approach is that they reformulate the objective function, so 

they optimize the parameter at the same time as the pose, so the 

curve is closely fitting the distribution. Moreover, the final form of 

they function use standard gaussian factors so they can of any 

classical incremental estimation approaches (for instance iSAM).   
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Figure 3-4 Adaptive loss kernel and its weight (Milad Ramezani et 

al., 2022) 

The main advantage of these method is the adaptivity of the 

loss function with only adding one latent parameter. The testing 

was done on 2D synthetic and real-world datasets where they add 

outliers to test the robustness. And they also test on one large 3D 

real-world dataset from LiDAR data preprocessed with Iterative 

Closest Point. The result demonstrates that their method is 

competitive against other methods and the parameter is changed in 

function of the data used. The optimization of the extra parameter 

adds time to process, and the algorithm is a batch process. This 

algorithm also needs initialization of the poses.   

 

3.5 riSAM  
 

An incremental solver for robust PGO was developed by 

Daniel Mc Gann et al. in 2022. It is based on the idea of graduated 
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non convexity (GNC), which is basically that we first convexify the 

problem and then solve a series of progressively less convex 

problems as illustrated on the figure 3-5. To make GNC efficient 

and incremental, they only compute a single non-linear update step 

instead of the full optimization. Additionally, they propose a new 

kernel for online efficiency: the scale invariant graduated (SIG) 

which admits a known constant number of GNC iterations. The last 

contribution is the incrementalization of the Dog-Leg line search 

which is a trust region optimization algorithm.       

 

 

Figure 3-5 Example of GNC solving a linear problem with outliers 

(Daniel McGann et al., 2022) 

 riSAM is tested on Synthetic (2D and 3D) and real-world 

(2D) datasets. It shows same precision as its batch variants. And 

more importantly it achieves online efficiency on large scale 

problem with robustness to outlier and initialization. But it still 

needs initialization, and it is dependent on the user defined 

parameters.  
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3.6 Comparison of related works with this thesis   
 

 This master thesis aims at studying robust pose graph 

optimization in 3D only when using a convex relation of the initial 

problem and loss function to mitigate outlier impact. In Luca Carlone 

et al. work they study the 2D case of the convex relaxation with no 

separation of the edge type. The SE-Sync algorithm is not robust 

against outliers and the DC-GM algorithm focus on one loss 

function where outliers are correlated. For the AEROS algorithm, 

the loss function is adaptive as an extra optimized parameter 

choose the shape of the function, however it does not use convex 

relaxation so need initialization. The riSAM algorithm is achieving 

real-time computation with a custom-made loss function but they 

use GNC (convex only for initialization of the optimization) and so 

does not have certifiability on the correctness of the solution. We 

want to focus on using an algorithm with convex relaxation to not 

need initialization and to have performance guarantees on our 

algorithm (if the solution is wrong, the algorithm can detect the 

failure). Starting from this setup, we want to study different loss 

function for robustness.     
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Table 3-1 Comparison of related work (robust pose graph optimization approach) 

Item 

 

 

 

Related work 

This thesis 

 

1. Se-sync 

David M. Rosen 

et al. 

2017 

2. 2D_relax 

 Luca Carlone et

 al. 

2018 

3. DC-GM 

 Pierre-Yves   

Lajoie et al. 

2019 

4. AEROS 

Milad Ramezani 

et al.  

2022 

5. RiSAM  

Daniel McGann  

et al. 

2022 

Problem definition 

Input 𝑇𝑖𝑗 ∈ 𝑆𝐸(𝑑) 

𝑅𝑖𝑗 ∈ 𝑆0(2), 

    𝑡𝑖𝑗 ∈ ℝ
2   

 with outliers 

𝑇𝑖𝑗 ∈ 𝑆𝐸(𝑑)  

with correlated 

outliers 

𝑇𝑖𝑗 ∈ 𝑆𝐸(𝑑) 

with outliers 

𝑇𝑖𝑗 ∈ 𝑆𝐸(𝑑) 

with outliers 

𝑅𝑖𝑗 ∈ 𝑆0(3), 

𝑡𝑖𝑗 ∈ ℝ
3 

with outliers 

Algorithm 
Synchronization 

over SE(d) 
PGO PGO PGO SLAM PGO 

Output 𝑇𝑖  ∈ 𝑆𝐸(𝑑) 
𝑅𝑖 ∈ 𝑆0(2), 

    𝑡𝑖 ∈ ℝ
2   

𝑇𝑖  ∈ 𝑆𝐸(𝑑) 𝑇𝑖  ∈ 𝑆𝐸(𝑑) 𝑇𝑖  ∈ 𝑆𝐸(𝑑) 
𝑅𝑖 ∈ 𝑆0(3), 

    𝑡𝑖 ∈ ℝ
3   

Dimension d 2 d d d 3 
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MLE formulation and resolution  

Processing Batch Batch Batch Batch Online Batch 

Nb stages 2-stages 
1-stage and 

   2-stages  
1-stage  1-stage 1-stage 2-stages 

   Edges      

separation  
Not considered Not considered Considered Considered Considered Considered 

   Outlier    

handling 
Not considered 

Loss function: 

Huber, L1 and 

L2  

Loss function  

TLS & outlier c

orrelation 

Loss function 

Barron  

Loss function 

SIG 

Loss function: 

Huber, L1 and 

L2 

Optimization

 approach 

SDP  

relaxation  

SDP  

relaxation 

SDP  

relaxation 

Iterative  

approach  

Graduated non

convexity  

SDP  

relaxation 
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Optimization

 algorithm 

  Riemannian   

staircase 

Interior-point 

in cvx solver 

Interior-point 

in cvx solver 
iSAM2 

Incremental 

 Powell’s Dog

-Leg 

Interior-point 

in cvx solver 

Initialization 
Yes, to speed c

omputation  
No  No yes yes No 

Certifiability 

contract 
Yes Yes Yes No  No Yes 
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Table 3-2 Comparison of related work (Simulation setup) 

Item 

 

 

 

Related work 

This thesis 

 

1. Se-sync 

David M. Rosen 

et al. 

2017 

2. 2D_relax 

 Luca Carlone et

 al. 

2018 

3. DC-GM 

 Pierre-Yves   

Lajoie et al. 

2019 

4. AEROS 

Milad Ramezani 

et al.  

2022 

5. RiSAM  

Daniel McGann  

et al. 

2022 

Implementation 

Language MATLAB MATLAB MATLAB cpp cpp MATLAB 

Solver 
Truncated- 

Newton RTR 
cvx cvx 

    iSAM   from

 GTSAM 
GTSAM Cvx 

   Monte  

Carlo run 
50 30 5/10 10 10/50 10 

Compared

 methods 
GN G2o, and DCS 

Vertigo, RRR, 

and DCS 

SC, DCS, GNC,

 and GM 

 GNC, GM,     

Max-Mix,      

Huber, and SC 

? 
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Datasets 

Synthetic 

2D 
Not tested 

 Erdos-Rényi  a

nd geometric ra

ndom graph, an

d Manhattan 35

00 world 

Grid  
Manhattan3500,

 City10k 

Random grid, 

Manhattan, an

d City10k  

Maybe 

Synthetic 3

D 

 Cube, Sphere2

500, torus,  

and grid 

Not tested Not tested  Sphere2500  Sphere 

Random and 

grid graph, M

anhattan  wor

ld Cube 

Real 2D Not tested Not tested 
CSAIL, FRO79 

and FRH 
CSAIL, INTEL 

   CSAIL,    an

d Intel 
Not tested 

Real 3D 
Garage, cubiclea

nd rim 
Not tested Not tested Nezer College Not tested 

Partial 

garage 
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4 Proposed PGO algorithm 
 

 The proposed PGO algorithm idea was showed in figure 1-1. 

It recapitulated the main part briefly, and now we will detail more 

the different steps. The figure 4-1 shows the global flow chart of 

our work. In our algorithm, we want to emphasis on the convex 

relaxation and the loss function choice for robustness. These 

specific parts will be details latter in the chapter 5 and 6. In this 

chapter, we will present first the MLE formulation derivation and 

the 2-steps approach for the PGO resolution.  

 

 

Figure 4-1 Flow chart of our proposed PGO 
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4.1 MLE formulation 
 

As said before, PGO is the process of estimate a set of 𝑛 poses 

(rotation and translation) in 3D from 𝑚  pairwise relative pose 

measurements. To do so, we construct a pose graph where: 

    

1) Each node represents a pose to estimate and is noted 𝑻𝑖 ≜

[𝑹𝒊  𝒕𝒊] which comprises a translation vector 𝒕𝒊 ∈ ℝ
3 and a rotation 

matrix 𝑹𝒊 ∈ 𝑺𝑶(3).  

 

2) Each edge represents a relative pose measurement and is noted 

[ 𝑹𝑖𝑗̅̅ ̅̅    𝒕𝑖𝑗̅̅ ̅ ]  which comprises a translation vector 𝒕𝑖𝑗̅̅ ̅ ∈ ℝ
3  and a 

rotation matrix  𝑹𝑖𝑗̅̅ ̅̅ ∈ 𝑺𝑶(3). They describe a noisy measurement 

of the relative pose between 𝑻𝑖 and 𝑻𝑗.  

 

Starting from this, we need to derive the MLE problem to define in 

the optimization solver. We already explained how the MLE is on 

the form of the sum of the log of the probability distribution of the 

noise as in equation 2-9.  

 

4.1.1 Measurements noise model choice  
 

The inliers measurement between 2 poses nodes is model as: 

 

𝒕𝒊𝒋̅̅ ̅ = 𝑹𝒊
𝑻(𝒕𝒋 − 𝒕𝒊) + 𝒕𝒊𝒋

𝝐 , 𝑹𝒊𝒋̅̅ ̅̅ = 𝑹𝒊
𝑻𝑹𝒋𝑹𝒊𝒋

𝝐  (4-1) 

Where the translation noise model is a multivariate gaussian 

distribution of mean 𝑂3  and covariance matrix  
1

𝑤𝑡
𝑰3 . The rotation 

noise model is an isotropic Langevin distribution on 𝑆𝑂(3) with mode 

𝐼3 and concentration parameter 𝑤𝑅, as in Carlone et al. (2018). 
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The first term is about the error on the translations part of 

the pose and the distribution chosen is a multivariate gaussian. So 

when replacing the probability density function of 𝒕𝒊𝒋
𝝐 = 𝒕𝒊𝒋̅̅ ̅−𝑹𝒊

𝑻(𝒕𝒋 −

𝒕𝒊)~𝒩 (𝑂3,
1

𝑤𝑡
𝑰3)  in the formula, we obtain the following form: 

 −ln (ℙ( 𝒕𝑖𝑗̅̅ ̅ | 𝒕𝑖 , 𝒕𝑗 , 𝑹𝑖))  

⟺ 

−ln (
1

√(
2𝜋
𝑤𝑡
)
3

)  

∗ exp (−
1

2
(𝒕𝒊𝒋
𝝐 )

𝑇
𝑤𝑡(𝒕𝒊𝒋

𝝐 ))) 
 

⟺ ln(𝐴) − 𝑙𝑛 (exp (−
1

2
(𝒕𝒊𝒋
𝝐 )

𝑇
𝑤𝑡(𝒕𝒊𝒋

𝝐 )))  

⟺ ln(𝐴) +
1

2
(𝒕𝒊𝒋
𝝐 )

𝑇
𝑤𝑡(𝒕𝒊𝒋

𝝐 )  

⟺ ln(𝐴) +
𝑤𝑡
2
(𝒕𝒊𝒋̅̅̅̅−𝑹𝒊

𝑻
(𝒕𝒋 − 𝒕𝒊))

𝑇

(𝒕𝒊𝒋̅̅̅̅−𝑹𝒊
𝑻
(𝒕𝒋 − 𝒕𝒊))  

⟺ ln(𝐴) +
𝑤𝑡
2
||𝒕𝒊𝒋̅̅̅̅−𝑹𝒊

𝑻
(𝒕𝒋 − 𝒕𝒊)||2

2 (4-2) 

 

For the second term, it represents the error on the rotation 

part of the pose. Instead of choosing the classical gaussian 

distribution, we choose the isotropic Langevin distribution (or Von 

Mises-Fisher). This distribution is directly defined on the special 

orthogonal group, so it is easier to analyze and leads to simpler 

estimator form. In the probability density function the normalization 

term 𝑐3(𝜅) depends in the concentration parameter only and can be 

derived using modified Bessel function 𝑐3(𝜅) = 𝑒𝑥𝑝(𝜅)(𝐼0(2𝜅) − 𝐼1(2𝜅)). 

We can think about the concentration parameter 𝜅  in terms of 

information content, the higher it is the more concentrated around 

the mean is the rotation pool. We can then replace the probability 
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density function of 𝑹𝒊𝒋
𝝐 = 𝑹𝒋

−𝟏𝑹𝒊𝑹𝒊𝒋̅̅ ̅̅ ~𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛(𝐼3, 𝑤𝑅) in the second term of 

the formula: 

 −ln (ℙ(𝑹𝑖𝑗̅̅ ̅̅   | 𝑹𝑖 , 𝑹𝑗))  

⟺ −ln (
1

𝑐𝑑(𝑤𝑅)
exp (𝑤𝑅  𝑡𝑟(𝑹𝒊𝒋

𝝐
)))  

⟺ ln(𝐵) − 𝑙𝑛 (exp (𝑤𝑅𝑡𝑟(𝑹𝒊𝒋
𝝐
)))  

⟺ ln(𝐵) − 𝑤𝑅𝑡𝑟(𝑹𝒊𝒋
𝝐
)  

⟺ ln(𝐵) − 𝑤𝑅𝑡𝑟 (𝑹𝒋
−𝟏𝑹𝒊𝑹𝒊𝒋̅̅ ̅̅ )  

⟺ ln(𝐵) − 𝑤𝑅𝑡𝑟 (𝑹𝒋
−𝟏𝑹𝒊𝑹𝒊𝒋̅̅ ̅̅ ) (4-3) 

 

 

Replacing the equations 4-2 and 4-3 in the objective function, the 

constant terms ln (𝐴)  and ln (𝐵)  can be suppress as they do no 

impact the minimization results. So, the intermediary form of the 

MLE for inliers is:  

 
min
𝒕𝑖∈ℝ

3 ,
𝑹𝑖∈𝑆𝑂(3)

∑
𝑤𝑡

2
||𝒕𝒊𝒋̅̅ ̅−𝑹𝒊

𝑻(𝒕𝒋 − 𝒕𝒊)||2
2 − 𝑤𝑅𝑡𝑟(𝑹𝒋

−𝟏𝑹𝒊𝑹𝒊𝒋̅̅ ̅̅ )
(𝑖,𝑗)∈ℰ

 (4-4) 

Additionally, we can reform the 𝑡𝑟𝑎𝑐𝑒 term using Frobenius norm as 

we know 𝑡𝑟 ((𝑹𝒊
−𝟏𝑹𝒋)

−𝟏
𝑹𝒊𝒋̅̅ ̅̅ ) = 𝟑 −

𝟏

𝟐
||𝑹𝒊

−𝟏𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅  ||𝐹
2 (for the formula to 

be true, we need the matrix to be orthogonal and all rotation matrix 

are in 𝑆𝑂(3) ⊂ 𝑂(3)). We also then use the fact that 𝑹𝒊
−𝟏 = 𝑹𝒊

𝑻  and 

that the 𝐿2 norm and the Frobenius norm are invariant with respect 

to orthogonal multiplication ||𝑹𝒊𝒙||𝟐 = |
|𝒙||

𝟐
. The 𝐿2 norm is even in 

the translation part ||𝒙||
𝟐

𝟐
= ||−𝒙||

𝟐

𝟐
 We finally obtain the final 

equivalent form of the MLE for inliers as equation 4-5 which is a 
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non-robust one also used in SE-sync by Rosen et al. (2017). 

 

 min
𝒕𝑖∈ℝ

3 ,
𝑹𝑖∈𝑆𝑂(3)

∑
𝑤𝑡

2
||𝒕𝒊𝒋̅̅ ̅−𝑹𝒊

𝑻(𝒕𝒋 − 𝒕𝒊)||2
2 − 𝑤𝑅𝑡𝑟(𝑹𝒋

−𝟏𝑹𝒊𝑹𝒊𝒋̅̅ ̅̅ )
(𝑖,𝑗)∈ℰ

  

⟺ 

min
𝒕𝑖∈ℝ

3 ,
𝑹𝑖∈𝑆𝑂(3)

∑
𝑤𝑡
2
||𝒕𝒊𝒋̅̅ ̅−𝑹𝒊

𝑻(𝒕𝒋 − 𝒕𝒊)||2
2 − 3𝑤𝑅

(𝑖,𝑗)∈ℰ

+
𝑤𝑅
2
||𝑹𝒊

−𝟏𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅  ||𝐹
2  

 

⟺ 
min
𝒕𝑖∈ℝ

3 ,
𝑹𝑖∈𝑆𝑂(3)

∑ 𝑤𝑡||𝒕𝒊𝒋̅̅ ̅−𝑹𝒊
𝑻(𝒕𝒋 − 𝒕𝒊)||2

2 +𝑤𝑅||𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅  ||𝐹
2

(𝑖,𝑗)∈ℰ

  

⟺ 
min
𝒕𝑖∈ℝ

3 ,
𝑹𝑖∈𝑆𝑂(3)

∑ 𝑤𝑡||𝒕𝒋 − 𝒕𝒊 − 𝑹𝒊𝒕𝒊𝒋̅̅ ̅||2
2 +𝑤𝑅||𝑹𝒊

𝑻𝑹𝒋 −𝑹𝒊𝒋̅̅ ̅̅  ||𝐹
2

(𝑖,𝑗)∈ℰ

 (4-5) 

 

4.1.2 M-estimators on loop closure edge  
 

But the version of MLE of equation (4-5) is not robust to outliers 

as it is a quadratic form. We supposed that the odometry edge are 

not prone to outlier so we can apply the extra treatment only to the 

loop closure edge. We choose to use a M-estimators approach on 

the loop closure edge as describe in Bosse et al. (2016). This 

means we add an extra loss function around the square norm of the 

error. The new formulation is then the one in equation 4-6 where 

first the distinction between the odometry edge and the loop closure 

edge is made by having two separate sum and second the loss 

function 𝜌 is add only to the loop closure sum. 

 

min
𝒕𝑖∈ℝ

3 ,

𝑹𝑖∈𝑆𝑂(3)

∑ 𝑤𝑡||𝒕𝒋 − 𝒕𝒊 −𝑹𝒊𝒕𝒊𝒋̅̅ ̅||2
2 +𝑤𝑅||𝑹𝒊

𝑻𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅ ||𝐹
2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦

 

+ ∑ 𝜌(𝑤𝑡 ||𝒕𝒋 − 𝒕𝒊 − 𝑹𝒊𝒕𝒊𝒋̅̅ ̅||
2
) + 𝜌(𝑤𝑅||𝑹𝒊

𝑻𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅  ||𝑭)
(𝑖,𝑗)∈ℰ𝑙𝑜𝑜𝑝 𝑐𝑙𝑜𝑠𝑢𝑟𝑒

 

(4-6) 

 



 

 ５５ 

The M-estimator method performance depends highly on the loss 

function choice, and it is why chapter 6 is totally dedicated to the 

study of the loss function. We choose this approach mainly because 

to obtain a good estimate using pose graph optimization, we need a 

graph with high connectivity. Adding a lot of loop closure is how we 

can make the connectivity of the graph higher, however this means 

adding more outlier to measurements. If we just truncated the 

measurement set without be sure to take out the outlier, the 

connectivity will decrease, and the outlier rate can be higher. 

Keeping all measurements and making sure that outliers do not 

impact too much the quality of the results is then the approach we 

choose.    

 

 

4.2 2-steps algorithm 
 

It is possible to solve the full problem of the poses 𝑇𝑖  with one 

optimization process using the equation 4-6. This is called a 1-

step approach as we obtain in one go the rotation and translation 

estimates. Another approach called 2-steps algorithm is based on 

the observation that the rotation variables appear in the translation 

error term, but the translation variables don’t appear in the 

rotational error term. Additionally (Carlone & Censi, 2012) show 

with empirical evidence that when optimizing only on the rotation 

variables the error term on translation is negligible. So, using only 

the rotational error term as an objective function for finding the 

rotation variable is enough. This observation is even more 

important because when the rotation matrix poses are fixed, the 

optimization problem over the translation variables reduces to a 

convex problem with the translational error term as objective 
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function. The figure 4-2 illustrated a 2-steps algorithm using the 

equation 4-6 as a basic MLE formulation.  

 

Figure 4-2 Flow chart of the 2-steps algorithm 

min
𝑹𝑖∈𝑆𝑂(3)

∑ 𝑤𝑅||𝑹𝒊
𝑻𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅  ||𝐹

2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑ 𝜌(𝑤𝑅||𝑹𝒊
𝑻𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅  ||𝑭)

(𝑖,𝑗)∈ℰ𝑙𝑐

  
(4-7) 

min
𝒕𝑖∈ℝ

3
∑ 𝑤𝑡||𝒕𝒋 − 𝒕𝒊 − 𝑹𝒊𝒕𝒊𝒋̅̅ ̅||2

2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑ 𝜌(𝑤𝑡 ||𝒕𝒋 − 𝒕𝒊 − 𝑹𝒊𝒕𝒊𝒋̅̅ ̅||
2
)

(𝑖,𝑗)∈ℰ𝑙𝑐

 (4-8) 

 

The advantage of using a 2-steps approach is that it reduces 

the complexity of the optimization process as the matrix smaller. 

But since we don’t use all the available information for optimizing 

the rotation, we should loose in accuracy. In our case, we want to 
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use a convex relaxation of the problem, which will be good if the 

relaxation is tight. (Carlone et al., 2018) compare the 1-step 

approach to the 2-steps in the 2D case for robust PGO and all their 

results show that the 1-step approach is not tight when they are 

outlier. But the 2-steps algorithm when using the convex relaxation 

only of the rotation problem is tight even with more outlier. Then, 

we need to use a 2-steps approach if we want to be robust against 

outlier and use convex relaxation.  

 

5 Rotation sub-problem resolution  
 

The 2-steps approach is breaking the problem into 2 problems: 

the rotation non-convex (because of the 𝑆𝑂(3) group which is the 

feasible set) and the translation convex when the rotation is fixed. 

Now, we want to go further and relax the rotation sub-problem of 

equation 4-7 into a convex problem. The reasons for the relaxation 

are double. The initial idea was to solve a problem with a global 

optimum so first we don’t need to care about the initialization of the 

solver and always obtain the global solution. Then, secondly when 

deriving a convex relaxation, we can check after resolution if the 

relaxation was tight and so we have a way to certify that the 

rotation solution is the global optima of the initial problem. 

 

Briefly, we first need to derive the convex relaxation of the 

problem in chapter 5.1. But then the feasible set of the convex 

problem is wider than the initial one as shows figure 5-1, so the 

solution found can be non-feasible for the initial problem 4-7. 

Then we need a rounding procedure to reproject the relaxed 

solution into 𝑆𝑂(3). How to achieve the rounding is presented in 
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chapter 5.2. Lastly, we will talk in more details about the 

certifiability contract in part 5.3. In rest of this chapter, we will 

suppose that we know the rotation/translation covariance and that 

the loss function is chosen to be convex.  

 

Figure 5-1 Illustration of non-convex feasible set relaxation 

 

5.1 Convex relaxation 
 

We start from the problem 1 which is nonconvex as the 

feasible set is the special orthogonal group which is nonconvex. To 

obtain a nice convex formulation for our relaxed problem, we follow 

simple step which can be replicated for others problem if necessary. 

The overall flow of the problem derivation is given in figure 5-2.  

 

 Problem 1 (SO(3) feasible set formulation of maximum-

likelihood orientation estimation) 

Given the observation 𝑹𝒊𝒋̅̅ ̅̅  ∈ 𝑺𝑶(𝟑), for (𝑖, 𝑗) ∈ ℰ, the rotation variance 

𝑤𝑅  and a convex loss function 𝜌 , find the set of minimizers �̂�𝑖 ∈

𝑆𝑂(3) that satisfies 

�̂�𝑖 = min
𝑹𝑖∈𝑆𝑂(3)

∑ 𝑤𝑅||𝑹𝒊
𝑻𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅  ||𝐹

2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑ 𝜌(𝑤𝑅||𝑹𝒊
𝑻𝑹𝒋 −𝑹𝒊𝒋

̅̅ ̅̅  ||𝑭)
(𝑖,𝑗)∈ℰ𝑙𝑐

   (5-1) 

Having fixed the first node orientation to 𝑅0 = 𝑰3 
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Problem Variables Convexity 

Problem 1 𝑹𝑖 ∈ 𝑆𝑂(3) Nonconvex due to feasible set 
𝑆𝑂(3) 

Problem 2 𝑹𝑖 ∈ ℝ
3×3  Nonconvex due to constraint 

𝑑𝑒𝑡(𝑹𝑖) = +1 

Problem 3 𝑹 ∈ ℝ3×3𝑛  
𝑿 ∈ ℝ3𝑛×3𝑛  

Nonconvex due to constraints 
𝑑𝑒𝑡(𝑹𝑖) = +1 
𝑿 = 𝑹𝑻𝑹 

 
 

Problem 4 𝑿 ∈ ℝ3𝑛×3𝑛  Nonconvex due to constraint 
𝑟𝑎𝑛𝑘(𝑿) = 3  

Problem 5 𝑿 ∈ ℝ3𝑛×3𝑛  Convex 

Extract  𝑆𝑂(3) 

constraints 

Remove variable 

𝑹 

Relaxation 

Change of 

variables 

 

Figure 5-2 Problem derivation chart  

Starting from the problem 1, our main goal is to obtain a 

convex problem, so the first step is to explicitly make appear the 

condition on the non-convex condition on the 𝑆𝑂(3) feasible set. To 

do so, we change the feasible set to be ℝ3×3 and force the variable 

to be part of the 𝑆𝑂(3) by adding constraints 5-2b and 5-2c which 

leads to the Problem 2. 
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 Problem 2 ( ℝ3×3 feasible set formulation of maximum-

likelihood orientation estimation) 

Given the observation 𝑹𝒊𝒋̅̅ ̅̅  ∈ 𝑺𝑶(𝟑), for (𝑖, 𝑗) ∈ ℰ, the rotation variance 

𝑤𝑅 and a convex loss function 𝜌, find the set of minimizers �̂�𝑖 ∈ ℝ
3×3 

that satisfies 

�̂�𝑖 = min
𝑹𝑖∈ℝ

3×3
∑ 𝑤𝑅||𝑹𝒊

𝑻𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅  ||𝐹
2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑ 𝜌(𝑤𝑅||𝑹𝒊
𝑻𝑹𝒋 −𝑹𝒊𝒋

̅̅ ̅̅  ||𝑭)
(𝑖,𝑗)∈ℰ𝑙𝑐

   
(5-2a) 

Subject to 𝑹𝑖
𝑇𝑹𝑖 = 𝑰3 

𝑑𝑒𝑡(𝑹𝑖) = +1  

(5-2b) 

(5-2c) 

Having fixed the first node orientation to 𝑅0 = 𝑰3 

 

 The nonconvexity comes from the constraint 5-2c, but first 

before relaxing the problem we want to reparametrize the problem 

into a more compact and convenient matrix notation. We introduce 2 

new variables: a vector stacking all the rotation matrix 𝑹 =

[𝑹𝟏, … ,  𝑹𝒏] ∈ ℝ
𝟑×𝟑𝒏 and a matrix construct by multiplying the vector  

 

𝑿 = 𝑹𝑻𝑹 = [
𝑹1
𝑇𝑹1 ⋯ 𝑹1

𝑇𝑹𝑛
⋮ ⋱ ⋮

𝑹𝑛
𝑇𝑹1 ⋯ 𝑹𝑛

𝑇𝑹𝑛

] ∈ ℝ3𝑛×3𝑛 (5-3) 

The variables 𝑹𝑖  can be replaced using 𝑹  and the products of the 

variables   𝑹𝒊
𝑻𝑹𝒋 and 𝑹𝑖

𝑇𝑹𝑖 can be replaced using 𝑿. As we define the 

matrix 𝑿 using the rotation vector, we need to add the constraint 5-

4d in the problem 3.  

 

Problem 3 (Double matrix variables formulation of 

maximum-likelihood orientation estimation) 

Given the observation 𝑹𝒊𝒋̅̅ ̅̅  ∈ 𝑺𝑶(𝟑), for (𝑖, 𝑗) ∈ ℰ, the rotation variance 

𝑤𝑅  and a convex loss function 𝜌 , find the set of minimizers 𝑹 ∈

ℝ3×3𝑛, 𝑿 ∈ ℝ3𝑛×3𝑛  that satisfies 
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𝑹,𝑿 = min
𝑹∈ℝ3×3𝑛

𝑿∈ℝ3𝑛×3𝑛

∑ 𝑤𝑅||[𝑿]𝒊𝒋 −𝑹𝒊𝒋̅̅ ̅̅  ||𝐹
2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑  𝜌(𝑤𝑅 ||[𝑿]𝒊𝒋 −𝑹𝒊𝒋̅̅ ̅̅  ||
𝑭
)

(𝑖,𝑗)∈ℰ𝑙𝑐

  
(5-4a) 

Subject to [𝑿]𝑖𝑖 = 𝑰3 , 

𝑑𝑒𝑡([𝑹]𝑖) = +1 , 

𝑿 = 𝑹𝑇𝑹  ,   

(5-4b) 

(5-4c) 

(5-4d) 

Having fixed the first node orientation to 𝑅0 = 𝑰3 

  

The problem 3 is an optimization over 2 variables. First, we 

know that the constraint 4-12d is equivalent to have 𝑿 ≽

𝟎  and  𝑟𝑎𝑛𝑘(𝑿) = 3 so we can replace it in the problem. So, the only 

term where the rotation vector appears is on the constraint 4-12c. 

It constraint the rotation matrix to be in the Special orthogonal 

group, if we don’t enforce it the rotation matrix will be in the 

orthogonal group 0(3), which means the determinant will be ±1. But 

previous study of relaxation over SO(3) have shown that dropping 

this constraint doesn’t impact the relaxation process and so we will 

not use it in problem 4.  

 

Problem 4 (Single matrix variable formulation of maximum-

likelihood orientation estimation) 

Given the observation 𝑹𝒊𝒋̅̅ ̅̅  ∈ 𝑺𝑶(𝟑), for (𝑖, 𝑗) ∈ ℰ, the rotation variance 

𝑤𝑅  and a convex loss function 𝜌 , find the set of minimizers 𝑿 ∈

ℝ3𝑛×3𝑛  that satisfies 

𝑿 = min
𝑿∈ℝ3𝑛×3𝑛

∑ 𝑤𝑅||[𝑿]𝒊𝒋 − 𝑹𝒊𝒋̅̅ ̅̅  ||𝐹
2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑ 𝜌(𝑤𝑅 ||[𝑿]𝒊𝒋 − 𝑹𝒊𝒋̅̅̅̅  ||
𝑭
)

(𝑖,𝑗)∈ℰ𝑙𝑐

   
(5-5a) 

Subject to [𝑿]𝑖𝑖 = 𝑰3 , 

𝑿 ≽ 𝟎  ,    

𝑟𝑎𝑛𝑘(𝑿) = 3  

(5-5b) 

(5-5c) 

(5-5d) 
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Having fixed the first node orientation to 𝑅0 = 𝑰3 

 

The problem 4 is close to be a convex problem but the 

constraint 5-5d on the rank is nonconvex. So, we need to relax it 

and let the solution matrix to have full rank if needed. In practice 

the solution matrix will have rank 3 if there are no outliers. And the 

rank will go up with outliers’ addition as the relaxation will be less 

tight. 

 

Problem 5 (Semi-definite formulation of maximum-

likelihood orientation estimation) 

Given the observation 𝑹𝒊𝒋̅̅ ̅̅  ∈ 𝑺𝑶(𝟑), for (𝑖, 𝑗) ∈ ℰ, the rotation variance 

𝑤𝑅 and a convex loss function 𝜌, find the set of minimizers �̂�𝑖 ∈ ℝ
3×3 

that satisfies 

𝑿 = min
𝑿∈ℝ3𝑛×3𝑛

∑ 𝑤𝑅||[𝑿]𝒊𝒋 − 𝑹𝒊𝒋̅̅ ̅̅  ||𝐹
2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑ 𝜌(𝑤𝑅 ||[𝑿]𝒊𝒋 − 𝑹𝒊𝒋̅̅̅̅  ||
𝑭
)

(𝑖,𝑗)∈ℰ𝑙𝑐

  
(5-6a) 

Subject to [𝑿]𝑖𝑖 = 𝑰3 , 

𝑿 ≽ 𝟎 

(5-6b) 

(5-6c) 

Having fixed the first node orientation to 𝑅0 = 𝑰3 

  

 The final form of our rotation problem is the problem 5 as it 

is convex. Even more it is semidefinite so we can use off-the-

shelf solver to find the solution. One details that will be important is 

the hypotheses on the convexity of the loss function which make 

the problem convex.   

 

5.2 Rounding procedure 
 

After solving the problem 5, we obtain the matrix 𝑿 solution 

which contains all the necessary information to retrieve the rotation 

matrix. It can also be seen as the step to reproject the solution on 
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the problem 1 feasible set 𝑆𝑂(3). The algorithm 1 illustrates how to 

get the wanted rotation matrix from the estimate matrix (Hartley et 

al., 2013; Wang et al., 2013) we do 2 approximations that break the 

equivalence of the different problem: drop the determinant and rank 

constraint on the matrix. Starting from the assumption that the 

matrix wanted is supposed to have rank 3, we compute in step 2 the 

rank-3 singular value decomposition of the matrix. By construction 

most of the solution components contain redundant information, we 

can use only the first column [
𝑹1
𝑇𝑹1
⋮

𝑹𝑛
𝑇𝑹1

]  which already has the 

information about all the rotation matrix �̂�i . So, from the SVD 

decomposition we recompose the different 𝑹𝑖
𝑇𝑹1  terms as the 𝐓i 

matrix in step 5 especially as we implicitly fixed the rotation 𝑹1 = 𝑰3. 

Finally, we fixed back the determinant to 1 in the step 9 if needed.  

 

ALGORITHM 1:  THE ROUNDING PROCEDURE 

Input: Estimated rotation matrix 𝑿 ∈ ℝ3𝑛×3𝑛 

Output: Rounded rotation matrix �̂�𝑖 ∈ 𝑆𝑂(3) 

1: function ROUNDING_ROTATION(𝑿) 

2:  [𝑈𝛴𝑉𝑇]   ← rank-3 singular value decomposition of 𝑿 

3:  Set 𝑻 = [𝒗1 𝒗𝟐 𝒗𝟑] 

4:  For i = 1, …, n do 

5:   Set 𝑻𝑖 as the i-th matrix of size 3×3   

6:   [𝑀𝛯𝑁𝑇]  ← SVD of 𝑻𝑖 

7:   �̂�𝑖 = 𝑀𝑁
𝑇 

8:   If 𝑑𝑒𝑡(�̂�𝑖) = −1 then 

9:    Set Det( �̂�𝑖) = 1 

10:   End 
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11:  End 

12:  return �̂�𝑖 

13: end 

    

 

 

5.3 Certifiability contract 
 

In a world where the failure of the algorithm can have important 

consequence, the need of contract on the quality of the estimate 

solution is of primal importance. So, what we call a certifiability 

contract is a posteriori performance guarantees. They will tell us if 

the estimated solution from the convex relaxation problem is also 

the global solution of the initial nonconvex problem. This is 

equivalent to checking if the convex relaxation is tight.  

 

We note the objective function of problem 1 as 𝑓1 and its optimal 

cost 𝑓1
∗. We note for the convex problem 5 the objective function as 

𝑓5 and its optimal cost 𝑓5
∗. When we relaxed a nonconvex problem, 

we relax the feasible set of the problem, so we know as equation 

(2-23) stated that 𝑓5
∗ ≤ 𝑓1

∗. This condition means that the optimal 

cost obtain from the relaxation problem is smaller or equal to the 

optimal cost of the initial problem. We additionally note �̂�  the 

solution associate to the optimal cost 𝑓5
∗  and �̂�𝑖 the corresponding 

rounded rotation matrix. We can then derive the following 

equivalent inequalities:  

 𝑓5
∗ ≤ 𝑓1

∗  

⟺ 𝑓5(�̂�) ≤ 𝑓1
∗  

⟺ −𝑓1
∗ ≤ −𝑓5(�̂�)  
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⟺ 𝑓1(�̂�𝑖) − 𝑓1
∗ ≤ 𝑓1(�̂�𝑖) − 𝑓5(�̂�) (5-7) 

  

In the left term of equation 5-7, the difference between the 

cost obtained with the convex relaxation and the actual unknow 

optimal cost represent the suboptimality gap of our convex 

relaxation. And since we don’t know 𝑓1
∗ value, we can’t compute it 

directly. But using the inequality 5-7 we can compute a bound for it 

as the left term of the equation can be compute after the rounding. 

If the left term is 0 then we can tell that 𝑓1
∗ = 𝑓1(�̂�𝑖)  and that the 

rounded rotation matrices are the optimal value for the initial 

nonconvex problem.  

 

We can directly compute the gap 𝑓1(�̂�𝑖) − 𝑓5(�̂�)  to check the 

quality of our estimate. However, we can also see that this 

difference is a representation of the difference between the 

estimated matrix and the rounded one. So, if the matrix �̂� is exactly 

rank 3 and if the first 𝑛 3 × 3 block of its rank 3 decomposition are 

already in SO(3) then the gap will be 0. So instead of computing the 

gap, we can have a more straightforward criterion which is the rank 

of �̂�.    

 

6 Loss function  
 

For the robustness of the formulation against outlier, we use 

M-estimator. The principle is to add a loss function around the 

norm of the error to reduce the impact of large error. There are a 

variety of different loss function already existing with desirable 

properties. We will first talk about the theory of loss function and of 

their properties in part 6.1. Then the most common loss function 
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used in PGO will be presented in part 6.2.   

 

6.1 Theory 
 

A loss function is a function that aims to reduce the influence 

of the outliers which have large errors. The loss function 𝜌: 𝑡 ⟼

𝜌(𝑡) ≥ 0 should be non-negative, non-decreasing and with a unique 

minimum at 𝑡 = 0, so it doesn’t change the minima of the objective 

function. There are some interesting indicators that can be compute 

on loss function to understand and compare their effects on the 

estimator. Usually, estimators are compared in terms of bias and 

efficiency. The bias is defined as the difference between the 

estimator’s expected value and the true value. When the efficiency 

is how good is the estimator. If we look at the estimator as a 

random variable with a distribution 𝜂, then the bias is link to the 

mean and the efficiency to the variance. In real application, we 

cannot have the best estimator, there is a trade-off between the 

quality/efficiency and the robustness/bias of the estimator. 

 

To visually assess the robustness of a M-estimator with a 

chosen loss function, we can plot the influence curve. The desired 

properties here is that we the error goes to infinity, the influence 

function should go to 0, which means the error measurement will be 

neglected. These are called redescending M-estimators. From this 

influence curve, we can go further and compute the gross error 

sensitivity as in equation 6-1 It represents the maximum effect 

that an outlier can have.  

 

𝐺𝐸𝑆(𝜂) = sup
z
||𝐼𝐹(𝑧, 𝜂)|| (6-1) 
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Another curve is the maximum bias one which represent the 

maximum bias in function of the proportion of outliers. Using this 

curve, we can define the breakdown point which is the maximum 

proportion of outlier that the estimator can handle. It can be read on 

the maximum-bias curve directly. To derive all this indicator, we 

can use the derivative of the loss function 𝜌′(𝑡)  also called the 

weight function and so it is useful to look at it. We want to choose 

the loss function such that the efficiency is high around 0 so we 

correct the inliers position accurately. The gross error sensitivity 

should be lowest as possible, so an outlier doesn’t affect too much 

the solution. The breakdown point should be large so we can handle 

many outliers. An additional property of the loss function that we 

want to look at in our study case is the convexity of the function. 

We can only use convex function to keep the convexity of the 

relaxed problem.  

  

6.2 Common loss function comparison  
 

The study of some loss function for M-estimator by Bosse et al. 

(2016) and by MacTavish et al. (2015) and give us the following 

list of useful loss function in table 6-1. We also add the 

Charbonnier loss function that is a function that appears in the 

adaptive Barron loss function used in AEROS by Milad Ramezani et 

al. (2022). The loss function formulas are given. The variable 𝑠 in 

the formula is a tuning constant using to fix the scale of the loss 

function. The figure 6-1 shows the curve of the different loss 

function with the parameter 𝑠 = 1. First, we want a convex function 

so we cannot use the Tukey, threshold, Welsch, Geman function. 
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From the remaining one, the one which have the slowest growing 

rate are the one the more robust to outlier  

 

 

Figure 6-1 Common loss function shape 

From the shape of the function and the convexity analysis, we can 

already tell that the best functions for the M-estimator are 

nonconvex and so cannot be used in our formulation. The only 

possible functions are L1, L2, Charbonnier which is a combination of 

L1 and L2, Huber and fair function.  
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Table 6-1 Loss function list 

Loss function 𝝆(𝒕) 𝝆′(𝒕) Convexity 

Gaussian/L2 
𝑡2

2
 t 

Convex 

L1/Laplace |𝑡| 𝑠𝑔𝑛(𝑡) 
Convex 

Charbonnier √(
𝑡

𝑠
)
2

+ 1 − 1 
𝑡

√𝑠2𝑡2 + 𝑠4
 

Convex 

Huber {

𝑡2

2
        |𝑡| ≤ 𝑠

𝑠(|𝑡| −
𝑠

2
)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 {
𝑡        𝑡 ≤ 𝑠

𝑠 ∗ 𝑠𝑔𝑛(𝑡)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Convex  

“Fair” 𝑠2[
|𝑡|

𝑠
− log (1 +

|𝑡|

𝑠
)]  

𝑡

1 +
|𝑡|
𝑠

 Convex 

Cauchy 
𝑠2

2
log (1 + 𝑡2/𝑠2) 

𝑡

1 + (
𝑡
𝑠
)
2 

Nonconvex 
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Geman-McClure 

𝑡2

2
𝑠 + 𝑡2

 

 

𝑡

(1 +
𝑡2

𝑠2
)
2 

Nonconvex 

Welsch 
𝑠2

2
[1 − exp (−(

𝑡

𝑠
)
2

)] 𝑡 ∗ exp (− (
𝑡

𝑠
)
2

) 
Nonconvex 

Threshold 

{
 

 
𝑡2

2
        |𝑡| ≤ 𝑠

𝑠2

2
    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 {
𝑡        |𝑡| ≤ 𝑠
 0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Nonconvex 

Tukey 

{
 
 

 
 𝑠

2

6
(1 − [1 − (

𝑡

𝑠
)
2

]

3

)        |𝑡| ≤ 𝑠

𝑠2

6
                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 { 𝑡 (1 − (
𝑡

𝑠
)
2

)

2

        |𝑡| ≤ 𝑠

0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Nonconvex 
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7 Datasets and evaluation method description 
 

We want to study the relaxation approach with the M-estimator 

on the loop closure. For comparing the different loss function, we 

will focus on synthetic dataset as we didn’t try to optimize the 

process in terms of running time. Also, cvx in MATLAB is well-

known for not scaling well with the amount of data. The datasets 

created are inspired by the one used in Carlone et al. (2018) 

extended for 3D testing and from Rosen et al. (2017) with 

additional outliers.  

 

7.1 Synthetic Dataset  
 

We create different type of synthetic pose graph dataset for 

testing. The first one is a totally random pose graph with high 

connectivity. The second is less random in the edges position but 

still has high connectivity. The last one is demonstrating a robot 

predefined trajectory and has low connectivity. The steps for the 

creation of the different pose graph are shown in algorithm 2. The 

subfunction in line 2 and 3 are different in function of the graph 

type and will be details later.  

 

ALGORITHM 2: SYNTHETIC POSE GRAPH CREATION 

Input: DataType, n number of node, n_lc number of loop closure, w_r rotation 

variance, w_t translation variance, p_out percentage of outliers in the loop closure. 

Output: Ground truth poses 𝑻𝑖 ∈ 𝑆𝑂(3) 

Noisy measurement edges �̅�𝑖𝑗 ∈ 𝑆𝑂(3) 

1: function [ 𝑻𝑖 , �̂�𝑖𝑗] =DATA_CREATION(𝑫𝒂𝒕𝒂𝑻𝒚𝒑𝒆,𝒏, 𝒏𝒍𝒄, 𝒘𝒓, 𝒘𝒕, 𝒑𝒐𝒖𝒕) 

2:   𝑻𝑖 ← GroundTruthPoseCreation((𝑫𝒂𝒕𝒂𝑻𝒚𝒑𝒆,𝒏) 

3:  Compute the Edge connected set 𝑬𝒄 
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4:  If 𝑬𝑪 is creating a non-connected graph, restart at 3    

5:  �̅�𝑖𝑗 ← OdometryMeasurementCreation(𝑫𝒂𝒕𝒂𝑻𝒚𝒑𝒆, �̂�𝑖, 𝑬𝒄, 𝒘𝒓, 𝒘𝒕) 

6:  For i = 1, …, n_lc do 

7:   Draw Bernouilli variable 𝒃 of probability 𝒑_𝒐𝒖𝒕   

8:   Pick an edge 𝒆𝒄 which is not in 𝑬𝒄  

9:   If 𝒃 = 1 then      

10:    �̅�𝑖𝑗 ← LoopClosureOutlierCreation(𝑫𝒂𝒕𝒂𝑻𝒚𝒑𝒆, �̂�𝑖, 𝒆𝒄, 𝒘𝒓, 𝒘𝒕) 

11:   Else 

12:    �̅�𝑖𝑗 ← LoopClosureInlierCreation(D𝒂𝒕𝒂𝑻𝒚𝒑𝒆, �̂�𝑖, 𝒆𝒄, 𝒘𝒓, 𝒘𝒕) 

13:   end 

14:  end 

15:  return 𝑻𝑖, �̅�𝑖𝑗 

16: end 

 

We can give more details on some important line in algorithm 2: 

(4) If the create graph has some node or group of nodes not 

connected, then we discard it and recreated a new one. 

 

(5) The odometry measurement links to this edge is compute using 

the model of equation 4-1 where the noise is Gaussian for the 

translation of mean 𝟎𝟑  and variance 𝑤𝑡
2 = 0.1. The rotation matrix 

noise is construct from the Euler angles which are generated from a 

gaussian of mean 0 and variance 𝑤𝑅 = 0.01.  

 

(8) The loop closure edges are chosen from the set of edges which 

are not odometry one. 

 

(10) If the loop closure is an inlier, then it is generated with the 
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same model as the odometry. 

 

(12) If the loop closure is an outlier, then we create completely 

wrong measurement by setting the noise in equation 4-1 to follow a 

uniform distribution over [−
𝐷

4
,
𝐷

4
] for the translation and  [0,2𝜋] for 

the rotation.  

 

 

7.1.1 Erdos-Rényi pose graph  
 

(2) The ground truth positions are randomly draw from a cube of 

dimension 𝑫× 𝑫×𝑫  from a uniform distribution. The orientations 

are also randomly pick from a uniform distribution between [0,2𝜋] 

for each Euler angle and then transform into the matrix 

representation. 

 

(3) Using Erdos-Rényi graph model, we first create odometry 

edges. An edge between 2 poses exists with a probability of 0.5. 

This type of graph is highly connected has more than half of the 

edges between nodes exists. An example with 𝑛 = 20 and 𝑛𝑙𝑐 = 10 is 

show in figure 7-1 where the grey edges are odometry and the red 

loop closure. 
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Figure 7-1 Erdos-Rényi pose graph example (𝑛 = 20, 𝑛𝑙𝑐 = 10) 

 

7.1.2 Geometric random pose graph  
 

(2) The ground truth positions are randomly draw from a cube of 

dimension 𝑫× 𝑫×𝑫  from a uniform distribution. The orientations 

are also randomly pick from a uniform distribution between [0,2𝜋] 

for each Euler angle and then transform into the matrix 

representation. 

(3) Using Geometric random graph model, we first create odometry 

edges. All the pose which are at a distance radius smaller than 
𝑫

3
 are 

connected. This type of graph is less connected than Erdos-Rényi 

graph but still highly connected compared to real SLAM pose graph. 

An example with 𝑛 = 20 and 𝑛𝑙𝑐 = 10 is show in figure 7-2 where 

the grey edges are odometry and the red loop closure.
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Figure 7-2 Geometric random pose graph example (𝑛 = 20, 𝑛𝑙𝑐 = 10)  

 

7.1.3 Cube pose graph  
 

(2) This type of pose graph is inspired from real pose graph for 

SLAM application. We assume the robot moves following a grid of 

size 𝑫. We used the wanted number of nodes to compute the step 

size between two nodes as 𝛿 =
𝐷

𝑛1/3−1
 

 

(3) As we reproduce a real trajectory, the connected edges set is 

just all the edge such that 𝑗 = 𝑖 + 1 . As we create the poses 

following the specific path that the robot is following. An example 

with 𝑛 = 20 and 𝑛𝑙𝑐 = 10 is show in figure 7-3 where the grey edges 

are odometry and the red loop closure. 
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Figure 7-3 Cube pose graph example (𝑛 = 27, 𝑛𝑙𝑐 = 10)   

 

 

7.2 Results estimation methods 
 

To evaluate the proposed algorithm, we compute some 

indicators. All the indicators will be computed for 10 runs to see the 

overall trend. The solver selected in cvx is the SDPT3, which is one 

of the free solvers (unlicensed one). 

 

 

7.2.1 Tightness of the relaxation    
 

One of the main information about the quality of the estimate 

is the rank of the solution of the convex relaxation problem. We 

compute the stable rank which is a real instead of an integer and 

give more precise information about how close we are from the 

rank 3. The stable rank is defined as the squared ration between 

the Frobenius norm and the spectral norm.  
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 𝑟𝑠 = (
||𝑿||

𝐹

||𝑿||
2

)

2

 (7-1) 

 The Frobenius norm is just the concatenation of all the 

coefficients which can be compute as ||𝑋||
𝐹
= (∑ |𝑥𝑖𝑗|

2𝑛
𝑖,𝑗=1 )

1/2
=

√𝑡𝑟(𝑋𝑋∗) and the spectral norm is defined using the eigenvalues as 

||𝑋||
2
= √𝜌(𝑋𝑋∗) where 𝜌(𝑋) = max

1≤𝑖≤𝑛
|𝜆𝑖|. We know that the two norms 

will always follow the property ||𝑋||
2
≤ ||𝑋||

𝐹
 and so the stable norm 

will be minimum 3 and go up if the relaxation is not tight.  

 

We also compute the relaxation gap to check if the rounding 

procedure is projecting correctly our matrix in SO(3) by using the 

formula 7-2 

 𝐺𝑎𝑝 = 𝑓1(�̂�𝑖) − 𝑓5(�̂�) (7-2) 

 

 

7.2.2 Poses error  
 

As we used synthetic dataset for testing, we have the ground 

truth data available to estimate the quality of our PGO directly. We 

will compute the mean error on the rotation and on the translation 

separately. During the optimization, the only available data are 

measurements between poses. These are relative information, so 

the final poses computed are respecting the relative measurements 

but are not the same as the ground truth poses. To compare with 

the ground truth, we first project the estimated and the ground truth 

pose in the same coordinate system by setting in the two 

trajectories the first pose to be at the origin with 0 angles. For the 

rotation we use the quaternion notation in the ARE formula of 



 

 ７８ 

equation 7-3 and for the translation we use the ATE formula of 

equation 7-4.  

 𝐴𝑅𝐸𝑖 = 2 ∗ acos (|𝑞𝑒𝑠𝑡𝑖  ∙ 𝑞𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|) (7-3) 

 

 𝐴𝑇𝐸𝑖 = ||𝑡𝑒𝑠𝑡𝑖 − 𝑡𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ||2
2  (7-4) 

 

 

8 Simulation results 
 

The different function that will be compared are the following 

one: L2, Identity, L1, Huber. For L2, as it squares the Frobenius 

norm, we have still a quadratic cost. The identity is using only the 

Frobenius norm not square, so we excepted more robustness. For 

L1, as we want to take the absolute value, we slightly change the 

formulation and use the L1 norm instead of the Frobenius norm. 

The Huber implementation has the most potential as it hard 

implements a boundary for the large error. The other convex 

function cannot be implemented in their primary form in cvx as they 

don’t follow the Disciplined Convex Programming rules. To use 

them in cvx, they need to be reformulated in a way such that cvx 

can ensure the convexity of the final form which is not always 

possible.   

 

We plot all the indicators: rank, relaxation gap, average 

rotational error, and average translation error. We plot first the 

comparison of the mean indicator value for all the different loss 

function. Then for more details analysis we plot for each function 

the mean, the minimum and the maximum of each indicator for the 

monte Carlo run in function of the outlier rate.   
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8.1 Pose graph optimization results 
 

8.1.1 Erdos-Rényi graph  
 

We plot for the 4-loss function (Identity, L2, L1 and Huber) 

the average of the 4 indicators for 20 poses and 10 loop closure 

erdos-Rényi graph. The figure 8-1, 8-2, 8-3 and 8-4 shows that 

the Huber function seems to fail in most case when there are 

outliers. We were expecting it to be the best at handling outlier so 

we will look first in more details the results only for the Huber 

function Monte Carlo run given in Table 8-1.
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Figure 8-1 Stable rank comparison for Erdos-Rényi graph 

 

Figure 8-2 Relaxation gap comparison for Erdos-Rényi graph 
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Figure 8-3 Rotational error comparison for Erdos-Rényi graph 

 

Figure 8-4 Translation error comparison for Erdos-Rényi graph 

In the table, the rank data are rounded to 3 digits. So, when the rank 

is 3, it is 2,9999. We highlight in red all the run when the rank of 

the relaxed solution was 3. We can see from the table 8-1 that our 

certifiability contract holds. When the rank of the matrix is 3, the 

error on the rotation and translation is small, in all others case the 

algorithm fails to retrieve the solution. If we refer with other state 

of the art algorithm such as Carlone et al. (2018), the Huber loss 

function should be able to retrieve the solution even at an outlier 

rate of 0.3. In my case, I’m guessing the failure is coming from my 

implementation of the Huber loss function with the Frobenius norm 

as I used a custom function to overpass a problem in the DCP 

ruleset.       
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Table 8-1 Details of Monte Carlo run for the Huber loss on Erdos-Rényi 

p_out 0 0.05 0.1 0.15 0.2 0.25 0.3 

        RANK       

1 3.000 2.437 3.000 2.662 2.395 2.481 2.727 

2 3.000 3.000 2.459 3.000 2.563 2.531 2.375 

3 3.000 3.000 2.567 2.722 2.615 2.469 2.727 

4 3.000 3.000 3.000 2.665 2.662 2.766 2.799 

5 3.000 3.000 2.408 2.374 3.000 2.625 2.421 

6 3.000 3.000 2.602 2.584 2.780 2.633 2.734 

7 3.000 3.000 2.372 2.558 2.530 2.634 2.609 

8 3.000 3.000 3.000 3.000 2.752 2.594 2.603 

9 3.000 3.000 2.586 2.543 2.401 2.514 2.532 

10 3.000 2.264 2.617 2.641 2.665 2.826 2.403 

        
RELAXATION 

GAP        

1 9.39E-08 4.61E+00 9.10E-08 3.15E+00 -1.07E+00 8.30E+00 1.27E+01 

2 -6.26E-08 2.11E-07 -8.52E-01 3.47E-08 -3.85E+00 -6.41E-01 -3.60E+00 

3 7.19E-08 6.02E-08 2.39E+00 3.74E+00 1.43E+01 -7.63E+00 -7.77E+00 

4 1.16E-09 1.91E-07 8.11E-08 3.77E+01 5.75E+00 -1.26E+01 2.24E+00 

5 1.08E-07 -1.28E-08 -1.32E+01 3.03E+00 1.66E-07 5.05E+00 5.73E+00 

6 -2.20E-08 -8.27E-09 1.62E+01 4.33E+00 1.27E+01 3.48E+00 2.03E+01 

7 -3.44E-08 7.45E-09 -4.51E+00 -9.70E-01 3.73E+00 1.10E+00 1.39E+01 

8 7.99E-08 2.09E-07 -1.45E-07 2.17E-08 2.35E+01 1.01E+01 4.49E+00 
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9 1.16E-07 1.83E-07 4.53E+00 2.02E+00 -1.47E+00 1.80E+01 1.17E+01 

10 9.95E-08 -4.95E-01 9.71E+00 4.11E+00 2.31E+01 3.71E+01 2.22E+01 

        ARE       

1 8.25E-05 1.12E-01 1.09E-04 1.13E+00 1.97E-01 7.55E-01 6.36E-01 

2 1.12E-04 7.24E-05 1.37E-01 1.01E-04 2.11E-01 5.50E-01 1.97E-01 

3 1.20E-04 8.95E-05 1.28E-01 3.50E-01 5.01E-01 6.94E-01 3.50E-01 

4 1.11E-04 9.88E-05 1.08E-04 4.35E-01 6.96E-01 4.36E-02 1.78E-01 

5 9.38E-05 9.44E-05 6.84E-02 1.78E-01 7.52E-05 1.92E+00 2.56E-01 

6 1.20E-04 1.00E-04 3.45E-01 1.03E-01 2.43E-01 3.52E-01 3.58E-01 

7 1.79E-04 1.29E-04 7.77E-02 5.71E-02 1.13E-01 9.28E-02 4.36E-01 

8 9.09E-05 1.59E-04 7.66E-05 7.99E-05 2.21E-01 2.37E-01 2.87E-01 

9 1.10E-04 9.87E-05 1.28E-01 8.19E-02 1.05E-01 2.51E-01 2.62E-01 

10 7.82E-05 1.92E-01 1.26E-01 1.78E-01 2.45E-01 3.91E-01 2.29E-01 

        ATE       

1 6.96E-05 3.98E-01 2.30E-04 1.90E+01 5.92E-01 1.14E+01 5.45E+00 

2 5.69E-05 6.79E-05 5.58E-01 6.72E-05 8.29E-01 8.06E+00 1.93E+00 

3 8.03E-05 5.59E-05 8.54E-01 2.45E+00 2.66E+00 1.08E+01 3.17E+00 

4 1.34E-04 1.43E-04 6.85E-05 1.15E+00 8.24E+00 3.09E-01 3.08E+00 

5 1.06E-04 5.06E-05 3.77E-01 3.50E+00 4.85E-05 5.64E+01 1.98E+00 

6 8.47E-05 6.15E-05 1.65E+00 6.08E-01 5.51E-01 4.05E+00 1.46E+00 

7 1.20E-04 5.93E-05 6.45E-01 7.87E-02 4.62E-01 3.30E-01 7.30E+00 

8 8.75E-05 9.21E-05 4.81E-05 6.94E-05 3.54E+00 3.15E+00 1.69E+00 

9 3.48E-05 9.56E-05 1.15E-01 3.82E-01 1.95E+00 1.80E+00 2.49E+00 

10 1.36E-04 3.81E+00 2.66E+00 2.15E+00 1.09E+00 1.24E+00 1.01E+00 
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 From now on, I will not plot the data for the Huber loss on 

the graph to be able to visually compare the 3 other functions. 

Another information that we can obtain is that only looking at the 

mean of the indicator is not meaningful as some iteration fails. So 

first we will look at the distribution of the indicator for the 3 other 

loss functions in figure 8-5. The first remark we can say is that in 

most the 3-loss function manage to retrieve a good estimate of the 

poses even with outliers. The L2 function is given better results, 

then the identity and finally the L1. So here, in this case the 

classical quadratic formulation gives better results and the L1 which 

should be the more robust gives the worse results. This comes the 

fact that this type of graph is highly connected. If we see in Figure 

7-1, the number of loop closure is really small compared to the 

number of odometry edges so even with outliers the graph stay 

resilient and using loss robust function on the loop closure actually 

made us loose some precision.   
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Figure 8-5   Details of all runs for the Erdos-Rényi pose graph   



 

 ８６ 

 

8.1.2 Geometric random graph 
 

We run the analysis for the 4-loss function (Identity, L2, L1 

and Huber) and Huber loss function is showing the same pattern as 

in the Erdos-Rényi graph. So, we don’t show the results in the 

figure 8-6 which details the results obtained for 20 nodes and 10 

loop closure for a Geometric random graph. The first think we can 

immediately tell is that the error in all runs is bigger than in the 

previous type of graph, this was predictable as the number of edges 

is reduced. In most case the 3 loss functions manage to retrieve a 

good estimate, but we start to see failure at 15 percent of outlier in 

the loop closure set.  Here the Identity function and the L1 are 

slightly better in average than L2 but all function gives order of 

error at the end.   
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Figure 8-6 Details of all runs for the geometric random pose graph   
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8.1.3 Cube graph  
 

We do the same process as before, with the Huber loss function still 

left out of the plot so we can compare the others. The cube graph is 

the one that reproduce a real trajectory the most and the less 

connected of all type of graph. This low connectivity is directly 

impacting the quality of the solution as we can see than in many 

cases with all the loss function, our proposed algorithm is failing to 

retrieve a good estimate. In this case of low connectivity graph 

even five percent of outliers can make our approach fails with the 

L1, L2 or Identity loss function.    
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Figure 8-7  Details of all runs for the cube pose graph   
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8.2 Results analysis 
 

First, from our results, we can’t really compare the Huber loss 

function with the other as the results seems wrong due to the 

implementation in cvx. But for the other 3, they show the same 

tendencies to give better results when the graph is highly 

connected. When we have a low number of edges, using the L1, L2 

or identity function is not enough to be robust against outliers. For 

highly connected graph, any of this function will give good estimates 

in a certain measure. Now we will compare additional parameters 

influence and give some interesting comment on the algorithm.   

 

8.2.1 Number of failures  
 

In every pose graph problem, there are time when the estimated 

poses are wrong, we saw that it was directly correlated with the 

rank of the estimated rotation solution. If look in details as the value 

of the final rotation error and translation error, we will define the 

boundary value for the rank to be not under 2,8. For the 3 types of 

data, we plot the number of times when the rank is over this value 

in Figure 8-8, figure 8-9 and figure 8-10. For the Erdos-Rényi 

pose graph, only the Huber fails, the 3 others always obtain a 

possible pose graph.  For the geometric random pose graph, we 

confirm our impression that more solution are completely wrong 

one with the L2 which seems to stay closer at least for a small 

number of outliers. For the cube graph, we fail to retrieve the 

solution in most case when they are outliers.  
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Figure 8-8 Number of certifiable contracts validate for Erdos-

Rényi pose graph  

 

Figure 8-9 Number of certifiable contracts validate for geometric 

random pose graph  
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Figure 8-10 Number of certifiable contracts validate for Erdos-

Rényi pose graph 

 

 

8.2.2 Computation time 
 

We can look at the computation time in function of the number of 

nodes in the graph. The graph from figure 8-11 is taken from the 

cube pose graph. In our formulation, the part that takes the most 

time is the rotation estimation by cvx especially because we need to 

reproject after. The time for retrieving the rotation is exponential in 

function of the number of nodes and the time for the translations is 

linear. 
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Figure 8-11 Computation time in function of the number of nodes 
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9 Conclusion and future works  
 

From the results, several conclusions can be drawn. First the 

computation time is too long for real application which is a common 

problem for all convex relaxation algorithm existing nowadays as 

they always run batch. The study of Semidefinite solver and the 

design of a special solver for large instance of pose graph is 

something that we need for the future of this method.  

 

Secondly, for low connectivity graph we need to use a more robust 

function than the basic L1, L2. And real life pose graphs are not 

always highly connected. Or the more connected they are, the more 

outliers there are. The paper from Yang et al. (2023) used 

Truncated Least square as robust loss function.  

 

Thirdly, in our algorithm we naively tried to keep all the information 

during the optimization and check if the relaxation is tight for study 

only. This is a good idea when optimizing the first time the pose 

graph. But as SLAM is usually an incremental process, it will be 

important to use the rank for discarding wrong solution and to 

separate the outlier after the detection for the next back-end 

update. This can help keep the outlier percentage low and still 

manageable.  

 

Lastly, the main restriction on comparing the different loss function 

comes from the convexity condition on it. So, if we want to keep the 

approach of convex relaxation, we need to rewrite the cost function 

another way. Recent work from Yang et al. (2023).  have shown a 

way to rewrite many costs function into an additional variable 
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optimizable along the poses. The relaxation used is a different one, 

i.e the Lasserre’s hierarchy relaxation. We plan in the future to 

study this type of relaxation which is more adapted for outlier 

rejection as it can use better loss function such as the Truncated 

Least square.  
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