

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Engineering

Robust pose graph optimization

with loop closure outliers

루프 폐쇄 이상치를 사용한 강력한 포즈 그래프

최적화

 August 2023

Graduate School of engineering

Seoul National University

 Naval Architecture and Ocean Engineering Major

 CAMILLE KESSELER

Robust pose graph optimization with

loop closure outliers

Thesis supervisor: Tae-Wan Kim

Submitting a master’s thesis of

engineering

June 2023

Graduate School of Engineering

Seoul National University
 Naval Architecture and Ocean Engineering Major

CAMILLE KESSELER

Confirming the master’s thesis written by

July 2023

Chair Myung-Il Roh (Seal)

Vice Chair Tae-Wan Kim (Seal)

Examiner Bo Woo Nam (Seal)

 i

Abstract

 With the increasing need of autonomous robots for

complicated environment situation such as underwater application,

more robust algorithm is needed. In simultaneous localization and

mapping algorithm, one of the core parts is the back end. The noisy

measurement and robot trajectory are process to correct the

drifting error using loop closure measurement (recognition of

previously visited place). The process of optimizing the robot poses

with respect to the sensor measurements is called pose graph

optimization (PGO). Solving a PGO problem is equivalent to solve a

maximum likelihood estimation problem where the objective

function is the error between the measurement and the poses. The

classical framework is to use a least-square formulation. However,

this formulation has several drawbacks: The sensitivity to poses

initialization first can lead to a local minima solution as it is a

nonconvex problem. Then the presence of wrong measurement with

large error, also called outliers, can lead to arbitrary wrong solution.

In this research, we aim at studying a method for PGO which

leverages the problem of initialization and is robust to outliers’

presence. The initialization sensitivity problem comes from the

nonconvexity of the minimization problem as it introduces multiple

local minima. The proposed solution is to relax the problem into a

convex one with a single global minimum. The solution of the

relaxed problem can be reprojected on the initial nonconvex

problem feasible set. Additionally, using this method we have a

contract on the certifiability of our solution, i.e we can ensure that

the solution is the global minima, or we detect the failure. For the

sensitivity to outliers, it mainly comes from the fact that the

 ii

formulation is quadratic in the error terms so if one measurement

contains a wrong large error it will dominate the objective function.

The proposed approach here is the use of M-estimator. A M-

estimator is adding a loss function around the error term to mitigate

its impact if it is too large. This thesis aims at comparing different

loss function that can be used on the chosen convex relaxation

approach. Additionally, we suppose that only edge which are loop

closure can be outliers. After deriving the formulation

corresponding to our choice, we test on 3 synthetic datasets the

different loss function and compare them. Our results show that the

convex loss function, i.e L1, L2, identity tested here do well for

highly connected pose graph but failed to stay robust for low

connectivity pose graph.

 iii

Keyword: Pose graph optimization, Outliers, Convex relaxation, M-

estimators, Loss function.

Student Number: 2020-29586

 iv

TABLE OF CONTENTS

1 INTRODUCTION .. １

1.1 BACKGROUND .. １

1.2 OBJECTIVE AND METHOD .. ４

1.3 CONTRIBUTION ... ８

1.4 SUMMARY ... ９

2 KEY CONCEPTS AND THEORETICAL BACKGROUND １０

2.1 POSE GRAPH OPTIMIZATION ... １０

2.1.1 Robot’s pose models ... １２

2.1.2 Sensor measurements models １４

2.1.3 Maximum likelihood estimation problem １８

2.2 HANDLING OUTLIERS ... １９

2.2.1 Rejection techniques ... ２１

2.2.2 Mitigation techniques .. ２２

2.3 CONVEX OPTIMIZATION .. ２３

2.3.1 Convex sets and function .. ２５

2.3.2 Convex, polynomial, and semidefinite optimization

problem ... ２６

2.3.3 Duality .. ２８

2.3.4 Algorithms for resolution .. ２９

2.3.5 Nonconvex problem and convex relaxation ３４

3 STATE OF THE ART ... ３７

3.1 SE-SYNC .. ３７

3.2 CONVEX RELAXATION FOR 2D ROBUST PGO ３８

3.3 DC-GM .. ４０

3.4 AEROS .. ４１

3.5 RISAM ... ４２

 v

3.6 COMPARISON OF RELATED WORKS WITH THIS THESIS............. ４４

4 PROPOSED PGO ALGORITHM ... ５０

4.1 MLE FORMULATION ... ５１

4.1.1 Measurements noise model choice ５１

4.1.2 M-estimators on loop closure edge ５４

4.2 2-STEPS ALGORITHM .. ５５

5 ROTATION SUB-PROBLEM RESOLUTION ５７

5.1 CONVEX RELAXATION ... ５８

5.2 ROUNDING PROCEDURE ... ６２

5.3 CERTIFIABILITY CONTRACT ... ６４

6 LOSS FUNCTION .. ６５

6.1 THEORY ... ６６

6.2 COMMON LOSS FUNCTION COMPARISON ６７

7 DATASETS AND EVALUATION METHOD DESCRIPTION .. ７１

7.1 SYNTHETIC DATASET .. ７１

7.1.1 Erdos-Rényi pose graph ... ７３

7.1.2 Geometric random pose graph ７４

7.1.3 Cube pose graph .. ７５

7.2 RESULTS ESTIMATION METHODS.. ７６

7.2.1 Tightness of the relaxation ... ７６

7.2.2 Poses error .. ７７

8 SIMULATION RESULTS .. ７８

8.1 POSE GRAPH OPTIMIZATION RESULTS..................................... ７９

8.1.1 Erdos-Rényi graph .. ７９

8.1.2 Geometric random graph ... ８６

8.1.3 Cube graph ... ８８

 vi

8.2 RESULTS ANALYSIS.. ９０

8.2.1 Number of failures ... ９０

8.2.2 Computation time ... ９２

9 CONCLUSION AND FUTURE WORKS ９４

 vii

List of Figure

Figure 1-1 Active SLAM framework, demonstrated for ship hull

inspection (Chaves et al., 2016) ... ２

Figure 1-2 SLAM overall architecture ... ３

Figure 1-3 Example of failure due to loop closure outlier ６

Figure 1-4 Input, output, and flowchart of the proposed PGO ７

Figure 2-1 Pose graph representation of robot trajectory (Grisetti

et al., 2010) ... １１

Figure 2-2 Coordinate transform (Xiang Gao et al., 2021) １２

Figure 2-3: Augmented pose graph with switch variables (Niko

Sünderhauf et al., 2012) ... ２２

Figure 2-4 Examples of simple convex set (Left hexagon) and

nonconvex sets (Middle kidney shape, Right square)(Boyd et al.,

2004) ... ２５

Figure 2-5 Graph of a convex function (Boyd et al., 2004)......... ２６

Figure 2-6 Descent method algorithm (Boyd et al., 2004) ３０

Figure 2-7 Basic Primal-dual interior-point algorithm (Boyd et al.,

2004) ... ３３

Figure 2-8 Convex relaxation concept of a function (Erik F.

Alvarez; 2019) .. ３５

Figure 3-1 The SE-Sync algorithm (David M. Rosen et al., 2017)

 ... ３８

Figure 3-2 Estimation errors for the 6 approaches for Geometric

random graphs (Carlone et al., 2018) ３９

Figure 3-3 Discrete-continuous graphical model (Pierre-Yves

Lajoie et al., 2019) .. ４０

Figure 3-4 Adaptive loss kernel and its weight (Milad Ramezani et

al., 2022) ... ４２

file:///C:/Users/camil/Desktop/work%20in%20progress/Thesis_My_Algo_theory.docx%23_Toc142053222

 viii

Figure 3-5 Example of GNC solving a linear problem with outliers

(Daniel McGann et al., 2022) ... ４３

Figure 4-1 Flow chart of our proposed PGO ５０

Figure 4-2 Flow chart of the 2-steps algorithm ５６

Figure 5-1 Illustration of non-convex feasible set relaxation ５８

Figure 5-2 Problem derivation chart ... ５９

Figure 6-1 Common loss function shape ６８

Figure 7-1 Erdos-Rényi pose graph example (𝑛 = 20, 𝑛𝑙𝑐 = 10) . ７４

Figure 7-2 Geometric random pose graph example (𝑛 = 20, 𝑛𝑙𝑐 = 10)

 ... ７５

Figure 7-3 Cube pose graph example (𝑛 = 27, 𝑛𝑙𝑐 = 10) ７６

Figure 8-1 Stable rank comparison for Erdos-Rényi graph ８０

Figure 8-2 Relaxation gap comparison for Erdos-Rényi graph .. ８０

Figure 8-3 Rotational error comparison for Erdos-Rényi graph. ８１

Figure 8-4 Translation error comparison for Erdos-Rényi graph . ８

１

Figure 8-5 Details of all runs for the Erdos-Rényi pose graph ８５

Figure 8-6 Details of all runs for the geometric random pose graph

 ... ８７

Figure 8-7 Details of all runs for the cube pose graph ８９

Figure 8-8 Number of certifiable contracts validate for Erdos-

Rényi pose graph ... ９１

Figure 8-9 Number of certifiable contracts validate for geometric

random pose graph .. ９１

Figure 8-10 Number of certifiable contracts validate for Erdos-

Rényi pose graph ... ９２

Figure 8-11 Computation time in function of the number of nodes ９

３

 ix

List of Table

Table 2-1 Measurement noise distribution model １６

Table 2-2 Descend direction method .. ３１

Table 3-1 Comparison of related work (robust pose graph

optimization approach) .. ４５

Table 3-2 Comparison of related work (Simulation setup) ４８

Table 6-1 Loss function list ... ６９

Table 8-1 Details of Monte Carlo run for the Huber loss on Erdos-

Rényi .. ８２

 １

1 Introduction

1.1 Background

Nowadays, we have seen a rapid and steady improvement in

robotics techniques, and noticeably for the autonomous robot field.

Autonomous robots are the ones operating without human control.

For instance, when a robot is given the task to go to a precise

position, in the past, we had either to detail its trajectory

beforehand or to use a remotely operated vehicle (ROV). For

autonomous robot, we only need to fix the final position. The robot

will decide by himself how to attain the goal. Researchers first

developed autonomous technologies for small robots in indoor

environments. Yet the recent algorithm and sensor improvements

made it possible to apply autonomous robots for outdoor

applications such as self-driving cars. And recently, more projects

using marine robots are taking place and pinpointing the possibility

of using similar technologies and algorithms for naval robotics as

shown in Zereik et al., 2018.

There is a wide range of possible uses for autonomous robots

in marine robotics such as for military operations, scientific and

environmental research, transport of people or good or mining and

oil industry. The marine robots are usually separated in two

categories: unmanned surface vehicles and unmanned underwater

vehicles. The former type is design to navigate at the surface of the

sea. One application is for merchandise transport, and more

specifically for self-docking. The latter type is aiming for

underwater operation. It can be for deep sea observation or ship

 ２

hull inspection as illustrate in figure 1-1. More applications

examples can be found in Yuh et al. (2011).

Figure 1-1 Active SLAM framework, demonstrated for ship

hull inspection (Chaves et al., 2016)

In all type of applications for autonomous navigation, the

mainstream strategy which give the best result so far is

simultaneous localization and mapping (SLAM). In this algorithm,

the robot is computing its position and creating the map of its

environment at the same time. This bring an additional complexity

as the localization and mapping problem are intimately link. SLAM

was usually called a chicken or the egg problem, because we need

the map to compute our position and to build a map, we need to

know our position. Nowadays different type of SLAM algorithms

exists in function of the sensor data available on the robot and the

real-life application. Still, they all tend to follow the same

architecture show in figure 1-2.

The input data for SLAM depends on the robot’s sensor at

disposition, it can be images from a camera, point cloud from a lidar

or spatial position from a GPS for instance. The output is generally

the robot position and the map of the environment, but how we

 ３

represent the robot position, and the map depends on our need. The

map can be a full 3D map representation or just the localization of

interesting object in the space. The robot localization information is

usually stored in a pose graph, the nodes of the graph are the

estimated positions, and each edge of the graph contains a sensor

measurement between these 2 positions.

Figure 1-2 SLAM overall architecture

As for the main core of the algorithm, it can be separated into 2

interconnected parts: front end and back end. The front-end is a

quick real-time process which process the raw sensor input data to

compute a first approximate position of the robot, it also uses this

processed data to initialize and update the pose graph and the map

with noisy information. Sometimes the robot can recognize a place it

already visits when comparing sensor data and the created map,

when this happens, we create an extra edge in the pose graph

linking the two corresponding poses. This type of edge is called

loop closure edge as they form a loop in the pose graph. After the

loop closure detection, we call the back-end part. Usually, it is a

 ４

slower process than the front-end and cannot be perform real-

time. Its main goal is to reduce the error in the estimated poses and

map by the front-end due to the noise in the sensor. It first

performs a pose graph optimization (PGO) to reduce the overall

error in robot poses and then update the pose graph when finished.

Finally, it also corrects the map using this new pose and the data

available. In this approach the front-end is solving the localization

problem using sensor data and the past information corrected by the

back end. The back end is doing the mapping jobs based on the

approximated positions compute by the front-end. They run at the

same time on different thread, and so they can solve a SLAM

problem.

1.2 Objective and method

One crucial step in the whole SLAM process is the pose graph

optimization during the back end and we will focus on this part. As

mentioned before, the noisy full trajectory is corrected using

previous poses, new poses, and loop closure information. Pose

graph optimization suffers from several short-coming in classical

approach: timescale, initialization sensibility and outlier sensibility.

In more details, the first important point to look at in PGO is the

large size of the data to optimize and not all method for solving it

scale well i.e., some methods are too slow to use in SLAM and can

only be used for offline mapping. Another point is that the estimated

poses are computed from all the measurements (edges) using a

Maximum Likelihood (ML) formulation. That is solving a non-linear

least squares minimization problem. Classical solvers such as g2o

from Kümmerle et al. (2011) are based on gradient descend

 ５

approach which is sensitive to initialization as the problem contains

multiple local minima (non-convex formulation). The scale and time

problem will not be study in these first approach. For the

initialization sensibility problem, we choose to focus on method

using convex relaxation of the MLE formulation to solve PGO such

as in Carlone et al. (2018). This method leverages the problem of

multiple local minima.

The last point is the sensitivity to outliers, we want to improve

the robustness of the pose graph estimation algorithm against

outlier. In the pose graph representation of the robot’s trajectory,

each node is an estimated pose, and each edge is a measurement

between two poses. Using this information, PGO try to minimize the

error on edge by correcting the robot poses. But in this approach, if

one edge measurement is corrupted by a larger noise or simply is

an edge that does not describe the reality of our robot position, then

the optimization process will converge to a wrong trajectory. We

call this type of edge outliers, and one can severally impact the

quality of the result trajectory. The figure 1-3 illustrates a failure

of PGO because of wrong loop closure detection.

 ６

Figure 1-3 Example of failure due to loop closure outlier

In SLAM, the front-end will generate new pose and

measurement for the pose graph. When using images as input data it

is more likely that some outliers will appear over time, especially

when trying to recognize previously visited place (loop closure

edge generation). To reduce the impact of these outliers on the

PGO, we take the mitigation approach which means we want to keep

using the information of this edge, but we reduce the importance

given to it as it seems suspicious to have large error in the pose

graph. One way to achieve this that we pick is to add a loss function

to the error term in the MLE formulation, which a method called M-

estimators (Bosse et al., 2016).

We want to study the impact of different loss functions apply

to the loop closure edges to reduce the outlier impact in pose graph

optimization solved with a convex relaxation approach in 3D. For

this we propose a 2-stage approach where we solve first only the

rotation problem by relaxing the problem, then round the solution

and finally solve the translation problem using the rounded rotation

 ７

matrix. The flowchart of our algorithm is show in image 1-4.

Figure 1-4 Input, output, and flowchart of the proposed PGO

 ８

1.3 Contribution

Our thesis brings new items and more details study to the

research about robust pose graph optimization:

1) Derivation of the convex relaxation for the MLE general

formulation with loss function in 3D.

2) Study and comparison of different loss functions use only on

the loop closure edge.

 ９

1.4 Summary

In Chapter 1, we introduce the topic of autonomous robotics

and the drawbacks of pose graph optimization when use in SLAM

algorithm. We also explain how we intend to contribute to the

robust pose graph optimization literature. In Chapter 2, we will

define the key concepts necessary for the understanding of the

thesis and precisely detail the theoretical background needed. In

Chapter 3, different PGO algorithms link to our approach are

presented and compared with our approach. The chapter 4 and 5

explains in more details the proposed PGO algorithm with the

different choice made in its formulation, such as the 2-steps

approach, the convex relaxation, and the loss function. In Chapter 6,

the different loss functions are explained and studied. Starting from

chapter 7, we will focus on the testing with first the description of

the datasets used and the different parameters for testing. In

chapter 8, the simulation results will be show and interpreted. In

last, we will conclude and highlight the possible future works for

this thesis.

 １０

2 Key Concepts and Theoretical background

To understand completely this thesis, we need to explain in

more details several concepts and their theoretical parts. In the

introduction, we write that the trajectory of the robot is represent

by a pose graph which is optimized to correct the error present in

the measurement. In the part (2.1), we will detail the different

representation possible for the positions and measurements and

how to mathematically represent the pose graph optimization

problem. Moreover, since we want to study robust pose graph

optimization, the part (2.2) is given a review of how to handle

outliers. In the last part (2.3), we explain the theory of convex

optimization and how to use it even when the problem is not convex.

2.1 Pose graph optimization

 The trajectory of a robot is defined as the path that it takes

through space as a function of time. An equivalent definition can be

all the spatial positions of the robot at the different time instants.

And so, following this idea, we intuitively represent the trajectory

as a pose graph. Each node is a position 𝑥𝑖 at a certain instant 𝑡𝑖 of

the robot. Between each computed position we have a sensor

measurement 𝑥𝑖𝑗 which is represented by an edge containing the

transformation between the two positions (𝑥𝑖 to 𝑥𝑗). The edges

between consecutive poses model odometry measurements and are

from sensor such as IMU or wheel encoders. The edges between

nonconsecutive nodes are for loop closure measurements as they

permit to create loop in the graph model and are necessary against

the drift of odometry measurement. To detect them, images of the

environment are mainly used with the map information to interpret

 １１

if we already visit the position and if we can create an edge. Grisetti

et al. (2010) gives a deeper explanation of Graph-Based SLAM.

Figure 2-1 Pose graph representation of robot trajectory (Grisetti

et al., 2010)

 Using the graph representation as illustrated in figure 2.1,

we can used general graph optimization techniques to find the “best”

positions/nodes given all the measurement/edges. This approach to

determine the trajectory of our robot highlights the spatial structure

of the problem and separates the work in 2 parts: first builds the

graph from the raw sensors data (front-end) and second optimizes

the node position to fit the overall measurements (back-end). The

optimization part is not related to the sensors measurement but to

the pose graph model chosen, which means the result will depend

on the robot pose model and the sensor measurement model define

when creating the graph.

 １２

2.1.1 Robot’s pose models

The pose of a robot (rigid body assumption) is composed of

2 elements: the position and the orientation. In a classical robotics

setup as explained in Gao et al. (2021), we define a fixed world

coordinate system as a basic for the map and a moving coordinate

system which represents the robot. The position and orientation of

the robot are described as the coordinate transform from the world

coordinate to the robot coordinate system as illustrated in Figure

2-2. So, the robot position will be seen as a translation and the

robot orientation as a rotation. As we consider a rigid body motion,

we can use Euclidean transform to represents the motion. It is

composed as we said of rotation and translation. The translation is

simply a dimension 3 vector 𝒕𝑊𝐶 which is the vector from the world

system’s origin pointing to the robot system origin express in the

world coordinate system.

Figure 2-2 Coordinate transform (Xiang Gao et al., 2021)

 １３

For the rotation, it exists different way of expressing it

mathematically. The most well-known is the rotation matrix

representation. They are orthogonal matrices with determinant 1

and form the special orthogonal group (SO). For the 3D case, all the

rotation of the three-dimensional space are the set SO(3) defined

as:

 𝑆𝑂(3) = {𝑹 ∈ ℝ3×3|𝑹𝑹𝑇 = 𝑰, 𝑑𝑒𝑡(𝑹) = 𝟏} (2-1)

So, the rotation from the robot coordinate system to the

world coordinate system can be represented by the 3x3 matrix 𝑹𝑊𝐶.

Using this matrix representation, if we have the vector 𝒂𝐶 measure

in the robot coordinate system, then its coordinate 𝒂𝑊 in the world

coordinate system can be compute using the formula:

 𝒂𝑊 = 𝑹𝑊𝐶𝒂𝐶 + 𝒕𝑊𝐶 (2-2)

This representation used 9 quantities to describes 3 degrees

of freedom. So, an alternative method is to use a single 3-

dimensional rotation vector which represent 3 Euler angles of

rotation (the actual rotation is decomposed into 3 consecutives

rotation around predefined Euler axis). This is a minimal

representation for the rotation, but it suffers from the singularity

problem and so cannot be used for expressing pose directly. The

last possible representation is a 4-dimensional vector called

quaternion, it a compact and not singular form but non intuitive.

They are extended complex numbers with a real part and three

imaginary parts. We will use rotation matrix for the sake of

simplicity in our research.

 １４

In our pose graph, each pose to estimate is noted 𝑻𝑖 ≜

[𝑹𝑖 𝒕𝑖] which comprises a translation vector 𝒕𝑖 ∈ ℝ
3 and a rotation

matrix 𝑹𝑖 ∈ 𝑆𝑂(3). Additionally, they can be represented together in

a matrix form using the special Euclidean group, define for the 3D

case as:

 𝑆𝐸(3) = {𝑻 = [
𝑹 𝒕
𝑶𝑇 1

] ∈ ℝ4×4| 𝑹 ∈ 𝑆𝑂(3), 𝒕 ∈ ℝ3} (2-3)

2.1.2 Sensor measurements models

Each edge in the pose graph contains information about a

measurement from either processed sensors or computed loop

closure. Since the pose is a rotation matrix and a translation vector,

the measurement is also define using a rotation matrix and a

translation vector, but they define a motion between 2 coordinates

system not a coordinate system. In Euclidean geometry, if we have

the pose 𝑻𝑖 and the pose 𝑻𝑗, the transform between the two of them

is 𝑻𝑖𝑗 ≜ [𝑹𝑖𝑗 𝒕𝑖𝑗] and follows the formulae 𝒕𝑖𝑗 = 𝑹𝒊
𝑻(𝒕𝒋 − 𝒕𝒊) and 𝑹𝑖𝑗 =

𝑹𝒊
𝑻𝑹𝒋.

If the measurement were perfect, we could use this model,

but the reality is that the measurements are noisy. So, we need to

add an additional term to the measurement model, a noise term

[𝑹𝑖𝑗
𝝐 𝒕𝑖𝑗

𝜖]. The model for the noisy measurement 𝑻𝑖𝑗̅̅ ̅̅ ≜ [𝑹𝑖𝑗̅̅ ̅̅ 𝒕𝑖𝑗̅̅ ̅] is

then:

𝒕𝒊𝒋̅̅ ̅ = 𝑹𝒊

𝑻(𝒕𝒋 − 𝒕𝒊) + 𝒕𝒊𝒋
𝝐 , 𝑹𝒊𝒋̅̅ ̅̅ = 𝑹𝒊

𝑻𝑹𝒋𝑹𝒊𝒋
𝝐 (2-4)

The noise is supposed to follow a probability distribution. The

choice of the probability distribution type will strongly impact the

 １５

PGO results because it models how much of the measurement

information can be wrong. There are several distributions that are

commonly used for PGO formulation derivation (Carlone et al.

(2018); Gómez, E. et al. (1998); Gao et al. (2021)), we will list

them in the table 2-1 with their density function and parameters.

 １６

Table 2-1 Measurement noise distribution model

Distribution Probability density function Variable Parameters

Translation 𝒕𝒊𝒋
𝝐 ~

Multivariate

Gaussian

or Normal

𝒩(𝒙; 𝜇, Σ) =
1

√(2𝜋)𝑑|Σ|)
∗ exp(−

1

2
(𝒙 − 𝝁)𝑇𝛴−1(𝒙 − 𝝁)) 𝒙 ∈ ℝ𝑑

Mean 𝜇 ∈ ℝ𝑑

Covariance 0 ≼ Σ ∈ Sym(d)

Multivariate

exponential

power

𝐸𝑥𝑝𝑃𝑜𝑤(𝒙; 𝝁, Σ, β) = 𝑐 ∗ exp (−
1

2
[(𝒙 − 𝝁)𝑇𝛴−1(𝒙 − 𝝁)]𝛽) 𝒙 ∈ ℝ𝑑

Mean 𝜇 ∈ ℝ𝑑

Covariance 0 ≺ Σ

Kurtosis 𝛽 > 0

Normalization constant 𝑐

 １７

Rotation 𝑹𝒊𝒋
𝝐 ~

 Wrapped

gaussian for

SO(3)

𝑹𝒊𝒋
𝝐 = 𝒆𝒙𝒑([

𝟎 −𝝐𝟑 𝝐𝟐
𝝐𝟑 𝟎 −𝝐𝟏
−𝝐𝟐 𝝐𝟏 𝟎

]), where 𝛜 ∼ 𝓝(𝜇, Σ)
𝑹𝒊𝒋
𝝐 ∈ 𝑺𝑶(𝒅)

𝛜 ∈ ℝ𝟑

Mean 𝜇 ∈ ℝ3

Covariance 0 ≼ Σ ∈ Sym(d)

Von Mises 𝑉𝑜𝑛𝑀𝑖𝑠𝑒𝑠(𝜃, 𝜇, 𝜅) = 𝑐(𝜅) exp(𝜅cos (𝜃 − 𝜇))

𝑹𝒊𝒋
𝝐 (𝜃) ∈ 𝑺𝑶(𝟐)

Angle 𝜃

Mean 𝜇

Concentration 𝜅

 Isotropic

Langevin
𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛(𝑿;𝑀, 𝜅) =

1

𝑐𝑑(𝜅)
exp(𝜅 𝑡𝑟(𝑀𝑇𝑋)) 𝑿 ∈ 𝑆𝑂(𝑑)

Mode 𝑀 ∈ 𝑆𝑂(𝑑)

Concentration 𝜅 ≥ 0

Normalization constant 𝑐𝑑(𝜅)

Directional L

aplace
𝐷𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝜃; 𝜇, 𝜅) = 𝑐 ∗ 𝑒𝑥𝑝(−𝜅 |sin (

𝜃 − 𝜇

2
)|)

𝑹𝒊𝒋
𝝐 (𝜃) ∈ 𝑺𝑶(𝟐)

𝜃 ∈ (−𝜋,+𝜋]

Mean 𝜇 ∈ (−𝜋,+𝜋]

Scale 𝜅 > 0

Normalization constant 𝑐

 １８

2.1.3 Maximum likelihood estimation problem

The poses in the node are the variables of the optimization

problem and the measurement edges are the information uses to

adjust these poses variables. And more precisely, we know the

sensor measurements and the chosen measurement model, so what

we want is to minimize the errors between them by choosing the

“best” value for the poses. This is equivalent to solve a maximum

likelihood estimation problem where the 𝜃 is the unknow pose and

the 𝑋𝑖 are the measurement.

 max
𝜃
𝐿(𝜃|𝑋1, … , 𝑋𝑁) (2-5)

The translation of this optimization problem is ‘we search

the poses 𝜃 that are more likely to be knowing the measurement 𝑋𝑖’.

We rewrite the generic MLE formula first by replacing the generic

variable by our problem one and the likelihood by a probability

distribution.

 max
{𝒕𝑖},{ 𝑹𝑖}

ℙ ({𝑹𝑖𝑗̅̅ ̅̅ }, { 𝒕𝑖𝑗̅̅ ̅ } | {𝒕𝑖}, {𝑹𝑖}) (2-6)

The probability distribution is for all nodes 𝑖, 𝑗 , to simplify the

formulation we suppose that all the measurement {𝑹𝑖𝑗̅̅ ̅̅ }, { 𝒕𝑖𝑗̅̅ ̅ } are

independent so the total probability becomes the product of all

probably over the edges of the graph.

max
{𝒕𝑖},{ 𝑹𝑖}

∏ ℙ(
(𝑖,𝑗)∈ℰ

𝑹𝑖𝑗̅̅ ̅̅ , 𝒕𝑖𝑗̅̅ ̅ | 𝒕𝑖, 𝒕𝑗, 𝑹𝑖, 𝑹𝑗) (2-7)

The next step is a well-known trick for MLE estimation problem

reformulation, we take the negative logarithm of the objective

function. Searching for the maximum of a function is the same as

 １９

searching for the minimum of the opposite function (max𝑓 = min−𝑓).

The logarithm function is monotone increasing, so it scales the

function but doesn’t change the position of the maxima/minima

(min𝑓 = min log 𝑓).

min
{𝒕𝑖},{ 𝑹𝑖}

−log (∏ ℙ(
(𝑖,𝑗)∈ℰ

𝑹𝑖𝑗̅̅ ̅̅ , 𝒕𝑖𝑗̅̅ ̅ | 𝒕𝑖, 𝒕𝑗, 𝑹𝑖 , 𝑹𝑗)) (2-8)

From this we just separate the logarithm of the product into the

sum of logarithm. Additionally, we can suppose that the translation

and rotation are separate term too.

min
{𝒕𝑖},{ 𝑹𝑖}

− ∑ ln (ℙ(
(𝑖,𝑗)∈ℰ

𝑹𝑖𝑗̅̅ ̅̅ | 𝑹𝑖 , 𝑹𝑗)) − ∑ ln (ℙ(𝒕𝑖𝑗̅̅ ̅ | 𝒕𝑖 , 𝒕𝑗 , 𝑹𝑖))
(𝑖,𝑗)∈ℰ

 (2-9)

 This formulation is the MLE used in PGO as show Carlone et

al. (2015). The only last step to obtain a computational useful

formula is to pick the probability distribution model for the

measurement noise and replace ℙ(.) by its explicit form. In a more

general case, when solving a MLE the most common assumption for

the noise is the gaussian distribution which leads to a non-linear

least-square estimator:

min
{𝑻𝑖}

 ∑ ||𝑒(𝑻𝑖𝑗 , 𝑻𝑖, 𝑇𝑗)||
2

2

(𝑖,𝑗)∈ℰ

 (2-10)

2.2 Handling Outliers

The standard form of the MLE in PGO assumes a nominal

distribution of the noise (Gaussian distribution usually) which is a

light-tailed noise distribution. This assumption leads to a quadratic

form of the MLE objective function, so if some errors are far from

the nominal value, they will strongly impact the results. If all

 ２０

measurements are inliers, then the optimization process will work.

But if there is one spurious measurement which move away from

the nominal noise, then the algorithm fails, and the computed poses

are incorrect estimates. The spurious measurements which are far

away from the nominal noise are represented by a heavy-tailed

noise distribution which violated the light-tailed noise distribution

assumption.

Outliers are measurements between 2 poses with a large

error not representative of the reality of our robot movement. For

instance, the robot arrives at position 𝑇𝑗 and see a blue chair. The

front-end detects that a blue chair was seen before and so

supposed the place was visited previously by the robot at the

corresponding position 𝑇𝑖. It computed the difference of position 𝑇𝑖𝑗

between 𝑖 and 𝑗 supposing the chair is the same one in the two

images. Next in the pose graph a loop closure edge is created with

the 𝑇𝑖𝑗 measurements information. However, the chair was a

different one in reality and the position 𝑇𝑖 and 𝑇𝑗 are far from each

other’s. So, the error 𝑇𝑗 − 𝑇𝑖𝑇𝑖𝑗 contains in the graph edge will be

high compares to the other edge errors. When the back end

minimizes the overall error on all edges, if the cost is quadratic this

“wrong” edge will heavily impact the results.

Sometimes outliers can come from a sensor failure. But

most of the time in PGO, the outlier’s creation comes from incorrect

data association as the example developed before show. This means

supposing the loop closure edges are more likely to be outlier.

Since we need loop closure edge in the pose graph to correct the

drift error and increasing the connectivity of the graph, we tend to

 ２１

be laxist on the condition for the loop closure detection and then

considers that they will be outlier in the pose graph. Especially

since in human made environments it is more likely that places will

generate similar visual or information footprint that algorithms will

not be able to tell apart. This phenomenon is called perceptual

aliasing and is known to create highly correlated loop closure in

pose graph as supposed in Lajoie et al. (2019). Techniques for

handling outliers can be classified either as rejection or mitigation.

2.2.1 Rejection techniques

Also called removal techniques, they aim at explicitly

identify spurious measurements or expressed differently, they try

to establish if a given edge is an outlier or an inlier. A first type of

approach is maximum consensus where we first used an algorithm

such as RANSAC (random sample consensus) or RRR (realizing,

reversing and recovering) from Latif et al. (2013) to identify the

largest set of edge which are jointly consistent. Then we apply non

robust optimization techniques on this pre-computed set. However,

this add complexity and is inefficient. The other type of rejection

techniques approach is aiming at finding the rejected outlier at the

same time as optimization the pose, and so is a robust estimation

technique which is better for computation time.

The most well-known algorithm using rejection is

switchable constraints (SC) from Niko Sünderhauf et al. (2012).

The basic idea is to add a switch variable to all loop closure edge as

shown in the figure 2-7. These extra variables decide if edges are

use in the optimization process or not. They are optimized at the

same time as the pose as they appear in the switch function

 ２２

 Ψ(sij): ℝ → [0,1] which is multiply to the loop closure error in the

objective function. There is a, open-source implementation in C++

called VERTIGO which permits to solve pose graph in g2o and

gtsam with the switchable constraints method.

Figure 2-3: Augmented pose graph with switch variables (Niko

Sünderhauf et al., 2012)

2.2.2 Mitigation techniques

 In opposition with the removal techniques, the mitigation

techniques want to keep all the measurements during the

optimization. They want to reduce the impact of the outlier without

neglecting some measurements. They exist several algorithms

taking this approach, the dynamic covariance scaling (DCS)

algorithm (Agarwal et al., 2013) is an extension of switchable

constraints but instead of introducing new variables, it gives an

analytic formula for the weight in front of the loop closure edge.

Another approach which uses adaptive coefficient in front of the

loop closure error is the expectation-maximization (EM) algorithm

from Lee et al. (2013). It supposes the weight to be Cauchy

function and first computes their value by minimizing the error (the

 ２３

weights are the only variables), then using the computed weight it

optimizes the pose graph. The Max-mixtures algorithm (Max-Mix)

from Olson et al. (2013) supposes the noise distribution to be a

mixture of gaussians instead of a single gaussians.

 But the mainstream approach for robust mitigation of outlier

is the use of M-estimators as explain in Bosse et al. (2016). It is

basically an extended MLE, where instead of solving the classical

non-linear least-squares problem over the residuals, they add a

loss function over the squared error:

min
𝜃
 ∑𝝆(||𝑒(𝜃)||

2
) (2-11)

The goal is to use a loss function 𝝆 which reduce the influence of

large error in the sum, for instance Huber or Geman-McClure (GM)

function. This can be solve using Iterative Re-weighted non-linear

least-squares. The DCS and expectation-maximization algorithms

show similar behavior than M-estimator for specific loss function.

Graduated non convexity technics are based on a M-estimator

where the loss function convexity can be control by a parameter.

2.3 Convex optimization

All the theory from this part is explained in greater details in

Boyd et al. (2004). Mathematical optimization problems have the

following standard form with an optimization variable 𝑥, an objective

function 𝑓0 , inequality constraint functions 𝑓𝑖(𝑥) and equality

constraint functions ℎ𝑖(𝑥).

 ２４

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑓0(𝑥)

𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1,… ,𝑚

ℎ𝑖(𝑥) = 0, 𝑖 = 1,… , 𝑝

(2-12)

Optimization problem can be classified in function of the forms of

the objective and constraint functions. For instances, when all the

functions are linear, we call the optimization problem a linear

program. But PGO is known to be a non-linear optimization problem,

which means that the objective and/or the constraints functions are

non-linear. Most family of optimization problem have been studied

and solution methods (algorithm) with their software

implementation exists. But nonlinear optimization stays a

challenging problem as we need to compromise between accuracy

and time. The local optimization approach seeks to find a local

minimum usually using derivative of the objective function. The

most common algorithms are Gauss-Newton (GN) or Levenberg-

Marquardt (LM) and are implemented in solver such as g2o or

ceres. It is a fast but need initialization and no guarantee of

obtaining the global minima. Whereas global optimization method

finds the global minimum but doesn’t scale well.

A convex optimization problem has only one global minimum,

so we can apply to it a fast local optimization algorithm without

being worried about finding a local minimum (non-global minima).

Given this nice property, convex optimization problem and their use

for non-convex optimization problem have study and we will

present the theory here.

 ２５

2.3.1 Convex sets and function

 A convex set is a set which contains the line segment

between any two points in the set as illustrated in figure 2-3. The

hexagon on the right is a convex set. But the kidney shaped set in

the middle is not convex as part of a line segment is out the set.

Similarly, the square shape on the right is not a convex set as some

boundary points are not contains in the set so the line segment

overlapping with the boundary will not be contains in this set.

Figure 2-4 Examples of simple convex set (Left hexagon) and

nonconvex sets (Middle kidney shape, Right square)(Boyd et al.,

2004)

The mathematical definition of a convex set is just a formalization

of this idea, for all point 𝑥1, 𝑥2 ∈ 𝐶 , the line segment 𝜃𝑥1 + (1 − 𝜃)𝑥2

is in the set:

𝑥1, 𝑥2 ∈ 𝐶, 0 ≤ 𝜃 ≤ 1 => 𝜃𝑥1 + (1 − 𝜃)𝑥2 ∈ 𝐶 (2-13)

 A convex function is a function define on a convex set which

has all line segment between any two points of the function above

the function as show in figure 2-4.

 ２６

Figure 2-5 Graph of a convex function (Boyd et al., 2004)

The formal definition is: a function 𝑓:ℝ𝑛 → ℝ is convex if 𝒅𝒐𝒎 𝑓 is a

convex set and if for all 𝑥, 𝑦 ∈ 𝒅𝒐𝒎 𝑓, and 𝜃 with 0 ≤ 𝜃 ≤ 1, we have

𝑓(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃𝑓(𝑥) + (1 − 𝜃)𝑓(𝑦)

(2-14)

2.3.2 Convex, polynomial, and semidefinite optimization

problem

A convex optimization problem is a problem of the form:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑓0(𝑥)

𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1,… ,𝑚

𝑎𝑖
𝑇𝑥

= 𝑏𝑖, 𝑖

= 1,… , 𝑝

(2-

15)

where 𝑓𝑂, … , 𝑓𝑚 are convex functions. So compared to the standard

form of optimization problem, the additional constraints are the

convexity of the objective and inequality constraint functions, and

the equality constraint functions must be affine.

 ２７

A polynomial optimization problem (POP) is a problem of the

form:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑓0(𝑥)

𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1,… ,𝑚

ℎ𝑖(𝑥)

= 0,

𝑖

= 1,… , 𝑝

(2-16)

where 𝑓𝑂, … , 𝑓𝑚, ℎ0, … , ℎ𝑝 are real polynomials functions. Many

fundamental problems in geometric perception such as PGO can be

reformulated as POP. But POP are non-deterministic polynomial-

time hard problems (NP-hard), which means that we cannot prove

that a polynomial time solution exists. Most robust estimators are

hard to compute as show in Bernholt, T. (2006).

A semidefinite programming problem (SDP) is a problem of

the form:

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑡𝑟(𝐶𝑋)

𝑡𝑟(𝐴𝑖𝑋) = 𝑏𝑖, 𝑖 = 1,… , 𝑝

𝑋 ≽ 0

(2-17)

Where the variable is a real symmetric matrix (𝑋 ∈ 𝑺𝑛), and the

matrices 𝐶, 𝐴1, … , 𝐴𝑝 are also real symmetric matrix. The condition

𝑋 ≽ 0 means that we search a positive semidefinite solution matrix.

SDP program are convex optimization problem which can be solved

efficiently for small and medium size problems with a global

minimum.

 ２８

2.3.3 Duality

 For any optimization problem in standard form (equation 2-

12), we can define the Lagrangian dual function 𝑔 using the

Lagrangian multiplier 𝜆𝑖, 𝜈𝑖.

𝑔(𝜆, 𝜈) = inf
𝑥∈𝒟

(𝑓𝑜(𝑥) +∑𝜆𝑖𝑓𝑖(𝑥) +∑𝜈𝑖ℎ𝑖(𝑥)

𝑝

𝑖=1

)

𝑚

𝑖=1

 (2-18)

The Lagrangian dual function is concave and can have infinite value

in some points. Using this function, we can write the dual problem

of the primal initial optimization problem.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑔(𝜆, 𝜈)

𝜆 ≽ 0
(2-19)

The optimal value for the primal problem is noted 𝑝∗ and the

one for the dual problem 𝑑∗. In function of the problem type, the

duality between the 2 problems can be a strong (𝑑∗ = 𝑝∗), or weak

(𝑑∗ ≤ 𝑝∗). Weak duality always holds but strong duality does not

hold in general. But for convex problems strong duality usually

holds, and conditions that guarantee strong duality in convex

problem are called constraint qualifications.

One example of constraint qualifications largely used in practice is

Slater’s constraint qualification defined as:

Strong duality holds for a convex problem if any of the following

equivalent conditions are met:

1. The problem is strictly feasible.

2. There exists a solution 𝑥∗ that satisfies all the constraints

 ２９

and fulfills the nonlinear constraints with strict inequalities

3. ∃𝑥 ∈ 𝒊𝒏𝒕 𝓓 ∶ 𝑓𝑖(𝑥) < 0, 𝑖 = 1,… ,𝑚, 𝑎𝑖
𝑇𝑥 = 𝑏𝑖, 𝑖 = 1,… , 𝑝

 We can also define the Karush-Kuhn-Tucker (KKT)

conditions for a problem with differentiable constraints and

objective functions (equation 2-12 with additional differentiability

conditions). The KKT conditions are important as we know that if

strong duality holds and 𝑥, 𝜆, 𝜈 are optimal, then they must satisfy

the KKT conditions. Moreover, if �̃�, �̃�, 𝜈 satisfy the KKT for a

convex problem, then they are optimal. So, we can solve the KKT

conditions problem and obtain optimal solution for the initial

problem. Not all convex problem admits a solution to the KKT

conditions, but if a convex problem satisfy Slater’s condition, then it

is sure that a solution to the KKT conditions problem exists.

 KKT conditions are:

1. Primal constraints : 𝑓𝑖(𝑥) ≤ 0, 𝑖 = 1,… ,𝑚, ℎ(𝑖) = 0, 𝑖 = 1,… , 𝑝

2. Dual constraints : 𝜆 ≽ 0

3. Complementary slackness: 𝜆𝑖𝑓𝑖(𝑥) = 0, 𝑖 = 1,… ,𝑚

4. Gradient of Lagrangian with respect to x vanishes:

∇𝑓𝑜(𝑥) +∑𝜆𝑖∇𝑓𝑖(𝑥) +∑𝜈𝑖∇ℎ𝑖(𝑥)

𝑝

𝑖=1

= 0

𝑚

𝑖=1

2.3.4 Algorithms for resolution

To solve convex optimization problem, there are different

approach depending on the complexity of the problem, or more

 ３０

precisely depending on the constraints of the problem. The idea is

that there is a hierarchy in the convex optimization algorithms. The

simplest problem are the unconstrained optimization problems

which can be solve quickly. Then we have equality constrained

problem which need extra steps. And finally convex optimization

problem with inequality constrained are the hardest to solve.

If the convex problem is unconstrained then it can be solve

using a descent method. This method computes iteratively a

solution 𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝑘 Δxk which is always at a lower point that the

previous solution 𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘). The principle is simple and the

figure 2-5 shows the algorithm for a general descent method.

There are 2 main steps: determining the descent direction Δ𝑥 and

choosing the step size 𝑡.

Figure 2-6 Descent method algorithm (Boyd et al., 2004)

Different algorithms exist for the line search step (2) such as exact

line search where we choose 𝑡 to minimize the objective function or

backtracking line search where we approximately minimize the

objective function. Several methods have been proposed for the

descent direction choice step (1) and recapitulated in table 2-2.

 ３１

Table 2-2 Descend direction method

Item
Gradient

descend

Steepest

descend
Newton’s

Search direction

𝚫𝒙
−∇𝑓(𝑥)

||∇𝑓(𝑥)||
∗
∗ Δ𝑥𝑛𝑠𝑑

Δ𝑥𝑛𝑠𝑑 = 𝑎𝑟𝑔𝑚𝑖𝑛{ ∇𝑓(𝑥)
𝑇𝑣 | ||𝑣|| = 1}

−∇2𝑓(𝑥)−1∇𝑓(𝑥)

Stopping criterion ||∇𝑓(𝑥)||
2
≤ 𝜂 ||∇𝑓(𝑥)||

2
≤ 𝜂 ∇f(x)T ∇2𝑓(𝑥)−1∇𝑓(𝑥) ≤ 2𝜖

Convergence
 Approximately

linear
Approximately linear Rapid and quadratic near solution

Notes

Simplest method

 however the con

vergence rate is

too slow for most

applications.

The convergence rate depends on

the norm chosen: good as we can

find a norm to improve the speed,

but bad as we need to find such a

norm from a large panel.

 Affine invariant, scale well with

problem size and the parameter’s

choice does not impact the

convergence performance but

storing the Hessian is costly.

 ３２

When the problem has only equality constraint, we can take

different approaches: use tricks to reduce it in an unconstrained

equivalent problem or solve the dual problem to recover the

solution. But if we want to exploit the problem structure (sparsity

or others), we need to directly solve the equality constrained

problem. And to do so, we can use an extension of the Newton’s

method. The objective function is replaced by its second-order

Taylor approximation near 𝑥 which made the problem a convex

quadratic minimization problem solvable using the KKT matrix (if

nonsingular). The Newton step Δ𝑥𝑛𝑡 in this case is compute at the

same time as the associated optimal dual variable 𝑤 by resolving the

system:

[∇
2𝑓(𝑥) 𝐴𝑇

𝐴 0
] [
Δ𝑥𝑛𝑡
𝑤

] = [
−∇f(x)
0

] (2-20)

The newton decrement used as stopping criterion is the same as in

the unconstrained case. The convergence characteristics are the

same than the ones for Newton’s unconstrained method, but we

additionally have condition on the KKT matrix for convergence. It is

also important to said that basic Newton’s methods are feasible

descend methods (the initial points need to be feasible). Algorithms

exist to make the method works even with initial points, and

iterates, that are not feasible.

For convex problems with inequalities constraints, the

interior-point methods are commonly used. They apply Newton’s

method to a sequence of equality constrained problems which

approximate the inequalities constrained problem. Algorithms exist

such that the barrier method or primal-dual interior point methods.

The primal-dual interior-point methods are the more efficient in

 ３３

many cases so we will briefly detail the basic one which algorithm

is show in Figure 2-6.

Figure 2-7 Basic Primal-dual interior-point algorithm (Boyd et al.,

2004)

First, the initial complex problem is rewritten to make the inequality

constraints implicit in the objective function. Then the objective

function contains the indicator function which is not differentiable

and so is approximate by a similar differentiable function. The

quality of the estimate compares to the initial problem depends on

the extra parameters 𝑡 introduce by the approximation. In the

algorithm 𝑡 is chosen in function of the current surrogate duality gap

�̂�(𝑥, 𝜆) = −𝑓(𝑥)𝑇𝜆 . From this approximated problem, the modified

KKT conditions can be found:

𝑟𝑡(𝑥, 𝜆, 𝜈) = 0 = [

∇𝑓0(𝑥) + 𝐷𝑓(𝑥)
𝑇𝜆 + 𝐴𝑇𝜈

−𝒅𝒊𝒂𝒈(𝜆)𝑓(𝑥) −
1

𝑡
𝟏

𝐴𝑥 − 𝑏

] (2-21)

And in step 2, this nonlinear set of equations is solved for the fixed

𝑡 parameters using Newton step. The primal-dual search direction

Δ𝑦𝑝𝑑 = (Δ𝑥𝑝𝑑 , Δ𝜆𝑝𝑑 , Δ𝜈𝑝𝑑) is the solution of the following matrix

 ３４

system:

[

 ∇2𝑓0(𝑥) +∑𝜆𝑖∇

2𝑓𝑖(𝑥)

𝑚

𝑖=1

𝐷𝑓(𝑥)𝑇 𝐴𝑇

−𝒅𝒊𝒂𝒈(𝜆)𝐷𝑓(𝑥) −𝒅𝒊𝒂𝒈(𝑓(𝑥)) 0

𝐴 0 0]

 [
Δ𝑥
Δ𝜆
Δ𝜈
] = −[

∇𝑓0(𝑥) + 𝐷𝑓(𝑥)
𝑇𝜆 + 𝐴𝑇𝜈

−𝒅𝒊𝒂𝒈(𝜆)𝑓(𝑥) −
1

𝑡
𝟏

𝐴𝑥 − 𝑏

] (2-22)

The stopping criteria are when 𝑥, 𝜆, 𝜈 are feasible for the problem (in

the tolerance range define) and the surrogate gap is under the

wanted tolerance.

2.3.5 Nonconvex problem and convex relaxation

 Convex optimization is a powerful tool. The hard part of the

job is not to resolve the optimization problem but to formulate the

problem as a convex one. It is sometimes possible to find an

equivalent convex problem for the initial problem but not all

problem can be reduced to a convex problem. In this case, we can

still use convex optimization in different ways to help solving the

nonconvex problem. One idea is to initialize a local optimization

process. The nonconvex problem is approximate to a convex one

which is solve easily and without initialization. The solution, which

is more likely to be close to the actual global minima, is used as a

starting point for the local optimization method and then prevent the

optimization to find a local minimum. Graduated non convexity (GNC)

problem used this idea as in the article from McGann et al. (2022).

By controlling the convexity of the problem with an extra variable,

they solve step by step a less convex problem. Sometimes it is also

possible to derive the dual problem and solve it as in Carlone et al.

(2016) or using it to verify the quality of the solution as in Carlone

et al. (2015).

 ３５

 Another used of convex optimization for nonconvex problem

is relaxation and lower bound computation. First, if we have a

nonconvex problem, we can detail where the nonconvexity lies, i.e

in the objective function or in the constraint functions. Then we can

either find convex relaxation functions of the initial nonconvex

functions or just drop nonconvex constraint functions. If we have a

nonconvex function 𝑓 ∶ 𝑆 → ℝ where 𝑆 ⊂ ℝ𝑛 is a nonempty convex

set, then a convex function ℎ ∶ 𝑆 → ℝ is a convex relaxation of 𝑓 if

ℎ(𝑥) ≤ 𝑓(𝑥) ∀ 𝑥 ∈ 𝑆. The figure 2-6 illustrates the definition.

Figure 2-8 Convex relaxation concept of a function (Erik F.

Alvarez; 2019)

Using this we can approximate a nonconvex problem into a convex

problem, but there is no equivalence between them, i.e. the solution

of one problem is not ensured to be the same as the solution of the

other problem. However, since one problem is a relaxation of the

other, there is a condition between their minima which provides a

lower bound for the optimal value of the nonconvex problem.

 ３６

ℎ(𝑥∗) ≤ 𝑓(𝑥∗) (2-23)

Some examples of relaxation are Lagrangian relaxation (solve the

Lagrangian dual), L1 relaxation (Carlone et al., 2014), Lasserre

hierarchy Relaxation (use the moment matrix as in Yang et al.

(2023)) and SDP relaxation (the final problem is an SDP problem).

 ３７

3 State of the art

The problem of robust pose graph optimization has already been

studied and several approaches have been proposed with different

advantages and drawbacks. 5 algorithms are described here as they

represent the different trend on robust pose graph optimization. We

also compared them to the thesis content to emphasis the

contribution of our work to the state of the art.

3.1 SE-sync

An algorithm to solve synchronization over the special

Euclidean group using convex relaxation was published by Rosen et

al. in 2017. It efficiently recovers certifiably globally optimal

solutions for problem when the noise is non-adversarial. First, the

MLE problem is reformulate into a semidefinite convex relaxation

which is proven to be exact when the noise corrupting the data is

under a certain threshold. This reformulation also provides an a

posteriori condition to check the optimality of our obtained pose

solution. Additionally, they use the low-rank, geometric and graph-

theoretic structure of the semidefinite relaxation to rewrite the

problem on a Riemannian manifold. They utilize this to form a

Riemannian truncated-Newton trust-region method which can

solve large-scale problem efficiently. The last step is a simple

rounding procedure to obtain the final solution of the

synchronization problem.

 ３８

Figure 3-1 The SE-Sync algorithm (David M. Rosen et al., 2017)

This algorithm has 2 main advantages: it obtains an exact

global optimal solution with a condition to check the optimality and it

can be use for large-scale instance problem. They tested it on

different synthetic datasets and large-scale real-world examples.

SE-Sync can recover optimal solution and an order of magnitude

faster than Gauss-Newton based approach. The main drawback is

that it is design to be operating when the noise is under a certain

threshold, so it does not contain any mechanism against outliers.

3.2 Convex relaxation for 2D robust PGO

In 2018, Carlone et al. developed a robust estimator to solve

a 2D PGO problem where measurement with heavy noise can

appears. To do so, they derive a convex relation process of the

maximum likelihood initial problem for different PGO formulation

setups. This leads to 3 robust estimator formulations which are

presented: the first one is a least unsquared deviation estimator (L2

loss function), the second is a least absolute deviation estimator

(L1 loss function), and the last is a Huber estimator (Huber loss

function). In addition, the difference between a 1-stage approach or

2-stage approach for the resolution is tested. A 1-stage approach

 ３９

means solving the optimization over the rotation and translation

poses variables at the same time. Whereas a 2-stage approach

decouple the rotation and translation problem. Only the rotational

non-convex subproblem is relaxed and solve, then the rotation

matrix is used in the translation subproblem to solve the already

convex problem.

Figure 3-2 Estimation errors for the 6 approaches for Geometric

random graphs (Carlone et al., 2018)

The advantage of using convex relaxation is first the fact

that they don’t need an initial guess for resolution. And second, they

can obtain guarantee condition on the suboptimality of the rounded

solution by checking the rank of the relaxed solution matrix X and if

the first 𝑛 2 × 2 blocks of its rank-2 approximation matrix are in

𝑆𝑂(2) . They tested and compared the different formulation on

synthetic pose graph dataset corrupted with an adaptive percentage

of outliers with main results: The 2-stage approach outperformed

the 1-stage for all dataset and percentage of outliers and shows

robustness for high level of outliers when the graph is highly

connected. The drawbacks for their implementation of the method

 ４０

are the computation time which make it harder to use for large pose

graph instance.

3.3 DC-GM

Pierre-Yves Lajoie et al. developed a discrete-continuous

graphical model to represent the robot position and measurement

edge as show in figure 3-3 in 2019. The first contribution of their

model is the distinction between inliers and outliers for the edges

between poses by using additional discrete variables. Additionally,

the edges between theses discrete variables represent the

correlation between measurements. Adding this information to the

graph is meaningful as usually the outliers are highly correlated. So,

if we detected one outlier, the correlated measurements with this

outlier have a high chance to be outlier too. The second contribution

is the use of convex relaxation for the MLE to optimize without

initialization of the poses and with some condition on the sub-

optimality of the results.

Figure 3-3 Discrete-continuous graphical model (Pierre-Yves

 ４１

Lajoie et al., 2019)

The use of binary variables to robustify the pose graph is

equivalent to use a truncated LS cost on the measurement edges.

The difference is that the truncated LS is non-convex and non-

differentiable, whereas minimizing over a binary variable do not add

complexity. The DC-GM approach was tested on synthetic and

real-world 2D datasets and showed good results against the state

of art approach with no initialization. An advantage of this

formulation is the intuitive way of tuning the parameter for

differentiating the outliers and the inliers (maximum admissible

residual). The main limitation of their paper is the computation time,

which is the reason why they tested only on 2D data. The reason is

the use of MATLAB solver. Another possible improvement is to

make it in an online process.

3.4 AEROS

In 2022, Milad Ramezani et al. proposed an algorithm with an

adaptive robust loss function against the outliers. First, they used

on the MLE the Barron loss function which is an adaptive cost

function with an additional parameter. The parameter chooses the

shape of the loss function as show on the figure 3-4. The novelty

of their approach is that they reformulate the objective function, so

they optimize the parameter at the same time as the pose, so the

curve is closely fitting the distribution. Moreover, the final form of

they function use standard gaussian factors so they can of any

classical incremental estimation approaches (for instance iSAM).

 ４２

Figure 3-4 Adaptive loss kernel and its weight (Milad Ramezani et

al., 2022)

The main advantage of these method is the adaptivity of the

loss function with only adding one latent parameter. The testing

was done on 2D synthetic and real-world datasets where they add

outliers to test the robustness. And they also test on one large 3D

real-world dataset from LiDAR data preprocessed with Iterative

Closest Point. The result demonstrates that their method is

competitive against other methods and the parameter is changed in

function of the data used. The optimization of the extra parameter

adds time to process, and the algorithm is a batch process. This

algorithm also needs initialization of the poses.

3.5 riSAM

An incremental solver for robust PGO was developed by

Daniel Mc Gann et al. in 2022. It is based on the idea of graduated

 ４３

non convexity (GNC), which is basically that we first convexify the

problem and then solve a series of progressively less convex

problems as illustrated on the figure 3-5. To make GNC efficient

and incremental, they only compute a single non-linear update step

instead of the full optimization. Additionally, they propose a new

kernel for online efficiency: the scale invariant graduated (SIG)

which admits a known constant number of GNC iterations. The last

contribution is the incrementalization of the Dog-Leg line search

which is a trust region optimization algorithm.

Figure 3-5 Example of GNC solving a linear problem with outliers

(Daniel McGann et al., 2022)

 riSAM is tested on Synthetic (2D and 3D) and real-world

(2D) datasets. It shows same precision as its batch variants. And

more importantly it achieves online efficiency on large scale

problem with robustness to outlier and initialization. But it still

needs initialization, and it is dependent on the user defined

parameters.

 ４４

3.6 Comparison of related works with this thesis

 This master thesis aims at studying robust pose graph

optimization in 3D only when using a convex relation of the initial

problem and loss function to mitigate outlier impact. In Luca Carlone

et al. work they study the 2D case of the convex relaxation with no

separation of the edge type. The SE-Sync algorithm is not robust

against outliers and the DC-GM algorithm focus on one loss

function where outliers are correlated. For the AEROS algorithm,

the loss function is adaptive as an extra optimized parameter

choose the shape of the function, however it does not use convex

relaxation so need initialization. The riSAM algorithm is achieving

real-time computation with a custom-made loss function but they

use GNC (convex only for initialization of the optimization) and so

does not have certifiability on the correctness of the solution. We

want to focus on using an algorithm with convex relaxation to not

need initialization and to have performance guarantees on our

algorithm (if the solution is wrong, the algorithm can detect the

failure). Starting from this setup, we want to study different loss

function for robustness.

 ４５

Table 3-1 Comparison of related work (robust pose graph optimization approach)

Item

Related work

This thesis

1. Se-sync

David M. Rosen

et al.

2017

2. 2D_relax

 Luca Carlone et

 al.

2018

3. DC-GM

 Pierre-Yves

Lajoie et al.

2019

4. AEROS

Milad Ramezani

et al.

2022

5. RiSAM

Daniel McGann

et al.

2022

Problem definition

Input 𝑇𝑖𝑗 ∈ 𝑆𝐸(𝑑)

𝑅𝑖𝑗 ∈ 𝑆0(2),

 𝑡𝑖𝑗 ∈ ℝ
2

 with outliers

𝑇𝑖𝑗 ∈ 𝑆𝐸(𝑑)

with correlated

outliers

𝑇𝑖𝑗 ∈ 𝑆𝐸(𝑑)

with outliers

𝑇𝑖𝑗 ∈ 𝑆𝐸(𝑑)

with outliers

𝑅𝑖𝑗 ∈ 𝑆0(3),

𝑡𝑖𝑗 ∈ ℝ
3

with outliers

Algorithm
Synchronization

over SE(d)
PGO PGO PGO SLAM PGO

Output 𝑇𝑖 ∈ 𝑆𝐸(𝑑)
𝑅𝑖 ∈ 𝑆0(2),

 𝑡𝑖 ∈ ℝ
2

𝑇𝑖 ∈ 𝑆𝐸(𝑑) 𝑇𝑖 ∈ 𝑆𝐸(𝑑) 𝑇𝑖 ∈ 𝑆𝐸(𝑑)
𝑅𝑖 ∈ 𝑆0(3),

 𝑡𝑖 ∈ ℝ
3

Dimension d 2 d d d 3

 ４６

MLE formulation and resolution

Processing Batch Batch Batch Batch Online Batch

Nb stages 2-stages
1-stage and

 2-stages
1-stage 1-stage 1-stage 2-stages

 Edges

separation
Not considered Not considered Considered Considered Considered Considered

 Outlier

handling
Not considered

Loss function:

Huber, L1 and

L2

Loss function

TLS & outlier c

orrelation

Loss function

Barron

Loss function

SIG

Loss function:

Huber, L1 and

L2

Optimization

 approach

SDP

relaxation

SDP

relaxation

SDP

relaxation

Iterative

approach

Graduated non

convexity

SDP

relaxation

 ４７

Optimization

 algorithm

 Riemannian

staircase

Interior-point

in cvx solver

Interior-point

in cvx solver
iSAM2

Incremental

 Powell’s Dog

-Leg

Interior-point

in cvx solver

Initialization
Yes, to speed c

omputation
No No yes yes No

Certifiability

contract
Yes Yes Yes No No Yes

 ４８

Table 3-2 Comparison of related work (Simulation setup)

Item

Related work

This thesis

1. Se-sync

David M. Rosen

et al.

2017

2. 2D_relax

 Luca Carlone et

 al.

2018

3. DC-GM

 Pierre-Yves

Lajoie et al.

2019

4. AEROS

Milad Ramezani

et al.

2022

5. RiSAM

Daniel McGann

et al.

2022

Implementation

Language MATLAB MATLAB MATLAB cpp cpp MATLAB

Solver
Truncated-

Newton RTR
cvx cvx

 iSAM from

 GTSAM
GTSAM Cvx

 Monte

Carlo run
50 30 5/10 10 10/50 10

Compared

 methods
GN G2o, and DCS

Vertigo, RRR,

and DCS

SC, DCS, GNC,

 and GM

 GNC, GM,

Max-Mix,

Huber, and SC

?

 ４９

Datasets

Synthetic

2D
Not tested

 Erdos-Rényi a

nd geometric ra

ndom graph, an

d Manhattan 35

00 world

Grid
Manhattan3500,

 City10k

Random grid,

Manhattan, an

d City10k

Maybe

Synthetic 3

D

 Cube, Sphere2

500, torus,

and grid

Not tested Not tested Sphere2500 Sphere

Random and

grid graph, M

anhattan wor

ld Cube

Real 2D Not tested Not tested
CSAIL, FRO79

and FRH
CSAIL, INTEL

 CSAIL, an

d Intel
Not tested

Real 3D
Garage, cubiclea

nd rim
Not tested Not tested Nezer College Not tested

Partial

garage

 ５０

4 Proposed PGO algorithm

 The proposed PGO algorithm idea was showed in figure 1-1.

It recapitulated the main part briefly, and now we will detail more

the different steps. The figure 4-1 shows the global flow chart of

our work. In our algorithm, we want to emphasis on the convex

relaxation and the loss function choice for robustness. These

specific parts will be details latter in the chapter 5 and 6. In this

chapter, we will present first the MLE formulation derivation and

the 2-steps approach for the PGO resolution.

Figure 4-1 Flow chart of our proposed PGO

 ５１

4.1 MLE formulation

As said before, PGO is the process of estimate a set of 𝑛 poses

(rotation and translation) in 3D from 𝑚 pairwise relative pose

measurements. To do so, we construct a pose graph where:

1) Each node represents a pose to estimate and is noted 𝑻𝑖 ≜

[𝑹𝒊 𝒕𝒊] which comprises a translation vector 𝒕𝒊 ∈ ℝ
3 and a rotation

matrix 𝑹𝒊 ∈ 𝑺𝑶(3).

2) Each edge represents a relative pose measurement and is noted

[𝑹𝑖𝑗̅̅ ̅̅ 𝒕𝑖𝑗̅̅ ̅] which comprises a translation vector 𝒕𝑖𝑗̅̅ ̅ ∈ ℝ
3 and a

rotation matrix 𝑹𝑖𝑗̅̅ ̅̅ ∈ 𝑺𝑶(3). They describe a noisy measurement

of the relative pose between 𝑻𝑖 and 𝑻𝑗.

Starting from this, we need to derive the MLE problem to define in

the optimization solver. We already explained how the MLE is on

the form of the sum of the log of the probability distribution of the

noise as in equation 2-9.

4.1.1 Measurements noise model choice

The inliers measurement between 2 poses nodes is model as:

𝒕𝒊𝒋̅̅ ̅ = 𝑹𝒊
𝑻(𝒕𝒋 − 𝒕𝒊) + 𝒕𝒊𝒋

𝝐 , 𝑹𝒊𝒋̅̅ ̅̅ = 𝑹𝒊
𝑻𝑹𝒋𝑹𝒊𝒋

𝝐 (4-1)

Where the translation noise model is a multivariate gaussian

distribution of mean 𝑂3 and covariance matrix
1

𝑤𝑡
𝑰3 . The rotation

noise model is an isotropic Langevin distribution on 𝑆𝑂(3) with mode

𝐼3 and concentration parameter 𝑤𝑅, as in Carlone et al. (2018).

 ５２

The first term is about the error on the translations part of

the pose and the distribution chosen is a multivariate gaussian. So

when replacing the probability density function of 𝒕𝒊𝒋
𝝐 = 𝒕𝒊𝒋̅̅ ̅−𝑹𝒊

𝑻(𝒕𝒋 −

𝒕𝒊)~𝒩 (𝑂3,
1

𝑤𝑡
𝑰3) in the formula, we obtain the following form:

 −ln (ℙ(𝒕𝑖𝑗̅̅ ̅ | 𝒕𝑖 , 𝒕𝑗 , 𝑹𝑖))

⟺

−ln (
1

√(
2𝜋
𝑤𝑡
)
3

)

∗ exp (−
1

2
(𝒕𝒊𝒋
𝝐)

𝑇
𝑤𝑡(𝒕𝒊𝒋

𝝐)))

⟺ ln(𝐴) − 𝑙𝑛 (exp (−
1

2
(𝒕𝒊𝒋
𝝐)

𝑇
𝑤𝑡(𝒕𝒊𝒋

𝝐)))

⟺ ln(𝐴) +
1

2
(𝒕𝒊𝒋
𝝐)

𝑇
𝑤𝑡(𝒕𝒊𝒋

𝝐)

⟺ ln(𝐴) +
𝑤𝑡
2
(𝒕𝒊𝒋̅̅̅̅−𝑹𝒊

𝑻
(𝒕𝒋 − 𝒕𝒊))

𝑇

(𝒕𝒊𝒋̅̅̅̅−𝑹𝒊
𝑻
(𝒕𝒋 − 𝒕𝒊))

⟺ ln(𝐴) +
𝑤𝑡
2
||𝒕𝒊𝒋̅̅̅̅−𝑹𝒊

𝑻
(𝒕𝒋 − 𝒕𝒊)||2

2 (4-2)

For the second term, it represents the error on the rotation

part of the pose. Instead of choosing the classical gaussian

distribution, we choose the isotropic Langevin distribution (or Von

Mises-Fisher). This distribution is directly defined on the special

orthogonal group, so it is easier to analyze and leads to simpler

estimator form. In the probability density function the normalization

term 𝑐3(𝜅) depends in the concentration parameter only and can be

derived using modified Bessel function 𝑐3(𝜅) = 𝑒𝑥𝑝(𝜅)(𝐼0(2𝜅) − 𝐼1(2𝜅)).

We can think about the concentration parameter 𝜅 in terms of

information content, the higher it is the more concentrated around

the mean is the rotation pool. We can then replace the probability

 ５３

density function of 𝑹𝒊𝒋
𝝐 = 𝑹𝒋

−𝟏𝑹𝒊𝑹𝒊𝒋̅̅ ̅̅ ~𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛(𝐼3, 𝑤𝑅) in the second term of

the formula:

 −ln (ℙ(𝑹𝑖𝑗̅̅ ̅̅ | 𝑹𝑖 , 𝑹𝑗))

⟺ −ln (
1

𝑐𝑑(𝑤𝑅)
exp (𝑤𝑅 𝑡𝑟(𝑹𝒊𝒋

𝝐
)))

⟺ ln(𝐵) − 𝑙𝑛 (exp (𝑤𝑅𝑡𝑟(𝑹𝒊𝒋
𝝐
)))

⟺ ln(𝐵) − 𝑤𝑅𝑡𝑟(𝑹𝒊𝒋
𝝐
)

⟺ ln(𝐵) − 𝑤𝑅𝑡𝑟 (𝑹𝒋
−𝟏𝑹𝒊𝑹𝒊𝒋̅̅ ̅̅)

⟺ ln(𝐵) − 𝑤𝑅𝑡𝑟 (𝑹𝒋
−𝟏𝑹𝒊𝑹𝒊𝒋̅̅ ̅̅) (4-3)

Replacing the equations 4-2 and 4-3 in the objective function, the

constant terms ln (𝐴) and ln (𝐵) can be suppress as they do no

impact the minimization results. So, the intermediary form of the

MLE for inliers is:

min
𝒕𝑖∈ℝ

3 ,
𝑹𝑖∈𝑆𝑂(3)

∑
𝑤𝑡

2
||𝒕𝒊𝒋̅̅ ̅−𝑹𝒊

𝑻(𝒕𝒋 − 𝒕𝒊)||2
2 − 𝑤𝑅𝑡𝑟(𝑹𝒋

−𝟏𝑹𝒊𝑹𝒊𝒋̅̅ ̅̅)
(𝑖,𝑗)∈ℰ

 (4-4)

Additionally, we can reform the 𝑡𝑟𝑎𝑐𝑒 term using Frobenius norm as

we know 𝑡𝑟 ((𝑹𝒊
−𝟏𝑹𝒋)

−𝟏
𝑹𝒊𝒋̅̅ ̅̅) = 𝟑 −

𝟏

𝟐
||𝑹𝒊

−𝟏𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅ ||𝐹
2 (for the formula to

be true, we need the matrix to be orthogonal and all rotation matrix

are in 𝑆𝑂(3) ⊂ 𝑂(3)). We also then use the fact that 𝑹𝒊
−𝟏 = 𝑹𝒊

𝑻 and

that the 𝐿2 norm and the Frobenius norm are invariant with respect

to orthogonal multiplication ||𝑹𝒊𝒙||𝟐 = |
|𝒙||

𝟐
. The 𝐿2 norm is even in

the translation part ||𝒙||
𝟐

𝟐
= ||−𝒙||

𝟐

𝟐
 We finally obtain the final

equivalent form of the MLE for inliers as equation 4-5 which is a

 ５４

non-robust one also used in SE-sync by Rosen et al. (2017).

 min
𝒕𝑖∈ℝ

3 ,
𝑹𝑖∈𝑆𝑂(3)

∑
𝑤𝑡

2
||𝒕𝒊𝒋̅̅ ̅−𝑹𝒊

𝑻(𝒕𝒋 − 𝒕𝒊)||2
2 − 𝑤𝑅𝑡𝑟(𝑹𝒋

−𝟏𝑹𝒊𝑹𝒊𝒋̅̅ ̅̅)
(𝑖,𝑗)∈ℰ

⟺

min
𝒕𝑖∈ℝ

3 ,
𝑹𝑖∈𝑆𝑂(3)

∑
𝑤𝑡
2
||𝒕𝒊𝒋̅̅ ̅−𝑹𝒊

𝑻(𝒕𝒋 − 𝒕𝒊)||2
2 − 3𝑤𝑅

(𝑖,𝑗)∈ℰ

+
𝑤𝑅
2
||𝑹𝒊

−𝟏𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅ ||𝐹
2

⟺
min
𝒕𝑖∈ℝ

3 ,
𝑹𝑖∈𝑆𝑂(3)

∑ 𝑤𝑡||𝒕𝒊𝒋̅̅ ̅−𝑹𝒊
𝑻(𝒕𝒋 − 𝒕𝒊)||2

2 +𝑤𝑅||𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅ ||𝐹
2

(𝑖,𝑗)∈ℰ

⟺
min
𝒕𝑖∈ℝ

3 ,
𝑹𝑖∈𝑆𝑂(3)

∑ 𝑤𝑡||𝒕𝒋 − 𝒕𝒊 − 𝑹𝒊𝒕𝒊𝒋̅̅ ̅||2
2 +𝑤𝑅||𝑹𝒊

𝑻𝑹𝒋 −𝑹𝒊𝒋̅̅ ̅̅ ||𝐹
2

(𝑖,𝑗)∈ℰ

 (4-5)

4.1.2 M-estimators on loop closure edge

But the version of MLE of equation (4-5) is not robust to outliers

as it is a quadratic form. We supposed that the odometry edge are

not prone to outlier so we can apply the extra treatment only to the

loop closure edge. We choose to use a M-estimators approach on

the loop closure edge as describe in Bosse et al. (2016). This

means we add an extra loss function around the square norm of the

error. The new formulation is then the one in equation 4-6 where

first the distinction between the odometry edge and the loop closure

edge is made by having two separate sum and second the loss

function 𝜌 is add only to the loop closure sum.

min
𝒕𝑖∈ℝ

3 ,

𝑹𝑖∈𝑆𝑂(3)

∑ 𝑤𝑡||𝒕𝒋 − 𝒕𝒊 −𝑹𝒊𝒕𝒊𝒋̅̅ ̅||2
2 +𝑤𝑅||𝑹𝒊

𝑻𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅ ||𝐹
2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜𝑚𝑒𝑡𝑟𝑦

+ ∑ 𝜌(𝑤𝑡 ||𝒕𝒋 − 𝒕𝒊 − 𝑹𝒊𝒕𝒊𝒋̅̅ ̅||
2
) + 𝜌(𝑤𝑅||𝑹𝒊

𝑻𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅ ||𝑭)
(𝑖,𝑗)∈ℰ𝑙𝑜𝑜𝑝 𝑐𝑙𝑜𝑠𝑢𝑟𝑒

(4-6)

 ５５

The M-estimator method performance depends highly on the loss

function choice, and it is why chapter 6 is totally dedicated to the

study of the loss function. We choose this approach mainly because

to obtain a good estimate using pose graph optimization, we need a

graph with high connectivity. Adding a lot of loop closure is how we

can make the connectivity of the graph higher, however this means

adding more outlier to measurements. If we just truncated the

measurement set without be sure to take out the outlier, the

connectivity will decrease, and the outlier rate can be higher.

Keeping all measurements and making sure that outliers do not

impact too much the quality of the results is then the approach we

choose.

4.2 2-steps algorithm

It is possible to solve the full problem of the poses 𝑇𝑖 with one

optimization process using the equation 4-6. This is called a 1-

step approach as we obtain in one go the rotation and translation

estimates. Another approach called 2-steps algorithm is based on

the observation that the rotation variables appear in the translation

error term, but the translation variables don’t appear in the

rotational error term. Additionally (Carlone & Censi, 2012) show

with empirical evidence that when optimizing only on the rotation

variables the error term on translation is negligible. So, using only

the rotational error term as an objective function for finding the

rotation variable is enough. This observation is even more

important because when the rotation matrix poses are fixed, the

optimization problem over the translation variables reduces to a

convex problem with the translational error term as objective

 ５６

function. The figure 4-2 illustrated a 2-steps algorithm using the

equation 4-6 as a basic MLE formulation.

Figure 4-2 Flow chart of the 2-steps algorithm

min
𝑹𝑖∈𝑆𝑂(3)

∑ 𝑤𝑅||𝑹𝒊
𝑻𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅ ||𝐹

2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑ 𝜌(𝑤𝑅||𝑹𝒊
𝑻𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅ ||𝑭)

(𝑖,𝑗)∈ℰ𝑙𝑐

(4-7)

min
𝒕𝑖∈ℝ

3
∑ 𝑤𝑡||𝒕𝒋 − 𝒕𝒊 − 𝑹𝒊𝒕𝒊𝒋̅̅ ̅||2

2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑ 𝜌(𝑤𝑡 ||𝒕𝒋 − 𝒕𝒊 − 𝑹𝒊𝒕𝒊𝒋̅̅ ̅||
2
)

(𝑖,𝑗)∈ℰ𝑙𝑐

 (4-8)

The advantage of using a 2-steps approach is that it reduces

the complexity of the optimization process as the matrix smaller.

But since we don’t use all the available information for optimizing

the rotation, we should loose in accuracy. In our case, we want to

 ５７

use a convex relaxation of the problem, which will be good if the

relaxation is tight. (Carlone et al., 2018) compare the 1-step

approach to the 2-steps in the 2D case for robust PGO and all their

results show that the 1-step approach is not tight when they are

outlier. But the 2-steps algorithm when using the convex relaxation

only of the rotation problem is tight even with more outlier. Then,

we need to use a 2-steps approach if we want to be robust against

outlier and use convex relaxation.

5 Rotation sub-problem resolution

The 2-steps approach is breaking the problem into 2 problems:

the rotation non-convex (because of the 𝑆𝑂(3) group which is the

feasible set) and the translation convex when the rotation is fixed.

Now, we want to go further and relax the rotation sub-problem of

equation 4-7 into a convex problem. The reasons for the relaxation

are double. The initial idea was to solve a problem with a global

optimum so first we don’t need to care about the initialization of the

solver and always obtain the global solution. Then, secondly when

deriving a convex relaxation, we can check after resolution if the

relaxation was tight and so we have a way to certify that the

rotation solution is the global optima of the initial problem.

Briefly, we first need to derive the convex relaxation of the

problem in chapter 5.1. But then the feasible set of the convex

problem is wider than the initial one as shows figure 5-1, so the

solution found can be non-feasible for the initial problem 4-7.

Then we need a rounding procedure to reproject the relaxed

solution into 𝑆𝑂(3). How to achieve the rounding is presented in

 ５８

chapter 5.2. Lastly, we will talk in more details about the

certifiability contract in part 5.3. In rest of this chapter, we will

suppose that we know the rotation/translation covariance and that

the loss function is chosen to be convex.

Figure 5-1 Illustration of non-convex feasible set relaxation

5.1 Convex relaxation

We start from the problem 1 which is nonconvex as the

feasible set is the special orthogonal group which is nonconvex. To

obtain a nice convex formulation for our relaxed problem, we follow

simple step which can be replicated for others problem if necessary.

The overall flow of the problem derivation is given in figure 5-2.

 Problem 1 (SO(3) feasible set formulation of maximum-

likelihood orientation estimation)

Given the observation 𝑹𝒊𝒋̅̅ ̅̅ ∈ 𝑺𝑶(𝟑), for (𝑖, 𝑗) ∈ ℰ, the rotation variance

𝑤𝑅 and a convex loss function 𝜌 , find the set of minimizers �̂�𝑖 ∈

𝑆𝑂(3) that satisfies

�̂�𝑖 = min
𝑹𝑖∈𝑆𝑂(3)

∑ 𝑤𝑅||𝑹𝒊
𝑻𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅ ||𝐹

2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑ 𝜌(𝑤𝑅||𝑹𝒊
𝑻𝑹𝒋 −𝑹𝒊𝒋

̅̅ ̅̅ ||𝑭)
(𝑖,𝑗)∈ℰ𝑙𝑐

 (5-1)

Having fixed the first node orientation to 𝑅0 = 𝑰3

 ５９

Problem Variables Convexity

Problem 1 𝑹𝑖 ∈ 𝑆𝑂(3) Nonconvex due to feasible set
𝑆𝑂(3)

Problem 2 𝑹𝑖 ∈ ℝ
3×3 Nonconvex due to constraint

𝑑𝑒𝑡(𝑹𝑖) = +1

Problem 3 𝑹 ∈ ℝ3×3𝑛
𝑿 ∈ ℝ3𝑛×3𝑛

Nonconvex due to constraints
𝑑𝑒𝑡(𝑹𝑖) = +1
𝑿 = 𝑹𝑻𝑹

Problem 4 𝑿 ∈ ℝ3𝑛×3𝑛 Nonconvex due to constraint
𝑟𝑎𝑛𝑘(𝑿) = 3

Problem 5 𝑿 ∈ ℝ3𝑛×3𝑛 Convex

Extract 𝑆𝑂(3)

constraints

Remove variable

𝑹

Relaxation

Change of

variables

Figure 5-2 Problem derivation chart

Starting from the problem 1, our main goal is to obtain a

convex problem, so the first step is to explicitly make appear the

condition on the non-convex condition on the 𝑆𝑂(3) feasible set. To

do so, we change the feasible set to be ℝ3×3 and force the variable

to be part of the 𝑆𝑂(3) by adding constraints 5-2b and 5-2c which

leads to the Problem 2.

 ６０

 Problem 2 (ℝ3×3 feasible set formulation of maximum-

likelihood orientation estimation)

Given the observation 𝑹𝒊𝒋̅̅ ̅̅ ∈ 𝑺𝑶(𝟑), for (𝑖, 𝑗) ∈ ℰ, the rotation variance

𝑤𝑅 and a convex loss function 𝜌, find the set of minimizers �̂�𝑖 ∈ ℝ
3×3

that satisfies

�̂�𝑖 = min
𝑹𝑖∈ℝ

3×3
∑ 𝑤𝑅||𝑹𝒊

𝑻𝑹𝒋 − 𝑹𝒊𝒋̅̅ ̅̅ ||𝐹
2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑ 𝜌(𝑤𝑅||𝑹𝒊
𝑻𝑹𝒋 −𝑹𝒊𝒋

̅̅ ̅̅ ||𝑭)
(𝑖,𝑗)∈ℰ𝑙𝑐

(5-2a)

Subject to 𝑹𝑖
𝑇𝑹𝑖 = 𝑰3

𝑑𝑒𝑡(𝑹𝑖) = +1

(5-2b)

(5-2c)

Having fixed the first node orientation to 𝑅0 = 𝑰3

 The nonconvexity comes from the constraint 5-2c, but first

before relaxing the problem we want to reparametrize the problem

into a more compact and convenient matrix notation. We introduce 2

new variables: a vector stacking all the rotation matrix 𝑹 =

[𝑹𝟏, … , 𝑹𝒏] ∈ ℝ
𝟑×𝟑𝒏 and a matrix construct by multiplying the vector

𝑿 = 𝑹𝑻𝑹 = [
𝑹1
𝑇𝑹1 ⋯ 𝑹1

𝑇𝑹𝑛
⋮ ⋱ ⋮

𝑹𝑛
𝑇𝑹1 ⋯ 𝑹𝑛

𝑇𝑹𝑛

] ∈ ℝ3𝑛×3𝑛 (5-3)

The variables 𝑹𝑖 can be replaced using 𝑹 and the products of the

variables 𝑹𝒊
𝑻𝑹𝒋 and 𝑹𝑖

𝑇𝑹𝑖 can be replaced using 𝑿. As we define the

matrix 𝑿 using the rotation vector, we need to add the constraint 5-

4d in the problem 3.

Problem 3 (Double matrix variables formulation of

maximum-likelihood orientation estimation)

Given the observation 𝑹𝒊𝒋̅̅ ̅̅ ∈ 𝑺𝑶(𝟑), for (𝑖, 𝑗) ∈ ℰ, the rotation variance

𝑤𝑅 and a convex loss function 𝜌 , find the set of minimizers 𝑹 ∈

ℝ3×3𝑛, 𝑿 ∈ ℝ3𝑛×3𝑛 that satisfies

 ６１

𝑹,𝑿 = min
𝑹∈ℝ3×3𝑛

𝑿∈ℝ3𝑛×3𝑛

∑ 𝑤𝑅||[𝑿]𝒊𝒋 −𝑹𝒊𝒋̅̅ ̅̅ ||𝐹
2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑ 𝜌(𝑤𝑅 ||[𝑿]𝒊𝒋 −𝑹𝒊𝒋̅̅ ̅̅ ||
𝑭
)

(𝑖,𝑗)∈ℰ𝑙𝑐

(5-4a)

Subject to [𝑿]𝑖𝑖 = 𝑰3 ,

𝑑𝑒𝑡([𝑹]𝑖) = +1 ,

𝑿 = 𝑹𝑇𝑹 ,

(5-4b)

(5-4c)

(5-4d)

Having fixed the first node orientation to 𝑅0 = 𝑰3

The problem 3 is an optimization over 2 variables. First, we

know that the constraint 4-12d is equivalent to have 𝑿 ≽

𝟎 and 𝑟𝑎𝑛𝑘(𝑿) = 3 so we can replace it in the problem. So, the only

term where the rotation vector appears is on the constraint 4-12c.

It constraint the rotation matrix to be in the Special orthogonal

group, if we don’t enforce it the rotation matrix will be in the

orthogonal group 0(3), which means the determinant will be ±1. But

previous study of relaxation over SO(3) have shown that dropping

this constraint doesn’t impact the relaxation process and so we will

not use it in problem 4.

Problem 4 (Single matrix variable formulation of maximum-

likelihood orientation estimation)

Given the observation 𝑹𝒊𝒋̅̅ ̅̅ ∈ 𝑺𝑶(𝟑), for (𝑖, 𝑗) ∈ ℰ, the rotation variance

𝑤𝑅 and a convex loss function 𝜌 , find the set of minimizers 𝑿 ∈

ℝ3𝑛×3𝑛 that satisfies

𝑿 = min
𝑿∈ℝ3𝑛×3𝑛

∑ 𝑤𝑅||[𝑿]𝒊𝒋 − 𝑹𝒊𝒋̅̅ ̅̅ ||𝐹
2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑ 𝜌(𝑤𝑅 ||[𝑿]𝒊𝒋 − 𝑹𝒊𝒋̅̅̅̅ ||
𝑭
)

(𝑖,𝑗)∈ℰ𝑙𝑐

(5-5a)

Subject to [𝑿]𝑖𝑖 = 𝑰3 ,

𝑿 ≽ 𝟎 ,

𝑟𝑎𝑛𝑘(𝑿) = 3

(5-5b)

(5-5c)

(5-5d)

 ６２

Having fixed the first node orientation to 𝑅0 = 𝑰3

The problem 4 is close to be a convex problem but the

constraint 5-5d on the rank is nonconvex. So, we need to relax it

and let the solution matrix to have full rank if needed. In practice

the solution matrix will have rank 3 if there are no outliers. And the

rank will go up with outliers’ addition as the relaxation will be less

tight.

Problem 5 (Semi-definite formulation of maximum-

likelihood orientation estimation)

Given the observation 𝑹𝒊𝒋̅̅ ̅̅ ∈ 𝑺𝑶(𝟑), for (𝑖, 𝑗) ∈ ℰ, the rotation variance

𝑤𝑅 and a convex loss function 𝜌, find the set of minimizers �̂�𝑖 ∈ ℝ
3×3

that satisfies

𝑿 = min
𝑿∈ℝ3𝑛×3𝑛

∑ 𝑤𝑅||[𝑿]𝒊𝒋 − 𝑹𝒊𝒋̅̅ ̅̅ ||𝐹
2

(𝑖,𝑗)∈ℰ𝑜𝑑𝑜

+ ∑ 𝜌(𝑤𝑅 ||[𝑿]𝒊𝒋 − 𝑹𝒊𝒋̅̅̅̅ ||
𝑭
)

(𝑖,𝑗)∈ℰ𝑙𝑐

(5-6a)

Subject to [𝑿]𝑖𝑖 = 𝑰3 ,

𝑿 ≽ 𝟎

(5-6b)

(5-6c)

Having fixed the first node orientation to 𝑅0 = 𝑰3

 The final form of our rotation problem is the problem 5 as it

is convex. Even more it is semidefinite so we can use off-the-

shelf solver to find the solution. One details that will be important is

the hypotheses on the convexity of the loss function which make

the problem convex.

5.2 Rounding procedure

After solving the problem 5, we obtain the matrix 𝑿 solution

which contains all the necessary information to retrieve the rotation

matrix. It can also be seen as the step to reproject the solution on

 ６３

the problem 1 feasible set 𝑆𝑂(3). The algorithm 1 illustrates how to

get the wanted rotation matrix from the estimate matrix (Hartley et

al., 2013; Wang et al., 2013) we do 2 approximations that break the

equivalence of the different problem: drop the determinant and rank

constraint on the matrix. Starting from the assumption that the

matrix wanted is supposed to have rank 3, we compute in step 2 the

rank-3 singular value decomposition of the matrix. By construction

most of the solution components contain redundant information, we

can use only the first column [
𝑹1
𝑇𝑹1
⋮

𝑹𝑛
𝑇𝑹1

] which already has the

information about all the rotation matrix �̂�i . So, from the SVD

decomposition we recompose the different 𝑹𝑖
𝑇𝑹1 terms as the 𝐓i

matrix in step 5 especially as we implicitly fixed the rotation 𝑹1 = 𝑰3.

Finally, we fixed back the determinant to 1 in the step 9 if needed.

ALGORITHM 1: THE ROUNDING PROCEDURE

Input: Estimated rotation matrix 𝑿 ∈ ℝ3𝑛×3𝑛

Output: Rounded rotation matrix �̂�𝑖 ∈ 𝑆𝑂(3)

1: function ROUNDING_ROTATION(𝑿)

2: [𝑈𝛴𝑉𝑇] ← rank-3 singular value decomposition of 𝑿

3: Set 𝑻 = [𝒗1 𝒗𝟐 𝒗𝟑]

4: For i = 1, …, n do

5: Set 𝑻𝑖 as the i-th matrix of size 3×3

6: [𝑀𝛯𝑁𝑇] ← SVD of 𝑻𝑖

7: �̂�𝑖 = 𝑀𝑁
𝑇

8: If 𝑑𝑒𝑡(�̂�𝑖) = −1 then

9: Set Det(�̂�𝑖) = 1

10: End

 ６４

11: End

12: return �̂�𝑖

13: end

5.3 Certifiability contract

In a world where the failure of the algorithm can have important

consequence, the need of contract on the quality of the estimate

solution is of primal importance. So, what we call a certifiability

contract is a posteriori performance guarantees. They will tell us if

the estimated solution from the convex relaxation problem is also

the global solution of the initial nonconvex problem. This is

equivalent to checking if the convex relaxation is tight.

We note the objective function of problem 1 as 𝑓1 and its optimal

cost 𝑓1
∗. We note for the convex problem 5 the objective function as

𝑓5 and its optimal cost 𝑓5
∗. When we relaxed a nonconvex problem,

we relax the feasible set of the problem, so we know as equation

(2-23) stated that 𝑓5
∗ ≤ 𝑓1

∗. This condition means that the optimal

cost obtain from the relaxation problem is smaller or equal to the

optimal cost of the initial problem. We additionally note �̂� the

solution associate to the optimal cost 𝑓5
∗ and �̂�𝑖 the corresponding

rounded rotation matrix. We can then derive the following

equivalent inequalities:

 𝑓5
∗ ≤ 𝑓1

∗

⟺ 𝑓5(�̂�) ≤ 𝑓1
∗

⟺ −𝑓1
∗ ≤ −𝑓5(�̂�)

 ６５

⟺ 𝑓1(�̂�𝑖) − 𝑓1
∗ ≤ 𝑓1(�̂�𝑖) − 𝑓5(�̂�) (5-7)

In the left term of equation 5-7, the difference between the

cost obtained with the convex relaxation and the actual unknow

optimal cost represent the suboptimality gap of our convex

relaxation. And since we don’t know 𝑓1
∗ value, we can’t compute it

directly. But using the inequality 5-7 we can compute a bound for it

as the left term of the equation can be compute after the rounding.

If the left term is 0 then we can tell that 𝑓1
∗ = 𝑓1(�̂�𝑖) and that the

rounded rotation matrices are the optimal value for the initial

nonconvex problem.

We can directly compute the gap 𝑓1(�̂�𝑖) − 𝑓5(�̂�) to check the

quality of our estimate. However, we can also see that this

difference is a representation of the difference between the

estimated matrix and the rounded one. So, if the matrix �̂� is exactly

rank 3 and if the first 𝑛 3 × 3 block of its rank 3 decomposition are

already in SO(3) then the gap will be 0. So instead of computing the

gap, we can have a more straightforward criterion which is the rank

of �̂�.

6 Loss function

For the robustness of the formulation against outlier, we use

M-estimator. The principle is to add a loss function around the

norm of the error to reduce the impact of large error. There are a

variety of different loss function already existing with desirable

properties. We will first talk about the theory of loss function and of

their properties in part 6.1. Then the most common loss function

 ６６

used in PGO will be presented in part 6.2.

6.1 Theory

A loss function is a function that aims to reduce the influence

of the outliers which have large errors. The loss function 𝜌: 𝑡 ⟼

𝜌(𝑡) ≥ 0 should be non-negative, non-decreasing and with a unique

minimum at 𝑡 = 0, so it doesn’t change the minima of the objective

function. There are some interesting indicators that can be compute

on loss function to understand and compare their effects on the

estimator. Usually, estimators are compared in terms of bias and

efficiency. The bias is defined as the difference between the

estimator’s expected value and the true value. When the efficiency

is how good is the estimator. If we look at the estimator as a

random variable with a distribution 𝜂, then the bias is link to the

mean and the efficiency to the variance. In real application, we

cannot have the best estimator, there is a trade-off between the

quality/efficiency and the robustness/bias of the estimator.

To visually assess the robustness of a M-estimator with a

chosen loss function, we can plot the influence curve. The desired

properties here is that we the error goes to infinity, the influence

function should go to 0, which means the error measurement will be

neglected. These are called redescending M-estimators. From this

influence curve, we can go further and compute the gross error

sensitivity as in equation 6-1 It represents the maximum effect

that an outlier can have.

𝐺𝐸𝑆(𝜂) = sup
z
||𝐼𝐹(𝑧, 𝜂)|| (6-1)

 ６７

Another curve is the maximum bias one which represent the

maximum bias in function of the proportion of outliers. Using this

curve, we can define the breakdown point which is the maximum

proportion of outlier that the estimator can handle. It can be read on

the maximum-bias curve directly. To derive all this indicator, we

can use the derivative of the loss function 𝜌′(𝑡) also called the

weight function and so it is useful to look at it. We want to choose

the loss function such that the efficiency is high around 0 so we

correct the inliers position accurately. The gross error sensitivity

should be lowest as possible, so an outlier doesn’t affect too much

the solution. The breakdown point should be large so we can handle

many outliers. An additional property of the loss function that we

want to look at in our study case is the convexity of the function.

We can only use convex function to keep the convexity of the

relaxed problem.

6.2 Common loss function comparison

The study of some loss function for M-estimator by Bosse et al.

(2016) and by MacTavish et al. (2015) and give us the following

list of useful loss function in table 6-1. We also add the

Charbonnier loss function that is a function that appears in the

adaptive Barron loss function used in AEROS by Milad Ramezani et

al. (2022). The loss function formulas are given. The variable 𝑠 in

the formula is a tuning constant using to fix the scale of the loss

function. The figure 6-1 shows the curve of the different loss

function with the parameter 𝑠 = 1. First, we want a convex function

so we cannot use the Tukey, threshold, Welsch, Geman function.

 ６８

From the remaining one, the one which have the slowest growing

rate are the one the more robust to outlier

Figure 6-1 Common loss function shape

From the shape of the function and the convexity analysis, we can

already tell that the best functions for the M-estimator are

nonconvex and so cannot be used in our formulation. The only

possible functions are L1, L2, Charbonnier which is a combination of

L1 and L2, Huber and fair function.

 ６９

Table 6-1 Loss function list

Loss function 𝝆(𝒕) 𝝆′(𝒕) Convexity

Gaussian/L2
𝑡2

2
 t

Convex

L1/Laplace |𝑡| 𝑠𝑔𝑛(𝑡)
Convex

Charbonnier √(
𝑡

𝑠
)
2

+ 1 − 1
𝑡

√𝑠2𝑡2 + 𝑠4

Convex

Huber {

𝑡2

2
 |𝑡| ≤ 𝑠

𝑠(|𝑡| −
𝑠

2
) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 {
𝑡 𝑡 ≤ 𝑠

𝑠 ∗ 𝑠𝑔𝑛(𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Convex

“Fair” 𝑠2[
|𝑡|

𝑠
− log (1 +

|𝑡|

𝑠
)]

𝑡

1 +
|𝑡|
𝑠

 Convex

Cauchy
𝑠2

2
log (1 + 𝑡2/𝑠2)

𝑡

1 + (
𝑡
𝑠
)
2

Nonconvex

 ７０

Geman-McClure

𝑡2

2
𝑠 + 𝑡2

𝑡

(1 +
𝑡2

𝑠2
)
2

Nonconvex

Welsch
𝑠2

2
[1 − exp (−(

𝑡

𝑠
)
2

)] 𝑡 ∗ exp (− (
𝑡

𝑠
)
2

)
Nonconvex

Threshold

{

𝑡2

2
 |𝑡| ≤ 𝑠

𝑠2

2
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 {
𝑡 |𝑡| ≤ 𝑠
 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Nonconvex

Tukey

{

 𝑠

2

6
(1 − [1 − (

𝑡

𝑠
)
2

]

3

) |𝑡| ≤ 𝑠

𝑠2

6
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 { 𝑡 (1 − (
𝑡

𝑠
)
2

)

2

 |𝑡| ≤ 𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Nonconvex

 ７１

7 Datasets and evaluation method description

We want to study the relaxation approach with the M-estimator

on the loop closure. For comparing the different loss function, we

will focus on synthetic dataset as we didn’t try to optimize the

process in terms of running time. Also, cvx in MATLAB is well-

known for not scaling well with the amount of data. The datasets

created are inspired by the one used in Carlone et al. (2018)

extended for 3D testing and from Rosen et al. (2017) with

additional outliers.

7.1 Synthetic Dataset

We create different type of synthetic pose graph dataset for

testing. The first one is a totally random pose graph with high

connectivity. The second is less random in the edges position but

still has high connectivity. The last one is demonstrating a robot

predefined trajectory and has low connectivity. The steps for the

creation of the different pose graph are shown in algorithm 2. The

subfunction in line 2 and 3 are different in function of the graph

type and will be details later.

ALGORITHM 2: SYNTHETIC POSE GRAPH CREATION

Input: DataType, n number of node, n_lc number of loop closure, w_r rotation

variance, w_t translation variance, p_out percentage of outliers in the loop closure.

Output: Ground truth poses 𝑻𝑖 ∈ 𝑆𝑂(3)

Noisy measurement edges �̅�𝑖𝑗 ∈ 𝑆𝑂(3)

1: function [𝑻𝑖 , �̂�𝑖𝑗] =DATA_CREATION(𝑫𝒂𝒕𝒂𝑻𝒚𝒑𝒆,𝒏, 𝒏𝒍𝒄, 𝒘𝒓, 𝒘𝒕, 𝒑𝒐𝒖𝒕)

2: 𝑻𝑖 ← GroundTruthPoseCreation((𝑫𝒂𝒕𝒂𝑻𝒚𝒑𝒆,𝒏)

3: Compute the Edge connected set 𝑬𝒄

 ７２

4: If 𝑬𝑪 is creating a non-connected graph, restart at 3

5: �̅�𝑖𝑗 ← OdometryMeasurementCreation(𝑫𝒂𝒕𝒂𝑻𝒚𝒑𝒆, �̂�𝑖, 𝑬𝒄, 𝒘𝒓, 𝒘𝒕)

6: For i = 1, …, n_lc do

7: Draw Bernouilli variable 𝒃 of probability 𝒑_𝒐𝒖𝒕

8: Pick an edge 𝒆𝒄 which is not in 𝑬𝒄

9: If 𝒃 = 1 then

10: �̅�𝑖𝑗 ← LoopClosureOutlierCreation(𝑫𝒂𝒕𝒂𝑻𝒚𝒑𝒆, �̂�𝑖, 𝒆𝒄, 𝒘𝒓, 𝒘𝒕)

11: Else

12: �̅�𝑖𝑗 ← LoopClosureInlierCreation(D𝒂𝒕𝒂𝑻𝒚𝒑𝒆, �̂�𝑖, 𝒆𝒄, 𝒘𝒓, 𝒘𝒕)

13: end

14: end

15: return 𝑻𝑖, �̅�𝑖𝑗

16: end

We can give more details on some important line in algorithm 2:

(4) If the create graph has some node or group of nodes not

connected, then we discard it and recreated a new one.

(5) The odometry measurement links to this edge is compute using

the model of equation 4-1 where the noise is Gaussian for the

translation of mean 𝟎𝟑 and variance 𝑤𝑡
2 = 0.1. The rotation matrix

noise is construct from the Euler angles which are generated from a

gaussian of mean 0 and variance 𝑤𝑅 = 0.01.

(8) The loop closure edges are chosen from the set of edges which

are not odometry one.

(10) If the loop closure is an inlier, then it is generated with the

 ７３

same model as the odometry.

(12) If the loop closure is an outlier, then we create completely

wrong measurement by setting the noise in equation 4-1 to follow a

uniform distribution over [−
𝐷

4
,
𝐷

4
] for the translation and [0,2𝜋] for

the rotation.

7.1.1 Erdos-Rényi pose graph

(2) The ground truth positions are randomly draw from a cube of

dimension 𝑫× 𝑫×𝑫 from a uniform distribution. The orientations

are also randomly pick from a uniform distribution between [0,2𝜋]

for each Euler angle and then transform into the matrix

representation.

(3) Using Erdos-Rényi graph model, we first create odometry

edges. An edge between 2 poses exists with a probability of 0.5.

This type of graph is highly connected has more than half of the

edges between nodes exists. An example with 𝑛 = 20 and 𝑛𝑙𝑐 = 10 is

show in figure 7-1 where the grey edges are odometry and the red

loop closure.

 ７４

Figure 7-1 Erdos-Rényi pose graph example (𝑛 = 20, 𝑛𝑙𝑐 = 10)

7.1.2 Geometric random pose graph

(2) The ground truth positions are randomly draw from a cube of

dimension 𝑫× 𝑫×𝑫 from a uniform distribution. The orientations

are also randomly pick from a uniform distribution between [0,2𝜋]

for each Euler angle and then transform into the matrix

representation.

(3) Using Geometric random graph model, we first create odometry

edges. All the pose which are at a distance radius smaller than
𝑫

3
 are

connected. This type of graph is less connected than Erdos-Rényi

graph but still highly connected compared to real SLAM pose graph.

An example with 𝑛 = 20 and 𝑛𝑙𝑐 = 10 is show in figure 7-2 where

the grey edges are odometry and the red loop closure.

 ７５

Figure 7-2 Geometric random pose graph example (𝑛 = 20, 𝑛𝑙𝑐 = 10)

7.1.3 Cube pose graph

(2) This type of pose graph is inspired from real pose graph for

SLAM application. We assume the robot moves following a grid of

size 𝑫. We used the wanted number of nodes to compute the step

size between two nodes as 𝛿 =
𝐷

𝑛1/3−1

(3) As we reproduce a real trajectory, the connected edges set is

just all the edge such that 𝑗 = 𝑖 + 1 . As we create the poses

following the specific path that the robot is following. An example

with 𝑛 = 20 and 𝑛𝑙𝑐 = 10 is show in figure 7-3 where the grey edges

are odometry and the red loop closure.

 ７６

Figure 7-3 Cube pose graph example (𝑛 = 27, 𝑛𝑙𝑐 = 10)

7.2 Results estimation methods

To evaluate the proposed algorithm, we compute some

indicators. All the indicators will be computed for 10 runs to see the

overall trend. The solver selected in cvx is the SDPT3, which is one

of the free solvers (unlicensed one).

7.2.1 Tightness of the relaxation

One of the main information about the quality of the estimate

is the rank of the solution of the convex relaxation problem. We

compute the stable rank which is a real instead of an integer and

give more precise information about how close we are from the

rank 3. The stable rank is defined as the squared ration between

the Frobenius norm and the spectral norm.

 ７７

 𝑟𝑠 = (
||𝑿||

𝐹

||𝑿||
2

)

2

 (7-1)

 The Frobenius norm is just the concatenation of all the

coefficients which can be compute as ||𝑋||
𝐹
= (∑ |𝑥𝑖𝑗|

2𝑛
𝑖,𝑗=1)

1/2
=

√𝑡𝑟(𝑋𝑋∗) and the spectral norm is defined using the eigenvalues as

||𝑋||
2
= √𝜌(𝑋𝑋∗) where 𝜌(𝑋) = max

1≤𝑖≤𝑛
|𝜆𝑖|. We know that the two norms

will always follow the property ||𝑋||
2
≤ ||𝑋||

𝐹
 and so the stable norm

will be minimum 3 and go up if the relaxation is not tight.

We also compute the relaxation gap to check if the rounding

procedure is projecting correctly our matrix in SO(3) by using the

formula 7-2

 𝐺𝑎𝑝 = 𝑓1(�̂�𝑖) − 𝑓5(�̂�) (7-2)

7.2.2 Poses error

As we used synthetic dataset for testing, we have the ground

truth data available to estimate the quality of our PGO directly. We

will compute the mean error on the rotation and on the translation

separately. During the optimization, the only available data are

measurements between poses. These are relative information, so

the final poses computed are respecting the relative measurements

but are not the same as the ground truth poses. To compare with

the ground truth, we first project the estimated and the ground truth

pose in the same coordinate system by setting in the two

trajectories the first pose to be at the origin with 0 angles. For the

rotation we use the quaternion notation in the ARE formula of

 ７８

equation 7-3 and for the translation we use the ATE formula of

equation 7-4.

 𝐴𝑅𝐸𝑖 = 2 ∗ acos (|𝑞𝑒𝑠𝑡𝑖 ∙ 𝑞𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|) (7-3)

 𝐴𝑇𝐸𝑖 = ||𝑡𝑒𝑠𝑡𝑖 − 𝑡𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ||2
2 (7-4)

8 Simulation results

The different function that will be compared are the following

one: L2, Identity, L1, Huber. For L2, as it squares the Frobenius

norm, we have still a quadratic cost. The identity is using only the

Frobenius norm not square, so we excepted more robustness. For

L1, as we want to take the absolute value, we slightly change the

formulation and use the L1 norm instead of the Frobenius norm.

The Huber implementation has the most potential as it hard

implements a boundary for the large error. The other convex

function cannot be implemented in their primary form in cvx as they

don’t follow the Disciplined Convex Programming rules. To use

them in cvx, they need to be reformulated in a way such that cvx

can ensure the convexity of the final form which is not always

possible.

We plot all the indicators: rank, relaxation gap, average

rotational error, and average translation error. We plot first the

comparison of the mean indicator value for all the different loss

function. Then for more details analysis we plot for each function

the mean, the minimum and the maximum of each indicator for the

monte Carlo run in function of the outlier rate.

 ７９

8.1 Pose graph optimization results

8.1.1 Erdos-Rényi graph

We plot for the 4-loss function (Identity, L2, L1 and Huber)

the average of the 4 indicators for 20 poses and 10 loop closure

erdos-Rényi graph. The figure 8-1, 8-2, 8-3 and 8-4 shows that

the Huber function seems to fail in most case when there are

outliers. We were expecting it to be the best at handling outlier so

we will look first in more details the results only for the Huber

function Monte Carlo run given in Table 8-1.

 ８０

Figure 8-1 Stable rank comparison for Erdos-Rényi graph

Figure 8-2 Relaxation gap comparison for Erdos-Rényi graph

 ８１

Figure 8-3 Rotational error comparison for Erdos-Rényi graph

Figure 8-4 Translation error comparison for Erdos-Rényi graph

In the table, the rank data are rounded to 3 digits. So, when the rank

is 3, it is 2,9999. We highlight in red all the run when the rank of

the relaxed solution was 3. We can see from the table 8-1 that our

certifiability contract holds. When the rank of the matrix is 3, the

error on the rotation and translation is small, in all others case the

algorithm fails to retrieve the solution. If we refer with other state

of the art algorithm such as Carlone et al. (2018), the Huber loss

function should be able to retrieve the solution even at an outlier

rate of 0.3. In my case, I’m guessing the failure is coming from my

implementation of the Huber loss function with the Frobenius norm

as I used a custom function to overpass a problem in the DCP

ruleset.

 ８２

Table 8-1 Details of Monte Carlo run for the Huber loss on Erdos-Rényi

p_out 0 0.05 0.1 0.15 0.2 0.25 0.3

 RANK

1 3.000 2.437 3.000 2.662 2.395 2.481 2.727

2 3.000 3.000 2.459 3.000 2.563 2.531 2.375

3 3.000 3.000 2.567 2.722 2.615 2.469 2.727

4 3.000 3.000 3.000 2.665 2.662 2.766 2.799

5 3.000 3.000 2.408 2.374 3.000 2.625 2.421

6 3.000 3.000 2.602 2.584 2.780 2.633 2.734

7 3.000 3.000 2.372 2.558 2.530 2.634 2.609

8 3.000 3.000 3.000 3.000 2.752 2.594 2.603

9 3.000 3.000 2.586 2.543 2.401 2.514 2.532

10 3.000 2.264 2.617 2.641 2.665 2.826 2.403

RELAXATION

GAP

1 9.39E-08 4.61E+00 9.10E-08 3.15E+00 -1.07E+00 8.30E+00 1.27E+01

2 -6.26E-08 2.11E-07 -8.52E-01 3.47E-08 -3.85E+00 -6.41E-01 -3.60E+00

3 7.19E-08 6.02E-08 2.39E+00 3.74E+00 1.43E+01 -7.63E+00 -7.77E+00

4 1.16E-09 1.91E-07 8.11E-08 3.77E+01 5.75E+00 -1.26E+01 2.24E+00

5 1.08E-07 -1.28E-08 -1.32E+01 3.03E+00 1.66E-07 5.05E+00 5.73E+00

6 -2.20E-08 -8.27E-09 1.62E+01 4.33E+00 1.27E+01 3.48E+00 2.03E+01

7 -3.44E-08 7.45E-09 -4.51E+00 -9.70E-01 3.73E+00 1.10E+00 1.39E+01

8 7.99E-08 2.09E-07 -1.45E-07 2.17E-08 2.35E+01 1.01E+01 4.49E+00

 ８３

9 1.16E-07 1.83E-07 4.53E+00 2.02E+00 -1.47E+00 1.80E+01 1.17E+01

10 9.95E-08 -4.95E-01 9.71E+00 4.11E+00 2.31E+01 3.71E+01 2.22E+01

 ARE

1 8.25E-05 1.12E-01 1.09E-04 1.13E+00 1.97E-01 7.55E-01 6.36E-01

2 1.12E-04 7.24E-05 1.37E-01 1.01E-04 2.11E-01 5.50E-01 1.97E-01

3 1.20E-04 8.95E-05 1.28E-01 3.50E-01 5.01E-01 6.94E-01 3.50E-01

4 1.11E-04 9.88E-05 1.08E-04 4.35E-01 6.96E-01 4.36E-02 1.78E-01

5 9.38E-05 9.44E-05 6.84E-02 1.78E-01 7.52E-05 1.92E+00 2.56E-01

6 1.20E-04 1.00E-04 3.45E-01 1.03E-01 2.43E-01 3.52E-01 3.58E-01

7 1.79E-04 1.29E-04 7.77E-02 5.71E-02 1.13E-01 9.28E-02 4.36E-01

8 9.09E-05 1.59E-04 7.66E-05 7.99E-05 2.21E-01 2.37E-01 2.87E-01

9 1.10E-04 9.87E-05 1.28E-01 8.19E-02 1.05E-01 2.51E-01 2.62E-01

10 7.82E-05 1.92E-01 1.26E-01 1.78E-01 2.45E-01 3.91E-01 2.29E-01

 ATE

1 6.96E-05 3.98E-01 2.30E-04 1.90E+01 5.92E-01 1.14E+01 5.45E+00

2 5.69E-05 6.79E-05 5.58E-01 6.72E-05 8.29E-01 8.06E+00 1.93E+00

3 8.03E-05 5.59E-05 8.54E-01 2.45E+00 2.66E+00 1.08E+01 3.17E+00

4 1.34E-04 1.43E-04 6.85E-05 1.15E+00 8.24E+00 3.09E-01 3.08E+00

5 1.06E-04 5.06E-05 3.77E-01 3.50E+00 4.85E-05 5.64E+01 1.98E+00

6 8.47E-05 6.15E-05 1.65E+00 6.08E-01 5.51E-01 4.05E+00 1.46E+00

7 1.20E-04 5.93E-05 6.45E-01 7.87E-02 4.62E-01 3.30E-01 7.30E+00

8 8.75E-05 9.21E-05 4.81E-05 6.94E-05 3.54E+00 3.15E+00 1.69E+00

9 3.48E-05 9.56E-05 1.15E-01 3.82E-01 1.95E+00 1.80E+00 2.49E+00

10 1.36E-04 3.81E+00 2.66E+00 2.15E+00 1.09E+00 1.24E+00 1.01E+00

 ８４

 From now on, I will not plot the data for the Huber loss on

the graph to be able to visually compare the 3 other functions.

Another information that we can obtain is that only looking at the

mean of the indicator is not meaningful as some iteration fails. So

first we will look at the distribution of the indicator for the 3 other

loss functions in figure 8-5. The first remark we can say is that in

most the 3-loss function manage to retrieve a good estimate of the

poses even with outliers. The L2 function is given better results,

then the identity and finally the L1. So here, in this case the

classical quadratic formulation gives better results and the L1 which

should be the more robust gives the worse results. This comes the

fact that this type of graph is highly connected. If we see in Figure

7-1, the number of loop closure is really small compared to the

number of odometry edges so even with outliers the graph stay

resilient and using loss robust function on the loop closure actually

made us loose some precision.

 ８５

Figure 8-5 Details of all runs for the Erdos-Rényi pose graph

 ８６

8.1.2 Geometric random graph

We run the analysis for the 4-loss function (Identity, L2, L1

and Huber) and Huber loss function is showing the same pattern as

in the Erdos-Rényi graph. So, we don’t show the results in the

figure 8-6 which details the results obtained for 20 nodes and 10

loop closure for a Geometric random graph. The first think we can

immediately tell is that the error in all runs is bigger than in the

previous type of graph, this was predictable as the number of edges

is reduced. In most case the 3 loss functions manage to retrieve a

good estimate, but we start to see failure at 15 percent of outlier in

the loop closure set. Here the Identity function and the L1 are

slightly better in average than L2 but all function gives order of

error at the end.

 ８７

Figure 8-6 Details of all runs for the geometric random pose graph

 ８８

8.1.3 Cube graph

We do the same process as before, with the Huber loss function still

left out of the plot so we can compare the others. The cube graph is

the one that reproduce a real trajectory the most and the less

connected of all type of graph. This low connectivity is directly

impacting the quality of the solution as we can see than in many

cases with all the loss function, our proposed algorithm is failing to

retrieve a good estimate. In this case of low connectivity graph

even five percent of outliers can make our approach fails with the

L1, L2 or Identity loss function.

 ８９

Figure 8-7 Details of all runs for the cube pose graph

 ９０

8.2 Results analysis

First, from our results, we can’t really compare the Huber loss

function with the other as the results seems wrong due to the

implementation in cvx. But for the other 3, they show the same

tendencies to give better results when the graph is highly

connected. When we have a low number of edges, using the L1, L2

or identity function is not enough to be robust against outliers. For

highly connected graph, any of this function will give good estimates

in a certain measure. Now we will compare additional parameters

influence and give some interesting comment on the algorithm.

8.2.1 Number of failures

In every pose graph problem, there are time when the estimated

poses are wrong, we saw that it was directly correlated with the

rank of the estimated rotation solution. If look in details as the value

of the final rotation error and translation error, we will define the

boundary value for the rank to be not under 2,8. For the 3 types of

data, we plot the number of times when the rank is over this value

in Figure 8-8, figure 8-9 and figure 8-10. For the Erdos-Rényi

pose graph, only the Huber fails, the 3 others always obtain a

possible pose graph. For the geometric random pose graph, we

confirm our impression that more solution are completely wrong

one with the L2 which seems to stay closer at least for a small

number of outliers. For the cube graph, we fail to retrieve the

solution in most case when they are outliers.

 ９１

Figure 8-8 Number of certifiable contracts validate for Erdos-

Rényi pose graph

Figure 8-9 Number of certifiable contracts validate for geometric

random pose graph

 ９２

Figure 8-10 Number of certifiable contracts validate for Erdos-

Rényi pose graph

8.2.2 Computation time

We can look at the computation time in function of the number of

nodes in the graph. The graph from figure 8-11 is taken from the

cube pose graph. In our formulation, the part that takes the most

time is the rotation estimation by cvx especially because we need to

reproject after. The time for retrieving the rotation is exponential in

function of the number of nodes and the time for the translations is

linear.

 ９３

Figure 8-11 Computation time in function of the number of nodes

 ９４

9 Conclusion and future works

From the results, several conclusions can be drawn. First the

computation time is too long for real application which is a common

problem for all convex relaxation algorithm existing nowadays as

they always run batch. The study of Semidefinite solver and the

design of a special solver for large instance of pose graph is

something that we need for the future of this method.

Secondly, for low connectivity graph we need to use a more robust

function than the basic L1, L2. And real life pose graphs are not

always highly connected. Or the more connected they are, the more

outliers there are. The paper from Yang et al. (2023) used

Truncated Least square as robust loss function.

Thirdly, in our algorithm we naively tried to keep all the information

during the optimization and check if the relaxation is tight for study

only. This is a good idea when optimizing the first time the pose

graph. But as SLAM is usually an incremental process, it will be

important to use the rank for discarding wrong solution and to

separate the outlier after the detection for the next back-end

update. This can help keep the outlier percentage low and still

manageable.

Lastly, the main restriction on comparing the different loss function

comes from the convexity condition on it. So, if we want to keep the

approach of convex relaxation, we need to rewrite the cost function

another way. Recent work from Yang et al. (2023). have shown a

way to rewrite many costs function into an additional variable

 ９５

optimizable along the poses. The relaxation used is a different one,

i.e the Lasserre’s hierarchy relaxation. We plan in the future to

study this type of relaxation which is more adapted for outlier

rejection as it can use better loss function such as the Truncated

Least square.

 ９６

References

Agarwal, P., Tipaldi, G.D., Spinello, L., Stachniss, C., Burgard, W.

(2013). Robust map optimization using dynamic covariance scaling.

2013 IEEE International Conference on Robotics and Automation,

Karlsruhe, Germany, pp. 62-69.

DOI: 10.1109/ICRA.2013.6630557

Alvarez, E. (2019). Semidefinite Relaxation for the Optimal

Operation and Expansion Planning of Power Transmission Systems.

DOI: 10.13140/RG.2.2.12881.28006.

Bernholt, T. (2006). Robust Estimators are Hard to Compute.

Technical Report, No. 2005,52, Universität Dortmund,

Sonderforschungsbereich 475 - Komplexitätsreduktion in

Multivariaten Datenstrukturen, Dortmund.

Boyd, S., Vandenberghe, L. (2004). Convex optimization, Cambridge

university press.

Bosse, M., Agamennoni, G., Gilitschenski, I. (2016). Robust

Estimation and Applications in Robotics. Foundations and Trends®

in Robotics, 4(4), pp. 225-269, 2016.

 DOI: 10.1561/2300000047.

Carlone, L., & Censi, A. (2012). From Angular Manifolds to the

Integer Lattice: Guaranteed Orientation Estimation With Application

to Pose Graph Optimization. IEEE Transactions on Robotics, 30,

475-492.

Carlone, L., Calafiore, G.C., Tommolillo, C., Dellaert, F. (2016).

Planar Pose Graph Optimization: Duality, Optimal Solutions, and

Verification. IEEE Transactions on Robotics, 32(3), pp. 545-565.

DOI: 10.1109/TRO.2016.2544304

 ９７

Carlone, L., Calafiore, G.C. (2018). Convex Relaxations for Pose

Graph Optimization with Outliers. IEEE Robotics and Automation

Letters, 3(2), pp. 1160-1167, April 2018.

DOI: 10.1109/LRA.2018.2793352.

Carlone, L., Censi, A., Dellaert, F. (2014). Selecting good

measurements via ℓ1 relaxation: A convex approach for robust

estimation over graphs. 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems, Chicago, IL, USA, pp. 2667-2674.

DOI: 10.1109/IROS.2014.6942927

Carlone, L., Dellaert, F. (2015). Duality-based verification

techniques for 2D SLAM. Proceedings - IEEE International

Conference on Robotics and Automation, 2015, pp. 4589-4596.

DOI: 10.1109/ICRA.2015.7139835.

Carlone, L., Rosen, D., Calafiore, G., Leonard, J., Dellaert, F. (2015).

Lagrangian Duality in 3D SLAM: Verification Techniques and

Optimal Solutions. arXiv e-prints. URL:

https://arxiv.org/abs/1506.00746

Chaves, S., Kim, A., Galceran, E., Eustice, R. (2016). Opportunistic

sampling-based active visual SLAM for underwater inspection.

Autonomous Robots, 40.

DOI: 10.1007/s10514-016-9597-6.

Gao, X., Zhang, T. (2021). Introduction to Visual SLAM: From

Theory to Practice. Springer Singapore.

DOI: https://doi.org/10.1007/978-981-16-4939-4.

Gómez, E., Gómez-Villegas, M., Marin, J. (1998). A multivariate

generalization of the power exponential family of distributions.

Communications in Statistics-theory and Methods - COMMUN

STATIST-THEOR METHOD, 27, pp. 589-600.

DOI: 10.1080/03610929808832115.

https://arxiv.org/abs/1506.00746

 ９８

Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W. (2010). A

tutorial on graph-based SLAM. IEEE Transactions on Intelligent

Transportation Systems Magazine, 2, pp. 31-43.

DOI: 10.1109/MITS.2010.939925.

Hartley, R., Ponce, J., Kuang, Y., Gorban, D., Gasparini, F. (2013).

Rotation Averaging. International Journal of Computer Vision, 103,

pp. 267-305.

DOI: 10.1007/s11263-012-0601-0

Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.

(2011). G2o: A general framework for graph optimization. 2011

IEEE International Conference on Robotics and Automation,

Shanghai, China, pp. 3607-3613.

DOI: 10.1109/ICRA.2011.5979949.

Lajoie, P.-Y., Hu, S., Beltrame, G., Carlone, L. (2019). Modeling

Perceptual Aliasing in SLAM via Discrete-Continuous Graphical

Models. IEEE Robotics and Automation Letters, 4(2), pp. 1232-

1239, April 2019.

DOI: 10.1109/lra.2019.2894852.

Latif, Y., Lerma, C.C., Neira, J. (2013). Robust Loop Closing Over

Time. Robotics: Science and Systems VIII, MIT Press, pp. 233-240.

Lee, G.H., Fraundorfer, F., Pollefeys, M. (2013). Robust pose-

graph loop-closures with expectation-maximization. 2013

IEEE/RSJ International Conference on Intelligent Robots and

Systems, Tokyo, Japan, pp. 556-563.

DOI: 10.1109/IROS.2013.6696406

MacTavish, K., Barfoot, T. (2015). At all Costs: A Comparison of

Robust Cost Functions for Camera Correspondence Outliers. In:

2015 12th Conference on Computer and Robot Vision (CRV),

Halifax, NS, Canada, pp. 62-69.

DOI: 10.1109/CRV.2015.52.

 ９９

McGann, D., Rogers, J.G., Kaess, M. (2022). Robust Incremental

Smoothing and Mapping (riSAM). arXiv e-prints. URL:

https://arxiv.org/abs/2209.14359.

DOI: 10.48550/arXiv.2209.14359.

Olson, E., Agarwal, P. (2013). Inference on Networks of Mixtures

for Robust Robot Mapping. The International Journal of Robotics

Research, 32, pp. 826-840.

DOI: 10.1177/0278364913479413.

Protzel, P., Sünderhauf, N. (2012). Switchable constraints for

robust pose graph SLAM. 2012 IEEE/RSJ International Conference

on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, pp.

1879-1884.

DOI: 10.1109/IROS.2012.6385590

Ramezani, M., Mattamala, M., & Fallon, M.F. (2021). AEROS:

AdaptivE RObust Least-Squares for Graph-Based SLAM. Frontiers

in Robotics and AI, 9.

Rosen, D.M., Carlone, L., Bandeira, A.S., Leonard, J.J. (2017). SE-

Sync: A Certifiably Correct Algorithm for Synchronization over the

Special Euclidean Group. arXiv e-prints. URL:

https://arxiv.org/abs/1612.07386

Wang, L., Singer, A. (2013). Exact and Stable Recovery of

Rotations for Robust Synchronization. arXiv e-prints. URL:

https://arxiv.org/abs/1211.2441

Yang, H., Carlone, L. (2023). Certifiably Optimal Outlier-Robust

Geometric Perception: Semidefinite Relaxations and Scalable Global

Optimization. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 45(3), pp. 2816-2834, 1 March 2023.

DOI: 10.1109/TPAMI.2022.3179463.

https://arxiv.org/abs/1211.2441

 １００

Yuh, J., Marani, G., Blidberg, D.R. (2011). Applications of marine

robotic vehicles. Intel Serv Robotics, 4, pp. 221–231. DOI:

10.1007/s11370-011-0096-5.

Zereik, Enrica & Bibuli, Marco & Miskovic, Nikola & Ridao, Pere &

Pascoal, Antonio. (2018). Challenges and future trends in marine

robotics. Annual Reviews in Control. 46.

10.1016/j.arcontrol.2018.10.002.

	1.
	1.1 BACKGROUND
	1.2 OBJECTIVE AND METHOD
	1.3 CONTRIBUTION
	1.4 SUMMARY

	2 KEY CONCEPTS AND THEORETICAL BACKGROUND
	2.1 POSE GRAPH OPTIMIZATION
	2.1.1 Robot's pose models
	2.1.2 Sensor measurements models
	2.1.3 Maximum likelihood estimation problem

	2.2 HANDLING OUTLIERS
	2.2.1 Rejection techniques
	2.2.2 Mitigation techniques

	2.3 CONVEX OPTIMIZATION
	2.3.1 Convex sets and function
	2.3.2 Convex, polynomial, and semidefinite optimization problem
	2.3.3 Duality
	2.3.4 Algorithms for resolution
	2.3.5 Nonconvex problem and convex relaxation

	3 STATE OF THE ART
	3.1 SE-SYNC
	3.2 CONVEX RELAXATION FOR 2D ROBUST PGO
	3.3 DC-GM
	3.4 AEROS
	3.5 RISAM
	3.6 COMPARISON OF RELATED WORKS WITH THIS THESIS

	4 PROPOSED PGO ALGORITHM
	4.1 MLE FORMULATION
	4.1.1 Measurements noise model choice
	4.1.2 M-estimators on loop closure edge

	4.2 2-STEPS ALGORITHM

	5 ROTATION SUB-PROBLEM RESOLUTION
	5.1 CONVEX RELAXATION
	5.2 ROUNDING PROCEDURE
	5.3 CERTIFIABILITY CONTRACT

	6 LOSS FUNCTION
	6.1 THEORY
	6.2 COMMON LOSS FUNCTION COMPARISON

	7 DATASETS AND EVALUATION METHOD DESCRIPTION
	7.1 SYNTHETIC DATASET
	7.1.1 Erdos-Rnyi pose graph
	7.1.2 Geometric random pose graph
	7.1.3 Cube pose graph

	7.2 RESULTS ESTIMATION METHODS
	7.2.1 Tightness of the relaxation
	7.2.2 Poses error

	8 SIMULATION RESULTS
	8.1 POSE GRAPH OPTIMIZATION RESULTS
	8.1.1 Erdos-Rnyi graph
	8.1.2 Geometric random graph
	8.1.3 Cube graph

	8.2 RESULTS ANALYSIS
	8.2.1 Number of failures
	8.2.2 Computation time

	9 CONCLUSION AND FUTURE WORKS

<startpage>13
1. INTRODUCTION
 1.1 BACKGROUND １
 1.2 OBJECTIVE AND METHOD ４
 1.3 CONTRIBUTION ８
 1.4 SUMMARY ９
2 KEY CONCEPTS AND THEORETICAL BACKGROUND １０
 2.1 POSE GRAPH OPTIMIZATION １０
 2.1.1 Robot's pose models １１
 2.1.2 Sensor measurements models １４
 2.1.3 Maximum likelihood estimation problem １８
 2.2 HANDLING OUTLIERS １９
 2.2.1 Rejection techniques ２１
 2.2.2 Mitigation techniques ２２
 2.3 CONVEX OPTIMIZATION ２３
 2.3.1 Convex sets and function ２４
 2.3.2 Convex, polynomial, and semidefinite optimization problem ２６
 2.3.3 Duality ２７
 2.3.4 Algorithms for resolution ２９
 2.3.5 Nonconvex problem and convex relaxation ３４
3 STATE OF THE ART ３７
 3.1 SE-SYNC ３７
 3.2 CONVEX RELAXATION FOR 2D ROBUST PGO ３８
 3.3 DC-GM ４０
 3.4 AEROS ４１
 3.5 RISAM ４２
 3.6 COMPARISON OF RELATED WORKS WITH THIS THESIS ４４
4 PROPOSED PGO ALGORITHM ５０
 4.1 MLE FORMULATION ５１
 4.1.1 Measurements noise model choice ５１
 4.1.2 M-estimators on loop closure edge ５４
 4.2 2-STEPS ALGORITHM ５５
5 ROTATION SUB-PROBLEM RESOLUTION ５７
 5.1 CONVEX RELAXATION ５８
 5.2 ROUNDING PROCEDURE ６２
 5.3 CERTIFIABILITY CONTRACT ６４
6 LOSS FUNCTION ６５
 6.1 THEORY ６６
 6.2 COMMON LOSS FUNCTION COMPARISON ６７
7 DATASETS AND EVALUATION METHOD DESCRIPTION ７１
 7.1 SYNTHETIC DATASET ７１
 7.1.1 Erdos-Rnyi pose graph ７３
 7.1.2 Geometric random pose graph ７４
 7.1.3 Cube pose graph ７５
 7.2 RESULTS ESTIMATION METHODS ７６
 7.2.1 Tightness of the relaxation ７６
 7.2.2 Poses error ７７
8 SIMULATION RESULTS ７８
 8.1 POSE GRAPH OPTIMIZATION RESULTS ７９
 8.1.1 Erdos-Rnyi graph ７９
 8.1.2 Geometric random graph ８６
 8.1.3 Cube graph ８８
 8.2 RESULTS ANALYSIS ９０
 8.2.1 Number of failures ９０
 8.2.2 Computation time ９２
9 CONCLUSION AND FUTURE WORKS ９４
</body>

