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Abstract

Many researchers in the field of deep learning have been trying to build agents

that perform a wide range of tasks. Since training on all the possible tasks is

often not viable, improving the generalization of agents to novel tasks based on

what they learn from training tasks has been one of the important challenges in

deep learning. For effective generalization, both learning abstractions that can

be used under different conditions and the exploitation of the abstractions on

new tasks are crucial. In this thesis, we explore the challenge of generalization

mainly in those two aspects, abstraction and transfer.

First, we study how to abstract input data and learn features that are ro-

bust to noise. As task-irrelevant information during inference can hugely impact

the performance of learned models and agents, establishing robustness to such

noise is an important problem in generalization. To tackle the problem, we pro-

pose a discrete information bottleneck method named Drop-Bottleneck, which

learns to discretely drop features that are irrelevant to the target variable and

distill features of interest. It enjoys not only a simple information compression

objective but also provides deterministic compressed representations, which are

useful for inference with complete consistency and improved efficiency due to

the reduced number of features.

We then investigate how the agent can discover inherent behaviors in the en-

vironment without supervision and abstract them into skills in a more reusable

form. Unsupervised skill discovery aims at finding and learning a set of useful

behaviors by interacting within the environment but with no external rewards.
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It is one of the key challenges of temporal abstraction in reinforcement learning

as it allows the agent to reuse the knowledge of the learned skills and solve

new tasks more efficiently and effectively. To the goal, we suggest an unsuper-

vised skill discovery method named Information Bottleneck Option Learning

(IBOL). It seeks extensive behaviors in the state space by linearizing the en-

vironment and abstract those behaviors with disentanglement encouraged with

the imposition of information bottleneck for improved reusability of the skills.

Lastly, we probe a way to leverage the knowledge learned from source tasks

to improve the performance on target tasks without further training. For zero-

shot transfer in reinforcement learning where the reward function varies be-

tween different tasks, the successor features framework is one of the popular

approaches. Our goal is to enhance the transfer of the learned value approxi-

mators with successor features to new tasks by bounding the errors on the new

target tasks. Given a set of source tasks with their successor features, we present

lower and upper bounds on the optimal values for novel task vectors that are

expressible as linear combinations of source task vectors. We then propose con-

strained GPI as a simple test-time approach that can improve the transfer by

constraining value approximations on new target tasks.

Keywords: Deep Learning, Deep Reinforcement Learning, Skill Discovery,

Temporal Abstraction, Transfer Learning

Student Number: 2018-28413
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Chapter 1

Introduction

In deep learning, building more generalizable agents is one of the primary chal-

lenges. While trained agents can perform well on the tasks on which they were

trained, their generalization to novel tasks may not be as straightforward in

many cases. The issue could become severer as the test tasks deviate more from

the training tasks. As training agents for every possible task is infeasible, it is

an important research direction to improve the generalization of agents to novel

tasks. In this thesis, we consider two perspectives for generalization mainly in

deep reinforcement learning (RL): abstraction and transfer.

To pursue generalization across tasks, it is prevalent to learn to abstract

information from the training tasks so that it can be exploited by the agents.

While one common strategy is to learn an abstract method for given inputs

for its transfer to different tasks (Chapter 2), we also discuss problems and

approaches where the agents find and extract information, such as behaviors,

for the transfer of its abstraction to novel tasks (Chapters 3 and 4).
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Depending on what the agents desire to transfer to new tasks, different

approaches could be taken. Learned abstraction methods can be used as-is or

leveraged with consistency and improved efficiency for inference (Chapter 2).

Acquired behavior abstractions might become building blocks for higher-level,

meta-controllers (Chapter 3) or ingredients for improving their behaviors on

novel tasks (Chapter 4).

On the other hand, generalization is a very high-level goal, and many differ-

ent problems can be grouped together under this direction at the highest level.

In this thesis, we primarily focus on problems in deep RL or those that could

help solve challenges within deep RL. Given the views above, we describe the

specific challenges we tackle in this thesis as follows.

Fragility to Task-Irrelevant Information. While deep learning models

are known to be effective in various types of tasks, it is not uncommon to ob-

serve trained models or agents get easily distracted by the noise in inputs and

degraded in their performance. For instance, in the field of RL, there is an ob-

served phenomenon that curiosity-seeking agents might get stuck in situations

with noisy but novel observations [24]. Thus, it is crucial to study how to over-

come such vulnerabilities to noisy or task-irrelevant information. One popular

approach is to introduce the information bottleneck [106] to the learning. The

information bottleneck is a framework for, given an input variable X, deriving a

new variable Z from X while preserving only information about the target vari-

able Y , which is achieved by minimizing the mutual information (MI) between

Z and X while maximizing the MI between Z and Y . While there have been

information bottleneck methods applicable to deep learning such as Variational

Information Bottleneck (VIB) [11] or Information Dropout [4], their stochastic

compressed representations may not be suitable for tasks that require consis-
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tency in the representations. Also, despite the reduced amount of information in

the compressed representations, the compression does not lead to practical ben-

efits in terms of efficiency. This thesis addresses the above issues by proposing a

new information bottleneck method that discretely drops unnecessary features

(Chapter 2).

Less Reusable Abstraction of Behaviors. In RL, the behavior spaces of

agents are often huge due to a large number of possible temporal combinations

of actions. Therefore, it is important to identify and reuse behaviors that could

be shared between different tasks for efficient and effective learning across tasks.

Unsupervised skill discovery tackles this problem without extrinsic rewards by

discovering such behaviors and learning their temporal abstractions. In this

domain, empowerment, which is often formulated by the maximization of the

mutual information (MI) I(Z;S) where Z is the latent skill variable and S is

the resulting state variable, is a popular direction as it desires that changes

in Z induce corresponding changes in the resulting state S. However, such MI

maximization is limited mainly in the following two aspects. First, it does not

pursue extensive behaviors in the state space. While agents need to learn to

reach various states in order to prepare for tasks in the given environment, due

to MI’s invariance to scaling, it does not encourage exploration in continuous

state spaces, which makes it difficult to discover behaviors for diverse situations

and goals. Second, simpler abstractions are not promoted. As MI is invariant to

any one-to-one transformation, the learning of the mapping between behaviors

in the state space and the latent skills with empowerment does not necessarily

lead to simple abstractions. We deal with the limitations by linearizing the

environment dynamics for intrinsic motivation to seek extensive behaviors and

introducing the information bottleneck for learning disentangled abstractions

(Chapter 3).
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Insufficient Exploitation of Source Information for Transfer. A com-

mon objective of transfer learning in RL is to leverage information learned from

source tasks to improve the performance on target tasks where the tasks differ in

their reward functions. One of the representative approaches to this is transfer

with the combination of the successor features (SFs) framework and generalized

policy improvement (GPI) [14]. During the training stage, it aims at learning

the optimal behaviors on source tasks and abstracting them as SFs, which are

representations of value functions linearly decoupled from reward functions. For

inference on target tasks, it combines the SFs on the source tasks with GPI, a

generalization of policy improvement for multiple policies. There are also vari-

ants of SFs that exploit the smoothness of optimal value functions with respect

to tasks by employing task-aware function approximators [21, 73]. Although

the SFs framework and its variants have shown promising results in transfer

learning, such function approximators might produce highly erroneous outputs

for distant target tasks. In this thesis, we propose to use approximations for the

source tasks, which are more reliable, to bound the errors on the target tasks

and improve the resulting performance (Chapter 4).

1.1 Contributions

The main contributions of this thesis are summarized as follows.

• Robust and Efficient Feature Abstraction with Discrete Infor-

mation Bottleneck (Chapter 2). To establish feature abstractions that

are robust to noise and task-irrelevant information, we propose a discrete

information bottleneck method named Drop-Bottleneck. Within the in-

formation bottleneck framework, it learns a compressed representation of

4



the input by discretely dropping each feature with a learned drop proba-

bility, which can be jointly trained with the feature extractor. Each drop

probability is trained to take the corresponding feature dimension’s im-

portance in solving the tasks into account. Furthermore, we also define its

deterministic compressed representations, which provide complete consis-

tency and improved efficiency for inference while maintaining the major-

ity of the ability to distill task-relevant information. Drop-Bottleneck can

be adopted with its simple objective and empirically shows its greatly

improved robustness to adversarial examples compared to Variational In-

formation Bottleneck (VIB) [11].

This work is published in:

[61] Jaekyeom Kim, Minjung Kim, Dongyeon Woo, and Gunhee Kim.

Drop-Bottleneck: Learning Discrete Compressed Representation for Noise-

Robust Exploration. ICLR 2021.

• Disentangled Temporal Abstraction for Reusable Skills (Chap-

ter 3). We combat the aforementioned issues with empowerment-based

skill discovery as described below. To encourage extensive behaviors in

the state space, we first suggest treating the challenge of making transi-

tions in the state space separately from skill discovery. We simplify the

environment dynamics by equipping it with a linearizer, a lowest-level

policy that is responsible for mapping desired goal directions to the cor-

responding changes in the state space, and the linearizer benefits not only

ours but also other skill discovery methods in the state space coverage.

On top of the linearizer, we perform skill discovery by learning to abstract

behaviors in the state space into the latent skill space with the informa-

tion bottleneck to seek simpler abstractions due to the encouragement of
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disentanglement. Having simpler temporal abstractions is beneficial for

not only meta-controllers that learn to pick and use skills for downstream

tasks but also for interpretability. We name our skill discovery method,

which combines the two above Information Bottleneck Option Learning

(IBOL).

This work is published in:

[62] Jaekyeom Kim*, Seohong Park*, and Gunhee Kim. Unsupervised

Skill Discovery with Bottleneck Option Learning. ICML 2021 (*: equal

contribution).

• Test-Time Improvement with Source Approximation (Chapter 4).

We take the following approach to better exploit the source information

for the transfer of SFs between tasks with different reward functions. First

of all, we present a theorem on lower- and upper-bounding optimal values

for tasks that are expressible as linear combinations of source tasks, where

the bounds are computed with approximations for the source tasks. We

then introduce constrained GPI, which could improve the performance on

new tasks by bounding optimal value approximations on the tasks solely

at the inference time, based on our theorem. We empirically examine con-

strained GPI with different environments and settings and show that the

bounding can improve the performance on target tasks.

This work is published in:

[63] Jaekyeom Kim, Seohong Park, and Gunhee Kim. Constrained GPI

for Zero-Shot Transfer in Reinforcement Learning. NeurIPS 2022.
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1.2 Thesis Organization

The organization of this thesis is outlined as follows. In Chapters 2–4, we dis-

cuss three main topics of this thesis with their challenges and our approaches:

robust and efficient feature abstraction with discrete information bottleneck

(Chapter 2), disentangled temporal abstraction for reusable skills (Chapter 3)

and test-time improvement with source approximation (Chapter 4).
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Chapter 2

Robust and Efficient Feature
Abstraction with Discrete
Information Bottleneck

2.1 Overview

Data with noise or task-irrelevant information easily harm the training of a

model; for instance, the noisy-TV problem [23] is one of well-known such phe-

nomena in reinforcement learning. If observations from the environment are

modified to contain a TV screen, which changes its channel randomly based

on the agent’s actions, the performance of curiosity-based exploration methods

dramatically degrades [23, 24, 64, 92].

The information bottleneck (IB) theory [105, 106] provides a framework for

dealing with such task-irrelevant information, and has been actively adopted

to exploration in reinforcement learning [53, 64]. For an input variable X and

a target variable Y , the IB theory introduces another variable Z, which is a
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compressed representation of X. The IB objective trains Z to contain less in-

formation about X but more information about Y as possible, where the two

are quantified by mutual information terms of I(Z;X) and I(Z;Y ), respec-

tively. IB methods such as Variational Information Bottleneck (VIB) [11, 27]

and Information Dropout [4] show that the compression of the input variable

X can be done by neural networks.

In this work, we propose a novel information bottleneck method named

Drop-Bottleneck that compresses the input variable by discretely dropping a

subset of its input features that are irrelevant to the target variable. Drop-

Bottleneck provides some nice properties as follows:

• The compression term of Drop-Bottleneck’s objective is simple and is

optimized as a tractable solution.

• Drop-Bottleneck provides a deterministic compressed representation that

still maintains majority of the learned indistinguishability i.e. compres-

sion. It is useful for inference tasks that require the input representation

to be consistent and stable.

• Drop-Bottleneck jointly trains a feature extractor and performs feature

selection, as it learns the feature-wise drop probability taking into account

each feature dimension’s relevance to the target task. Hence, unlike the

compression provided by most neural network-based IB methods, our de-

terministic representation reduces the feature dimensionality, which makes

the following inference better efficient with less amount of data.

• Compared to VIB, both of Drop-Bottleneck’s original (stochastic) and

deterministic compressed representations can greatly improve the robust-

ness to adversarial examples.

9



Based on the newly proposed Drop-Bottleneck, we design an exploration

method that is robust against noisy observations in very sparse reward en-

vironments for reinforcement learning. Our exploration maintains an episodic

memory and generates intrinsic rewards based on the predictability of new ob-

servations from the compressed representations of the ones in the memory. As

a result, our method achieves state-of-the-art performance on multiple envi-

ronments of VizDoom [59] and DMLab [18]. We also show that combining our

exploration method with VIB instead of Drop-Bottleneck degrades the perfor-

mance by meaningful margins.

Additionally, we empirically compare with VIB to show Drop-Bottleneck’s

superior robustness to adversarial examples and ability to reduce feature dimen-

sionality for inference with ImageNet dataset [91]. We also demonstrate that

Drop-Bottleneck’s deterministic representation can be a reasonable replacement

for its original representation in terms of the learned indistinguishability, with

Occluded CIFAR dataset [4].

2.2 Related Work

Information bottleneck methods. There have been a number of IB methods

that are approximations or special forms of the original IB objective. Variational

Information Bottleneck (VIB) [11] approximates the original IB objective by es-

tablishing variational bounds on the compression and prediction terms. Chalk

et al. [27] propose the same variational bound on the IB objective in the context

of sparse coding tasks. Conditional Entropy Bottleneck (CEB) and Variational

Conditional Entropy Bottleneck (VCEB) [38, 39] use an alternative form of the

original IB objective derived under the Minimum Necessary Information (MNI)

criterion to preserve only a necessary amount of information. The IB theory
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[106] has been used for various problems that require restriction of information

or dealing with task-irrelevant information. Information Dropout [4] relates the

IB principle to multiple practices in deep learning, including Dropout, disentan-

glement and variational autoencoding. Moyer et al. [78] obtain representations

invariant to specific factors under the variational autoencoder (VAE) [66] and

VIB frameworks. Amjad and Geiger [13] discuss the use of IB theory for classifi-

cation tasks from a theoretical point of view. Dai et al. [30] employ IB theory for

compressing neural networks by pruning neurons in networks. Schulz et al. [96]

propose an attribution method that determines each input feature’s importance

by enforcing compression of the input variable via the IB framework.

Similar to our goal, some previous research has proposed variants of the

original IB objective. Deterministic information bottleneck (DIB) [102] replaces

the compression term with an entropy term and solves the new objective using

a deterministic encoder. Nonlinear information bottleneck (NIB) [67] modifies

the IB objective by squaring the compression term and uses a non-parametric

upper bound on the compression term. While DIB is always in the deterministic

form, we can flexibly choose the stochastic one for training and the deterministic

one for test. Compared to NIB, which is more computationally demanding than

VIB due to its non-parametric upper bound, our method is faster.

Reinforcement learning with information bottleneck methods. The

IB theory has been applied to several reinforcement learning (RL) tasks. Varia-

tional discriminator bottleneck [88] regulates the discriminator’s accuracy using

the IB objective to improve adversarial training, and use it for imitation learn-

ing. Information Bottleneck Actor Critic [53] employs VIB to make the features

generalize better and encourage the compression of states as input to the actor-

critic algorithm. Curiosity-Bottleneck [64] employs the VIB framework to train

11



a compressor that compresses the representation of states, which is still infor-

mative about the value function, and uses the compressiveness as exploration

signals. InfoBot [43] proposes a conditional version of VIB to improve the trans-

ferability of a goal-conditioned policy by minimizing the policy’s dependence

on the goal. Variational bandwidth bottleneck [44] uses a modified, conditional

version of VIB, and solves RL tasks with privileged inputs (i.e. valuable in-

formation that comes with a cost). Our exploration method differs from these

methods in two aspects. First, we propose a new information bottleneck method

that is not limited to exploration in RL but generally applicable to the prob-

lems for which the IB theory is used. Second, our method generates exploration

signals based on the noise-robust predictability i.e. the predictability between

noise-robust representations of observations.

2.3 Feature Abstraction with Drop-Bottleneck

2.3.1 Preliminaries of Information Bottleneck

Given an input random variable X, the information bottleneck (IB) framework

[105, 106] formalizes a problem of obtaining X’s compressed representation Z,

which still and only preserves information relevant to the target variable Y . Its

objective function is

minimize−I(Z;Y ) + βI(Z;X), (2.1)

where β is a Lagrangian multiplier. The first and second terms are prediction

and compression terms, respectively. The prediction term I(Z;Y ) encourages

Z to preserve task-relevant information while the compression term I(Z;X)

compresses the input information as much as possible.

As reviewed in the previous section, there have been several IB methods
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[4, 11, 27, 67, 102], among which the ones derived using variational inference

such as Variational Information Bottleneck (VIB) [11] have become dominant

due to its applicability to general problems.

2.3.2 Drop-Bottleneck

We propose a novel information bottleneck method called Drop-Bottleneck (DB),

where the input information is compressed by discretely dropping a subset of

input features. Thus, its compression objective is simple and easy to optimize.

Moreover, its representation is easily convertible to a deterministic version for

inference tasks (Section 2.3.3), and it allows joint training with a feature ex-

tractor (Section 2.3.4). While discrete dropping of features has been explored

by prior works including Dropout [101], DB differs in that its goal is to assign

different drop probabilities to feature variables based on their relevance to the

target variable.

For an input variable X = [X1, . . . , Xd] and a drop probability p =

[p1, . . . , pd] ∈ [0, 1]d, we define its compressed representation as Z = Cp(X) =

[c(X1, p1), . . . , c(Xd, pd)] such that

c(Xi, pi) = b · Bernoulli(1− pi) ·Xi, where b =
d

d−∑
k pk

, (2.2)

for i = 1, . . . , d. That is, the compression procedure drops the i-th input feature

(i.e. replaced by zero) with probability pi. Since the drop probability is to be

learned, we use a scaling factor b to keep the scale of Z constant. We use a

single scaling factor for all feature dimensions in order to preserve the relative

scales between the features.

With the definition in Equation (2.2), we derive the compression term of
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DB to minimize as

I(Z;X) =
d∑
i=1

I(Zi;X1, . . . , Xd|Z1, . . . , Zi−1) (2.3)

=
d∑
i=1

[I(Zi;Xi|Z1, . . . , Zi−1) + I(Zi;X1, . . . , Xd \Xi|Z1, . . . , Zi−1, Xi)]

=

d∑
i=1

I(Zi;Xi|Z1, . . . , Zi−1) ≤
d∑
i=1

I(Zi;Xi) = Î(Z;X) (2.4)

using the properties that Zi⊥⊥X1, . . . , Xi−1, Xi+1, . . . , Xd|Z1, . . . , Zi−1, Xi and

Zi⊥⊥Z1, . . . , Zi−1|Xi. Note that Î(Z;X) − I(Z;X) =
(∑d

i=1H(Zi)
)
−

H(Z1, . . . , Zd) = TC(Z) where TC(Z) is the total correlation of Z and H(·)
denotes the entropy, and Î(Z;X) = I(Z;X) if X1, . . . , Xd are independent. To

provide a rough view on the gap, due to the joint optimization with the com-

pression term Î(Z;X) and the prediction term I(Z;Y ), Z becomes likely to

preserve less redundant and less correlated features, and TC(Z) could decrease

as the optimization progresses.

Finally, DB’s new compression term, Î(Z;X), is computed as

Î(Z;X) =

d∑
i=1

I(Zi;Xi) =

d∑
i=1

(
H(Xi)−H(Xi|Zi)

)
(2.5)

=
d∑
i=1

(
H(Xi)− pi ·H(Xi|Zi = 0)− (1− pi) ·H(Xi|Zi = bXi)

)
(2.6)

≈
d∑
i=1

(
H(Xi)− pi ·H(Xi)− (1− pi) · 0

)
=

d∑
i=1

H(Xi)(1− pi). (2.7)

From Equation (2.6) to Equation (2.7), we use the two ideas: (i) H(Xi|Zi =

0) = H(Xi) because Zi = 0 means it contains no information about Xi, and

(ii) H(Xi|Zi = bXi) = 0 because Zi = bXi means Zi preserves the feature (i.e.

Zi fully identifies Xi) and thus their conditional entropy becomes zero. Impor-

tantly, DB’s compression term is computed as the simple tractable expression in

14



Equation (2.7). As the goal of the compression term is to penalize I(Z;X) not

H(X), the drop probability p is the only parameter optimized with our com-

pression term. Thus, each H(Xi) can be computed with any entropy estimation

method such as the binning-based estimation, which involves quantization for

continuous Xi, since the computation has no need to be differentiable.

However, one issue of Equation (2.7) is that Z is not differentiable with

respect to p as Bernoulli distributions are not differentiable. We thus use the

Concrete relaxation [55, 74] of the Bernoulli distribution to update p via gra-

dients from Z:

Bernoulli(p) ≈ σ
(

1

λ
(log p− log(1− p) + log u− log(1− u))

)
, (2.8)

where u ∼ Uniform(0, 1) and λ is a temperature for the Concrete distribution.

Intuitively, p is trained to assign a high drop probability to the feature that is

irrelevant to or redundant for predicting the target variable Y .

2.3.3 Deterministic Compressed Representation

With Drop-Bottleneck, one can simply obtain the deterministic version of the

compressed representation as Z̄ = C̄p(X) = [c̄(X1, p1), . . . , c̄(Xd, pd)] for

c̄(Xi, pi) = b̄ · 1(pi < 0.5) ·Xi, where b̄ =
d∑

k 1(pk < 0.5)
. (2.9)

b̄ is defined similarly to b with a minor exception that the scaling is done based

on the actual, deterministic number of the dropped features. The deterministic

compressed representation Z̄ is useful for inference tasks that require stability or

consistency of the representation as well as reducing the feature dimensionality

for inference, as we demonstrate in Section 2.5.4.
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2.3.4 Training with Drop-Bottleneck

We present how Drop-Bottleneck (DB) is trained with the full IB objective

allowing joint training with a feature extractor. Since DB proposes only a new

compression term, any existing method for maximizing the prediction term

I(Z;Y ) can be adopted. We below discuss an example with Deep Infomax [50]

since our exploration method uses this framework (Section 2.4). Deep Infomax,

instead of I(Z;Y ), maximizes its Jensen-Shannon mutual information estimator

IJSDψ (Z;Y ) =
1

2

(
EPZY

[−ζ(−Tψ(Z, Y ))]− EPZ⊗PY
[ζ(Tψ(Z, Ỹ ))] + log 4

)
,

where Tψ is a discriminator network with parameter ψ and ζ(·) is the softplus

function.

Finally, the IB objective with Drop-Bottleneck becomes

minimize−IJSDψ (Z;Y ) + β
d∑
i=1

H(Xi)(1− pi), (2.10)

which can be optimized via gradient descent. To make p more freely trainable,

we suggest simple element-wise parameterization of p as pi = σ(p′i) and ini-

tializing p′i ∼ Uniform(a, b). We obtain the input variable X from a feature

extractor, whose parameters are trained via the prediction term, jointly with

p and ψ. In next section, we will discuss its application to hard exploration

problems for reinforcement learning.

2.4 Robust Exploration with Drop-Bottleneck

Based on DB, we propose an exploration method that is robust against highly

noisy observations in a very sparse reward environment for reinforcement learn-

ing tasks. We first define a parametric feature extractor fϕ that maps a state to
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X. For transitions (S,A, S′) where S,A and S′ are current states, actions and

next states, respectively, we use the DB objective with

X = fϕ(S′), Z = Cp(X), Y = Cp(fϕ(S)). (2.11)

For every transition (S,A, S′), the compression term minimizes I(Z;X) =

I(Cp(fϕ(S′)); fϕ(S′)) and encourages Cp to drop unnecessary features of the

next state embedding fϕ(S′) as possible. The prediction term maximizes

I(Z;Y ) = I(Cp(fϕ(S′));Cp(fϕ(S))) and makes the compressed representations

of the current and next state embeddings, Cp(fϕ(S)) and Cp(fϕ(S′)), informa-

tive about each other.

Applying Equation (2.11) to Equation (2.10), the Drop-Bottleneck objective

for exploration becomes

minimize−IJSDψ (Cp(fϕ(S′));Cp(fϕ(S))) + β
d∑
i=1

H((fϕ(S′))i)(1− pi). (2.12)

While fϕ, p, and Tψ are being trained online, we use them for the agent’s

exploration with the help of episodic memory inspired by Savinov et al. [92].

Starting from an empty episodic memory M , we add the learned feature of

the observation at each step. For example, at time step t, the episodic memory

is M = {C̄p(fϕ(s1)), C̄p(fϕ(s2)), . . . , C̄p(fϕ(st−1))} where s1, . . . , st−1 are the

earlier observations from that episode. We then quantify the degree of novelty

of a new observation as an intrinsic reward. Specifically, the intrinsic reward for

st is computed utilizing the Deep Infomax discriminator Tψ, which is trained

to output a large value for joint (or likely) input and a small value for marginal

(or arbitrary) input:

riM,t(st) =
1

t− 1

t−1∑
j=1

[g(st, sj) + g(sj , st)] (2.13)

for g(x, y) = ζ(−Tψ(C̄p(fϕ(x)), C̄p(fϕ(y))),
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where g(st, sj) and g(sj , st) denote the unlikeliness of st being the next and the

previous state of sj , respectively. Thus, intuitively, for st that is close to a region

covered by the earlier observations in the state space, riM,t(st) becomes low, and

vice versa. It results in a solid exploration method capable of handling noisy

environments with very sparse rewards. For computing the intrinsic reward, we

use the DB’s deterministic compressed representation of states to provide stable

exploration signals to the policy optimization.

2.5 Experiments

We carry out various types of experiments to evaluate Drop-Bottleneck (DB)

in multiple aspects. First, we apply DB exploration to multiple VizDoom [59]

and DMLab [18] environments with three hard noise settings, where we com-

pare with state-of-the-art methods as well as its VIB variant (Sections 2.5.2

and 2.5.3). Second, we empirically show that DB is superior to VIB and the mu-

tual information-based feature selection for adversarial robustness and feature

dimensionality reduction in ImageNet classification [91] (Section 2.5.4), and we

juxtapose DB with VCEB, which employs a different form of the IB object, for

the same adversarial robustness test (Section 2.5.5). Third, we make another

comparison with VIB in terms of the removal of task-irrelevant information

and the validity of the deterministic compressed representation (Section 2.5.6)

and provide the visualization of the task-irrelevant information removal on the

same task (Section 2.5.7). Finally, we perform an ablation study on the effect

of DB on the exploration performance (Section 2.5.8). For all the experiments

with DB, each entropy H(Xi) is computed with the binning-based estimation

using 32 bins, and the drop probability p is initialized with pi = σ(p′i) and

p′i ∼ Uniform(a, b) for a = −2, b = 1.
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2.5.1 Experimental Setup for Exploration Tasks

Basic setup and baselines. For the exploration tasks on VizDoom [59] and

DMLab [18], we use the proximal policy optimization (PPO) algorithm [95] as

the base RL method. We employ ICM from Pathak et al. [87], and EC and ECO

from Savinov et al. [92] as baseline exploration methods. ICM learns a dynamics

model of the environment and uses the prediction errors as exploration signals

for the agent. EC and ECO are curiosity methods that use episodic memory

to produce novelty bonuses according to the reachability of new observations,

and show the state-of-the-art exploration performance on VizDoom and DM-

Lab navigation tasks. In summary, we compare with four baseline methods:

PPO, PPO + ICM, PPO + EC, and PPO + ECO. Additionally, we report the

performance of our method combined with VIB instead of DB.

We conduct experiments with three versions of noisy-TV settings named

“Image Action”, “Noise” and “Noise Action”, as proposed in Savinov et al. [92].

Following Savinov et al. [92], we resize observations as 160 × 120 only for the

episodic curiosity module while as 84× 84 for the PPO policy and exploration

methods. We use the official source code1 of Savinov et al. [92] to implement

and configure the baselines (ICM, EC and ECO) and the three noise settings.

For the feature extractor fϕ, we use the same CNN with the policy network

of PPO from Mnih et al. [77]. The only modification is to use d = 128 i.e.

128-dimensional features instead of 512 to make features lightweight enough

to be stored in the episodic memory. The Deep Infomax discriminator Tψ con-

sists of three FC hidden layers with 64, 32, 16 units each, followed by a final

FC layer for prediction. We initialize the drop probability p with pi = σ(p′i)

and p′i ∼ Uniform(a, b) where a = −2, b = 1. We collect samples and update

1https://github.com/google-research/episodic-curiosity.
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p, Tψ, fϕ with Equation (2.12) every 10.8K and 21.6K time steps in VizDoom

and DMLab, respectively, with a batch size of 512. We duplicate the compressed

representation 50 times with differently sampled drop masks, which help better

training of the feature extractor, the drop probability and the discriminator by

forming diverse subsets of features.

Implementation details. We describe additional details of the VizDoom

[59] and DMLab [18] exploration experiments. We collect training samples in

a buffer and update p, Tψ, fϕ with Equation (2.12) periodically. We use Adam

optimizer [65] with a learning rate of 0.0001 and a batch size of 512. In each

optimization epoch, the training samples from the buffer are re-shuffled. For

each mini-batch, we optimize the Deep Infomax [50] discriminator Tψ with

8 extra epochs with the same samples, to make the Jensen-Shannon mutual

information bound tighter. This way of training Tψ only runs forward and

backward passes on Tψ for the fixed output of the feature extractor fϕ, and

thus can be done with low computational cost. β is the hyperparameter that

determines the relative scales of the compression term and the Deep Infomax

Jensen-Shannon mutual information estimator. It is tuned to β = 0.001/128 for

DB and β = 0.0005/128 for VIB. To make experiments simpler, we normalize

our intrinsic rewards with the running mean and standard deviation.

Table 2.1 and Table 2.2 report the hyperparameters of the methods for

VizDoom and DMLab experiments, respectively. We tune the hyperparameters

based on the ones provided by Savinov et al. [92]. Unless specified, we use the

same hyperparameters with Savinov et al. [92].

Under the three noise settings suggested in Savinov et al. [92], the lower

right quadrant of every observation is occupied by a TV screen as follows.

• “Image Action”: Every time the agent performs a specific action, it
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Table 2.1: Hyperparameters of PPO [95], PPO + ICM [87], PPO + ECO [92],
and PPO + Ours for the VizDoom experiments.

PPO PPO + ICM PPO + ECO PPO + Ours

PPO
Learning rate 0.00025 0.00025 0.00025 0.00025
Entropy coefficient 0.01 0.01 0.01 0.01
Task reward scale 5 5 5 5

Exploration method
Training period and sample size – 3K 120K 10.8K
# of optimization epochs – 4 10 4
Intrinsic bonus scale – 0.01 1 0.001

Table 2.2: Hyperparameters of PPO [95], PPO + ICM [87], PPO + EC/ECO
[92], and PPO + Ours for the DMLab experiments.

PPO PPO + ICM PPO +
EC/ECO

PPO + Ours

PPO
Learning rate 0.00019 0.00025 0.00025 0.00025
Entropy coefficient 0.0011 0.0042 0.0021 0.0011
Task reward scale 1 1 1 1

Exploration method
Training period and sample size – 3K 720K (ECO) 21.6K
# of optimization epochs – 4 10 (ECO) 2
Intrinsic bonus scale – 0.55 0.030 0.005

changes the channel of the TV randomly to one of the 30 predefined

animal images.

• “Noise”: At every observation, a new noise pattern is sampled and shown

on the TV screen (independently from the agent’s actions).

• “Noise Action”: Same as “Noise”, but the noise pattern only changes when

the agent does a specific action.

Figure 2.1 shows some observation examples from VizDoom and DMLab envi-

ronments with “Image Action” and “Noise” settings.
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(a) VizDoom (b) DMLab

Figure 2.1: Example observations from VizDoom [59] and DMLab [18] environ-
ments with “Image Action” (first) and “Noise” (second) settings.

2.5.2 Exploration in Noisy Static Maze Environments

VizDoom [59] provides a static 3D maze environment. We experiment on the

MyWayHome task with nine different settings by combining three reward con-

ditions (“Dense”, “Sparse” and “Very Sparse”) in Pathak et al. [87] and three

noise settings in the previous section. In the “Dense”, “Sparse” and “Very

Sparse” cases, the agent is randomly spawned in a near, medium and very dis-

tant room, respectively. Thus, “Dense” is a relatively easy task for the agent

to reach the goal even with a short random walk, while “Sparse” and “Very

Sparse” require the agent to perform a series of directed actions, which make

the goal-oriented navigation difficult.

Table 2.3 and Figure 2.2 compare the DB exploration with three baselines,

PPO, PPO + ICM, and PPO + ECO on the VizDoom tasks, in terms of the final

performance and how quickly they learn. The results suggest that even in the

static maze environments, the three noise settings can degrade the performance

of the exploration by large margins. On the other hand, our method with DB

shows robustness to such noise or task-irrelevant information, and outperforms

the baselines in all the nine challenging tasks, whereas our method combined

with VIB does not exhibit competitive results.
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Table 2.3: Comparison of the average episodic sum of rewards in VizDoom (over
10 runs) and DMLab (over 30 runs) under three noise settings: Image Action
(IA), Noise (N) and Noise Action (NA). The values are measured after 6M and
20M (4 action-repeated) steps for VizDoom and DMLab respectively, with no
seed tuning done. Baseline results for DMLab are cited from Savinov et al. [92].
Grid Oracle† provides the performance upper bound by the oracle method for
DMLab tasks.

Method
VizDoom DMLab

Dense Sparse Very Sparse Sparse Very Sparse

IA N NA IA N NA IA N NA IA N NA IA N NA

PPO [95] 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 8.5 11.6 9.8 6.3 8.7 6.1
PPO + ICM [87] 0.87 1.00 1.00 0.00 0.50 0.40 0.00 0.73 0.20 6.9 7.7 7.6 4.9 6.0 5.7
PPO + EC [92] – – – – – – – – – 13.1 18.7 14.8 7.4 13.4 11.3
PPO + ECO [92] 0.71 0.81 0.72 0.21 0.70 0.33 0.19 0.79 0.50 18.5 28.2 18.9 16.8 26.0 12.5

PPO + Ours (VIB) 1.00 1.00 1.00 0.21 0.61 0.40 0.37 0.70 0.67 28.2 31.9 27.1 23.5 25.4 22.3
PPO + Ours (DB) 1.00 1.00 1.00 0.90 1.00 0.99 0.90 1.00 0.90 30.4 32.7 30.6 28.8 29.1 26.9

PPO + Grid Oracle† – – – – – – – – – 37.4 38.8 39.3 36.3 35.5 35.4

2.5.3 Exploration in Noisy and Randomly Generated Maze En-
vironments

As a more challenging exploration task, we employ DMLab [92], which are

general and randomly generated maze environments where at the beginning

of every episode, each maze is procedurally generated with its random goal

location. Thanks to the random map generator, each method is evaluated on

test mazes that are independent of training mazes. As done in Savinov et al.

[92], we test with six settings according to two reward conditions (“Sparse” and

“Very Sparse”) and the three noise settings. In the “Sparse” scenario, the agent

is (re-)spawned at a random location when each episode begins or every time

it reaches the goal i.e. the sparse reward; the agent should reach the goal as

many times as possible within the fixed episode length. The “Very Sparse” is its

harder version: the agent does not get (re-)spawned near or in the same room

with the goal.
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Figure 2.2: Reward trajectories as a function of training step (in millions) for
VizDoom (columns 1-3) and DMLab (columns 4-6) with (a) Very Sparse, (b)
Sparse and (c) Dense settings. For VizDoom tasks, we show all the 10 runs per
method. For DMLab tasks, we show the averaged episode rewards over 30 runs
of our exploration with the 95% confidence intervals.

Table 2.3 compares between different exploration methods on the DMLab

tasks. The results demonstrate that our DB exploration method achieves state-

of-the-art performance with significant margins from the baselines on all the

6 tasks, and performs better than our method equipped with VIB as well.

The plots too suggest that our method provides stable exploration signals to

the agent under different environmental and noise settings. As mentioned in

Section 2.5.1, our method can achieve better performance even using much

lower resolution observations of 84× 84 than 160× 120 of EC and ECO. Also,

excluding the policy network, our method maintains 0.5M parameters, which

is significantly smaller compared to ECO with 13M parameters. Please refer to

Section 2.5.8 for an ablation study,

Figure 2.3 shows evolution examples of the drop probability distribution over

training time steps. It overviews the role of drop probability p in DB. As the

joint training of the feature extractor fϕ with p progresses, p gets separated into
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Figure 2.3: Evolution examples of the drop probability distribution p on Very
Sparse DMLab environments with (left) Image Action, (middle) Noise and
(right) Noise Action settings. Each figure shows a histogram per p value ac-
cording to training iterations (the more front is the more recent).

high- and low-value groups, where the former drops task-irrelevant or redundant

features and the latter preserves task-relevant features. This suggests that in

the DMLab environments, the DB objective of Equation (2.12) successfully

encourages dropping the features unrelated to transition between observations

and also the deterministic compressed representation becomes stable as the

training progresses.

2.5.4 Comparison with VIB: Adversarial Robustness & Dimen-
sion Reduction

We experiment with image classification on ImageNet [91] to compare Drop-

Bottleneck (DB) with Variational Information Bottleneck (VIB) [11], the most

widely-used IB framework, regarding the robustness to adversarial attacks and

the reduction of feature dimensionality. We follow the experimental setup from

Alemi et al. [11] with some exceptions. We use β1 = 0.9 and no learning rate

decay for DB’s Adam optimizer [65]. For prediction, we use one Monte Carlo

sample of each stochastic representation. Additionally, we provide a similar

comparison with the mutual information-based feature selection method.

Robustness to adversarial attacks. Following Alemi et al. [11], we em-

ploy the targeted ℓ2 and ℓ∞ adversarial attacks from Carlini and Wagner [26].

For each method, we determine the first 200 validation images on ImageNet
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Table 2.4: Results of the adversarial robustness for Drop-Bottleneck (DB) and
Variational Information Bottleneck (VIB) [11] with the targeted ℓ2 and ℓ∞
attacks [26]. Succ. denotes the attack success rate in % (lower is better), and
Dist. is the average perturbation distance over successful adversarial examples
(higher is better).

Attack
type

β
VIB DB DB (determ.)

Succ. Dist. Succ. Dist. Succ. Dist.

ℓ2

0.0001 99.5 0.806 100.0 0.929 99.5 0.923
0.0003162 99.5 0.751 100.0 0.944 100.0 0.941
0.001 100.0 0.796 99.5 1.097 100.0 1.134
0.003162 99.5 0.842 27.0 3.434 23.0 2.565
0.01 100.0 0.936 18.5 6.847 20.0 6.551
0.03162 100.0 0.695 41.0 2.160 39.5 1.953
0.1 99.5 0.874 85.5 2.850 85.5 2.348

ℓ∞

0.0001 99.5 0.015 91.0 0.013 95.5 0.009
0.0003162 99.5 0.017 85.0 0.016 91.5 0.009
0.001 100.0 0.017 62.5 0.020 70.0 0.012
0.003162 97.5 0.017 1.5 0.009 1.5 0.020
0.01 87.0 0.019 2.0 0.022 2.0 0.013
0.03162 25.0 0.121 8.5 0.022 8.0 0.023
0.1 15.5 0.202 23.0 0.017 23.0 0.019

that are classified correctly, and apply the attacks to them by selecting uni-

formly random attack target classes. Each input image is sized as 299× 299× 3

and each pixel value is ranged [−1, 1]. We perform our adversarial robustness

experiments based on the official source code2 of Carlini and Wagner [26]. For

the targeted ℓ2 attack we increase the number of binary search steps to 20 and

use a batch size of 25. Other than the two, the default hyperparameters are

used.

Table 2.4 shows the results. For the targeted ℓ2 attacks, choosing the value

of β from [0.003162, 0.1] provides the improved robustness of DB with the max-

2https://github.com/carlini/nn_robust_attacks.
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Figure 2.4: Classification accuracy of Inception-ResNet-v2 equipped with VIB
[11] and DB on ImageNet validation set [91]. DB (determ.) quickly drops many
feature dimensions with increased β, while VIB retains them at 1024 regardless
of β.

imum at β = 0.01. On the other hand, VIB has no improved robustness in all

ranges of β. For the targeted ℓ∞ attacks, DB can reduce the attack success

rate even near to 0% (e.g . β = 0.003162 or 0.01). Although VIB decreases the

attack success rate to 15.5% at β = 0.1, VIB already suffers from the perfor-

mance degradation at β = 0.1 compared to DB (Figure 2.4), and increasing β

accelerates VIB’s degradation even further. Note that the validation accuracies

of both VIB and DB are close to zero at β = 0.3162.

This adversarial robustness of DB with the appropriate range of β seems

intriguing. While one possible explanation is that small perturbations in the im-

age space might not be easily mapped to enough differences in its feature space

to cause changes in its predictions, investigating how exactly DB’s adversarial

robustness is achieved would be an interesting direction for future study.
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Figure 2.5: Classification accuracy of Inception-ResNet-v2 equipped with the
mutual information-based feature selection and DB on ImageNet validation set
[91], using the same number of features.

Dimensionality reduction. Figure 2.4 compares the accuracy of DB and

VIB by varying β on the ImageNet validation set. Overall, their accuracies

develop similarly with respect to β; while VIB is slightly better in the lower

range of β, DB produces better accuracy in the higher range of β. Note that

DB (determ.) shows the almost identical accuracy plot with DB. Importantly,

DB (determ.) still achieves a reasonable validation accuracy (≥ 75%) using

only a few feature dimensions (e.g . 8) out of the original 1024 dimensions. This

suggests that DB’s deterministic compressed representation can greatly reduce

the feature dimensionality for inference with only a small trade-off with the

performance. It is useful for improving the efficiency of the model after the

training is complete. On the other hand, VIB has no such capability. Finally, as

Figure 2.4 shows, the trade-off between the dimensionality reduction and the

performance can be controlled by the value of β.

Comparison with feature selection. As the deterministic representation

of DB, DB (determ.), provides the dimensionality reduction, we also empirically
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Table 2.5: Results of the adversarial robustness for Drop-Bottleneck (DB) and
the mutual information-based feature selection with the targeted ℓ2 and ℓ∞
attacks [26], using the same number of features. Succ. denotes the attack success
rate in % (lower is better), and Dist. is the average perturbation distance over
successful adversarial examples (higher is better).

Attack
type

# of
features

MI-based FS DB (determ.)

Succ. Dist. Succ. Dist.

ℓ2

196 99.5 1.484 99.5 0.923
70 100.0 1.323 100.0 0.941
19 99.5 1.161 100.0 1.134
8 99.5 1.164 20.0 6.551
5 97.0 1.202 39.5 1.953
4 97.0 1.127 85.5 2.348

ℓ∞

196 99.5 0.016 95.5 0.009
70 100.0 0.014 91.5 0.009
19 99.5 0.013 70.0 0.012
8 99.5 0.014 2.0 0.013
5 97.0 0.016 8.0 0.023
4 97.0 0.015 23.0 0.019

compare DB with the univariate mutual information-based feature selection

method for obtaining the feature space with a reduced dimensionality. In the

experiments, the same features provided to DB and VIB are given as input to

the feature selection method as well, and for a more straightforward compari-

son, we let the feature selection method preserve the same number of features

as DB (determ.). The input of the feature selection method is the same as

DB’s and VIB’s: the input features are obtained with a pre-trained model of

Inception-ResNet-v2 on ImageNet [91]. We randomly pick 100k samples out

of the total 1281167 training samples of ImageNet, and compute the relevance

scores for features using those samples by estimating the mutual information

between each feature and its label using the entropy estimation with the k-
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nearest neighbors [68, 90]. Given the computed scores, we perform the feature

selection by preserving the features with the highest scores.

Figure 2.5 shows the classification accuracy of the two methods for the same

numbers of features. The results suggest that while the mutual information-

based feature selection method could provide a marginal performance benefit

when a larger subset of the pre-trained features is preserved, DB is significantly

better at retaining the accuracy with a small number of feature dimensions.

For instance, DB achieves the accuracy over 71% even with 4 features, but

the accuracy of feature selection method drops from ≈ 68% to ≈ 10% when

the number of features is < 26. Also, we make a comparison of the adversarial

robustness; Table 2.5 suggests that the features preserved with the feature se-

lection method show almost no robustness to the targeted ℓ2 and ℓ∞ attacks,

where every attack success rate is ≥ 97%. On the other hand, DB (determ.)

can reduce the success rate to 20% for the ℓ2 and to 2% for the ℓ∞ attacks with

8 features.

2.5.5 Comparison with VCEB: Adversarial Robustness

In this section, we compare Drop-Bottleneck (DB) with Variational Conditional

Entropy Bottleneck (VCEB) [38, 39] on the same ImageNet [91] tasks for the

adversarial robustness as in Section 2.5.4. VCEB variationally approximates

the CEB objective, which is defined as

minimize−I(Z;Y ) + γI(Z;X|Y ). (2.14)

Note that Equation (2.14) is an alternative form of the original IB objective,

Equation (2.1), as I(Z;X,Y ) = I(Z;Y ) + I(Z;X|Y ) = I(Z;X) + I(Z;Y |X)

and I(Z;Y |X) = 0 (∵ Z⊥⊥Y |X). As in Section 2.5.4, we employ the experi-

mental setup from VIB [11] with small modifications to the hyperparameters
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for the Adam optimizer [65] that β1 = 0.9 and no learning rate decay is used.

Additionally for VCEB, we apply the configurations suggested by Fischer and

Alemi [39]: 1) at test time, use the mean of the Gaussian encoding instead of

sampling from the distribution, and 2) reparameterize γ = exp(−ρ) and anneal

the value of ρ from ρ = 100 to the final ρ during training. For our experiments,

the annealing is performed via the first 100000 training steps, where each epoch

consists of 6405 steps.

Employing the experimental setup from Alemi et al. [11], we adopt the tar-

geted ℓ2 and ℓ∞ adversarial attacks from Carlini and Wagner [26]. We determine

the first 200 correctly classified validation images on ImageNet for each setting

and perform the attacks where the attack target classes are chosen randomly

and uniformly.
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Figure 2.6: Classification ac-
curacy of Inception-ResNet-v2
equipped with VCEB [38, 39] on
ImageNet [91]. ρ is annealed from
100 to the final ρ over the first
100000 training steps.

Figure 2.6 visualizes the classification

accuracy for each corresponding final value

of ρ, and the adversarial robustness results

are shown in Table 2.6. Overall, both VCEB

and DB provide meaningful robustness to

the targeted ℓ2 and ℓ∞ attacks. For the

targeted ℓ2 attacks, although VCEB could

achieve the higher average perturbation dis-

tance over successful attacks, DB and its

deterministic form show better robustness

compared to VCEB in terms of the attack

success rates: 18.5% (DB at β = 0.01) and 20.0% (DB (determ.) at β = 0.01)

versus 45.0% (VCEB at the final ρ = 3.454). For the targeted ℓ∞ attacks, DB

and its deterministic version again achieve the lower attack success rates than
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Table 2.6: Results of the adversarial robustness for Drop-Bottleneck (DB) and
Variational Conditional Entropy Bottleneck (VCEB) [38, 39] with the targeted
ℓ2 and ℓ∞ attacks [26]. Succ. denotes the attack success rate in % (lower is bet-
ter), and Dist. is the average perturbation distance over successful adversarial
examples (higher is better). †ρ for VCEB is annealed from 100 to the final ρ
over the first 100000 training steps.

Attack
type

Constraint on I(Z;X|Y ) Constraint on I(Z;X)

Final ρ†
VCEB

β
DB DB (determ.)

Succ. Dist. Succ. Dist. Succ. Dist.

ℓ2

9.210 99.0 1.200 0.0001 100.0 0.929 99.5 0.923
8.059 92.0 2.028 0.0003162 100.0 0.944 100.0 0.941
6.908 86.5 5.040 0.001 99.5 1.097 100.0 1.134
5.757 65.0 7.198 0.003162 27.0 3.434 23.0 2.565
4.605 46.0 12.016 0.01 18.5 6.847 20.0 6.551
3.454 45.0 10.744 0.03162 41.0 2.160 39.5 1.953
2.303 53.0 14.021 0.1 85.5 2.850 85.5 2.348

ℓ∞

9.210 86.0 0.012 0.0001 91.0 0.013 95.5 0.009
8.059 64.5 0.013 0.0003162 85.0 0.016 91.5 0.009
6.908 48.0 0.016 0.001 62.5 0.020 70.0 0.012
5.757 29.0 0.019 0.003162 1.5 0.009 1.5 0.020
4.605 17.0 0.025 0.01 2.0 0.022 2.0 0.013
3.454 12.5 0.025 0.03162 8.5 0.022 8.0 0.023
2.303 17.5 0.027 0.1 23.0 0.017 23.0 0.019

VCEB: 1.5% and 2.0% (DB and DB (determ.) at β ∈ {0.003162, 0.01})) versus

12.5% (VCEB at the final ρ = 3.454).

2.5.6 Removal of Task-irrelevant Information and Validity of
Deterministic Compressed Representation

We experiment Drop-Bottleneck (DB) and Variational Information Bottleneck

(VIB) [11] on occluded image classification tasks to show the following:
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Table 2.7: The network architecture for the occluded image classification ex-
periments.

Input image 32× 32× 3

Feature extractor

Conv [3× 3, 96, stride 1]
Conv [3× 3, 96, stride 1]
Conv [3× 3, 96, stride 2]

Conv [3× 3, 192, stride 1]
Conv [3× 3, 192, stride 1]
Conv [3× 3, 192, stride 2]

FC [d] FC [2d]

DB [d] VIB [d]

Classifier
FC [10]

softmax

• DB can control the degree of compression (i.e. degree of removal of task-

irrelevant information) in the same way with VIB as the popular IB

method.

• DB’s deterministic compressed representation works as a reasonable re-

placement for its stochastic compressed representation and it maintains

the learned indistinguishability better than the attempt of VIB’s deter-

ministic compressed representation.

We employ the Occluded CIFAR dataset using the experimental settings

from Achille and Soatto [4]. The Occluded CIFAR dataset is created by occlud-

ing CIFAR-10 [69] images with MNIST [71] images as shown in Figure 2.7a,

and each image has two labels of CIFAR and MNIST. We use a modified ver-

sion of All-CNN-32 [4] equipped with an IB method (either of DB or VIB) for

the feature extractor whose output dimension is d. The model architecture for
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VIB primary VIB nuisance VIB nuisance (deterministic) Without-IB nuisance

DB primary DB nuisance DB nuisance (deterministic) Random net nuisance
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Figure 2.7: (a) A few samples from Occluded CIFAR dataset [4]. (b)–(d) Test
error plots on the primary task (i.e. the classification of occluded CIFAR im-
ages) and on the nuisance tasks (i.e. classification of the MNIST digits). For all
the three types of tasks with VIB and DB, we use the same feature extractor
trained for the primary task, where its deterministic representation is used only
for the training and testing on the nuisance (deterministic) task. For compar-
ison, we also include the performance on the nuisance task with the feature
extractor from the primary task trained with no IB (Without-IB) and with the
randomly initialized feature extractor (Random net).

feature dimension d is described in Table 2.7. Batch normalization [54] is ap-

plied to Conv layers, and the ReLU [42, 81] activation is used at every hidden

layer. Each run consists of two phases. In the first phase, we train the feature

extractor with a logistic classifier using both the classification loss for CIFAR

and the compression objective of the IB method. Fixing the trained feature

extractor, we train a logistic classifier for MNIST in the second phase. We train

two different versions of classifiers for each of VIB and DB using stochastic

or deterministic compressed representation from the feature extractor. For the

deterministic representation of VIB, we use the mode of the output Gaussian

distribution. We use the Adam optimizer [65] with a learning rate of 0.001. To

ensure convergence, in each training, the model is trained for 200 epochs with

a batch size of 100.

Figures 2.7b–2.7d contain the experimental results with d = 32, d = 64,

and d = 128. In the first phase, DB retains only a subset of features that
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concentrate more on the CIFAR part of the images. Thus, the trained feature

extractor preserves less information about the MNIST parts, and the errors of

the MNIST classification are high. The first observation is that for both DB

and VIB with the original stochastic compressed representation, nuisance plots

show that increasing β from the minimum value to ∼ 0.1/d barely changes the

primary CIFAR errors but grows the nuisance MNIST errors up to ∼ 90%

(i.e. the maximum error for the 10-way classification). With even larger β,

enforcing stronger compression results in the increase of the primary errors

too, as shown in primary plots. This suggests that both DB and VIB provide

fine controllability over the removal of task-irrelevant information.

Secondly, if we move our focus to the nuisance (deterministic) plots in Fig-

ures 2.7b–2.7d, which show the test errors on the nuisance MNIST classification

with the feature extractor’s deterministic representation, the results become dif-

ferent between DB and VIB. In DB, the nuisance (deterministic) plots follow

the nuisance plots in the range of β where the compression takes effect (i.e.

where the nuisance errors increase). Moreover, the two plots get closer as β

increases. It means that Drop-Bottleneck’s deterministic compressed represen-

tations maintain the majority of the indistinguishability for the task-irrelevant

information learned during the first phase, especially when β is large enough

to enforce some degree of the compression. On the other hand, VIB’s nuisance

(deterministic) plots are largely different from the nuisance plots; even the pri-

mary errors rise before the nuisance (deterministic) errors reach their maximum

values. This shows that employing the mode of VIB’s output distribution as its

deterministic representation results in loss of the learned indistinguishability.

In Figures 2.7b–2.7d, we also compare DB’s nuisance errors with two spe-

cial cases: employing the feature extractor trained on the primary task the
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(a) Without DB (b) With DB

Figure 2.8: Grad-CAM [97] visualization for the last convolutional layer of the
feature extractor on the Occluded CIFAR classification task. For the visualiza-
tion, d = 128, and β = 5.623/d for (b) are used. Primary denotes the maps of
the logits for the primary labels. Nuisance (agg.) means the maps on the nui-
sance task aggregated over all the logits (i.e. 10 logits). (a) indicates that the
feature extractor without DB trained on the primary task still outputs much
information about the nuisance tasks, and thus the nuisance classifier could
depend on the features extracted from the nuisance (MNIST) regions. In con-
trast, (b) suggests that the feature extractor with DB could learn to discard
the nuisance features, so that the nuisance classifier mostly fails to learn due to
the lack of nuisance-relevant features.

same way but without VIB or DB (Without-IB) and using the feature extrac-

tor whose weights are randomly initialized and fixed (Random net), where each

number is obtained by averaging over 8 runs. The results indicate that while

training the feature extractor on the primary task itself increases the nuisance

errors by some degree compared to the errors with the randomly initialized fea-

ture extractors, DB can be employed to effectively eliminate the task-irrelevant

information while keeping the primary errors low.

In summary, we confirm that DB provides controllability over the degree of

compression in a similar way as VIB. On the other hand, DB’s deterministic

representation can be a reasonable replacement for its original stochastic rep-

resentation in terms of preserving the learned indistinguishability, which is not

exhibited by VIB.
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2.5.7 Visualization of Task-irrelevant Information Removal

In this section, we visualize the removal of task-irrelevant information with

Drop-Bottleneck (DB). To this end, we employ the Occluded CIFAR dataset

[4] with the same experimental setup as in Section 2.5.6. Each image of Occluded

CIFAR dataset is one of the CIFAR-10 [69] images occluded by MNIST [71]

digit images. In the first phase of the experiments, the feature extractor and

the classifier are trained on the primary (occluded CIFAR classification) task in

a normal way. During the second phase, the learned feature extractor is fixed,

and only a new classifier is trained on the nuisance (MNIST classification) task.

In Section 2.5.6, we quantitatively showed that the feature extractor with DB

could focus more on the occluded CIFAR images and preserve less information

about the MNIST occlusions. We take a qualitative approach in this section

and visualize the phenomenon using Grad-CAM [97]. Grad-CAM is popular

for providing visual explanation given convolutional neural networks with their

target values (e.g . target logits in classification tasks).

We first sample multiple test images from the Occluded CIFAR dataset,

and load full, trained models, which include the feature extractor, primary

classifier and nuisance classifier. We then obtain the activation maps for the

last convolutional layer of the feature extractor on the primary and nuisance

tasks. On the primary task, we compute the activation maps simply targeting

the logits for the sample labels. However, on the nuisance task, we get the

activation maps of all the logits and aggregate them by taking the maximum of

the maps at each pixel location. Therefore, the aggregated maps on the nuisance

task visualize the activation related to not only the logits for the true class labels

but also the other logits, capturing most of the feature usage induced during

the training on the nuisance task.
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Figure 2.8 compares two trained models: the d = 128 model without DB,

and the d = 128 model with DB (deterministic). We use the DB model with β =

5.623/d for the visualization, as the value is sufficiently large enough to enforce

strong compression while it still keeps the primary error not high. Figure 2.8a

shows that regarding the logits for the nuisance (MNIST) task, a large portion

of each image including the MNIST digit is activated in most cases, and thus it

indicates that the feature extractor trained without DB preserves much of the

nuisance features. On the other hand, Figure 2.8b visualizes that the feature

extractor with DB outputs notably less of the nuisance features, preventing the

nuisance classifier from learning correctly.

To sum up, we provide the visual demonstration that on the classification

task with the Occluded CIFAR dataset, the feature extractor equipped with

DB trained on the primary task could discard majority of the nuisance i.e.

task-irrelevant information given a value of β that is strong enough.

2.5.8 Ablation Study: Exploration without DB

We perform an ablation study to show Drop-Bottleneck (DB)’s ability of dealing

with task-irrelevant input information. We examine the performance of the

same exploration method as described in Section 2.4 but without DB; that

is, the feature vectors are fully used with no dropping. In order to emphasize

the effectiveness of DB for noisy and task-irrelevant information, we conduct

experiments with both noisy and original (i.e. without explicit noise injection)

settings.

Table 2.8 shows the results on “Very Sparse” DMLab environments with

“Image Action”, “Noise”, “Noise Action” and “Original” settings. Compared

to “Original” setting where observations contain only implicit, inherent noisy
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Table 2.8: Comparison of the average episodic sum of rewards in DMLab tasks
(over 30 runs), where PPO + Ours (No-DB) denotes our exploration method
without DB. The original (i.e. without explicit noise injection) and three noisy
settings are tested: Image Action (IA), Noise (N), Noise Action (NA) and Orig-
inal (O). The values are measured after 20M (4 action-repeated) time steps,
with no seed tuning done. The baseline results are from Savinov et al. [92].

Method
DMLab

Very Sparse

IA N NA O

PPO [95] 6.3 8.7 6.1 8.6
PPO + ICM [87] 4.9 6.0 5.7 11.2
PPO + EC [92] 7.4 13.4 11.3 24.7
PPO + ECO [92] 16.8 26.0 12.5 40.5

PPO + Ours (No-DB) 14.9 11.7 10.3 33.0
PPO + Ours (DB) 28.8 29.1 26.9 42.7

Improvement (%) 93.3 148.7 161.2 29.4

information irrelevant to state transitions, DB brings much more significant

improvement to exploration methods in “Image Action”, “Noise”, and “Noise

Action” settings, which inject explicit, severe transition-irrelevant information

to observations. These results suggest that DB plays an important role handling

noisy or task-irrelevant input information.

2.6 Summary

We presented Drop-Bottleneck as a novel information bottleneck method where

compression is done by discretely dropping input features, taking into account

each input feature’s relevance to the target variable and allowing its joint train-

ing with a feature extractor. We then proposed an exploration method based on
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Drop-Bottleneck, and it showed state-of-the-art performance on multiple noisy

and reward-sparse navigation environments from VizDoom and DMLab. The

results showed the robustness of Drop-Bottleneck’s compressed representation

against noise or task-irrelevant information. With experiments on ImageNet,

we also showed that Drop-Bottleneck achieves better adversarial robustness

compared to VIB and can reduce the feature dimension for inference.
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Chapter 3

Disentangled Temporal
Abstraction for Reusable Skills

3.1 Overview

Deep reinforcement learning (RL) has recently shown great advancement in

solving various tasks, from playing video games [20, 76, 77] to controlling robot

navigation [57]. While the standard RL is to maximize rewards from environ-

ments as a form of supervision, there has been a surge of interest in unsupervised

learning without the assumption of extrinsic rewards [100, 103]. Discovering in-

herent skills in environments without supervision is important and desirable

for multiple reasons. First, since it is still challenging to define an effective

reward function for practical tasks [34, 48], unsupervised skill discovery helps

reduce the burden of it by identifying effective skills for environments. Second,

in sparse-reward environments, learned skills can encourage the exploration for

encountering rewards, not only by providing useful primitives for the explo-
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ration but also by reducing the effective horizon. Third, those skills can be

directly used to solve downstream tasks, for example, by employing a meta-

controller on top of the discovered skills in a hierarchical manner [2, 36, 99].

Finally, discovered skills could help better understand environments by provid-

ing interpretable sets of behaviors.

Unsupervised skill discovery can be formalized with the options framework

[104], which generalizes primitive actions with the notion of options. For ease of

learning, options, or synonymously skills, are often formulated by introducing

a skill latent parameter z to an ordinary policy, resulting in a skill policy with

a form of π(a|s, z) keeping the same z for multiple steps or the full episode

horizon [2, 36, 45, 99]. In recent research on the unsupervised skill discovery

problem, information-theoretic approaches have been prevalent [2, 36, 45, 99].

In this work, we propose a novel unsupervised skill discovery method named

Information Bottleneck Option Learning (IBOL), whose two major novelties

over existing approaches are (i) the linearizer and (ii) the information bottle-

neck -based skill learning. First, the linearizer is a kind of low-level policy to

be suitable for skill discovery by converting a given environment into one with

simplified dynamics. It reduces the skill discovery algorithm’s burden to learn

how to make transitions to diverse states in a given environment without any

external rewards, which is not a straightforward job with fairly complex dy-

namics such as Ant and Humanoid from MuJoCo [107]. Once the linearizer

is trained, it can be reused for multiple training sessions with different skill

discovery approaches. Figure 3.1 compares the qualitative visualization of the

skills learned by different methods in the locomotion (i.e. x-y) plane, in Ant. As

shown, DIAYN [36], VALOR [2] and DADS [99] with the linearizer (with suffix

‘-L’) learn far more diverse skills than the same methods without the linearizer.
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Skill color scheme
in the latent space
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Figure 3.1: Visualization of the x-y traces of skills discovered by each algorithm
in Ant, where the colors represent the two-dimensional skill latents used for the
sampling of the skills (see the color scheme on the right). (Top) Trajectories of
the six roll-outs from each of the eight different skill latents. (Bottom) Trajec-
tories of 2000 skill latents sampled from the standard normal distribution.

Leveraging the environment simplified with the linearizer, IBOL discovers

and learns skills based on the information bottleneck (IB) framework [11, 106].

Compared to prior approaches, IBOL can introduce some desirable properties

to the learned skills. It discovers and learns skills with the skill latent variable Z

in a more disentangled way, which makes the learned skills better interpretable

with respect to Z. Interpretable models help understand their behaviors and

provide intuition about their further uses [5]. Figure 3.1 demonstrates that

the skill trajectories instantiated by IBOL have a visually simpler and more

predictable mapping with the skill latents, which is one of the main requirements

for increasing interpretability [5]. Moreover, the skills learned by IBOL cover
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the locomotion plane more uniformly and widely. Finally, with the IB-style

objective, the skill latent variable Z is learned to be not only informative about

the discovered skills but also parsimonious to keep unrelated information about

the skills.

Our key contributions can be summarized as follows.

• To the best of our knowledge, our method is the first to separate the

problem of making transitions in the state space from skill discovery, sim-

plifying the environment dynamics with independent pre-training, whose

learning cost is amortized across multiple skill discovery trainings. It aids

skill discovery methods to learn diverse skills by making the environment

dynamics as linear as possible.

• We propose a novel skill discovery method with information bottleneck,

which provides multiple benefits including learning skills in a more dis-

entangled and interpretable way with respect to skill latents and being

robust to nuisance information.

• Our method shows superior performance to various state-of-the-art unsu-

pervised skill discovery methods including DADS [99], DIAYN [36] and

VALOR [2] in multiple MuJoCo [107] environments. To verify this, we

measure the information-theoretic metrics and the performance on four

downstream tasks.

3.2 Preliminaries and Related Work

We review previous information-theoretic approaches to unsupervised skill dis-

covery and discuss their limitations.
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Preliminaries. We consider a Markov Decision Process (MDP) M =

(S,A, p) without external rewards. S and A respectively denote the state and

action spaces, and p(st+1|st, at) is the transition function where st, st+1 ∈ S
and at ∈ A. Given a policy π(at|st), a trajectory τ = (s0, a0, . . . , sT ) follows

the distribution τ ∼ p(τ) = p(s0)
∏T−1
t=0 π(at|st)p(st+1|st, at). Within the op-

tions framework [104], we formulate the unsupervised skill discovery problem

as learning a latent-conditioned skill policy π(at|st, z) where z ∈ Z represents

the skill latent. We consider continuous skill latents z ∈ Rd. h(·) and I(·; ·)
denote differential entropy and mutual information, respectively.

We introduce existing skill discovery methods in two groups: latent-first and

trajectory-first methods.

Latent-first methods. Skill discovery methods in this category, such as

VIC [45], DIAYN [36], VALOR [2], DADS [99] and HIDIO [110], first sample

a skill latent z and then trajectories conditioned on z, as illustrated in Figure

3.2a. They aim to increase I(Z;S), the mutual information between the skill

latent and state variables. VALOR [2], which incorporates VIC and DIAYN

as its special forms [2], optimizes a lower bound of the identity I(Z;S) =

h(Z)− h(Z|S). Its objective is to maximize

Ez∼p(z)

[
Eτ∼p(τ |z)[log pD(z|s0:T )] + β·

T−1∑
t=0

h(At)

]
,

where At is the action variable that follows π(at|st, z), β is the entropy coeffi-

cient, p(z) is the prior distribution over z, and pD(z|s0:T ) is a trainable decoder

that reconstructs the original z given s0:T . Achiam et al. [2] show that this

objective has an equivalency to β-VAE [49] with the structure of z (input)→ τ

(latent) → z (reconstruction). However, this objective does not take advantage

of the benefits that the VAE formulations can provide, such as the theoretical
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Figure 3.2: Architecture overview of (a) latent-first methods, (b) trajectory-first
methods and (c) IBOL.

connection to more disentangled and interpretable z [3, 4, 28]. DADS [99] opti-

mizes the other identity I(Z;S) = h(S)−h(S|Z), using a skill dynamics model

q(st+1|st, z) that predicts the next state conditioned on z. While the learned
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dynamics model enables model-based planning, it lacks an explicit mapping

from states to skill latents, and thus hardly obtains disentangled skill latents z.

Trajectory-first methods. Another group of methods first samples trajec-

tories and then encodes them into skill latents using the variational autoencoder

(VAE) [66], as visualized in Figure 3.2b. This category includes SeCTAR [29],

EDL [25] and OPAL [9]. SeCTAR and EDL have separate objectives for their

exploratory policies to sample diverse trajectories by maximizing h(p(τ)) or

h(S). OPAL assumes an offline RL setting where a fixed set of trajectories is

priorly given. While these methods employ the VAE with the usual direction of

τ → z → τ (EDL has s→ z → s) that encourages disentangled representations,

they have a limitation that the exploratory policy only maximizes the diversity

of trajectories. On the contrary, our IBOL method, which also falls into this

category, jointly maximizes both the diversity and discriminability of trajecto-

ries (Section 3.3.6), which leads to a significant improvement in performance

(Section 3.4).

Finally, all of the prior works learn the skill policies on top of raw environ-

ment dynamics. Although dealing with raw dynamics is not highly demanding

in simple environments, it could hinder the skill learning in environments with

complex dynamics such as Ant and Humanoid from MuJoCo [107]. IBOL solves

the issue by linearizing the environment dynamics ahead of skill discovery so

that it can acquire diverse skills by reaching different states more easily in the

simplified environment dynamics. Furthermore, we find that the linearization

benefits other existing skill discovery methods too (Section 3.4).

3.3 Information Bottleneck Option Learning (IBOL)

We decompose the skill discovery problem into two separate phases. Firstly,
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Algorithm 1 (Phase 1) Training Linearizer

Initialize linearizer πlin.
while not converged do

for i = 1 to n do
Sample goals (g

(i)
0 , g

(i)
ℓ , g

(i)
2ℓ , . . .).

Sample trajectory using πlin and goals.
Compute linearizer reward Rlin using Equation (3.1).
Add trajectory to replay buffer.

end for
Update πlin using collected samples from replay buffer with SAC [47].

end while

Algorithm 2 (Phase 2) Skill Discovery

Load pre-trained linearizer πlin.
Initialize sampling policy πθs , trajectory encoder pϕ, skill policy πθz .
while not converged do
for i = 1 to n do

Sample trajectory using πθs on top of πlin.
end for
Compute objective from Equation (3.9).
Compute its gradient w.r.t. ϕ, θz.
Compute its policy gradient w.r.t. θs.
Jointly update πθs , pϕ, πθz with gradients.

end while

IBOL trains the linearizer that lifts the burden from the skill discovery algo-

rithm to generate diverse states and trajectories under complex environment

dynamics (Section 3.3.1). Secondly, on top of the pre-trained linearizer, IBOL

learns to map trajectories into the continuous skill latent space, with the infor-

mation bottleneck principle [11, 106] (Section 3.3.2). Figure 3.2c provides the

conceptual illustration of IBOL. Algorithm 1 overviews the training of the lin-

earizer in the first phase and Algorithm 2 describes the skill discovery process

in the second.
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3.3.1 Linearization of Environments

The linearizer πlin is a pre-trained low-level policy that aims to “linearize” the

environment dynamics. It takes as input goals produced by IBOL’s policies for

skill discovery (will be discussed in Section 3.3.2), and translates them into

raw actions in the direction of a given goal while interacting with the environ-

ment. We define the linearizer πlin(at|st, gt) as a goal-conditioned policy [93],

which takes both a state st ∈ S and a goal gt ∈ G as input and outputs a

probability distribution over actions at ∈ A. The goal space G is defined as

G = [−1, 1]dim(S), which has the same dimensionality as the state space (up to

47 in our experiments). Each goal dimension provides a signal for the direction

in the corresponding state dimension. We assume that a goal gt ∈ G is given at

every ℓ-th time step such that t ≡ 0 (mod ℓ) (called a macro time step), and

otherwise kept fixed, i.e. gt = gt−1 for t ̸≡ 0 (mod ℓ).

We sample goals (g0, gℓ, g2ℓ, . . .) at the beginning of each roll-out and train

the linearizer with a reward function of

Rlin(st, gt, at, st+1) =
1

ℓ
(s(c+1)·ℓ − sc·ℓ)⊤gt, (3.1)

where c =
⌊
t
ℓ

⌋
. It corresponds to the inner product of the goal gt and the

state difference between macro time steps: (s(c+1)·ℓ−sc·ℓ). Intuitively, each goal

dimension value (ranging from −1 to +1) indicates the desired direction and

the degree of change in the corresponding state dimension.

The inner product in the reward function has several advantages for skill

discovery compared to the Euclidean distance in prior approaches [79, 80]. First,

unlike the Euclidean distance that needs to specify the valid range of each

state dimension, the inner product only takes care of directions in the state

space. Thus, training of the linearizer requires no additional supervision on
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specifying valid goal spaces or state ranges. Second, by setting some dimensions

of a goal to be (near-)zero values, we can ignore changes in the corresponding

state dimensions, which is not achievable with the Euclidean distance. This

enables IBOL’s policies for skill discovery to ignore nuisance dimensions without

manually specifying them (Section 3.3.2).

We find that the linearizer benefits not only IBOL but also other skill dis-

covery methods since it can promote reaching diverse and distant states easier,

as shown in Figure 3.1.

3.3.2 Skill Discovery with Bottleneck Learning

On top of the pre-trained and fixed linearizer πlin, we learn policies that produce

goals and acquire a continuous set of skills that is not only distinguishable

and diverse but also disentangled and interpretable. The linearizer alone is

highly limited to discovery abstractive and informative skills, since it is trained

with the inner product reward function and thus optimized for transitioning

to distant states rather than the mapping with the latent space. Additionally,

IBOL can fix possibly imperfect linearization with the linearizer by combining

appropriate high-level goals. In Section 3.4, we will demonstrate that how such

limitations of the linearizer can be resolved by the following skill discovery

process.

In contrast to previous skill discovery methods that maximize I(S;Z) [2,

36, 45, 99], IBOL consists of the following three learnable components based on

the information bottleneck:

1. The sampling policy πθs(gt|st) produces diverse and easily mappable tra-

jectories.
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2. The trajectory encoder pϕ(z|s0:T ) encodes the state trajectories into the

skill latent space.

3. The skill policy πθz(gt|st, z) learns to imitate the skills given their latents.

Note that the sampling and skill policies produce goals gt instead of raw actions

a, as they operate on top of the linearizer. We will first start with the sampling

policy πθs and introduce our IB objective for the trajectory encoder pϕ. We

then show that it naturally leads to the emergence of the skill policy πθz as a

variational approximation to the sampling policy πθs .

IBOL’s objective. Assuming trajectories generated by the sampling

policy, {τ (1), τ (2), . . . , τ (n)}, our objective is to embed the state trajectories

{s(1)0:T , . . . , s
(n)
0:T } into the skill latent space Z. We encode the state trajectory

s0:T , not the whole trajectory τ , because an outside observer can only see the

agent’s state, not its underlying actions or goals. However, the encoded skill la-

tent z should contain sufficient information about the underlying goals so that

the whole trajectory is reproducible from z. Furthermore, since raw states often

contain nuisance information not pertaining to skill discovery, z is encouraged

to minimally contain unnecessary or noisy information in the states irrelevant

to the goals. This leads to the Information Bottleneck objective [11, 106] over

the structure of S0:T (input) → Z (latent) → G0:T−1 (target).

Formally, let us first define the sampling policy parameterized by θs

as πθs(gt|st) : S → P(G), which maps a state to a probability distri-

bution over goals. A trajectory τ = (s0, g0, s1, . . . , gT−1, sT ) obtained by

the sampling policy is acquired from the distribution τ ∼ pθs(τ) =

p(s0)
∏T−1
t=0 πθs(gt|st)p(st+1|st, gt). Under the distribution pθs(τ), let St be a ran-

dom variable corresponding to st and Gt be a random variable for gt. We define

the trajectory encoder parameterized by ϕ as pϕ(z|s0:T ) : ST+1 → P(Z) that
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maps a state trajectory to a probability distribution over skill latents z in the

skill space Z. Let Z be a random variable for z.

We formulate our IB objective as follows. First, given St, the skill latent Z

should be informative about the goal Gt that the sampling policy has produced,

which leads to the prediction term I(Z;Gt|St). Second, Z should be penalized

for preserving information about the state trajectory but unrelated to the goals,

which corresponds to the compression term I(Z;S0:T ). Summing these up, we

obtain the following objective:

maximize Et[I(Z;Gt|St)− β · I(Z;S0:T )], (3.2)

where Et is the expectation over {0, 1, . . . , T − 1}, and β is a constant that

controls the weight of the compression term.

Lower bound optimization. Since the objective is practically intractable,

we derive its lower bound [11] as follows (see Section 3.3.3 for the full derivation):

Et[I(Z;Gt|St)− β · I(Z;S0:T )] (3.3)

= E τ∼pθs (τ),t,
z∼pϕ(z|s0:T )

[
log

pθs(gt|st, z)
πθs(gt|st)

− β log
pϕ(z|s0:T )

pϕ(z)

]
≥ Eτ∼pθs (τ)

[
Ez∼pϕ(z|s0:T ),t

[
log πθz(gt|st, z) (3.4)

− log πθs(gt|st)
]
− β ·DKL(pϕ(Z|s0:T )∥r(Z))

]
,

where DKL denotes the Kullback-Leibler (KL) divergence. Here we use two

variational approximations: the skill policy ’s output distribution πθz(gt|st, z) is

a variational approximation of pθs(gt|st, z) and r(z) is that of the marginal dis-

tribution pϕ(z). In Equation (3.4), the first term log πθz(gt|st, z) makes the skill

policy πθz(gt|st, z) imitate the sampling policy’s output given the skill latent z;

thus we call this the imitation term. The third term −βDKL(pϕ(Z|s0:T )∥r(Z))
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is the compression term that forces the output distributions of the trajectory

encoder to be close to r(z). We will revisit the second term − log πθs(gt|st) later.

We fix r(z) to N (0, I) as in Alemi et al. [11] for the following reasons.

First, it enables us to analytically compute the KL divergence. Second, more

importantly, it induces disentanglement between the dimensions of z [3, 4, 28].

Disentangled representations lead to more interpretable skills with respect to

their skill latents z. In Section 3.3.4, we provide further details on how the

compression term encourages the disentanglement of skill latent dimensions.

It is worth noting that the first and third terms in Equation (3.4) are related

to the β-VAE objective [11, 49, 66] and previous skill discovery methods that

use trajectory VAEs [9, 29]. The first and the third term correspond to the

reconstruction loss and the KL divergence loss in β-VAEs, respectively. One

important difference is that we reconstruct not the original state trajectories

but their underlying goals. It eliminates the need for state decoders or sampling

with the skill policy during training.

3.3.3 Derivation of the Lower Bound

We describe the derivation of Equation (3.4). Starting with Equation (3.3),

Et[I(Z;Gt|St)− β · I(Z;S0:T )]

= E τ∼pθs (τ),t,
z∼pϕ(z|s0:T )

[
log

pθs(gt|st, z)
πθs(gt|st)

− β log
pϕ(z|s0:T )

pϕ(z)

]
.
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For the first term, as described earlier, we use the skill policy’s output distri-

bution πθz(gt|st, z) as a variational approximation of pθs(gt|st, z), which derives

E τ∼pθs (τ),t,
z∼pϕ(z|s0:T )

[
log

pθs(gt|st, z)
πθs(gt|st)

]
= E τ∼pθs (τ),t,

z∼pϕ(z|s0:T )

[
log

πθz(gt|st, z)
πθs(gt|st)

]
+ Es0:T∼pθs (·),t,

z∼pϕ(z|s0:T )

[
DKL(pθs(Gt|st, z)∥πθz(Gt|st, z))

]
≥ E τ∼pθs (τ),t,

z∼pϕ(z|s0:T )

[
log

πθz(gt|st, z)
πθs(gt|st)

]
. (3.5)

Also, for the second term, we use r(z) as the variational approximation of the

marginal distribution pϕ(z), and it derives

E τ∼pθs (τ),
z∼pϕ(z|s0:T )

[
log

pϕ(z|s0:T )

pϕ(z)

]
= E τ∼pθs (τ),

z∼pϕ(z|s0:T )

[
log

pϕ(z|s0:T )

r(z)

]
−DKL(pϕ(Z)∥r(Z))

≤ E τ∼pθs (τ),
z∼pϕ(z|s0:T )

[
log

pϕ(z|s0:T )

r(z)

]
= Eτ∼pθs (τ)

[
DKL(pϕ(Z|s0:T )∥r(Z))

]
. (3.6)

Combining the derivation of Equations (3.5) and (3.6) obtains Equation (3.4).

3.3.4 Encouraging Disentanglement

Disentanglement learning methods often model the generation process as

X ∼ p(·|Z), assuming that data X is generated with its underlying la-

tent factors Z [32, 60]. While the aggregated posterior of Z is defined as

q(Z) =
∫
x q(Z|x)p(x)dx for an encoder q(Z|X) [75], one of common disen-

tanglement approaches is to penalize the total correlation of q(Z), expressed as

TC(q(Z)) = DKL(q(Z)∥∏d
i q(Zi)).
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The IB framework has theoretical connections to the disentanglement of

representation [3, 4, 28]. In Section 3.3.2, we derived our objective in the form

of IB. Especially, if we model the prior of Z as r(Z) =
∏d
i r(Zi), the term

DKL(pϕ(Z|s0:T )∥r(Z)) in Equation (3.4) is decomposed into three terms reveal-

ing the total correlation term TC(pϕ(Z)) = DKL(pϕ(Z)∥∏d
i pϕ(Zi)) [28] (refer

to Section 3.3.5 for the proof), where the aggregated posterior of the trajec-

tory encoder is pϕ(Z) =
∫
s0:T

pϕ(Z|s0:T )p(s0:T )ds0:T . By penalizing TC(pϕ(Z)),

we encourage each dimension of the skill latent space Z disentangled from the

others with respect to S0:T . As a result, the learned skill latent Z can provide

improved abstraction, where each dimension focuses more on only its corre-

sponding behavior of the discovered skills.

3.3.5 Decomposition of the KL Divergence Term

When the prior of Z is modeled as a factorized distribution, i.e. r(Z) =∏d
i r(Zi), the KL divergence term in Equation (3.4) can be decomposed as

follows [28]:

DKL(pϕ(Z|s0:T )∥r(Z)) (3.7)

= Ez∼pϕ(Z|s0:T )

[
log

pϕ(z|s0:T )

r(z)

]
= Ez∼pϕ(Z|s0:T )

[
log

pϕ(z|s0:T )

pϕ(z)

]
+ Ez∼pϕ(Z|s0:T )

[
log

pϕ(z)∏d
i=1 pϕ(zi)

]

+ Ez∼pϕ(Z|s0:T )

[
log

∏d
i=1 pϕ(zi)∏d
i=1 r(zi)

]

= DKL(pϕ(Z|s0:T )∥pϕ(Z)) +DKL(pϕ(Z)∥
d∏
i=1

pϕ(Zi))

+
d∑
i=1

DKL(pϕ(Zi)∥r(Zi)), (3.8)
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where pϕ(Z) =
∫
s0:T

pϕ(Z|s0:T )p(s0:T )ds0:T denotes the aggregated posterior.

The second term corresponds to the total correlation of Z, as TC(pϕ(Z)) =

DKL(pϕ(Z)∥∏d
i pϕ(Zi)), encouraging Z to have a more disentangled represen-

tation. The third term operates as a regularizer, which pushes each dimension

of the aggregated posterior pϕ(Z) to be located in the vicinity of the prior. The

expectation of the first term can be represented in the form of mutual infor-

mation, as Es0:T [DKL(pϕ(Z|s0:T )∥pϕ(Z))] = I(S0:T ;Z). This corresponds to the

original compression term before applying the variational approximation.

3.3.6 Training

The trajectory encoder and the skill policy can be trained using the reparame-

terization trick as in VAEs [66]; we optimize those two terms in Equation (3.4)

with respect to their parameters, θz and ϕ. Note that the skill policy does not in-

teract with the environment during training and the second term − log πθs(gt|st)
is independent of these parameters.

The sampling policy πθs(gt|st) can be trained with the same objective of

Equation (3.4). This is the key difference with prior trajectory-first methods

that employ similar VAE architectures [9, 25, 29] (Section 3.2). They either

have a separate objective for training their sampling policies [25, 29] or assume

the offline RL setting [9]. In contrast, we jointly train all the components with

the same objective.

There are several merits of using the same objective. First, the second term

− log πθs(gt|st), referred to as the entropy term, encourages the sampling pol-

icy to produce diverse trajectories. In deterministic environments, maximiz-

ing this term is equivalent to maximizing the entropy of whole trajectories, as

h(pθs(τ)) = T ·Eτ∼pθs (τ),t[− log πθs(gt|st)]+(const). Note that this entropy term
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often remains constant in IB literature [11], assuming that the training data

(e.g . images) are given, whereas we can diversify the “training data” too. Sec-

ond, optimizing the whole Equation (3.4) makes the sampling policy generate

trajectories that are not only diverse but also easily encoded into the skill space

for the trajectory encoder and skill policy thanks to the first and third terms,

which helps the learning of the two components as well. This is not achievable

when the sampling policy is trained with a diversity maximizing objective only.

In Section 3.4, we will demonstrate how taking into account both diversity and

encodability leads to a huge difference in performance, comparing with baselines

without such consideration.

Practical training. Since the expectation in Equation (3.4) involves the

sampling policy’s roll-outs in the environment, we optimize the sampling policy

via the policy gradient method. However, there exists one practical difficulty

when training IBOL. Since the sampling policy πθs(gt|st) lacks a variable about

the context (e.g . z) compared to the skill policy πθz(gt|st, z), πθs is less ex-

pressive than πθz , which could end up with a suboptimal convergence. To solve

this issue, we introduce a new context parameter u ∈ U with its prior p(u)

to the sampling policy, redefining it as πθs(gt|st, u) : S × U → P(G). The new

parameter u for πθs plays a similar role to the skill latent z for πθz . We also fix

p(u) = N (0, I) as in r(z). To obtain roll-outs from the sampling policy, we first

sample u from its prior, and then keep sampling goals with the fixed u.

Given that r(z) and p(u) are identical, we additionally include an auxiliary

term Eu∼p(u),τ∼pθs (τ |u)[λ ·pϕ(u|s0:T )] to further stabilize the training. This term

guides the output of the trajectory encoder pϕ to u, which is from p(u) = r(z),

operating compatibly with the compression term.

Finally, with the revised sampling policy, we approximate the second term
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(a) Ant (b) Humanoid (c) HalfCheetah (d) Hopper

Figure 3.3: Examples of rendered scenes illustrating the skills that IBOL dis-
covers with no rewards in MuJoCo environments. (a) Ant moving in various
directions. (b) Humanoid running in different directions. (c) (Top to Bottom)
HalfCheetah running forward, rolling forward, running backward and flipping
backward. (d) (Top to Bottom) Hopper hopping forward, crawling forward,
jumping backward and flipping backward.

in Equation (3.4) as done in DADS [99]: πθs(gt|st) =
∫
u πθs(gt|st, u)p(u|st)du ≈∫

u πθs(gt|st, u)p(u)du ≈ 1
L

∑L
i=1 πθs(gt|st, ui) for ui

i.i.d.∼ p(u), where L is the

number of samples from the prior. Therefore, the final objective of our method

is

E u∼p(u),
τ∼pθs (τ |u)

[
Ez∼pϕ(z|s0:T ),t

ui
i.i.d.∼ p(u)

[
JP

]
− β·JC + λ·pϕ(u|s0:T )

]
(3.9)

where JP = log πθz(gt|st, z)− log

(
1

L

L∑
i=1

πθs(gt|st, ui)
)

JC = DKL(pϕ(Z|s0:T )∥r(Z)).

3.4 Experiments

We compare our IBOL with other state-of-the-art methods in multiple aspects.

First, we visualize the learned skills with the trajectory plots and the rendered

scenes from environments (Section 3.4.2). Second, we quantitatively evaluate

the skill discovery methods in terms of multiple information-theoretic metrics

(Section 3.4.3). Third, we evaluate the trained policies on the downstream tasks
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with different configurations (Section 3.4.5). Finally, we present additional be-

haviors of IBOL in the absence of the locomotion signals and with the distorted

goal space (Section 3.4.8).

3.4.1 Experimental Setup

Basic setup and baselines. We experiment with MuJoCo environments [107]

for multiple tasks: Ant, HalfCheetah, Hopper and Humanoid from OpenAI Gym

[22] with the setups by Sharma et al. [99] and D’Kitty from ROBEL [8] adopt-

ing the configurations by Sharma et al. [98]. We use D’Kitty with the random

dynamics setting; in each episode, multiple properties of the environment, such

as its joint dynamics, friction and height field, are randomized, which provides

an additional challenge to agents. We mainly compare our method with re-

cent information-theoretic unsupervised skill discovery methods, VALOR [2],

DIAYN [36] and DADS [99]. Since IBOL operates on top of the linearized en-

vironments, we also consider a variant of each algorithm that uses the same

linearizer, denoted with the suffix ‘-L’ (e.g . VALOR-L). In Ant experiments,

we use the suffix ‘-XY’ to refer to the methods with the x-y prior [99], which

forces them to focus exclusively on the locomotion skills by restricting the ob-

servation space of the trajectory encoder (or the skill dynamics model in DADS)

to the x-y coordinates.

Implementation. For experiments, we use pre-trained linearizers with two

different random seeds on each environment. When training the linearizers, we

sample a goal g at the beginning of each roll-out and fix it within that episode to

learn consistent behaviors, as in SNN4HRL [40]. We consider continuous priors

for skill discovery methods. Especially, we use the standard normal distribution

for p(u) and r(z) in IBOL and for p(z) in other methods. We employ garage
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[41] and PyTorch [86] to implement IBOL, DIAYN [36], VALOR [2] and DADS

[99]. We use the official implementations for EDL1 [25] and SeCTAR2 [29] with

additional tuning of hyperparameters to ensure fair comparisons.

Environments. We experiment with robot simulation environments in Mu-

JoCo [107]: Ant, HalfCheetah, Hopper and Humanoid from OpenAI Gym [22]

adopting the configurations by Sharma et al. [99] and D’Kitty with random

dynamics from ROBEL [8] with the setups provided by Sharma et al. [98]. We

use a maximum episode horizon of 200 environment steps for Ant, HalfCheetah

and D’Kitty, 500 for Hopper and 1000 for Humanoid. Note that D’Kitty and

Humanoid have variable episode horizons, and we use an alive bonus of 3e− 2

at each step in the training of the linearizers for Humanoid to stabilize the

training. For the linearizer, we omit the locomotion coordinates of the torso (x

and y for Ant, Humanoid and D’Kitty, and x for the others) from the input

of the policy. Note that the linearizer could be agnostic to the agent’s global

location since its rewards are computed only with the change of the state. On

the other hand, we retain them for skill discovery policies and meta-controller

policies since, without those coordinates, the expressiveness of learnable skills

may be restricted. However, as DADS originally omits the x-y coordinates from

the inputs in Ant [99], we also test baseline methods of d = 2 with both the

omission and the x-y prior [99], denoted with the suffix ‘-XYO’, in Figure 3.4.

Models. In the experiments, we use an MLP with two hidden layers of

512 dimensions for each non-recurrent learnable component except for the lin-

earizer, which uses two hidden layers of 1024 dimensions. We use the tanh and

ReLU nonlinearities for the policies and the others, respectively. We model the

outputs of the linearizer and the meta-controller for downstream tasks with

1https://github.com/victorcampos7/edl
2https://github.com/wyndwarrior/Sectar
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VALOR-XYODIAYN-XYO DADS-XYO

Figure 3.4: Visualization of the x-y traces of the skills for Ant discovered by
each baseline method trained with the omission of the x-y coordinates from the
inputs and the x-y prior [99]. The same skill latents are used with Figure 3.1.

the factorized Gaussian distribution followed by a tanh transformation to fit

into the action space of environments. We use the Beta distribution policies for

the skill discovery methods. To feed policies with the skill latent variable, we

concatenate the skill latent z for each episode with its state st at every time

step t. For the trajectory encoder of IBOL and VALOR, we use a bidirectional

LSTM with a 512-dimensional hidden layer followed by two 512-dimensional

FC layers. When training VALOR without the linearizer, we use a subset of

the full state sequence of each trajectory with evenly spaced states to match

the effective horizon with VALOR-L, following Achiam et al. [2]. We employ

the original implementation choice of DADS to predict ∆s = s′ − s (instead of

s′) from s and z with its skill dynamics model [99]. Both s and ∆s are batch-

normalized, with a fixed covariance matrix of I and a Gaussian mixture model

with four heads, again following Sharma et al. [99].

Common setup for training. We use the Adam optimizer [65] with a
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learning rate of 1e − 4 for skill discovery methods and 3e − 4 for the others.

We normalize each dimension of states, which is important since it helps skill

discovery methods equally focus on every dimension of the state space rather

than solely on large-scale dimensions. Note that while we observe that the skill

discovery methods primarily focus on the locomotion dimensions in the absence

of the x-y prior [99] as in Figure 3.1, this is not due to the scale of those dimen-

sions, as all the state dimensions are normalized. We hypothesize it is because

the locomotion dimensions are those which can have high informativeness with

the skill latent variable. When training meta-controllers or skill policies with

the linearizer, we use the exponential moving average. For the rest, we use the

mean and standard deviation pre-computed from 10000 trajectories with an

episode length of 50. Meta-controllers for downstream tasks and skill policies

use the mode of each output distribution from their lower-level policies. At ev-

ery epoch of the training of the linearizer or meta-controller for downstream

tasks, we collect ten trajectories for Ant, HalfCheetah, Hopper and D’Kitty,

and five trajectories for Humanoid. For the skill discovery methods with the

linearizer, at each epoch 64 trajectories are sampled for Ant, HalfCheetah and

D’Kitty and 32 for Hopper and Humanoid. When training the methods without

the linearizer (e.g . VALOR-XY), we collect ten trajectories for Ant, since their

effective horizon is longer than that with the linearizer.

Training of the linearizer. We train the linearizer using SAC [47] with

the automatic entropy adjustment [46] for 8e4 epochs for D’Kitty, 3e5 epochs

for Humanoid and 1e5 epochs for the others. We apply 4 gradient steps and

consider training with and without a replay buffer, where rewards are normal-

ized with their exponential moving average without a buffer and 2048-sized

mini-batches are used with a buffer of 1e6. We set the initial entropy to 0.1, the

target entropy to −dim(A)/2, the target smoothing coefficient to 0.005 and the
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discount rate to 0.99. We choose a prior goal distribution for each environment

from {Beta(1, 1),Beta(2, 2)}. We determine the hyperparameters based on the

state coverage of the trained linearizer.

Training of skill discovery methods. We train IBOL and the ‘-L’ vari-

ants of other skill discovery methods for 1e4 epochs with ℓ = 10, while the

methods without the linearizer are trained with the number of transitions that

matches the total number of transitions for the training of both the linearizer

and each skill discovery method on top of it. We employ SAC for DADS and DI-

AYN, and the vanilla policy gradient (VPG) for IBOL and VALOR. We set the

entropy regularization coefficient to 1e-3 for VALOR and VALOR-L (searched

over {1e− 1, 1e− 2, 1e− 3, 0}), and use the automatic entropy adjustment for

DADS with an initial entropy coefficient of 1e−1, DADS-L with 1e−3, DIAYN

with 1e − 1 and DIAYN-L with 1e − 2 (searched over {1e − 1, 1e − 2, 1e − 3}
with and without the automatic regularization). For those using VPG, we ap-

ply four gradient steps with the entire batch at each epoch. For SAC, we apply

64 gradient steps (or 32 steps for the skill dynamics model in DADS) with

256-sized mini-batches, since increased gradient steps expedite the training by

exploiting the off-policy property of SAC. We use L = 100 for DADS and

IBOL, and set λ = 2 (searched over {0.1, 1, 2}) and β = 1e − 2 (searched over

{1e− 1, 1e− 2, 1e− 3}) for IBOL.

Training of meta-controllers for downstream policies. SAC is used for

training the meta-controllers. We fix the entropy coefficient to 0.01, and apply

four gradient steps with the full-sized batches. The meta-controllers select skill

latents in a range of [−2, 2], where they are fed into the learned skill policies.
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3.4.2 Visualization of Learned Skills

Figure 3.3 shows that IBOL, with no extrinsic rewards, discovers diverse lo-

comotion skills for Ant and Humanoid and multiple skills with various speeds

and poses in both directions for HalfCheetah and Hopper. We present the dis-

covery of orientation primitives for Ant in Section 3.4.8 and additional results

including the videos of the discovered skills at https://vision.snu.ac.kr/

projects/ibol.

Figure 3.1 demonstrates that while all the algorithms mainly discover loco-

motion skills, IBOL discovers visually less entangled primitives with the most

diverse directions compared to the latent-first and trajectory-first baselines. We

train IBOL, DIAYN-L, VALOR-L, DADS-L, SeCTAR-L, SeCTAR-L-XY and

EDL-L on Ant with the skill latent variables of d = 2, where SeCTAR-L-XY

is equipped with the x-y prior [99]. We qualitatively examine their trajectories

in the x-y plane; since the x-y dimensions are interpretable and have a large

range of values, they can illustrate the characteristic differences between skill

discovery algorithms well. We also train DIAYN-XY, VALOR-XY and DADS-

XY to enforce them to discover skills on the x-y plane without the linearizer.

We observe that the linearizer significantly improves not only the diversity of

trajectories but also the correspondence between skill latents and trajectories

by reducing the burden of making transitions in the x-y dimensions.

3.4.3 Information-Theoretic Evaluations

We present the metrics that evaluate the unsupervised skill discovery methods

without the need for external tasks. While the quantities between skill latents

Z and state sequences S0:T generated with πθz are attractive, the high dimen-

sionality of S0:T makes it a less viable choice. One workaround is to examine
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only the last states ST instead of the whole sequences, as ST still characterizes

skills in environments to some degree. That is, we can simply estimate I(Z;ST )

instead of I(Z;S0:T ) to measure how informative Z is. This can also be viewed

as follows: in I(Z;S0:T ) = I(Z;ST ) +
∑T−1

i=0 I(Z;Si|Si+1:T ), only the first term

I(Z;ST ) is taken into account, as I(Z;Si|Si+1:T ) = h(Z|Si+1:T )−h(Z|Si:T ) and

adding Si to Si+1:T to the condition would change only little entropy of Z.

We also consider metrics for measuring the disentanglement of Z. We find

Do and Tran [32] provide a helpful viewpoint to our evaluation. They suggest

that the concept of disentanglement has three considerations: informativeness,

separability and interpretability. Informativeness denotes how much information

each latent dimension contains about the data, and separability is a concept

about no information sharing between two latent dimensions on the data. In-

terpretability considers the alignment between the ground-truth and learned

factors. Among them, we do not employ the interpretability measure because

the lack of supervision in unsupervised skill discovery prevents achieving a

high value [72]. For example, if data points are uniformly distributed in a two-

dimensional circle, there can be infinite equally good ways to disentangle the

data into two axes. To measure informativeness and separability, we use the

SEPIN@k and WSEPIN metrics [32] evaluated for skill latents and the last

states. For SEPIN@k, I(S
(loc)
T ;Zi|Z ̸=i) quantifies the amount of information

about S
(loc)
T contained by Zi but not Z ̸=i, and the metric is defined as

SEPIN@k =
1

k

k∑
j=1

I(S
(loc)
T ;Zrj |Z ̸=rj ), (3.10)

where rj is the dimension index with the j-th largest value of I(S
(loc)
T ;Zi|Z ̸=i)

for i = 1, . . . , d. That is, SEPIN@k is the average of the top k values of
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I(S
(loc)
T ;Zi|Z ̸=i). They also define WSEPIN as

WSEPIN =
d∑
i=1

ρi · I(S
(loc)
T ;Zi|Z ̸=i) (3.11)

for ρi =
I(S

(loc)
T ;Zi)∑d

j=1 I(S
(loc)
T ;Zj)

. It is the sum of I(S
(loc)
T ;Zi|Z ̸=i) weighted based on

their informativeness, I(S
(loc)
T ;Zi).

We compare the skill policies trained by IBOL, DIAYN-L, VALOR-L and

DADS-L with d = 2. We use the three evaluation metrics, I(Z;S
(loc)
T ), SEPIN@1

and WSEPIN on Ant, HalfCheetah, Hopper and D’Kitty, keeping only the state

dimensions for the agent’s locomotion (i.e. x-y coordinates for Ant and D’Kitty

and x for the rest) denoted as (loc). One rationale behind it is that the algo-

rithms on the linearized environments successfully discover the locomotion skills

(e.g . Figure 3.1). The locomotion coordinates are also suitable for assessing skill

discovery, since these values can vary in large ranges.

For each environment, we employ two pre-trained linearizers, and train every

method four times for each linearizer, resulting in eight runs in total. To measure

the quantities, we sample 2000 trajectories per run and use quantization, where

for each variable we divide the range of the values from all the runs into 32

bins.

Figure 3.5 shows the box plots of the results. With the same linearizers,

IBOL outperforms the three baselines, DIAYN-L, VALOR-L and DADS-L, in

all three information-theoretic evaluation metrics on Ant, HalfCheetah, Hopper

and D’Kitty. The plots for I(Z;S
(loc)
T ) show that IBOL can stably discover di-

verse skills from the environments conditioned on the skill latent parameter Z.

Also, the results with WSEPIN and SEPIN@1 suggest that IBOL outperforms

the baselines, with regard to both informativeness and separability of Z’s indi-

vidual dimensions. Overall, IBOL shows the lower average deviation compared
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Figure 3.5: Comparison of IBOL (ours) with the baseline methods, DIAYN-L,

VALOR-L and DADS-L, in the evaluation metrics of I(Z;S
(loc)
T ), WSEPIN and

SEPIN@1, on Ant, HalfCheetah, Hopper and D’Kitty. For each method, we use
the eight trained skill policies.

to the other methods, which demonstrates its stability in learning.

3.4.4 Varying Number of Bins for MI Estimation

We quantize variables for the estimation of mutual information for measuring

the information-theoretic metrics in Section 3.4.3. To show that IBOL outper-

forms the baseline skill discovery methods under different evaluation configura-

tions, we make a more comprehensive comparison between the methods using

different numbers of bins for quantization.
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Figures 3.6, 3.7, 3.8 and 3.9 compare the skill discovery methods on Ant,

HalfCheetah, Hopper and D’Kitty, varying the number of bins for the mutual

information estimation. The results show that on all the four environments,

IBOL outperforms DIAYN-L, VALOR-L and DADS-L in the evaluation metrics

of I(Z;S
(loc)
T ), WSEPIN and SEPIN@1 regardless of binning, which robustly

supports IBOL’s improved performance.

3.4.5 Evaluation on Downstream Tasks

We demonstrate the effectiveness of the abstraction learned by IBOL on down-

stream tasks. In Ant, we modify the environment to obtain two tasks, AntGoal

and AntMultiGoals, inspired by Eysenbach et al. [36], Sharma et al. [99]. In

HalfCheetah, we test the methods on two tasks, CheetahGoal and CheetahImi-

tation.

AntGoal is a task for evaluating how capable the agent is in reaching diverse

goals. For every new episode, a goal w = [w(x), w(y)] ∈ [−50, 50]2 is randomly

sampled in the x-y plane. The agent can observe the goal w at every step, and

receives a reward of
(
− ∥w − [s

(x)
T , s

(y)
T ]∥2

)
where [s

(x)
T , s

(y)
T ] is the agent’s final

position, when each episode ends.

AntMultiGoals is a repeated version of AntGoal. At time step t ≡ 0 (mod η)

in each episode, a new goal w = [w(x), w(y)] is sampled based on the agent’s

current position, [s
(x)
t , s

(y)
t ], and is held for the next η steps. Specifically, w

is sampled from [s(x) − 15, s(x) + 15] × [s(y) − 15, s(y) + 15], where [s(x), s(y)]

denotes the agent’s position when the goal is about to be sampled. Similarly to

AntGoal, at the end of each η-sized chunk (before sampling of a new goal), the

agent gains a reward of
(
− ∥w − [s

(x)
t , s

(y)
t ]∥2

)
. We set η = 50.

CheetahGoal is a task similar to AntGoal but in HalfCheetah. For each
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Figure 3.10: Comparison of IBOL (ours) with the baseline methods on the four
downstream tasks. Each line is the mean return over the last 100 epochs at
each time step, averaged over eight runs. The shaded areas denote the 95%
confidence interval.

episode, a goal w(x) ∈ [−60, 60] in the x axis is sampled and observed by the

agent at every step. At the end of the episode, the agent receives a reward of(
− |w(x) − s(x)T |

)
where s

(x)
T is the final position of the agent.
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We also experiment with a different type of task, CheetahImitation. Each of

the skill policies learned by the four skill discovery methods is used to sample

1000 random skill trajectories, all of whose x traces are gathered to form a

set of imitation targets. For a new episode of CheetahImitation, one imitation

target w = [w
(x)
1 , . . . , w

(x)
T ], a sequence of T positions in the x axis, is randomly

sampled from the set. The goal of this task is to imitate the target w in the x

axis; at the t-th step, a reward of
(
− (w

(x)
t − s

(x)
t )2

)
is given, where the agent

perceives the target w as part of its observation. CheetahImitation can evaluate

the diversity and coverage of skill policies.

For comparison, we employ a meta-controller on top of each skill policy

learned by skill discovery methods. The meta-controller iterates observing a

state from the environment and picking a skill with its own meta-policy, which

invokes the pre-trained skill policy with the same skill latent value z for ℓm time

steps. We employ Soft Actor-Critic (SAC) [47] to train the meta-controller, and

also compare a pure SAC agent as an additional baseline method.

Figure 3.10 compares the performance of IBOL with the baseline methods

on the four tasks: AntGoal, AntMultiGoals, CheetahGoal and CheetahImitation.

We set ℓm = 5 for AntMultiGoals and ℓm = 20 for the others. Figures 3.10a

and 3.10b suggest that the abstraction by IBOL is more effective for the meta-

controller to learn to reach a goal from the initial state, in comparison to the

baselines. They confirm that the linearizer greatly helps different skill policies’

learning of locomotion in Ant. Figure 3.10c shows that IBOL provides better

abstraction to the meta-controller for reaching goals in HalfCheetah. Also, Fig-

ure 3.10d demonstrates that IBOL’s skills can be used to imitate skills not only

from itself but also from the other baselines. It supports the improved diversity

of skills learned by IBOL. Overall, IBOL presents significantly smaller variances
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Figure 3.11: Comparison of IBOL (ours) with the baseline methods, DIAYN-
L, VALOR-L and DADS-L, in the diversity of external returns for the skills
discovered without any rewards. For every method, each of the eight vertical
bars visualizes the external returns for 2000 skills sampled randomly with one
trained skill policy of the skill discovery method, as a stacked histogram with
corresponding colors from the color bar on the left.

than the other baselines.

3.4.6 Diversity of External Returns

We qualitatively demonstrate the diversity of external returns the methods re-

ceive for their skills. As the skill discovery methods learn their skill policies

without any external rewards, examining their skills in regard to external re-

turns can be used to evaluate the diversity of the skills as well as their usefulness

75



on the original tasks.

We compare IBOL with DIAYN-L, VALOR-L and DADS-L in Ant,

HalfCheetah and Hopper. For every pair of a skill discovery method and an

environment, each of the eight skill policies learned by the method with d = 2

in the environment is used to sample trajectories given 2000 random skill la-

tents from their prior distribution, p(z) i.e. the standard normal distribution.

Figure 3.11 visualizes the results, where each vertically stacked histogram de-

notes the external returns for the 2000 skills with corresponding colors from

the color bar for the environment. In the visualizations, the skills learned by

IBOL exhibit not only wider but also more diverse ranges of external returns

compared to the baseline methods, which suggests that IBOL can acquire a

more varied and useful set of skills in the environments.

3.4.7 Comparison of Reward Function Choices for the Lin-
earizer

Prior work on hierarchical reinforcement learning. We first review pre-

vious works that train low-level policies similarly to ours. SNN4HRL [40] trains

a high-level policy on top of a context-conditioned low-level policy, which is

pre-trained with a task-related auxiliary reward function that facilitates the

desired behaviors as well as exploration. For example, as a reward for its low-

level policy in locomotion tasks, it uses the speed of the agent combined with

an information-theoretic regularizer that encourages diversity. FuN [108] jointly

trains both a high-level policy and a low-level goal-conditioned policy rewarded

by the cosine similarity between goals and directions in its latent space. HIRO

[79] takes a similar approach to FuN, but its high-level policy generates goals

in the raw state space, without having a separate latent goal space. Its low-

level policy is guided by the Euclidean distance instead of the cosine similarity.
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Figure 3.12: Comparison of various reward function choices for the linearizer.
The box plot shows the state coverage of each reward function, measured by
the number of bins occupied by the 2000 trajectories in the state space. We use
four random seeds for each method.

Nachum et al. [80] train a goal-conditioned low-level policy with the Huber loss,

which is a variant of the Euclidean distance, in a learned representation space

within the framework of sub-optimality.

In contrast to these approaches, we train the linearizer, which can be viewed

as a low-level policy, with the reward in the inner-product form. Also, we reward

the linearizer with the state difference between macro time steps: (s(i+1)·ℓ−si·ℓ),
where ℓ is the interval of the macro step (we use ℓ = 10 in our experiments).

Comparison of different reward function choices. We now compare

our reward function for the linearizer with other choices. We experiment on Ant

and evaluate them by their state coverage in the x-y plane. We sample 2000

trajectories from each of the linearizers, where we only change the values of x

and y dimensions in the goal space and set the other dimensions’ value to 0. We
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measure the state coverage by the number of bins occupied by the trajectories

out of 1024 equally divided bins in the x-y plane. For the comparison, we test

different values of ℓ = 1, 10, 100 with our inner-product reward function, as well

as one in the form of the Euclidean distance as in HIRO [79] with ℓ = 1, 10. Since

the Euclidean distance reward function requires the specification of the valid

goal ranges, we employ the goal range values used by HIRO. As a consequence,

we follow the practice of HIRO to exclude the state dimensions for velocities

in specifying the goal space for the Euclidean distance reward function. On

the contrary, we use the full state dimensions to design the goal space for the

inner-product reward function.

Figure 3.12 compares the performances of the reward function choices. It

suggests that using an appropriate size of the macro step (i.e. ℓ = 10) improves

the state coverage, especially exhibiting drastic performance improvement over

the case of ℓ = 1. We also observe that our inner-product reward function shows

a better state coverage compared to the Euclidean reward function.

3.4.8 Additional Observations

We present more experiments on Ant to confirm that IBOL can pick appropriate

goals at different states for the linearizer in order to learn skills with high

distinguishability.

Learning non-locomotion skills. In the absence of locomotion signals

(i.e., the x and y dimensions), IBOL can learn orientation primitives, which

is not easy unless the skill discovery algorithm produces diverse goals for the

linearizer. Figure 3.13a shows examples of orientation skills by IBOL on Ant

with d = 1. Figure 3.13b depicts that using the linearizer alone fails to produce

comparable results, while IBOL utilizes various goal dimensions of the linearizer
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Figure 3.13: Orientation trajectories from (a) the skill policy of IBOL and (b)
the linearizer. The skill latent value is interpolated from −4 (cyan) to 4 (ma-
genta) for IBOL, while the orientation dimension value of the goal is interpo-
lated from −1 (cyan) to 1 (magenta) for the linearizer (since it is trained with
the goal range of [−1, 1]). (c) Rendered scenes of IBOL’s trajectories from (a).

to obtain an interpolable skill set.

Overcoming goal space distortion. We conduct additional experiments

to validate IBOL’s capability of discovering more discriminable trajectories even

under harsh conditions. We distort the linearizer’s goal space as Figure 3.14a,

so that reaching vertically distant states becomes more demanding. We train

IBOL-XY, DIAYN-L-XY, VALOR-L-XY and DADS-L-XY with d = 2 on top

of the modified linearizer. Figure 3.14b suggests that IBOL discovers locomo-
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(a) Distortion scheme (b) Visualization of x-y traces

Figure 3.14: (a) Distortion scheme of the linearizer. It distorts the x and y
dimensions of goals, and produces the corresponding actions for the modified
goals. (b) Visualization of the x-y traces of the skills discovered by each algo-
rithm using the distorted linearizer. The same skill latents are used with the
top row of Figure 3.1.

tion skills in various angles including vertical directions in the most visually

disentangled manner.

3.4.9 Ablation Study

In this section, we demonstrate the effect of each hyperparameter of IBOL

by showing qualitative results on a synthetic environment named PointEnv,

which is suitable for clear illustrations. In PointEnv, a state s ∈ R2 is defined

as the x-y coordinates of the agent (point), and an action a ∈ [−0.1, 0.1]2
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Figure 3.15: Visualization of the x-y traces of the skills discovered by IBOL in
PointEnv with various hyperparameter settings. The fourth row corresponds to
IBOL without u and the auxiliary term, modelling πθs as a LSTM policy. The
same skill latents are used with the top row of Figure 3.1.

indicates a vector by which the agent moves. The initial state is sampled from

[−0.05, 0.05]2 uniformly at random. As PointEnv is already linearized, we do

not use the linearizer for IBOL as well as other baseline methods. We also
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Figure 3.16: Visualization of the x-y traces of the skills discovered by VALOR,
DIAYN and DADS in PointEnv with various hyperparameter settings. The
same skill latents are used with the top row of Figure 3.1.

reduce the common dimensionality of the neural networks to 32 in lieu of 512.

We train IBOL, DIAYN, VALOR and DADS for 5e3 epochs with an episode

length of 50 and a learning rate of 3e− 4, having two-dimensional skill latents

with various hyperparameter settings on this environment. For IBOL, we test

β ∈ {2.25e − 1, 2.25e − 3, 0} and λ ∈ {1.5, 0.45, 0.15}, and we also consider

the setting without the auxiliary parameter u for the sampling policy πθs , in

which we model the sampling policy as an LSTM policy (instead of a non-

recurrent policy) to compensate for the reduced expressiveness that comes from

the dropping of u. We examine the entropy regularization coefficient α ∈ {1e+

1, 1e − 1, 1e − 3} for VALOR, DADS and DIAYN, and we test the automatic
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entropy regularization for SAC [46] as well for the latter two.

Figures 3.15 and 3.16 illustrate the x-y traces of the skills discovered

by each method with various settings. First, we observe that an appropriate

value of β (especially β = 2.25e − 3 in Figure 3.15) for IBOL helps discover

more disentangled and evenly distributed skills. Also, since the auxiliary term

Eu∼p(u),τ∼pθs (τ |u)[λ · pϕ(u|s0:T )] encourages IBOL to discover skills that can be

easily reconstructed from the trajectories, increasing λ results in having rela-

tively condensed trajectories. The fourth row of Figure 3.15 shows that IBOL

can still discover visually disentangled (yet slightly noisy) skills in the absence

of u and the auxiliary term. Figure 3.16 presents that for the baseline methods,

overly increasing α could result in collapsing while having a moderate value of

α improves the quality of discovered skills.

3.5 Summary

We presented Information Bottleneck Option Learning (IBOL) as a novel un-

supervised skill discovery method. It first deals with the environment dynamics

using the linearizer trained to transition in various directions in the state space.

It then discovers skills taking advantage of the information bottleneck frame-

work, which learns the skill latent parameter (or the parameter of the skill

policy) as the learned representations of the skills. Our quantitative evaluation

showed that the skill latent learned by IBOL provides improved abstraction

measured as the disentanglement. We confirmed that IBOL outperforms other

skill discovery methods with notably lower variances and the linearizer benefits

both IBOL and other baselines on downstream tasks.

Also, there could be some possibilities to extend the skill-learning frame-

work of IBOL to slightly different settings. For instance, one may consider the
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case where a dataset of pre-collected trajectories is available. It might allow

the pre-training of the trajectory encoder, which could be adopted in the on-

line skill-learning phase that follows, and employing feature learning methods

such as Drop-Bottleneck (Chapter 2) may help to improve the efficiency of the

learning by reducing the dimensionality of intermediate features and caching the

features. We leave it for future investigation to extend IBOL to such settings.
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Chapter 4

Test-Time Improvement with
Source Approximation

4.1 Overview

For sequential decision making, deep reinforcement learning (RL) has been

shown to be effective for various types of problems including games [94] and

robotics [58, 70]. With such great successes, interest in multi-task RL has also

surged, where its goal is to train a single agent that can efficiently solve multi-

ple varying tasks. In multi-task RL, we focus on the transfer learning setting,

where the agent learns shared structural knowledge from a set of source tasks

during training, and exploits and generalizes them in new, unseen target tasks

at test time.

One popular approach to transfer in RL is to leverage the successor features

(SFs) framework [1, 14, 15, 21, 82], which transfers policies learned on source

tasks to target tasks, where the tasks share the same environment dynamics
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but differ in their reward functions. Successor features build a representation of

value functions decoupled from reward functions, and transfer to the tasks with

arbitrary reward functions by taking an inner product with corresponding task

vectors. They utilize generalized policy improvement (GPI) [14], which gener-

alizes policy improvement with multiple policies and provides the performance

lower bounds for GPI policies.

However, GPI does not take into account any information from the smooth-

ness of optimal action-value functions with respect to task vectors. Tackling this

issue, Borsa et al. [21] propose universal successor features approximators (US-

FAs), which can estimate the optimal successor features for novel task vectors.

Nevertheless, the function approximator can make high approximation errors

on the task vectors, especially when the new task vectors are distant from the

source task vectors. For instance, when USFAs are trained with source tasks to

get close to given goals, they may not generalize well to the target tasks where

the agent should get away from the given goals. That is, if the elements of target

task vectors have the opposite signs from the source task vectors, USFAs could

output successor features with high approximation errors.

To improve the successor features approximation of USFAs for the new

tasks, we aim at bounding value approximation errors on the new target tasks.

We first introduce a new theorem on bounding the optimal values for the tasks

that are expressible as linear combinations of source tasks. Our theorem gener-

alizes the conical combination condition used by the prior theorem by Nemecek

and Parr [82]. Using our new bounds as constraints, we can train the successor

features approximators whose action-value approximation errors on novel tasks

are bounded. We extend this idea so that we accomplish a similar effect with

no additional training; as a result, we propose constrained GPI as a test-time
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approach to bounding the approximation errors. Despite its simplicity and no

need for modification to the training procedure, we empirically show that con-

strained GPI attains large performance improvements compared to the original

GPI in multiple environments, including the Scavenger [16, 17] and Reacher

[22] environments with state observations and the DeepMind Lab [15, 18, 21]

environment with first-person visual observations.

Our main contributions can be summarized as follows:

• We present a novel theorem on lower- and upper-bounding optimal val-

ues for novel tasks that can be expressed as linear combinations of source

tasks. It extends and generalizes the previous theorem for conical combi-

nations by Nemecek and Parr [82], to enable a broader application of the

bounds.

• Based on our new theorem, we propose constrained GPI as a simple test-

time approach that can improve transfer to novel tasks by constraining

action-value approximation errors on new target tasks, with no modifica-

tion to the training procedure.

• We empirically show that our approach can improve the performance

over the GPI baselines by large margins in the Scavenger, Reacher and

DeepMind Lab environments. We also provide analyses for a better un-

derstanding of our results.

4.2 Related Work

Transfer in reinforcement learning aims at solving a new target task with no

additional learning or sample-efficiently by exploiting agents and information
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obtained from source tasks. We review a line of research with relevant ap-

proaches.

Transfer by reusing policies. This group of approaches reuses policies

learned on source tasks for target tasks. Fernández and Veloso [37] suggest an

exploration strategy for the learning of a new policy given a new task and

learned source policies, where the gain of using each policy is estimated to-

gether on-line and one of the policies in the set is selected probabilistically at

each step, based on the gain, but they focus on aiding the training of the target

policy with samples from the target task rather than improving the zero-shot

transfer performance. On the other hand, Dayan [31] introduce successor rep-

resentations (SRs), state space occupancy representations disentangled from

rewards, which allow linear decomposition of value functions. Barreto et al. [14]

propose successor features (SFs) and using SFs as an extension of SRs. Espe-

cially, in addition to SFs, which can be combined with arbitrary task vectors for

obtaining the corresponding values, Barreto et al. [14] also suggest generalized

policy improvement (GPI), allowing composition of multiple source policies on

a single task where the resulting GPI policy performs at least as well as any of

the source policies. The transfer with SFs and GPI and a number of connected

methods [15, 17] combine source policies using the reward decomposition struc-

ture but are limited in that they do not further make use of the smoothness

of the optimal value functions with respect to different tasks i.e., given two

similar tasks, their values are likely to be close to each other. Nemecek and

Parr [82] maintain a set of policies and determine whether to learn a new one

for a given task or exploit existing ones based on their optimal value bounds,

which is a different problem from ours, and they also target tasks expressible

as conical combinations of source tasks, whereas we target linear combinations.

Alver and Precup [12] suggest sets of assumptions and conditions under which
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a group of basis policies can induce GPI policies that maximizes undiscounted

returns on novel tasks and an iterative algorithm for constructing the basis, but

thus they tackle a different problem, many of whose requirements do not apply

to more general settings or our problem, due to e.g ., (non-binary) continuous

reward features ϕ, no guarantee on possible trajectories, stochastic transition

dynamics, etc. Alegre et al. [10] deal with the policy set construction problem

as well by interpreting the SFs framework as the learning of multiple policies

in the multi-objective RL problem and extending the optimistic linear support

algorithm [89] for the SFs framework. Differently from the problem we are tack-

ling, in the maximum entropy setting Hunt et al. [52] aim at compositing source

policies for target tasks optimally by estimating and correcting the divergence

between source policies, but they consider target tasks whose rewards are con-

vex combinations of source task rewards and the divergence estimation becomes

significantly harder when there are more than two source tasks [52].

Transfer with function approximation. There is a series of studies that

directly exploits the smoothness of optimal values across tasks with function

approximators. Schaul et al. [93] propose universal value functions and their

approximators, which incorporate goals into their input, and use the approxi-

mators for generalization to novel goals. Inspired by [93], Borsa et al. [21] sug-

gest universal successor features approximators (USFAs), which allow the use

of GPI with arbitrary approximate policies by extending the original SFs ap-

proximators to take policy vectors as their inputs. However, the generalization

to novel or distant policy vectors with the function approximators could result

in SFs with large approximation errors. In this work, we tackle this problem by

leveraging the reward decomposition structure for bounding estimated values

around optimal values and thus their errors. On the other hand, Hong et al.

[51] propose bilinear value networks (BVN) with a bilinear decomposition of
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value functions into goal-agnostic and goal-specific components for better sam-

ple efficiency in multi-goal reinforcement learning. They provide an alternative

formulation of value function approximators differently from the decomposition

used in the SFs framework, and thus our approach of bounding approximate

values at test time is orthogonal to BVN.

Compared to the existing work mentioned above in general, our constrained

GPI is a simple test-time approach for target tasks which are expressible as

linear combinations of source tasks.

4.3 Preliminaries

We describe the problem setting and background on successor features and

universal successor features approximators.

4.3.1 The Zero-Shot Transfer Problem in RL

We define a Markov Decision Process (MDP) as M ≡ (S,A, P,R, γ). S and

A are the state and action spaces, respectively. P (·|s, a) defines the transition

probability distribution of the next states given s ∈ S and a ∈ A. R(s, a, s′) is

the reward for taking action a at state s resulting in s′, and γ ∈ (0, 1] is the

discount factor. We assume that rewards are bounded.

We consider the zero-shot transfer problem; as in [14], each task is defined

by its task vector w ∈ Rd, and only the reward functions differ across tasks,

being decomposed as

Rw(s, a, s′) = ϕ(s, a, s′)⊤w, (4.1)

where ϕ(s, a, s′) ∈ Rd is the features of (s, a, s′). We denote the set of source

task vectors as T , which is used for training. At test time, we evaluate the
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transferred policy on each target task w′ /∈ T with no additional update of pre-

trained components. We examine both the possible scenarios: (i) the features

ϕ(s, a, s′) are available to the agent [14, 21] and (ii) no pre-defined features are

available and the agent needs to construct its own features and task vectors.

We first introduce the formulation for (i) in Section 4.3.2 and then its variant

for (ii) in Section 4.3.3.

4.3.2 Successor Features and Universal Successor Features Ap-
proximators

We now review successor features (SFs) [14] and how they are transferred to

different tasks. Equation (4.1) allows expressing the action-value function for

policy π on task w as

Qπw(s, a) = Eπ
[ ∞∑
i=0

γirt+i

∣∣∣St = s,At = a

]
(4.2)

= Eπ
[ ∞∑
i=0

γiϕt+i

∣∣∣St = s,At = a

]⊤

w = ψπ(s, a)⊤w, (4.3)

where ϕt = ϕ(st, at, st+1) ∈ Rd. Here, ψπ(s, a) ∈ Rd is called the SFs for policy

π at (s, a), and taking its inner product with an arbitrary task w results in

the action-value for π on w; i.e., Qπw(s, a). Thanks to the analogy between

(rewards r, action-value functions Q) and (features ϕ, successor features ψ),

the Bellman equation applies to SFs and thus they can be trained similarly to

the way action-value functions are learned; e.g ., Q-learning.

The policy improvement theorem [19] states that a new policy that takes a

greedy action according to a given policy’s value function at each state performs

at least as well as the original policy. Generalized policy improvement (GPI) [14]

extends policy improvement to the case where the value functions of multiple

policies are available. Given a task w′, a set of policies π1, . . . , πn, their action-
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value functions Qπ1w′ , . . . , Q
πn
w′ and their approximations Q̃π1w′ , . . . , Q̃

πn
w′ , the GPI

policy is defined as

πGPI(s) ∈ argmax
a

max
i
Q̃πiw′(s, a). (4.4)

The GPI theorem by Barreto et al. [14] suggests that QπGPI
w′ (s, a) ≥

maxiQ
πi
w′(s, a)− 2

1−γ maxi

∥∥∥Qπiw′ − Q̃πiw′

∥∥∥
∞

. They also provide the upper bound

on the suboptimality of the GPI policy as∥∥Q∗
w′ −QπGPI

w′

∥∥
∞ ≤

2

1− γ

{
min
i
∥ϕ∥∞∥w′ −wi∥+ max

i

∥∥∥Qπiw′ − Q̃πiw′

∥∥∥
∞

}
,

where each πi is an optimal policy for wi.

While the GPI theorem allows the transfer of learned successor features

to arbitrary tasks that share the same environment dynamics, it is limited

in the following aspect. GPI uses the action-values for source tasks on target

tasks based on the reward decomposition assumption (Equation (4.1)) i.e.,

Q̃πiw′(s, a) = ψ̃πi(s, a)⊤w′ for each i. However, it does not take any advantage of

the smoothness of the optimal action-value functions with respect to different

task vectors [21].

To overcome this limitation, Borsa et al. [21] introduce universal successor

features approximators (USFAs). Inspired by universal value functions (UVFs)

[93], they extend the original successor features with policy vectors z ∈ Rl

as input to their approximators. More specifically, universal successor features

(USFs) are defined to satisfy

ψπz(s, a) ≡ ψ(s, a,z) ≈ ψ̃(s, a,z), (4.5)

where z is a policy vector for the policy πz, and USFAs ψ̃ are the learned

approximators of USFs ψ. Naturally, the value functions are expressed as

Q̃πzw (s, a) = ψ̃(s, a,z)⊤w ≈ ψ(s, a,z)⊤w = Qπzw (s, a). (4.6)
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Each reward function induces optimal policies, which can be encoded using the

corresponding task vectors. That is, one can simply choose to define the policy

vector space to be the same as the task vector space (l = d) and let z = w be

a policy vector of an optimal policy for task w. Then, πw and Qπww denote an

optimal policy for w and its action-value function, respectively.

The training of USFAs is similar to that of SFs, except for that it addi-

tionally involves sampling of policy vectors given task vectors. The update of

USFAs at the k-th iteration is

ψ̃(k+1) ← argmin
ψ

Ew∼T ,z∼Dz(·|w),(s,a,s′)∼µ

[∥∥δ(s, a, s′, z)
∥∥2] (4.7)

for δ(s, a, s′, z) = ϕ(s, a, s′) + γψ̃(k)(s′, a′, z)− ψ(s, a,z) and

a′ = argmax
b

ψ̃(k)(s′, b,z)⊤z.

Dz(·|w) is the policy vector distribution; for instance, N (w, σI) can be used for

better training with diversified inputs. µ is the transition sampling distribution,

which involves the GPI policy of the samples from Dz(·|w) or a replay buffer.

We use gradient descent to update the parameters.

USFAs provide a benefit that they allow a GPI policy to use an arbitrary set

of policies {πz}z∈C as πGPI(s) ∈ argmaxa maxz∈C Q̃
πz
w′(s, a). However, the gen-

eralization of USFAs to new policy vectors depends on a function approximator

ψ, and thus if C contains policy vector(s) distant from source vectors, a GPI

policy with C may have high approximation errors and perform poorly or even

worse than a GPI policy with only source vectors [21], as will be demonstrated

later in our experiments.
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4.3.3 Universal Successor Features Approximators with Learned
ϕ

For the scenario where features ϕ’s are not provided to the agent1, we adopt

the problem formulation from Ma et al. [73] where for each task the task in-

formation g ∈ G is given to the agent. Although the task information g, unlike

a task vector, cannot be directly combined with successor features for transfer

to a novel task, zero-shot inference could still be possible by leveraging the

information about the task.

Specifically, we not only perform the original learning of ψ̃ letting

the task information induce policy vectors instead, but also train ϕ̃ and

w̃ to approximate the reward decomposition with transition samples. As

done in [73], we update ψ̃, ϕ̃ and w̃ using gradient descent to minimize

Eg∼T g ,z∼Dg
z(·|g),(s,a,r,s′)∼µ

[
Lψ + LQ

]
for

Lψ :=
1

d

∥∥∥ϕ̃(s, a, s′) + γψ̃(k)(s′, a′, z)− ψ̃(s, a,z)
∥∥∥2 (4.8)

LQ :=
{
r + γψ̃(k)(s′, a′, z)⊤w̃(k)(z)− ψ̃(s, a,z)⊤w̃(z)

}2
(4.9)

and a′ = argmaxb ψ̃
(k)(s′, b,z)⊤w̃(k)(z) at the k-th iteration. The superscript

(k) denotes the target, T g is the source task information set, Dg
z(·|g) is the

policy vector distribution conditioned on the task information and µ is the

sampling distribution.

4.4 Constrained GPI for Improved Zero-Shot Transfer
of Successor Features

1One typical example presented later in our experiments is the case where the agent ob-
serves visual inputs. Then, it is not trivial to derive features that linearly decompose reward
functions.
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Figure 4.1: An example
comparison of task space
coverage. While the coni-
cal combinations of w1 and
w2 covers only area 1○, the
linear combinations covers
both area 1○– 2○.

To mitigate the aforementioned issue of the possi-

bly unlimited approximation errors of USFAs, we

propose a simple yet effective method that im-

proves the transfer of successor features by fur-

ther leveraging the reward decomposition struc-

ture in Equation (4.1). We first present, under a

more relaxed condition, lower and upper bounds

on the optimal values for novel task vectors that

are expressed as linear combinations of source

task vectors (Section 4.4.1). Then, we propose a

novel approach called constrained GPI, which ef-

fectively confines the approximated action-values

inside the computed lower and upper bounds

(Section 4.4.2).

4.4.1 Bounding Optimal Values for New Tasks

Theorem 1 of [82] provides the lower and upper bounds on the value of an

optimal policy for a new task, whose vector w′ is a positive conical combination

of source task vectors i.e., w′ =
∑

w∈T αww such that αw ≥ 0, ∀w ∈ T and∑
w∈T αw > 02. However, for a broad application of such bounds, the positive

conical combination condition can be too restrictive, since the resulting bounds

only apply to the task vectors that appear inside the conical hull of source task

vectors.

Therefore, we suggest a more relaxed theorem, which holds for an arbitrary

task vector w′ that is expressed as a linear combination of the source task

2We slightly abuse the notation and let αw denote the coefficient for vector w.
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vectors i.e., w′ =
∑

w∈T αww for αw ∈ R, ∀w ∈ T . Figure 4.1 shows an

example that compares the task space coverage of conical [82] and our linear

combinations. With our extended task space coverage, we can apply the bounds

to more general target tasks outside of the conical hull, which will be further

discussed in the next section.

We define ϵ
πw1
w2 to be an upper bound on the approximation error of Q̃

πw1
w2

for arbitrary tasks w1,w2 such that

|Qπw1
w2 (s, a)− Q̃πw1

w2 (s, a)| ≤ ϵπw1
w2 (s, a), ∀(s, a) ∈ S ×A, (4.10)

and we present our theorem as follows.

Theorem 1. Given a task vector w′ =
∑

w∈T αww for αw ∈ R,∀w ∈ T , for all
state-action pairs (s, a) ∈ S × A, the action-value of πw′, which is an optimal
policy for task w′, on task w′ is lower- and upper-bounded as Lw′,T (s, a) ≤
Q
πw′
w′ (s, a) ≤ Uw′,T ,α(s, a) for

Lw′,T (s, a) := max
w∈T

[
Q̃πww′ (s, a)− ϵπww′ (s, a)

]
, (4.11)

Uw′,T ,α(s, a) :=
∑
w∈T

max
{
αw

(
Q̃πww (s, a) + ϵπww (s, a)

)
, αwCw(s, a)

}
, (4.12)

for some Cw(s, a) ≤ minπ Q
π
w(s, a) such as Cw(s, a) = 1

1−γ r
min
w where rmin

w

is the minimum reward on w i.e., rmin
w = min(s,a)∈S×ARw(s, a) and α =

{αw}w∈T .

Proof. For the derivation of the lower bound Lw′,T (s, a), since Q
πw′
w′ is the opti-

mal action-value function for task w′ and Q
πw′
w′ (s, a) ≥ Qπww′ (s, a) for arbitrary

task w and state-action pair (s, a),

Q
πw′
w′ (s, a) ≥ max

w∈T
Qπww′ (s, a) ≥ max

w∈T

[
Q̃πww′ (s, a)− ϵπww′ (s, a)

]
. (4.13)

For the upper bound Uw′,T ,α(s, a), we use that Q
πw′
w (s, a) ≤ Qπww (s, a) and

Q
πw′
w (s, a) ≥ minπ Q

π
w(s, a) ≥ Cw(s, a) for arbitrary task w and state-action
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pair (s, a), which leads to

Q
πw′
w′ (s, a) =

∑
w∈T

αw

(
Q
πw′
w (s, a)− Cw(s, a)

)
+

∑
w∈T

αwCw(s, a)

≤
∑
w∈T

max
{
αw

(
Q
πw′
w (s, a)− Cw(s, a)

)
, 0
}

+
∑
w∈T

αwCw(s, a)

≤
∑
w∈T

max {αw (Qπww (s, a)− Cw(s, a)) , 0}+
∑
w∈T

αwCw(s, a)

=
∑
w∈T
{max {αw (Qπww (s, a)− Cw(s, a)) , 0}+ αwCw(s, a)}

=
∑
w∈T

max {αwQ
πw
w (s, a), αwCw(s, a)}

≤
∑
w∈T

max
{
αw

(
Q̃πww (s, a) + ϵπww (s, a)

)
, αwCw(s, a)

}
. (4.14)

In Equation (4.14), for each w ∈ T , the sign of αw determines which of the

two terms in the max operator is used. If αw ≥ 0, the max operator selects the

first term, whereas a negative αw lets the second term be used. Note that our

Theorem 1 recovers Theorem 1 of [82] when w′ is a conical combination of w’s

from T i.e., αw ≥ 0, ∀w ∈ T .

Intuitively, this theorem states the condition that the optimal action-value

for an arbitrary target task must satisfy, given the optimal successor features

for the source tasks. The theorem is applicable to different problems wherever

bounding of optimal values is useful. One example is policy cache construction,

where the agent should decide whether to reuse existing policies in the cache set

or learn a new one given each new task [82]. As will be shown in the next section,

we employ the bounding as a constraint on the action-values for novel target

tasks, for the guidance of transfer. In Sections 4.5.1–4.5.3, we empirically show

that the application of our Theorem 1 can significantly improve the performance

in the cases where target tasks are outside the conical hull of source tasks.
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4.4.2 Constrained Training and Constrained GPI

As described in Section 4.3.2, the universal successor features approximators

(USFAs) [21] improve the original successor features so that arbitrary policy

vectors, including the ones for target tasks, can be used for GPI. However, the

use of arbitrary policy vectors with USFAs solely relies on the generalization

power of the approximators (e.g ., neural networks). Thus, the obtained suc-

cessor features on novel tasks might contain high approximation errors, which

could make the GPI policy perform poorly.

Our high-level idea to tackle the issue is to exploit the reward decomposition

structure in Equation (4.1) even for obtaining SFs for new tasks, instead of

solely relying on the approximators. We employ the lower and upper bounds

on optimal values from Theorem 1 to enforce the bounds on the approximate

successor features. As a result, the approximation errors can be reduced by

restricting the estimated optimal values to be inside those bounds around the

optimal values, which can prevent the use of erroneous values during the transfer

to unseen tasks.

For now, we will first introduce how to train the successor features approxi-

mators to output the successor features that satisfy the bounds on novel tasks.

Then, we will point out that an analogous effect can be accomplished by mod-

ifying only the inference algorithm, and propose constrained GPI as a simple

yet effective test-time approach to improving zero-shot transfer to novel tasks.

Constrained training of SF approximators. In the original training of

USFAs, the approximators are learned with a set of source tasks T in Equa-

tion (4.7). We propose to guide the training by employing Theorem 1; we impose

constraints for the approximators using the lower and upper bounds on the op-
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timal values for arbitrary linear combinations of source tasks. Specifically, for

the training of USFAs, we use Equation (4.7) but with the following constraints:

Lw′,T (s, a) ≤ ψ̃(s, a,w′)⊤w′ ≤ Uw′,T ,ξ(w′,T ,s,a)(s, a) for w′ ∈ W, (4.15)

where (s, a) is the same sample as the main objective of Equation (4.7). W
is a set of task vectors for the constraints, which can be independent of the

source task set T , and ξ(·) determines the coefficients α given a target task

w′ and T . We will explain later how to determine ξ(·). W can be any subset

of the linear span of source task vectors, but practically, we randomly sample

a number of vectors from the span at each update. Since the targets of the

constraints are not fixed with respect to both w′ and (s, a) throughout the

training, we use penalty terms (or soft constraints) that linearly penalize the

constraint violations as

1

|W|
∑

w′∈W

({
Lw′,T (s, a)− Q̃πw′

w′ (s, a)
}
+

+
{
Q̃
πw′
w′ (s, a)− Uw′,T ,ξ(w′,T ,s,a)(s, a)

}
+

)
,

where {x}+ denotes max{x, 0}.

The constrained training suggested above can make the approximators com-

ply with the bounds for any tasks without requiring any additional interactions

with the environment. However, it has some downsides. First, since it is a new

training procedure, existing pre-trained models cannot be used. It requires some

additional computational cost compared to the naive training of successor fea-

tures approximators. Second, the enforcement of the constraints for training

can introduce additional hyperparameters (e.g ., the weight coefficient for the

penalty terms). Thus, suboptimal hyperparameters may introduce either insta-

bility in the training or a decrease in the performance.
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Test-time constrained GPI. Our idea starts with the observation that

in the constrained training, the learned successor features from source tasks are

considered the “trustworthy” features for the constraints, because the USFAs

are trained on the source tasks. Besides, only the source successor features are

used for computing the constraints for all the other tasks. It implies that the

learning of the source successor features better not be affected by other criteria,

and more accurate source successor features would produce better constraints

for other tasks with smaller errors.

Based on the implication, we propose constrained GPI, which can not only

overcome the limitation of USFAs as done by the aforementioned constrained

training but also have two additional practical merits: (i) it is computationally

simpler, and (ii) it is a test-time approach with no training. Simply put, we

propose replacing the usual GPI policy with the constrained GPI policy as

πCGPI(s) ∈ argmax
a

max
z∈C

[
min

{
max

{
Q̃πzw′(s, a), Lw′,T (s, a)

}
, (4.16)

Uw′,T ,ξ(w′,T ,s,a)(s, a)
}]
,

where the target task w′ is expressible as a linear combination of the source

tasks and ξ(·) again outputs α given w′ and T as in Equation (4.15). C is a set

of policies that we can freely choose when applying the constrained GPI.

The constrained GPI policy selects the actions that maximize the maximum

action-values as the original GPI policy does but also caps the values with the

lower and upper bound constraints derived from the source successor features.

The upper bound constraint fixes the overestimation of values computed with

approximate successor features for either the target task w′ or any other tasks

used for constrained GPI. The lower bound constraint ensures that action-values

on the target task for the greedy action selection are at least as close to the
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optimal target action-values as the lower bounds.

The approximation error terms in the lower and upper bounds i.e., ϵπww′ (s, a)

and ϵπww (s, a) in Theorem 1 could be ignored in practice, as long as the approx-

imation errors of the source successor features are sufficiently small. Also, we

can obtain the tightest upper bound by defining ξ(·) as

ξ(w′, T , s, a) := argmin
{αw}w∈T

Uw′,T ,{αw}w∈T (s, a) (4.17)

subject to w′ =
∑
w∈T

αww.

The objective Uw′,T ,{αw}w∈T (s, a) is the sum of the piecewise linear functions.

Thus, Equation (4.17) can be solved with linear programming.

We observe that using the lower bound constraint with Lw′,T (s, a) is equiv-

alent to including the successor features for source tasks in the input to the

constrained GPI; i.e., T ⊆ C. Also, since Lw′,T (s, a) ≤ Uw′,T ,ξ(w′,T ,s,a)(s, a),

there would be no difference between GPI and constrained GPI when C = T .

Thus, in our experiments, we mainly use C = {w′}, which is equivalent to using

C = T ∪ {w′}.

4.5 Experiments

4.5.1 Scavenger Experiments

We start our experiments in the Scavenger environment [16, 17], which can as-

sess our approach with minimal influence from external causes. In Scavenger,

the agent is positioned at one of the cells in a G×G grid, and the goal is to max-

imize the return by collecting objects. Both the agent and objects are spawned

at random locations, and there are d classes of objects where the class deter-

mines the value of the reward. The state space is S = {0, 1}G×G×(d+1), where
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the first d channels describe the current locations of the objects on the map and

the last channel specifies the walls where the agent cannot go and objects do not

appear. There are four actions available: A = {UP, DOWN, LEFT, RIGHT}, and the

agent picks up an object by visiting the cell of the object, which spawns a new

object of a random class at a random location. The feature ϕ(s, a, s′) ∈ {0, 1}d is

a one-hot vector whose element represents whether the agent picks up an object

of that type or not within the transition. The task vector w ∈ Rd determines

the reward values for the d different classes of objects. We use a maximum

episode horizon of 50 and a discount factor of 0.9. Please see Barreto et al. [17]

for the full details.

We evaluate the zero-shot transfer performance of different approaches i.e.,

we first train USFAs as proposed in [21], and measure the performance of GPI

and constrained GPI policies that use the same set of USFAs on target tasks

with no further policy updates. We set G = 11 and use 20 objects in total with

the different numbers of classes; d = 2 and d = 4. With d = 4, we also test the

USFAs that are learned with the constrained training for a comparison. We use

the standard basis vectors of Rd as the set of source tasks as done in [21], and

evaluate agents on the set of target tasks defined by {−1, 1}d. Therefore, all the

target tasks except for the all-ones vector 1 are not covered by the conical hull

of source tasks, which requires Theorem 1 for bounding of values.

We train eight USFAs agents for 1M steps, and evaluate them on each

target vector 10 times with a fixed set of 10 random seeds. To be invariant to

the reward scale differences between different tasks, we normalize the scores

(or returns) from the environment by the minimum and maximum scores with

respect to all the agents’ evaluation episodes on each task.

Figures 4.2 and 4.3 compare the performance of the USFAs agents with GPI
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Mean

0.52 0.56 0.60
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(a) All

0.3 0.4 0.5
CGPI-T (ours)

GPI-ST
GPI-T
GPI-S

Median

0.16 0.24 0.32 0.40

IQM

0.30 0.35 0.40

Mean

0.60 0.65 0.70 0.75

Optimality Gap

Normalized Score

(b) Harsh

Figure 4.2: The aggregated performance metrics with 95% bootstrap confidence
intervals [6, 35] of different test-time approaches on Scavenger with d = 2. CGPI
represents our constrained GPI, whereas GPI is the original GPI. The suffixes
-S, -T and -ST denote using the set of source task vectors, the target task
vector and both as C, respectively. (a) All is the evaluation on the entire set of
target task vectors from {−1, 1}d, whereas (b) Harsh denotes the evaluation on
a subset consisting of ‘harsh’ tasks, whose number of −1’s is no less than that
of 1’s (e.g ., w = (−1, 1)).

and constrained GPI for exploitation, following the evaluation scheme suggested

by [6]. Although they use the same set of trained USFAs, the constrained GPI

brings a notable performance improvement in comparison with the original

GPI. Also, Figure 4.3 suggests that the constrained GPI, the test-time method,

can match or even outperform the agents learned with the constrained train-

ing. One possible explanation is that the constrained training might experience

some instability in learning depending on the choice of the hyperparameters, as

described in Section 4.4.2.

In the first and the second columns of Table 4.1, we present the proportions

of the action-values that are changed by the lower and upper bounds of the

constrained GPI, measured for the evaluation on Scavenger. The third column

shows the proportions of resulting greedy actions changed by them. It implies
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CT (ours) + GPI-ST

CT (ours) + GPI-T
CT (ours) + GPI-S

GPI-ST
GPI-T
GPI-S

Median

0.30 0.35 0.40 0.45

IQM

0.36 0.40 0.44

Mean

0.56 0.60 0.64
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Normalized Score

(b) Harsh

Figure 4.3: The aggregated performance metrics with 95% bootstrap confidence
intervals [6, 35] of different test-time approaches on Scavenger with d = 4. CT
denotes the constrained training. We refer the reader to Figure 4.2 for the full
description.

Table 4.1: The first and second columns show the proportions of the maximum
action-values changed by constrained GPI’s lower and upper bounds, during
the evaluation on Scavenger. The final column is the proportions of resulting
actions changed by them.

Setting Lower-
bounding

Upper-
bounding

Action
change

d = 2 23.94% 43.01% 22.11%
d = 4 5.60% 46.86% 20.78%

that USFAs i.e., the function approximators of successor features, may not sat-

isfy the optimal value bounds presented in Theorem 1, and applying the bounds

could change a fair proportion of greedy actions to improve the performance.
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4.5.2 Robotic Locomotion Experiments

To evaluate our approach in a physical domain, following [14, 82], we employ

Reacher, a MuJoCo’s robotic locomotion environment [107] from OpenAI Gym

[22]. Reacher simulates a robotic arm with two joints, and its state space S
is 11-dimensional. Its original action space is continuous and two-dimensional,

which represents torques at the two hinge joints, and we discretize each action

dimension into three values resulting in nine discrete actions in total, as in [14].

We set the maximum episode horizon as 500 and the discount factor as 0.9.

For its use in the zero-shot transfer problem, we first set four fixed goal lo-

cations at (0.1, 0.0), (0.0, 0.1), (−0.1, 0.0), (0.0,−0.1), and define ϕ(s, a, s′) ∈ R4

to be a vector whose elements are the negative distances between the agent’s

fingertip and the four goals. USFAs agents are trained with the four standard

basis vectors as source tasks, learning to reach or get close to one of the four

goals on each of the four source tasks. However, for the evaluation, we define

{−1, 1}d to be the set of target tasks. A negative value at each dimension im-

plies not only that the target vector is outside the conical hull of the source

tasks but also that the agent would obtain higher rewards with respect to that

dimension by getting away from the corresponding goal, instead of reaching the

goal. This can make this zero-shot transfer problem challenging, as it requires

the agent to do very different behaviors suddenly at test time. For better un-

derstanding, Figure 4.5 shows a rendered scene of Reacher, where the four red

dots represent the goal locations. Since the original states defined for Reacher

contain information about target coordinates, we set those coordinates to zeros

for our experiments with different tasks.

In our experiments, we train 16 USFAs agents for 1M environment steps to

obtain statistically more meaningful results. We evaluate each of the trained
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Figure 4.4: The aggregated performance metrics with 95% bootstrap confidence
intervals [6, 35] of different test-time approaches on Reacher with d = 4. CGPI
represents constrained GPI. The suffixes -S, -T and -ST denote using the set of
source task vectors, the target task vector and both as C, respectively. (a) All
is the evaluation on the entire set of target task vectors from {−1, 1}d, whereas
(b) Harsh denotes the evaluation on a subset consisting of ‘harsh’ tasks, whose
number of −1’s is no less than that of 1’s.

Figure 4.5: An
example scene of
Reacher. The four
red dots indicate
the four goal loca-
tions.
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Figure 4.7: The performance profiles [6, 33] of the infer-
ence with GPI and constrained GPI on Reacher. The cat-
egories i.e., (a) All and (b) Harsh, and the colors match
the ones in Figure 4.4, and thus the blue lines represent
constrained GPI.

agents with 10 episodes for each target vector, again with a fixed set of 10 envi-

ronment random seeds. Similarly to the Scavenger experiments in the previous

section, to take into account the difference in reward scales between different
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Figure 4.8: The performance gains of different test-time approaches and the ra-
tios of action and action-value changes due to constrained GPI, with respect to
the target task vectors on Reacher. CGPI represents constrained GPI. The suf-
fixes -S, -T and -ST denote using the set of source task vectors, the target task
vector and both as C, respectively. (a) presents the interquartile means (IQMs)
of their normalized scores, visualized as performance gains (or differences) com-
pared to GPI-ST, where the error bars are the 95% confidence intervals. Action
change in (b) shows the average portion of the final actions changed by con-
strained GPI for each target task, during the evaluation. Lower-bounding and
Upper-bounding in (b) denote the average ratios of the action-values after
taking the maximums changed by constrained GPI’s lower and upper bounds,
respectively.

target tasks, for each of the target tasks, we normalize the returns i.e., scores

using the minimum and maximum scores that any of the agents achieve during

the evaluation.

Figure 4.4 provides the comparison of GPI and constrained GPI in terms of

the normalized scores. As it shows, the inference with constrained GPI signifi-

cantly outperforms the ones with GPI on the zero-shot transfer problem. Espe-

cially, the gap becomes even larger when they are evaluated on the “Harsh” set
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of target task vectors, which implies that constrained GPI can be helpful for

transferring to different types of target tasks outside the conical hull of source

tasks. On the other hand, Figure 4.7 presents the performance profiles [6, 33]

of the approaches with the matching evaluation categories and color mapping.

It qualitatively suggests that constrained GPI is more likely to achieve higher

scores than GPI.

We provide further analyses of the experimental results for a better under-

standing of our approach. Figure 4.8 visualizes four quantities with respect to

the target task vectors, in the Reacher environment. Figure 4.8a reports the per-

formance gains of the approaches compared to GPI-ST in terms of the interquar-

tile means (IQMs) of the normalized scores on each target task. In Figure 4.8b,

Action change shows the average ratio of the action changes due to constrained

GPI, for each of the target tasks. Lower-bounding and Upper-bounding are

the average portions of the maximum action-values for the inference that are

bounded and changed by constrained GPI’s lower and upper bounds, respec-

tively. We restate that the USFAs are trained with the four standard basis task

vectors i.e., a (positive) one-hot vector for each of the four dimensions of the

task vector space, R4.

Our first observation is that while the transferred agents perform compara-

bly on some tasks, constrained GPI makes significant differences on the others,

especially more on the “Harsh” target tasks with many −1’s as elements in their

task vectors. It implies that the USFAs, the function approximators, might work

reasonably on tasks to which the approximations could be extrapolated simi-

larly as in the source tasks, but they could perform poorly when there is little

or no knowledge easily transferable from the source tasks only with the function

approximators.
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It also coincides with our second observation: examining the two plots in

Figure 4.8 together, there is a tendency that more action changes by constrained

GPI usually result in greater performance gains. This suggests that bounding

the action-values at test time with constrained GPI for reducing the value

approximation errors often has a meaningful effect on the resulting performance,

and the highest increases in both the performance gains and the action change

ratios are observed on the “Harsh” target tasks. Thus, we infer that the bounds

from Theorem 1 could be effective for constraining the approximation errors

of USFAs, especially including target tasks outside the conical combinations of

source tasks.

Additionally, Lower-bounding and Upper-bounding in Figure 4.8b indicate

that a large portion of the action changes and thus the performance gains are

related to the upper-bounding in the Reacher environment, and the reduction of

the USFAs’ overestimation with constrained GPI is an important factor of the

performance gains, in this case. Depending on the underlying environment and

tasks, there can be target tasks where USFAs underestimate the corresponding

action-values and the lower-bounding, which is equivalent to performing GPI

with the source task set T included in the input policy set C, could help improve

the resulting performance, as well.

4.5.3 DeepMind Lab Experiments with Learned ϕ

For evaluation of our approach in a more complex and realistic setting, we

employ DeepMind Lab [15, 18, 21] and conduct experiments in a first-person

view 3D environment. In a single room, a goal object is placed arbitrarily, and

the objective is to reach the goal before the episode ends where its location

changes between tasks. Figure 4.9 shows an example scene that the agent sees
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with the goal object in red.

Figure 4.9: An example
scene that the agent sees
in the DeepMind Lab tasks.
The object is the goal.

At every time step, the agent observes an 84×
84 × 3 image from the environment and outputs

one of 45 possible actions, which include 5, 3 and 3

choices for LOOK LEFT RIGHT PIXELS PER FRAME,

STRAFE LEFT RIGHT and MOVE BACK FORWARD con-

trols, respectively. Since observations are in the

first-person view, the goal object may not be seen

by the agent, which makes transfer given the task

information g critical to the success of the tasks.

In each task, we divide the room into an 11 × 11 grid and place the goal ob-

ject in one of the cells. The task information g is a two-dimensional vector

that contains the coordinate of the goal in the grid. Starting at the center of

the room, the agent receives a reward of one if it reaches the goal within the

episode horizon or no rewards otherwise. Therefore, the reward functions are

sparse. We render 10 frames per second and use an episode horizon of 50 and

a discount factor of 0.99. Also, as the tasks we use are sparse-reward tasks, we

sample each episode with one source task vector during the training.

For these experiments where the agent observes rendered images rather than

the underlying states, it may not be viable to define features ϕ’s and task vectors

w’s that linearly decompose reward functions. Therefore, we train agents with

the learning of ϕ̃ and w̃ from samples from the source tasks with d = 2 as

described in Section 4.3.3.

Inspired by Hong et al. [51], we examine zero-shot transfer with the GPI and

constrained GPI using two transfer settings: “left-to-right” and “near-to-far”.

In the “left-to-right” setting, the agent is trained on the source tasks whose
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Figure 4.10: The aggregated performance metrics with 95% bootstrap confi-
dence intervals [6, 35] of different test-time approaches with the two scenarios
in the DeepMind Lab environment. CGPI represents constrained GPI. The suf-
fixes -S, -T and -ST denote using the source task information set, the target
task information and both for C, respectively. (a) In the left-to-right setting, we
train the agent for the goals from the left half and test for the right half. (b) In
the near-to-far setting, we train the agent for nearby goals and test for farther
goals.

goals are sampled from the left half of the room and is tested on the target

tasks with goals from the right half. In the “near-to-far” setting, the source

tasks have the goals within an L∞ = 2 distance from the center of the room,

and target tasks set the goals farther than L∞ = 2.

For each setting, we train eight USFAs agents with different seeds for 3M

environment steps on the source tasks and test them on the target tasks. Fig-

ure 4.10 presents the comparison of the GPI with different C’s and the con-

strained GPI. Leveraging the same set of trained USFAs with learned ϕ̃ and w̃,

the constrained GPI outperforms the GPI with the three C’s in both settings

by a notable margin. Another observation is that the trained USFAs agents

seem to overfit more to the source tasks in the “near-to-far” setting compared

to the “left-to-right” setting. It makes the performance on the target tasks

much worse. Nonetheless, the constrained GPI is still helpful in such overfitting
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situations.

4.5.4 Implementation Details

We employ the autonomous learning library [83] and PyTorch [86] for the im-

plementation of USFAs. The following selection of hyperparameters was done

based on the performance of the USFAs on source tasks, because we have no ac-

cess to target tasks during the training in the transfer problem and the learning

on the source tasks is important for the transfer with both GPI and constrained

GPI.

For both of the Scavenger and Reacher environments, we use an MLP with

the ReLU nonlinearity and two hidden layers whose sizes are (128, 256), which

is chosen over (64, 128) and (256, 256), as USFAs. We set the number of output

heads of the networks to the respective number of discrete actions; four for

Scavenger and nine for Reacher. For the training of the USFAs, we make use of

the Adam optimizer [65] with a learning rate of 1e− 4, which is selected out of

{3e− 4, 1e− 4, 3e− 5}. The target update frequency is set to 100 for Scavenger

and 500 for Reacher, where we consider {100} for Scavenger and {100, 500} for

Reacher, and the update frequency is configured as 1 for the two environments.

On Scavenger, we use 256-sized replay buffers (chosen out of {1, 128, 256}) and

mini-batches with a size of 1 after testing {1, 4, 8, 16}. For Reacher, we make

replay buffers and mini-batches 2048-sized and 32-sized, which are chosen from

{2048} and {1, 8, 32}. For the exploration, we use the ϵ-greedy with its value of

0.1.

For the DeepMind Lab environment, we employ the frame stacking strategy

and the network architecture for our shared feature extractor for ψ̃ and ϕ̃ from

Mnih et al. [77], where the latent feature dimensionality is 64. w̃ has one hidden
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layer with 16 units. A learning rate of 1e− 5 for the Adam optimizer is chosen

out of {1e− 4, 1e− 5}. The target update frequency and the update frequency

are 500 and 1, respectively. We use a replay buffer whose size is 65536 and

sample 16-sized mini-batches, which is chosen from {16, 64}.

Specifically for USFAs, for the Scavenger and Reacher environments, we

sample five policies from Dz(·|w) at each step, where each dimension of a policy

vector is sampled from a Gaussian distribution with a standard deviation of

0.1 and a mean of the corresponding element of w. We use the same number

of policy vectors and policy vector distribution but conditioned on the task

information instead of task vector, for the DeepMind Lab environment.

For the constrained training of USFAs, we use the same set of hyperpa-

rameters, as well as a weight coefficient for the constraints of 0.1 (chosen from

{0.1, 1.0, 5.0}), where one task is uniformly randomly sampled from the bounded

linear span of source tasks at each step. Also, for a more stable learning, we

load the model checkpoints of USFAs at the 0.5M-th step and train for the re-

maining 0.5M steps. We universal employ cvxpylayers [7] as a general LP solver

for the upper bound with the default solver configurations, for both constrained

GPI and the constrained training.

For the Scavenger and Reacher experiments, we conduct the experiments

with our CPU machines, where majority of the CPUs are Intel Xeon Gold 6130

or Intel Xeon E5-2695. For each training run, we use two CPU cores without

any GPUs for about 6-12 hours. For the DeepMind Lab experiments, we employ

our GPU machines and run experiments for about 48-72 hours.
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4.6 Summary

We presented constrained GPI, a simple yet effective test-time approach for

transfer with approximate successor features. We first focused on the issue

that although universal successor features approximators (USFAs) exploit the

smoothness of optimal values across different tasks, their approximation errors

on novel target tasks could be large especially when those tasks are quite dis-

tant from source tasks. Thus, we introduced a theorem about lower and upper

bounds on the optimal values for novel task vectors that belong to the task

vector space linearly spanned by the set of source task vectors, relaxing the

conical combination condition used for the theorem by Nemecek and Parr [82].

We proposed a constrained training scheme making use of those bounds for re-

ducing the action-value errors of the learned approximators on novel tasks. We

then suggested constrained GPI that uses the bounds at test time to achieve

an analogous effect, allowing the use of previously trained models. We empir-

ically showed that this test-time approach can improve the zero-shot transfer

performance by a large margin in multiple environments.

Limitations and possible improvements. There may be some cases

where the minimum rewards for source tasks i.e., rmin
w ’s are overly small, which

could lead to less changes of both action-values and behaviors induced by the

upper-bounding in Theorem 1 with Cw(s, a) = 1
1−γ r

min
w . An interesting direc-

tion to tackle the issue is to learn the minimum action-value function during the

training and to use the approximate minimum value at each state-action pair as

Cw(s, a) for deriving the upper bound in Theorem 1. It may allow computing

upper bounds more tightly and adaptively for different state-action pairs. Also,

if the learned successor features approximators have large errors even on source

tasks, not only GPI but also constrained GPI’s bounding may not be meaning-
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fully helpful. One idea to mitigate the issue is to take the uncertainty in the

approximators and the approximation error term that appears in Theorem 1

into account, e.g ., by using ensemble models.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we discussed approaches to building generalizable agents in the

two critical aspects: abstraction and transfer. We covered the specific topics

on feature abstraction for robustness and efficiency, unsupervised temporal ab-

straction of behaviors for reuse and transfer trained agents between tasks with

distinct reward functions.

In Chapter 2, we introduced Drop-Bottleneck (DB), a new information bot-

tleneck method that discretely drops features. It compresses the input informa-

tion with learned feature-wise drop probabilities, which can be jointly optimized

with the feature extractor. As a result of the training, high drop probabilities

can be assigned to features that are less relevant to the task. Moreover, we de-

fined the deterministic version of the compressed representations so that they

can be used for inference tasks that require consistent and stable results or
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efficient and optimized computation, with the majority of the compression and

robustness in force. The experimental results showed that DB can be adopted

for improved robustness to adversarial samples and practical computational

efficiency for inference.

In Chapter 3, we proposed Information Bottleneck Option Learning (IBOL),

an unsupervised skill discovery method that learns to abstract behaviors with

disentanglement for better reusability on top of linearized environment dynam-

ics. Its lowest-level component, the linearizer, is a policy that is trained to per-

form raw actions to make a state transition in the specified direction. Combined

with the linearizer, IBOL discovers extensive skills and learns the disentangled

abstraction of them for a simpler and more interpretable mapping. Our empir-

ical results suggested that its abstractions are not only more disentangled and

simpler but also performant when combined with meta-controllers for solving

downstream tasks than those of the baseline methods,

In Chapter 4, we presented a theorem that expresses the lower and upper

bounds for the optimal values for new tasks with learned successor features

for source tasks. Based on the theorem, we proposed a method that bounds

optimal value approximations for target tasks during the inference, named con-

strained GPI. Without requiring modifications to the training process or ad-

ditional training, constrained GPI empirically outperformed the baselines on

target tasks with novel reward functions.

5.2 Future Work

Not only the high-level goal of building agents that generalize but also the topics

discussed in this thesis are still open for diverse further research. We discuss a

few potential directions for future work in this section.
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More dynamics-aware behavior and skill abstractions. The goal of

abstracting behaviors and skills is to leverage them for different tasks, and it

would be beneficial for the abstractions to have better controllability in the

environment and its state space. Currently, there are relevant attempts to im-

prove their alignment with the resulting transitions [84, 85]. For future research,

we hope to observe further exploration in the direction, possibly taking the en-

vironment dynamics into account in the abstractions. The future development

might gain from existing studies such as successor representations [31], successor

features [14] and γ-models [56].

Skill discovery with minimal guidance. While unsupervised skill dis-

covery can be useful for discovering reusable skills without the cost of integrating

supervisory signals, challenging real-world problems might involve exceedingly

complex environments with huge behavior spaces. In such environments, due

to the enormity of the behavior spaces, it may not be trivial to establish a set

of skills that could benefit the downstream tasks of interest in a completely un-

supervised manner. Therefore, it would be interesting to investigate how to aid

the discovery of skills with some guidance on which behaviors are considered

common and useful, while still minimizing the introduced cost of such guid-

ance. Providing human preferences for the learning of skills [109] could be a

good direction to achieve the goal, and we look forward to further research on

this topic.

Refinable sets of skill abstractions. While the main goal of skill dis-

covery is to identify and learn reusable behaviors, depending on the tasks for

which the learned behaviors are used, their abstractions might not be ideally

suited for those new tasks. In such situations, having the ability to adjust the

set of learned skill abstractions for new tasks would be a helpful and important
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asset. While fine-tuning trained skill abstractions such as skill policies has been

an existing option, it would be tempting to investigate how to better adjust

them for downstream tasks, possibly with further contextual information.
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요약

딥러닝 분야의 많은 연구자들은 다양한 작업을 수행할 수 있는 에이전트(agent)를

만들고자 해왔다. 가능한 모든 작업에 대해 학습을 수행하는 것은 보통 불가능하

기 때문에, 에이전트가 학습용 작업에서 배운 것을 기반으로 새로운 작업에 대해

더 잘 일반화하도록 하는 것은 딥러닝의 중요한 과제 중 하나이다. 효과적인 일반

화에는, 서로 다른 조건 하에서 사용될 수 있는 추상화(abstraction)를 학습하는

것과 그러한 추상화를 새로운 작업에 잘 활용하는 것, 두 가지 모두가 중요하다.

본 학위논문에서는 이러한 일반화 과제를 위와 같이 추상화(abstraction)와 전이

(transfer), 이 두 가지 관점에서 다룬다.

먼저입력데이터를추상화하고잡음(noise)에강건한특징(features)을학습하

는 것에 대해 다룬다. 추론 시점에 주어지는, 작업과 무관한 정보는 학습된 모델과

에이전트의 성능에 큰 영향을 미칠 수 있기 때문에, 그러한 잡음에 대한 강건성을

갖도록하는것은일반화에서중요한문제중하나이다.이러한문제를해결하기위

해,작업변수와무관한특징을이산적으로(discretely)제거하고원하는특징을남

기는, Drop-Bottleneck이라는 이산적 정보 병목(discrete information bottleneck)

방법론을 제안한다. 이 방법론은 단순한 정보 압축 목표(objective)를 가지며 결

정론적인 압축된 표현 또한 제공하는데, 이는 온전한 일관성 및 줄어든 특징 수에

따른 향상된 효율성을 필요로 하는 추론에 유용하다.

또한, 주어진 환경에서 에이전트가 지도(supervision) 없이 가능한 행동을 발

견하고 더 재사용 가능한 형태의 스킬(skill)로 추상화하는 것을 다룬다. 비지도적

스킬 발견은 외부적 보상 없이 환경과 상호작용하며 유용한 행동을 찾고 학습하는

것을 목표로 한다. 이는 학습된 스킬의 지식을 재사용하고 새로운 작업을 더 효율

적이고 효과적으로 수행할 수 있도록 하기 때문에, 강화학습에서 시간적 추상화의
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중요한과제중하나이다.해당목표를위해본논문에서는 Information Bottleneck

Option Learning (IBOL)이라는 비지도적 스킬 발견 방법론을 제시한다. 이것은

환경을 선형화하여 상태 공간에서 더 광범위한 행동을 찾고, 스킬의 재사용성을

향상시키기 위해 정보 병목을 통해 해당 행동들의 얽히지 않은(disentangled) 추

상화를 학습한다.

마지막으로, 원천 작업에서 학습한 지식을, 추가적인 학습 없이 대상 작업에서

의 성능을 향상시키는데 활용하는 방법을 다룬다. 강화학습에서 작업들 사이에 보

상 함수가 달라지는 조건에서의 제로샷(zero-shot) 전이에는 후속 특징(successor

features) 프레임워크가 많이 사용된다. 본 학위논문에서는 후속 특징을 이용하는

학습된 가치(value) 근사기의 새로운 작업으로의 전이를, 해당 작업에서의 오류를

제한함으로써향상시키는것을목적으로한다.원천작업및해당작업들에서학습

된 후속 특징들을 이용해, 원천 작업 벡터들의 선형 결합으로 표현 가능한 새로운

작업 벡터에서의 최적 가치에 대한 하한 및 상한을 제시한다. 그리고 constrained

GPI라는, 새로운 대상 작업에서의 가치 근삿값을 제한하여 전이를 향상시키는

단순한 시험 시점 방법론을 제시한다.

주요어: 딥러닝, 심층 강화학습, 스킬 발견, 시간적 추상화, 전이 학습

학번: 2018-28413
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